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Summary

Anterior Cruciate Ligament (ACL) is one of the stabilizing ligaments present in the knee joint.
An ACL rupture is the most common knee injury, dramatically altering the biomechanics of
the knee joint. Most important decreasing the knee stability. Improper treatment has serious
complications, such as osteoarthritis.

This study focuses on designing a control system for a pneumatically actuated robotic knee
brace. The goal is to lift limitations, such as partial motion impairment and passive stiffness, of
a traditional passive brace while returning healthy knee stability tailored to the specific patient.

At first the focus application is human gait (walking). The design is focused on exploiting the it-
erative behaviour of this activity and learning from past iterations to improve the control signal.

Due to the COVID-19 pandemic physical lab access was prohibited, as a consequence a specific
knee model in Simulink is made to allow validation of the control design virtually.

Robotics and Mechatronics Jorn Jansen
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List of Abbreviations

ACL Anterior Cruciate Ligament

ACLD Anterior Cruciate Ligament Deficient
ACLR Anterior Cruciate Ligament Reconstruction
AP Anterior-Posterior (translation)!

IE Internal-External (rotation)!

PAM Pneumatic Artificial Muscle

SI Superior-Inferior (translation)!

AAY Varus-Valgus (rotation)!

ITranslation and rotation of the tibia with respect to the femur
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1 Introduction

1.1 Overview

Anterior cruciate ligament (ACL) is one of the stabilizing ligaments present in the knee joint.
When looking at knee injuries, an ACL lesion is the most common (Majewski et al., 2006).
The effects of an ACL lesion can significantly alter the biomechanics of the knee joint through
decreased stability, lowered proprioception, and increased laxity (looseness) of the joint (Lu
et al., 2006; Mannel et al., 2004; Dhillon et al., 2011). Altered biomechanics of the knee joint
with instability as a result often causes damage to meniscal and surrounding cartilage, which
could later lead to osteoarthritis (OA) (Potter et al., 2011; Neuman et al., 2010; Mayr et al., 2010;
Naghibi Beidokhti et al., 2020).

One of the current treatments for severe ACL lesion is ACL reconstruction, sometimes abbrevi-
ated as ACLR, by means of surgery. This surgery involves removing the torn ACL and replacing
it with either a donor ligament (allograft) or with a tendon graft from another part of the knee
(autograft) (Mannel et al., 2004; Macaulay et al., 2011). A traditional passive brace will aid
in return stability post-surgery. For patients with minor stability loss and/or no to moderate
sports ambitions might opt for a non-surgical approach by means of physiotherapy. This is
referred to as an ACL deficient case, or abbreviated as ACLD.

Both ACL deficient and ACL reconstructed patients are encouraged to use a normal gait pattern
for a faster return to overall leg strength (Lu et al., 2006). While the use of a traditional knee
brace is encouraged, braces that cause limiting motion and hard limits at the extreme angles
can result in non-natural gait pattern and might cause pain for the patient.

A robotic brace should be able to deliver said stability, increased proprioception, and decrease
in laxity while not limiting normal gait and not causing any discomfort or pain to the patient
or user. The approach to achieve these goals is by reducing the laxity caused by an ACL le-
sion in the tibial anterior-posterior (AP) translation and tibial internal-external (IE) rotation
(Naghibi Beidokhti et al., 2020) while not limiting normal gait motion and improving proprio-
ception by using soft robotic actuators embedded onto the brace. The soft robotic brace should
also be able to achieve this, in contrast to a traditional passive brace, in a scenario where there
is a transition from non-weightbearing to weightbearing, such as during heel-strike.

In case of an ACL deficient scenario, the brace will be used to mainly deliver stability to the
patient by reducing the increased laxity while, as mentioned above, not limit the motion of the
knee joint and cause any discomfort. For the ACL reconstructed case, the robotic knee brace
should improve over a traditional knee brace in terms of protection of the graft. This should
result in an increase in healing rate, decrease the chances of re-tearing the reconstructed lig-
ament, and lower the damages to meniscal and surrounding cartilage. Furthermore, in both
cases the soft robotic brace should be adaptable to deliver tailored care specific to that patient.

The motion of the knee is delivered mainly by the patient’s muscles, the proposed research will
be by adding force to the robotic knee brace to reduce the increase in tibial AP translation lax-
ity and tibial IE rotation laxity caused by ACL lesion, thus increasing joint stability, increasing
proprioception, and decreasing knee laxity. These forces will complement the patient’s normal
gait, not limiting the patient’s motion, or causing discomfort or pain.

Robotics and Mechatronics Jorn Jansen



2 Control of Soft Robotic Knee Brace Treating ACL Lesion Using Iterative Learning

This research will be based on previous research performed on this specific soft robotic knee
brace by Khambati (2019) and Ganesh (2020a). They performed research into the phys-
ical brace. The actuators used on the soft robotic brace is further researched by Ganesh
(2020b). Knee laxity data obtained through research by Naghibi Beidokhti et al. (2017a) and
Naghibi Beidokhti et al. (2020) will be used to create models of different cases: ACL intact and
ACL deficient.

No specific control application has yet been developed for controlling the brace of Khambati
(2019) and Ganesh (2020a).

1.2 Objective

The research question, and objective, of this thesis is how to recover healthy knee motion in an
ACL deficient knee during daily activities by controlling pneumatic artificial muscles (PAMs)
on a soft robotic knee brace. The aim of this thesis is to develop the control system that will
control the PAMs which are on the knee brace. This control system must be able to aid the
patient his/her knee during the daily activity of gait (walking). The robotic knee brace will aid
the patient by applying a force in the AP direction, or by applying a moment in the IE direction,
to correct the knee laxity caused by ACL deficiency. The brace could also be used to constrain
the knee motion if necessary.

The healthy motion must be achieved while not obstructing any preserved healthy motion by
the knee itself and only recovering the missing motion from the patient. Next to the main goal
the transition of non-weightbearing to weightbearing can be examined while using the soft
robotic brace, and if so be improved. The latter is considered to be a secondary goal of this
research.

The brace should be worn during gait and return healthy motion during this activity. The
clinician will be able to specify an AP force and IE torque profile. Based on this profile an AP
and IE motion profile is computed and supplied as reference to the control system to serve as
motion control. For now the focus is on gait, in the future other activities can be evaluated.

The way to validate if the goal is achieved is to compare the AP and IE motion of an ACL intact
knee, ACL deficient knee, and ACL deficient knee with the soft robotic brace. All with the exact
same external disturbances (forces as a result of the gait motion). The motion of an ACL defi-
cient knee with soft robotic knee brace should be moved from the ACL deficient knee motion
towards the ACL intact knee motion. This way it can be concluded that the soft robotic knee
brace reduces the additional laxity caused by ACL deficiency.

1.3 Approach

The robotic knee brace used in this research will be actuated using PAMs which is developed by
Khambati (2019); Ganesh (2020a). The focus here will be designing and implementing a control
system to control the PAMs to add forces in the AP direction and moments to the rotation of the
tibia to reduce laxity caused by ACL deficiency. These pneumatic actuators have been chosen
because they are compliant and therefore provide safe actuation around the human body.

Due to the COVID-19 pandemic lab experiments are not possible. Because of this reason first a
model will be made that reflects the knee joint sufficiently on which the control system can be
evaluated. First, the focus will be on rehabilitation support for ACL deficient patients by redu-
cing the increase in laxity, after the brace’s (software) control can be customized and optimized

Jorn Jansen University of Twente



CHAPTER 1. INTRODUCTION 3

for post-surgery usage for ACL reconstructed patients to protect the graft as it heals. Assumed
in this case is that the physical brace is the same, but by adapting the control the brace must
be able to suit to ACL deficient and ACL reconstructed patients.

Figure 1.1 shows a block diagram of the overview of the approach. This includes the knee model
and soft robotic brace controller by the controller.

Input Controller Plant Output
AP Force “le‘_H\
i ’\‘--._ ]
IE Torque — Controller > SthBRDIJDtII‘.: > Knee Model
Profile race o e )
> IE
\“-._ _.-o-"/“l

Figure 1.1: Block diagram of the approach

1.4 Outline

This research report starts with giving background information about the knee joint, the ACL
and ACL lesion in Chapter 2. This chapter also contains an overview of the knee brace hard-
ware. This includes the properties and design of the physical brace prototype together with
the PAMs attached to the brace. Lastly, this chapter includes previous research on which this
research is built upon.

Chapter 3 gives an overview of the simulation environment in which the control system will be
simulated and tested. Due to the COVID-19 pandemic the physical tests were not possible. In
this chapter a knee with attached pneumatic robotic brace has been simulated in a way to later
verify the control. This assembly is further referred to as the plant. Besides a detailed overview
of the plant, this chapter also discusses the plant verification to real-life data, its region of
operation, and future improvements to the model.

Chapter 4 describes the controller in-depth. It highlights which control strategies are con-
sidered. The chapter gives a detailed overview on how the chosen control strategy is imple-
mented and why such implementation is chosen.

In Chapter 5 results of the individual control system components and complete system are
presented and discussed. A conclusion is drawn from these results and the goals from Sec-
tion 1.2 are compared to the results in Chapter 6. Further research and the limitations of this
research are discussed in Chapter 7.

Robotics and Mechatronics Jorn Jansen



4 Control of Soft Robotic Knee Brace Treating ACL Lesion Using Iterative Learning

2 Background

2.1 The Knee Joint

The human knee joint is one of the largest and most complex joint of the human body.! The
knee joint connects the femur (thighbone) to the tibia (shinbone). Together with the patella
(kneecap) and fibula it forms the knee joint.

Besides the bones, the knee joint consists of cartilage, tendons, and ligaments. One type of
cartilage, articular cartilage, serves the purpose of smoothing the bone ends, allowing smooth
motion. Another type of cartilage, the menisci, serves as load distribution and shock absorber
(Fox et al., 2011).

Tendons, which connect bone to muscle, allow muscles to move bones. Ligaments connect
bone to other bone. Ligaments have a restraining function, which helps the knee keep stability.
Figure 2.1 shows an anatomic representation of the knee joint, including the different cartilage,
tendons, and ligaments (Hoffman, 2019; Ortholnfo, 2014).

Quadriceps

Femur

Articular
Articular cartilage
cartilage

Medial collateral

Meniscus ligament

Meniscus
Lateral collateral

ligament

Posterior cruciate

Anterior cruciate ligament

ligament

Figure 2.1: Frontal view of knee anatomy (Wilson, 2018)

2.1.1 Ligaments

As mentioned above, ligaments provide stability to the knee joint. This is called passive stability
as mentioned by Masouros et al. (2010). The ligaments inside the knee joint can be divided
into two groups: Collateral ligaments and Cruciate ligaments.

Collateral ligaments are found on the medial and lateral® sides of the knee joint. These two
ligaments, seen in Figure 2.1, are responsible for the stabilization of side-to-side motion. The

IFor this research the knee joint is described in such way that it is relevant for this specific research. The author
is aware that the knee joint is more complex than described in this chapter.
2Medial meaning towards the middle of the body. Lateral meaning towards the side of the body.

Jorn Jansen University of Twente



CHAPTER 2. BACKGROUND 5

cruciate ligaments are found inside the knee joint, also seen in Figure 2.1, in which they from
a cross shape together. These two ligaments are the primary restraint of tibia translation in the
anterior and posterior direction. In other words they prevent the tibia from sliding forwards
and backwards on the femur, more specifically (Hoffman, 2019; Masouros et al., 2010):

¢ The anterior cruciate ligament, further referred to as ACL, prevents the the tibia from
sliding anterior (forwards) on the femur. It furthermore acts as a restraint to internal
tibial rotations at full extension and controls the tibial rotation during the last part of
extension (screw-home motion).

¢ Respectively, the posterior cruciate ligament (PCL) prevents the tibia from sliding pos-
terior (backwards) on the femur. It also has a restraining function for external tibial rota-
tion.

2.1.2 Muscles

The quadricep (flexor) and hamstring (extensor) are the two major muscles groups involved in
the knee joint. Flexor means that the muscle allows flexion of the joint, extensor on the other
hand allows for extension of the joint. Together they form an agonist-antagonist pair and allow
for flexion and extension of the knee joint.

The quadriceps and hamstrings are both connected to the bone with tendons, together they
serve to move the tibial bone, but also keep the knee stable. The use of muscles to keep the knee
joint stable is called active stability (Masouros et al., 2010). Both muscle groups and tendons
can be seen in Figure 2.2.

Quadriceps Muscle

Femur

Quadriceps
Tendon

Patella

Patellar

Tendon Hamstring

Meniscus Muscle

Calf

Muscle
Tibia

Figure 2.2: [sometric view of knee anatomy (Joint Health Matters, 2017)
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6 Control of Soft Robotic Knee Brace Treating ACL Lesion Using Iterative Learning

2.1.3 Biomechanics

The main biomechanical role of the knee joint is flexion and extension. This property enables
different activities, from gait to ascending and descending stairs to squatting. Seen in Figure
2.3 are the different flexion-extension angles with activity examples. Besides these active activ-
ities, the knee joint also delivers stability.

Full extension 0°

Full flexion 155° \
Ride a bike 115° 4
Get up from a chair 105° A 83° Safely climb stairs
Safely descend stairs 90°

Figure 2.3: Flexion-extension of the knee joint paired with different activities (Ganesh, 2020a)

In addition to flexion and extension, the knee joint also controls other tibiofemoral mo-
tion. This motion is primarily restrained by the ligaments, as described above. The relevant
tibiofemoral motions for this research are:

* AP translation: anterior-posterior translation of the tibia,
¢ IE rotation: internal-external rotation of the tibia,
* VVrotation: varus-valgus rotation of the tibia,

e Sl translation: superior-inferior translation of the tibia.

In this report all motions are on the tibia, e.g. a external rotation is an external rotation of
the tibia with respect to the femur. A visual representation of the above mentioned degrees of
freedom can be found in Figure 2.4. A more in-depth look at what part of the knee joint has
which restraining function can be found in table 1 of the work of Masouros et al. (2010).

2.2 ACL Lesion

This research focuses mainly on ACL lesions, as this is the most common knee injury (Majew-
ski et al., 2006). An ACL lesion could be a stretched ligament, however also a partial or fully
torn ligament. The ACL is responsible for 85% of the restraining force to limit the anterior
translation of the tibia (Butler et al., 1980; Mader et al., 2007). Together with the PCL, the ACL
also restricts internal and external rotation of the tibia (Ganesh, 2020a; Masouros et al., 2010).

Overcoming an ACL lesion can be done by ACL reconstruction (ACLR). This procedure requires
surgery performed by an orthopaedic surgeon. As mentioned in the introduction of this report
it involves removing the torn or partially torn ACL and replacing it with a donor ligament,
known as an allograft, or with a tendon graft from another part of the knee, known as an

Jorn Jansen University of Twente



CHAPTER 2. BACKGROUND 7

Inferior-
superior

Anterior-posterior
translation

Medial-lateral
translation

Flexion-
extension

I
| Internal-external
; rotation

Figure 2.4: Biomechanical degrees of freedom knee joint. Altered by author, from Shenoy et al. (2013)

autograft (Mannel et al., 2004; Macaulay et al., 2011). An ACL reconstruction procedure comes
with the risk of re-tearing the reconstructed ligament. The incident rate of a second ACL lesion
within 24 months after ACL reconstruction with return to sport was nearly 6 times greater than
that in healthy control participants (Paterno et al., 2014).

The use of a knee brace used post-operative has the benefit of significantly returning stability
and symmetry to the knee but introduces limitations to the original motion of the knee joint
(Lu et al., 2006). Mechanically the knee brace will also protect the graft from the forces it is
subject to. The recommended use for a passive brace post-operative is 3 weeks, as longer use
can have negative effects such as a contribution to atrophy (Chachula et al., 2012).

Another option of overcoming an ACL lesion is by means of physiotherapy. During this non-
surgical approach, the patient is guided by an orthopedic specialist and a physiotherapist. The
patient will follow a tailored rehabilitation program which mainly focuses on returning knee
stability by strengthening the thigh muscles. During this rehabilitation, a (traditional) passive
knee brace is worn by the patient to reduce the laxity caused by the ACL lesion. The brace
facilitates reducing AP tibia translation and reducing the IE tibia rotation. Furthermore, the
brace can improve proprioception, improving the sense of stability by the patient (Paterno,
2017).

2.3 ACL Lesion Biomechanics

An ACL lesion will alter the passive stability of the knee by reducing the restraining force caused
by the ACL. The passive stability is affected in the anterior displacement, internal tibial rota-
tion, and valgus rotation (Masouros et al., 2010). Furthermore, with an ACL lesion the active
stability by the muscles is also diminished by the reduced proprioception (Dhillon et al., 2011).

Robotics and Mechatronics Jorn Jansen



8 Control of Soft Robotic Knee Brace Treating ACL Lesion Using Iterative Learning

As mentioned before the ACL plays a major role in the restraining force for anterior tibial
translation. The total restraining force is produced for 85% by the ACL as shown by research by
Butler et al. (1980) and Mader et al. (2007). The restraining force at 30° flexion was approxim-
ately 330N and at 90° flexion approximately 440N (Ganesh, 2020a).

The hamstring muscle plays a significant role in decreasing the increased anterior tibial trans-
lation. This is also the focus when opting for physiotherapy. Studies by Papadonikolakis et al.
(2003) and Shelburne et al. (2005) showed by means of simulations that by increasing the
isometric strength of the hamstring muscle the anterior tibial displacement could be reduced
towards tibial displacement comparable to an intact ACL knee.

Shown by Williams et al. (2004) is that the quadriceps are not idle during flexion, when usually
they are suppose to be. Such a involuntary movement is called dyskinesia. This introduces
additional forces in the anterior direction of the tibia. This could be linked as a direct result of
diminished proprioception. Another research by Williams et al. (2005) shows that in addition
to the atypical muscle activity ACL deficiency causes quadriceps atrophy for most of the ACL
deficient cases, weakening their quadriceps strength.

IE rotation is also affected by ACL deficiency. Research by Vassalou et al. (2016) shows that an
increase in rotational laxity is an indication for ACL deficiency. Thus relating ACL deficiency
to an increase in rotational laxity. This is further confirmed by the research performed by
Naghibi Beidokhti et al. (2017b) in which it is shown there is an increase in rotational laxity
when the ACL is dissected on three cadaveric knees.

2.4 Knee Brace Overview

Mentioned in Chapter 1.1 the use of a knee brace for ACLR and ACLD patients returns stability,
symmetry and proprioception during rehabilitation. In the next two sections the (traditional)
passive knee brace and the proposed robotic knee brace are elaborated.

2.4.1 Passive Knee Brace

A traditional knee brace is designed to stabilize the knee joint. These braces can be off-the-shelf
or custom-fit for the patient and are available with different functions as goal. As described by
Ganesh (2020a) there are four types of functions: prophylactic braces function as a protection
of the knee during sports, functional braces support an already injured knee, rehabilitative
braces function by limiting motion that would be harmful, and last the unloader/off-loader
brace functions by relieving the load of the human body on the knee (in the superior-inferior
(SI) direction). These braces are shown in Figure 2.5.

Beynnon et al. (1992) studied multiple functional braces representative both the typical
custom-fit and off-the-shelf designs. In his work it is concluded that the braces tested (at
30° of knee flexion) were not able to reduce the strain on the ACL at AP loads over 100N. The
traditional braces were able to reduce strain on the ACL at IE torsional loads up to 5Nm. A
higher torsional load was not tested. In daily activities such as gait, the AP loads reached over
400N and IE loads over 13Nm according to analysis of OrthoLoad (2021)3. A similar AP loads
for daily activities is mentioned by Ganesh (2020a).

33pecific analysis of gait at 4 km/h with a basic sport shoe of patient k11. Specific file: k11_180908_1_15p
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CHAPTER 2. BACKGROUND 9

Figure 2.5: a. prophylactic brace (brand: BraceAbility), b. rehabilitative brace (brand: Donjoy Perform-
ance), c. unloader/off-loader brace (brand: Orthomen), and d. functional brace (brand: Carboflex).
Image taken from Khambati (2019).

Another limitation of these passive braces is that they perform sub-optimal in non-
weightbearing-to-weightbearing transition scenarios, mentioned by Beynnon et al. (2003)
and Chachula et al. (2012). This transition happens during heel-strike and influences the
human gait in daily life.

2.4.2 Robotic Knee Brace

This research report focuses on using the soft robotic knee brace depicted in Figure 2.7, actu-
ated with PAMs, to counteract the laxity caused by ACL lesion in the AP and IE direction. These
two directions are chosen as they are affected the most by an ACL lesion. The soft robotic knee
brace can take of muscle activity, especially hamstring activity, to reduce the laxity caused by
ACL deficiency.

The main improvement of the robotic brace over a traditional passive brace is that this re-
search aims to lift certain restrictions and limitations from a traditional passive brace, such
as hard limits in motion and increase support at larger loads. As mentioned in Section 2.4.1 a
traditional passive brace is not able to reduce the strain on ACL in daily activities. It is thus also
not capable of reducing the increased knee laxity caused by ACL deficiency.

Furthermore, the goal is to tailor the soft robotic brace more specifically to the patient. This
can be done by setting custom restrains or state-specific forces that are tailored towards the
rehabilitation program of the patient.

Example: The soft robotic brace can be set to allow a maximum AP displacement of 13mm at
90 degrees of knee flexion. Going over this threshold the brace could be able to, instead of a
hard limit, increase the restraining force exponentially. This will gradually stop the motion and
be more comfortable for the patient.

Robotics and Mechatronics Jorn Jansen
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Another possibility is to upload healthy knee motion to the soft robotic knee brace. This way
the controller of the soft robotic knee brace has a motion reference to track, and will keep the
knee inside the brace within this healthy motion. This method is later described in Chapter 4.
Because of this customization, the brace aims to result in a combination of a functional brace
and rehabilitative brace and to be usable by ACLD and ACLR patients.

2.5 Pneumatic Artificial Muscles

Pneumatic artificial muscles (PAMs) are a type of soft actuators. These actuators work by con-
traction or extension as a result of changing the pressure inside the pneumatic bladder. PAMs
are lightweight, are easily fabricated, not affected by electrical or magnetic interference, have
similar load-length characteristics to biological human muscles, and are very compliant. The
latter two make PAMs a suitable choice to use as an actuator that interacts with the human
body.

braided sleeving
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at rest

pressurized

Figure 2.6: Pneumatic artificial muscles (Daerden and Lefeber, 2002)

The PAMs contract when positive pressure is applied, resulting in a force. PAMs can contract
25% to 40% of their non-pressurized length depending on their material and construction
(Ganesh, 2020a). The contraction ratio € can be derived using the length at rest ¢y (non-
pressurized) and the pressurized length ¢, as shown in equation 2.1. Figure 2.6 shows a visual
of both states.

lo— ¢
N

(2.1)

The force that a PAM is able to generate is based on multiple factors. The length ¢, muscle
diameter D, braid angle (also known as pitch angle or weave angle) 6, and the contraction ratio
€ (Daerden and Lefeber, 2002). The equation for the force F is shown in 2.2.

aD? 3
_ P (1—€)2—

F
4 \tan?0, sin’ 0y

(2.2)

With p the pressure supplied, Dy the muscle diameter at rest, and 6, the braid angle at rest.

The limitations of using PAMs as actuators is that their actuation is slow and inaccurate com-
pared to traditional rigid actuators (Alici, 2018). However, for this research the inaccuracy can
be neglected as the actuator is used hybrid to a human joint and is insignificant with the inac-
curacy induced by the human’s motion.
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2.6 Previous Work
2.6.1 Soft Robotic Knee Brace

This research focuses on implementing control on an already existing and researched robotic
knee brace researched by Ganesh (2020a). Her research focuses on optimizing and improving
the actuation system of the robotic knee brace developed by Khambati (2019), which is shown
in Figure 2.7.

Planetary gear links

Femur Tibia
support Support
plate plate

Figure 2.7: Soft robotic knee brace by Khambati (2019), taken from (Ganesh, 2020a)

The brace works by pressurizing the pneumatic artificial actuators attached to both sides (me-
dial and lateral) of the brace. Pressurizing these applies a force posteriorly and partially relieves
the hamstrings in a ACL deficient knee.

The knee brace by Khambati (2019) consist of a support plate for the tibia and femur, planetary
gear links and the pneumatic actuators described above. These are integrated into a commer-
cially available passive knee brace. The pneumatic actuators are used to connect the femur
support plate and the tibia support plate. The main goal of Khambati (2019) was to reduce
anterior translation of the tibia by assisting the hamstrings in a ACL deficient knee.

In the work of Ganesh (2020a) the limitations of the brace by Khambati (2019) were studied and
improved upon. She mentions limitations such as the limited knee flexion angle, on which she
improved the design from maximum flexion angle of 30° to 90°. In the work of Ganesh (2020b)
the PAMs used in the robotic knee brace are further researched. The maximum actuator force
of 80N has been taken from this research.

Another limitation is that the pneumatic actuators are only usable in a limited range. A single
pneumatic actuator is not able to cover the whole 0° to 90° knee flexion angle range. A solution
for this would be adding more pneumatic actuators, which leads to the issue of limited space
on the knee brace. Currently, the attachment points of the pneumatic actuators are changed
depending on the flexion angle of the knee.

Furthermore, the work of Ganesh (2020a) shows promising of recovering healthy internal and
external rotation laxity of the tibia.

Robotics and Mechatronics Jorn Jansen



12 Control of Soft Robotic Knee Brace Treating ACL Lesion Using Iterative Learning

2.6.2 Knee Laxity for ACL Deficiency

Characterisation of ACL behaviour under different circumstances in this research is based
on studies performed in (Naghibi Beidokhti et al., 2017a). This study is focused on different
modelling strategies to improve finite element (FE) models of the human knee joint. During
experiments laxity tests were performed on three human cadaver knees. The data obtained
during these experiments will be used for characterization of the ACL intact knee behaviour of
the ACL intact knee model in the research of this report.

The apparatus used to obtain the knee laxity is shown in Figure 2.8. The image is taken from
another work of the same author. Here, flexion and extension of the knee is applied to the
femur (marked with f in the figure). All other motion, such as internal-external (IE) rotation,
anterior-posterior (AP) translation, valgus-varus (VV), and medial-lateral translation, are ap-
plied to the tibia (marked with t in the figure).

The data that was made available for this research was patient data C926B_R which is a right
knee of a 63 year old male measuring 191cm tall and weighing 87.5kg.
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Figure 2.8: The six-DOF knee testing apparatus (Naghibi Beidokhti et al., 2017b)

The work of Naghibi Beidokhti et al. (2020) research focuses also on FE models of the human
knee joint. Based on this research simulation results are obtained for ACL deficient laxity used
to characterize the ACL deficient knee model. Due to the COVID-19 pandemic real world laxity
tests were not possible, and the already existing data is used. How this data is exactly used is
further explained in Chapter 3.
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3 Simulation Model Design

3.1 Plant Introduction

For this research the original intention was to perform experiments in the physical lab and on
cadaver knees. However, due to the COVID-19 pandemic and the closure of the most of the
physical labs in the Netherlands the choice has been made to focus on creating a model of the
knee joint on the data available from previous studies and experimenting with the said knee
model. The knee model is specifically made for this research.

A multi-body physical system model of the left knee has been created in Simulink using Sims-
cape, a multidomain physical systems modelling and simulation extension. The model allows
the necessary motions needed for this research: flexion and extension of the knee, AP transla-
tion of the tibia and IE rotation of the tibia. A extension has been made for VV motion, but not
used to reduce complexity.

The requirements for this research is that the model is able to accurately represent AP and IE
laxity at different knee flexion angles corresponding to the experiments in Section 2.6.2. It must
then be possible to exert forces, by the soft robotic brace actuators or by external disturbances,
on the model to which the model must result in motion also according to the experiments in
Section 2.6.2. For this reason the way the model behaves represents the laxity testing apparatus.

The model created in Simulink is dynamic, it includes masses, damping, etc. However because
the laxity data is of static nature the model is considered to be static. The dynamical effects
of the mass of the solids and small damping of the joints is neglected. This is possible as the
motion of considered to be slow. For this reason a static model is sufficient for this research.

3.2 Plant Overview

The model is based on the kinematic sketch in Figure 3.1, which in turn represents the laxity
testing apparatus. This way the data obtained from the real world laxity experiments could be
incorporated into the model in a representative way.

The kinematic sketch can be interpreted as in which the femur is constrained and the tibia is
set in different knee flexion angles. When loads are applied to the tibia will behave as a rigid
beam which rotates around the ankle joint, motion comparable to the laxity testing apparatus.
The tibia is depicted in two configurations: posterior translated (pink) and anterior translated
(orange). The dotted line indicates a zero translation in the AP direction.

The tibia is segmented into two rigidly connected beams with a 1-DoF rotation about the axis
running in the length of both segments. This is done for a more practical simulation of IE
rotation. Further explained in Section 3.3.3. The decrease in rotational inertia as a result of this
segmentation can be neglected for the application of this research due to the slow motion.

In the rigid body model the femur and tibia are modeled as beam elements, solids, with inertial
properties based on its geometry and mass. The density is assumed to be uniform for simpli-
city. Table 3.1 show the dimensions and masses of the elements. These properties are added as
an indication and will not affect simulation results significantly.

Robotics and Mechatronics Jorn Jansen
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Control of Soft Robotic Knee Brace Treating ACL Lesion Using Iterative Learning
Solid %BW | Mass (kg) | Geometry (I x w x h) (cm)
Femur 14.16 12.39 45 x 3 x 3
Tibia Proximal | 3.09 2.57
Tibia Distal 1.24

1.03

25x3x3

10 x3 x 3
Table 3.1: Femur and tibia properties. Percentages from (ExRx.net, 2021). Masses for the segmented

tibia is according to geometry ratio. Bodyweight (BW) from Cardavic knee identifier: C926B_R 87.5 kg
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Figure 3.1: Kinematic sketch of the knee multi-body system with the most important frames attached

Figure 3.2 shows how the kinematic sketch in Figure 3.1 is converted into Simulink multi-body
physical system. The system is divided in three areas: The knee model (blue area) contains the
femur and tibia as three beam element solids and four subsystems that allow motion and add
characteristics. The pneumatic artificial actuators (green area) contain the actuators that rep-
resent the brace. This is explained in Section 3.4. Lastly, the external forces and disturbances
explained in more detail in Section 3.5.

(violet area) contains the system responsible for applying external forces and disturbances

Figure 3.3 visualizes the solids and subsystems of the knee model in the mechanical represent-
ation of the model. It also includes both medial and lateral PAMs.
3.3 Plant Subsystems

The plant contains four subsystems. The subsystem Knee Joint (Section 3.3.1) sets the flexion
and extension of the model, this can be a discrete flexion angle or a continuous flexion angle
profile. The subsystems Ankle AP and Ankle IE (Section 3.3.3) constrain both parts of the tibia
to rotate around the ankle joint in the AP and IE direction only. Last, the subsystem AP & IE

Jorn Jansen
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Figure 3.2: Overview of the components of the plant in Simulink

Characteristics (Section 3.3.4) add laxity characteristics to the model. All subsystem can be
found in the Simulink overview in Figure 3.2.

3.3.1 Knee Joint

The Knee Joint subsystem represents the knee of the human body. It is modelled to allow
flexion and extension in the simulation. The subsystem connects the femur solid with the tibia
solids and allows a 1-DoF rotation between them that represents the flexion angle.

In Figure 3.4 the expanded view of the subsystem can be seen. From left to right, the Femur
to Knee block is a rigid transform block. Here the femur solid centre frame (F1 in Figure 3.1)
is rigidly translated to the position of the knee joint frame (F2), so rotation takes place where
femur and tibia meet.

The Knee Joint block is a revolute joint block and allows a 1-DoF rotation around the z-axis. This
rotation represents the knee flexion and its value is provided by the Knee Angle Setpoint block
in degrees, this can either be a discrete knee flexion angle or a continuous knee flexion angle
profile. The knee flexion is made globally available throughout the system by the kneeAngleTag.
The location of the Knee Joint is approximately indicated in Figure 3.3.
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Figure 3.3: Visual mechanical representation of the Simulink model in a flexion angle of 30 degrees. The
solids and subsystems are indicated.
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Figure 3.4: Knee Joint subsystem

3.3.2 Knee Flexion Angle Profile

As mentioned in the previous section, the setpoint of the knee flexion angle can either be a dis-
crete value of 0°, 30°, 60°, or 90°, or can be a time dependent continuous signal. For simulating
gait a time dependent continuous, changing, knee flexion angle is required, also referred to as
continuous knee flexion angle in this report. The knee flexion angle during gait has been ob-
tained from Bovi et al. (2011). The data is labeled as gait at natural speed of an adult. For the
purpose of this research this is sufficient. Figure 3.5 shows the knee flexion angle (bottom) of a
single cycle of gait with their corresponding gait phases (top).
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Figure 3.5: Knee flexion gait cycle. Top image taken from Dhillon et al. (2011)

3.3.3 Ankle AP & Ankle IE

In the subsystems Ankle AP and Ankle IE some modelling techniques are used to make model-
ing easier and allow for a more constrained motion closer to the laxity experiments in Section
2.6.2. The knee joint frame (F2) is directly connected to the ankle frame (F5), visualized by the
dotted line in Figure 3.1. To this rigid connection no mass (solid) is connected. From the ankle
frame the tibia (distal and proximal) frame(s) are connected, and to those frames their solids.

Figure 3.6 shows expanded view of the Ankle AP subsystem. Knee to Ankle AP is the rigid
translation from the knee frame (F2) to the ankle frame (F5). To this frame a 1-DoF revolute
joint is connected which allows the (pivot) motion of the tibia in the AP direction by rotating
around the ankle joint. This motion represents the dorsiflexion and plantarflexion of the ankle
but the ankle is constraint and the tibia moves. The rotated frame is then transformed, with
the Ankle AP to Tibia Distal block, to the centre frame of the tibia distal which connects to its
corresponding solid.

Moving more proximal the Tibia Distal and Tibia Proximal solid meet at frame F4. At this point
the two solids can rotation relative to each other around the axis in the length of both tibial
solids by means of the Ankle IE subsystem.

Figure 3.7 shows the expanded view of the Ankle IE subsystem. In a similar manner as the Ankle
AP subsystem, first the tibia distal centre frame is transformed to frame F4 by the Tibia Distal
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Ankle AP Port < 1 > B ‘7<F B V F B %Fﬂ Tibia Distal Port

Knee to Ankle AP Ankle AP Ankle AP to Tibia Distal

Figure 3.6: Ankle AP subsystem

to Ankle IE block. Here a 1-DoF revolute joint allows for the IE rotational motion. This joint is
perpendicular to the joint used in the Ankle AP subsystem. Combined they allow for AP and
IE motion. The resulting rotated frame is rigidly transformed to the centre frame of the tibia
proximal solid.

Ankle IE Port < 1 > B ‘7<F B hf F B ‘7<F { 2> Tibia Proximal Port
|

Tibia Distal to Ankle IE Ankle IEAnkle IE to Tibia Proximal

Figure 3.7: Ankle IE subsystem

3.3.4 AP & IE Characteristics

The AP and IE laxity characteristics are introduced in the AP & IE Characteristics subsystem.
This subsystem can be considered a pseudo-joint. The sole purpose of the joint is to add the
laxity characteristics from the laxity data from the studies performed in Section 2.6.2. One
could see this pseudo-joint as a translational and rotational spring between the actual tibia
and the zero-position (zero translation and zero rotation, visualized by the dotted line in Figure
3.1) of the tibia.

Figure 3.8 shows to expanded view of the subsystem. From top-left to top-right: the Knee to
APrigid transform block transforms frame F2, the tibia side of the knee joint, along the dotted
line in Figure 3.1 to frame F3. Here one side of the 6-DoF Bushing Joint block, called AP-IE
Pseudo-Joint, is attached. The other side this bushing joint, frame F6, is connected to the centre
of the Tibia Proximal solid frame with rigid transform block Tibia to AP. The location of frame
F3 corresponds to approximately where the forces are applied in the real world laxity tests.

The AP and IE laxity characteristics is added by supplying the joint block with a displacement
and rotation-depended external force and torque. Both force and torque are spring-like forces
and depend on the state of the joint block, namely the translation along the z-axis for the force
and the rotation about the x-axis for the torque. These external force and torque are explained
in the following sections.
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Figure 3.8: AP & IE Characteristics subsystem

3.3.5 AP Stiffness

The AP stiffness supplied as external force to the input (fz) of the AP-IE Pseudo Joint is com-
puted using a MATLAB Function block, named MATLAB Function variableStiffnessAP in Figure
3.8. This MATLAB function block has two inputs and one output. The block receives the AP
displacement, in mm, from the AP-IE Pseudo Joint block and receives the current flexion angle
of the knee from the globally available kneeAngleTag. The block output of the block is a force
which is applied along the negative z-axis of the base frame of the AP-IE Pseudo-Joint to act as
a spring-like force.

A note here is that because of how the tibia rotates around the ankle joint in this model the
centre of the follower frame of the AP-IE Pseudo-Joint moves with an arc-motion when the
angle of the ankle is changed. The z-axis of the base does not follow this arc-motion, but the
displacement is measured along the z-direction of the base frame. For small arcs this differ-
ence is insignificant and is neglected in this research.

The variableStiffnessAP MATLAB function can be found in appendix H. The function re-
ceives the current knee flexion angle and current displacement. It will then call the function
APForceFunc which returns the correct spring force at those two variables. This function is
based on a curve or surface fit that will be discussed in the next sections. The code for this
function can also be found in appendix H.

3.3.5.1 AP Laxity Data

The characteristics of the AP motion is based on fitted data, which is a 2D curve for discrete
(non-changing) knee flexion angles or a 3D surface fit for continuous (changing) knee flexion
angles. Besides these two types of fits, the data that is used comes from two sources: data from
real world laxity experiments on a cadaver knee and data from finite element simulations, as
mentioned in Section 2.6.2.
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The correlation between AP force and AP motion is estimated to be a monotonic cubic polyno-
mial. This cubic shape is confirmed the works of Beynnon et al. (2003). The ACL deficient data
set only contains the data for the two extreme forces. Due to the limited data, a cubic shape
cannot be observed nor can be fitted. However, a monotonic cubic shape is expected. An in-
crease in laxity caused by ACL deficiency decreases the restraining forces but other restraining
forces from e.g. the tissue surrounding the knee stay unchanged. This way the general shape
of the laxity should remain the same, but the laxity should increase.

A solution to this is based on how an ACL lesion changes the laxity of the knee. According to
Masouros et al. (2010) the ACL is primarily restraining the anterior motion of the tibia. The
posterior motion is not restrained by the ACL. This means that an ACL lesion does not, or
insignificantly, affect posterior laxity. This is further confirmed by comparing the ACL intact
knee laxity data to the ACL deficient knee laxity data. It can be seen that the difference between
ACL intact and ACL deficient posterior extreme is significantly smaller than the difference at
the anterior extreme. This can be seen in appendix B.

Because of this property and the assumption that the displacement crosses the same zero-force
point, the data of the laxity test of a ACL intact knee and the laxity results from finite simulation
of an ACL deficient knee can be augmented. The posterior laxity has been taken from the
ACL intact knee laxity data set, and the anterior laxity has been taken from the ACL deficient
knee simulation data set. This method increases the number of data points and allows a cubic
degree behavior be seen. To this a monotonic cubic function can then be fitted. This result is
further used for fitting ACL deficient knee characteristic curves and surfaces. The ACL intact,
ACL deficient, and augmented laxity data sets are visually depicted in appendix B.

3.3.5.2 AP Discrete Flexion Angle Curve Fit

For discrete knee flexion angles 2D curve fits are used in the APForceFunc described in
Section 3.3.5. This 2D curve fit is based on the augmented ACL deficient knee data described
in Section 3.3.5.1. This is done for the four individual discrete knee flexion angles, resulting in
four AP 2D curve fits. These four fits are later used to create a surface fit.

The augmented data is imported into MATLAB and using the Shape Language Modeling (SLM)
by D’Errico (2017) toolbox a 2D piecewise polynomial fit is obtained. The reason for using the
SLM toolbox as it allows to set additional parameters, in this case it is necessary to create a
monotonic function as output as it reflects real life more accurately.

The resulting 2D curve fits can be seen in Figure 3.9 with their fitting specifications in Table 3.2.
Notice that the fits are extrapolated, this is necessary for the purpose of this research as forces
applied to the knee joint are generally larger than 99.8N.

The 2D curve fits can be used in simulations involving discrete knee flexion angles of 0°, 30°,
60°, and 90°. To simulate gait with a changing continuous knee flexion angle a 3D surface fit,
this is explained in the next Section 3.3.5.3. The MATLAB code for these discrete fits can be
found in appendix G.

Jorn Jansen University of Twente



CHAPTER 3. SIMULATION MODEL DESIGN 21

Flexion Angle | RMSE AP (N) | RMSE IE (Nmm)
0° 0.86 1583
30° 2.31 461
60° 1.88 410
90° 1.31 28

Table 3.2: Root Mean Square Error of all discrete 2D curve fits for the AP and IE augmented data
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Figure 3.9: 2D curve fits for augmented ACL deficient data to be used in discrete knee flexion angle
simulations. AP 2D curve fit and augmented laxity data left, IE 2D curve fit and augmented laxity data

right.

3.3.5.3 AP Continuous Flexion Angle Surface Fit

As mentioned in the previous section, to simulate gait and thus continuous changing knee
flexion angles it is necessary to obtain a smooth surface based on the augmented ACL deficient
laxity data. Unfortunately the SLM toolbox does not allow surface fitting, setting custom para-
meters such as forcing monotonicity is not possible. A workaround is to use the discrete curve
fits, obtained in Section 3.3.5.2, which are monotonic. From these fits a high number of data
points is extracted (approximately 100). This is done to force monotonicity when fitting with

MATLAB’s own cftool.
Importing those extracted data points of all four discrete knee flexion angles into cftool

allows us to fit a surface. To prevent unwanted behaviour it has been decided to use a linear
interpolant between the knee flexion angles. This might not reflect real life to the best extend,
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but is a safer fitting option to prevent over- and under fitting. This also forces the monotonicity
from the discrete curve fits. The resulting fit can be seen in Figure 3.10. This resulting surface
can be used to determine the stiffness of the AP direction at any flexion angle in the range of 0
to 90 degrees. The MATLAB code for the surface plot can be found in appendix G.

AP Surface Fit ACL deficient

10

5

AP Displacement (mm) 10

Knee Flexion Angle (deg)

Figure 3.10: Resulting AP displacement surface plot

3.3.6 IE Stiffness

The IE stiffness is implemented in a similar manner as the AP stiffness. Based on the current
IE rotation and knee flexion angle a torsion spring force is computed based on fitted data by
the MATLAB Function block MATLAB Function variableStiffnessIE. The output is applied as
external torque about the negative x-axis of the 6-DoF bushing joint.The variableStiffnessIE
MATLAB function can be found in appendix I.

3.3.6.1 IE Laxity Data

The IE motion characteristics have been implemented in a similar manner as the AP motion
described in Section 3.3.5.1. The IE motion is based on fitted data in the form of a 2D curve for
discrete knee flexion angles or a 3D surface for continuous knee flexion angles. Similar to the
AP motion, the data used comes from the same two sources: data from real world laxity exper-
iments on a ACL intact cadaver knee and data from ACL deficient finite element simulations.

The correlation between IE torque and IE motion is estimated to be a monotonic cubic polyno-
mial. The graphs can be seen in appendix B. With the IE motion from the ACL deficient finite
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element simulations the same issue is present as with the AP motion, only two data points are
available at both extremes. Here, a monotonic cubic shape is expected for the IE motion like
the ACL intact laxity data.

Using the same methodology as described for the AP displacement ACL deficient curve, it is
possible to combine ACL intact and ACL deficient data to increase the number of data points
on which a curve can be fitted. The research of Masouros et al. (2010) shows that the ACL has a
restraining function in the internal tibial rotation, but not in the external tibial rotation. Using
this information, the external rotational laxity data can be used from the ACL intact data set.
The data point for internal rotation is taken from the ACL deficient data set. This allows for an
augmented data set to which a monotonic cubic function can be fitted, also shown in appendix
B.

3.3.6.2 IE Discrete Flexion Angle Curve Fit

For the discrete, non-changing, knee flexion angle case four 2D curves are fitted to the laxity
data described in Section 3.3.6.1. To each individual knee flexion angle data set a monotonic
(piecewise) polynomial is fitted. The resulting polynomial should be representing the real
world behaviour of the ACL deficient knee, meaning it should be shaped as a cubic monotonic
polynomial.

Similar workflow has been applied as in Section 3.3.5.2. The augmented data is imported into
MATLAB and using the SLM toolbox a monotonic cubic shaped 2D piecewise polynomial fit is
obtained. These fits can be seen in Figure 3.9 and its corresponding goodness of fit can be seen
in Table 3.2.

These 2D curve fits are then used standalone in discrete knee flexion angle simulations, or for
creating the surface plot as explained in the next section. The MATLAB code for this can be
found in appendix G.

3.3.6.3 IE Continuous Flexion Angle Surface Fit

For continuous knee flexion angles the surface fit for IE rotation has used the same methodo-
logy as its AP variant in Section 3.3.5.3. The discrete curves from Section 3.3.6.2 are evaluated
at a high number of points to force the surface fit to follow these curve fits.

After, the evaluated data points are imported in MATLAB’s cftool to which a surface is fitted
using linear interpolation. The resulting fit can be seen in Figure 3.11. This surface can be used
to determine the IE stiffness at any flexion angle in the range of 0 to 90 degrees of knee flexion.
The MATLAB code can be found in appendix G.

3.4 Modelling the Robotic Brace

The soft robotic brace is added onto the knee model. The soft robotic brace is modelled as two
actuators on the medial and lateral side of the knee. Figure 3.2 showed the implementation of
the PAMs in the Simulink model in the green area.
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Figure 3.11: Resulting IE rotation surface plot

3.4.1 Pneumatic Artificial Muscles

The PAMs are modelled as ideal force controlled prismatic joint. The force is provided by the
control signal of the controller in Chapter 4. The prismatic joint will exert this force between
the femur attachment point and tibial attachment point. These points are further described in
the next section.

As the known characteristics of the PAMs used are limited to the maximum actuation force
of 80N the PAMs are modelled as a ideal prismatic joint actuator with force input. To add the
slowness of the PAMs a slew limiter is added which allows setting the maximum rising and
falling skew rate. By setting this rate a PAM can be modelled in a very simplistic manner. The
Simulink implementation of a PAM is shown in Figure 3.12.

Figure 3.3 shows the knee model with both the medial and lateral PAMs in mechanical view.

3.4.2 Connection to the Knee Plant

The PAMs are rigidly connected to the femur and to the tibia. In the real world this would be
the femur support plate and the tibial support place, however in this model it is to be assumed
to be rigidly connected to the bones and not take into account the nonlinear skin interaction.
The modelling decision is made to make the model less complex.
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Figure 3.12: Simulink implementation of a pneumatic artificial muscle. Shown is the medial actuator.
The lateral actuator is identical.

The research by Ganesh (2020a) shows a crossed configuration and a parallel configuration of
the PAMs, shown in Figure 3.13. The research also shows optimal configuration at each flexion
angle by means of a weighting factor. Based on this information it has been decided to use the
following configuration.

Figure 3.13: Pneumatic artificial muscles in parallel (left) and crossed (right) configuration (Ganesh,
2020a)

For discrete knee flexion angles it has been chosen to use a mix of individual configurations, as
only one PAM (per side) is present on the brace at each time this is allowed. From the parallel

and crossed configuration the optimal PAM position has been chosen from both configurations
resulting in the following:

¢ 0 degrees of knee flexion: PAM 4 from the crossed configuration,
¢ 30 degrees of knee flexion: PAM 1 from the crossed configuration,
¢ 60 degrees of knee flexion: PAM 4 from the parallel configuration,

* 90 degrees of knee flexion: PAM 4 from the parallel configuration.

For continuous knee flexion angles a single PAM is chosen, as during gait it is impossible to
switch positions of the PAMs. For this PAM 4 in a parallel configuration is chosen as it was the
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most optimal in the range of 0 to 90 degrees of knee flexion.

For the implementation in the Simulink model it is assumed that the femur and tibia are paral-
lel to the attachment points in the respective support plate and that they are positioned in line
with the middle of the rotational joint of the brace that allows the flexion and extension.

3.5 External Forces (and Disturbances)

External forces (and torques) can be applied to the model as shown in Figure 3.2 in the violet
area. Here the AP force is applied at frame F3, shown in Figure 3.1.This is used to check the
validity of the plant compared to the laxity data. During laxity test the AP forces are applied
approximately at this spot, 10cm below the joint. The same goes for the externally applied
torques.

Using this method the external forces from a gait cycle can be applied to the model as well.
For this the location is modified to represent the location of measurement from (OrthoLoad,
2021). This location is located at the height of the lowest part of the polyethylene insert of the
knee implant, the exact location is not know so in the model is it assumed to be at the most
proximal part of the tibia. For applying IE torques during gait the IE axis is rotated backwards
by about 7 degree relative to the length axis of the tibia bone. This corresponds to the tibial
implant component used in (OrthoLoad, 2021).

The forces from OrthoLoad (2021) are shown in Figure 4.3 and further described in Section 4.3
where they are also used to generate a motion reference signal.

3.6 Model Validation

The Simulink knee model is validated for two cases. The first being the use while in discrete
knee flexion angle. This is done at the knee flexion angles of the laxity experiments in Section
2.6.2 (0°, 30°, 60°, and 90°). Here laxity data from experiments is compared to the output of the
model.

In the second case, the output of the model is also validated at knee flexion angles and forces
and torques not performed during the laxity experiments. In addition to the four knee flexion
angles, the model has also been validated at 15°, 45°, and 75° of knee flexion. These angles
are tested to verify the workings of the surface fit as these three additional knee flexion angles
cannot be compared to real world date. Of which is no laxity data available. The extrapolated
forces and torques are also validated to check on realistic behaviour, however not validated
against real world data as no laxity data available at these loads.

The validation is performed on the model with real world ACL intact laxity fitted data or ACL
deficient laxity fitted data applied to the model characteristics, see Section 3.3.4. The ACL
intact validation is performed to compare the model more closely to the real world, as for ACL
deficient little data is available. The ACL deficient validation is then performed to show the
difference in characteristics and if the laxity is increased as expected.

To obtain the output AP displacement and IE rotation the same forces and torques are applied
to the model which were applied to the real world laxity test. These are applied as external
forces with the subsystem described in Section 3.5.
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3.6.1 Validation with Real World Data

Figure 3.14 shows the AP displacement validation for an ACL intact knee model (left) and ACL
deficient knee model (right). It can be observed that the model follows the real world laxity
data closely. Especially the shape is as expected. When comparing the ACL intact to the ACL
deficient AP displacement it can be seen that in the posterior (negative displacement) not a
lot is changed, as expected as the ACL intact data is used for that part. Looking at the anterior
displacement a significant increase in displacement is observed, which represents an increase
in laxity.

Figure 3.15 shows the IE rotation validation for the same two knee models, ACL intact (left) and
ACL deficient (right). The same can be seen for the IE rotation as for the AP displacement. The
model follows the real world laxity data closely, and again the shape of the model is represent-
ative of the real world. For the comparison between ACL intact and ACL deficient an increase
in laxity can be seen in the internal direction (positive rotation), as expected as the external
direction is based on ACL intact data (see Section 3.3.6.1).

The MATLAB code and data for the AP and IE ACL intact and deficient data fit can be found
in appendix F and G. Table 3.3 shows the error metrics of between the real world laxity and
the model validation output for the ACL intact knee. For the deficient too little real world data
points are available to create sensible error metrics.

Flexion Angle | RMSE AP (mm) | RMSE IE (deg)
0° 0.34 0.06
30° 0.69 1.35
60° 0.64 1.06
90° 0.39 1.16

Table 3.3: Root Mean Square Error of all discrete knee flexion angles for AP and IE validation for ACL
intact.

The root mean square error values indicate a good representation of real world ACL intact knee
behaviour. It indicates that it has a maximum average absolute error of 0.69 mm in the AP
translation and 1.35 degrees in the IE rotation. These numbers are considered to be sufficient
for this research. This also confirms that the model follows the data fit provided.

From this it can be concluded that the model is valid for the application of testing the soft
robotic brace in the AP direction and IE direction, because it follows the shape of the motion
and the error between the model and real world data is significantly low that it does not affect
the essence of the knee behaviour. For this reason, the ACL intact model can also be used to
generate the reference motion based on a force and torque profile, more on this in Section 4.3.

For testing the soft robotic brace ACL deficient knee data is used in the model. A comparison
will be made between ACL intact model output, ACL deficient model output, and ACL deficient
model with soft robotic brace output in Chapter 5 to highlight the performance of the soft ro-
botic brace on recovering healthy motion by reducing laxity.

Robotics and Mechatronics Jorn Jansen



28 Control of Soft Robotic Knee Brace Treating ACL Lesion Using Iterative Learning

3.6.2 Validation Surface Fits

To verify the workings surface fit this validation experiment is focused on the interpolated
knee flexion angles. This validation experiment also incorporates the extrapolated forces and
torques outside the range performed during the real world laxity experiment. Figure 3.16 and
3.17 show AP displacement and IE rotation of the model. These motions have been tested on
a larger range of forces and torques to validate the behaviour. This validation is necessary be-
cause during gait the forces and torques exceed the values tested in Section 2.6.2. Furthermore,
the model has been tested on three additional, interpolated, knee flexion angles.

When looking at all four graphs we can observed the same. The shape of the motion represents
realistic behaviour, also at the extrapolated forces and torques. However, the interpolated knee
flexion angles result in an unexpected motion. The interpolated results fall between the adja-
cent knee flexion angles’ motion, but not exactly in the middle. E.g. the motion of 45 degrees
of knee flexion falls between the motion of 30 and 60 degrees of knee flexion, but not linearly in
the middle as expected. This can be derived from the interpolation method used in the surface
plot. A linear interpolation is applied on the x-axis, however, to get the motion in the middle
this linear interpolation should be applied to the z-axis of the surface plot in Figure 3.10 and
3.11. This is a limitation of MATLAB’s cftoo1l, and for this research this is accepted.

It can be concluded from that the extrapolated forces and torques are valid up to -400N/400N
and -12500Nmm/12500Nmm respectively. The interpolated knee flexion angles are also con-
sidered to be valid for the purpose of this research. For this reason the model can be used
during continuous knee flexion angle simulations, required for simulating gait.

3.7 Region of Operation

The model allows manipulation of the knee flexion angle in the range of 0 to 90°. It further
allows applying forces in the AP direction on the tibia and applying a torque to the tibia in the
IE direction. The laxity data, for both ACL intact as ACL deficient, range in knee flexion angle
for 0 to 90°, in AP load force from -99.8 N to 99.8 N, and in IE load torque from -5159.7 Nmm to
5159.7 Nmm. In this range the validity of the model can be determined based on goodness of
fit as described in Section 3.6.

However, as forces during gait are higher then the above described extremes (OrthoLoad, 2021)
the fits are extrapolated in the AP force and IE torque range, as described in Section 3.3.5 and
3.3.6. Because of this extrapolation of the AP and IE data the model theoretically allows for
very high forces, practically any force one can imagine. As this model only takes into account
the stiffness of AP and IE, with extremely large forces the non-linear behaviour of the tissue
surrounding the knee joint will also affect its behaviour. Imagine such a high AP force that the
tibia will be ripped off. This is not modelled.

For the above reason the choice has been made to set the operation AP forces from -400N to
400N. The allowed operable IE torque is set from -12500 Nmm to 12500 Nmm. These values
have been chosen to allow simulation of gait and are considered result in realistic behaviour in
the model, and have been validated in Section 3.6.2. The AP forces during gait vary between
-400N posterior and 100N anterior. The extreme IE torques during gait are between -4500Nmm
external and 10200Nmm internal (see Section 4.3). These values are within the operable range,
allowing for simulation of gait.
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3.8 Future Improvements and Shortcomings of the Knee Model

The current model only support AP and IE rotation. A more sophisticated model should also
include VV and SI characteristics. Together with dynamic modelling this would result in a
more accurate representation of the real world. For this more data must be available, e.g. larger
force/torque range, dynamic data, more data points. Currently only 2 data points per knee
flexion angle were available for the ACL deficient data set. The maximum force and torque in
the available data are 99.8N and 5159.7Nmm, forces during gait are larger. The author is aware
that larger forces applied to the knee can be harmful.

Furthermore, the current range of knee flexion angles allow for gait and climbing and des-
cending stairs. However, activities such as getting up out of a chair, riding a bike and squatting
require a larger knee flexion angle then 90°. Larger knee flexion angles are not modelled nor
can be extrapolated out of the current laxity data.

The ideal force controlled prismatic joint does not represent a soft actuator accurate. To cre-
ate a more realistic PAM model real world experimental data must be obtained. At the time
of writing this experimental data was not available nor were experiments possible due to the
COVID-19 pandemic. Interaction of the brace with the leg has also not been modelled. The
connection between bones and brace is considered to be rigid in the model.
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Figure 3.14: AP displacement model validation for ACL intact (left) and ACL deficient (right)
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Figure 3.15: IE rotation model validation for ACL intact (left) and ACL deficient (right)
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Figure 3.17: IE rotation model validation for ACL intact (left) and ACL deficient (right)
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4 Control Design

4.1 Control Introduction

This chapter introduces the control design of this research. To be able to control the soft robotic
brace a control system has been specifically build to suit the application of this brace. When
designing the control system the following items are considered using the MoSCoW method:

e (Must have) The system must be able to (partly) reduce the AP and IE increased laxity
caused by ACL lesion,

* (Must have) The system must be able to be used during gait,

(Should have) The system should be adaptable to the specific condition of the patient,

* (Would have) The system could be easily usable by clinicians,

(Will not have) The system will not be able to recover VV laxity caused by ACL lesion.

To elaborate the items named above: the soft robotic brace must be able to reduce the extra
motion in AP and IE direction caused by ACL lesion, or in other words must be able to bring
the motion back closer to healthy motion of an ACL intact knee. At first, the control system
is focused on bringing back this healthy motion during gait. This activity is chosen as it is
consider to be one of the most fundamental during daily life. In future research the control can
be adapted to different activities.

The third point addresses the adaptability of the brace to the specific condition of the patient
is important for optimal recovery and well being of the patient. This would allow faster and
more comfortable recovery, and possibly reduce the chances of having a repeating lesion
(Chachula et al., 2012). This adaptability can be in the sense of prioritizing certain motion, lim-
iting motion by means of hard limits or by creating a custom reference profile that is optimal
for the patient. This can even be a motion profile that incorporates hard limits or gradual stops.

The fourth point mentions the ease-of-use by the clinicians. This is considered to be a non-
priority point and will not have a small to no impact when left out. This point is very broad and
allows for creative solution. For example in case of only a single affected knee and a healthy
knee this could give rise the solution for measuring laxity of both knees. This would then allow
the creating of two data sets: a healthy ACL laxity data set and ACL deficient laxity data set. This
data can then be used to configure the soft robotic brace to bring back the laxity of the ACL
deficient knee to the laxity of the ACL intact knee. This is assuming both knees would have the
same healthy laxity before the lesion. For this to be easy for the clinician an easy data capture
and data uploading pipeline can be considered.

The last point is obvious as the plant does not include VV capabilities, the control system
cannot be used to reduce the laxity in this plane. For this reason this point is in the category
will not have. Further research can explore the possibilities of this.

To realise the above, multiple control systems are considered, described in the next section.
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4.2 Control Systems Considered

This section highlights different control strategies to use in combination with the plant of
Chapter 3. The choice of control strategy is based on the nature of the plant, the characteristics
of the actuators used and the nature of the application.

The model has limitations in a way that it does not have real world dynamic data modelled
into it. The model is modelled after static data, and as explained in Chapter 3 the model is con-
sidered to be of static nature and only validated at slow motion. The lack of dynamic behaviour
rules out control strategies such as linear quadratic control (LQR) or other dynamic control
strategy such as pole placement strategies. Creation of a dynamic model could be realized by
using obtaining the dynamics from literature or using the OpenSim, a open source software
system for biomechanical modeling. However, combining the dynamic properties with the
static data from Naghibi Beidokhti et al. (2017a, 2020) would be hard to validate.

As there is a model of the plant available, one could consider using model predictive control
(MPCQC). This method is usually used for very complex dynamical systems, but can be used for
simpler systems as well. MPC uses the current state of the plant, the model of the plant and
the reference signal to calculate future outputs of the plant. This is done for each time-step
and creates a control signal for [¢, ¢ + p]. It will then deploy only the first step of the computed
control signal at time ¢. After, the system repeats the computations based on the new state.
This method is very compute-intensive as it computes the plant outputs multiple time-steps
in advance every time-step of the system.

Another important aspect for choosing a control strategy is the type of actuators. In the soft
robotic knee brace pneumatic artificial actuators are used. These type of actuators are con-
sidered to be slow compared to traditional rigid actuators, as described in Section 2.5. A control
strategy that uses direct feedback methods would result in instability. Together with the lack
of dynamic characterisation of the model control strategies that focus on rapid error conver-
gence can be neglected, as the model lacks dynamic behaviour and the actuators used form a
hardware limitation.

Last, the nature of the application could influence the choice of control strategy. In the case of
the soft robotic knee brace, during gait the motion of the application is very repetitive. For this
case the control method Iterative Learning Controller (ILC) can be considered. By observing
the error of each cycle, the command for the next cycle can be improved. This aims for a error
converging to zero. The work of Obbink (2019) demonstrates the use of ILC in repetitive motion
of a liver phantom using soft actuators. Another option for repetitive applications is the use
of adaptive control, in which instead of changing the control signal as done in ILC control the
parameters of the controller are changed to obtain zero error.

Another control method that has recently been emerging are in the group of the so-called
intelligent control techniques. Artificial neural networks (ANN) is one of those. These type
of controllers all have in common that they require some sort of learning. This must not be
confused with iterative learning controller (ILC), as ILC includes a very specific type of learning
based on the error of the input and output and learns on-the-fly (Moore, 1993).

Table 4.1 gives a summary of the control strategies that are considered specifically for the scen-
ario of the soft robotic knee brace. From the description and table it can be concluded that
there are two candidates for a control law: ILC and adaptive control. As described above, the
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main difference between the two is that ILC changes the control signal while adaptive control
changes the control parameters. While ILC works in cycles, and technically not in real-time it
can be seen as an open-loop control law. Adaptive control composes the control signal by pro-
cessing the error in real-time, thus can be seen as a closed-loop control law and still needing a
proper controller. For this reason ILC is chosen for the reason it is less complex.

DC | MPC | DFB | ILC | AC | IC

Error Convergence ++ |+t + - R
Complexity -1+ - |+ |+ | -
Computational intensive | -/+ -- ++ | I+ | | -
Robustness ++ + - ++ | ++ | -+
Adaptability -- -- -- ++ |+ | -+

Table 4.1: Control strategies considered. '+’ is positive, -’ is negative. DC: Dynamic Control (LQR, pole
placement), MPC: Model Predictive Control, DFB: Direct Feedback (simple PID), ILC: Iterative Learning
Controller, AC: Adaptive Control, IC: Intelligent Control

By choosing ILC as the control law it is allows to operate the control system in a open-loop after
learning. This can be useful in a case where the brace is in learning mode under supervision
of the clinician with inertial sensors attached to the upper- and lower leg. After learning the
sensors can be removed, assumed the motion stays the same. The ILC is further explained in
Section 4.4.2.

As described above an ILC modifies the control signal each iteration. The first iteration there
has not been any error! recorded, for this a inverse plant controller is used that will deliver an
approximate initial control signal to the ILC. This increases the convergence rate by already
giving an approximate control signal. However, the use of the inverse plant controller needs to
measure the state of the plant creating a closed-loop like system. It is not self-correcting like a
proper closed-loop system. More on this in Section 4.4.1.

To combat the non-linear behaviour of the actuators, this referring to the saturation of the out-
put force, a state machine controller has been made that accepts the individual force control
signal components for AP displacement and IE rotation. Using these signals it will compute
the output signal for each individual PAM. The controller can prioritise AP or IE if one, or both,
of the actuators saturate, more on this in Section 4.5.1.

Figure 4.1 shows an overview in which the controller is implemented into the full system in-
cluding the reference signal, plant and output. For the system it is assumed to have inertial
sensors that are able to measure the tibial AP displacement and IE rotation. It is also assumed
that there is a sensor in the brace measuring the flexion and extension of the knee joint.

4.3 Reference Signal

The reference signals provided to the controller, as shown in Figure 4.1 in the green area,
represents ACL intact motion, specifically AP displacement and IE rotation. The goal for the
controller is then to by means of actuating the PAMs to reach this motion, or get to an optimum
that is physically possible. The reference signal for the controller is motion, in millimeters for
AP displacement and degrees for IE rotation. This motion is in-sync with the knee flexion angle

IThe error is expressed in the difference between the motion of the ACL deficient knee with soft robotic knee
brace and the ACL intact knee motion
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Figure 4.1: Total overview of the plant, controller and connections
signal described in Section 3.3.2.

The ACL intact motion is obtained by uploading a force and torque profile, for e.g. gait, to
the knee model described in Section 3.6 with ACL intact characteristics. This force and torque
profile is applied to that model as external force as described in Section 3.5. The ACL intact
knee model will the compute corresponding AP and IE motion. According to the validation
results in Section 3.6 the output motion can be used as reference signal.

This method of generating the reference signal is chosen as it can give a direct comparison
between the models; ACL intact knee, ACL deficient knee, and ACL deficient knee with soft
robotic brace. Creating another fit from force and torque to AP displacement and IE rotation
directly, from the ACL intact data in Section 2.6, will introduce discrepancies in the comparison
between the models. This method will be more computing intensive, but will result is a more
accurate result for this research. A schematic is shown in Figure 4.2.

N
extendedLoadingDataAP L} Force Reference (mm)
AP Motion Reference
' controlSignalAP

Nmm
extendedLoadingDatalE !} Torque Reference

de
(deg) IE Motion Reference (deg)

extendedKneeAngleData i ;
g — Knee Flexion Angle controlSignallE

ACL Intact Reference Plant

Figure 4.2: Gait force and torque to reference motion

The figure shows the reference plant with ACL intact characteristics. The plant is supplied with
gait AP force, in Newtons, and IE torque, in Newton millimeter, and the knee flexion angle,
in degrees. The force and torque data is supplied by OrthoLoad (2021). Specifically, the knee
joint data of patient data K112 walking at 4km/h on a treadmill wearing basic sports shoes. The
data is supplied in percentage of body weight (%BW). This data is then applied on the body
weight of the patient data from which the laxity data is obtained, as of Section 2.6.2.3 Taken

2Database filename: k11_180908_1_15p
3Cardavic knee identifier: C926B_R. BW: 87.5 kg
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into account the data from OrthoLoad (2021) is for a left knee and the data from Section 2.6.2
is for a right knee. The directions are adapted to the left knee modelled in this research.

Figure 4.3 shows to AP force, IE torque and knee flexion angle of the above mentioned gait of
12 seconds corrected for the body weight of patient C926B_R.
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Figure 4.3: Left knee gait AP force, IE torque and knee flexion angle

4.4 Controller Overview

As described in Section 4.2 the control system can be subdivided in three stages: a plant in-
verse controller, an iterative learning controller (ILC), and a state machine actuator saturation
handler. These three stages can be seen in the blue controller area in Figure 4.1. Figure 4.4
shows the Simulink implementation of these three stages.

The workings of the controller as a whole is to compare a reference signal, which is ACL intact
knee motion, to the motion of the knee on which the soft robotic knee brace is deployed, a ACL
deficient knee. This is not a self-correcting direct feedback used in feedback systems, the error
is recorded in iterations by the ILC. The controller will then reduce the motion error signal by
means of actuating the PAMs which are located on both sides of the soft robotic knee brace.
The goal is to converge to zero error which would results in reducing the excess laxity back to
laxity compared to a ACL intact knee.
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Figure 4.4: Overview of the controller in Simulink

4.4.1 Inverse Plant Controller

The first stage of the control system is the inverse plant controller. This controller combines
inverse plant modelling in a feedforward type controller and feedback to determine the cur-
rent state of the plant, with the states being the AP displacement and the IE rotation. The AP
displacement and IE rotation both have their own inverse plant controller as seen in Figure 4.1.

The inverse plant is obtained by supplying the plant with actuator forces and measuring the
output motion. This actuator force is delivered by means of AP and IE actuator force com-
ponents. An AP force component is delivered to both actuators. This is done in the range of
[ON 80N], in other words from no actuation (ON) to maximum actuation (80N). The IE force
component is delivered as a difference between the medial and lateral actuator. This is done
in the range of [-80N 80N]. For clarification, -80N means that the lateral actuator is 80N above
the medial actuator inducing an external torque. For the plant inverse mapping the medial
actuator is set to ON. The same goes for 80N but then the medial actuator is set at 80N, inducing
a internal torque. The input AP and IE force components are then stored together with their
resulting motion. A curve or surface fit has been created and resulting in a static plant inverse
mapping. The MATLAB code for the creation of these fits is shown in appendix J.

The controller receives five inputs: the reference signal for AP displacement and IE rotation, as
described in Section 4.3, the state feedback signal measuring the AP and IE state of the plant,
and the current flexion angle of the knee. The two reference signals both pass through the
inverse of the plant, yielding two actuator forces components. These are the actuator forces
components needed to reach the reference state if there were no external forces acting on the
model. However, during gait there are non-zero external forces acting on the plant. For this
reason the current state of the plant is measured by means of feedback.

The feedback signal is also passed through the same inverse of the plant to obtain which, AP
and IE, force component is already acting on the plant. Comparing both outputs of the inverse
plant of the reference input and of the state feedback input will yield the AP and IE actuator
force components needed to get the output to the reference signal. Equation 4.1 and 4.2 show
a simplified mathematical description of the process for AP and IE respectively.

Fap = f(x;) = f(xap) 4.1)

Robotics and Mechatronics Jorn Jansen



38 Control of Soft Robotic Knee Brace Treating ACL Lesion Using Iterative Learning

With F4p the resulting AP actuator force component (AP Force Output of the Plant Inverse
Controller in Figure 4.4), f(x,) the AP actuator force needed for the reference state x, (AP
Reference Input in Figure 4.4), and f(x4p) the AP actuator force component already present at
the current state x4p (AP Feedback Input in Figure 4.4). Notice that both components use the
same AP inverse plant model function f(x).

Frg=g0,)-g0k) 4.2)

With Fjg the resulting IE actuator force component (IE Force Output of the Plant Inverse
Controller in Figure 4.4), g(0,) and g(0;r) the IE actuator forces of the reference state 8, and
current state 81 (IE reference Input and IE Feedback Input in Figure 4.4). Both use the same IE
inverse plant g(0).

One peculiar aspect that might confuse the attentive reader is that for IE rotation an output
force Fig is computed, instead of a torque as expected with rotation. However, these are
actuator forces components. A difference in medial and lateral actuator forces will induce a
torque, and resulting rotation. This methodology uses actuator forces that are positive to be a
resulting internal rotation and negative to be resulting external rotation. As expected, an Fig
equal to zero will induce no torque. The inverse model is build on model having input actuator
forces, medial and lateral, and output AP displacement and IE rotation. Using this method the
actuator force components for AP and IE motion can easily be added together to obtain the
actual actuator force. This technique is used in the actuator saturation handler in Section 4.5.1.

These two forces, AP and IE actuator force components, are then passed through together with
the AP state error, in mm, and IE state error, in degrees, to the ILC (see Figure 4.4), which is
described next.

4.4.2 Iterative Learning Controller

Because the motion, human gait, is a repetitive motion, an iterative learning controller is able
to learn from each iteration. As each iteration is assumed to be the same, the controller will see
the same behaviour and thus the same error each time. The ILC will take this past error and
adjust the control signal to the plant for future iterations to try to obtain a zero error.

A basic ILC has the form:

U1 (8) = up () + yer(t+1) (4.3)

With 1y () the control signal for the next iteration at time ¢, ui(¢) the current control signal
at time ¢, y the learning gain, and ey (¢ + 1) the past error between the actual output y; and
desired output y;. This is also known as the ’Arimoto’ algorithm. A schematic is shown in
Figure 4.5.

The system has two individual ILC’s, one for AP and one for IE, as depicted in Figure 4.1. They
work on the AP actuator force component and IE actuator force component respectively. The
ILC’s are placed behind the inverse plant controller. This way u; does not start at zero, but
already has some non-zero value. This means that the ILC has to compensate less error, which
results in a quicker error convergence.
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Figure 4.5: ILC schematic (Moore, 1993)

4.5 PAM Control
4.5.1 Actuator Saturation Handler

The AP and IE forces from the ILC are passed through the actuator saturation handler, shown
as ASH in Figure 4.1. This stage consists of two main parts, shown in Figure 4.6. First part
is converting the AP and IE forces to medial and lateral actuator forces, F]T/IP AM and FE‘P AM
respectively. This is done according to Equation 4.4 and 4.5. the * indicates that these are
pre-saturation forces, meaning that they can realise healthy AP and IE motion and do not take
into account the operating range of the PAMs. Most of the time these computed pre-saturation
forces combined give actuator forces outside the operating range of the PAMs. The operating
range, minimum and maximum force, is depended on the hardware of the PAMs.

*

% * IE
Frypay = Fap + - 4.4)
FEPAM = FZP - % (4.5)

MATLAB Function ForceDistributor MATLAB Function State Machine Force Regulator

APforce Mout ———  { Min MoutCorrected —@

AP Force Input M-PAM Output
ForceDistributor StateMachineForceRegulator
IEforce Loutf|——— | Lin LoutCorrected
|IE Force Input L-PAM Output

Figure 4.6: Actuator Saturation Handler in Simulink

This addition is possible because of the method in which the AP and IE forces are used through-
out the controller. This can best be explained as: AP forces are induced by setting the same
actuator force on both actuators (directly linked to the average force), IE torques are induced
by setting a difference between the actuator forces (directly linked to the difference in force).
By adding and subtracting the same amount the AP displacement, average force, stays the
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same. The assumption made here is that the rotational axis of the tibia is in the centre of the
tibial brace support plate. Example: a larger Fy;pap compared to Frpap will introduce an
internal torque, and vice versa will introduce an external torque.

Once the AP and IE force components are converted into medial and lateral actuator forces,
the actuator forces are passed to the seconds part of the actuator saturation handler: a state
machine. The main purpose of this state machine is to adapt the medial and lateral actuator
forces in case if one, or both, saturate.

The state machine can, in case if one actuator saturates, keep the other actuator at a output
force that either the average or the difference between both actuator forces stays the same, or a
weighted combination of the average and difference. Thus prioritizing AP or IE, or a weighted
value between them. This weight is called the AP-IE prioritization weight r. If r = 1 (full AP-
prioritization) the state machine will keep the average of the actuator forces the same as the
average of the optimal actuator forces Fy;,,,, and F/p,,, in Equation 4.4 and 4.5. If it is not
possible to keep this average, e.g. if the average is above or below the saturation limit of the

actuators, the state machine will saturate the output forces to the nearest actuator limits.

If r = 0 (full IE-prioritization) the state machine will keep the difference between the actuator
forces the same as the difference of the optimal actuator forces Fy,,,,, and F/p,,,- Again,
if this is not possible the state machine will saturate the actuator forces to obtain the closest
difference to the optimal difference.

Figure 4.7 shows a example visualisation of both a medial and lateral PAM force signal. It fur-
thermore shows the input and output average and differences of these two PAM forces. Three
time frames (I, I, and III) have been highlighted that show behaviour of the actuator saturation
handler:

* I: Both the input and output average, thus AP, and difference, thus IE, can be preserved
as both PAMs are in their operating range of ON to 80N. This can be seen as the input and
output average and difference are the same.

e II: The average PAM input force is below ON, so both PAMs saturate at ON to get the best
possible AP outcome as the system is in AP-prioritization. This can be seen as the input
and output average (AP) are not equal. The same is the case of the input and output
difference (IE).

e III: The medial PAM saturates. As the control sample is in AP-prioritization, the actuator
saturation handler will prioritize AP, and thus the average input force. This is done by
solely actuating the lateral PAM to keep input and output average force equal. It can be
seen that the input and output average force stay equal, but at a cost of IE torque, as the
input and output difference is not equal.

The AP-IE prioritization weight can be set to any value between 0 and 1 and the state ma-
chine will weight the average optimal actuator force and difference between the optimal ac-
tuator forces linearly. If the actuator forces fall within the saturation limits of the PAM actuat-
ors the state machine will pass these through to the output of the actuator saturation handler
unaltered. All individual states can be found in the MATLAB code in appendix E.
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Figure 4.7: Sample control signal output of the Actuator Saturation Handler in AP-priority mode r = 1.
The individual PAM forces and averages have been separated from the differences to make the graph
more clear.

4.5.2 Force to Pressure

After the medial and lateral PAM actuator forces are computed by the controller, that meaning
all three stages, these actuator forces can be converted to air pressure. This air pressure can
then be applied to the PAMs.

For this research the mapping between PAM output force and PAM pressure is assumed to be
linear and the conversion from input to output to be ideal. It is further be assumed to have
a PID controller in the PAM regulator that will match the output force to the specified input
reference force. The addition of a rate limiter has been added to introduce slowness of the
PAMs. The exact slowness is not known, but will be experimented with.
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5 Results & Discussion

In this chapter the results of this research are presented and discussed. The control system
from Chapter 4 has been placed in an open loop with the plant from Chapter 3 as depicted in
Figure 4.1. The inverse plant controller measures the state of the system depicted by the dotted
connections. This feedback is also used by the ILC. There are used to store the difference’ of
each iteration in memory, thus are not directly in the loop.

First, the individual stages of the controller are evaluated at discrete knee flexion angles. This
is done to omit errors of interpolation between the four discrete knee flexion angles and to
isolate the performance of each individual stage. The goal of these experiments is thus also to
validate their purpose. The ILC is evaluated first in Section 5.2 at 30 degrees of knee flexion in
AP-prioritization. These results give us an impression how the ILC behaves and if it works as
intended.

Once the ILC is evaluated in AP-prioritization, the Actuator Saturation Handler’s performance
is evaluated in Section 5.3. This is done by evaluating the same experiments in IE-prioritization
and weighting between AP and IE and measuring the performance and comparing them with
AP-prioritization. Then in Section 5.4 the effect of the inverse plant controller is measured and
compared to the case without the inverse plant controller.

While the above experiments are performed with ideal actuators, in Section 5.5 the same ex-
periment in discrete knee flexion is done with various actuator speeds of the PAMs to measure
the robustness of the system.

Once the controller stages are evaluated at a discrete knee flexion angle, the concluded con-
troller is testing during gait with a continuous changing knee flexion angle in Section 5.6.

During all experiments the same gait forces and torques are applied to the model and reference
model as described in Section 4.3, disregard if the simulation is on a discrete or continuous
knee flexion angle.

5.1 Motion Recovery

During all experiments the motion recovery of the ACL deficient knee model with soft robotic
knee brace is measured. This recovery is based on the difference in motion between the ACL
deficient knee model with soft robotic knee brace and the ACL intact knee model motion. This
difference is then divided by the difference in motion between the ACL deficient knee model
without soft robotic knee brace and the ACL intact knee model motion. This way a percentage
recovery is obtained.

The recovery and normalized recovery are shown in Equation 5.1

MAE (xbrace(t)» xinmct(t))

Recovery(%) =100% —
MAE (xdeficient(t)r xinmct(t))

-100% (5.1)

IWhen speaking of the difference this indicates the difference between the motion of an ACL deficient knee with
soft robotic brace and an ACL intact knee.
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With M AE the Mean Average Error operation, Xj;4c.(f) the motion of the ACL deficient knee
model with soft robotic knee brace, x4eficien:(f) the motion of the ACL deficient knee model
without soft robotic knee brace, and x;,:4¢:(f) the motion of the ACL intact knee model.

5.2 ILC Performance

To evaluate the ILC performance it is chosen to put the Actuator Saturation Handler in AP-
prioritization. This choice between full AP-prioritization or IE-prioritization is made arbitrary.
Full IE-prioritization is later shown in Section 5.3. To highlight the performance of the ILC only,
the inverse plant controller has been disabled. The inverse plant controller is later shown in
Section 5.4.

The input reference signal is provided according to Section 4.3. For the discrete case this same
reference signal is used but at non-changing knee flexion angles.

Figure 5.1 shows the AP and IE output of the plant at 30 degrees of discrete knee flexion. For
comparison the same AP and IE output have been plotted for an ACL intact knee and an ACL
deficient knee without soft robotic brace. Figure 5.2 shows the actuator force of the same
simulation of the knee in 30 degrees of discrete knee flexion.
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Figure 5.1: ILC results at 30 degrees of discrete knee flexion. y 4p =4.0 and y;g = 1.0
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Figure 5.2: Actuator forces for the motion result in Figure 5.1

It can be seen by visually inspecting both the motion and the actuator forces that the ILC learns
when time progresses. During the first two seconds the motion of the ACL deficient knee with
soft robotic brace has the same exact motion as the ACL deficient knee without the brace. This
can also concluded when looking at the actuator forces during the first two seconds. After
some time it can be seen that the AP motion of the ACL deficient knee with soft robotic brace
converges to the AP motion of the ACL intact knee. Resulting in a recovery of 68.3% in the AP
displacement and 24.6% in the IE rotation during the last two seconds of the simulations.

It can also be observed that the IE rotation converges to the ACL intact reference rotation,
however in a lesser magnitude than the AP displacement. The reasoning for this can be derived
from the actuator forces in Figure 5.2. At the times that the IE rotation is most internal, ap-
proximately between 10° and 17° internal, one of the two actuators are saturated at ON. These
are also the times where the IE difference is the biggest. This saturation leaves the controller
with no headroom to realize both AP and IE fully, thus relying on the prioritization mode set.
In other words: the difference between both actuator forces (linked to IE rotation) cannot
be increased while keeping the average of both actuator forces (linked to AP displacement)
the same, as described in Section 4.5.1. Section 5.3 will show the same experiment, but in
IE-prioritization.

However, there is more headroom left to realize more AP displacement as there is more room
to increase this average force. This can be seen from the actuator force graph. The maximum
force used in 60N, by a single PAM, while the maximum force is 80N.

The same experiment has been repeated for different values of the learning gain y4p and y g,
for the AP ILC module and IE ILC module respectively. Figure 5.3 shows the recovery of AP and
IE motion for different values of y 4p and y;g. For the influence of y 4p on the AP recovery the
system is placed in AP-prioritization (r = 1). Respectively for y; in IE-prioritization (r = 0).

However, just looking at the recovery percentages alone is not sufficient. When looking at
the graphs in appendix C it can be seen that values of y 4p of 1 and 2 the difference does not
converge that well, and for values of 6 and 8 it overshoots and is too aggressive. This can also
been seen in the recovery numbers in Figure 5.3. For values of yg larger then 2 the motion
behaves oscillatory, becoming unstable. Especially seen at values of 6 and 8.

For the above reason the values of Yy p = 4 and y;r = 1. The latter is chosen to prevent any
dangerous while still preserve converging behaviour.
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Figure 5.3: Recovery percentages at 30 degrees of discrete knee flexion for different values of y 4p (left)
and y g (right)

5.3 Actuator Saturation Handler Performance

To evaluate the performance of the actuator saturation handler multiple experiments are con-
ducted. The AP-IE prioritisation weight is varied between 0 and 1. This will show us how the
system will handle different prioritizations between AP and IE motion.

Figure 5.1 and 5.2 already show the actuator saturation handle in full AP-prioritization (r = 1).
Observing the motion together with the actuator forces it can be seen that the AP displacement
is prioritized over the IE rotation. While time progresses the AP difference converges while
the IE difference does not with the same magnitude. Looking at the actuator forces in Figure
5.2 shows us that the system will compute actuator forces that will realize the correct average
force between the two actuators. This results in an effective AP force in the posterior direction.
However, during these periods it can also be seen that one actuator saturates at ON. This way
there is no more headroom to induce a torque by the two actuators. This physical limitation
limits the compensation of IE rotation in AP-prioritization mode.

Figure 5.4 and 5.5 show the exact same experiment (30 degrees of discrete knee flexion with
gait force and torque), but with full IE-prioritization (r = 0).

As seen in the figure the IE motion converges towards the ACL intact motion. At the large peaks
the motion converges slow, this can be traced back to the external torques applied as they are
at their largest during these peaks. However, Figure 5.5 shows that there is space to satisfy a
larger recovery. This can be accelerated by setting a more aggressive IE learning rate in the ILC
as explained in the Section 5.2. In the range of 5° internal to 10° external rotation the most
visible recovery is made. During these times little external torque is applied, so the soft robotic
knee brace can easily recovery the motion. In IE-prioritization an AP displacement recovery of
52.3% and IE rotation recovery of 54.2% is made.
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Figure 5.4: ILC results at 30 degrees of discrete knee flexion in IE-prioritization. y 4p = 4.0 and y;g = 1.0
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Figure 5.5: Actuator forces for the motion result in Figure 5.4

Visually comparing Figure 5.4 and to the AP-prioritization case in Figure 5.1 it can be seen the
IE rotation converges more from the ACL deficient knee towards the ACL intact knee, especially
in the regions of around 0° of rotation. However, it can be seen that at the higher internal rota-
tions, around 10° to 17°, the recovery is minimal although higher then in the AP-prioritization

case. A longer simulation time would visualize the recovery more clearly as the ILC will have
more iterations to converge.
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Looking at the AP displacement during IE-prioritization it can be observed that the motion
of the ACL deficient knee with soft robotic brace converges towards the ACL intact motion.
However, IE rotation has not converged fully towards the ACL intact motion. Meaning the ILC
has needs more iterations to learn, seen by the still increasing actuation forces and leftover
room in the operating range. If that would be the case, AP displacement might suffer during
IE-prioritization. Here, a longer simulation time would visualize this effect. This effect can also
be highlighted if the inverse plant controller gives the ILC an initial control signal, shown in
Section 5.4 for the IE-prioritization case.

The same experiments in discrete knee flexion angle as above have been performed for the
AP-IE prioritization values r in between 1 and 0. Figure 5.6 shows us different values of r with
the resulting recovery in AP and IE of the last 2 seconds of the simulations. For the values of
r =1 and r = 0 the motion can be seen in Figure 5.1 and 5.4 respectively. The results clearly
show what is expected: a bias towards AP prioritization will increase the recovery in the AP
displacement, and vice versa for IE prioritization.

Recovery AP & IE various r-values
100 T T T

80

Recovery (%)

0.50
r-value

Figure 5.6: Recovery percentages for different AP-IE prioritization values r at 30 degrees of discrete knee
flexion. y4p =4.0 and y;5 = 1.0

5.4 Inverse Plant Controller Performance

To evaluate the inverse plant controller the same experiment as in Section 5.2 (30 degrees of
discrete knee flexion with the actuator saturation handler in AP-prioritization) is repeated but
with the addition of the inverse plant controller. This allows for a fair comparison and high-
lights the effect of the inverse plant controller. Figure 5.7 and 5.8 show the result of addition of
the inverse plant controller.

Directly it is visible that the actuators are active from ¢ = 0, as seen in Figure 5.8. This can also
be seen in the motion, as there is already recovery of the ALC deficient knee with soft robotic
brace motion from the ACL deficient knee motion towards the ACL intact knee motion in the
first two seconds. When time progresses, the ILC will learn from the difference which is left
and compensate accordingly. This initial control signal also benefits the recovery at the end of
the simulation. The recovery in the AP displacement is 76.2% and in the IE rotation 37.6%. An
improvement of 7.9% and 13.0% respectively over not using the inverse plant controller. The
inverse plant controller has also bee evaluated in IE-prioritization (depicted in appendix D).
Here a IE recovery of 64.3% was measured at a lower AP recovery of 40.0%. An improvement
of 10.1% in the IE rotation over the experiment performed in Section 5.3, but 12.3% worse
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Figure 5.7: Inverse plant controller addition results at 30 degrees of discrete knee flexion.
prioritization. y4p =4.0 and y;g = 1.0
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Figure 5.8: Actuator forces for the motion result in Figure 5.7

recovery in the AP displacement. The worsened AP recovery in IE-prioritization is expected,
as explained at the end of Section 5.3. While the IE control signal is optimized while in IE-
prioritization mode, AP recovery might suffer to make room for greater IE recovery, and vice
versa.

As the controller is in AP-prioritization it is expected to see the most convergence in the AP
displacement, but looking at the IE rotation it can be seen that around 0° rotation there is
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also convergence towards ACL intact motion of the ACL deficient knee with soft robotic brace.
At the larger internal angles, around 10° to 15°, there is almost no convergence. This can be
related back to hardware limitations of the actuator forces, while in the first case there is room
in increase the difference between the actuator forces while keeping the average the same, this
is not possible at the larger internal angles. At these larger internal angles more external torque
is applied as a result of the gait motion seen in Figure 4.3.

In this case the inverse plant controller shows promising results. However, an error in inverse
mapping might give off a too large of a force. For a robotic solution used in hybrid with a
human joint this can be dangerous. Not using an inverse plant controller means that the ILC
has to learn more, as shown in Figure 5.1 compared to Figure 5.7. It will take the ILC more
iterations to convergence to ACL intact motion, but it will be safer.

Another drawback is that this inverse plant still uses state feedback to determine the current
state of the plant. This might cause instabilities in the real world. A solution to this in the real
world might be determine the state by means of a model. This way the feedback can be omitted
at the cost of computing power.

5.5 PAM Robustness

To evaluate the effect of the slowness of the PAMs the input force to the ideal prismatic actu-
ators in the model has been rate-limited. This introduces a maximum rising and falling slew
rate. As the exact characteristics of the PAMs are not known, different rising and falling slew
rate limits (equal for rising and falling, in maximum actuator force (80N) per seconds Ny 45/ s.
2 Npax/ s means the actuator can deliver its maximum actuator force of 80N and go back to ON
in 1 second) are evaluated and their recovery is measured.

Figure 5.9 shows the recovery for AP and IE motion for the last two seconds of the simulation,
from the 10 seconds mark to the 12 seconds mark, in discrete 30° of knee flexion with the
inverse plant controller active and the actuator saturation handler in AP-prioritization.

It can be seen that with increased maximum actuation speed, slew rate, the AP recovery im-
proves as expected. For IE it can be seen that from a slew rate of 1 to 4 Ny,4x/s the recovery
decreases, however, when increasing to 8 Ny, 4./ s and higher the recovery increases again. This
might indicate that there is are multiple local optimum between PAM damping and the knee
model. To get a clear result of the effect of the rate limit on the PAMs on the IE rotation the
same experiment has to be performed in IE-prioritization as well.

5.6 Controller Performance During Human Gait

After the individual controller stages have been determined, the controller is configured to
be used during gait. This is done by fitting a linear interpolated surface to the four discrete
inverse plant curves, as explained in Section 4.4.1. The ILC is configured with the same learn-
ing gains of y4p = 4.0 and yjg = 1.0. For the actuator saturation handler, it has been set to
AP-prioritization in the first simulation and IE-prioritization in the second simulation.

Figures 5.10 and 5.11 show the experimentation of the above controller, in either prioritiza-
tion mode, in combination with the soft robotic knee brace on an ACL deficient knee model
with continuous knee flexion angle. This experiment gives a good impression how the control
system will actuate the soft robotic knee brace during gait.
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Figure 5.9: Recovery percentages for different actuator slew rates. AP-prioritization. y4p = 4.0 and
YiE=1.0

Timeframe [0 2] seconds [10 12] seconds
AP AP-prioritization 60.5% 75.5%
AP 1Eprioritization | 35.9% 49.5%
IE Ap-prioritization | 16.1% 19.5%
IE IE-prioritization 34.4% 36.8%

Table 5.1: Recovery percentages of AP and IE motion during gait of the ACL deficient knee model with
soft robotic knee brace in AP and IE-prioritization during the first two and last two seconds of the sim-
ulation

The results in Table 5.1 show an already present recovery at the first two seconds of the simula-
tion as a result of the inverse plant controller. In the last two seconds it can be seen that there
is an improvement in recovery over the first two seconds as a result of learning performed by
the AP and IE ILC. It can furthermore be seen that the AP displacement in AP-prioritization
receives a larger recovery compared to the AP displacement in IE-prioritization. The same can
be seen for IE rotation in IE-prioritization and AP-prioritization.

When visually inspecting the recovery in Figure 5.10 in AP-prioritization the recovery numbers
can be visually confirmed. In the AP translation a clear and large recovery is visible. In the
IE rotation only a recovery is seen during the double support at the end of the stance phase
(45% to 60% of the gait cycle), confirming the low overall recovery numbers for IE rotation in
AP-prioritization.

Inspecting the recovery in Figure 5.11 it can be observed that the AP recovery is less compared
to the AP-prioritization. The lower recovery number in the AP displacement is caused by the
lesser recovery when transitioning from the end of the swing phase back to the stance phase
of the gait cycle. Seen, for example, at £ = 10.5s to £ = 11.0s. At ¢ = 11.0s at double support
of the gait cycle (0% to 10%) some over compensation in the AP displacement can be seen,
here the soft robotic brace over compensated the AP motion to result in more recovery in the
IE motion. In the same figure it can also be seen that the IE rotation when the knee flexion
angle is between 10° and 20° the recovery is not optimal and the ACL deficient knee with soft
robotic brace motion still deviates significantly from the ACL intact motion. This is during the
beginning of the stance phase (0% to approximately 30% of the gait cycle, as of Figure 3.5) and
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the end of the swing phase (95% to 100% of the gait cycle).

This significant deviation from ACL intact motion can be caused by a multiple of reasons. The
first reason could be traced back to the ACL deficient knee model in which between 0° to 20° of
knee flexion the IE surface fit behaves linearly, as shown in Figure 3.11. This can be improved
by having introducing laxity data for knee flexion angles between 0° and 30° to validate this
result. The second reason can be derived from the angle at which the PAMs will deliver forces
to the tibial support plate at these knee flexion angles. The PAMs at the tibial support plate are
at an angle at which the majority of the forces are not in the direction of the IE rotation of the
tibia.
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Figure 5.10: Knee motion during gait with the use of the soft robotic knee brace in AP-prioritization. y 4p = 4.0 and y;g = 1.0
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6 Conclusions

The goal of this research is to return healthy motion to an ACL deficient knee tailored to the
patient during gait. This has been realized by developing a control system for the already
existing soft robotic knee brace and validating on a knee model. The results highlight that it is
possible to (partially) bring back ACL intact motion, and therefore reduce the increase in laxity
caused by ACL lesion.

A second goal is to achieve the above while not obstructing any healthy motion in any way.
Depending on the prioritization of the actuator saturation handler the system can prioritize
AP or IE motion, but this can be at the cost of the other. This might obstruct healthy motion,
such as shown in Figure 5.11 where the AP displacement is over compensated to realize the
IE recovery in some small regions. It is expected that in the current state of the control design
the system can obstruct healthy motion in the AP-displacement when in IE-prioritization, and
vice versa. This is however the latter is not validated in simulations.

From the experiments of the individual controller stages it can be concluded that the iterative
learning controller is capable of learning from the difference between healthy, ACL intact,
motion and the ACL deficient knee model motion. Resulting in an AP recovery of 68.3% (and
24.6% IE recovery) in AP-prioritization and an IE recovery of 54.2% (and 52.3% AP recovery) in
IE-prioritization in discrete knee flexion angle experiments.

The addition of the inverse plant controller is able to improve the final recovery by sup-
plying an initial control signal as shown in the discrete knee flexion angle experiments. In
AP-prioritization an improved AP recovery of 76.2% and IE recovery of 37.6% was obtained.
An improvement of 7.9% and 13.0% respectively over constructing the control signal with the
ILC alone. In IE-prioritization an IE recovery of 64.3% is obtained, an improvement of 7.9%.
However, a lower AP recovery of 40.0% was obtained in IE-prioritization. A decrease of 12.3%
in recovery caused by the IE-prioritization mode with a more optimal IE control signal.

The actuator saturation handler is successfully able to prioritize either AP or IE motion, or a
weighted sum between them, in case if one (or two) actuators saturate. The recovery is directly
related to the AP-IE prioritization weight. This allows the clinician to tailor the behaviour of
the soft robotic brace to the patient.

The PAM characteristics were not known during this research, however an indication exper-
iment has been performed to show the robustness of the control system on different PAM
input-output rates, implemented in slew rates. It was shown that the recovery in both AP and
IE motion was negatively affected with lower slew rates.

During gait simulations the control system performed as expected on the soft robotic brace
and was able to return a recovery of 75.5% in the AP displacement and 19.5% in IE rotation in
AP-prioritization. In IE-prioritization a higher recovery in IE rotation was obtained of 36.8% at
a cost of a lower recovery of 49.5% in the AP displacement. The least recovery was found to be
in IE rotation during the end of the swing phase till half way through the stance phase when
the knee flexion angle was between 10° and 20°.
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The transition of non-weightbearing to weightbearing was not and cannot be examined using
the current knee model in this research. The same can be said for the effect on propriocep-
tion. For the latter in vivo experiments are necessary. In the end the research focuses solely on
reducing the laxity caused by ACL lesion.
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7 Shortcomings & Future Research

This study focused on designing and validating a control system for a soft robotic knee brace
with the focus on treating ACL lesion. Future research can be subdivided into three categories:
improving the ACL intact and deficient knee model, validating the control on real world soft
robotic knee brace, improving the control design with a more advanced system.

Due to the COVID-19 pandemic the necessary labs in the Netherlands were closed. As a result
there was no possibility to perform real world laxity experiments to create a more accurate
knee model and validate the knee model. Neither was it possible to validate the workings of the
control system on the real world brace. Performing laxity experiments at more flexion angles
and with more loads would allow the creation of a more accurate knee model. Dynamic system
identification would allow the creation of an accurate dynamical model of the knee. The latter
would also open the possibilities of dynamic control.

To improve the soft robotic brace model two main improvements can be done: the interaction
of brace and skin must be modelled and the (dynamic) characteristics of the PAMs must be
identified. Especially the latter would improve the results of this research.

Besides the above mentioned shortcoming of the model due to limited laxity data, the current
model can be extended with valgus-varus and superior-inferior motion characteristics. The
first would allow the control design to be extended to possible cover the increase in valgus-
varus laxity due to ACL lesion. The latter would allow experimentation with the transition of
non-weightbearing to weightbearing. The coupled behaviour of AP, IE, VV, and SI could also be
added as currently AP and IE are decoupled.

The current controller design also comes with some shortcomings and possible improvements.
Currently the timing of the ILC iteration time is set by hand and is derived from already know-
ing the gait cycle timing. A detection can be implemented that dynamically adjusts this timing.
The ILC furthermore introduces integral behaviour and suffers from windup if the error per-
sists.

As mentioned in the results, the inverse plant is highly dependent on the configuration of the
plant, meaning the soft robotic brace and knee. An error could lead to unforeseen actuation
which could in turn lead to decreased patient well being. The compliant behaviour of the
PAMs must prevent injury in such a case. The inverse plant also is state-dependent, meaning
it requires state-feedback. This could also cause instability.

Lastly, the values of y sp, y 15, and the AP-IE prioritization value r are varied in discrete flexion
angles simulations. For a more real world view these values should also be varied in simulations
with continuous knee flexion angles to get a better understanding how they would influence
the soft robotic knee brace during gait.
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A Appendix: Experimentation Setup

A.1 Introduction

This appendix will explain on how to prepare the experiments in Simulink and how to repeat
the experiments. For each file description please refer to the README.txt included with the
files.

A.2 Requirements
e MATLAB R2020a (or higher)

e Simulink version 10.1 (R2020a) (or higher)

* Simscape version 4.8 (or higher)

* Simscape Driveline version 3.1 (or higher)

» Simscape Electrical version 7.3 (or higher)
 Simscape Fluids version 3.0 (or higher)

» Simscape Multibody version 7.1 (or higher)

* Curve Fitting Toolbox version 3.5.11 (or higher)

* SLM - Shape Language Modeling version 1.14 (or higher) by John D’Errico available at
the MatWorks File Exchange

A.3 File overview

\Data Generators\GaitCycleFlexionExtension.m
\Data Generators\loadingDataGenerator.m
\Data Generators\loadingDataGeneratorC926B_R.m
\Profilers\APForceProfilerACL.m
\Profilers\APForceProfilerACLD.m
\Profilers\FFAPForceProfilerACLD.m
\Profilers\FFidentification.m
\Profilers\FFIETorqueProfilerACLD.m
\Profilers\IEForceProfilerACL.m
\Profilers\IEForceProfilerACLD.m
APForceFitData.mat

APForceFitDataACL.mat

APForceFunc.m

APForceFuncACL.m
APForcelInterpolalatedSurfaceFitACLData.mat
APForcelInterpolalatedSurfaceFitData.mat
APIEModel_Characterized_ILC_Comparison.slx
extendedKneeAngleData.mat
FFAPForceFitData.mat
FFAPForcelInterpolatedSurfaceFitData.mat
FFAPInverseFunc.m

FFIEInverseFunc.m

FFIETorqueFitData.mat
FFIETorquelInterpolatedSurfaceFitData.mat
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IETorqueFitData.mat
IETorqueFitDataACL.mat

IETorqueFunc.m

IETorqueFuncACL.m
IETorquelnterpolalatedSurfaceFitACLData.mat
IETorquelInterpolalatedSurfaceFitData.mat
loadingDataAP.mat
loadingDataAPC926B_L.mat
loadingDataExtender.m

loadingDatalE.mat
loadingDataIEC926B_L.mat
main.APIEModel.m

README . txt

A.4 Installation

The user has to download the APIEModelControl.zip, which can be obtained by contacting the
author, and extract the .zip file.

A.5 Running the simulation

The user must open APIEModel_Characterized_ILC_Comparison.slx and run the main_APIEModel. m
file. In the MATLAB command window the user can specify experimentation with discrete
knee flexion angles or with a continuous knee flexion angle (gait knee flexion angles). For the

first the user is asked to specify the flexion angle with the choice of: 0°, 30°, 60°, or 90°. The
Simulink model can now be run by clicking run in the Simulink window.

A.6 Customization the loads

The user can specify the loads during the simulation by setting the desired AP
and IE loads in the external forces and disturbances area in the Simulink plant
(APIEModel_Characterized_ILC_Comparison/ACL deficient Knee Model with Soft Robotic Brace
subsystem, it will also apply the the ACL intact and ACL deficient model for comparison), as
explained in Section 3.5. By default gait load force profile is applied.
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B Appendix: Laxity Data Graphs
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Figure B.1: ACL intact AP laxity data
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ACL Intact Combined With ACL Deficient AP Laxity
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Figure B.3: ACL intact AP laxity data combined with ACL deficient AP laxity data
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C Appendix: ILC Performance for Different Learning
Gains

Please refer to the next two pages for the graphs
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APPENDIX C. APPENDIX: ILC PERFORMANCE FOR DIFFERENT LEARNING GAINS
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Figure C.2: IE rotation difference between ACL intact motion and ACL deficient with soft robotic brace motion. Data shown in a trailing moving average of 0.25 seconds.
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D Appendix: Inverse Plant Controller Performance in
IE-Prioritization
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Figure D.1: Inverse plant controller addition results at 30 degrees of discrete knee flexion.
prioritization. y4p =4.0 and y;g = 1.0
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Figure D.2: Actuator forces for the motion result in figure D.1
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E Appendix: Actuator Saturation Handler MATLAB code

-
function [r, state, Mout, Lout, avgForceOut, diffForceOut] =

StateMachineForceRegulator (Min, Lin)

%% Inputs
% Min: medial input force control signal
% Lin: laterial input force control signal

%% Outputs

r: prioritization value

state: current state (debugging)

Mout: medial force control signal output

Lout: llateral force control signal output
avgForceOut: average Force Out (debugging)
diffForceOut: difference force out (debugging)

o° o° o o° o° o

%% Initial parameters

r =1; % ratio of AP or IE priorisation. 1.0 = full AP,
0.0 full IE.

maxForcePAM = 80; % maximum force deliverable by the PAM
minForcePAM = 0; % minimum force deliverable by the PAM
maxForceDiff = abs (maxForcePAM)-abs (minForcePAM) ;

%% Clarification

% AP is directly linked to the average of the non-corrected (raw)
signals.

% IE is directly linked to the difference of the non-corrected signals.

%% State machine

avgForce = (Min + Lin)/2; % 1in AP priorisation this average is kept
after compensation
diffForce = abs(Min - Lin); % in IE priorisation this difference is kept

after compensation

5 AP 1is recoverable 1f avgForce is minForcePAM <= avgForce <=

maxForcePAM
% IE is recoverable if diffForce is minForcePAM <= diffForce <=
maxForcePAM

o\

state 0: all forces are in operating range
if Min >= minForcePAM && Min <= maxForcePAM && Lin >= minForcePAM && Lin
<= maxForcePAM
Mout = Min;
Lout = Lin;
state = int8(0);
% state 1: Medial force saturates (max), lateral force does not
elseif Min > maxForcePAM && Lin <= maxForcePAM && Lin >= minForcePAM
Mout = maxForcePAM;
Lout = (1.0-r)+ (Mout - diffForce) + rx(avgForce - abs (Mout-avgForce)
)
Lout = min (maxForcePAM, max (minForcePAM, Lout)); % Saturate if Lout
becomes too large/small
state = int8(1);

% state 2: Medial force saturates (min), lateral force does not
elseif Min < minForcePAM && Lin >= minForcePAM && Lin <= maxForcePAM
Mout = minForcePAM;
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Lout = (1.0-r)*(Mout + diffForce) + r+(avgForce + abs (Mout—-avgForce)
)7
Lout = min (maxForcePAM, max (minForcePAM, Lout)); % Saturate if Lout
becomes too large/small
state = int8(2);
% state 3/4: Both medial and lateral forces saturate (min and max)
elseif Min > maxForcePAM && Lin < minForcePAM
1f abs (Min - maxForcePAM) >= abs(Lin - minForcePAM)
Mout = maxForcePAM;

Lout = (1.0-r)x (Mout - diffForce) + rx(avgForce - abs (Mout-
avgForce));
Lout = min (maxForcePAM, max (minForcePAM, Lout)); % Saturate if

Lout becomes too large/small
state = int8(3);

else
Lout = minForcePAM;
Mout = (1.0-r)=*(Lout + diffForce) + r*(avgForce + abs(Lout-
avgForce));
Mout = min (maxForcePAM, max (minForcePAM, Mout)); % Saturate if

Lout becomes too large/small
state = int8(4);

end
% state 5: Lateral force saturates (max), medial force does not
elseif Lin > maxForcePAM && Min <= maxForcePAM && Min >= minForcePAM
Lout = maxForcePAM;
Mout = (1.0-r)x(Lout - diffForce) + r*(avgForce - abs(Lout-avgForce)
)i
Mout = min (maxForcePAM, max (minForcePAM, Mout)); % Saturate if Mout

becomes too large/small
state = int8(5);
% state 6: Lateral force saturates (min), medial force does not
elseif Lin < minForcePAM && Min >= minForcePAM && Min <= maxForcePAM

Lout = minForcePAM;

Mout = (1.0-r)~*(Lout + diffForce) + r#*(avgForce + abs (Lout-avgForce)
)7

Mout = min (maxForcePAM, max (minForcePAM, Mout)); % Saturate if Lout

becomes too large/small
state = int8(6);
% state 7/8: both medial and lateral forces saturate (min and max)
elseif Lin > maxForcePAM && Min < minForcePAM

1f abs(Lin - maxForcePAM) >= abs (Min - minForcePAM)
Lout = maxForcePAM;
Mout = (1.0-r)*(Lout - diffForce) + r=*(avgForce - abs(Lout-

avgForce));

Mout = min (maxForcePAM, max (minForcePAM, Mout)); % Saturate if
Mout becomes too large/small

state = int8(7);

else
Mout = minForcePAM;
Lout = (1.0-r)* (Mout + diffForce) + rx(avgForce + abs (Mout-
avgForce));
Lout = min (maxForcePAM, max (minForcePAM, Lout)); % Saturate if

Lout becomes too large/small
state = int8(8);

end
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% state 9/10/11: both medial and lateral forces saturate (both max)
elseif Min > maxForcePAM && Lin > maxForcePAM
if Min > Lin
Mout = maxForcePAM;

Lout = (1.0-r)«* (Mout - diffForce) + rx(avgForce - abs (Mout-—
avgForce)) ;
Lout = min (maxForcePAM, max (minForcePAM, Lout)); % Saturate if

Lout becomes too large/small
state = int8(9);

elseif Lin > Min
Lout = maxForcePAM;

Mout = (1.0-r)«* (Lout - diffForce) + r«*(avgForce - abs (Lout-
avgForce));
Mout = min (maxForcePAM, max (minForcePAM, Mout)); % Saturate if

Mout becomes too large/small
state = int8(10);

else
Mout maxForcePAM;
Lout = maxForcePAM;
state = int8(11);

end
% state 12/13/14: both medial and lateral forces saturate (both min)
elseif Min < minForcePAM && Lin < minForcePAM
if Min < Lin
Mout = minForcePAM;
Lout = (1.0-r)*(Mout + diffForce) + r+(avgForce + abs (Mout-—
avgForce));
Lout = min (maxForcePAM, max (minForcePAM, Lout)); % Saturate if
Lout becomes too large/small
state = int8(12);

elseif Lin < Min
Lout = minForcePAM;
Mout = (1.0-r)#*(Lout + diffForce) + r#*(avgForce + abs (Lout-
avgForce));
Mout = min (maxForcePAM, max (minForcePAM, Mout)); % Saturate if
Mout becomes too large/small
state = int8(13);

else
Mout = minForcePAM;
Lout = minForcePAM;
state = int8(14);

end
% error state
else
Mout = 0;
Lout 0;
state = int8(-1);

end

% measuring variables

avgForceOut = (Mout + Lout)/2; % 1in AP priorisation this average 1is
kept after compensation
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diffForceOut = Mout - Lout; % in IE priorisation this difference
is kept after compensation
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F Appendix: MATLAB Code ACL Intact Data Fit

E1 AP Force

% Data & Fitting

oe

% 0 deg

% [N] [mm] [deg]

APdatalO = [72.716 2.534110668 0
61.936 1.953006261 0
51.597 1.543661857 0
30.723 1.204733603 0
9.31 0.333201039 0
0 0 0
0 -0.528748403 0
-20.041 -2.179811623 0
-51.597 -3.41966231 0
-99.764 -4.504701854 0];

xAPO = APdatal(:,2);

yAPO = APdataOl(:,3);
zAPO = APdatal(:,1);

result', 'pp');

% 30 deg

APdata30 = [99.764 6.70494176 30
72.716 6.187120207 30
51.597 5.638011076 30
0 2.194401286 30
0 1.580729592 30
-20.041 -1.48079202 30
-51.597 -2.973666327 30
-99.764 -4.219763874 30];

xAP30 = APdata30(:,2);
yAP30 APdata30(:,3);
zAP30 = APdata30(:,1);

'result', 'pp');

% 60 deg

APdata60 = [99.764 10.76376669 60
51.597 9.585668796 60
9.31 5.893966425 60
0 5.471167156 60
0 5.257743444 60
-20.041 4.310045159 60
-51.597 3.421742761 60
-99.764 2.389301091 60];

xAP60 = APdata60(:,2);
yAP60 = APdata60(:,3);
zAP60 APdata60(:,1);

'result', 'pp');

% 90 deg

APdata%0 = [99.764 17.21149118 90

APForceFit0 = slmengine (xAPO, zAPO, "knots', [-20 20], 'increasing', 'on','

APForceFit30 = slmengine (xAP30,zAP30, 'knots', [-25 30], 'increasing', 'on',

APForceFit60 = slmengine (xAP60,zAP60, "knots', [-25 30], 'increasing', 'on',

Jorn Jansen
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51.597 15.72735776 90
0 13.00863747 90

0 12.54095969 90

-20.041 12.05655533 90
-51.597 11.37207831 90
-99.764 10.53985749 90];

xAP90 APdata90(:,2);
yAP90 = APdata90(:,3);
zAP90 APdata90(:,1);

'result', 'pp');

%% Interpolate points from curve fits to be used in surface fit
APForceFitInterpolated0 ppval (APForceFit0, -40:1:50);
APForceFitInterpolated30 = ppval (APForceFit30, -40:1:50);
APForceFitInterpolated60 = ppval (APForceFit60, -40:1:50);
APForceFitInterpolated90 ppval (APForceFit90, -40:1:50)

’

xData = cat(1,-40:1:50,-40:1:50,-40:1:50,-40:1:50); % displacement [mm]

yData = cat (l,0*ones(length(-40:1:50),1)"',30+xones (length(-40:1:50),1)
',60%ones (length(-40:1:50),1) "', 90*ones (length(-40:1:50),1)"); %
flexion angle [deqg]

zData = cat (l,APForceFitInterpolated0,APForceFitInterpolated30,
APForceFitInterpolated60,APForceFitInterpolated90); % force [N]

cftool

APForceFit90 = slmengine (xAP90, zAP90, 'knots', [-10 40], 'increasing', 'on',

E2 IE Torque

%% Data & Fitting
% 0 deg

[Nmm] [deqg] [deg]
IEdata0 = [5159.7 -2.742195372 0
4096.4 -2.826603224 0
3072.3 -2.855645804 0
2004.1 -2.87022171 0
931 -2.864703166 0
0 -2.864243274 0
0 -2.84173971 0
-931 -2.836573846 0
-2004.1 -2.868639073 0
-3072.3 -2.871433831 0
-5159.7 -2.872383463 0];
xIEO = IEdatalO(:,2);
yIEO = IEdataOlO(:,3);

zIEO = IEdataO(:,1);

IETorqueFit0 = fit (xIEQ,zIEO, 'polyl');

% 30 deg

IEdata30 = [5159.7 9.354652922 30
3072.3 8.248959791 30
2004.1 7.394564835 30
931 5.952171651 30
0 0.832702691 30
0 1.568302011 30
-931 -6.516215436 30
-2004.1 -8.873982103 30
-3072.3 -9.877288234 30
-5159.7 -11.09003142 30];
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xIE30 IEdata30(:,2);
yIE30 IEdata30(:,3);
zIE30 = IEdata30(:,1);

IETorqueFit30 = slmengine (xIE30,zIE30, 'knots', [-40 40], 'increasing', 'on'
,'result', 'pp');

% 60 deg

IEdata60 = [5159.7 20.83360963 60
4096.4 19.77855825 60
3072.3 18.51098364 60
2004.1 16.76882527 60
931 13.01570543 60
0 2.512236383 60
0 4.219844471 60
-931 -7.86969913 60
-2004.1 -12.75853055 60
-3072.3 -14.60148851 60
-5159.7 -16.45457736 60];

xIE60 = IEdata60(:,2);
yIE60 = IEdata60(:,3);
zIE60 IEdata60(:,1);

IETorqueFit60 = slmengine (xIE60,zIE60, 'knots', [-40 40], 'increasing', 'on'
,'result', 'pp');

% 90 deg

IEdata%90 = [5159.7 24.50676559 90
3072.3 21.66272683 90
2004.1 19.51213937 90
931 14.69069611 90
0 3.062522188 90
0 4.779739416 90
-931 -3.685113407 90
-2004.1 -8.703705547 90
-3072.3 -11.88023026 90
-5159.7 -16.14999389 90];

xIE90 = IEdata90(:,2);
yIE90 = IEdata90(:,3);
zIE90 IEdata90(:,1);

v

IETorqueFit90 = slmengine (xIE90,zIE90, "knots', [-40 40], 'increasing', 'on
,'result', 'pp');

%% Interpolate points from curve fits to be used in surface fit
span = -60:1:60;

IETorqueFitInterpolated0 = feval (IETorqueFit0, span)';
IETorqueFitInterpolated30 ppval (IETorqueFit30, span);
IETorqueFitInterpolated60 ppval (IETorqueFit60, span);
IETorqueFitInterpolated90 = ppval (IETorqueFit90, span);

xData = cat (1, span, span, span,span); % rotation [deg]

yData = cat(l,0xones (length(span),1l)',30%xones (length(span),1)"',60xones (
length(span),1l)',90xones (length(span),1l)"'); % flexion angle [deg]

zData = cat (1,IETorqueFitInterpolated0, IETorqueFitInterpolated3O,
IETorqueFitInterpolated60, IETorqueFitInterpolated90); % torque [Nm]

cftool
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G Appendix: MATLAB Code ACL Deficient Data Fit

G.1 AP Force

%% Data & Fitting

% 0 deg

APdatal0 = [72.716 6.6 0
0 -0.3 0
-20.041 -2.2 0
-51.597 -3.4 0
-99.764 -4.5 0];

xAPO = APdatal(:,2);

yAPO = APdatal(:,3);

zAPO = APdatalO(:,1);

APForceFit0 = slmengine (xAPO, zAPO, "knots', [min (APdatal(:,2)) max (APdatal

(:,2))], "increasing', 'on', 'result"', 'pp"');

% 30 deg

APdata30 = [99.764 10.1 30
0 1.9 30
-20.041 -1.5 30
-51.597 -3.0 30
-99.764 -4.2 30];

xAP30 = APdata30(:,2);

yAP30 = APdata30(:,3);
zAP30 = APdata30(:,1);
APForceFit30 = slmengine (xAP30,zAP30, 'knots', [min (APdata30(:,2)) max/(

APdata30(:,2))], 'increasing', 'on', 'result', 'pp'");

% 60 deg
APdata60 = [99.764 15.2 60
0 5.4 60
-20.041 4.3 60
-51.597 3.4 60
-99.764 2.4 60];
xAP60 = APdata60(:,2);
yAP60 = APdata60(:,3);
zAP60 = APdata60(:,1);
APForceFit60 = slmengine (xAP60,zAP60, "knots', [min (APdataé60(:,2)) max(

APdataé60(:,2))], 'increasing', 'on', 'result', 'pp'");

% 90 deg
APdata90 = [99.764 23.5 90
0 12.8 90
-20.041 12.1 90
-51.597 11.4 90
-99.764 10.5 90];
xAP90 = APdata90(:,2);
yAP90 = APdata90(:,3);
zAP90 = APdata90(:,1);
APForceFit90 = slmengine (xAP90, zAP90, 'knots', [min (APdata90(:,2)) max/(

APdata90(:,2)) ], 'increasing', 'on', 'result', 'pp'");

Robotics and

Mechatronics
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%% Interpolate points from curve fits to be used in surface fit

APForceFitInterpolatedO = ppval (APForceFit0, -40:1:50);
APForceFitInterpolated30 = ppval (APForceFit30, -40:1:50);
APForceFitInterpolated60 = ppval (APForceFit60, -40:1:50);
APForceFitInterpolated90 = ppval (APForceFit90, -40:1:50);

xData = cat(1,-40:1:50,-40:1:50,-40:1:50,-40:1:50); % displacement [mm]
yData = cat(l,0xones (length(-40:1:50),1)"',30%ones (length(-40:1:50),1)

', 60%ones (length(-40:1:50),1)"',90%ones (length(-40:1:50),1)"'); %
flexion angle [deqg]

zData = cat (1,APForceFitInterpolated0,APForceFitInterpolated30,
APForceFitInterpolated60,APForceFitInterpolated90); %

force [N]

cftool

G.2 IETorque

-
%% Data & Fitting

% IETorqueFit0 =
', 'result', 'pp');

,'result', 'pp');

% 0 deg

IEdata0 = [5159.7 -1.6 0
0 -2.864243274 0
0 -2.84173971 0
-931 -2.836573846 0
-2004.1 -2.868639073 0
-3072.3 -2.871433831 0
-5159.7 -2.872383463 0];

xIEQO = IEdataO(:,2);

yIEO = IEdataO(:,3);

zIEQO = IEdataO(:,1);

slmengine (xIEO, zIEOQO, 'knots', [-40 40], "increasing', 'on

IETorqueFit0 = fit (xIEQ,zIEO, 'polyl');

% 30 deg

IEdata30 = [5159.7 14.1 30
0 0.832702691 30
0 1.568302011 30
-931 -6.516215436 30
-2004.1 -8.873982103 30
-3072.3 -9.877288234 30
-5159.7 -11.09003142 30];

xIE30 = IEdata30(:,2);

yIE30 = IEdata30(:,3);

zIE30 = IEdata30(:,1);

IETorqueFit30 = slmengine (xIE30,zIE30, "knots', [-40 40], 'increasing', 'on'

% 60 deg
IEdata60 = [5159.7 23.9 60
0 2.512236383 60
0 4.219844471 60
-931 ~-7.86969913 60
-2004.1 -12.75853055 60
-3072.3 -14.60148851 60
-5159.7 -16.45457736 60];
xIE60 = IEdata60(:,2);
Jorn Jansen University of Twente



APPENDIX G. APPENDIX: MATLAB CODE ACL DEFICIENT DATA FIT

75

yIE60 = IEdata60(:,3);
zIE60 IEdata60(:,1);

,'result', 'pp');

% 90 deg
IEdata%0 = [5159.7 28.5 90
0 3.062522188 90
0 4.779739416 90
-931 -3.685113407 90
-2004.1 -8.703705547 90
-3072.3 -11.88023026 90
-5159.7 -16.14999389 90];
xIE90 = IEdata90(:,2);

yIE90 IEdata%0(:, 3);
zIE90 = IEdata90(:,1);

,'result', 'pp');

%% Interpolate points from curve fits to be used in surface fit

span = -60:1:60;
IETorqueFitInterpolated0 = feval (IETorqueFit0, span)';
IETorqueFitInterpolated30 = ppval (IETorqueFit30, span);

IETorqueFitInterpolated60
IETorqueFitInterpolated90

ppval (IETorqueFit60, span);
ppval (IETorqueFit90, span);

xData = cat (1, span, span, span, span); % rotation [deg]
yData = cat (l,0xones (length(span),1l)"’

length(span),1)',90%x0ones (length(span),1)"'); % flexion angle [deqg]
zData = cat (1, IETorqueFitInterpolated0, IETorqueFitInterpolated30,

cftool

IETorqueFit60 = slmengine (xIE60,zIE60, "knots', [-40 40], 'increasing', 'on'

IETorqueFit90 = slmengine (xIE90,zIE90, "knots', [-40 40], 'increasing', 'on'

,30%xones (length (span),1l) ', 60%ones (

IETorqueFitInterpolated60, IETorqueFitInterpolated90); % torque [Nm]
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H Appendix: MATLAB Code variableStiffnessAP

r

function F = variableStiffnessAP (kneeAngle, u)
% Function receives current knee angle (kneeAngle) in deg and
current
AP displacement (u) in mm and returns stifness force (F) in N

o

Variable is initiated
= zeros(1l);

oe

g

o

$ Excludes the function APForceFunc from code generation to allow
Simulink simulation
coder.extrinsic ('APForceFunc');

% Calls force function. -1 is added so it acts as a spring force
F = -1« (APForceFunc (kneeAngle, u));
end

function F = APForceFunc (kneeAngle, u)
% Load laxity fitted data
S = load('APForcelnterpolatedSurfaceFitData');

% Cast variables to double
kneeAngle = double (kneeAngle);
u = double (u);

% Evaluate the fit
F = S.APForcelnterpolatedSurfaceFit (u, kneeAngle);
end
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| Appendix: MATLAB Code variableStiffnesslE

-
function T = variableStiffnessIE (kneeAngle, q)

% Function receives current knee angle (kneeAngle) in deg and
current
IE rotation (g) in rad and returns stifness torque (T) in Nm

o

Variable is initiated
= zeros(1l);
Excludes the function APForceFunc from code generation to allow

oe

=)

o\

Simulink simulation
coder.extrinsic('IETorqueFunc');

% Calls force function. -1 is added so it acts as a spring force
T = —-1x (IETorqueFunc (kneeAngle, q));
end

function T = IETorqueFunc (kneeAngle, q)

% Conversion from radians to degrees
w = 180/pixqg;

% Load laxity fitted data

S = load('IETorquelnterpolatedSurfaceFitData');
% Cast variables to double
kneeAngle = double (kneeAngle);
w = double (w);

o

Evaluate the fit
= S.IETorquelnterpolatedSurfaceFit (w, kneeAngle);
= k/(1le+03); % 1le+03 factor for conversion to [Nm]

H o

end
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J Appendix: MATLAB Code Inverse Plant Fit

J.1 AP Motion

oe

% Data & Fitting

% 0 deg

% [N] [mm] [deg]

APdatalO = [0 -2.636 -0.461 0
5 -2.635 -1.059 0
10 -2.635 -1.466 0
15 -2.634 -1.786 0
20 -2.634 -2.053 0
25 -2.634 -2.284 0
30 -2.633 -2.490 0
35 -2.633 -2.676 0
40 -2.632 -2.847 0
45 -2.632 -3.004 O
50 -2.631 -3.151 0
55 -2.631 -3.289 0
60 -2.631 -3.419 0
65 -2.630 -3.543 0
70 -2.630 -3.660 0
75 -2.629 -3.772 0
80 -2.629 -3.879 0];

xAPO = APdatalO(:,3);
yAPO APdatal(:,4);
zAPO APdatal(:,1);

FFAPForceFit0 = slmengine (xAPO, zAPO, "knots', [-10 20], 'decreasing', 'on','
result', 'pp');

% 30 deg

APdata30 = [0 -0.364 0.988 30
5 -0.360 -0.284 30
10 -0.357 -0.962 30
15 -0.353 -1.460 30
20 -0.350 -1.864 30
25 -0.346 -2.208 30
30 -0.343 -2.510 30
35 -0.340 -2.781 30
40 -0.336 -3.029 30
45 -0.333 -3.256 30
50 -0.330 -3.468 30
55 -0.327 -3.666 30
60 -0.323 -3.852 30
65 -0.320 -4.028 30
70 -0.317 -4.196 30
75 -0.314 -4.355 30
80 -0.311 -4.508 30];

xAP30 = APdata30(:,3);
yAP30 = APdata30(:,4);
zAP30 APdata30(:,1);

FFAPForceFit30 = slmengine (xAP30,zAP30, 'knots', [-10 20], 'decreasing', 'on
'y 'result', 'pp');

% 60 deg
APdata60 = [0 0.630 5.275 60
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5 0.626 4.834 60
10 0.621 4.462 60
15 0.617 4.138 60
20 0.613 3.849 60
25 0.608 3.586 60
30 0.604 3.345 60
35 0.599 3.121 60
40 0.595 2.912 60
45 0.591 2.716 60
50 0.586 2.530 60
55 0.582 2.354 60
60 0.578 2.186 60
65 0.574 2.025 60
70 0.569 1.871 60
75 0.565 1.724 60
80 0.561 1.581 60];

xAP60 = APdata60(:,3);
yAP60 APdata60(:,4);
zAP60 = APdata60(:,1);

'y 'result', 'pp');

% 90 deg

APdata90 = [0 4.103 12.745 90
5 4.102 12.436 90
10 4.102 12.154 90
15 4.101 11.894 90
20 4.101 11.653 90
25 4.100 11.426 90
30 4.100 11.213 90
35 4.099 11.011 90
40 4.098 10.820 90
45 4.098 10.637 90
50 4.097 10.462 90
55 4.097 10.294 90
60 4.096 10.132 90
65 4.095 9.976 90
70 4.095 9.826 90
75 4.094 9.680 90
80 4.094 9.539 90];

xAP90 = APdata90(:,3);

yAP90 = APdata90(:,4);
zAP90 APdata90(:,1);

'y 'result', 'pp');

% Interpolate points from spline fits to be used in surface fit
span = —-10:0.1:20;

FFAPForceFitInterpolated0 = ppval (FFAPForceFit0, span);
FFAPForceFitInterpolated30 ppval (FFAPForceFit30, span);
FFAPForceFitInterpolated60 ppval (FFAPForceFit60, span);
FFAPForceFitInterpolated90 ppval (FFAPForceFit90, span)

’

% displacement [mm]
xData = cat (1, span, span, span, span) ;

o

% flexion angle [deg]

FFAPForceFit60 = slmengine (xAP60,zAP60, 'knots', [-10 20], 'decreasing', 'on

FFAPForceFit90 = slmengine (xAP90, zAP90, 'knots', [-10 20], 'decreasing', 'on
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yData = cat (1l,0xones (length(span),1l)',30%xones (length(span),1l)"',60xones (
length(span),1l) ', 90xones (length(span),1)"');
% force [N]
zData = cat (1,FFAPForceFitInterpolated(,FFAPForceFitInterpolated30,
FFAPForceFitInterpolated60,FFAPForceFitInterpolated90);
cftool
J.2 1IE Motion
%% Data & Fitting
% 0 deg
% IE [deqg] AP [mm] [N]M(+) [deg]
IEdatal0 = [-2.635617095 -0.461408067 0 0
-2.623045764 -0.805853727 5 0
-2.610464587 -1.073404706 10 0
-2.597846082 -1.295834141 15 0
-2.585174073 -1.4880996 20 0
-2.572437364 -1.658555023 25 0
-2.559627378 -1.812388575 30 0
-2.546737049 -1.953065611 35 0
-2.53376027 -2.083027213 40 0
-2.520691542 -2.204064293 45 0
-2.507525773 -2.3175339¢61 50 0
-2.494258136 -2.424491597 55 0
-2.480883975 -2.5257764 60 0
-2.467398733 -2.622066583 65 0
-2.453797914 -2.713920359 70 0
-2.440076966 -2.801802107 75 0
-2.426231395 -2.886103174 80 0
-2.647667268 -0.787651504 -5 0
-2.659502931 -1.043607836 -10 0
-2.671154398 -1.257516328 -15 0
-2.682640175 -1.443009729 -20 0
-2.693973221 -1.60781666 -25 0
-2.705163406 -1.756782962 -30 0
-2.716218666 -1.893167287 -35 0
-2.727145626 -2.019275453 -40 0
-2.737949982 -2.136808072 -45 0
-2.748636716 -2.247057254 -50 0
-2.759210264 -2.351035756 -55 0
-2.769674656 -2.449536168 -60 0
-2.780033519 -2.54321745 -65 0
-2.790290224 -2.63261068 -70 0
-2.800447871 -2.718164764 -75 0
-2.810509354 -2.80025486 -80 0];
xIEQO = IEdataO(:,1);
yIEO = IEdataOlO(:,4);
zIEOQO = IEdataO(:,3);
% FFIETorqueFit0 = slmengine (xIEO, zIEO, 'knots', [-45 45], '"increasing', 'on
', 'result', 'pp');
FFIETorqueFit0 = fit (xIEOQ, zIEO, 'polyl");
% 30 deg
IEdata30 = [-0.363955442 0.987778851 0 30
1.387967297 0.208157299 5 30
3.026894385 -0.268572874 10 30
4.245755478 -0.629211178 15 30
5.162066194 -0.925641355 20 30
5.892066936 -1.180293083 25 30
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6.5008113 -1.405173779 30 30
7.025132448 -1.607567116 35 30
7.48738182 -1.792266951 40 30
7.902029988 -1.962616896 45 30
8.27895716 -2.121053028 50 30
8.62520546 -2.26941142 55 30
8.945972605 -2.409114355 60 30
9.245206941 -2.541288531 65 30
9.525980626 -2.666843438 70 30
9.790733065 -2.786525045 75 30
10.04143513 -2.90095366 80 30
-1.717869584 0.209299573 -5 30
-2.711945067 -0.270180521 =10 30
-3.489231729 -0.633947048 -15 30
-4.129483394 -0.933054094 =20 30
-4.676409704 -1.189964626 =25 30
-5.155809408 -1.41679017 -30 30
-5.584034694 -1.620894734 -35 30
-5.972071143 -1.807126405 -40 30
-6.32765062 -1.978867389 -45 30
-6.656423 -2.138581198 -50 30
-6.962645074 -2.288122678 -55 30
-7.249607935 -2.428932432 -60 30
-7.519908699 -2.562145895 -65 30
-7.775636671 -2.68868246 =70 30
-8.018498144 -2.809295814 -75 30
-8.249905908 -2.924612099 -80 30];
xIE30 = IEdata30(:,1);

yIE30 = IEdata30(:,4);

zIE30 = IEdata30(:,3);

FFIETorqueFit30 = slmengine (xIE30,zIE30, 'knots', [min(IEdata30(:,1)) max(
IEdata30(:,1))], "'increasing', 'on', 'result', 'pp');

% 60 deg

IEdata60 = [0.629804287 5.27458424 0 60
4.409590846 5.045724678 5 60
7.562075251 4.84090527 10 60
9.637782669 4.653918816 15 60
11.14682225 4.481093835 20 60
12.34023937 4.319988081 25 60
13.33463517 4.168801604 30 60
14.19186361 4.026155063 35 60
14.94848248 3.890949175 40 60
15.62789387 3.762301233 45 60
16.24600387 3.639484735 50 60
16.81413515 3.521894502 55 60
17.34064822 3.409020102 60 60
17.83190211 3.300426521 65 60
18.29285324 3.195739723 70 60
18.72744489 3.094635233 75 60
19.13886946 2.996829726 80 60
-2.034342715 5.044501721 -5 60
-3.850427719 4.837276256 -10 60
=-5.227144119 4.647775853 -15 60
-6.345352117 4.472603385 =20 60
-7.293664058 4.309331957 -25 60
-8.121420199 4.156143666 -30 60
-8.858858253 4.011627733 -35 60
-9.525870363 3.874678019 -40 60
-10.1362645 3.744390797 -45 60
-10.70003493 3.620028025 =50 60
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-11.2246616 3.50096886 =55 60
-11.71589757 3.386701159 -60 60
-12.17826923 3.276776112 -65 60
-12.61540658 3.170814627 =70 60
-13.03026867 3.068489008 =75 60
-13.42530195 2.96950579 -80 60];

xIE60 = IEdata60(:,1);

yIE60 = IEdata60(:,4);

zIE60 = IEdata60(:,3);

FFIETorqueFit60 = slmengine (xIE60,zIE60, "knots', [min (IEdataé60(:,1)) max/(

IEdataé60(:,1))], " 'increasing', 'on', 'result', 'pp');

% 90 deg

IEdata90 = [4.102542368 12.74480723 0 90
7.005341939 12.5862409 5 90
9.758312942 12.43529489 10 90
11.99990554 12.29115623 15 90
13.78197561 12.15313679 20 90
15.23725075 12.02064427 25 90
16.46329442 11.89316584 30 90
17.52313931 11.77026301 35 90
18.45787975 11.65155225 40 90
19.29527459 11.53669912 45 90
20.05479575 11.42540974 50 90
20.75057468 11.31742426 55 90
21.39317361 11.21251187 60 90
21.99068881 11.1104663 65 90
22.5494621 11.01110273 70 90
23.07455458 10.91425451 75 90
23.57007114 10.819771 80 90
1.59342886 12.58639198 -5 90
-0.415232449 12.43557955 =10 90
-2.043239067 12.29156455 =15 90
-3.403989627 12.15360867 =20 90
-4.573 12.02113332 =25 90
-5.601 11.89363526 -30 90
-6.519 11.77067108 -35 90
-7.350233494 11.65187034 -40 90
-8.111420404 11.53689883 -45 90
-8.81434709 11.42546465 =50 90
-9.468149682 11.3173033 =55 90
-10.07992736 11.212205009 -60 90
-10.65530664 11.10994728 -65 90
-11.19882393 11.01035167 =70 90
-11.71419159 10.913253 =75 90
-12.20448772 10.81850586 -80 90];

xIE90 = IEdata90(:,1);

yIE90 = IEdata90(:,4);

zIE90 = IEdata90(:,3);

FFIETorqueFit90 = slmengine (xIE90,zIE90, '"knots', [min(IEdata90(:,1)) max/(

IEdata90(:,1))], 'increasing', 'on', 'result', 'pp');

%% Interpolate points from spline fits to be used in surface fit

span = -90:1:90;

FFIETorqueFitInterpolatedO = feval (FFIETorqueFit0, span)';

FFIETorqueFitInterpolated30 = ppval (FFIETorqueFit30, span);

FFIETorqueFitInterpolated60 = ppval (FFIETorqueFit60, span);

FFIETorqueFitInterpolated90 = ppval (FFIETorqueFit90, span);
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o

xData = cat (1, span, span, span, span); % rotation [deg]

length(span), 1) ', 90xones (length(span),1)"'); % flexion angle [deqg]

zData = cat (l1,FFIETorqueFitInterpolatedl,FFIETorqueFitInterpolated30,
FFIETorqueFitInterpolated60,FFIETorqueFitInterpolated90); % Force
I M(+)

cftool

yData = cat (1, O*ones (length(span),1l)',30xones (length(span),1l)"',60%ones (

[N
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