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Preface 

The contents of this report contribute to a better operating system of the Twents bus line. By 

applying the stop-skipping strategy a new pattern of the bus route appears which lowers bus travel 

time. The ‘Twents’ bus service is located in the area where I live so that makes it even more 

interesting. Furthermore, I used to travel with the bus, and I have experienced common problems 

that occur while taking the bus myself. This encourages the search for better solutions. 

The data used in this research is provided by Keolis Nederland in cooperation with the University of 

Twente. The content is confidential and will therefore not share this with others and only results are 

evaluated in this report. 

COVID-19 did not only change the use and service of the buses, but also the writing of this thesis 

report. This report is fully written from home which is different from the regular process. No travel 

time is needed to move to the company location and working alone lowers distraction weaknesses. 
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Summary 

This bachelor thesis is written in cooperation with Keolis Nederland and the University of Twente. It 

starts off with an introduction of the problem and states the research question that will be answered 

at the end of this report. This will be followed by a literature review, which contains similar works 

and preliminary research. The literature review is used to gain knowledge about the subject and 

gather information regarding the theory of stop-skipping. This results in the methodology for this 

research which is divided into two parts: First, the methodology for the data analysis will be 

described and second the model formulation of stop-skipping strategy. Section 6 presents the results 

of the data analysis, a substantiation for the bus line choice and the model results. In the conclusion 

the research question is answered, and a discussion is written to add all points of attention. At last, 

recommendations for further research are given. 

Public transit company Keolis Nederland experiences revenue losses due to active COVID regulations 

in the Netherlands. These losses are caused by a lower demand and therefore new strategies are 

urgent in order to keep the losses minimal. This research covers the strategy of stop-skipping which 

skips 1 or more stops to reduce the travel time. This strategy is applied on a bus line in the region 

‘Twente’ in the Netherlands. The choice for this bus line is reinforced by a data analysis on all bus 

lines in the area to see what bus lines suffer the most. 

The stop-skipping strategy is displayed as a model that contains a mixed-integer non-linear 

mathematical program. Central is an objective consisting of three terms that is minimized based on 

constraints. These three terms are the passenger waiting time, bus travel time and passenger in- 

vehicle time, respectively. With branch and bound the model finds an optimal pattern where 1 or 

more bus stops are skipped. The values of the three objective terms are compared to the old 

situation where all bus stops are served. 

The solution of the model shows a deviating stop-skipping pattern in the last trip. Therefore, an 

adapted solution is analysed by using the same stop-skipping pattern for trip 4 as found in trip 2. 

Comparing the time values of the adapted solution with the current situation showed that the bus 

travel time and in-vehicle time decreases with 2.6% and 7.1% respectively, but the passenger waiting 

times increases with 5,6%. A sensitivity analysis confirms the choice for the cost factors in this 

research and shows that other cost factors lead to either unrealistic stop-skipping pattern where too 

many stops are skipped, resulting in high waiting times. 
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1 Introduction 
The public transit sector in the Netherlands has suffered a lot from the COVID-19 regulations that 

became active in March 2020. Face masks in public transport are mandatory and people are 

requested to keep 1.5-meter distance from each other. Furthermore, the regulations included 

closure of schools and cultural activities which contributes to a decrease in trips. This decrease is 

experienced in public transport as well, which leads to huge revenue losses among public transit 

companies. These costs can largely be compensated by the Dutch government, but the remainder 

should still be paid by the transit companies themselves. 

The bus service Twents, a sub-service of one of the bigger public transit companies Keolis Nederland, 

experienced similar trip decreases which can be deduced from the number of check-ins and check- 

outs. Currently, buses operate under normal circumstances although the demand has decreased. 

Because the COVID pandemic is still dominating the way of living there is an urgent need of new 

developments of better operating services. These developments should contribute to a decrease of 

the operational costs. The costs for the staff and the costs for operating a bus are mostly 

determining the amount of the operational costs. A good way to decrease the operational costs is by 

lowering the travel time of the bus (Lee, Shariat, & Choi, 2014).  Furthermore, the wishes of the 

stakeholders should be taken into account. The most important stakeholder, the user, should be 

satisfied because they altogether provide the revenue of the transport companies. This is done using 

the next two factors: the user waiting times and the user in-vehicle time. Generally, users have a 

higher appreciation for low waiting and in-vehicle times. This research therefore considers the travel 

time, user waiting time and user in-vehicle time in order to decrease the operational costs of 

Twents. This decrease is obtained by following a strategy called stop-skipping. This strategy skips 

certain stops in a bus line to decrease the travel time of the bus, resulting into the following research 

question: 

“What is the best stop-skipping pattern of a Twents bus line considering user waiting times, user in- 

vehicle time and bus travel times? 

The model is tested on a bus line within the system of Twents. To determine what bus line will be 

useful upon testing, a data analysis of the recent trips on all bus lines is done. A bus line is chosen 

based on passenger division, landscape type, and the demand division. The stop-skipping model is a 

mixed integer non-linear program (MINLP). This refers to a program with continuous and binary 

variables and non-linear equations in the objective and/or constraints (Guide, 2020). The model is 

solved with the branch and bound algorithm. This implies that it determines a solution, which will be 

further split into several sub solutions. This keeps going until an optimal solution is found. The 

solution consists of optimal values for the travel time, user waiting time and user in-vehicle time 

which will be compared to the current situation when all bus stops are served. The model 

determines the optimal solution by changing the value of the binary variables, which indicate if a bus 

stop is served or not. Therefore, the optimal solution will contain a stop-skipping pattern as well. To 

assess the robustness of the optimal solution a sensitivity analysis is conducted. This analysis will 

cover the values of the cost factors that determine the cost of the travel time, user waiting time and 

user in-vehicle time. At last, a discussion about this research weaknesses and possible improvements 

is raised and recommendations for further research are given. 

 

 

 



2 Literature review 
This section contains the literature written about the stop-skipping concept that will be used in 

order to optimize the bus service. There is already quite a lot of literature written about the stop- 

skipping before COVID because it was proven to lower the travel time of the bus. (Liu, Yan, Qu, & 

Zhang, 2013) defined the stop-skipping as a scheme to skip one or more stops to reduce the travel 

time of the bus. This can be applied if the bus is late and behind schedule to avoid dwell times and 

increase operation speed. (Gkiotsalitis & Cats, 2021) listed a number of literature works which use 

the stop-skipping strategy for optimization. A recurring feature which shows up in all stop-skipping 

literature is the use of an optimization model. This model consists of variables, constraints and an 

objective. This objective consists of the different costs that are made during a bus trip, and these 

costs will be optimized. 

(Gkiotsalitis & Cats, 2021) also makes a distinction between multiple and single trips that are 

considered. The advantage of evaluating an objective for only one trip is the model simplicity. The 

model can be solved with relatively low computation time and a simple solving method. However, 

consecutive trips do play a role in the decision making of stop-skipping. It is often discouraged to 

skip two consecutive trips to avoid very long waiting times for passengers. This can only be 

prevented by considering multiple trips. 

The study by (Liu, Yan, Qu, & Zhang, 2013) focuses next to the stop-skipping strategy on 

deadheading problems. This is an advanced strategy of the stop-skipping problem and focusses on 

bus lines where the deadheading bus departs (almost) empty to a designated stop. It skips stops 

based on the same grounds as the stop-skipping strategy. This study also criticises previous studies 

for aiming too much on reducing passenger waiting times instead of reducing passengers’ in-vehicle 

travel time and operating costs. Therefore, the objective includes three terms that takes care of the 

passenger waiting times, in-vehicle travel time and operating costs due to bus travel time. A similar 

study is conducted by (Zhang, Huang, Liu, & Vu, 2020). Additionally, the capacity of the bus is taken 

into account as well as a few other factors which result in a more complex model. The agent-based 

modelling and simulation is used to simulating the bus system which has never directly been used on 

studying bus operating systems before. 

Another study by (Wang, De Schutter, van den Boom, Ning, & Tang, 2014) develops a more efficient 

bilevel approach, which involves a mixed-integer nonlinear programming problem (MINLP). The 

study values passenger satisfaction which is influenced by waiting times, passenger in-vehicle times 

and the number of transfers. The model objective includes the same terms as (Liu, Yan, Qu, & Zhang, 

2013) with two additional penalties for waiting time of passengers left by the last train and for the 

arrival time of the last train. 

More recent studies are done using the stop-skipping strategy to solve COVID-19 related problems. 

The demand decreased sharply in public transport as stated in (Hörcher, Singh, & Graham, 2021), 

which causes imbalance between the costs and revenues of operating the service. Due to this, public 

transport companies were forced to make changes in their services and adjust timetables 

(Vickerman, 2021), (Wielechowski, Czech, & Lukasz Grzeda, 2020). A study by (Gkiotsalitis K. , 2020b) 

investigates the stop-skipping strategy on a rolling horizon. This indicates that real time is taken into 

account by solving the model repeatedly, by moving the considered time interval forward. Three 

types of methods were mentioned to solve the model: 

- Brute force 



This method does not contain any algorithm or heuristic and is trying all possible solutions until it 

finds a good solution corresponding to the given objective, variables and constraints. (Gkiotsalitis K., 

2020b) refers to this method as a good alternative if the solution set is not too extensive. 

- Sequential hill climbing (S-HC) 

S-HC is a heuristic approach which evaluates the stop-skipping options in a sequential order. This 

results in a way smaller solution set than the brute force and branch & bound approach. 

- Genetic algorithm 

The genetic algorithm is a more complex algorithm that uses a population in order to get to the best 

solution. The population has members which are represented by a matrix which contains values of 0 

and 1. This algorithm also contains a smaller computation time because its evaluation set is 

determined by the population size multiplied by the maximum number of generations. 

Comparing the mentioned studies, there are a lot of possible methods to solve a stop-skipping 

problem. A study by (Gkiotsalitis K., 2020a) uses the stop-skipping strategy to develop a better bus 

operating system. The model developed is a MINLP and is tested on the bus line between Hengelo 

and Enschede. The model is solved with branch-and-bound approach. The objective of the MINLP 

consists of three terms, the costs of the waiting time, bus travel time and in-vehicle crowding. The 

study of (Gkiotsalitis K., 2020a) provides very useful information as it considers the same research 

area, and the model is not too complex. Although, there are a few differences: 

1. The use of capacity restrictions 

The study considers two types of capacity, soft capacity and hard capacity. The soft capacity is the 

capacity that is allowed under the social distancing measurements and the hard capacity is the 

regular capacity. Keolis stated not to refuse people if the soft capacity is reached. They mention it to 

be the full responsibility of the user considering exceeding the soft capacity. Therefore, no 

distinction between soft and hard capacity is considered and only the maximum capacity of a bus is 

taken into account. 

2. The lack of passenger in-vehicle travel time 

Because this research values the stakeholders’ requirements and wishes, the passenger in-vehicle 

travel time must be considered. This means that the capacity penalty in the objective as described in 

(Gkiotsalitis K., 2020a) will be replaced by a passenger in-vehicle cost. 

This research will therefore provide an evaluation of a stop-skipping problem with a three terms 

objective considering costs for passenger waiting time, passenger in-vehicle time and bus travel 

time. The branch-and-bound method is used to solve the MINLP model and multiple trips will be 

considered, which means there is dealt with a rolling horizon. The model will be tested on a bus line 

in Twente, a region in the Netherlands, to see if it has actual benefits. These bus lines will further on 

be determined based on a data analysis of the passenger trips occurring in the bus service for the 

time span between March 2019 and July 2020. In the next section a detailed description on how the 

bus lines are determined is given. In table 2, a summary is given of the discussed literature works 

and their characteristics and table 1 provides an overview of different objective terms. 

Table 1 Objective terms 

Objective terms 

O1 Passenger waiting time 

O2 Bus travel time 



O3 Passenger in-vehicle time 

O4 Energy consumption 

O5 Bus capacity maximization 

O6 Cost ‘forced off’ passengers 

O7 Access time 

 

Table 2 Summary of stop-skipping literature 

Study by Strategy Trips 
considered 

Math 
program 

Objective 
terms 

Solution 
method 

(Gkiotsalitis K. 
, 2020a) 

Stop-skipping Multiple Mixed-integer 
nonlinear 

O1 + O2 + O5 Branch and 
bound 

(Gkiotsalitis K. 
, 2020b) 

Stop-skipping Multiple Integer nonlinear O1 + O2 + O3 Brute force and 
heuristics 

(Gkiotsalitis K. 
, 2019) 

Stop-skipping Multiple Integer nonlinear   

(Chen, Adida, 
& Lin, 2013) 

Holding Multiple Linear O1 Heuristics 

(Liu, Yan, Qu, 
& Zhang, 

2013) 

Stop-skipping 
and deadheading 

One Integer nonlinear O1 + O2 + O3 Genetic 
algorithm 

(Lee, Shariat, 
& Choi, 2014) 

Stop-skipping Multiple Mixed-integer 
nonlinear 

O1 + O2 + O3 + 
O7 

Genetic 
algorithm 

(Sun & 
Hickman, 

2007) 

Stop-skipping One Integer nonlinear O1 + O2 + O6 Brute force 

(Zhang, 
Huang, Liu, & 

Vu, 2020) 

Stop-skipping 
and holding 

Multiple Mixed-Integer 
linear 

O1 + O3 Stochastics 

(Wang, De 
Schutter, van 

den Boom, 
Ning, & Tang, 

2014) 

Stop-skipping Multiple Mixed-integer 
nonlinear 

O1 + O2 + O3 + 
O4 

Bi-level approach 

This research Stop-skipping Multiple Mixed-integer 
nonlinear 

O1 + O2 + O3 Branch and 
bound 

 

The solution found by the model contributes to the described problem that is caused by COVID-19. 

Because of the lower demand along the bus line, the stop-skipping model has more opportunity 

than with an actual demand. With the new solution the bus will save travel time, which will save 

costs and thus minimize the revenue losses cause by COVID-19. 

 

 

 

 

 



3 Methodology 
As a result of the decision by the Dutch government to take measures against COVID-19, the number 

of passengers making use of bus service ‘Twents’ dropped. For adaption of the stop-skipping 

strategy research must be done to the demand of the bus lines. A bus line with a high frequency 

would result in a much more effective solution than a bus line with a small frequency. Since COVID- 

19 is the major cause of the problem, a distinction is made between two scenarios: (1) A pre-COVID 

scenario, which is the period before the Dutch government took measurements against the virus and 

(2) a COVID scenario, which is the period after two months that the measurements were taken. By 

comparing these two scenarios, the bus lines that change the most can be identified. These changes 

are evaluated based on three criteria: average trip demand per week, passenger type and total 

demand per bus stop. From the results, one bus line is chosen that will be used for stop-skipping. As 

mentioned before, the model will be solved with the branch-and-bound method. This approach is 

based on principle that a set of solutions can be divided into smaller subsets (-, 2001). For each of 

these subsets, an evaluation will be done in order to find the best solution among them. The results 

of the stop-skipping strategy will be returned as the total passenger waiting times, total passenger 

in-vehicle time and total bus travel time. This will be compared to the situation now which does not 

apply stop-skipping and a conclusion is drawn. The remainder of the methodology is split into two 

parts, the data analysis of the bus service demand and the model formulation of the stop-skipping 

part. 

3.1 Data analysis 
The data analysis consists of three parts that together form the substantiation for the decision of the 

chosen bus line. The average demand per week is determined to see which bus lines show the 

biggest differences of demand between the COVID- and pre-COVID scenario. Second, the changes in 

passenger division between the COVID- and pre-COVID scenario are analysed to exclude bus lines 

that show a deviation of the passenger division. Third, the demand per stop is determined to track 

down the bus lines that have the biggest count of low demand bus stops. The fourth section contains 

the landscape division of the bus lines. This is done because a bus line with a mixed landscape is 

favoured.  

3.1.1 Average demand per week 
The average demand per week for each bus line is determined by using a data set of trip 

frequencies. This dataset contains the number of trips for all dates and hours for each line between 

March 2019th and July 2020th. First, the frequencies of each column are stored in a separate table. 

Then, for each line the number of trips is grouped for each date. The result is analysed and the 

average demand for each week is calculated. From these averages, a new average is calculated 

which gives the average week average. This is done for both scenarios and the difference is 

determined by 

 ∆𝑸 =  𝑸𝒑𝒓𝒆𝒄𝒐𝒗𝒊𝒅
𝒘𝒆𝒆𝒌𝒍𝒚

− 𝑸𝒄𝒐𝒗𝒊𝒅
𝒘𝒆𝒆𝒌𝒍𝒚

 Equation 1 

 

3.1.2 Passenger division 
The passenger division is determined for all bus lines for the two scenarios. Since the dataset of trip 

frequencies contains only general information, the bigger set is used that contains data about 

number of passengers, date, stop_in, Stop_out, hour, line_in, line_out, audience and week number. 

The passenger division is determined by grouping the number of passengers for each audience type 



for each line. The two scenarios are compared by dividing the number of passengers for each 

passengers group by the total number of passengers. This is shown as: 

 
𝑵𝒂𝒖𝒅𝒊𝒆𝒏𝒄𝒆 =  

𝑸𝒂𝒖𝒅𝒊𝒆𝒏𝒄𝒆

∑ 𝑸𝒂𝒖𝒅𝒊𝒆𝒏𝒄𝒆,𝒊
𝒎
𝒊=𝟏

 Equation 2 

 

Where 𝑖 is the index 1 ≤ 𝑖 ≤ 𝑚, where 𝑚 is the end index. This gives the percentages for each 

passenger group and gives a clear view of the differences between the two scenarios. The result is 

stored in a bar plot as well as in a table. 

3.1.3 Demand per stop 
The demand is determined in a same way as the passenger division but instead of grouping the 

passengers by the audience, they are grouped by the stops. The result is stored in the same way as 

the passenger division. The demand per stop is used to see if a bus line has a lot of bus stops that 

have potential to be skipped. When a line only has stops with high boardings, the eventual waiting 

times will be a lot higher than a line that has stops with low boardings. The low demand bus stops 

are detected by computing the relative boarding rates of each bus stop and counting the bus stop 

that satisfies 

 

∑ 𝑸𝒊,

|𝑺|

𝒊=𝟎

     𝑸𝒊 ≤ 𝟎. 𝟎𝟎𝟏 Equation 3 

 

So, the bus stops that have a boarding rate of 0.1% of the total boardings are counted. 

3.2 Model formulation 
The model considers multiple trips where one trip is described as 𝑁 = {1, 2, …, |𝑁|} where 𝑁 is the 

number of trips occurring within a certain time horizon. At the start of a new time horizon, there is 

already determined what the skipped stops of all trips within this time horizon will be. Two extreme 

cases can occur: First, the time horizon contains only 1 trip, which means that the stop-skipping 

strategy is adjusted to a single trip problem as described in (Liu, Yan, Qu, & Zhang, 2013). Second, 

the time horizon includes the all-daily trips of the bus line, which makes it tactical planning problem 

(Gkiotsalitis, 2019). This section will further elaborate on the assumptions made for simplification. 

Also, the nomenclature that is used will be listed and the variables and constraints are defined and 

at last, the problem objective is formulated. These will form together the mathematical model of the 

stop-skipping strategy. 

3.2.1 Assumptions and nomenclature 
For almost every model that is tried to simulate reality, assumptions are made. The assumptions for 

this model are as follows: 

1. The arrival rate of passenger at bus stops are random. This is because it cannot be 

determined how passenger coordinate their arrival times based on the bus service. (Welding, 

1957); (Randall, Condry, Trompet, & Campus); 

2. Buses that serve the same line do not overtake each other. This means that if a bus fails due 

to circumstances and cannot finish their line, the remaining of the trip will be unserved. This 

assumption is often taken while investigating bus service on a single line. (Chen, Adida, & 

Lin, 2013); (Gkiotsalitis K., 2020a); (Gkiotsalitis K., 2020b); 



3. An origin-destination pair cannot be skipped by two consecutive bus trips of the same line 

(Sun & Hickman, 2007), (Fu, Liu, & Calamai, 2003). This, in order to prevent negative effects 

of increased passenger frustration and prevent higher waiting times because of unserved 

passengers at the skipped station. 

4. For all stops served by the bus, the number of passengers boarding, and alighting is known. 

(Sun & Hickman, 2007) 

5. The capacity of the buses is not considered explicitly. Looking at the concerned bus lines it is 

very unlikely that the maximum capacity will be reached (Sun & Hickman, 2007). 

Furthermore, it could be that the maximum capacity is reached in a very extreme situation,  

but for simplification and feasibility this will not be concerned. 

Most of the parameters and variables are all defined based on a trip and its stops. The set 𝑁 = {1, 2, 

…, |𝑁|} is considered to be the set of bus trips. Each trip has a fixed number of stops which is 

formulated as 𝑆 = {1,2, …, |𝑆|}. The following parameters are used: 

Table 3 Parameters 
Parameter Description 

𝑡𝑖,𝑗 The travel time needed for a bus trip 𝑖 to get from stop 𝑗 − 1 to stop 𝑗 

𝑝1 Alighting time for a passenger 

𝑝2 Boarding time for a passenger 

𝛿 Difference of bus acceleration and deceleration 
𝜆𝑗𝑘 The passenger arrival rate at stop j for passengers who travel to stop k for k > j 

𝑤1 Cost factor for first term regarding waiting times 

𝑤2 Cost factor for second term regarding travel times 

�̃�𝑖,1 Planned departure time from first stop to last stop 

�̃�1,𝑗𝑘  Number of passengers waiting for the first trip travelling from 𝑗 to 𝑘 where 𝑘 > 𝑗 

 

Where 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑆 and 𝑘 ∈ 𝑆 | 𝑘 > 𝑗. 

3.2.2 Variables and constraints 
The variables used to determine the constraints are: 

Table 4 Equations 
Variable Description 
𝑥𝑖,𝑗 A decision variable for trip 𝑖 which is 1 if stop 𝑗 is served and 0 otherwise 
𝑑𝑖,𝑗 The departure time of trip 𝑖 at stop 𝑗 
𝑎𝑖,𝑗 The arrival time of trip 𝑖 at stop 𝑗 
𝑘𝑖,𝑗 The dwell times of trip 𝑖 at stop 𝑗, i.e., the time of boarding and alighting of 

passengers 
𝑤𝑖,𝑗𝑘 The number of passengers waiting for trip 𝑖 and travelling from stop 𝑗 to stop 𝑘 for 

𝑘 > 𝑗 
𝐼𝑖,𝑗𝑘 The number of passengers that are skipped by bus 𝑖 and travel from stop 𝑗 to stop 

𝑘 
𝑚𝑖,𝑗 The number of passengers that are skipped by bus 𝑖 at stop 𝑗 
𝑢𝑖,𝑗 The number of passengers boarding trip 𝑖 at stop 𝑗 
𝑣𝑖,𝑗 The number of passengers alighting trip 𝑖 at stop 𝑗 
𝑏𝑖,𝑗𝑘 The number of passengers boarding trip 𝑖 at stop j who travel to stop 𝑘 for 𝑘 > 𝑗 
𝛾𝑖,𝑗 The bus passenger load of trip 𝑖 departing from stop 𝑗 
ℎ𝑖,𝑗 The bus headway between trip 𝑖 and 𝑖 − 1 at stop 𝑗 

 



Where 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑆 and 𝑘 ∈ 𝑆 | 𝑘 > 𝑗 

Additionally, a set of constraints are developed. The number of passengers waiting for trip 𝑖 and 

travelling from stop 𝑗 to stop 𝑘 is determined by 

 

 
𝑤𝑖,𝑗𝑘 = {

𝜆𝑗,𝑘 ∗ ℎ𝑖,𝑗  ∀𝑖 ∈ 𝑁\{1}, 𝑗 ∈ 𝑆\{|𝑆|}, 𝑘 ∈ 𝑆: 𝑘 > 𝑗

�̃�𝑗,𝑘 𝑓𝑜𝑟 𝑖 = 1, 𝑗 ∈ 𝑆\{|𝑆|}, 𝑘 ∈ 𝑆: 𝑘 > 𝑗
 Equation 4 

 

For the first trip there is a special case because ℎ𝑖, 𝑗 cannot be defined yet. Therefore, the number of 

passengers is written as the parameter �̃�𝑗,𝑘 . Also, 𝑗 cannot be the last stop of 𝑆 because then stop 𝑘 

cannot be larger than 𝑗 and 𝑘 > 𝑗 always holds. The number of skipped passengers is determined by 

 𝐼𝑖,𝑗𝑘 = 𝑤𝑖,𝑗𝑘 − 𝑤𝑖,𝑗𝑘 ∗ 𝑥𝑖,𝑗 ∗ 𝑥𝑖,𝑘∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑆\{|𝑆|}, 𝑘 ∈ 𝑆: 𝑘 > 𝑗 Equation 5 

 

At the last stop passengers cannot board and thus not be skipped. This number is formulated into a 

new variable to determine the number of passengers at a certain stop 𝑗 

 

𝑚𝑖,𝑗 = ∑ 𝐼𝑖,𝑗𝑘∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑆\{|𝑆|}

|𝑆|

𝑗=𝑖+1

 Equation 6 
 

 

The expected number of passengers that is waiting for trip 𝑖 and will board the bus at stop 𝑗 is 

determined by the number of passengers travelling between stop 𝑗 and 𝑘. 

 

𝑢𝑖,𝑗 = {
𝑥𝑖,𝑗 ∗ ∑ 𝑤𝑖,𝑗𝑘 ∗ 𝑥𝑖,𝑘∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑆\{|𝑆|}

|𝑆|

𝑘=𝑗+1

0, ∀𝑖 ∈ 𝑁, 𝑗 ∈ 1

 
 

Equation 7 

 

Again, at the last stop there is a special case which has no boardings, and 𝑢𝑖,|𝑆| is therefore zero. The 

number of expected alightings is a similar equation as the expected boardings but is dependent on 

the passengers travelling between 𝑗 and 𝑘. 

 

 

𝑣𝑖,𝑗 = {
𝑥𝑗,𝑖 ∗ ∑ 𝑤𝑖,𝑘𝑗 ∗ 𝑥𝑖,𝑘,∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑆\{1}, 𝑘 ∈ 𝑆 | 𝑘 > 𝑗

𝑗−1

𝑘=1

0, ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑆\{|𝑆|}, 𝑘 ∈ 𝑆, 𝑘 ≤ 𝑗

 
 

Equation 8 

 

When 𝑘 ≤ 𝑗, 𝑏𝑖,𝑗𝑘 = 0 because the bus can only serve stops for 𝑘 > 𝑗. The dwell time 𝑘𝑖,𝑗 of a trip 𝑖 is 

the total time of boarding and alighting and is written as 

 

 
𝑏𝑖,𝑗𝑘 = {

𝑥𝑖,𝑗 ∗ 𝑤𝑖,𝑗𝑘 ∗ 𝑥𝑖,𝑘 , ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑆\{|𝑆|}, 𝑘 ∈ 𝑆 | 𝑘 > 𝑗

0, ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑆\{|𝑆|}, 𝑘 ∈ 𝑆, 𝑘 ≤ 𝑗
 Equation 9 

 

When 𝑘 ≤ 𝑗, 𝑏𝑖,𝑗𝑘 = 0 because the bus can only serve stops for 𝑘 > 𝑗. The dwell time 𝑘𝑖,𝑗 of a trip 𝑖 is 

the total time of boarding and alighting and is written as 



 

 𝑘𝑖,𝑗 = max(𝑝1 ∗ 𝑢𝑖,𝑗; 𝑝2 ∗ 𝑣𝑖,𝑗) , ∀𝑖 ∈ 𝑁, 𝑗

∈ 𝑆\{1} 
Equation 10 

 

Because the bus has different openings for boarding and alighting, the highest time is decisive and 

the maximum of the two is taken. The in-vehicle passenger load is also dependent on the boarding 

and alighting rates. The load of a trip 𝑖 travelling from stop 𝑗 to 𝑗 + 1 is determined by 

 

 

𝛾𝑖,𝑗 = {

𝛾𝑖,𝑗−1 + 𝑢𝑖,𝑗 − 𝑣𝑖,𝑗 , ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑆\{1, |𝑆|}

𝑢𝑖,1 ∀𝑖 ∈ 𝑁, 𝑗 ∈ 1

𝑣𝑖,|𝑆|∀𝑖 ∈ 𝑁, 𝑗 ∈ |𝑁|

 Equation 11 

 

The load at the first stop is equal to all boarding passengers and the load at the last stop is equal to 

all alighting passengers, expecting all passengers to leave the bus at the end. The arrival time of a 

bus trip 𝑖 at stop 𝑗 is dependent on the departure time of the previous stop, the bus travel time and 

the time needed to decelerate and accelerate. This is written as 

 

 

𝑎𝑖,𝑗 = {
𝑑𝑖,𝑗−1 + 𝑡𝑖,𝑗 +

𝛿

2
∗ (𝑥𝑖,𝑗−1 + 𝑥𝑖,𝑗), ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑆\{1,2}

�̃�𝑖,1 + 𝑡𝑖,2 +
𝛿

2
∗ (𝑥𝑖,1 + 𝑥𝑖,2), ∀𝑖 ∈ 𝑁

 Equation 12 

 

For the arrival time at stop two, the departure time at stop 𝑗 − 1 is replaced by the planned 

departure time at the first stop. The departure time for the other stops is equal to the arrival time 

and the dwell times: 

 

 𝑑𝑖,𝑗 = 𝑎𝑖,𝑗 + 𝑘𝑖,𝑗 , ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑆\{1} Equation 13 

 

Because there is assumed that buses do not overtake each other the headway between two buses is 

determined by the arrival time for bus trip 𝑖 at stop 𝑗 minus the departure time for bus trip 𝑖 − 1 at 

the same stop. 

 

 
𝑘𝑖,𝑗 = {

𝑎𝑖,𝑗 − 𝑑𝑖−1,𝑗 , ∀𝑖 ∈ 𝑁\{1}, 𝑗 ∈ 𝑆\{1}

𝑑𝑖,1 − 𝑑𝑖−1,1, ∀𝑖 ∈ 𝑁\{1}, 𝑗 ∈ 1
 Equation 14 

 

The first stop is a special case because buses cannot arrive at this stop thus not have an arrival rate. 

Therefore, the headway is determined based on the difference of the planned departure times.  

At last, the binary variable 𝑥𝑖,𝑗  determines if a stop is served or not. It returns one if the stop is 

served and 0 if not. This yields in the following constraints: 

 

 𝑥𝑖,𝑗 ∈ {0,1}, ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑆 Equation 15 
 

 𝑥𝑖,1 = 𝑥𝑖,|𝑆| = 1, ∀𝑖 ∈ 𝑁 Equation 16 



 

 (𝑥𝑖−1,𝑗 ∗ 𝑥𝑖−1,𝑘) + (𝑥𝑖,𝑗 ∗ 𝑥𝑖,𝑘) ≥ 1, ∀𝑖 ∈ 𝑁\{1}, 𝑗 ∈ 𝑆, 𝑘 ∈ 𝑆 | 𝑘 > 𝑗 Equation 17 

 

Equation 15 determines the possible values of 𝑥. Equation 16 is defined because the first and last 

stop should always be served and equation 17 makes sure that no two consecutive trips skip the 

same stop. 

3.2.3 Objective 
As mentioned before, this research aims to minimize the passenger waiting times, bus travel times 

and passenger in-vehicle travel times. Therefore, the objective consists of three terms each 

representing one of these objectives. Each term is multiplied with a cost factor 𝑤1,𝑤2 and 𝑤3, 

respectively. The first term calculates cost due to the waiting time of the passengers who arrive after 

the bus has left from stop 𝑗, which is the boarding rate multiplied by half of the bus headway. The 

second term calculates the cost that is caused by the travel time of the buses and the third term 

computes the passenger in-vehicle bus time by multiplying the equation of the second term with the 

number of passengers boarding between two stops. The objective is shown in equation 18. 

 

 

𝑓(𝑥) = 𝑤1 ∗ ∑ ∑ (𝑢𝑖,𝑗 − 𝑚𝑖,𝑗) ∗
ℎ𝑖,𝑗

2
+ 𝑚𝑖,𝑗 ∗ ((

ℎ𝑖−1,𝑗

2
) + 𝑘𝑖−1,𝑗 + ℎ𝑖,𝑗)

|𝑆|−1

𝑗=1

|𝑁|

𝑖=2

+  𝑤2

∗ ∑ ∑(𝑡𝑖,𝑗 + (𝑘𝑖,𝑗 + 𝛿) ∗ 𝑥𝑖,𝑗) +  𝑤3

|𝑆|

𝑗=2

|𝑁|

𝑖=2

∗ ∑ ∑ ∑ 𝑏𝑖,𝑗𝑘 ∗ ∑ (𝑡𝑖,𝑙 + (𝑘𝑖,𝑙 + 𝛿) ∗ 𝑥𝑖,𝑙)

𝑘

𝑙=𝑗+1

|𝑆|

𝑘=𝑗+1

|𝑆|−1

𝑗=1

|𝑁|

𝑖=2

 

Equation 18 

 

 

The constraints and objective together form the mathematical program for the stop-skipping model. 

This is formulated as 

(𝑄): min 𝑍 = 𝑓(𝑥) | 𝑥 ∈ 𝐹(𝑥) = {𝑥 | 𝑥 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (4 − 17)} 

The program is a non-linear program because the objective contains multiplications in its terms and 

the constraints have both linear and non-linear aspects. Furthermore, the variables contain a 

decision variable that is bound to be the binary variable (𝑥𝑖,𝑗). This binary variable is set to 1 if a stop 

is served and 0 if it is skipped. Therefore, the set of possible solutions is equal to 2|𝑁|∗|𝑆|. The branch 

and bound algorithm is used to find the optimal solution. From this set of solutions 2|𝑁|∗|𝑆|, the 

model will compute a set of feasible solution, which is done by branching. This are the solutions that 

satisfy all the constraints. The feasible solutions are divided in sub solutions and are evaluated until 

the best solution is found (-, 2001). This process is called bounding. Figure 1 provides a simplified 

overview of the process of branch and bound.  



 

Figure 1 Branch and bound algorithm 

 

4 Results 
This section will first provide the result of the data analysis. The second part contains the model 

solutions tested on the bus line that is chosen from the data analysis. 

4.1 Data analysis 
The bus lines that exist in Twente are divided in six sections: Enschede city, Hengelo city, Almelo city, 

regional, local and students. In table 7 in Appendix A the characteristics of the bus lines are shown. 

Because there is not data provided after the COVID measures came for the local and student 

sections, these are not analysed any further. The other bus lines are used in the next three sections 

to investigate the three criteria. 

4.1.1 Passenger Division 
Looking at the passenger division for both scenarios show the following. The distribution of 

passengers has for all lines approximately the same structure. Most of the users are students, 

followed by adults and anonymous users. The change after the COVID measures became active 

resulted in a relative drop of student users for all lines whereas the adult and anonymous users 

remain the same or increased. Especially line 26 and line 64 show a big shift of the distribution. This 

can be seen in figure 2, 3, 4 and 5. 

Pre-COVID COVID 



 

The shift of passenger types can be explained by looking at the absolute numbers of the passenger 

division. This shows that the number of students decreased a lot while the anonymous and adult 

number hardly changed. The reason for the drop of students is the closure of schools which keeps 

them at home. Because all bus lines show a similar change in user type, no decision is made yet on 

selecting specific bus lines here. 

4.1.2 Average demand per week 
The difference of the demand averages for each line is shown in table 8 in appendix B. In figure 6, 

the average frequencies during the COVID scenario for each line are presented. Apparently, the first 

five bus lines are the highest frequency lines together with line 9 and 62.  

 

 

 

 

Figure 2 pre-COVID passenger distribution line 26 Figure 3 COVID passenger distribution line 26 
 

 

 

 

Figure 4 Pre-COVID passenger distribution line 64 Figure 5 COVID passenger distribution line 64 



 

Figure 6 Weekly demand averages 

 

For the model, it is important to investigate a bus line with a sufficient frequency in order to collect 

the data that is needed. Especially with the COVID scenario, the frequency dropped already and if a 

line with too few trips is investigated it is harder to determine a reliable solution with the stop- 

skipping strategy. The highest frequency lines also show the biggest demand drop. The differences 

are shown in figure 7.  

 

Figure 7 Demand difference after COVID 

 

It shows that line 1-5 show a drop of approximately 20% on the working days, whereas the demand 

for line 9 and 62 stays the same.  
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4.1.3 Demand per stop 
The previous section showed the number of lines that experience the highest demand difference. 

These lines will therefore be used for the analysis of the demand per stop. The demand per stop is 

determined for the COVID-period only. The counted bus stop for each line that satisfy the constraint 

of having less boardings than 0.1% of the total is shown in figure 8. 

 

Figure 8 Stops with lowest boarding counts 

 

So, especially the regional lines show a higher number of stops that have low boardings. Therefore, 

these lines have a lot of potential for the stop-skipping strategy. However, the frequencies are lower 

than the urban lines, which should be taken into account when making the choice. 

4.1.4 Landscape 
The type of landscape plays a role in the travel behaviour of the user. This type can be either urban 

or rural. Urban landscapes are defined as stops within built-up area. These are areas consisting of all 

cities with more than 25000 citizens. The other bus stops are defined as rural. For the city lines the 

landscapes are considered to be fully urban, whereas the regional lines show a mix of urban and 

rural landscape. The bus line that are still in the selection and are placed in a mixed landscape are 

shown in table 5. 

Table 5 Landscape 

Line Stops Urban Rural 

59 34 17 17 

61 27 7 20 

62 57 19 38 

64 80 22 58 

95 48 18 30 

97 31 0 31 

 

4.2 Comparison and decision 
Comparing the result of the previous four sub-section shows a number of lines that have a good 

potential for testing. The average demand per week shows that line 1 till 5 and 9 have the highest 

frequencies and together with line 62 the highest difference between the two scenarios for the 

working days. Furthermore, from the demand per stop analysis is found that line 1 -5 and 9 have 
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very little stops with low boarding rates. When comparing line 1 to 62, line 62 has much more stops 

with low boarding rates which makes this one a lot more interesting. Line 62 also has a mixed 

landscape which might explain this big difference. In the literature, line 62 has already been 

investigated one by a study of (de Weert & Gkiotsalitis, 2021). The aim of this study was to minimize 

the revenue losses by using a short-turning strategy. This allows buses to finish their trip earlier in 

order to decrease travel time and thus operational costs. With this case study existing, the decision 

is made to minimize the revenue losses with the stop-skipping strategy. Although the terms are 

different compared to (de Weert & Gkiotsalitis, 2021) the objective is similar. 

The cons of line 62 is the recent change of this route because of the new N18 road. The changes 

involve the removal of bus stops in Usselo, which is located between Hengelo and Enschede, and 

several bus stops in Enschede. Because the used data still contains the data for these stops, it is 

much harder to determine the demand over this line. Therefore, there is decided to not look further 

on this line. 

While comparing line 1-5 with each other they are all high frequency lines (see figure 6). Line 2 has 

the highest frequency of 133 and also the biggest difference compared with the COVID-scenario 

which is 44. The demand per stop analysis showed that 6 of its stops have a boarding rate of below 

0.1% of the total boardings. Line 1 also has 6 stops which meets this constraint but has 14 more 

stops than line 2 which makes it less useful. Although, the landscape of line 2 is urban, it is chosen as 

a case study for the stop-skipping model. 

4.3 Case study 

4.3.1 Description 
As mentioned in previous section, the concerned bus line is line 2. The bus stops depend on the 

direction of the bus, because the route is different between the two start and end stops, Enschede; 

Disselhoek and Enschede; Buizerdstraat, respectively. The route with 26 stops starts in Enschede; 

Disselhoek and ends in Enschede; Buizerdstraat which is shown in figure 9. Enschede has almost 

160.000 inhabitants which causes line 2 to be a high frequency bus line. 

 



Figure 9 Bus line 2 

 

The bus line is active from 5:47 till 23:15 in the weekdays but has different travel times within this  

period. Between 7:09 till 18:27 the bus travel time is the lowest and expected to be 30 minutes. 

4.3.2 Data 
The passenger demand is shown in the OD-matrix of bus line 2 shown in table 9 in Appendix C. This 

table has dimension |𝑆| = 26 and because only one direction is considered, the lower left side is 

containing zeros. The demand of this table are average values based on 8 weeks and a normal 

distribution is used to have a more realistic simulation. This also prevents the presence of zeros in 

the table due to the lacking amount of data. The demand is determined for each trip separately, 

which result in a different OD-matrix for each trip. The frequency is expected to be at its highest 

between 8:00 and 9:00. The buses have a headway of 15 minutes which makes it 4 buses operating 

per hour. Thus |𝑁| = 4. 

The additional travel time due to acceleration and deceleration, 𝛿, is approximately 20 seconds and 

the time for boarding and alighting is 𝑝1 = 4 and 𝑝2 = 2, respectively (Fu, Liu & Calamai, 2003). The 

unit costs 𝑐1, 𝑐2 and 𝑐3 are 
20$

ℎ
,

50$

ℎ
 and 

10$

ℎ
, respectively (Fu, Liu & Calamai, 2003). An overview of the 

parameters is shown in table 6. 

Table 6 Input variables 
Parameter Unit Value 

𝑵 − {1, 2, … |𝑁|} 
𝑺 − {1,2, … , |𝑆|} 
𝜹 𝑠 20 
𝝀 − |𝑆| ∗ |𝑆| 𝑚𝑎𝑡𝑟𝑖𝑥 𝑤𝑖𝑡ℎ 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒𝑠 

𝒑𝟏 𝑠 4 

𝒑𝟐 𝑠 2 
𝒄𝟏 $ 20 
𝒄𝟐 $ 50 
𝒄𝟑 $ 10 

 

4.3.3 Application 
The data mentioned in previous sections are the input for the mathematical program described in 

section 5.2.3. The solution for the program is found using the model solver Gurobi in Python. The 

general model structure in Gurobi consists of parameters, variables, constraints and an objective 

which makes it very easy to use. This model consists of 14979 continuous, 3024 integer and 3024 

binary variables. Next to that, it contains 15431 quadratic and 100 general constraints. 

The model is first relaxed with a dual simplex. This method relaxes the model in order to avoid 

infeasibility. The model is called ‘infeasible’ if there is no solution such that all constraints are met. 

After this root relaxation the first objective solution is found which is 1.193954e+02. This solution is 

determined in 6.02 seconds. However, this solution is not valid because it does not meet all the 

constraints of the MINLP. To find a feasible solution, the branch and bound algorithm is used. The 

initial objective solution is used to determine further solutions, which continues until one optimal 

solution is determined. The total number of solutions is determined by 2|𝑆|∗|𝑁|. Thus, the solution set 

will contain 226∗4 = 2.028241e31 possible solutions. Therefore, the model computation time is 

limited to 1800 seconds. This enables the model to have enough time to find a feasible solution and 

not have the computation time too long. 



Because the demand input is based on a normal arrival scale the solution output of each run differs. 

Therefore 10 consecutive runs are executed, and the average value of each term is determined. The 

average arrival rates are used to see what the skipped bus stops are. 

4.3.3.1 Model process 

After approximately 1000 seconds the model finds the first feasible solution which is approximately 

2e+02. This is shown in figure 10. The incumbent is defined as the possible solutions found over 

time. The goal of the modal is to make the gap between the incumbent and the lower bound zero. In 

the figure can be seen that the gap is narrowed down after ±1000 seconds but does not reach zero, 

because the computation is terminated after 1800 seconds. The gap is then 13.4%, which means 

that the value of the solution found could be 13.4% lower since it can take lower values until the 

lower bound is reached. 

 

Figure 10 Model process towards optimal solution 

 

4.3.3.2 Optimal solution 

The optimal solution found by the model resulted in the following pattern of serving and skipped 

stops shown in figure 11. For some reason, the average demand number in the OD-matrix were not 

able to find an optimal solution. Therefore, an approximate average is used determined from ten 

simulations that uses demands that are normal distributed.  

 



Figure 11 Stop-skipping pattern bus line 2 

 

The model determined to skip 3 stops on 𝑁 = 2 and 15 stops on 𝑁 = 4. 𝑁 = 1 and 𝑁 = 3 stay the 

same and this is caused by the constraint that two consecutive trips cannot skip the same stop. This 

is determined to be most effective by skipping stops every even trip number, no matter how many 

trips per hour there are. The difference in number of skipped stops between trip 2 and 4 is rather 

unusual but shows up in every simulation. The only input variables that change with each trip are the 

arrival rates, but this should only be able to create small differences. 

4.3.3.3 Cost comparison 

The new stop-skipping pattern is compared to the current situation with all stops served. For both 

situations the total passenger waiting time, total bus travel time and total passenger in-vehicles 

between 8:00 and 9:00 a.m. are compared and shown in figure 12. 

 

Figure 12 Cost and time comparison original model outcome 

 

From the figure can be seen that with the stop-skipping strategy the total waiting time increases 

with  21.049%. The total travel and passenger in-vehicle time decrease with 9.4196% and 31.046%, 

respectively. The total costs decreased with 6,19488%. The huge changes of the total waiting and in- 

vehicle time are caused by the big number of skipped bus stops in trip 4 as seen in figure 11. With all 

the skipped stops, passengers are not able to board which results in an increase of the waiting times 

and a decrease of the in-vehicle time. For this reason, there is chosen to change the pattern of trip 4 

to the same pattern as trip 2  presented in figure 13. 

-40,00%

-30,00%

-20,00%

-10,00%

0,00%

10,00%

20,00%

30,00%

Waiting time Travel time In-vehicle time

D
if

fe
re

n
ce

Cost difference model outcome



 

Figure 13 Stop-skipping pattern adapted situation 

 

For this adapted solution, the total waiting, travel and in-vehicle time are compared to the current 

situation with all stops served. This is shown in figure 14. 

 

Figure 14 Cost and time comparison adapted pattern 

 

The adapted situation still shows in increased waiting time of 5,635264%. The total travel and in- 

vehicle time decreased with 2.5653% and 7.0747% respectively and the total time decreased with 

1.3731%. So, with the adapted situation, the total time decrease is smaller, but the total waiting 

time increase is acceptable. 

4.4 Sensitivity analysis 
A sensitivity analysis is conducted to assess the validity of the cost factors. The values of the cost 

factors have a big impact on the outcome of the stop-skipping pattern. 

4.4.1 Cost passenger waiting time 
By changing the values of 𝑐1, the effects on the total time and number of skipped stops are 

calculated. The result is shown in figure 15. 
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Figure 15 Sensitivity analysis waiting time cost 

 

The analysis shows that a value of 20 has the lowest number of skipped stops compared to the other 

cost factors. Obviously, when 𝑐1 is increased above 40 the waiting time decreases but this results in 

a higher total time compared to the total time belonging to a cost factor of 20. 

4.4.2 Cost travel time 
The changes of the objective terms as a result of changing the travel time cost factor 𝑐2 are shown in 

figure 16. 

 

Figure 16 Sensitivity analysis travel time cost 

 

There can be concluded that with a higher travel time cost, more stops are skipped. As a logical 

result of this, the in-vehicle time and the travel time decrease when the travel time cost factor 

increases. However, the waiting time is decreasing which is remarkable. Because 50 is the only value 

that gives a long computation time, the time cost factor can be stated very sensitive and is probably 

close to the optimal value. 



4.4.3 Cost passenger in-vehicle time 
The changes to the passenger in-vehicle time cost factor, 𝑐3, are shown in figure 17. 

 

Figure 17 Sensitivity analysis passenger in-vehicle time 

 

Figure 17 shows that a higher in-vehicle cost factor results in more skipped stops. On top of that, the 

skipped stops reach a maximum after the value of 33. This also substantiates the choice for a in-

vehicle cost of 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 Conclusion 
In this thesis the stop-skipping strategy is used as main goal to reduce the travel time of buses 

operating in Twente commissioned by ‘Twents’, a sub service of Keolis Nederland. Through a data 

analysis including passenger division, demand division and landscape types, bus line 2 turned out to 

be the most useful option for optimalization. By establishing a model containing parameters, 

variables, constraints and objective an optimal solution is found by minimizing the value of this 

objective. The model is ranked as a MINLP (Mixed Integer Non-Linear Program) because the 

objective consists of multiplications and a binary variable is used to indicate if a stop is served or not. 

The model is solved with branch and bound and needs a computation time of at least 1000 seconds 

to find a solution. The outcome where several stops are skipped shows a decrease of 6,2% of the 

total time compared to the current situation where all stops are served. However, this solution 

shows a total waiting time increase of 21%, caused by an extensive amount of bus stops in trip 4. An 

adapted situation where trip 4 skips the same stops as trip 2 shows a total time decrease of 1.4% 

and a waiting time increase of 5,6%. This adapted situation shows that with stop-skipping an 

improved scenario can be reached but it cannot cogently be confirmed as an optimal solution. 

Nevertheless, the adapted situation answers the research question as it is the best solution using the 

stop-skipping model. A sensitivity analysis showed that the optimal values for the cost factors are 

determined based on the computation time. The waiting time, travel time and in-vehicle time cost 

factors must be around 20, 50 and 10 respectively. This means that the factors chosen for this 

research are acceptable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 Discussion 
The results of the stop-skipping model showed expectations but also inconsistencies. The first 

abnormality is the high number of skipped stops of trip 4. This is not realistic because a part of these 

bus stops has an average or even high boarding and/or alighting rate. Furthermore, this unrealistic 

pattern leads to incomplete time values. An explanation for this phenomenon could be that the cost 

for the waiting time is valued too low. As a result, the model values travel time more than waiting 

time and thus decide to skip the stop with the lowest waiting times, which in this case 15 stops. 

Another explanation could be that the objective is incomplete and is too focused on certain 

variables. Right now, the waiting time is determined by a consideration between the boarding rate 

𝑢𝑖,𝑗 and the skipped rate 𝑚𝑖,𝑗. The travel time is determined by 𝑡𝑖,𝑗 and the in-vehicle time includes 

the 𝑏𝑖,𝑗𝑘. This means that the alighting of passenger is not directly considered in the objective, and 

this might be the cause for the skipped stops in trip 4. A solution for this could be an additional term 

to the objective that takes the alighting passenger into account. 

A second point of discussion is the correctness of the input data for the stop-skipping model. The 

arrival rates are deduced from the data between June 2nd and July 31st. This is a relatively short time 

period and resulted in a large amount of zero trips in the OD-matrix. It is not realistic as it would 

assume that there will always be zero trips between these stops in the future. This could be avoided 

when the data is sampled for a longer time period. Next to this, the COVID regulations did decrease 

the trips as well, which resulted in less data than there would be with a regular scenario. Another 

parameter that could be more precise are the inter station times. They are estimated based on the 

length between the bus stops and the planned arrival times. However, the inter station times are 

used in the constraints and objective so a better approximation should contribute to more reliable 

outcomes. 

Another error that shows up during the computation of the solution is the value of the binary 

variables. Due to multiplications with the binary variables, some of their values slightly decreases 

under 1 or 0. Because of this, some constraints cannot behave properly, and the outcome is biased. 

Third, a verification of the model is done with a test case that contains a bus line with 9 stops. 

Although, there might still be errors in the formulation of constraints and/or objective due to limited 

knowledge of their implementation in the Gurobi model solver. 

At last, the question raises how this research will help in future problems. Although the outcome is 

not totally correct, it shows that the bus travel time and passenger in-vehicle time can be decreased. 

Furthermore, when stop-skipping will be applied at a bus line, the pattern will be announced in the 

travel planner applications. Most of the passengers will check the planner before they start their 

trip. When they see that their chosen bus stop of alighting is not served by the bus, a logical decision 

would be to go to a bus stop nearby that will be served. In this way, the waiting time of passengers 

will not be as high as the model outcome states. Next to that, the skop-skipping method is not really 

known in the Netherlands, whereas the public transport system is very extensive. It will be worth to 

test the principle of stop-skipping on especially longer bus lines, which include a lot of low boarding 

rate bus stops.  

 

 

 

 



7 Recommendations 
For further research the following highlights are proposed. First, the high number of bus stops 

causes the program to have a large computation time. When investigating a bus line with a lot of 

stops, the use of a well-developed computer is a must. 8 GB RAMS and at least 4 processors are 

recommended. Second, the arrival rates are recommended to be Poisson distributed. This 

distribution is often used for arrival rates and counts certain occurrences within a time period. The 

Poisson distribution was not suited for this research as the frequencies were too low. Therefore, it is 

also recommended to gather enough travel data. At last, other studies should consider other 

objective terms and no more than two terms per objective are needed. The travel time and 

passenger in-vehicle time behave the same when optimizing the model and therefore one of them is 

not actually necessary. 
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9 Appendix 
9.1 Appendix A: Bus lines 
Table 7 Overview bus lines 

Area Line Origin Destination Stops Remarks 

Enschede City 1 Universiteit Wesselerbrink 40  

 2 Helmerhoek Deppenbroek 26  

 3 Enschede Glanerbrug 16  

 4 Stroinkslanden Station (Enschede) 9  

 5 Zwering Station (Enschede) 12  

 6 Stokhorst Station (Enschede) 8  

 7 Station (Enschede) Station (Enschede) 16 To Marssteden 

 8 Hengelo Noord Enschede Zuid 40  

 9 Hengelo Enschede 13  
 802 P+R Zuiderval Van Heekplein 2  

Hengelo City 10 Veldwijk Station (Hengelo) 12  

 11 Hasseler Es Station (Hengelo) 13  

 12 Gezondheidspark Groot Diene 18  
 13 Hasseler Es Station (Hengelo) 17  

Almelo City 21 Station (Almelo) Windmolenbroek 12  

 22 Station (Almelo) Windmolenbroek 8  

 23 Station (Almelo) Schelfhorst 8  

 24 Station (Almelo) Schelfhorst 10  
 26 Station (Almelo) Twenteborg Ziekenhuis 11  

Regional 51 Almelo Hengelo 31  

 53 Hengelo Eibergen 26  

 59 Tubbergen Haaksbergen 34  

 60 Oldenzaal Enschede 37  

 61 Overdinkel Enschede 27  

 62 Borculo Denekamp 40  

 64 Overdinkel Almelo 40  

 66 Neede Oldenzaal 40  

 80 Hardenberg Westerhaar 21  

 81 Ommen Westerhaar 40  

 83 Vriezenveen Almelo 18  

 95 Almelo Borculo 40  

 96 Rijssen Nijverdal 18  

 97 Holten Haaksbergen 31  
 264 Denekamp Almelo 35  

Local 505 Station (Enschede) Hogeland 9  

 506 Enschede Boekelo 13  

 508 Stadsdeelkantoor Zuid Wkc Stroinkslanden 10  

 513 Nijverdal Raalte 14  

 525 Station (Almelo) Aalderinkshoek 9  

 530 Borne Borne 18 via Bornschematen 
 531 Borne Stoom Esch 13  

 



 532 Borne Letterveld 11 

 591 Tubbergen Bruinehaar 8 

 592 Weerselo Borne 14 

 593 Oldenzaal De Lutte 11 

 594 Den Ham Nijverdal 15 

 595 Haaksbergen Buurse 9 

 596 Ootmarsum Denekamp 16 

 597 Nijverdal Hellendoorn 14 
 599 Rossum Ootmarsum 15 

Students 601 Vriezenveen Almelo 3 

 602 Sibculo Almelo 6 

 604 Daarlerveen Almelo 8 

 605 Vroomshoop Almelo 5 
 681 Den Ham Almelo 29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9.2 Appendix B: Demand differences 
Table 8 Average demand per week 

 Difference 
 Weekend Working days 

Line Saturday Sunday  

1 33 -6 33 

2 34 -9 44 

3 33 0 30 

4 28 0 17 

5 30 0 38 

6 1 0 3 

7 nvt nvt 1 

8 nvt nvt 3 

9 1 -26 53 

802 nvt nvt nvt 

10 0 nvt 0 

11 0 0 27 

12 0 0 0 

13 -1 0 26 

21 1 nvt 0 

22 0 0 0 

23 1 nvt 0 

24 0 0 0 

26 0 nvt 1 

51 2 1 -2 

53 0 0 0 

59 0 nvt 11 

60 -2 nvt 3 

61 0 0 26 

62 1 0 42 

64 0 0 10 

66 1 nvt 4 

80 nvt nvt 2 

81 -2 3 1 

83 0 nvt 0 

95 1 nvt 20 

96 0 nvt -3 

97 1 nvt 23 

 

 

 

 

 

 

 



9.3 Appendix C: OD-matrix 
Table 9 OD-matrix bus line 2 

 


