

FEASIBILITY OF REAL-TIME UAV
FLIGHT PATH PLANNING FOR
URBAN MONITORING

SHICHEN HU
June, 2021

SUPERVISORS:
Dr. F. C. Nex
Dr. B. Alsadik

Thesis submitted to the Faculty of Geo-Information Science and Earth
Observation of the University of Twente in partial fulfilment of the
requirements for the degree of Master of Science in Geo-information Science
and Earth Observation.
Specialization: Geoinformatics

SUPERVISORS:
Dr. F. C. Nex
Dr. B. Alsadik

THESIS ASSESSMENT BOARD:
Dr. C. Persello (Chair)
Dr. M. Koeva (External Examiner, ITC PGM department)

Feasibility of Real-time UAV Flight
Path Planning for Urban
Monitoring

SHICHEN HU
Enschede, The Netherlands, June, 2021

DISCLAIMER
This document describes work undertaken as part of a programme of study at the Faculty of Geo-Information Science and
Earth Observation of the University of Twente. All views and opinions expressed therein remain the sole responsibility of the
author, and do not necessarily represent those of the Faculty.

i

ABSTRACT

The unmanned aerial vehicles (UAVs) have become popular in many research fields in recent years. The
UAV has the advantage of small size, simple structure, high mobility, and low cost. The flexibility of UAVs
provides a new possibility of environment exploration, especially for those dangerous places where are
difficult to reach. However, UAVs also have limitations due to their small size. The small size means limited
payload and flight time. For applications that the target of interest is not the whole scene but specific objects
within the scene, the traditional way is to fly twice. Use the first flight to obtain the location of the target,
then fly another mission. However, the result of UAV applications also depends on environmental
conditions. For instance, wind speed and illumination conditions also play a vital role in the data acquisition
process. It is hard to keep the environmental factor being consistent between two flights.

This research proposed an updatable flight path according to the target of interest in one flight. The
algorithm was divided into three parts: global planner, local planner, and object detector. The global planner
is a pre-defined strip flight according to the simulation scene. The local planner is a circular flight path
around the target with a lower flight height. The trigger between these two planners is an object detector.
This object detector is a YOLO v3 detector with a Squeeze net backbone. The detector was first trained on
the Aeroscape dataset and then performed a transfer learning process on the synthetic image dataset created
manually. The whole algorithm was developed and tested using the MATLAB and Simulink platform. The
simulation environment was established using Unreal Engine from Epic Games. The final output of this
model is nadir view images along the whole flight path with object detection results added.

The training result on Aeroscape dataset achieved an average precision of 90%, and after the transfer
learning process, the average precision increased to 100%. The object detector performs better at higher
flight height in the simulation environment. The entire model runs stable in the Simulink and can have a
target inspection from all directions.

Keywords: UAV flight planning; Object detection; YOLO v3; Simulink

ii

ACKNOWLEDGEMENTS

Time flies, and graduation comes quietly. At this moment, when the thesis is finished, I want to thank all
the professors and colleagues who helped me in the process of completing the thesis.

Thanks to my supervisor, Dr. F.C. Nex, for his patience and kindness when I faced many troubles
implementing the algorithm in Simulink. All the comments and suggestions that he gave became the beacon
of this research.

Thanks to my second supervisor Dr. B. Alsadik, for the fast reply to my email and all the help on
mathematics and algorithm designation.

Thanks to my previous chair, Prof. Dr. ir. M.G. Vosselman for all the essential questions and helpful
suggestions about presentations.

Thanks to my current chair Dr. C. Persello for taking the time to participate in my MSc research defense so
that I can graduate as scheduled.

Thanks to S.M. Tilon, MSc, for helping me to achieve a proper YOLO network.

Thanks to drs. J.P.G. Wan Bakx for the explanations of a lot of procedures about graduations and caring
for me.

Thanks to the two ladies from student affairs, M.C.F. Metz – Bekkers and T.B. van den Boogaard – Burke,
for their so much love and concern.

Thanks to the MATLAB staff for the help and suggestions on Simulink.

Thanks to all the staff from the ITC building and ITC Hotel for making my two years living in the
Netherlands very pleasant and comfortable.

Thanks to all my friends for caring for me over the years, especially under the situation of COVID-19. Their
company and encouragement gave me the strength to move forward.

Finally, I would like to thank my parents. Their support and understanding behind the scenes have always
been my source of strength. The grace of nurturing is nothing in return.

iii

TABLE OF CONTENTS

1. Introduction ... 1

1.1. Research Background ...1
1.2. Motivation...2
1.3. Problem Statement ..3
1.4. Novelty ..3
1.5. Research objectives and Research questions ..4

2. Literature review ... 5
2.1. UAV Platforms ..5
2.2. UAV Flight Planning ..5
2.3. Object Detection ...8

3. Simulation environments .. 11
3.1. Simulink Model ... 11
3.2. Unreal Scene .. 11

4. Methodology ... 15
4.1. Global Planner .. 16
4.2. Object Detection using YOLO v3 .. 17
4.3. Local Planner ... 24
4.4. Simulink Implementation .. 26

5. Results and discussions ... 33
5.1. Object Detection using YOLO v3 .. 33
5.2. Flight Path Planning ... 38
5.3. Discussions .. 42

6. Conclusion and Recommendations .. 45
6.1. Conclusion ... 45
6.2. Recommendations .. 46

iv

LIST OF FIGURES
Figure 2.1 Different UAV platforms .. 5
Figure 2.2 Object detector[40] ... 8
Figure 2.3 Faster R-CNN network architecture[41] .. 8
Figure 2.4 YOLO v3 network architecture[44] .. 9
Figure 3.1 Simulation 3D scene .. 11
Figure 3.2 US City Block ... 12
Figure 3.3 Two coordinate systems used in simulation scene [47] ... 12
Figure 3.4 Relationship between two coordinate systems ... 13
Figure 3.5 Five types of vehicle from Vehicle Variety Pack .. 14
Figure 3.6 Vehicles in the simulation Scene ... 14
Figure 4.1 Overall workflow ... 15
Figure 4.2 Global planner flight path .. 17
Figure 4.3 Network structure .. 18
Figure 4.4 Training data preparation ... 19
Figure 4.5 Data augmentation on AeroScapes dataset ... 19
Figure 4.6 Intersection over union .. 20
Figure 4.7 Manually labeling process ... 21
Figure 4.8 Data augmentation on simulation dataset ... 22
Figure 4.9 Rotation and scaling data augmentation .. 22
Figure 4.10 New network architecture .. 23
Figure 4.11 Local planner .. 24
Figure 4.12 MATLAB UAV package delivery example [61] .. 26
Figure 4.13 Full guidance logic[61] .. 27
Figure 4.14 Low-fidelity control system ... 28
Figure 4.15 External sensor .. 28
Figure 4.16 Object detection workflow .. 29
Figure 4.17 UAV mission update workflow ... 30
Figure 4.18 Dynamic waypoint update system .. 30
Figure 4.19 Insert a new waypoint ... 31
Figure 4.20 Algebra loop ... 31
Figure 5.1 P-R curve on Aeroscape dataset.. 33
Figure 5.2 Detection result of Aeroscape dataset .. 34
Figure 5.3 Vehicle detection ... 35
Figure 5.4 False detection during takeoff ... 36
Figure 5.5 False detection on the window and road barriers .. 36
Figure 5.6 False detection at 20 meters ... 37
Figure 5.7 Detection results with new data augmentation process .. 37
Figure 5.8 False detection of the new detector at 50 meters high .. 37
Figure 5.9 Flight trajectory .. 39
Figure 5.10 Green vehicle inspection .. 39
Figure 5.11 Yellow vehicle inspection ... 40
Figure 5.12 Blue vehicle inspection ... 40
Figure 5.13 Red vehicle inspection .. 41
Figure 5.14 Incomplete vehicle inspection ... 43

v

LIST OF TABLES
Table 3.1 World Coordinate in Unreal Engine [47] .. 13
Table 3.2 Body coordinate system in Unreal Engine .. 13
Table 4.1 Camera parameters ... 16
Table 4.2 Training parameters for Aeroscape dataset .. 20
Table 4.3 Training parameters for transfer learning ... 23
Table 4.4 Exterior orientation and interior orientation .. 25
Table 4.5 Input of UAV Path Manager .. 26
Table 5.1 Detection results of two detectors ... 38

vi

FEASIBILITY OF REAL-TIME UAV FLIGHT PATH PLANNING FOR URBAN MONITORING

1

1. INTRODUCTION

1.1. Research Background
In recent years, the development of unmanned aerial vehicles (UAVs) has provided new possibilities for
many research fields. UAV has the advantages of small size, simple structure, easy to operate, high flexibility,
low cost, high accuracy, etc. Therefore, it is widely used in many applications, e.g., search and rescue (SAR),
monitoring, 3D reconstruction, and environment exploration[1]. At the same time, UAVs also provide the
possibility for efficient and detailed data acquisition. The convenience and flexibility make it easy to support
many applications, especially for those places which are dangerous or difficult for human beings to reach.
The main mechanism of using UAVs is an efficient spatial data acquisition process, a low-cost solution for
mapping the ground, a reliable source for spatial information [2].

However, UAVs also have their limitations. Plenty of technical issues and application problems still exist
that need to be solved[2]. Besides, the limitation of commercial UAVs like the DJI Phantom series [3] also
needs to be considered. For instance, the limited payload and restrict flight time due to its small size, the
effect of wind at high flying altitude, and the fluctuation of the connection between UAV and its ground
controller all may significantly impact the final result of applications [2].

 Due to different applications, there is a need for different flight paths and camera conditions. Usually,
obstacle avoidance, 3D reconstruction, and unknown environment exploration are the three typical topics
in UAV path planning. For obstacle avoidance, the main idea is to find a collision-free path given a start
point and an endpoint. For 3D reconstruction, the main issue is to guarantee a sufficient overlap between
images to establish stereo image pairs. Finally, for unknown environment exploration, the difficulty is that
the decision process becomes much more complex. Hence, the optimization of path planning becomes
indispensable.

There are many methods for UAV flight planning. For instance, many commercial flight planners like Pix4D
[4] and DJI-TERRA [5] can help users define simple flight paths. However, there are only several parameters
that are provided for users [1]. Nevertheless, this method can overview the study area, and it is wildly used
in many applications.

However, in unexpected situations, such as sudden natural disasters or investigations in an unknown
environment, real-time adjustments are needed during the flight. The aim is to find out how to obtain more
relevant information according to the actual situation, and in this kind of application, the overview
information is insufficient.

Also, for patrolling and surveillance applications, to avoid occlusions and optimize the flight path in the
distance, the flight path needs to be designed to fulfill the specific requirement [6]. Within the whole study
area, if we are only interested in some unique targets in the study area, there is no need to get information
about every object. Instead, only the information about the target of interest is needed. All of these specific
applications need different strategies to accomplish different purposes.

FEASIBILITY OF REAL-TIME UAV FLIGHT PATH PLANNING FOR URBAN MONITORING

2

1.2. Motivation
In an unknown environment, path planning becomes a fundamental problem for the exploration of UAVs.
Due to flight time and energy limitations, finding an optimal path for a specific application is an unavoidable
issue. In the situation mentioned in the previous section, the UAV needs to make a decision by itself while
flying based on the pre-existing information [7], which means that an autonomous flight is required due to
the dynamic nature of the real world. Autonomy is used in various fields related to UAVs, such as path
planning, motion planning, and communication [8].

There are many methods for UAV path planning. According to the different purposes, various methods are
proposed. As for representative techniques, two main directions are illustrated. One is sampling-based
techniques, i.e., rapid-exploring random tree (RTT) [9] and A-star (A*) [10]. The other is artificial
intelligence-based techniques, i.e., greedy algorithm, genetic algorithm, and traveling sales man problem[8].
However, hybrid approaches are recommended in the real world due to the uncertainty [11]. Besides, the
continuous development of deep learning and neural networks also provides new possibilities for UAV path
planning.

In many cases, when using UAVs to conduct investigations, operators do not have a detailed understanding
of the investigated areas because the traditional flight path usually covers the entire study area in sequence
under the condition of satisfying the overlapping relationship of adjacent photos. Thus, a simple strip flight
plan is likely to lead to incomplete data acquisition when monitoring a specific target. Moreover, the
conventional flying method usually uses a certain flying height, and the camera angle is unchangeable (nadir
view or side-looking). Therefore, the strip flight path cannot be adjusted according to the real-world
environment.

Then an algorithm for replanning the path is needed to complete the monitoring task. Most of the path-
replanning algorithms are devoted to restoring the whole observed object, which is a complete 3D
reconstruction process [12]–[14]. In their cases, a large number of images are needed to produce precise 3D
models. However, for monitoring, only a complete observation of the target is required. Taking static
vehicles as an example, if we want to know detailed information like the license plate number of vehicles in
the urban area, we should only focus on vehicles as much as possible and ensure that all vehicles will be
observed. For other objects in the study area, they can be ignored. Therefore, this algorithm for replanning
should be more focused on information extraction rather than 3D reconstruction. Besides, the entire 3D
reconstruction process is also quite time-consuming.

Therefore, to obtain more detailed information for a specific target, the flight plan needs to be adjusted
according to the situation. For example, in an unknown environment, the location of targets is also
unknown, so the UAV needs first to detect the target object and then fly towards this object. Then, after
finishing detailed data acquisition, it keeps looking for the next target, which means the object detection
needs to be in real-time. The automation of re-planning the UAV flight path in real-time in terms of the
environment makes the data acquisition process more effective and informative.

This research attempts to develop a novel path planner that combines pre-set path planning, the global
planner, and tailored path planning, the local planner, in the simulation environment. As a result, the
simulated environment does not need to consider environmental factors such as weather, windspeed, and
light conditions compare to test the algorithm in the field. Besides, there is no risk of damage to the UAV.

FEASIBILITY OF REAL-TIME UAV FLIGHT PATH PLANNING FOR URBAN MONITORING

3

The UAV flight path will automatically update based on the target of interest. Then, all the images can be
obtained in the same flight. With a high-speed object detector and the current UAV position, the target
location can be obtained on the fly, and then, the UAV will switch from global planner to local planner.
Finally, a simple local planner is proposed to complete the inspection of the target. The whole data
acquisition process will keep running until it covers the entire study area.

1.3. Problem Statement
UAVs are used in various fields due to their flexibility. However, most applications use the traditional strip
flight plan and post-data processing procedures. As illustrated in section 1.2, this kind of data acquisition
process can lead to an incomplete data acquisition process in some applications. Besides, the UAV image
data is sensitive to environmental factors like weather and lighting conditions. Therefore, it is hard to fly the
UAV again with the same condition. To overcome this issue, a complete data acquisition process in a single
flight would be ideal.

Another problem is, in terms of the regulations for UAVs among 19 countries [15], the maximum flight
height cannot be higher than 150 meters. When using the same camera setting, the higher the flight height,
the larger the field of view. In consideration of covering the whole study area in the shortest time, the flight
height should be set as high as possible under regulations. In this case, when focusing on small static objects
in the study area like vehicles, it is hard to extract information from 100 meters away.

Therefore, the proposed research will be to achieve a new method of flight path planning by combining
different techniques. Take advantage of the CNN-based object detection method to achieve a near-real-
time object detector, and then combine the traditional way of coverage flight planning with a more detailed
local planning method following the object itself with lower flight height, finally, attempt to achieve a
complete and effective data acquisition procedure.

1.4. Novelty
Many path planning algorithms are available, but the problem still exists in locating and identifying target
aspects [8]. Therefore, instead of providing complete coverage of the study area, only focusing on the target
part can be another choice to save time and reduce data redundancy. This study presents a first attempt to
combine different planning modes and an online CNN-based object detector to achieve a flexible path
planning process according to the objects in a simulation environment.

This study was implemented using the UAV toolbox developed by MathWorks. This new release toolbox
in 2020 provides a new possibility for the simulation of UAVs. Instead of using Robot Operating System
(ROS) with C + +, Simulink becomes another choice to achieve simulation without designing the control
system of the UAV. Besides, it is easier to define the algorithm with a graphical programming environment
and simulate different realistic situations. Moreover, with cooperation with Unreal Engine, a more complex
simulation scene can be created, indicating that simulation can provide various testing environments without
risk of damaging the UAV before the test of the algorithm in a real environment.

FEASIBILITY OF REAL-TIME UAV FLIGHT PATH PLANNING FOR URBAN MONITORING

4

1.5. Research objectives and Research questions
The overall objective is to develop an algorithm that allows the flight path of UAVs to be updated according
to a specific target. The algorithm will be implemented in the simulation environment, and the targets used
in the simulation are vehicles. This algorithm comprises three parts: global planner, local planner, and object
detector. For the study area that needs to be covered, both the global planner and the local planner are
developed. The global planner is the pre-defined strip flight, and the local planner is a circular flight path
around the target. Based on the images obtained in real-time, an object detector is proposed to search for a
vehicle. Once a vehicle is found, switch the global planner to the local planner. When the local planner is
finished, switch the local planner back to the global one, and continue searching for the next object of
interest until it covers the whole area.

The UAV should change successfully from global planner to local planner and vice versa. For the global
planner, the strip flight should be defined according to the simulation scene. For the local planner, the
circular flight path should be localized around the target. For object detection, the method needs to work
efficiently and precisely to detect vehicles while flying.

Sub-objective 1: To implement an efficient local planner algorithm able to acquire complete information
about the vehicle.
Corresponding research questions:

1) What are the available methods for UAV flight planning for a specific object?
2) How to determine the completeness of the acquired images?
3) How to switch between the local planner and the global planner?

Sub-objective 2: To implement an object detection process to respond in real-time or near real-time.
Corresponding research questions:

1) What are the available CNN-based algorithms for real-time object detection?
2) Which image dataset is suitable for training the network to detect vehicles from a nadir view?
3) How to implement the network in the simulation environment?

Sub-objective 3: To embed the developed algorithm on a simulated virtual environment like Simulink.
Corresponding research questions:

1) Is Simulink suitable for the simulation of UAV path planning?
2) Is Simulink able to embed an object detection algorithm?
3) How to execute an updatable UAV flight plan in Simulink?

FEASIBILITY OF REAL-TIME UAV FLIGHT PATH PLANNING FOR URBAN MONITORING

5

2. LITERATURE REVIEW

2.1. UAV Platforms
At present, there are two kinds of UAVs in common use, one is the UAV that can take off and land vertically
(VTOL), also known as multi-rotor UAVs (figure 2.1(a)), and the other is the UAV with fixed wings (figure
2.1(b)). Fixed-wing UAVs have the advantages of fast flight speed and long flight distance, making them
very suitable for detecting long strip features such as roads [16]. But the disadvantage of these fixed-wing
UAVs is that they cannot hover in the air and require more sophisticated ways to take off, while their
payloads are limited [17],[16],[18].

The VTOL UAV has multiple rotors, allowing it to take off and land vertically. The representative
commercial VTOL UAVs can be DJI phantom series [3]. Such UAVs can hover in the air and observe
targets from various angles [17]. But the main disadvantage of vertical takeoff and landing UAVs is that the
flight time is relatively limited. Most of their batteries support a flight length of about 30 minutes, which
means that the VTOL UAV is not suitable for long-distance monitoring [19],[17]. So, a hybrid UAV arises
to be a new solution (figure 2.1(c)). Hybrid UAVs have the advantages of both types of UAVs, which can
take off and land vertically and fly long distances. But the main disadvantage of a hybrid UAV is that its
load is similar to a fixed-wing UAV [17].

(a)Multi-rotor UAV[20] (b)Fixed wing UAV[21] (c) Hybrid UAV[22]
Figure 2.1 Different UAV platforms

2.2. UAV Flight Planning
In the process of 3D restoration modeling with UAV, the flight path and view of the UAV are essential
parameters to be considered [1]. UAV has a wide range of applications, and different applications have
different requirements for flight planning, the angle of instruments carried on UAVs, flight time, and so on.
The angle of the sensor determines the feature of the data. For orthophoto products, the nadir view is often
used, and for 3D reconstruction, an oblique view can provide more information about the façade. The flight
time depends on the energy of UAVs. Therefore, when considering the flight path, the energy-consuming
issue also needs to be included. Meanwhile, how to deal with the occlusion problem during flight is also
very important [1].

Methods to plan the flight path of UAVs can be divided into two categories. One is to make a flight plan
before the flight (off-the-shelf flight planners) [23]. The other is to change the flight plan in real-time
according to the changes of ground features (explore-then-exploit methods) [23].

FEASIBILITY OF REAL-TIME UAV FLIGHT PATH PLANNING FOR URBAN MONITORING

6

2.2.1. Off-the-shelf Flight Planner
The off-the-shelf flight planner is the conventional way of the strip flight. Some parameters are included in
this planner: camera setting, ground sampling distance, flight height, the proportion of image overlap,
viewing angle, and flight time. Take the Pix4D capture [24] as an example of off-the-shelf flight planner
software.

The Pix4D capture is a free mobile app available both on Android and iOS, which means users can easily
plan and control UAVs from their mobile phones. It supports UAVs from three companies, DJI [25], Parrot
[26], and Yuneec [27]. Then, five types of missions are available: polygon, grid, double grid, circular, and
free flight [28]. The first three types of flights are all strip flights. The difference between polygon and grid
is that the shape of the study area is different. Polygon means irregular shape, and grid means rectangular
shape. Then the double grid means to fly a two consecutive grid mission in two perpendicular directions.

After selecting the type of mission, several parameters are provided to adjust the flight plan: angle of the
camera, front overlap, side overlap, and drone speed. Usually, the front overlap (along-track overlap) is
recommended to set to 80 percent, and the side overlap (across-track overlap) is recommended to set to 60
percent. After finishing all the settings, start the mission in the field, and the UAV will fly autonomously
according to the pre-defined flight plan.

Off-the-shelf flight planners can be very convenient but also have some limitations. For example, it is easy
to have complex occlusion relationships in dense urban areas, and the route set in advance may lead to
incomplete data acquisition [1]. And this method does not adequately consider the geometric characteristics
of the features.

Another approach consists of two phases. According to a conventional way, the first phase covers the whole
research area uniformly, like the off-the-shelf flight planners. Then, through these images, to build a
relatively rough 3D model. Then, a new flight trajectory is calculated in the second stage [1]. But even flying
two times is still time-consuming, especially when the research area is relatively big. And the illumination
condition also has a considerable effect.

2.2.2. Explore-then-exploit Flight Planner
There are many methods for explore-then-exploit flight planning. Next-best-view is one of them. A next-
best-view (NBV) planning algorithm was developed simply back in the 1980s [29]. It merely defines an
octree model for empty, occupied, and unseen, but later generations have continuously improved this idea
to realize automatic 3D measurement [30]. Furthermore, an iterative linear method to quickly calculate the
multi-view-stereo(MVS) problem is developed to estimate an initial model of the object and then solve the
next position [31]. Another next-best-view algorithm is based on the reflectional symmetry feature from the
rough model built after the first flight [32].

Apart from this, many other methods related to path planning are developed various from a different aspect.
For area coverage of unknown terrain, a tree-like structure is designed [33]. The main idea is to build a tree
in a vertical direction to deal with the non-uniform distribution of targets of interest. Instead of using the
lawnmower pattern to cover every area, this method provides an online coverage path planning technique
for shorter coverage paths. Due to this tree-like structure, the targets of interest will be covered with a higher
resolution because of flying height change. This method wisely uses the difference in the field of view caused
by the flight height change to obtain high-resolution images of the objects of interest. Still, it does not
consider the energy consumption of the vertical movement of the UAV.

FEASIBILITY OF REAL-TIME UAV FLIGHT PATH PLANNING FOR URBAN MONITORING

7

Another triangular mesh representation structure is developed for inspection path planning [13]. They
proposed a two-step optimization paradigm to find the viewpoints that meet full coverage requirements and
the low cost of the connecting path. This method focuses more on the 3D structure of the target object.
The object is represented by a triangular mesh. For each triangle in the mesh, make sure that there is an
acceptable viewpoint that, from this viewpoint, the corresponding triangle is visible. And the next step is to
find a path that can inspect the whole 3D structure at the lowest cost. This algorithm is more complex and
performs a complete 3D reconstruction [13].

Besides, deep learning becomes a research hot spot in recent years. It can also be used in UAV surveillance.
Implement the learning method to allow the UAV to identify the region of risk and area of interest, then
increase the time of visit in the area of interest and decrease the visit frequency in the risky region [14]. This
method will get more data about the area with a higher possibility of the target of interest, and based on
this, the surveillance path is calculated. Although this method considers the possibility of importance in the
research area, the similarity between real target and decoy can cause a problem. And the applicability of this
method still needs to be validated. In contrast, there is also an application of a supervised learning method
in 3D reconstruction, where an original 3D convolutional neural network is developed to predict the next-
best-view (NBV) [34]. Unlike many other pieces of research that treat the NBV problem as a search problem,
they modeled this problem as a classification problem, which means each prediction is based on the partial
model that was obtained before. Apart from this, the training samples for this network become important.

According to the reviewed pieces of literature, the UAV flight planning methods are various from
application to application. Also, most next-best-view algorithms are committed to building a complete 3D
model of ground objects. Therefore, combining next-best-view and scene understanding to make the data
acquisition process of ground features more effective and flexible is still an urgent problem.

FEASIBILITY OF REAL-TIME UAV FLIGHT PATH PLANNING FOR URBAN MONITORING

8

2.3. Object Detection
Detecting objects in UAV images can be challenging due to irregular shapes, different image scales, various
viewing angles, and so on [35]. On the other hand, Convolutional Neural Network (CNN) becomes a new
technique that can achieve more efficient and accurate results than other techniques [36]. Due to this
situation, the CNN-based object detection model has been developed fast. There are two frameworks mainly
used for CNN-based object detection [36].

The first framework is the one-stage framework, and the other is the two-stage framework. As for the one-
stage framework, for instance, You Look Only Once (YOLO) [37], it considers the object detection
procedure as a regression problem and classifies the anchors directly. For the two-stage framework, Region-
based Convolutional Neural Network (R-CNN) can be the milestone. It uses a selective search to search for
the object location candidates. The features are extracted separately for each candidate [38]. However, the
drawback of R-CNN is that the detection process is very time-consuming. To speed it up, Faster R-CNN
[39] takes the whole image as the input of one single CNN to extract the features and also implements the
Region Proposal Network (RPN) to increase the calculation speed further [35].

Figure 2.2 Object detector[40]

Figure 2.3 Faster R-CNN network architecture[41]

FEASIBILITY OF REAL-TIME UAV FLIGHT PATH PLANNING FOR URBAN MONITORING

9

A Faster R-CNN(Fast Regions with CNN features) network was developed for UAV reconnaissance images
[41]. In order to improve the accuracy of small object detection, the Adaptive Image Division algorithm
(AID) was developed. Within the AID algorithm, images were divided into blocks in terms of the UAV
flight parameters and the payload parameters, and then resize these blocks to the original image size to
enlarge the object. Then use these resized images as the input of the network. The network structure is
shown in figure 2.3, and the main three parts are convolution and pooling network, region proposal network
(RPN), and classification network. The mean average precision of all detection results can reach 0.83.

However, for real-time applications, YOLO can achieve extremely fast calculation speed while maintaining
reasonable accuracy. In 2016, the first version of YOLO had published, use the same backbone as Faster
R-CNN, which is VGG-16. Although the mean average precision of YOLO is almost 7% lower than Faster
R-CNN, the calculation speed is three times faster. YOLO performs worse to localize objects correctly but
can distinguish better between object and background [37]. Besides, YOLO is not sensitive to nearby small
objects, such as small birds in groups, but this problem has been improved in YOLO version 2 and version
3.

YOLO version 2 involves more deep learning tactics, including batch normalization, convolutional with
anchor boxes, direct location prediction, and multi-scale training. Also, YOLO version 2 proposed a new
classification model called Darknet-19 [42]. Darknet-19 contains fewer parameters than VGG-16 but still
can achieve 72.9% top-1 accuracy and 91.2% top-5 accuracy on ImageNet. A new mechanism for joint
classification and detection is proposed in YOLO9000 to increase the number of classes of the detection.
By developing a new structure of the labels called WordTree, multiple datasets can be combined. Finally,
YOLO9000 becomes a real-time object detector for more than 9000 object categories [42]. In 2018, YOLO
version 3 has been released. YOLO version 3 developed a new backbone structure called Darknet-53, shown
in figure 2.4 [43]. And YOLO version 3 introduced a feature pyramid network (FPN) to detect objects in
different scales. It still runs extremely fast compared to RetinaNet and Faster R-CNN and achieves almost
the same accuracy. Two years later, YOLO version 4 has made significant progress from YOLO version 3.
YOLO version 4 has a new backbone architecture, the CSPDarknet53, and an adjusted neck, which
improved the mAP (mean Average Precision) by 10% [40]. Moreover, it can be used on a single commercial
GPU such as 1080Ti. With the bag of freebies and the bag of specials, YOLO version 4 becomes a very
powerful and high-speed object detector.

Figure 2.4 YOLO v3 network architecture[44]

FEASIBILITY OF REAL-TIME UAV FLIGHT PATH PLANNING FOR URBAN MONITORING

11

3. SIMULATION ENVIRONMENTS

3.1. Simulink Model
Simulink is a graphical programming environment for modeling and simulating dynamic systems based on
MATLAB. It is convenient to develop hybrid systems in Simulink with plenty of prebuild blocks. Especially,
the UAV toolbox is designed for modeling, simulating, and testing various algorithms and applications.
Besides, users can design and test flight algorithms, UAV missions, and flight controllers in the Simulink
environment. Therefore, for implementation and testing, Simulink becomes an ideal choice. The entire
model was built in MATLAB 2021a. The newest version of the UAV toolbox has two new parameters,
which are weather and sun position. These parameters make the simulation environment closer to the real
world so that more applications can be simulated, for example, the influence of shadow and canopy.

3.2. Unreal Scene
Within the UAV toolbox, MATLAB provides a customizable simulation environment called US City Block.
This scene is visualized by Unreal Engine from Epic Games. The Unreal Engine is a powerful tool for
creating a real-time 3D scene with plenty of impressive functions. It has been widely used in 3D game
creation. Users can customize the scene with the Unreal Editor and the UAV toolbox interface. The Unreal
Editor is an integrated development environment that supports various systems (i.e., Windows, macOS, and
Linux) [45]. Moreover, it provides hundreds of free prebuild models, which contains complex scene,
textures, or objects, that can be implemented directly.

By following the help document provided by MATLAB [46], users can run the simulation in the Unreal
Editor and export an executable model that can be used directly in Simulink, as shown in figure 3.1. So far,
this co-simulation framework only supports Unreal Engine version 4.23 (The Unreal Engine needs to be
installed separately.). And the additional requirement is to install version 15.9 or a higher version of Visual
Studio 2017. In this study, the US City Block was built based on the real-world city block in Chicago, United
States.

Figure 3.1 Simulation 3D scene

FEASIBILITY OF REAL-TIME UAV FLIGHT PATH PLANNING FOR URBAN MONITORING

12

The top view of the US City Block simulation scene used in this research is shown below in figure 3.2, where
the extent of this area is 443.3 meters by 300 meters. There are fifteen intersections within the scene, and
traffic lights and barriers are placed accordingly.

Figure 3.2 US City Block

The world coordinate system is selected as a right-handed and earth-fixed (inertial) coordinate system
(Figure 3.3). It is an inertial coordinate system, which means the inertial reference frame does not have any
linear and angular acceleration and angular velocity [47]. Another coordinate system used in the simulation
is the body coordinate system which is fixed on the UAV itself. The origin and the orientation are both set
on the moving UAV, and the UAV is assumed to be a rigid object.

The three dimensions of these two coordinate systems are defined in table 3.1 and table 3.2, and the
directions are shown in figure 3.3.

(a)World coordinate system in Unreal Engine (b)Body coordinate system

Figure 3.3 Two coordinate systems used in simulation scene [47]

FEASIBILITY OF REAL-TIME UAV FLIGHT PATH PLANNING FOR URBAN MONITORING

13

Table 3.1 World Coordinate in Unreal Engine [47]

Axis Description
X The X-axis is in the forward direction of the vehicle.

Roll - right-handed rotation of X-axis
Y The X and Y axes are parallel to the ground plane. The ground plane is a horizontal plane normal

to the gravitational vector.
Pitch - right-handed rotation of X-axis

Z In the Z-up orientation, the positive Z-axis points upward.
Yaw – left-handed rotation of Z-axis

Table 3.2 Body coordinate system in Unreal Engine

Axis Description
X The X-axis points towards the front direction of the UAV, which is also along the flying direction.

Roll - right-handed rotation of X-axis
Y The Y-axis is on the right side of the X-axis and perpendicular to it.

Pitch - right-handed rotation of Y-axis
Z The Z-axis points downwards, and perpendicular to the X-Y plane meets the requirements of the

right-hand system.
Yaw - right-handed rotation of Z-axis

As illustrated in figure 3.5, the black coordinate system represents the world coordinate, and the orange
coordinate system represents the body coordinate system. The image was captured by the nadir view camera.
Therefore, the relationship between the two coordinate systems is that their direction of the Y-axis is
opposite. Besides, as defined in table 3.1 and table 3.2, the Z-axis direction in two coordinate systems is also
opposite. Thus, the world coordinate system has an upward Z-axis, while the Z-axis points downwards in
the body coordinate system.

Figure 3.4 Relationship between two coordinate systems

In this study, the object of interest is the vehicle. Although the original US City Block environment does
not contain vehicles, some free packages provided by Unreal Engine can be used to add some static vehicles

FEASIBILITY OF REAL-TIME UAV FLIGHT PATH PLANNING FOR URBAN MONITORING

14

in this scene. Here, a package called Vehicle Variety Pack contains five types of vehicles shown in figure 3.5.
Four of them were used in the scene, except the white one.

Figure 3.5 Five types of vehicle from Vehicle Variety Pack

In the real world, obstacle avoidance should be considered. However, this is beyond the scope of this
research. Therefore, vehicles were placed at crossroads, where there is enough space to fly. There were nine
vehicles added along the flight path shown in figure 4.2.

Figure 3.6 Vehicles in the simulation Scene

FEASIBILITY OF REAL-TIME UAV FLIGHT PATH PLANNING FOR URBAN MONITORING

15

4. METHODOLOGY

The main idea of this research is to develop an algorithm for UAV flight path planning, which allow the
UAV to change flight path according to the target of interest. In this study, take the vehicle as the target of
interest. The flight planning strategy was divided into two parts, one is the global planner, and the other is
the local planner. The global planner is similar to the conventional flight planners mentioned in section
2.2.1. The local planner is a localized circular flight path around the vehicle. Then, once detect the vehicle,
switch the global planner to the local planner to obtain more information. Finally, when the whole global
flight plan is complete, the flight ends.

The whole workflow is shown in figure 4.1. From the place where the UAV takeoff, first use the global
planner, and at the same time, try to identify the vehicle according to the images captured by the UAV in
the simulation scene. Once a vehicle is found, then switch to the local planner. At this stage, change the
flight plan, reduce the flight altitude, complete a local circular flight path around the vehicle. When the
circular flight path is complete, return to the global flight altitude, and continue target detection in the study
area until the whole study area is covered.

For the global planer, conventional strip flight can be a reasonable choice, which is illustrated in section 4.1.
As for the object detection process, a YOLO version 3 detector has been developed, which is further
described in section 4.2. As for the local planner, a simple circular flight path is explained in 4.3. The whole
algorithm was implemented in Simulink, and the model is explained in 4.4.

Figure 4.1 Overall workflow

FEASIBILITY OF REAL-TIME UAV FLIGHT PATH PLANNING FOR URBAN MONITORING

16

4.1. Global Planner
The global planner is a pre-defined flight path according to the simulation scene. As shown in figure 3.2, in
the unreal scene, the distance between buildings is relatively narrow. Therefore, the vehicles were placed in
the open area near the intersections. In terms of this situation, the global planner was defined along the road
shown in figure 4.2. Therefore, only the along-track overlap was considered because there was no vehicle
between strips.

4.1.1. Camera Settings
In this study, the UAV carries a simulated camera[48] as the data acquisition sensor. This simulation camera
is a model based on an ideal pinhole camera model [49], [50] and a lens in order to represent a full camera
model. The lens distortion is defined as radial and tangential [51]. However, to simplify the process, in this
study, lens distortion is not considered. Table 4.1 shows the specifications of the camera where all the
parameters of the camera are specified in pixels. The relative rotation is the rotation angle of the camera
relative to the UAV. Therefore, for a nadir view, the pitch angle was set to 90 degrees. The sample time of
the camera is every second, and the accordingly overlap between two images acquired is greater than 95
percent.

Table 4.1 Camera parameters

Parameter Value (pixels)
Focal length [1109, 1109]
Optical center (principal point) [376, 240]
Image size (col, raw) [480, 752]
Relative rotation [roll, pitch, yaw]/degree [0, 90, 0]

4.1.2. Waypoints
This global flight path was defined manually according to the MATLAB help document [52]. The waypoints,
including the takeoff and landing points, were extracted from the US City Block scene. As shown in figure
4.2, the blue line is the flight path. The UAV will take off at point 1 and then follow the sequence from
point1 to point 6. The flight height was set to 50 meters, considering the size of the simulation scene and
the height of the buildings within this scene.

The global flight path was broken down into small pieces every four meters in order to achieve an 80%
front overlap between every waypoint. In this case, there are 322 waypoints in total, including the takeoff
and landing point. However, the camera acquired image every second, which means more images will be
obtained along the flight path.

Whenever the UAV arrives at a waypoint, it will decide where to fly next. If there is a vehicle between two
waypoints, then the UAV will fly towards the vehicle. If there are no vehicles detected, the UAV will keep
flying according to the pre-defined waypoints along the flight path.

FEASIBILITY OF REAL-TIME UAV FLIGHT PATH PLANNING FOR URBAN MONITORING

17

Figure 4.2 Global planner flight path

4.2. Object Detection using YOLO v3
YOLO is a very representative one-stage object detection framework. Considering the compatibility in
MATLAB, YOLO version 3, the newest version available in MATLAB was selected as the detector in this
research.

Anchor boxes are used in YOLO version 3 to classify the object. Anchor boxes are a series of pre-defined
bounding boxes based on the size of the object in the training dataset. These boxes are the initial bounding
box guesses. With these first guesses, the network will not predict the exact bounding boxes. Instead, it will
predict the probabilities and offset corresponding to the anchor boxes [53]. YOLO version 3 predicts three
attributes for each anchor box: intersection over union (IoU), anchor box offsets, class probability.

MATLAB R2021a provides a yolov3ObjectDetetor object. Using this object, users can create a pre-trained
YOLO v3 object detector using the COCO dataset or customize the network using a different base network
available in MATLAB [54]. The original YOLO v3 developed a new network architecture called Darknet-
53 [43], containing 53 convolution layers. However, in this research, with limited available training samples,
a simple backbone can save more processing time but still preserve accuracy at the same time. Therefore, in
this research, according to the document of MATLAB [55], the Squeeze net [56] was used as the backbone.
Squeeze net is a small CNN structure but can reach the same accuracy as Alex net. Small CNN has several
advantages: fewer parameters, faster training process, feasible updates, and smaller memory requirement
[56]. In this research, the Squeeze net was pre-trained on the ImageNet dataset [57].

Green point: start point
Green arrow: flight direction
Orange point: end point
Blue line: flight path

1 2

3 4

5 6

FEASIBILITY OF REAL-TIME UAV FLIGHT PATH PLANNING FOR URBAN MONITORING

18

(a) Detection heads[55]

(b) Fire module

Figure 4.3 Network structure

The main structure of the Squeeze net is the fire module, as shown in figure 4.3 (b). The fire module is
comprised of one squeeze layer, which is a convolution that only has 1x1 filters, and an expand layer that
contains a mix of 1x1 and 3x3 convolution filters and then concatenates the output of the expand layer [56].
Based on the original Squeeze net, two detection heads were added. As illustrated in figure 4.3 (a), the first
detection head was added after the ninth fire module (fire9-concat), the second one was added after the fifth
fire module (fire5-concat). The output of the first detection head was up-sampled into the same size as the
output of the fifth fire module by replicating neighboring pixel values, and then the second detection head
takes this concatenation layer as input. The detection head contains three layers, one 3x3 convolution layer,
one ReLU layer, and one 1x1 convolution layer. Due to the up-sampling process, the second detection head
was twice as big as the first one. Therefore, the second detection head was more sensitive to small objects
[55]. The input size of the network is set to 227x227x3 to shorten the training time. Then, the image will
first resize into the network size and then forward into the network.

4.2.1. Data Preparation
In this research, the specific object detection task is detecting vehicles from a nadir view. The AeroScapes
aerial semantic segmentation benchmark is used as the training dataset of the YOLO v3 detector. The
AeroScapes contains 3269 720p images captured by a commercial done from various flight heights (5-50
meters) and the corresponding ground truth labels for 11 classes [58].

From the AeroScapes dataset, first, select all the images that contain vehicles, and then select images that
contain complete cars by visual inspection. Finally, 591 images were selected, randomly choosing 90% of
them used for training, and the rest was used for testing. Bounding boxes were created based on the multi-
class segmentation images. Within the multi-class segmentation images, the color of vehicles is grey, and its
RGB value is (128,128,128), as shown in figure 4.4 (b).

FEASIBILITY OF REAL-TIME UAV FLIGHT PATH PLANNING FOR URBAN MONITORING

19

Use this color information to filter out other objects in the image. Then create the bounding box around
the vehicle (figure 4.4 (c)). The bounding boxes are defined in a vector that contains four elements: x, y,
width, height. The x and y described the upper left corner, and the width and height defined the size of the
bounding box, and all these values are in pixels.

(a)training sample image (b)Multi-class segmentation (c)Bounding Box

Figure 4.4 Training data preparation

Then, create text files containing the location of bounding boxes corresponding to each image, then save
images and text files in the same folder. Finally, create the ground truth table using the imageLabeler-API
[59]. As for data augmentation, only implement three simple techniques in the training set: color jitter
augmentation in HSV space, random horizontal flip, and random scaling by 10 percent. The random result
was shown in figure 4.5, and the yellow rectangles are the corresponding bounding boxes.

Figure 4.5 Data augmentation on AeroScapes dataset

4.2.2. Training Process
The training dataset contains various scales of vehicles. Therefore, the size of the anchor boxes is also
various from each other. These anchor boxes were estimated using a k-means clustering algorithm based on
the IoU distance metrics [60]. IoU is defined as the formula 4.2.1. As shown in figure 4.6, IoU measures the
proportion of the overlap between the anchor box and the ground truth. Six anchor boxes were estimated
based on the training data, and the mean IoU of these anchor boxes was 0.6743. To ensure the anchor boxes
are well defined, the mean IoU needs to be greater than 0.5.

FEASIBILITY OF REAL-TIME UAV FLIGHT PATH PLANNING FOR URBAN MONITORING

20

Figure 4.6 Intersection over union

𝐼𝐼𝐼𝐼𝐼𝐼 =

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐼𝐼𝑜𝑜 𝐼𝐼𝑜𝑜𝐴𝐴𝐴𝐴𝑜𝑜𝐴𝐴𝑜𝑜
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐼𝐼𝑜𝑜 𝑢𝑢𝑢𝑢𝑢𝑢𝐼𝐼𝑢𝑢

 (4.2.1)

The training parameters are defined in table 4.2. A minibatch queue was created to read data in batches, and
the minibatch size was set to 16, considering the size of the training dataset. The current learning rate during
the training process depended on the iteration number and the warmup period. A warmup period was
introduced to stabilize the gradients at high learning rates, which means during the first 500 iterations, the
learning rate would increase exponentially based on the formula (4.2.2):

𝑜𝑜𝐴𝐴𝐴𝐴𝐴𝐴𝑢𝑢𝑢𝑢𝑢𝑢𝑙𝑙 𝐴𝐴𝐴𝐴𝑟𝑟𝐴𝐴 × �
𝑢𝑢𝑟𝑟𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑢𝑢𝐼𝐼𝑢𝑢

𝑊𝑊𝐴𝐴𝐴𝐴𝑊𝑊𝑢𝑢𝑜𝑜 𝑜𝑜𝐴𝐴𝐴𝐴𝑢𝑢𝐼𝐼𝑝𝑝

4
� (4.2.2)

After the warmup period, set the learning rate equals to the max learning rate if the remaining number of
epochs is less than 60 percent. Then if the remaining number of epochs is more than 60 percent but less
than 90 percent, scale the learning rate by 0.1, otherwise scale the learning rate by 0.01 [55]. The penalty
threshold was a threshold to filter out the detections that overlap with the ground truth less than 0.5.

Table 4.2 Training parameters for Aeroscape dataset

Parameters Value
Number of Epochs 50
Max learning rate 0.001

L2 regularization factor 0.0005
Minibatch size 16

Warmup period 500
Penalty threshold 0.5

Due to the number of training samples and the depth of the network, the network was trained for 50 epochs,
1700 iterations in total. Therefore, the warmup period was set to 500 iterations, the first 30% iterations to
stabilize the training process.

FEASIBILITY OF REAL-TIME UAV FLIGHT PATH PLANNING FOR URBAN MONITORING

21

The loss used in this training process consists of three different loss functions, which are box loss, object
loss, and class confidence loss.

• Box loss: Calculate the mean squared error using formula 4.2.3 between the prediction values and
the ground truth values for each value in the bounding box vector, then sum it up.

 𝑜𝑜𝐼𝐼𝑙𝑙𝑙𝑙 =
1
𝑁𝑁
� (𝑃𝑃𝑚𝑚 − 𝑇𝑇𝑚𝑚)2
𝑀𝑀

𝑚𝑚=1

 (4.2.3)

Where 𝑃𝑃𝑚𝑚 is the prediction from the network, 𝑇𝑇𝑚𝑚 is the corresponding target value, 𝑀𝑀 is the
number of predictions of the network, 𝑁𝑁 is the total number of observations in 𝑃𝑃.

• Object loss and class confidence loss: The binary cross-entropy function was used to calculate the
object loss. For each network prediction 𝑃𝑃𝑛𝑛 and the target value 𝑇𝑇𝑛𝑛, the loss value is calculated using
the formula 4.2.4.

𝑜𝑜𝐼𝐼𝑙𝑙𝑙𝑙 = −

1
𝑁𝑁
�(𝑇𝑇𝑛𝑛 log(𝑃𝑃𝑛𝑛) + (1 − 𝑇𝑇𝑛𝑛) log 1 − 𝑃𝑃𝑛𝑛)
𝑁𝑁

𝑛𝑛=1

 (4.2.4)

 Where 𝑁𝑁 is the number of observations.

4.2.3. Transfer Learning
In order to implement the object detector in the simulation environment, the network needs to be tuned on
the simulation dataset. Accordingly, as defined in section 4.1, the UAV global planner is first applied, and
then images are saved while flying. After collecting the simulation images, manually label the cars using the
Image labeler provided by MATLAB to create the bounding boxes for transfer learning (figure 4.7). There
are 492 images collected for transfer learning in total. All images were taken from 50 meters in height. The
camera settings were the same as in table 4.1. In this synthetic dataset, only images that contain complete
vehicles were selected as training samples. Within the simulation dataset, 90% of images are used as training
samples, and the rest 10% used as testing samples.

Figure 4.7 Manually labeling process

FEASIBILITY OF REAL-TIME UAV FLIGHT PATH PLANNING FOR URBAN MONITORING

22

Figure 4.8 Data augmentation on simulation dataset

Then follow the same process of data augmentation as mentioned in 4.2.1. The results are shown in figure
4.8. Considering the feature of the local flight path, which is a circle, data augmentation techniques were
added to improve the performance during the local flight path. Apart from the data augmentation process
mentioned in section 4.2.1, a random rotation of 30 degrees and a random scaling by four times were added
in order to obtain a multi-scale dataset. The new augmented data was shown in figure 4.9.

Figure 4.9 Rotation and scaling data augmentation

As for transfer learning, the last learnable layers need to be replaced. The final two convolutional 2D layers
were replaced by new convolutional 2D layers called new_conv1 and new_conv2 with the same size as the
old ones (figure 4.10). Then all the other layers were frozen except the final two layers, which means their
learning rate factor was set to zero. After setting the learning rate factor, the network is finally prepared for
training on the simulation image set.

FEASIBILITY OF REAL-TIME UAV FLIGHT PATH PLANNING FOR URBAN MONITORING

23

Figure 4.10 New network architecture

The new anchor boxes were estimated based on the simulation dataset. Because the flight height of the
synthetic images was constant, all the vehicles are on the same scale. Therefore, the size of the anchor boxes
is similar to each other, and the mean IoU is 0.9049. The training parameters for transfer learning are shown
in table 4.3.

Table 4.3 Training parameters for transfer learning

Parameters Value
Number of Epochs 25
Max learning rate 0.001

L2 regularization factor 0.0005
Minibatch size 8

Warmup period 100
Penalty threshold 0.5

The minibatch size was set smaller because the number of images available for transfer learning is smaller.
Then set a shorter warmup period to speed up the training process. Besides, when implementing transfer
learning, there is no need to train so many epochs. Therefore, the number of epochs was set to half of the
previous training process.

FEASIBILITY OF REAL-TIME UAV FLIGHT PATH PLANNING FOR URBAN MONITORING

24

4.3. Local Planner
The main idea for the local planner is a more detailed inspection of the target. Once the target has been
detected, first calculate the location of the target without altitude. Then the UAV would fly towards the
target, and a simple circular flight path was defined, in which the center is the target location, the flight
height is 20 meters, the radius is three meters.

The flying height and the radius of the circular path mainly depend on the size of the camera. The larger the
camera, the larger the possible field of view. Therefore, even images taken at a low flying height can still
cover a larger area. However, suppose the camera is relatively small. When the flying altitude becomes lower,
because the field of view becomes smaller, there may be situations where the vehicle cannot be captured.
Nevertheless, large image size means long processing time, with the image size and camera setting defined
in table 4.1, 20 meters flight height and three meters radius were selected.

Figure 4.11 Local planner

As shown in figure 4.11, if a vehicle has been detected, then use the value of the bounding box center to
calculate the vehicle location without altitude using the collinearity equation. Then take this coordinate as
the center of the circular path. Once finish the circular flight path, return to the global flight path at 50
meters height and keep flying until the landing point of the global planner.

The collinearity equations are shown in formula 4.3.1.

 �
𝑥𝑥𝑎𝑎 − 𝑥𝑥𝑝𝑝
𝑦𝑦𝑎𝑎 − 𝑦𝑦𝑝𝑝
−𝑐𝑐

� = 𝜆𝜆𝜆𝜆 �
𝑋𝑋𝑑𝑑 − 𝑋𝑋𝑠𝑠
𝑌𝑌𝑑𝑑 − 𝑌𝑌𝑠𝑠
𝑍𝑍𝑑𝑑 − 𝑍𝑍𝑠𝑠

� (4.3.1)

 𝑥𝑥𝑎𝑎 − 𝑥𝑥𝑝𝑝 =
𝐴𝐴11(𝑋𝑋𝑑𝑑 − 𝑋𝑋𝑠𝑠) + 𝐴𝐴12(𝑌𝑌𝑑𝑑 − 𝑌𝑌𝑠𝑠) + 𝐴𝐴13(𝑍𝑍𝑑𝑑 − 𝑍𝑍𝑠𝑠)
𝐴𝐴31(𝑋𝑋𝑑𝑑 − 𝑋𝑋𝑠𝑠) + 𝐴𝐴32(𝑌𝑌𝑑𝑑 − 𝑌𝑌𝑠𝑠) + 𝐴𝐴33(𝑍𝑍𝑑𝑑 − 𝑍𝑍𝑠𝑠) (−𝑐𝑐) (4.3.2)

 𝑦𝑦𝑎𝑎 − 𝑦𝑦𝑝𝑝 =
𝐴𝐴21(𝑋𝑋𝑑𝑑 − 𝑋𝑋𝑠𝑠) + 𝐴𝐴22(𝑌𝑌𝑑𝑑 − 𝑌𝑌𝑠𝑠) + 𝐴𝐴23(𝑍𝑍𝑑𝑑 − 𝑍𝑍𝑠𝑠)
𝐴𝐴31(𝑋𝑋𝑑𝑑 − 𝑋𝑋𝑠𝑠) + 𝐴𝐴32(𝑌𝑌𝑑𝑑 − 𝑌𝑌𝑠𝑠) + 𝐴𝐴33(𝑍𝑍𝑑𝑑 − 𝑍𝑍𝑠𝑠) (−𝑐𝑐) (4.3.3)

FEASIBILITY OF REAL-TIME UAV FLIGHT PATH PLANNING FOR URBAN MONITORING

25

Where −𝑐𝑐: the focal length of the camera
(𝑥𝑥𝑎𝑎 𝑦𝑦𝑎𝑎): the coordinate of point A in the image system

 (𝑥𝑥𝑝𝑝 𝑦𝑦𝑝𝑝): the coordinate of point P in the image system
 (𝑋𝑋𝑑𝑑 𝑌𝑌𝑑𝑑 𝑍𝑍𝑑𝑑): the coordinate of point D in the world system
 (𝑋𝑋𝑠𝑠 𝑌𝑌𝑠𝑠 𝑍𝑍𝑠𝑠): the coordinate of point S in the world system

 �
𝐴𝐴11 𝐴𝐴12 𝐴𝐴13
𝐴𝐴21 𝐴𝐴22 𝐴𝐴23
𝐴𝐴31 𝐴𝐴32 𝐴𝐴33

�: the rotation matrix between camera coordinate and world coordinate

As it is illustrated in figure 4.11, if the vehicle has been detected, then the center of the vehicle on the image
(point A), the lens (point S), and the vehicle on the ground (point D) would be on the same line. Here comes
an essential concept from photogrammetry [63], collinearity equations. For one point on the image, two
equations can be defined: formulas 4.3.2 and 4.3.3.

Within these equations, nine parameters are defined, shown in table 4.4. The exterior orientation contains
six parameters, three for the rotation angle between the camera coordinate system and the world coordinate
system. The other three is the camera position in the world coordinate system, also known as translation.
The interior orientation contains three parameters: the principal point of the image and the camera focal
length. The principal point is defined as the point of the vertical projection of the lens on the image. Ideally,
the principal point and the image center should be the same point, but there is an offset in a real camera.
Therefore, in the formulas 4.3.2 and 4.3.3, this offset is eliminated.

Table 4.4 Exterior orientation and interior orientation

Exterior orientation Interior orientation
Rotation
angle

(𝜔𝜔 𝜑𝜑 𝜅𝜅) Yaw, pitch, roll

Principal
point

(𝑥𝑥𝑝𝑝 𝑦𝑦𝑝𝑝) Center of the
image

Translation (𝑋𝑋𝑠𝑠 𝑌𝑌𝑠𝑠 𝑍𝑍𝑠𝑠) The position of the
camera in the world
coordinate

Focal
length

𝑐𝑐 The distance
between lens and
image

Hence, the transfer relation between these three coordinates, which are world coordinate, camera
coordinate, and image coordinate, is illustrated in the formula (4.3.1). With both interior and exterior
orientation are known, the vehicle location can be solved using the formula (4.3.2) and (4.3.3).

The images acquired from the local planner use the same camera settings as the global planner. Along this
local circular flight path, the image will be obtained every second.

FEASIBILITY OF REAL-TIME UAV FLIGHT PATH PLANNING FOR URBAN MONITORING

26

4.4. Simulink Implementation
The entire model was implemented based on the MATLAB example called UAV Package Delivery [61].
This example illustrated many functions that the UAV toolbox could achieve about multi-rotor UAVs,
including obstacle avoidance, cuboid scenario simulation, and Photorealistic Simulation. However, the
purpose of this example is more to introduce general blocks in the UAV toolbox, so it covers many other
contents. The following only introduces the parts applied in this research.

4.4.1. Flight Planning
The UAV Package Delivery model contains four main parts: ground control station, external sensors, on
board computer, and multi-rotor. Every part is encapsulated into a system, as shown in figure 4.12.

Figure 4.12 MATLAB UAV package delivery example [61]

The ground control station is the part to set the flight path point by point. The whole global planner was
defined there. The execution of the flight depended on a block called UAV Path Manager [62]. This block
has five inputs shown in table 4.5: current UAV pose, UAV mission data, mission command, UAV home
location, and a boolean variable called IsModeDone.

Table 4.5 Input of UAV Path Manager

Input variables Value
Pose [x; y; z; course angle]
Mission data Mode, position, parameters
Mission command 0; 1; 2; 3;
Home [x; y; z]
IsModeDone 0/1

The current pose of the UAV is defined by a vector with four factors. The x, y, and z are the UAV location
in the north-east-down (NED) coordinate defined in meters. The course angle is the heading angle defined
in radius. In other words, the angle between the direction of the current velocity vector and the north
direction and the range of course angle is [-π, π]. The mission data is a series of points that specifies the
flight path. It is defined in a MATLAB struct with three properties: mode, position, and params. The mode
defines the character of the point, which contains six different modes: takeoff, waypoint, orbit, land, RTL,
and custom.

FEASIBILITY OF REAL-TIME UAV FLIGHT PATH PLANNING FOR URBAN MONITORING

27

Among them, orbit means fly along the circle defined by corresponding parameters, RTL stands for return
to the launch position, and custom means that users can define custom mode by themselves. At last, the
params defines the parameters related to each mode in a four-column vector. For waypoint mode, yaw angle
and transition radius need to be specified. Nonetheless, as for multi-rotor UAVs, the transition radius can
be set as zero. For the orbit mode, the radius of the orbit, the turn direction, and the number of turns need
to be specified. For other modes except for the custom, params can be set to zero.

As for the mission command, it defines the way to execute the mission. Four possible values are listed:

• 0: all the mission point will be executed sequentially
• 1: the UAV will hold still on the current mission point
• 2: the UAV will repeat the whole mission after arriving at the last point
• 3: the UAV will change into the RTL mode

Besides, the home factor is a three-column vector that specifies the home location of the UAV, and the
IsModeDone factor is the Boolean variable to check whether each point has been executed or not.
Therefore, in the ground control station part, the pre-defined flight was defined in the format of mission
data and feed into the Multirotor part.

The multirotor contains two subsystems: the guidance logic of the flight and the low-fidelity control system.
Both of them were developed by Mathworks. The core of the guidance logic is designed based on the UAV
Path Manager block mentioned above. The full guidance model is shown in figure 4.13.

Figure 4.13 Full guidance logic[61]

The full guidance logic subsystem uses the UAV Path Manager block to distinguish the current waypoint
and the next waypoint. The next waypoint is passed into the Guidance Mode Selector Stateflow chart. The
Guidance Mode Selector Stateflow chart will decide how to fly from the current waypoint to the next
waypoint according to different modes and generate the necessary position control commands used in the
low-fidelity control system [61]. The main method of the low fidelity control system is to use a simple PID
(proportional, integral, and derivative) system (position and acceleration control in figure 4.14) to simulate
the motion of the UAV. Three aspects were involved, which are position, acceleration, and attitude.

FEASIBILITY OF REAL-TIME UAV FLIGHT PATH PLANNING FOR URBAN MONITORING

28

Figure 4.14 Low-fidelity control system

Then, the control signal is passed into the guidance block (Quadrotor Plant in figure 4.14). The guidance
block will finally compute the current UAV state, which is the current position and attitude. These are also
the six exterior orientation parameters.

The blocks used to achieve the photorealistic simulation environment are shown in figure 4.15. For
configuring the 3D simulation scene, the Simulation 3D Scene Configuration block is needed. Besides, there
is a Simulation 3D UAV Vehicle block to show the UAV in the 3D environment. The camera is modeled
in a simulation 3D camera with parameters specified in table 4.1, and the output image is an RGB image in
uint8 format. The LiDAR sensor was disabled (grey) in this study.

Figure 4.15 External sensor

In summary, the whole UAV flight was executed based on the waypoints defined in the ground control
station system and the guidance logic in the multi-rotor system. The images were captured by the simulation
camera every second, and the 3D simulation environment was configured through the simulation blocks.

FEASIBILITY OF REAL-TIME UAV FLIGHT PATH PLANNING FOR URBAN MONITORING

29

4.4.2. Object Detection
With the image captured by the simulation camera, the object detection function was added to import the
fine-tuned object detector in section 4.2.

Figure 4.16 Object detection workflow

The workflow of the object detection process is illustrated in figure 4.16. The output of the object detection
function contains three elements: annotated image, bounding box vector, and a Boolean value. The
annotated image was passed to the image viewer to allow a real-time visual inspection. The bounding box
vector was the input of the collinearity equation. Another input is the current UAV state, which contains
the position and attitude values. In this model, the offset between the UAV and the camera was ignored.
Hence, the current UAV state is the current camera position and attitude, and these are also the exterior
orientation parameters. Finally, the Boolean output is to decide whether there was a car in the image or not.
If a vehicle has been detected, then use the value of the bounding box to calculate the vehicle location
without altitude using the collinearity equation. Otherwise, the four elements in the bounding box would be
zero.

The center of the circular flight path can be decided by using the equations mentioned in section 4.3. The
next step is to forward this new point into the full guidance logic (figure 4.13) to update the flight path.

4.4.3. Flight Path Update
The ground control station subsystem needs to accept runtime changes, to achieve flight path re-planning,
which means the flight path must be dynamic while the simulation was running. As mentioned in section
4.4.1, the pre-set flight path was saved in a MATLAB struct with three attributes. Therefore, the general
idea of updating the waypoint list is to insert the new waypoint after the current waypoint.

In section 4.1, the global flight path was broken down into small pieces every ten meters. In this case, there
are 322 waypoints in total. After reaching every waypoint, there would be an if-else statement to decide how
to fly next using the IsModeDone parameter, as shown in Figure 4.17. If the vehicle has been detected
during the flight, then the new waypoint calculated by the collinearity equation exists. Then update the flight
path by inserting the new waypoint in the old flight mission. If there is no vehicle, then fly as the pre-defined
flight path. The length of this waypoint list was set to 400, which is far longer than 322. Therefore, the
overflow problem was not considered. The insert process is shown in figure 4.19. When a new waypoint
exists, insert his new waypoint

FEASIBILITY OF REAL-TIME UAV FLIGHT PATH PLANNING FOR URBAN MONITORING

30

With the new waypoint, the new UAV mission will be created and forward to the ground control station
part. Then, within the ground control station subsystem, another if-else statement exists to decide whether
use the old mission data (global planner), or the new mission data, as shown in figure 4.18.

There is a memory block [63] in figure 4.17. The reason why using memory block is that the new mission
data was calculated based on the result of image object detection. However, before the UAV takes off, there
is no image available. In this case, there will be an algebra loop [64] within the Simulink model, which means
a block using the output of this block as its input. Since Simulink is a continuous dynamic system, there
needs a delay to break this loop.

Figure 4.17 UAV mission update workflow

Figure 4.18 Dynamic waypoint update system

As shown in figure 4.18, to update the flight plan, an if-else statement was used to decide which mission will
be used. For example, if the new UAV mission (figure 4.17) exists, pass this new mission to the guidance
logic (figure 4.13). Otherwise, keep using the original flight plan defined by the global planner.

FEASIBILITY OF REAL-TIME UAV FLIGHT PATH PLANNING FOR URBAN MONITORING

31

Figure 4.19 Insert a new waypoint

As illustrated in figure 4.19, when a new waypoint exists, insert this new waypoint into the original flight
mission and then create a new mission. Otherwise, just fly towards the next waypoint as the original flight
plan.

Figure 4.20 Algebra loop

As illustrated in figure 4.20, the new mission becomes both input and output of this model. Hence, a
memory block has been added between the new mission and the guidance logic. The function of the memory
block is to hold and delay its input by one iteration, and then there will be a time difference within the model
so that the algebra loop can be solved. At last, this model will keep running until it reaches the final landing
point.

FEASIBILITY OF REAL-TIME UAV FLIGHT PATH PLANNING FOR URBAN MONITORING

33

5. RESULTS AND DISCUSSIONS

In this chapter, the proposed flight planning approach will be experimented with using Simulink. The results
of the object detector and the flight path were shown by images obtained while the simulation was running.
The strength and weakness of the result has been discussed.

5.1. Object Detection using YOLO v3

5.1.1. Training Result
The precision and the recall are used to evaluate the detection result on the test dataset. Precision is defined
as the true positives divided by all the positives of the detection (5.1.1). The recall is defined as the true
positives divided by all the real positives (5.2.2).

Precision:

𝑜𝑜𝐴𝐴𝐴𝐴𝑐𝑐𝑢𝑢𝑙𝑙𝑢𝑢𝐼𝐼𝑢𝑢 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
 (5.1.1)

Recall:

𝐴𝐴𝐴𝐴𝑐𝑐𝐴𝐴𝑜𝑜𝑜𝑜 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁
 (5.1.2)

Where TP is the true positives, FP is false positives, and FN is false negatives.

In an ideal condition, precision equals one at all recall levels. In actual situations, the more convex the P-R
curve to the upper left, the better the neural network results. Here in figure 5.1, in the test set, the lowest
precision is greater than 0.93, which means most vehicles in the test set had been detected. The average
precision is the mean precision of all detection results. With an average precision of 90 percent, this trained
YOLO v3 object detector performs well on the test dataset.

Figure 5.1 P-R curve on Aeroscape dataset

FEASIBILITY OF REAL-TIME UAV FLIGHT PATH PLANNING FOR URBAN MONITORING

34

(a) (b)

(c) (d)
Figure 5.2 Detection result of Aeroscape dataset

The detection result of training on Aeroscape dataset is shown in figure 5.2. From figure 5.2 (b), (c), and
(d), the network has better results in detecting vehicles that were farther away with a high confidence score,
while the detection results of vehicles that are closer, which was also very accurate (figure 5.2 (a)), but the
confidence score is low.

After performing the transfer learning, the average precision increase to 100%. This is because the synthetic
dataset is simple and limited. Therefore, the network can perform very well in the test dataset. Moreover,
the test result using rotation and scaling data augmentation method also achieve an average precision of
98%.

The overall training results accessed by the P-R curve and average precision indicate that the network
performs well on the test dataset. However, the test dataset used in both Aeroscape dataset and the synthetic
dataset was only 10% images of the whole dataset. Therefore, the results obtained on this limited test dataset
cannot fully reflect the actual accuracy of the network.

FEASIBILITY OF REAL-TIME UAV FLIGHT PATH PLANNING FOR URBAN MONITORING

35

5.1.2. Object Detection Result in the Simulation Scene
When running the object detector in the simulation environment, the performance becomes different at
two different flight heights. At 50 meters flight height, all types of vehicles can be detected precisely with
high confidence scores shown in figure 5.3. This result consists of the testing result obtained in section 5.1.1.
However, at 20 meters height, the detector performed worse.

The object detector worked well at 50 meters height, but there were some false positives during the takeoff
process shown in figure 5.4. Therefore, to avoid the false detection problem at the beginning, the collinearity
function can only be triggered after the takeoff process. This is because that only 50 meters images were
used as training samples, and the simulation dataset was too small.

(a) (b)

(c) (d)

Figure 5.3 Vehicle detection

These false positives happened during the takeoff procedure, which recognized the rectangle road marks as
the vehicle (figure 5.4). One possible reason could be that the shape of the road mark is similar to the vehicle
so that their patterns are similar when at a low flight height. Besides, when training the network, the image
was first resized into 227x227. During the resize process, the bounding box and the vehicle can be
compressed and become thinner, which may be similar to the road mark.

FEASIBILITY OF REAL-TIME UAV FLIGHT PATH PLANNING FOR URBAN MONITORING

36

(a) (b)

Figure 5.4 False detection during takeoff

(a) (b)
Figure 5.5 False detection on the window and road barriers

However, there also were false detections at 50 meters height. This implied the insufficient training sample
for the simulation environment. From figure 5.5 (a), the window close to the ground were detected as the
vehicle. This is because the window also has a similar pattern to the window in the vehicle. This kind of
error can also cause another problem, which is the error of the target location. As assumed in section 4.3,
the target location was calculated based on the assumption that the altitude of the vehicle is zero. If the
object detector recognized the window as a vehicle, then the target location will be wrong because the
altitude of the window is not zero.

As for (b) in figure 5.5, one possible reason is the insufficient distribution of vehicles. There was a red
vehicle in the training dataset (figure 5.3 (d)), but here along this road with red barriers, there was no vehicle
placed. Therefore, the detector cannot distinguish the barrier and the real vehicle.

Like the situation of taking off, when the UAV was descending to complete the circular flight, false
detections also existed, as shown in figure 5.6. Those false positives during ascending and descending
processes indicate that the trained network performs poorly at lower flight height. Although two detection
heads were developed in this detector to achieve multi-scale object detection, the result is not ideal.

FEASIBILITY OF REAL-TIME UAV FLIGHT PATH PLANNING FOR URBAN MONITORING

37

(a) (b)

Figure 5.6 False detection at 20 meters

From above, the main drawback of the object detection process is the insufficient detection result at 20
meters high. By improving the data augmentation method, use this new augmented dataset as the input of
the transfer learning process and test the new detector in the simulation environment. The results are shown
in figure 5.7. The detection result at 20 meters height indeed improved by using new data augmentation
strategies. Nevertheless, the bounding box predicted was not so precise.

(a) (b)

Figure 5.7 Detection results with new data augmentation process

(a) (b)

Figure 5.8 False detection of the new detector at 50 meters high

FEASIBILITY OF REAL-TIME UAV FLIGHT PATH PLANNING FOR URBAN MONITORING

38

Table 5.1 Detection results of two detectors

 Global planner Local planner (i.e., blue vehicle)
 True

detection
False
detection

Miss
detection

True
detection

False
detection

Miss
detection

Detector 1 9 8 0 462 101 477
percentage 52.9% 47.1% 0% 44.4% 9.7% 45.9%
Detector 2 7 16 2 1045 30 81
percentage 28% 64% 8% 90.4% 2.6% 7.0%

As illustrated in table 5.1, detector 1 refers to the previous version detector, and detector 2 refers to the new
detector using new augmentation methods. The performance of detectors can have three categories, true
detection, false detection, and miss detection. True detection stands for detections that detected vehicles as
the vehicle. False detection stands for detections that detected other objects as a vehicle. The miss detection
in the global planner part stands for the vehicle without circular flight execution. The miss detection in the
local planner part stands for the lost tracking issue in the local planner.

For detector 1, when tested in the global planner, it detected all vehicles in the scene but also including eight
false detections. Still, it achieved a 52.9% accuracy. However, detector 2 performed much worse than
detector 1 when using the global planner. It only had seven true detections and even missed two vehicles,
but 16 false detections, which is as twice as detector 1. However, when tested in the local planner, the result
became the opposite. For detector 1, the true detection and the miss detection are almost the same. But for
detector 2, the precision was largely improved.

From this experiment, the main problem of the object detection process is still the lack of training samples.
Adding rotation and a scale factor in the data augmentation process can help to improve the detection result
at lower flight height, but this also sacrificed the detection accuracy at 50 meters height. Also, with a loose
bounding box, when calculating the orbit center of the local flight path, there might be an offset between
the bounding box center and the vehicle. As a result, the local path was not located at the exact location of
the vehicle, and images obtained from the local planner became incomplete.

5.2. Flight Path Planning

5.2.1. Flight Trajectory
The flight trajectory was captured using the UAV animation block. Part of the flight trajectory was shown
in figure 5.9. After take-off, the UAV will first follow the flight path defined by the local planner at 50 meters
height. Then, once a vehicle has been detected, the UAV will fly towards the vehicle.

When it reached 20 meters height, the circular flight path would be executed. Once the circular flight is
complete, switch back to the global planner and keep flying. When switching from the local planner to the
global planner, there was a small fluctuation. This is the result of the low-fidelity control system. While
ascending, there is a small buffer process to stable the flight. This small fluctuation will also happen when
the UAV turns.

FEASIBILITY OF REAL-TIME UAV FLIGHT PATH PLANNING FOR URBAN MONITORING

39

Figure 5.9 Flight trajectory

5.2.2. Vehicle Inspection
The circular flight path was achieved by using the orbit mode of the UAV path manager block. The main
purpose is to get closer to the target and obtain a detailed inspection. On average, for each vehicle, around
673 images were acquired. With a nadir view, the side face of the vehicle was not so clear in the image. But
in the case of the green one (figure 5.10) and the yellow one (figure 5.11), the side windows and doors, even
the wheels, can be seen a little. For all four cases, the left and right sides can be seen better than the front
and back sides of the vehicle.

(a) (b)

(c) (d)

Figure 5.10 Green vehicle inspection

trajectory

FEASIBILITY OF REAL-TIME UAV FLIGHT PATH PLANNING FOR URBAN MONITORING

40

(a) (b)

(c) (d)

Figure 5.11 Yellow vehicle inspection

(a) (b)

(c) (d)

Figure 5.12 Blue vehicle inspection

FEASIBILITY OF REAL-TIME UAV FLIGHT PATH PLANNING FOR URBAN MONITORING

41

(a) (b)

(c) (d)

Figure 5.13 Red vehicle inspection

Although the side face of the blue one (figure 5.12) and the red one (figure 5.13) was not so clear, the flight
path allowed the UAV to capture vehicles in different directions and at different scales. Besides, from the
detailed images, the object detector also performs worse at 20 meters flight height. At lower flight height,
the object detector only detects part of the car, and the false detection problem still exists.

The whole model can run smoothly, with no errors, but it took nearly six hours to cover the whole area of
the scene, which is very slow. This is caused by the memory block included in the model will slow down the
process (figure 4.17). Moreover, many MATLAB functions were used in the model. For instance, within
the object detection function, the “coder.extrinsic” command was used to call another customized function
outside the Simulink model, this will lead to an extra process, which is the packaging process of the block
data, these data will be packaged into MATLAB arrays, and this takes additional time and temporary
memory. If large amounts of data have been passed through the block, then the running speed will decrease
remarkably [65].

Apart from the speed, all functions defined in section 4 were realized properly. The blocks provided by the
UAV toolbox can be easily implemented in the model. The graphical modeling method can be convenient
for knowing the transmission of the signal but also easily result in a mess of connections when the model
becomes complicated.

FEASIBILITY OF REAL-TIME UAV FLIGHT PATH PLANNING FOR URBAN MONITORING

42

5.3. Discussions

5.3.1. Object Detection using YOLO v3
In the training process, two types of the dataset have been used. The idea is to combine real-world data and
simulation data in order to increase robustness and prevent overfitting. The detection result tested on the
test dataset was pretty good accessed by the P-R curve. However, from the result of the simulation, the
overfitting issue still exists. Besides, although the YOLO v3 detector is an object detector for multi-scale
application, the result is not so ideal either. This indicates that even using two different size detection heads,
the scale difference between 50 meters and 20 meters is still larger than the scale difference between two
detection heads. This is also because the network input size was set to a small value compared to the original
image size.

From the result in section 5.1.2, the most serious problem is the lack of training samples. The accuracy
illustrated in table 5.1 indicated that the size of the training dataset used in this study is not enough to train
a convolutional neural network adequately. Although there are many public datasets available for object
detection, i.e., the ImageNet [57], Microsoft COCO [65], and some other dataset with specific objects, for
example, CelebFaces Attributes Dataset (CelebA)[66], which is a large dataset for faces especially. However,
datasets of UAV images are very limited. Apart from the Aeroscape dataset, only a few datasets are available
for vehicle detection, for example, UAVid [67] and UAVDT benchmark [68]. Although the dataset can be
created by fieldwork, with the COVID-19 situation, fieldwork becomes difficult to arrange, and the Dutch
weather is not so friendly to UAVs in winter.

If enough training samples can be obtained, changing the data augmentation method can be a solution to
improve the network performance on the synthetic dataset. In section 5.1.1, by adding rotation and scaling
in the data augmentation process, the detection result at 20 meters in the simulation scene had been
significantly improved. This indicates that data augmentation strategies can be a solution to improve the
performance of the network. Nevertheless, the detection result became worse at 50 meters height. Hence,
the most important issue is still the number of training samples.

Moreover, this model cannot distinguish multiple targets along the flight path, and only the latest detected
target will be monitored. If multiple detections happened along the flight path, only the last one would be
recorded. Then, if the last one was a false detection while there was a vehicle along this path, this vehicle
will be skipped. This mechanism also increased the possibility of miss detection in the global planner.

In this study, the detection result at 50 meters height is more important because the global planner was set
at this level. Besides, the false detection at 50 meters level will result in false detection at 20 meters level.
Therefore, the detector should improve the performance at 20 meters level as much as possible while
maintaining the performance at 50 meters level.

If the number of training samples is sufficient, then using different data augmentation methods can help to
increase the variety within the training set. With enough training data on both flight heights, the object
tracking issue in the local planner can be improved. Besides, when performing transfer learning, all layers
were frozen except the output layers. Since the transfer learning was from real dataset to synthetic dataset,
free more layers may be another option to improve the network performance.

FEASIBILITY OF REAL-TIME UAV FLIGHT PATH PLANNING FOR URBAN MONITORING

43

5.3.2. Flight Path Planning
The entire flight path planning process is successfully implemented in Simulink, and the UAV can
automatically update the flight path according to the object of interest. There will be slight fluctuations when
switching between the two flight planners. In a single flight, the basic information about the study area can
be obtained at a higher flight altitude, and detailed information about the object of interest can be obtained
at a lower flight altitude.

However, the flight path of the local planner is relatively simple. Although the circular flight path is simple
and easy to implement, the information obtained will be target-oriented if a more complex path planning
method is used. However, the complex path also means a longer computing time. Besides, this study did
not consider the situation of obstacle avoidance and occlusion. In real-world applications, more complex
situations should be taken into consideration.

The image size (752x480) used in this study is relatively small compared to a real sensor on commercial
UAVs. For instance, the camera mounted on phantom 4 pro has an image size of 5472x3468 according to
the support document of Pix4D [69]. The main reason is that processing larger images will take more time
and memory, which may lead to the crashing down of MATLAB.

Based on the camera setting from table 4.1, the field of view calculated in the horizontal direction is about
37.5 degrees. With a relatively small field of view, the coverage of the ground in low flight height became
restricted. Hence, when the UAV flew the circular flight path, the vehicle might not appear in the range that
the camera could capture, and this results in an incomplete vehicle in the image (figure 6.1).

(a) (b)

Figure 5.14 Incomplete vehicle inspection

The radius of the circular flight path was already set in a small value, which is three meters, compared to the
size of the simulation scene. Hence, the possible reason for this incomplete inspection is due to the small
field of view at low flight height. Nonetheless, the inspection results in section 5.2.2 indicate that complete
vehicles can still be captured. Therefore, within the local planner, a larger field of view is needed to cover a
larger area. In other words, the focal length should be smaller when flying at a low flight height in the local
planner.

FEASIBILITY OF REAL-TIME UAV FLIGHT PATH PLANNING FOR URBAN MONITORING

45

6. CONCLUSION AND RECOMMENDATIONS

6.1. Conclusion
In this study, an algorithm that allows the UAV to update the flight path automatically according to the
target of interest (vehicles) was developed and implemented in the Simulink platform. The whole algorithm
was achieved in a simulation environment of city blocks created by MATLAB using Unreal Engine. The
flying process was divided into two main parts, the traditional strip flight path called global planner and the
circular flight called local planner. The link between these two planners is the object detection process. The
global planner was defined based on the simulation scene. The local planner is a circle, which center is the
location of the vehicle. The object detection was achieved using YOLO v3 with a Squeeze net backbone
and two detection heads in different scales. The YOLO v3 object detector was first trained on the Aeroscape
dataset, which contains images from the real world, and then perform a transfer learning on the simulation
dataset, which was created manually. According to the results, here are the conclusions:

i. The object detector using YOLO v3 achieved an average precision of 90% on the Aeroscape
dataset and increased to 100% after performing the transfer learning process on the synthetic
dataset. When using this object detector in the simulation environment, the detector worked well
at 50 meters height with a 52.9% accuracy but performed poorly at lower flight height, only
achieved 44.4% accuracy. Adding rotation and scaling in the data augmentation process can
improve the network performance at lower flight height, which the accuracy increased to 90.8%.
However, the accuracy at 50 meters height dropped to 28%. These detection results are mainly
affected by the size of the training dataset. The number of images used in this study is not sufficient
for a decent training process but acceptable for use in a simulation environment.

ii. The circular flight path can be sufficient for a detailed data acquisition process. The image
acquisition process was obtained from the video stream with a sampling frequency of one second.
On average, around 673 images were acquired through this circular flight path, and about 20
thousand images were acquired in the entire flight mission. The vehicle can be captured from
different directions and scales. However, the side face of the vehicle may not be so clear. More
complicated path planning methods like next-best-view can be implemented in the future based
on this simple flight path.

iii. Simulink has been proved as a proper platform for UAV applications, and the entire flight was
stable. The UAV toolbox provided many functional blocks for flight planning and scenario
simulation. Moreover, the CNN-based object detection methods can be developed in MATLAB
first and imported directly into the Simulink. However, this model was defined for multi-rotor
UAVs. Fixed-wing UAV is not so flexible to achieve turns. Besides, this model cannot distinguish
multiple targets, and the speed of the model was relatively slow.

In conclusion, the flight path planning algorithm worked smoothly in Simulink. The Simulink platform with
the UAV toolbox provided useful blocks for the simulation of UAV applications. As for object detection,
more training samples are needed for a better performance of the object detector. With sufficient training
samples, data augmentation can improve the detection result. As for the local planner, a more complex path
planning algorithm can be considered in further research.

FEASIBILITY OF REAL-TIME UAV FLIGHT PATH PLANNING FOR URBAN MONITORING

46

6.2. Recommendations
This study was the first attempt at using the UAV toolbox to design and test the UAV flight path planning
algorithm all in one go. It proved the possibility of developing UAV applications in the Simulink
environment. Therefore, based on this prototype, a more complicated model can be developed to achieve
different objectives.

The Simulink platform has the advantage of using a graphical programming interface and built-in functions
from MATLAB, which is more intuitive and convenient than starting everything from scratch. Moreover,
Simulink supports code generation in C, C++, Verilog, VHDL, and Structured Text. This means once the
Simulink has been developed successfully, the model can be easily tested on hardware. This significantly
shorts the distance between simulation and reality.

As for object detection, if the training dataset is sufficient, then the object detection can be improved by
using advanced object detection methods. Besides, MATLAB supports importing networks and network
architectures from TensorFlow-Keras, Caffe, and the ONNX (Open Neural Network Exchange) model
format [70]. However, this importing process needs to consider the version compatibility issue. The newest
version available in python may not be supported by MATLAB yet.

As for the simulation environment, the model developed in this study only considered an ideal urban
environment. The wind speed, illumination condition, and many other environmental factors were not
included. Therefore, a more complicated simulation environment can be established. Besides, the
distribution of the target was also in regular distribution. There was only one vehicle at every intersection.
However, in the real world, there will be a high possibility that several targets of interest may appear at the
same time. How to distinguish them and perform a sequential inspection one by one can be the next step.

As for the local planner, the proposed local planner was a circular path. Based on this, a more advanced
algorithm can be developed to achieve an exploration. For example, introduce the Simultaneous
Localization and Mapping (SLAM) algorithm or Next-Best-View (NBV) method in the local planner part
could be an option. Besides, the obstacle avoidance problem was not considered. To prevent the UAV crash
on the walls or anything else, using the LiDAR sensor may be an ideal option.

Besides, this algorithm focused on small objects like vehicles. For other kinds of objects, the detection
method needs to be modified. For instance, if focusing on a large object like buildings, semantic
segmentation may be a better option than object detection methods. Another thing is that the limitation of
flight time was not considered in this study. The conventional flight time for a multi-rotor UAV is about 30
minutes. If the study area becomes large, then a single flight will not be enough. Hence, for a large study
area, multiple UAVs can be used simultaneously. Moreover, the local planner should be executed
sequentially for multiple objects according to a series of bounding boxes.

Nevertheless, this model is the first step to realize more UAV-related applications in Simulink and provides
a new possibility for designing and testing more algorithms. Also, it provides a safer and faster simulation
environment before the field test and reduces the risk of sensor damage that may happen in the field test.

47

LIST OF REFERENCES
[1] X. Zhou, Z. Yi, Y. Liu, K. Huang, and H. Huang, “Survey on path and view planning for UAVs,”

Virtual Real. Intell. Hardw., vol. 2, no. 1, pp. 56–69, Feb. 2020.

[2] B. Alzahrani, O. S. Oubbati, A. Barnawi, M. Atiquzzaman, and D. Alghazzawi, “UAV assistance
paradigm: State-of-the-art in applications and challenges,” J. Netw. Comput. Appl., vol. 166, p.
102706, Sep. 2020.

[3] DJI, “Phantom - Semi Professional Camera Drones - DJI,” 2021. [Online]. Available:
https://www.dji.com/nl/products/phantom?site=brandsite&from=nav. [Accessed: 13-Jun-2021].

[4] Pix4D, “PIX4Dmapper: Professional photogrammetry software for drone mapping | Pix4D,”
2021. [Online]. Available: https://www.pix4d.com/product/pix4dmapper-photogrammetry-
software. [Accessed: 09-Jun-2021].

[5] DJI, “DJI Terra,” 2021. [Online]. Available: https://www.dji.com/nl/dji-terra. [Accessed: 09-Jun-
2021].

[6] K. S. Lee, M. Ovinis, T. Nagarajan, R. Seulin, and O. Morel, “Autonomous patrol and surveillance
system using unmanned aerial vehicles,” in 2015 IEEE 15th International Conference on Environment
and Electrical Engineering, EEEIC 2015 - Conference Proceedings, 2015, pp. 1291–1297.

[7] S. Karim, C. Heinz, and S. Dunn, “Agent-based mission management for a UAV,” in Proceedings of
the 2004 Intelligent Sensors, Sensor Networks and Information Processing Conference, ISSNIP ’04, 2004, pp.
481–486.

[8] S. Aggarwal and N. Kumar, “Path planning techniques for unmanned aerial vehicles: A review,
solutions, and challenges,” Computer Communications, vol. 149. Elsevier B.V., pp. 270–299, 01-Jan-
2020.

[9] S. M. LaValle, “Rapidly-Exploring Random Trees: A New Tool for Path Planning,” 1998.

[10] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for the Heuristic Determination of
Minimum Cost Paths,” IEEE Trans. Syst. Sci. Cybern., vol. 4, no. 2, pp. 100–107, 1968.

[11] W. Khaksar, S. Vivekananthen, K. S. M. Saharia, M. Yousefi, and F. B. Ismail, “A review on
mobile robots motion path planning in unknown environments,” 2016, pp. 295–300.

[12] J. Tordesillas, B. T. Lopez, J. Carter, J. Ware, and J. P. How, “Real-time planning with multi-fidelity
models for agile flights in unknown environments,” Proc. - IEEE Int. Conf. Robot. Autom., vol. 2019-
May, pp. 725–731, 2019.

[13] A. Bircher et al., “Structural inspection path planning via iterative viewpoint resampling with
application to aerial robotics,” Proc. - IEEE Int. Conf. Robot. Autom., vol. 2015-June, no. June, pp.
6423–6430, 2015.

[14] M. Ramasamy and D. Ghose, “Learning-based preferential surveillance algorithm for persistent
surveillance by unmanned aerial vehicles,” 2016 Int. Conf. Unmanned Aircr. Syst. ICUAS 2016, pp.
1032–1040, 2016.

[15] C. Stöcker, R. Bennett, F. Nex, M. Gerke, and J. Zevenbergen, “Review of the current state of
UAV regulations,” Remote Sensing, vol. 9, no. 5. MDPI AG, p. 459, 01-May-2017.

[16] M. A. Boon, A. P. Drijfhout, and S. Tesfamichael, “Comparison of a fixed-wing and multi-rotor
UAV for environmental mapping applications: A case study,” in International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 2017, vol. 42, no. 2W6,
pp. 47–54.

[17] S. Tilon, F. Nex, and N. Kerle, “D5.1: Conceptual framework for remote sensing based RI
monitoring,” 2019.

[18] C. Johnston, “Technical Challenges For Small UAV Payloads,” Electron. Mil. Def., pp. 38–44, 2012.

48

[19] J. G. Mooney and E. N. Johnson, “A Comparison of Automatic Nap-of-the-earth Guidance
Strategies for Helicopters,” J. F. Robot., vol. 33, no. 1, pp. 1–17, 2014.

[20] DJI, “Phantom 4 Pro,” 2021. [Online]. Available: https://www.dji.com/nl/phantom-4-
pro?from=p4p-or-p4a. [Accessed: 13-Jun-2021].

[21] senseFly, “eBee X Fixed-Wing Mapping and Surveying Drone.” [Online]. Available:
https://www.sensefly.com/drone/ebee-x-fixed-wing-drone/. [Accessed: 13-Jun-2021].

[22] Vertical Technologies, “DeltaQuad - VTOL Mapping Drone / UAV for large area mapping.”
[Online]. Available: https://www.deltaquad.com/vtol-drones/map/. [Accessed: 13-Jun-2021].

[23] C. Peng and V. Isler, “Adaptive view planning for aerial 3D reconstruction,” in Proceedings - IEEE
International Conference on Robotics and Automation, 2019, vol. 2019-May, pp. 2981–2987.

[24] Pix4D, “PIX4Dcapture: Free drone flight planning mobile app | Pix4D.” [Online]. Available:
https://www.pix4d.com/product/pix4dcapture. [Accessed: 15-Jun-2021].

[25] “DJI - Official Website.” [Online]. Available: https://www.dji.com/nl. [Accessed: 15-Jun-2021].

[26] “Parrot | European leader in professional drones.” [Online]. Available:
https://www.parrot.com/en. [Accessed: 15-Jun-2021].

[27] “Yuneec – Quadcopters & Aerial Drones.” [Online]. Available: https://us.yuneec.com/.
[Accessed: 15-Jun-2021].

[28] Pix4D, “Types of mission / Which type of mission to choose – Support.” [Online]. Available:
https://support.pix4d.com/hc/en-us/articles/209960726-Types-of-mission-Which-type-of-
mission-to-choose. [Accessed: 15-Jun-2021].

[29] C. I. Connolly, “The determination of next best views,” in Proceedings - IEEE International Conference
on Robotics and Automation, 1985, pp. 432–435.

[30] M. Karaszewski, M. Adamczyk, and R. Sitnik, “Assessment of next-best-view algorithms
performance with various 3D scanners and manipulator,” ISPRS J. Photogramm. Remote Sens., vol.
119, no. July 2018, pp. 320–333, 2016.

[31] R. Huang, D. Zou, R. Vaughan, and P. Tan, “Active Image-Based Modeling with a Toy Drone,”
Proc. - IEEE Int. Conf. Robot. Autom., pp. 6124–6131, 2018.

[32] R. Almadhoun, A. Abduldayem, T. Taha, L. Seneviratne, and Y. Zweiri, “Guided next best view
for 3D reconstruction of large complex structures,” Remote Sens., vol. 11, no. 20, pp. 1–20, Oct.
2019.

[33] S. A. Sadat, J. Wawerla, and R. T. Vaughan, “Recursive non-uniform coverage of unknown terrains
for UAVs,” IEEE Int. Conf. Intell. Robot. Syst., no. Iros, pp. 1742–1747, 2014.

[34] M. Mendoza, J. I. Vasquez-Gomez, H. Taud, L. E. Sucar, and C. Reta, “Supervised learning of the
next-best-view for 3d object reconstruction,” Pattern Recognit. Lett., vol. 133, pp. 224–231, May
2020.

[35] H. Zhang, M. Sun, Q. Li, L. Liu, M. Liu, and Y. Ji, “Multi-scale Object Detection in High
Resolution UAV Images: An Empirical Study,” Neurocomputing, vol. 421, pp. 173–182, Sep. 2020.

[36] A. R. Pathak, M. Pandey, and S. Rautaray, “Deep learning approaches for detecting objects from
images: A review,” in Advances in Intelligent Systems and Computing, 2018, vol. 710, pp. 491–499.

[37] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object
detection,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2016, vol. 2016-Decem, pp. 779–788.

[38] D. Cazzato, C. Cimarelli, J. L. Sanchez-Lopez, H. Voos, and M. Leo, “A survey of computer vision
methods for 2d object detection from unmanned aerial vehicles,” Journal of Imaging, vol. 6, no. 8.
MDPI AG, p. 78, 04-Aug-2020.

49

[39] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–
1149, 2017.

[40] A. Bochkovskiy, C.-Y. Y. Wang, and H.-Y. Y. M. Liao, “YOLOv4: Optimal Speed and Accuracy
of Object Detection,” arXiv, Apr. 2020.

[41] X. Guo, X. Li, Q. Pan, P. Yue, and J. Wang, “An Object Detection Algorithm for UAV
Reconnaissance Image Based on Deep Convolution Network,” in Lecture Notes in Electrical
Engineering, 2019, vol. 606, pp. 53–64.

[42] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” in Proceedings - 30th IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017, vol. 2017-Janua, pp. 6517–
6525.

[43] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,” arXiv, Apr. 2018.

[44] A. Kathuria, “What’s new in YOLO v3?. A review of the YOLO v3 object… | by Ayoosh
Kathuria | Towards Data Science,” Medium, 2018. [Online]. Available:
https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b. [Accessed: 28-May-
2021].

[45] Epic Games, “The most powerful real-time 3D creation platform - Unreal Engine,” Unreal Engine
4, 2021. [Online]. Available: https://www.unrealengine.com/en-US/. [Accessed: 02-Jun-2021].

[46] Mathworks, “Customize Unreal Engine Scenes for UAVs,” MathWorks, Inc., 2020. [Online].
Available: https://nl.mathworks.com/help/uav/ug/customize-3d-scenes-for-automated-
driving.html. [Accessed: 02-Jun-2021].

[47] Mathworks, “Coordinate Systems for Unreal Engine Simulation in UAV Toolbox,” MathWorks,
Inc., 2021. [Online]. Available: https://nl.mathworks.com/help/uav/ug/coordinate-systems-for-
unreal-engine-simulation-in-uav-toolbox.html. [Accessed: 02-Jun-2021].

[48] Mathworks, “Camera sensor model with lens in 3D simulation environment,” MathWorks, Inc.,
2021. [Online]. Available:
https://nl.mathworks.com/help/uav/ref/simulation3dcamera.html?s_tid=doc_ta. [Accessed: 05-
Jun-2021].

[49] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 22, no. 11, pp. 1330–1334, Nov. 2000.

[50] J. Y. Bouguet, “Camera Calibration Toolbox for Matlab,” 2015. [Online]. Available:
http://www.vision.caltech.edu/bouguetj/calib_doc. [Accessed: 05-Jun-2021].

[51] H. Janne and S. Olli, “A Four-step Camera Calibration Procedure with Implicit Image Correction,”
in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1997,
pp. 1106–1112.

[52] Mathworks, “Select Waypoints for Unreal Engine Simulation,” MathWorks, Inc., 2021. [Online].
Available: https://nl.mathworks.com/help/driving/ug/select-waypoints-for-3d-simulation.html.
[Accessed: 03-Jun-2021].

[53] MathWorks, “Anchor Boxes for Object Detection,” MathWorks, Inc., 2019. [Online]. Available:
https://nl.mathworks.com/help/vision/ug/anchor-boxes-for-object-detection.html. [Accessed:
01-Jun-2021].

[54] MathWorks, “Pretrained Deep Neural Networks,” MathWorks, Inc., 2021. [Online]. Available:
https://nl.mathworks.com/help/deeplearning/ug/pretrained-convolutional-neural-networks.html.
[Accessed: 15-Jun-2021].

[55] Mathworks, “Object Detection Using YOLO v3 Deep Learning,” MathWorks, Inc., 2020. [Online].
Available: https://nl.mathworks.com/help/releases/R2020b/vision/ug/object-detection-using-
yolo-v3-deep-

50

learning.html#mw_rtc_ObjectDetectionUsingYOLOV3DeepLearningExample_D2F0B11C.
[Accessed: 30-May-2021].

[56] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer, “SqueezeNet:
AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size,” 2016.

[57] J. Deng, W. Dong, R. Socher, L.-J. Li, Kai Li, and Li Fei-Fei, “ImageNet: A large-scale hierarchical
image database,” 2010, pp. 248–255.

[58] I. Nigam, C. Huang, and D. Ramanan, “Ensemble Knowledge Transfer for Semantic
Segmentation,” in Proceedings - 2018 IEEE Winter Conference on Applications of Computer Vision,
WACV 2018, 2018, vol. 2018-Janua, pp. 1499–1508.

[59] “GitHub - cuixing158/imageLabeler-API: Convenient image annotation tool API.” [Online].
Available: https://github.com/cuixing158/imageLabeler-API. [Accessed: 26-Apr-2021].

[60] MathWorks, “Estimate Anchor Boxes From Training Data,” MathWorks, Inc., 2020. [Online].
Available:
https://nl.mathworks.com/help/vision/ref/estimateanchorboxes.html?searchHighlight=estimate
AnchorBoxes&s_tid=srchtitle. [Accessed: 31-May-2021].

[61] Mathworks, “UAV Package Delivery,” MathWorks, Inc., 2021. [Online]. Available:
https://nl.mathworks.com/help/uav/ug/uav-package-delivery.html. [Accessed: 03-Jun-2021].

[62] Mathworks, “Compute and execute a UAV autonomous mission,” MathWorks, Inc., 2021. [Online].
Available: https://nl.mathworks.com/help/uav/ref/pathmanager.html. [Accessed: 04-Jun-2021].

[63] MathWorks, “Output input from previous time step,” MathWorks, Inc., 2021. [Online]. Available:
https://nl.mathworks.com/help/simulink/slref/memory.html. [Accessed: 06-Jun-2021].

[64] MathWorks, “Algebraic Loop Concepts,” MathWorks, Inc., 2021. [Online]. Available:
https://nl.mathworks.com/help/simulink/ug/algebraic-loops.html. [Accessed: 06-Jun-2021].

[65] T. Y. Lin et al., “Microsoft COCO: Common objects in context,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, vol. 8693
LNCS, no. PART 5, pp. 740–755.

[66] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep Learning Face Attributes in the Wild,” in Proceedings
of International Conference on Computer Vision (ICCV), 2015.

[67] Y. Lyu, G. Vosselman, G.-S. S. Xia, A. Yilmaz, and M. Y. Yang, “UAVid: A semantic
segmentation dataset for UAV imagery,” ISPRS J. Photogramm. Remote Sens., vol. 165, no. 0934–
2716, pp. 108–119, Jul. 2020.

[68] H. Yu et al., “The Unmanned Aerial Vehicle Benchmark: Object Detection, Tracking and
Baseline,” Int. J. Comput. Vis., vol. 128, no. 5, pp. 1141–1159, Mar. 2020.

[69] Pix4D, “Which cameras are supported in Pix4Dmatic – Support,” 2020. [Online]. Available:
https://support.pix4d.com/hc/en-us/articles/360037744571-Which-cameras-are-supported-in-
Pix4Dmatic. [Accessed: 07-Jun-2021].

	1. Introduction
	1.1. Research Background
	1.2. Motivation
	1.3. Problem Statement
	1.4. Novelty
	1.5. Research objectives and Research questions

	2. Literature review
	2.1. UAV Platforms
	2.2. UAV Flight Planning
	2.2.1. Off-the-shelf Flight Planner
	2.2.2. Explore-then-exploit Flight Planner

	2.3. Object Detection

	3. Simulation environments
	3.1. Simulink Model
	3.2. Unreal Scene

	4. Methodology
	4.1. Global Planner
	4.1.1. Camera Settings
	4.1.2. Waypoints

	4.2. Object Detection using YOLO v3
	4.2.1. Data Preparation
	4.2.2. Training Process
	4.2.3. Transfer Learning

	4.3. Local Planner
	4.4. Simulink Implementation
	4.4.1. Flight Planning
	4.4.2. Object Detection
	4.4.3. Flight Path Update

	5. Results and discussions
	5.1. Object Detection using YOLO v3
	5.1.1. Training Result
	5.1.2. Object Detection Result in the Simulation Scene

	5.2. Flight Path Planning
	5.2.1. Flight Trajectory
	5.2.2. Vehicle Inspection

	5.3. Discussions
	5.3.1. Object Detection using YOLO v3
	5.3.2. Flight Path Planning

	6. Conclusion and Recommendations
	6.1. Conclusion
	6.2. Recommendations

