
 

 

 

Device optimization using machine learning 

with hybrid heat pumps 

 

MASTER THESIS 

 

Gino van Spil 
 
 
 
Faculty of Electrical Engineering, Mathematics and Computer Science 
Computer Architecture for Embedded Systems 
University of Twente 
 
Examination Committee: 
dr. ir. Marco Gerards 
dr. ir. Gerwin Hoogsteen 
dr. ir. Mannes Poel 
ir. Jorrit Nutma 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
August 2021 
 
 
 
 
 



ABSTRACT

With the switch to electric energy from renewable sources and the desire to stop using natural
gas for heating the electricity gets loaded more. This can lead to congestion and overloading
of the grid. Methods currently already exist to prevent overloading of the grid by changing the
power consumption of appliances in the household. To optimally plan the energy usage of the
heating system models are needed for the specific heating system. In this work a literature survey
is done on existing models and machine learning techniques to improve the models. Simulations
are performed to determine what model benefits most of improvement and what data need to be
collected during the experiments. Experiments are performed with a heat pump to make models
under ideal and non-ideal conditions. The model created in non-ideal conditions deviates up to
a maximum 0f 1.6% during the steady state operation compared to the model created in ideal
conditions.
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1 INTRODUCTION

To reduce greenhouse emissions the use of renewable energy sources is more and more favoured
over the use of fossil fuels. This renewable energy is often supplied in the form of electricity
generated by, for instance, solar panels and wind turbines. The production of this energy comes
without emissions of greenhouse gases [23], but, since it relies on weather conditions, it is difficult
to predict the output and the output cannot be controlled. This makes matching supply and
demand and therefore optimal use of this renewable energy difficult.
In the Netherlands most houses are heated using a natural gas boiler [1]. In recent years a shift
is seen to the use of heat pumps, this shift is caused by the desire to no longer use natural gas
for heating [21]. These heat pumps transfer heat energy from outside to inside with a pump
using electricity. This means that energy from renewable sources can be used to heat houses.
The downside of this is that heat pumps consume significant amounts of electrical energy, which
can lead to overload conditions, or congestion, in the electricity grid. This overloading of the
grid is currently already a problem [2]. In order to prevent overloading of the electrical grid a
solution is needed while still maintaining comfortable temperatures in the buildings.
A possible solution is the use of a hybrid heat pump setup. This setup uses both a heat pump
and a natural gas boiler to heat the residential building. The benefit of this hybrid setup is that
the comfort levels in the residential building can still be guaranteed by using gas even if the load
on the electrical grid is high or becomes high. Another benefit is that it can also heat houses
that cannot be sufficiently retrofitted with adequate insulation to be solely heated by a heat
pump. In such a case the natural gas boiler can be used to supply the heat, especially during
cold periods, for the building as it has a higher thermal output power than most heat pumps.
The generation capacity of renewable energy is uncontrollable, but its output can be predicted.
Since heat pumps consume a lot of energy the energy generation of the renewable sources and
the energy consumption need to be balanced. With the smart grid applications can be made to
balance the energy supply and demand [11]. The smart grid can give consumers incentives to
change their behaviour and use this to balance supply and demand in the grid, in contrast to
the classical electrical grid where the consumer is just a passive user of the energy. One of the
possible applications to implement an energy management system is dEF-PI (distributed Energy
Flexibility Platform & Interface) [26]. It uses a standardized interface, the Energy Flexibility
Interface (EFI) [30], to make creating energy management services that can control appliances
easier. In order to allow useful control of the hybrid heating system models are needed that
predict its behaviour. Models are needed for control algorithms to avoid grid overload and
optimize renewable energy source usage while maintaining comfortable temperature levels in
the buildings. Since every heating system is unique, for instance each heat pump has different
characteristics and isolation varies from building to building, a unique model is needed for every
heating system. Manually making a model for every situation is infeasible, therefore a solution
that adapts itself to the unique properties of a system is required. These models can be created
using machine learning or by automatically fitting parameters to existing models of such systems.
The challenge with self learning system is determining what data and how much data is needed
to create a model of the system with sufficient accuracy.
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1.1 Research questions

The challenges of making unique models for individual systems lead to the following research
question:
How can a model of the behaviour of hybrid heating systems in residential building be made more
accurate using machine learning?
To answer the main research question the following sub-questions will have to be answered:

- What models exist for the components of the hybrid heating system?

- What machine learning techniques exist to improve the accuracy of such a model?

- What are the data requirements to sufficiently learn such a model using machine learn-
ing techniques?

- How can such an enhanced model be used in the energy usage planning or for controlling
the hybrid heating system?

1.2 Outline

In Chapter 2 a literature study on existing models, machine learning techniques and the concept
of smart grid is presented. Using the models found in Chapter 2 a model is made of the hybrid
heating system in Chapter 3. This model is used to identify parts of the system model that
can be improved using machine learning. With the identified parts of the model a simulation
study is performed in Chapter 4. In this simulation study it is determined what data needs to
be gathered during lab experiments. Based on the requirements of Chapter 4 the experimental
setup and execution tools are described in Chapter 5. This chapter also discusses the execution of
the experiments performed with the heat pump. The results from the experiments are presented
and discussed in Chapter 6. Finally in Chapter 7 the research questions will be answered and
identified future work will be discussed.
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2 LITERATURE REVIEW

In this chapter existing literature will be discussed. Models for the different parts of the hybrid
heating system will be discussed as well as the smart grid and machine learning techniques that
can potentially improve the models of the hybrid heating system.

2.1 Hybrid heat pump system

A hybrid heating system is a system that combines multiple heat sources for space heating. In
this work a hybrid heating system for residential buildings is considered. This type of system
uses a heat pump and natural gas boiler to provide heat by using electricity or natural gas
respectively.
The benefit of a hybrid heating system is that it can use both electricity and natural gas for
heating. For instance it can use electricity when the price is low and the electricity grid has
sufficient capacity. The natural gas boiler can be used to supplement the heat pump when the
heat demand exceeds the capabilities of the heat pump or to reduce the electricity consumption
of the consumer during periods of congestion in the electrical grid.

Figure 2.1: Overview of possible hybrid heating system setup

In figure 2.1 an overview of a typical hybrid heating system is shown. The figure shows how
heat is exchanged between the different components in the system and where energy is added
to and lost from the system. A literature survey is presented in the following subsections to
describe existing models for the different parts of the hybrid heating system.
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2.1.1 Heat pump

A heat pump is a device that uses mechanical work to move heat energy from a cold location
to a warmer one [24]. In most cases this work is done by an electric pump. Since the process
moves heat from a cold location to a hotter one, it is able to transfer more heat energy than
the energy used for the work that is performed. The ratio of performed work and gained heat
energy is called Coefficient of Performance (COP).
For the modelling of the heat pump the achieved COP is of interest, since this factor determines
how much electrical energy is needed to supply a certain amount of heat energy. In [3] an
overview is presented of different ways to model the performance of heat pumps. It identifies
the following three different classes of models:

1. Calculation methods, these methods consider the Seasonal Coefficient Of Performance or
the building specific seasonal performance factor. These models are based on a fixed COP
for a given season.

2. Dynamic system simulation, these methods can calculate the COP based on current con-
ditions like the temperature of the outside air.

3. Heat pump design models. These model the refrigerant cycle of the heat pump, they are
the most accurate but need specialized knowledge about the physical process in the heat
pump.

One type of a dynamic model is the performance map, these map the COP of the heat pump
to the boundary conditions. Usually the outside temperature and the return temperature of
the heating system are considered for this. In [18] a performance map is created by fitting data
from heat pump to a model using linear regression.
The calculation methods achieve a maximum deviation of 4.7% on the seasonal performance
factor over a season [3]. The heat pump design model is able to achieve inaccuracies smaller
than 5% for the heat capacity and power consumption. The performance maps from [18] have
a maximum error of 10.7% for the heating capacity and 10% for the power consumption. If the
model is fitted for an individual heat pump the maximum error for the heat capacity can be
reduced to 1.6% and the maximum error for the power consumption to 5.9%. The performance
maps from [18] are deemed the best option to model the heat pump. This generalized model does
have a higher error than the heat pump design models, but it can potentially be fitted to the
individual heat pump and is able to achieve similar errors in that case at a reduced complexity.

2.1.2 Heat exchanger

A heat exchanger separates two parts of the heating system. This is done to reduce the amount
of glycol needed, since now only the outdoor part of the circuit needs to use glycol to prevent
freezing, while the indoor part of the heating circuit can use regular water.
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Figure 2.2: Counter flow heat exchanger of recuperator type.

The heat exchanger in the hybrid heating system is assumed to be a recuperator using counter
flow of the fluid. In a recuperator the heat exchange is done directly between the fluids with a
physical barrier between the fluids [8]. A schematical overview of a counter flow heat exchanger
of the recuperator type is shown in figure 2.2.
In [8] multiple methods for sizing and performance analysis of heat exchangers are discussed.
The log-mean temperature difference (LMTD) method uses the log-mean temperature difference
together with properties like area and the overall heat transfer coefficient of the heat exchanger
to calculate the energy transfer. Since the temperature difference is calculated, the input and
output temperatures need to be known, therefore making it suitable for calculating the size of
the heat exchanger. However, this method is not suitable to calculate the output temperatures
of the heat exchanger when these parameters are already known.
The effectiveness-number of transfer units (ε-NTU) method, also described in [8], assumes that
the size and the overall heat transfer coefficient of the heat exchanger are known, as well as
the flow rate and inlet temperatures of both sides. Using these values the heat exchanger
effectiveness is calculated which can be used to calculate the total heat transfer rate which can
than be used to calculate the outlet temperatures of the heat exchanger.
In [9] the counter-flow plate heat exchanger is modelled using an idealized double pipe heat
exchanger, this was done since modelling all the internals of the plate heat exchanger is hard
to perform, especially since obtaining details of the exact internal construction is difficult. This
method lumps the construction parameters of the heat exchanger in four parameters. Two
parameters lump the length and cross section of the substitute pipe heat exchanger, while the
other two parameters describe the heat transfer capabilities. These parameters are determined
by performing tuning on measurement data from the heat exchanger to be modelled.
For modelling the hybrid heating system the ε-NTU method is the best choice. The LMTD
method is not suited since it is not able to calculate the output temperatures. The method from
[9] show to have a good accuracy with a maximum deviation of 0.3◦C of the output temperature
in performed test presented in [9]. The downside is that the parameters need to be determined
using a fit on measurement data. However, such a fit could work well within the context of a
self-learning system.

2.1.3 Gas boiler

The gas boiler uses natural gas to output heat. The heat from the gas boiler is used for both
the heating of the building and for the domestic hot water supply.
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For modelling the gas boiler the efficiency is interesting in order to keep track of the total energy
consumption of the hybrid heating system. The gas boiler is assumed to be of the condensing
type. It condenses flue gases, which are the combustion products, which increases the efficiency
[22].
Commonly available natural gas boiler have a maximum thermal output power in the range of
20 to 35 kW. These boilers can also run at a output lower than their rated maximum capacity.
This is to prevent continuous on/off switching of the natural gas boiler. When not running at
full power they can output about 30% of the rated maximum power at a minimum.

2.1.4 Decoupler

The decoupler in the system is used to combine the heat outputs from both the heat pump and
the gas boiler and use it for heating the building. It can either be a manifold connecting the
heating circuits of the heat pump and the gas boiler together, or it can be a thermal storage
buffer that is heated by both the heat pump and gas boiler. The thermal storage can be used
to generate and store heat energy for later use, it can for instance be beneficial to store heat at
a time when the generation of heat is cheap, for example with a surplus of PV generation.
The thermal storage can be modelled by modelling different levels in the thermal storage [19].
Each level has its own temperature and it is assumed that the flow of water in the tank does not
mix the water in the different levels. In theory this means that 100% of the available capacity
of the thermal storage can be used.
The thermal storage can also be modelled with only two layers and a charging coil as shown in
[29]. Here the thermal storage is divided in the hot layer and the mixed layer which consists of
the return supply of water with a lower temperature. This model can predict the total energy
consumption of charging the heat buffer with an error smaller than 1%.

2.1.5 House

The heating system is used to heat or keep the temperature within the house at a comfortable
level. The demanded heat output for heating the building is determined by characteristics of
the building together with the indoor temperature and outdoor conditions.
In [29] a model for a single zone building is presented. It models the floor and the indoor
zone of the house using resistances and capacitances. Hereby it takes several parameters of the
house together and is therefore a lumped parameter model. This way the heat transfer from the
heating system to the floor, from the floor to the internal zone and from the internal zone to
outside is modelled. It also includes the heat energy from solar irradiation and occupants in the
form of gain in the thermal zone. In figure 2.3 the electric equivalent of the single zone building
model is shown.
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Figure 2.3: Model of single zone house with 2 resistances and 2 capacitances.

In [12] a more elaborate model with lumped parameters is constructed. It for instance models
the wall and windows separately. It also suggests a possible model with four zones which leads to
a model that is also able to model the heat transfers between the different zones in the building
in case the temperatures in these zones are not the same.
The main difference between the models is that the multi-zone model of [12] is able to calculate
the heat transfer between different zones (usually rooms) in a building. This comes at increased
computational complexity and more parameters need to be estimated. The single zone model
from [29] is computationally less complex and only four parameters need to be estimated. It
also provides values for typical building scenarios like a detached house.

2.2 Smart grid

2.2.1 Concept

The current electrical grid is built around the system where electricity is generated centrally.
It is built to transport electricity from centralized generation locations to the consumer of the
electricity [11]. The end user is a passive participant in the current grid, who has limited
knowledge about its electricity use and does not change its behaviour based on the current load
on the grid. In a smart grid information and communication technologies are used to achieve a
safe, efficient and sustainable grid. Among other goals the goals of the smart grid are to allow
the usage of sustainable energy sources and optimizing the energy flow in the system to reduce
losses. One of the ways to achieve this goal is by having active participation of the customer on
the grid. This is useful since the consumer is not longer only a consumer of energy, but can also
be a producer of electrical energy.
With the consumer no longer being a passive user of the energy possibilities arise to make better
use of the available energy. In the context of the hybrid heating system this can be done by
controlling the energy usage of heat pumps. The heat pump uses a lot of power (in the order of
2-4kW) and therefore has a large impact on the energy usage. By optimizing the control of the
heat pumps the usage of energy can be made more efficient and overloading of the grid can be
prevented.
A technique for controlling appliances on the smart grid is demand response [6]. With demand
response the goal is to change the electric usage of the consumer using changes in prices or other
incentives. By changing the electrical energy usage of the consumer unwanted situations, for
example overloading of the grid, can be prevented. This can for instance be done by increasing
the price during high load on the grid to lower demand. By changing the price of energy a
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new equilibrium in supply and demand will be created. An example of an implementation of a
demand response technology is PowerMatcher [17]. Each device does a bid for its willingness
to consume or produce energy. This bid describes its entire supply/demand relationship. With
this the auction agent can determine the market equilibrium for every bidding round without
iterations. This equilibrium sets the price and generation/consumption at a point in time.
The energy consumption of the consumer can also be controlled with profile steering. With
profile steering the production or consumption of the consumer or group of consumers is shaped
in some way, for instance a flat profile [10]. This shaping is achieved by scheduling controllable
appliances. The consumption of some appliances can only be shifted in time, its program will
start at a certain time and will then be fixed, while other appliances can change their output
and their power consumption. This flexibility of changing the shape of the power consumption
has its limits, the flexibility constraints. These constraints can for instance be an appliance that
needs to finish a task at a certain time or ensuring that the temperature in a building is always
comfortable. To obtain the profile of the consumer the profiles of the different appliances within
the house need to be summed together. This profile is compared to the desired profile and
the deviation is calculated. For each appliance a candidate planning is evaluated to reduce its
distance from the desired profile. The schedule of the appliance with the biggest improvement
is selected. This process is repeated iteratively and is stopped when the progress is no longer
sufficient. This method of scheduling can be done all level from the grid hierarchy.

2.2.2 DEMKit

Decentralized Energy Management Toolkit (DEMKit) is a simulation and demonstration frame-
work for future multi-energy control systems [13]. It provides tools to analyze optimization
algorithms in discrete time simulations. For the simulations it uses device components, grid
components and optimization components, this way it offers flexibility to test different opti-
mization strategies or perform hardware-in-the-loop simulations where a device component is
substituted for a connection to a real device. In DEMKit a simulation with profile steering can
be done, it uses its available models together with load profiles e.g. from the Artificial Load
Profile generator (ALPG) [14].

2.2.3 dEF-PI

The distributed Energy Flexibility Platform & Interface (dEF-PI) is developed by Flexiblepower
Alliance Network (FAN) with the goal to create an interoperable platform that can connect to
a variety of applications and support multiple demand side management approaches [26]. It
provides a runtime environment to quickly design and implement services dealing with energy
management. Build tools are available to generate the skeleton of the application by providing
a description of the interfaces. This way only the logical part of the energy management service
needs to be implemented. The aim with the interoperable platform is to make switching between
different services for energy management easier since the platform makes sure no switch of
hardware is needed.
An important part of dEF-PI is the Energy Flexibility Interface (EFI) developed by TNO [30].
The EFI is a generic interface that can be used by device manufacturers to describe the flexibility
of a smart device and which can be used by developers to describe how to use the flexibility
offered by the smart device. The purpose of the generic interface created with EFI is to solve the
interoperability problem between the many different smart devices. Many devices implement
their own API and algorithms for energy flexibility, EFI aims to solve this problem by providing
a standardized interface to describe energy flexibility using abstraction. This way the flexibility
of the devices can be described in its essential form without device specific complexity. For
describing the devices there are four different categories in EFI, these categories can be found
in table 2.1
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Flexibility
category

Description Examples

Inflexible Devices that cannot be controlled. In some cases, like
renewable energy, output can be predicted. In some cases
control in the form of curtailment

PV generation, wind
energy, domestic
loads(e.g. TV)

Shiftable Devices that can be controlled by shifting the operation in
time. The profile of the energy usage cannot be changed.
Shifting in time maybe limited to deadlines.

Smart washing ma-
chine, smart dish-
washer

Storage Devices that provide flexibility by storing energy. Energy
can be stored to be used at a later time. Storing and
releasing the energy can be constrained by load and min-
imum and maximum fill levels.

Battery, heat buffer

Adjustable Devices where the output or energy consumption can be
changed at will.

Gas boiler, heat
pump, dimmable
lighting

Table 2.1: Energy flexibility categories in EFI

These categories are used to describe different devices. The inflexible category can for instance
be used to describe PV panels, the output of these panels cannot be controlled, but a prediction
can be made of the generation and curtailment can be done if necessary. With the adjustable
class a heat pump for example can be described. In this description transition times between
on and off, and between starts can be described as well as the relation between energy and heat
consumption.

Figure 2.4: Example diagram of EFI description

In Figure 2.4 a diagram of an example EFI description in shown. It shows two different running
modes, on and off, and the possible transitions between the running modes. The transitions
between the running modes are guarded by requirements that need to be met, in this case for
instance that the device has be turned off at least 10 minutes before it can be turned on again.
In the ”on” running mode a lower bound and upper bound is given, these set the operational
range of the device. This range describes in this case the amount of electric energy consumed
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and the amount of heat energy generated.

2.3 Machine Learning

The models discussed in Section 2.1 are white box and grey box models. In a white box model
all low level behaviour is simulated. This leads to realistic behaviour at the cost of complex and
computationally expensive models and the need of many parameters that need to be found for
the specific system. However, most of the models in the previous section are grey box models,
they still use available knowledge of the physical processes but use simplifications and are only
valid in certain regions of operation. For example the single zone building model in Section 3.6
assumes that the temperature is the same within a zone and lumps all the thermal storages of
the zone in a single parameter.
Another approach to modelling is the black box approach. This approach does not break down
the system into its underlying mechanisms and uses a description that is not based on the physics
of the system. An often used method for black box modelling is machine learning.
Machine learning creates a model based on the relations of the input and output variables
without knowledge of the system at hand. This means that the behaviour of a system can be
modelled without understanding its physics, the downside is that for this a lot of data is needed
to achieve accurate results [5]. Machine learning algorithms can be categorised in multiple classes
[4]:

1. Supervised learning. These algorithms use input vectors together with their corresponding
output vectors for learning the behaviour. It can learn to output discrete categories which
is called classification, or it can output continuous variables in which case it is called
regression

2. Unsupervised learning uses training data that does not have the corresponding outputs
vectors. It is used to discovers clusters in data.

3. Reinforcement learning tries to find the correct actions to take. It is not presented with
the desired action but rather uses a reward to find suitable actions using trial and error.

For modelling parts of the hybrid heating system the supervised learning category seems suitable.
It could for instance in theory learn to model the COP of the heat pump based on the outdoor
temperature and water output temperature.

2.3.1 Hybrid modelling

As discussed in the previous section one of the downsides of machine learning is that it needs
a lot of data to achieve accurate results. Another problem is that machine learning is only
accurate when it is interpolating [5], this means that the dataset for training must span all
possible operation states.
When not enough real world measurement data is available bootstrapping can be used to pre
train the model as described in [5]. With bootstrapping the machine learning model is first
trained with synthetic data. This data comes from a synthetic model. This way a lot of data
can be generated to initially train the model and it can be made sure that the generated dataset
has data points for all possible inputs, such that this initial model can already be used from
the start. During operation the original dataset can be updated with actual measurement data
from the system. This data can either be added to the dataset or can be used to replace the
synthetically generated data points in the dataset. With the new data in the dataset the machine
learning model can be trained again which will improve the accuracy of the predictions.

14



Figure 2.5: Operation flow of bootstrapping method

The flow of generating a synthetic dataset, training the machine learning model and updating
the dataset over time to retrain the machine learning model is shown in Figure 2.5.
A method to increase the accuracy with respect to a grey-box model is a hybrid model where
both a grey-box model and a machine learning model are combined [16]. The machine learning
part of this model is trained using the inputs used for the grey-box model and the error created
by to the grey box model to the actual value of the system. This training can be performed
when more data is collected and can therefore increase the accuracy of the hybrid model over
time.

Figure 2.6: Training of the hybrid model

In Figure 2.6 the training procedure of the hybrid model is shown. XGB, Xref and XML are the
inputs for the grey box model, reference model and machine learning model respectively. YGB

and Yref are the outputs of the grey box model and the reference system. The reference system
is the system to be modelled. The difference between the the output of the grey box model and
reference system is calculated and used as an input for the machine learning training. Hence,
the machine learning model is trained to predict the error of the grey box model. The result are
the parameters θML for the machine learning model.
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Figure 2.7: Operation of the hybrid model

Figure 2.7 shows the hybrid model in operation. As the machine learning model is trained to
predict the error of the grey box model adding the outputs of the grey box model and machine
learning model results in a system where this error is compensated for.
In [16] the hybrid modelling approach is tested with a building model. It is shown that the
relative root mean square error (RMSE) for the day-ahead temperature prediction is reduced
by 20% to 40% compared to the grey box model depending on the training period length. The
RMSE reduces when a longer training period is used. The hybrid model outperformed the pure
machine learning model in all cases. For the day-ahead energy prediction the average error is
between 3% and 7% for the hybrid method where the pure machine learning approach achieves
an error of 10% and 33%, here the results are again better with more training data. The grey
box model has a stable prediction error of 8%. This shows that combining machine learning and
grey box modelling can achieve better results than these methods can separately.

2.4 Conclusion

Models for the different components of the hybrid heating system are found. These models can
be used to simulate and predict the behaviour of the different parts in the heating system. The
models found in literature use white box and grey box modelling approaches. White box models
model all the underlying behaviour, while grey box models use simplifications to make modelling
and computation easier. Methods to combine and improve these models with machine learning
are discussed. Existing models can be used to bootstrap a machine learning model by providing
initial, synthetic training data. Another method is to use machine learning to correct the error
of a grey box model. Combining existing model with machine learning has the potential to
improve the final resulting model.
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3 MODEL

In this chapter a model of the hybrid heating system is discussed. This model uses the models
found in the literature study in Chapter 2. This model is used to identify the part of the system
that benefits most from improvement with machine learning.

3.1 System

A model is created to simulate the behaviour of the hybrid heating system. This model is used
to study the interaction between the different components and to see what influence changing
conditions like different outdoor temperatures have on the total system. This way, the model
can also be used to research the requirements of the self-learning system.
The model of the system is set up in a modular way, which allows for swapping the different
parts of the model with different implementations. For the energy transfer the temperature and
the flow rate of the water between the components is used. This choice was mostly made since
the performance of the heat exchanger depends partly on the flow rates of the hot and cold
sides.

Figure 3.1: Overview of modelled hybrid heating system

The different modules of the model are based on the overview in figure 3.1, in this figure the
interaction of the components in the models is the flow of water.
The symbols used in the equations for the model are listed in Table 3.1.
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Symbol Description Unit

ṁ mass flow rate kg/s
A Area m2

C Heat capacity rate J/K/s
C∗ Heat capacity ratio dimensionless
Cp Specific heat capacity J/K/kg
COP Coefficient of performance dimensionless
P Power W

Q̇ Heat transfer W
U Heat transfer coefficient W/(m2 K)

Table 3.1: Symbols used in the model

3.2 Heat pump

The implemented model of the heat pump is based on [18]. The performance map is chosen
since it is a sensible method to model the COP based on the current outdoor conditions without
modelling the complete refrigerant cycle of the heat pump. The heat pump takes the outlet
of the hot side of the heat exchanger. It uses the temperature of this water together with the
temperature of the outside air and the outlet temperature of the hot side of the heat exchanger
at the previous time step to calculate the COP using Equation 3.1. The COP is used to calculate
the heat output power. The output power can be controlled, provided that the maximum heat
output of the heat pump is able to deliver the required heat energy.

COP = COPrat ∗ fcop,t(Tin,wb, Tout) ∗ fcap,m(ṁ/ ˙mrat) (3.1)

fcop,t(Tin,wb, Tout) = a+ b ∗ Tout + c ∗ Tout2 + d ∗ Tin,wb + e ∗ Tin,wb
2 ∗ f ∗ Tin,wb ∗ Tout (3.2)

fcap,m(ṁ/ ˙mrat) = X + Y ∗ (ṁ/ ˙mrat) (3.3)

Q̇ = COP ∗ Pelectric (3.4)

Toutlet = Tinlet +
Q̇

ṁ ∗ Cp
(3.5)

ṁ/ ˙mrat is the mass flow ratio, COPrat is the rated COP of the heat pump and a-f , X and Y
are fitted parameters. fcap,m is assumed to be 1 when ṁ = ˙mrat.
The heat pump is only connected to the heat exchanger, Tin comes from the heat exchanger
and the output Toutlet is also connected to the heat exchanger. Tout is the temperature of the
outdoor air.

3.3 Heat exchanger

The ε-NTU method from [8] is used to model the heat exchanger. This method is chosen since
it can be used to calculate the energy transfer in the heat exchanger and use this heat transfer
to calculate the output temperatures. It also has the benefit that the required parameters U
and A, the overall heat transfer coefficient and area of the heat exchanger respectively, can be
estimated from the physical properties of the heat exchanger.
The following steps are performed to calculate the output temperatures of the heat exchanger:
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1. Calculate the capacity rate ratio (Equation 3.6)

2. Calculate the number of transfer units (NTU) (Equation 3.9)

3. Determine the effectiveness (Equation 3.10)

4. Calculate the total heat transfer rate (Equation 3.11)

5. Calculate the outlet temperatures (Equation 3.12 and 3.13)

C∗ =
Cmin

Cmax
(3.6)

Ch = ṁCph (3.7)

Cc = ṁCpc (3.8)

Where Cmax and Cmin are respectively the larger and smaller value of Ch and Cc which are the
heat capacity rates of the warm and cold fluids.

NTU =
UA

Cmin
(3.9)

ε =
1− exp[−NTU(1− C∗)]

1− C∗exp[−NTU(1− C∗)]
(3.10)

The equation for effectiveness ε is taken from [15].

Q̇ = ε ∗ Cmin ∗ (Thot,in − Tcold,in) (3.11)

Tcold,out = Tcold,in +
Q̇

ṁc ∗ Cpc
(3.12)

Thot,out = Thot,in −
Q̇

ṁh ∗ Cph
(3.13)

Thot,in is the water heated by the heat pump and Thot,out is the return water to the heat pump.
Tcold,in comes from the decoupler and Tcold,out is the heated water going back to the decoupler.

3.4 Gas boiler

The fitted model from [7] resulted in an increasing efficiency with increasing inlet temperature,
this is opposite from the expectation for efficiency of a condensing gas boiler and also does
not match the by the authors presented efficiency plot. Since no suitable model was found the
natural gas boiler was implemented as an adjustable source of heat energy. Heat energy can be
requested from the natural gas boiler up to its upper limit. Since there is no underlying model
with the efficiency of the gas burning no insight is created in the amount of natural gas used to
supply the demanded heat.

Tout = Tin +
Q̇

ṁ ∗ cp
(3.14)

Q̇ is the thermal energy added by the natural gas boiler. Both Tin and Tout are connected to
decoupler. The implemented model does have a limit on the thermal output power and the outlet
temperature. This limit is in place since real world natural gas boiler do not have unlimited
thermal output power and do limit the output temperature.
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3.5 Decoupler

The decoupler is modelled as a simple manifold. It takes the the outlet of both the heat pump
and gas boiler and combines it by adding the flows and taking the weighted average temperature.
Another implementation of the decoupler has been made based on the thermal storage model
from [29]. The model takes the output of the heat pump and gas boiler as the source for the
charging process of the heat buffer.
The two different models allow to study the behaviour when with and without the possibility to
store the thermal energy.

3.6 House

The output of the hot water from the decoupler is used to heat the house. The model is based
on the 2 resistances 2 capacitances model of [29], shown in Figure 2.3. The main difference is
that the implemented model also allows for heat to be directly added to the zone by means of
a radiator. The model calculates for every time step the room temperature, floor temperature,
transfer of heat from floor to room, transfer of heat from room to outside, heat energy added
to the floor and the heat energy added to the room by the radiator. At initialization the room
and floor resistances and capacitances are set, as well as the resistance of the radiator(s) to the
room. This model was chosen since there are parameters for different types of houses available
in prior work.

heatingGain = (Tfluid − Tfloor) ∗ ˙mfluid ∗ Cp,fluid (3.15)

Etoroom =
Tfloor − Troom

Rfloor
(3.16)

Etooutside =
Toutside − Troom

Rroom
(3.17)

Tfloor = Tfloor +
heatingGain− Etoroom

Cfloor
(3.18)

gains = gainsoutside + gainsradiator (3.19)

Troom = Troom +
Etoroom + Etooutside + gains

Croom
(3.20)

3.7 Discussion

With the simulation the interaction between the different parts of the models is studied.
For the heat pump the following coefficients from [18] are used:

a = 1.268 (3.21)

b = 2.214 ∗ 10−2 (3.22)

c = −3.4135 ∗ 10−6 (3.23)

d = −1.2573 ∗ 10−2 (3.24)

e = 4.632268 ∗ 10−5 (3.25)

f = −1.46332 ∗ 10−4 (3.26)
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It is assumed to the air flow rate of the heat pump is always at is maximum.
For the heat exchanger to heat transfer coefficient is set to 2000 W/(m2 K)[27] and the area
to 0.5m2. For the decoupler in the simulation an open manifold is used which just mixes the
outputs from the gas boiler and the heat pump. The maximum output of the natural gas boiler
is set to 20kW .
For the house the following parameters are used, they are based on the values of the detached
house from [29].

Cfloor = 5100 ∗ 3600 (3.27)

Rfloor = 0.0016 (3.28)

Croom = 21100 ∗ 3600 (3.29)

Rroom = 0.0064 (3.30)

All the zones and the heating water at the different components are all 20◦C at the start of the
simulation. The outdoor temperature is set to 0 ◦C.
The heat exchanger reaches about 100% energy transfer during operation regardless of the exact
parameters of the heat exchanger.

Figure 3.2: Temperatures at heat exchanger connections.
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Figure 3.3: Power transfer through heat exchanger

In Figure 3.2 and 3.3 the temperatures and transfer power of a heat exchanger modelled with
the ε-NTU method from [8] are shown. It shows that the temperatures at the side of the heating
system do not reach the temperatures as outputted by the heat pump, but it does show that
the thermal power of the heat pump is fully transferred to the heating system.
The power consumption of the heat pump does depend on the heat demand of the house.
However, for the model of the house there are already parameters to model different types of
houses to predict their heat demand.

Figure 3.4: COP of heat pump against outdoor temperature

In Figure 3.4 the relation between the outdoor temperature and the COP at a fixed return
temperature of 40◦C is plotted. This shows that the COP depends on the temperature at the
cold side of the compressor of the heat pump. Since a heat pump usually has a fixed maximum
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electrical power consumption a lower COP also limits the maximum thermal output power.
To model the behaviour of the heat pump in different conditions a self-learning system is pro-
posed to model the behaviour of the specific heat pump in the system by collecting data and
and using this data to train a custom model for the particular heat pump.

3.8 Conclusion

A model of the hybrid heating system is made using models from the literature study. The
behaviour of the model of the system and the individual model is studied to determine where
improvements can be made. Since the heat pump is the largest electricity consumer of the hybrid
heating setup, and controlling the electricity consumption is of interest, the model of the heat
pump is the most promising to adapt to the individual system by using machine learning.
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4 SIMULATION STUDY

In this chapter simulations are performed to determine the parameters for the experiments. The
simulations are used to determine what data needs to be collected, what parameters need to be
changed, how the parameters need to be changed and how many samples need to be collected.

4.1 Simulation study

For the planning of the energy consumption in a household accurate models of electricity con-
sumers and producers are important. Since the heat pump in the hybrid heating system is the
part in this system that consumes the most electricity it is the most promising part to increase
the accuracy of its model. It is shown in Section 3.2 that the thermal output power of the heat
pump depends on the return temperature of the heating water and the outdoor/ brine supply
temperature. Therefore, to predict the electricity usage and heat supply of the heat pump a
model is needed to predict the COP. By estimating the COP, the heat energy supply of the heat
pump can be calculated, Subsequently, this COP can be used for the optimal planning of the
operation of the heat pump, i.e. determine when and for how long the heat pump needs to run.
In the literature review it is found that the COP of the heat pump depends on the conditions it is
operating in. The most important factors for the COP of the system are the return temperature
of the heating system, and the temperature of the cold side of the heat pump (the outside air or
the brine supply). Since the behaviour of the system mostly depends on the return temperature
and cold side temperature the machine learning system needs to learn the relation between
these conditions and the resulting COP. Therefore, the goal of the machine learning system is to
predict the COP of the heat pump based on the current and expected conditions of the system.
The current implementation in DEMKit [13] does not consider the operating conditions of the
system and assumes a constant COP for the heat pump.
The machine learning system should be able to learn the behaviour of the system under normal
operating conditions, this means that it should be able to learn the behaviour of the system
without performing measurements in artificial conditions. Learning the behaviour of the heat
pump in changing conditions should increase the accuracy of the model. In the case of the
available test setup at the TNO HESI facility, which consists of a heat pump with a brine
source, the operational range for this specific heat pump is 8-30◦C for the brine supply and
20-50◦C for the return temperature of the heating water. It is assumed that the temperature
of the return water does not become colder than 20◦C room temperature and always transfers
some heat to cool down from its 50◦C supply temperature.
Given the dependence of the COP on the return temperature and the temperature of the cold
side supply, these two parameters need to be varied during the measurements to learn the
response of the system to these changes. In order to get a properly working model with machine
learning the parameters need to be varied over the whole operational range, or at least the
desired range in the which the model should achieve the desired accuracy. For fitting variables
on a predetermined formula in theory less points can be used with less spread, but more points
with more spread will lead to a more accurate representation. Machine learning with for example
a neural network tries to fit the data as close as possible with no knowledge of the underlying
process and therefore usually only works accurately enough when it is interpolating as mentioned
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in Section 2.3.1. For machine learning to properly fit the model it needs many measurements
points throughout the operational range. To fit a curve to the provided data at least as many
measurement points as variables in the function need to be provided. In the case of the COP
formula from [18] it uses six variables; this means that for this formula at least six distinct
different points are needed to curve fit the data to this formula.
To define and test a measurement protocol for lab experiments, simulations have been performed.
The goal of these simulations is to find a suitable method to learn the behaviour of the heat
pump as a baseline. These simulations do use artificial conditions to cover the operational
range of the heat pump. By performing simulations assumptions can be tested and verified in a
known environment. For the simulations the heat pump model from [18], Equation 3.1 is used.
The flow is set to 0.2l/s, the electric power consumption of the heat pump is set to a continuous
3000W. During the simulations different parameters for the return temperature and the cold side
supply temperature were used, no other components of the hybrid heating system are simulated
to generate these values. In the cases noise was added to measurements random noise with a
standard Normal distribution with a seed was used, the seed ensures the random noise added is
the same during the different runs, the sigma of the normal distribution was set to 0.12. When
noise is added, the resulting output is rounded to the nearest 0.05 increment; this matches the
output resolution of the available sensors in the test setup. It also only outputs every fifth
sample of the simulation. The following variables are logged during the simulation: demand
(fixed to always on), cold side supply temperature, return temperature, output temperature for
heating system, flow of heating system, electric power consumption and COP of the model used
to generate data.
For the simulations the focus was placed on learning the behaviour using curve fitting on the
formula for COP from [18]. This choice was made since it was shown that this formula can
model the behaviour with reasonable accuracy and it should, in theory, be able to do this with
less data than for example a neural network.

Figure 4.1: Curve fitting to model.

In Figure 4.1 the learning phase of the model is shown. First the gathered data is processed to
calculate the COP, where Cp is the specific heat capacity of the water in the heating system.
Cp is assumed to not change with temperature and is set to a fixed value of 4180J/K/kg, which
is the specific heat capacity of water of around 40◦C [28]. This COP together with the return
temperature and brine temperature, and Equation 3.1 is input to the curve fitting algorithm.
The result is the set of parameters required to describe the behaviour of the heat pump.
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Figure 4.2: Operational mode of curve fitted model

In Figure 4.2 the usage phase of the model is shown. The previously determined set of parameters
is used to predict the COP given the return and supply temperature.
A simulation was performed with six regions of operation, since, according to theory, that should
be enough to accurately fit the behaviour of the heat pump. At each region of operation 500
samples were taken. The parameters from Table 4.1 are used.

Return temperature 35 35 35 45 45 45

Brine temperature 8 13 18 18 13 8

Table 4.1: Regions of operation for simulation with 6 regions.

Figure 4.3: Plot of original model and curve fitted model with 6 data points and no noise.

26



In Figure 4.3 it can be seen that the fit is not as desired. It fits nicely on the data points, but
deviates by up to a factor 3 outside the given data points.
With nine regions of operation there should be enough data to fit the 2nd order component of
both the brine supply temperature and return temperature. It also ensures there is enough data
to determine the combined contribution of the supply and return temperature. For the fit with
9 regions of operation the parameters from Table 4.2 are used.

Return temperature 35 35 35 40 40 40 45 45 45

Brine temperature 8 13 18 18 13 8 8 13 18

Table 4.2: Regions of operation for simulation with 9 regions

Figure 4.4: Plot of original model and curve fitted model with 9 data points and no noise.

In Figure 4.4 it is observed that the fit now matches the original better. Without noise the
highest achieved error in the operating range is 6.77 ∗ 10−3, the relative error is 0.094% at most.

27



Figure 4.5: Plot of original model and curve fitted model with 9 data points and noise.

With noise and a rolling average over the return temperature, supply temperature, output
temperature and the flow of 12 samples, which is 1 minute of data from the simulation, a
maximum error of 1.02 ∗ 10−1 is achieved. Doubling the number of samples reduces this error
to 5.00 ∗ 10−2, the resulting fit is shown in Figure 4.5.

4.2 Conclusion

With the simulations a suitable method is determined to model the behaviour of the heat pump.
It is shown that measurements in at least 9 different regions of operation with a rolling average
leads to a suitable model of the heat pump.
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5 EXPERIMENTS

Experiments are performed to collect real world data of a heat pump to create models. The
experiments are performed in two different ways. An experiment under ideal conditions is done
to collect data for a baseline model. A second experiment is done in non-ideal conditions in
order to create models with data from more realistic data.

5.1 Experiment setup

The heat pump setup at the TNO HESI facility is used to perform the experiments. The HESI,
Hybrid Energy System Integration, facility is a facility of TNO to test energy solutions. It has
the capability to test different heating configurations, whether it is electric, natural gas or a
combination. A heating and cooling grid are present to supply warm or cold water to the test
setups. The setup consists of an EcoGeo Basic B1 3-12kW heat pump which uses a ground
source and is equipped with sensors to measure the performance of the heat pump. In Figure
5.1 an overview of the measurement setup is shown. It shows how the different parts of the setup
are connected together, where the different sensors are placed and how the setup is connected to
the cooling and heating grid in the HESI facility. The heating and cooling grid supplies warm
and cold water of about 40◦C and 15◦C respectively to perform experiments involving (hybrid)
heating systems.

Figure 5.1: Overview of setup at TNO HESI.

In Figure 5.2 the actual measurement setup at the TNO HESI facility is shown. The heat pump
is placed on a cart to allow usage in different test setups. All parts of the test setup where water
flows between are connected with hoses that have an internal diameter of 19mm to allow easy
change of the measurement setup. In table 5.1 the used equipment is listed. The Belimo Energy
Valves measure the flow and the supply and return temperatures. The PM5320 measures the
electricity consumption of the heat pump. Using the three way valves the supply temperature
of the brine and the return temperature of the heating water can be controlled. The heat pump
itself is able to measure the brine temperatures, the temperatures of the heating system and
power usage among other things. The setup is connected to the cooling and heating circuits
that are present in the HESI facility.
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Figure 5.2: Experiment setup at TNO HESI facility.

Part of setup Part model

Balancing valve STAD PN 25 (DN20)
Heat exchanger Alfa Laval CBH16-17H
Three way valve (heating system) Belimo H514B
Three way valve actuator (heating system) Belimo NV24A-SR-TPC
Three way valve controller (heating system) WuT Web-IO Analog-In/Out PoE 57662
Temperature sensor (heating system feedback) ANTF2
Three way valve (brine system) Belimo H532B
Three way valve actuator (brine system) Belimo LV24A-SR-TPC
Three way valve controller (brine system) Siemens RLE 162
Heat pump EcoGeo Basic B1 3-12kW
Electricity meter Schneider PM5320
Flow and temperature meter Belimo Energy Valve
Connection hoses GEYSER 2A STEAM HOSE (OD 33mm)

Table 5.1: Equipment used in the experiment setup.
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5.2 Experiment implementation

5.2.1 Software

The software for the experiment is written using the dEF-PI framework [26] in Java. The goal of
dEF-Pi is to create a platform for easily implementing services dealing with energy demand. The
main part of dEF-Pi is the orchestrator, it is responsible for the deployment and management
of services and exposes an API which is used by the web-based user interface. Services are
created as stubs with the code generation provided by dEF-Pi, this makes sure the services can
communicate with the orchestrator. With the dEF-PI orchestrator the experiment software can
be started and controlled using a graphical user interface.

Figure 5.3: Interface of dEF-PI to configure services.

For the service implemented for this experiment the values for the return temperature, parame-
ters for the PID-controller, the measurement period and the state of the heat pump can be set
in the graphical user interface as shown in Figure 5.3. The software logs the output from the
Belimo Energy Valves, PM5320 energy meter, heat pump and three way valve controller every
5 seconds to a TimescaleDB server. The measured values and their sources are listed in Table
5.2. The values from the three way valve driver that are collected are listed in Table 5.3.

Figure 5.4: Overview of collected data.
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Parameter Source

Supply temperature brine at heat pump Heat pump
Return temperature brine at heat pump Heat pump
Supply temperature brine from heat network Belimo Energy Valve
Return temperature brine to heat network Belimo Energy Valve
Brine flow of the heat network Belimo Energy Valve
Absorbed power from brine Belimo Energy Valve
Supply temperature from cooling network Belimo Energy Valve
Return temperature to cooling network Belimo Energy Valve
Flow of cooling network Belimo Energy Valve
Added power to cooling water Belimo Energy Valve
Return temperature heating water Heat pump & Belimo Energy Valve
Supply temperature heating water Heat pump & Belimo Energy Valve
Flow of heating water Belimo Energy Valve
Added power to heating water Belimo Energy Valve
Active power Heat pump & PM5320
Reactive power PM5320
Apparent power PM5320
CoP Heat pump
Compressor RPM Heat pump
Compressor discharge temperature Heat pump
Compressor suction temperature Heat pump
Condensation temperature Heat pump
Evaporation temperature Heat pump
Heat buffer tank temperature Heat pump
Scroll temperature Heat pump
Inverter temperature

Table 5.2: Collected values and their sources.

Return temperature heating water
Target return temperature heating water
Control output
Change in control signal
Error
Integral
Derivative

Table 5.3: Collected values from the three way valve driver.

Most drivers have been implemented by TNO for their own experiments using (parts of) the
setup. The driver for the WuT Web-IO Analog-In/Out PoE 57662 and the three way valve
controller that uses the Web-IO module driver have been written for this experiment specifically.
The driver for the Web-IO module exposes an interface to read and set the voltages of its two
inputs/outputs. For controlling the three way valve one channel is connected to a temperature
sensor and the other channel is used to output a voltage to control the position of the three way
valve.
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5.2.2 Temperature sensor return temperature heating water

Figure 5.5: Schematic of voltage divider with NTC.

The circuit of the NTC temperature sensor is shown in Figure 5.5. It is a voltage divider with
a known resistance and a known supply voltage, this way the resistance of the NTC can be
calculated.

RNTC =
R2 ∗ Vmeasured

Vsupply − Vmeasured
(5.1)

R2 = 47000Ω (5.2)

Vsupply = 24V (5.3)

The resistance of the NTC is calculated with Equation 5.1. This resistance is used with the
thermistor equation to calculate the temperature measured by the NTC.

T =
B

log RNTC
R0∗exp −B

T0

(5.4)

In Equation 5.4 the thermistor equation is rewritten to output a temperature when the resistance
of the NTC is known. The result T is the temperature in Kelvin, T0 is the base temperature
in Kelvin, R0 is the base resistance of the NTC and B is the parameter of the NTC. From the
datasheet of the NTC [20] T0 and R0 are taken from the resistance characteristics table, while
B is estimated using the provided resistance value at 0 and 100◦C. With the estimated value of
B the calculated temperature in the range from 20◦C to 50◦C deviates at most 0.24% compared
to the provided resistance table from the datasheet.

R0 = 47000Ω (5.5)

T0 = 298.15K (5.6)

B = 3941.51 (5.7)

5.2.3 PID-controller return temperature heating water

The three way valve controller is a driver on top of the I/O-module driver, the controller used
is a PID-controller that changes the output based on the measured error. The control loop is
executed at a rate of 1Hz.

e(t) = xset(t)− x(t) (5.8)

i(t) = i(t− 1) + e(t) (5.9)

d(t) = e(t)− e(t− 1) (5.10)
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u(t) = (Kp ∗ e(t) +Ki ∗ i(t) +Kd ∗ d(t)) (5.11)

y(t) = y(t− 1)− u(t) (5.12)

Kp = 0.02 (5.13)

Ki = 0 (5.14)

Kd = 0.5 (5.15)

Equation 5.8 to 5.15 describe the PID-controller. Where xset(t) is the setpoint in ◦C at time t,
x(t) is the temperature in ◦C at time t, u(t) is the change in controller output at time t and y(t)
is the resulting output at time t. u(t) is limited to an amplitude of 0.07, this is the maximum
speed at which the actuator for the three way valve can actually move, given the execution rate
of 1Hz. This makes sure the output is always close to the actual position of the three way valve,
this is done since no feedback from the actuator is used to determine the current position of the
three way valve.

5.2.4 Controller brine supply temperature

To control the the brine supply temperature the Siemens RLE162 is used. This is a dedicated
PI-controller for controlling the temperature of water. The setpoint of the brine is set using a
physical slider on the device.

5.2.5 Heat pump

The heat pump used is a modulating heat pump, therefore the compressor does not need to run at
its maximum operating capacity all the time. The modulation of the compressor however cannot
be set by the user and can only be done by the heat pump based on the return temperature
of the water and the setpoint of the heating water. During the experiments the setpoint of the
heating water was set to the maximum of 59◦C to make sure the heat pump would alway operate
at its maximum capacity.

5.2.6 Data filtering

Only data is used where the compressor was reported running by the heat pump and the elec-
tricity consumption was more than 4000W, this electricity consumption or higher is reached in
all the steady state cases during the measurements. In the cases where the non-ideal conditions
were simulated the minimum power consumption for data to be selected was 500W, this ensures
the internal pumps and the compressor of the heat pump are all running.
For the simulation in ideal conditions only steady state data is used. This is done because it
is observed that before reaching steady state, for example when the compressor is still ramping
up, different COP values are observed compared to the steady state situation. To remove the
non steady state data the following steps are performed:
• Smooth input data using a rolling average
• Calculate ∆ over δ samples (Equation 5.16)
• Discard data if ∆ above threshold

Next to only removing the non steady state data a moving average can also be applied. For
this moving average it is made sure that data from different operating regions does not influence
each other, this is implemented with the following steps:
• Smooth input data using a rolling average
• Calculate ∆ over δ samples (Equation 5.16)
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• Discard data if ∆ above threshold
• Take raw input data in split in separate continuous parts
• Apply moving average to separate parts of data

∆ = |X[t+
δ

2
]−X[t− δ

2
]| (5.16)

Figure 5.6: Splitting and filtering of measurements

In Figure 5.6 an example is shown of the filter removing non steady-state data. The grey areas
are parts where the resulting ∆ (d in the plot) is larger than the selected threshold and will
be removed. In the case that a moving average is applied it is applied to each green area
separately, this way no data of different parts of the operation influences the moving average of
other operating conditions.
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5.3 Return temperature controller test

A subset of the measuring setup is responsible for controlling the return temperature of the
heating system water to the heat pump. This part of the system was tested separately to ensure
it is able to control the return temperature of the heating water. The test setup for controlling
the return temperature is show in Figure 5.7, the physical implementation of this test setup is
shown in Figure 5.8.

Figure 5.7: Test setup of return temperature control

Figure 5.8: Test setup of return temperature controller at HESI facility.

A controller was implemented to control the position of the three way valve to control the return
temperature. With tuning of the parameters the maximum overshoot that is achieved by the
controller is 0.4◦C.
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Figure 5.9: Step response of return temperature controller

In Figure 5.9 the response of the controller to a changing setpoint is shown. The slow behaviour
of the controller is mostly determined by the slow speed of the motor driving the three way
valve. The valve actuator takes 150 s to fully move the three way valve from one extreme to the
other [25].

Figure 5.10: Steady state behaviour of return temperature controller

In Figure 5.10 the behaviour of the controller around the setpoint is shown. It shows that
the controller does oscillate around the setpoint with an amplitude of about 0.15◦C. Part of
the oscillation is caused by the behaviour of the three way valve actuator, when making small
changes it does not always react and only starts moving when the change becomes large enough.
For example when the error is small the actuator does not move, due to the persisting error the
output keeps changing and at some threshold the actuator moves to the output value.
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5.4 Execution

5.4.1 Ideal conditions

For the experiment in ideal conditions measurements will be done when the heat pump is
operating in a steady state. Measurements with different operating parameters will be done
to collect data to create a baseline model of the heat pump.
For the measurements the following steps are performed:

1. Set brine supply temperature to desired value using the PI-controller

2. Set return temperature to desired value

3. Start data collection

4. Instruct heat pump to turn on, verify it is running

5. Wait for brine supply temperature and return temperature to stabilize around their set-
point

6. Wait for output temperature to stabilize

7. Collect data, for acceptable fit at least 200 samples are needed

8. Return to step one for measurement with new parameters

The first two steps set the desired parameters for the measurement, these are the parameters
that will be varied between the runs. Data collection should be running as soon as the heat
pump is started, this is done to also collect data about the starting behaviour of the heat pump.
For the main measurements it is important that the heating system reaches a stable state. Once
the stable state is reached at least 200 samples need to be collected, as discussed in Chapter 4.
The experiment is performed with lower return temperatures than initially were chosen. This
is done because it was observed that at a return temperature of 45◦C the output would become
hotter than 55◦C leading to the heat pump modulating and decreasing its output. The lower
values were chosen to make sure the heat pump would operate at maximum power at each tested
region of operation.

Return temperature 30 30 30 35 35 35 40 40 40

Brine temperature 8 13 18 8 13 18 8 13 18

Table 5.4: Regions of operations for lab experiment in ideal conditions
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5.4.2 Non-ideal conditions

Figure 5.11: Radiator heating behaviour modelled with RC-response

Next to the experiment with the ideal controlled conditions a second experiment is performed.
In this experiment the brine supply temperature is set fixed for an experiment run but the return
temperature of the heating water is varied. The return temperature of the heating water follow
an RC-curve to model the behaviour of the heating system of a house warming up. The heating
behaviour is shown in Figure 5.11, it starts at 20◦C and heats up to 40◦C. The time T it takes
to heat up the system is varied between 10, 15 and 20 minutes. The heating curve is generated
with Equation 5.17, where the Tset,t is used as setpoint xset(t) for the three way valve controller
and τ is set to T

4 , this way after the selected period 98.2% of the final value is reached.

Tset,t = Tstart + (Ttarget − Tstart) ∗ (1− e−
t
τ )) (5.17)

For the second experiment the following steps are performed:

1. Set brine supply temperature to desired value using the PI-controller

2. Set return temperature target and heat up time to desired value

3. Start data collection

4. Instruct heat pump to turn on, verify it is running

5. Wait for brine supply temperature and return temperature to stabilize around their set-
point

6. Wait for output temperature to stabilize

7. Collect data, for acceptable fit at least 200 samples are needed

8. Instruct heat pump to turn off

9. Lower return temperature and run heating circuit pump to cool down heating water

10. Return to step one for measurement with new parameters
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5.4.3 COP calculation

Since the COP is an important measure of the performance of the heat pump it will be calculated
from the collected data. The COP is calculated with the following equation:

COP =
(Theating,output − Theating,return) ∗ Cp,water ∗ ṁwater

Q̇electric

(5.18)

Where Cp,water is 4180J/K/kg, which is the same value used in Chapter 4.

Theating,output Belimo Energy Valve
Theating,return Belimo Energy Valve
ṁwater Belimo Energy Valve

Q̇electric Schneider PM5320

Table 5.5: Source of values for external COP calculation

Theating,output Heat pump
Theating,return Heat pump
ṁwater Belimo Energy Valve

Q̇electric Heat pump

Table 5.6: Source of values for hybrid COP calculation

The COP is obtained from the data in three different ways:

1. Heat pump: COP value reported by the heat pump

2. External: using Equation 5.18 and the values with the sources as described in Table 5.5

3. Hybrid: using Equation 5.18 and the values with the sources as described in Table 5.6

No calculation using the data from only the heat pump can be done since the flow of the heating
water is not reported by the heat pump.

5.5 Summary

Experiments are performed with a heat pump setup at the TNO HESI facility. For this experi-
ment software has been written to collect and store data and to control the return temperature
of the water. Two different experiments are performed, one in optimal conditions where the
heat pump and its water system operate in steady state and another experiment in non-ideal
conditions where the water of the heating system heats up over a period of time.
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6 RESULTS

In this section the results from the experiments are discussed. First some general observations
about the behaviour of the heat pump and the testing set up are are discussed, followed by the
results from the ideal and non-ideal condition experiments.

6.1 General observations

It is observed that when starting the heat pump it takes some time for the compressor RPM
and the electricity consumption to stabilize. In Figure 6.1 the starting behaviour of the heat
pump is shown. It takes about 8 minutes for the heat pump to reach a stable operating state.
It is also observed that the power consumption measured by the external energy meter is higher
than what the heat pump reports.

Figure 6.1: Start behaviour of used heat pump

In Figure 6.2 the energy consumption as reported by the external meter and the heat pump are
compared in different cases where the compressor of the heat pump is not running. It can be
seen that the energy consumption of the pumps for the brine and heating circuit is not reported
by the heat pump. When both the heating circuit pump and the brine pump are running
at their maximum capacity, which is observed to happen during operation, they consume on
average 207W of power. For demand side management on the electrical grid the total power
consumption of the heat pump is of interest. Therefore the COP is assumed to include the total
electric energy used by the heat pump.
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Figure 6.2: Comparison of power consumption reported by external meter and heat pump

Figure 6.3: Plot of power consumption, compressor rpm and return temperature

Another observation is that the compressor RPM is lower when the return temperature of the
heating water is higher. In Figure 6.3 the power consumption of the heat pump, the compressor
RPM and the return temperature of the heating water are plotted. It can clearly be seen that
the compressor RPM increases when the return temperature becomes lower. However, the power
consumption does only change slightly, it is 4648W when the temperature of the water is 38.5◦C
and is 4694W when the temperature of the water is 33.5 ◦C, a decrease of 0.98%. When the
return temperature is lowered further to 28.5◦C the compressor RPM does barely change, from
6959 to 6993 on average which is an 0.49% increase, while the power consumption drops to
4261W, a 9.2% decrease.
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6.2 Ideal conditions

In this section the resulting measurements of the ideal measuring case are discussed. Different
types of filtering are compared. Next to comparing the different filtering methods a comparison
is drawn between the different methods to obtain the COP value.

6.2.1 Unfiltered

In this section the results are presented without additional filtering, the only criteria used for
selecting the data is a running compressor and a power consumption of at least 4000W.

Figure 6.4: 3D plot of observations and fitted model

In Figure 6.4 it can be seen that there is data that does not fit the fitted model. This is because
selecting the data only by looking at the fact that the compressor is running and the power
consumption of 4000W does not mean that an actual steady-state of operation is reached.
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Figure 6.5: Comparison of different model fits at a return temperature of 38.5◦C

Similar to Figure 6.4 Figure 6.5 shows a lot of spread of the data points in an assumed steady
state. In Figure 6.5 a difference can be seen in the COP reported by the different methods
to obtain this value. The difference between the hybrid method and the external calculation
method can be explained by the difference in the externally measured power consumption and
the power consumption reported by the heat pump.

Figure 6.6: Plot of the COP reported by the heat pump against the COP measured with external
sensors

In Figure 6.6 the COP as reported by the heat pump is plotted against the COP as measured
using the external sensors. A clear bias is observed in the reporting of the COP by the heat
pump, with the latter consistently being more optimistic.
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6.2.2 Non steady state removed

To remove the non steady-state data the method described in Section 5.2.6 has been used. The
data is smoothed with a rolling average with a window size of 12 and for Equation 5.16 δ = 30
and ∆max = 0.3 is used.

Figure 6.7: 3D plot of observations and fitted model

In Figure 6.7 it is shown that removing the non steady-state data points makes sure the data
points and resulting fit better, since the non steady state outliers have been removed.
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Figure 6.8: Comparison of different model fits at a return temperature of 38.5◦C

Figure 6.9: Plot of the COP reported by the heat pump against the COP measured with external
sensors
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6.2.3 Non steady state removed and moving average

For selecting the data the same parameters as Section 6.2.2 are used. For the moving average
over the selected parts a window of 12 is used, the same window as found during the simulation
study.

Figure 6.10: Comparison of different model fits at a return temperature of 38.5◦C

Figure 6.11: Plot of the COP reported by the heat pump against the COP measured with
external sensors
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6.2.4 Comparison of fitted models with different filtering

Figure 6.12: Comparison of different model fits at a return temperature of 38.5◦C with external
data

The resulting models of the different filtering methods are shown in Figure 6.12. The lines for
”Cut” and ”Cut moving average” do overlap in the figure. The fit with the unfiltered data gives
lower results than the other two options, this is caused by the fact that the non steady state
data point as seen in Figure 6.4 give lower COP values.

Figure 6.13: Comparison of resulting models from external and heat pump data at 38.5◦C return
temperature.
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Figure 6.14: Deviation of fitted model with heat pump data with respect to external data

In Figure 6.13 the resulting models from the external and heat pump data are plotted. The
heat pump data consistently results in a higher COP. In Figure 6.14 the error and the relative
error from the model fitted with heat pump data with respect to the model fitted with the
external data is shown. Both the error and relative error do increase with higher brine supply
temperatures. Part of the error can be attributed to the difference in the power consumption as
reported by the heat pump and the power consumption as measured externally. Since the heat
pump does not report the flow of the water in the heating system it is not possible to calculate
the COP with only heat pump data. The heat pump does report the heat energy added to the
heating water on the display, but this value cannot be collected automatically and is therefore
not used to compare it with calculated values of the heating output.
For comparisons in the next section the models fitted with the non steady state data removed
are used as the baseline model.
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6.3 Non-ideal conditions

Figure 6.15: Comparison of different filtering methods with heating time of 20 minutes

In Figure 6.15 the different filtering methods are compared against each other with data from 20
minutes heat up time and the baseline model. To compare the resulting models with different
heat up times the filter with moving average over the different parts will be used.

Figure 6.16: Comparison of different model fits at a return temperature of 38.5◦C with external
data

The models generated from the different runs appear to closely match the baseline model. The
model created with data from 20 minutes of heat up time has a maximum deviation from
the baseline of 3.1 ∗ 10−2 and a maximum relative error of 1.0%, and has the lowest maximum
deviation, while the data from the heat up time of 15 minutes has the highest maximum deviation
of 6.2 ∗ 10−2 and a maximum relative error of 1.6%.

50



Figure 6.17: Comparison of different model fits at a return temperature of 28.5◦C with external
data

The models do have a higher deviation from the baseline when comparing with the baseline at
a lower return temperature of 28.5◦C. In this case the maximum deviation of all the models is
2.3∗10−1 compared to the baseline model, which results in a relative error of 6.3% for the model
with 10 minutes heat up time and a relative error of 4.9% for the model with 20 minutes heat
up time.

Figure 6.18: Comparison of different model fits at a return temperature of 38.5◦C with heat
pump data

With the data from the heat pump the maximum relative error is 4.8% compared to the baseline
created with heat pump data.
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Figure 6.19: Comparison of different model fits at a return temperature of 28.5◦C with heat
pump data

At a lower return temperature of 28.5◦C the models deviate more from the baseline model,
especially at lower brine temperature. The maximum deviation for the 10 minute heating model
is 8.0 ∗ 10−1 while the deviation for the model with the heating times of 15 and 20 minutes are
6.9 ∗ 10−1 and 5.4 ∗ 10−1 respectively. The relative errors are 20%, 17% and 13% respectively.

Figure 6.20: Comparison of collected data from the heat pump in ideal and non-ideal condition
with brine temperature of 12.5◦C

In Figure 6.20 the collected data from both the ideal and non-ideal case is shown. It shows that
during the non steady state heating phase the heat pump reports a higher COP compared to a
steady state situation. An observation is that in the case of the system that is heating up the
compressor of the heat pump is still in the process of starting up before reaching its maximum
RPM. It can also clearly be seen that due to the heating of the system less data is available at
lower return temperatures for the model to fit on.
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6.4 Discussion

With the models fitted to the collected data of the heat pump more accurate plannings can be
made by the energy management services. With the external sensors a maximum error of 1.6%
is achieved at a return temperature of 38.5◦C. With the tested heat pump this is the steady
state operation and therefore most important error. With the data from the heat pump the
largest relative error is 4.8% with the non-ideal data compared to the data in ideal situations.
The downside of the the heat pump data with this particular heat pump at least is the more
optimistic report of the achieved COP, within the during the experiments observed regions of
operation the COP reported by the heat pump was up to 15% higher.
The models can be used in the DEMKit simulation which currently assumes a fixed COP for a
heat pump. With this model the effects of the outdoor conditions can be taken into account.
When using the model in dEF-PI it can be used to describe a device of the adjustable type.
It will then describe how much heat energy will be produced given the input energy. The
description can also use the ramp up time to set certain conditions on use of the heat pump.
An implementation of such a model could for instance lead to more accurate predictions of
the load profile. The generation of the load profile can now take the conditions into account
and adapt the usage of the heat pump accordingly. It is possible to have changing conditions
during the desired run time of the heat pump, making solving for a planning a hard problem. A
possible solution is to simplify the behaviour over a certain window and use changing conditions
to determine the final load profile.
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7 CONCLUSION

This chapter will answer the stated research questions and present identified future work.

7.1 Research questions

In Chapter 1 the main research question is stated as follows:

How can a model of the behaviour of hybrid heating systems in residential building be made more
accurate using machine learning?.

This question will be answered by first answering the sub-questions.

7.1.1 Sub-questions

What models exist for the components of the hybrid heating system?

In Section 2.1 different models for different parts of the hybrid heating system are discussed.
For most parts of the hybrid heating system usable models are already available, except for the
natural gas boiler where no usable model was found. Most models found are grey box models,
these models use simplifications to make modelling simpler and computationally less complex.
For example for the heat pump the design model was mentioned. This model models the com-
plete physical behaviour of the heat pump, making it very complex. A simpler grey box model
was also found which was deemed to be accurate enough.

What machine learning techniques exist to improve the accuracy of the model(s)?

In Section 2.3 different types of machine learning are discussed. Supervised learning is deemed
the best approach for learning the behaviour of parts of the hybrid heating system seems both
the input conditions and the resulting output conditions can be made available. Two machine
learning methods are discussed that can be used in conjunction with existing models. Boot-
strapping, where the problem of getting the required data is solved by training the machine
learning model first on a synthetic dataset and hybrid modelling where machine learning is used
to predict the error of the existing model in order to compensate for the error of the existing
model.

What are the data requirements to sufficiently learn such a model using machine learning tech-
niques?

In Chapter 4 the simulation study is used to determine how much data is needed in ideal condi-
tions. To make a model under ideal conditions 200 samples at 9 different regions of operation of
the heat pump are needed. The experiments from Chapter 5 are used to make an actual model
and test model creation in non-ideal conditions.
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How can such models be used in the planning for or controlling of the hybrid heating system?

In Chapter 4 it is mentioned that the current model for heat pumps in DEMKit assumes a fixed
COP, this can be replaced by models that do take boundary conditions into account. Models
can be used in dEF-PI to expose the possible energy flexibility. An implementation is future
work to verify the effects.

7.1.2 Main question

How can a model of the behaviour of hybrid heating systems in residential building be made more
accurate using machine learning?

Machine learning can be used to more accurately model hybrid heating systems in residential
building by using it to improve existing models. This can be done by using an existing model to
pre train the machine learning model or by using a machine learning model to correct a grey-box
model. Since usable grey box model are needed for these techniques to start, it was opted to
use machine learning techniques such as model fitting to improve an existing model by finding
suitable parameters.

7.2 Future work

The following four points for future work have been identified:

• A method to determine the correct filtering parameters for different heating systems is
needed. The parameters used are known to work in the current test setup, but are probably
not suitable for other test setups or real heating system installations. Therefore a method
is needed, to preferably automatically, determine the correct filtering parameters for a
system.

• Experiments need to be performed with multiple different heat pumps. Experiments and
modelling have been done on one heat pump, more experiments are needed to verify that
learning the models also works on different heat pumps. Another consideration is the fact
that a heat pump made for a ground source is used. The working principle for an air to
water heat pump is the same, but different optimizations done by manufacturers may lead
to different results.

• Collect data from a real hybrid heating system to verify creating models in a real system.
In the current experiments non-ideal situations have been simulated by slowly heating the
return temperature of the heating water. Data from real systems is needed to test learning
model with actual data.

• Implement the machine learning with a control algorithm to study the effect of the learned
models on generated plannings. The model can be used to make better plannings and make
better predictions about the final load profile of the heat pump.

7.3 Discussion

During the experiments the return temperature of the heating water to the heat pump oscillated.
This is caused by the fact that the system during the test is relatively small and the return
temperature is actively controlled. These oscillations due to the control system are not present
in real world heating systems, this might influence the results.
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Exactly repeating experiments with the same brine supply temperature is difficult with the
current experiment setup. The PI-controller used to control the brine temperature has a physical
slider to set the setpoint of the brine temperature that is very sensitive to small adjustments,
making selecting the same temperature multiple very difficult.
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