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ABSTRACT
In dynamic ridesharing systems which are operated with an electric
fleet, charging is an essential but complex decision-making process.
Most contemporary electric vehicle (EV) taxi services require dri-
vers to make egoistic decisions on where, when and how long to
charge, leading to decentralized ad-hoc charging strategies. More-
over, knowledge about the current state of the mobility system is
often lacking or simply not shared between vehicles, making it
impossible to make a system-optimal decision. As a consequence,
transport and resource efficiency are likely to be suboptimal, impact-
ing the profitability of the service from the operator’s perspective.

Most existing approaches to intelligent charging control work do
not combine time, location and duration into a comprehensive con-
trol algorithm or are unsuitable for real-time operation in networks
with thousands of road segments. We therefore present a real-time
predictive charging method for dynamic ridesharing services with
a single operator. This method, called Idle Time Exploitation (ITX),
predicts the periods where vehicles are idle and exploits these peri-
ods to harvest energy. It relies on Graph Convolutional Networks
(GCNs) and a linear assignment algorithm to devise an optimal
pairing of vehicles and charging stations, in pursuance of maxi-
mizing the exploited idle time. Our approach works on large-scale
graph representations of the road network and enables fine-grained
decision-making. We evaluated our approach through extensive
simulation studies on real-world datasets from New York City. As
a reference, multiple baselines were devised with varying levels of
complexity. The results demonstrate that ITX outperforms all base-
line methods by at least 5% (equivalent to $70,000 for a 6,000 vehicle
operation) per week in terms of a monetary reward function which
was modeled to replicate the profitability of a real-world rideshar-
ing system. Moreover, ITX can reduce delays by at least 4.68% in
comparison with baseline methods and generally increase passen-
ger comfort by facilitating a better spread of customers across the
fleet. Our results also demonstrate that ITX enables vehicles to har-
vest energy during the day, stabilizing battery levels and increasing
resilience to unexpected surges in demand. Lastly, compared to
the best-performing baseline strategy, peak loads are reduced by
17.39% which benefits grid operators and paves the way for more
sustainable use of the electrical grid.
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1 INTRODUCTION
In shared transportation systems, multiple persons or goods can
travel inside the same vehicle. It can be regarded as an essential
component of sustainable transportation, since it increases the op-
erational efficiency while relieving the burden on infrastructure and
resources. The implementation of shared transportation systems
can therefore provide substantial benefits with regard to operational
cost, traffic congestion and consequently environmental impact [1].

Ridesharing is a prominent example of shared transportation
which concerns the movement of people. The original concept of
ridesharing, which is synonymous to carpooling, allows drivers to
offer a free seat in their vehicles if the destination of the fellow
traveler is the same or along the route of the driver. This concept is
suitable for long-distance travel but does not provide enough flexi-
bility to serve intra-urban high-frequency trips within short notice.
Dynamic ridesharing, which has been facilitated by the worldwide
increase in connectivity (e.g. through smartphone usage), provides
more flexibility by fulfilling on-demand trip requests in real-time.
Customers of such a service can request a trip through their smart-
phone (by providing a real-time GPS location), after which the trip
requests are assigned to a vehicle [4]. In this research, we regard
dynamic ridesharing as a form of Demand Responsive Transport
(DRT) in which a fleet of mixed-capacity shareable taxi vehicles is
centrally managed and dispatched. The taxi vehicles are operated
by dedicated human drivers who are financially compensated for
serving trip requests. Present-day examples of such services are
UberPool and Lyft Line. In the future, the real-time and ad-hoc
nature of dynamic ridesharing services provide opportunities for
the deployment of autonomous vehicles in urban transportation.
In this research, however, we determine that vehicles are operated
by employed human drivers as this is the prevailing practice in
contemporary taxi and ridesharing systems [4].

Electrification is one of the essential approaches to improve
efficiency and sustainability in transportation. In 2021, it is ex-
pected that more than one million electric vehicles (EVs) will be
sold in Europe alone [39]. Through various projects, the European
Union promotes the use of electric vehicles in the transport sec-
tor, which could help to achieve its target of reducing CO2 and
particulate emissions [28]. However, from an operator’s perspec-
tive, there are some drawbacks to operating a fleet of EVs as part
of a transportation service (e.g. a taxi or ridesharing service). As
of today, most optimization work in this area has focused on the
placement of the charging locations, in order to ensure that the
distance between the idle vehicles and the charging infrastructure
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is minimized [5, 47, 53, 54]. Other related work concerns the intel-
ligent distribution of power across vehicles that are present at a
charging station, e.g. so-called ‘adaptive charging’ [27, 52]. Even
though such methods already greatly improve the efficiency of the
charging infrastructure, they do not explicitly optimize the opera-
tional aspects of the service (such as routing and dispatching), nor
do they consider charging as an integral element of the operational
decision-making.

One of the most important implications of EV fleets for the
operator is the relatively limited range of the vehicles: in 2020,
the electric passenger car with the highest range (i.e. the Tesla
Model S Long Range) could drive just over 600 kilometers on a full
battery while the dominant internal combustion engine (ICE) car in
New York City taxi traffic, the Toyota Camry, could reach over 1,000
kilometers on a single tank [49]. An even more important drawback
of EV fleets is the significant time increase that is required to charge
the vehicles. A typical EV charging session (discounting overnight
charging) would last approximately 30 minutes, while it would take
at most 10 minutes to refuel an ICE vehicle [14]. Together with the
degradation of the battery cells, this suggests that that it is essential
to optimize the timing and duration of charging sessions, and to
ensure that these decisions integrate well into the main operational
processes, such as dispatching and repositioning [11].

When compared to EVs for private use, the challenges are more
substantial for EVs in commercial transportation systems, as their
required load is much larger and there are more spatial and tem-
poral constraints to take into account [11]. This is especially the
case for ridesharing systems, where multiple customers can use the
vehicle at the same time and where the dispatch and repositioning
processes are thus more complex and intertwined with charging
[21]. To determine what is the best time, location and duration for
the vehicles to charge, one therefore needs to take into account not
only the current state of the vehicles and charging infrastructure,
but also all customers that need to be served en-route as well as the
anticipated demands. To illustrate, it might be beneficial for a vehi-
cle with a higher State-of-Charge (SoC) to charge early if a shareable
demand is expected in the near future, such that the vehicle will be
able to serve a large number of anticipated customers concurrently
without having to charge. In another scenario, it could be optimal
for a charging session to be aborted if a new request has been made
and no other vehicles are nearby. Continuous trade-offs need to be
made between serving customers on time and anticipating future
demands while ensuring that the vehicles have sufficient energy
to carry out their operations. In this research, we aim to develop a
comprehensive control method which can produce real-time pre-
dictive decisions on charging behaviour and can be integrated with
other decision-making processes. We therefore present a real-time
predictive charging method for dynamic ridesharing services. This
method, called Idle Time Exploitation (ITX), attempts to exploit
idle time periods to charge the fleet and thus harvest energy. To the
best of our knowledge, there is no existing method available which
enables both real-time and predictive optimization of charging be-
haviour (i.e. when, where and how long) on a real-world scale level.
The contributions of this paper can therefore be summarized as:

• Optimizing decisions regarding charging behaviour, which
involveswhen,where and forhow long the vehicles charge.

To the best of our knowledge, there does not exist a method
which integrally optimizes the three decision variables by
exploiting predicted idle times, simplifying the optimiza-
tion task into a problem which can be solved in polynomial
time. The proposed ITX methodology is shown to reduce
operational costs from an operator’s perspective while also
reducing delays and improving comfort levels of passengers.

• Providing proactive charging opportunities which facilitate
energy harvesting during the day. The resulting energy re-
serves can be used to satisfy peak demands more smoothly.
Additionally, the power levels drawn from the grid are shown
to be more stable over time and space, alleviating the burden
on electricity infrastructure which paves the way for more
sustainable use of the electrical grid.

• Ease of integration with other operational decisions, i.e. dis-
patching and repositioning, by letting control processes oc-
cur in modular and sequential fashion. This ensures faster
runtimes (at the expense of global optimality), but also flexi-
bility and robustness as the ITX method can be used along-
side existing dispatching and repositioning frameworks.

• Real-time (in this study a one-minute interval) and predictive
decision-making capabilities at the scale level and granular-
ity of a large real-world city, with 6,000 vehicles and 8,500
roads. Simulation and policy generation are performed on
graph representations of a road network, which benefits
transferability of the system.

The rest of this paper is organized as follows. Section 2 describes
relevant related work for this paper, and further defines the re-
search gap which we aim to bridge. Section 3 explains the proposed
methodology and the main components of the system design. In
addition, this section describes the datasets used for the models
and experiments. Section 4 then lays out the parameter settings for
the models and simulator, as well as the design of the experiments.
Section 5 provides the experimental results and highlights the main
findings of this work. The conclusions, as well as opportunities for
future research, are presented in Section 6.

2 RELATEDWORK
In recent years, several optimization techniques for EV charging
have been proposed. However, most of the literature on this topic
has focused on privately owned vehicles, typically assuming that
these vehicles are used at a low frequency and charged at home
during the night [29, 35, 55]. Furthermore, works on shared trans-
portation systems deal mainly with the transport aspects, without
considering the charging as a part of the transport operation. How-
ever, there is a selection of works available which focus on the
optimization of electrification in transportation systems. In [11],
Clairand et al. discuss that these works “covered a broad range of
objectives for ETs and EBs [i.e. electric taxis and buses], such as
[positioning] and sizing charging stations, cost minimization, load
unbalance minimization, planning of charging stations, and so on.”
The authors also argue that “many of these works used optimization
methods to solve their problems”.

We aim to identify and categorize a selection of works that are
relevant to charging optimization, in order to explore potential



Improving Operational Efficiency In EV Ridesharing Fleets By Predictive Exploitation of Idle Times

areas of interest and research gaps which are specific to rideshar-
ing scenarios. Within this conceptual framework, we differentiate
related work by the primary stakeholder that benefits from the
optimization, the type of transport that it applies to, the decision
variables of the optimization task, the main objective and the op-
timization technique that is utilized. Additionally, we determine
whether the proposed methods are centralized (i.e. a single agent
approach), data-driven, predictive, and whether they could poten-
tially scale towards large real-world transportation systems. It must
be noted that it is hard to make a fair comparison of performance
between the listed works, since they are implemented under highly
different circumstances and for a variety of scenarios. Consequently,
we will mainly observe results and evaluation regarding computa-
tional efficiency to assess the scalability of the proposed approaches.
The resulting overview of related work is shown in Table 1. As a
general rule, we can classify works based on the type of decision
variable that is optimized: in Section 2.1, the works which concern
optimization of charging infrastructure (i.e. positioning, pricing or
scheduling) are described while Section 2.2 describes the works
which concern the optimization of charging strategies (from the fleet
operator’s perspective). In the latter section, we explore predictive
scheduling, heuristic and learning-based approaches before further
narrowing down on the research gap that our proposed method
aims to bridge.

2.1 Optimizing charging infrastructure
2.1.1 Pricing and scheduling. Some available literature considers
the main objectives of the optimization task to be related to the
efficiency of the EV charging stations. Hence, these works regard
the charging system operator as the main stakeholder. For instance,
in [51], Wang et al. propose a reinforcement learning (RL) approach
to optimize the pricing and scheduling at a charging station. The
main objective of this work was to increase the profit at an individ-
ual charging station. Other works aim to minimize charging cost
[43, 51] or delay time (i.e. time until a vehicle in the queue may
charge) [19, 56] at a charging station. Most of these works only
optimize for individual charging stations and therefore neglect the
implications of having a transportation system where the charging
policies at multiple charging stations are interconnected with op-
erational processes. In addition, many articles are focused on the
implications of EV charging on the electrical grid, i.e. optimizing the
power balance and peak load [30, 43, 55]. However, none of these
works consider the operational characteristics of a transportation
service as the central objective of their optimization problem.

2.1.2 Positioning of infrastructure. There is a considerable num-
ber of papers which involve optimization of electrification-related
decisions in (shared) transportation systems. Some of these papers
consider the locations of the charging stations as the decision vari-
able for the optimization problem. For instance, Asamer et al. [5]
propose a decision support system for placing charging stations
such that the charging demand of electric taxi vehicles is satisfied.
Tu et al. [47] implement a similar method, but incorporate tempo-
ral constraints to determine the optimal locations of the charging
stations. Moreover, Xylia et al. [53] propose a similar approach but
targeted at charging infrastructure for electric buses in Stockholm.
Another approach was developed by Gidofalvi and Yang [15], who

focus on electrification of road segments instead of conventional
charging stations. The authors propose a route-based electric road
network optimization (RENO) methodology which is shown to pro-
vide considerable cost savings for (shared) freight transportation
systems. In this work, however, we still consider charging infras-
tructure in the form of fixed facilities where vehicles can be plugged
in, given that such systems are most often used in practice [14].

2.2 Optimizing charging strategies
Other related work also considers electric buses, but aims to opti-
mize the charging strategies from the fleet’s perspective instead of
the placement of charging infrastructures. In [17], Houbbadi et al.
propose a nonlinear programming approach to optimize the charg-
ing strategy of an electric bus fleet. Using a numerical simulation,
the authors demonstrate that their approach minimizes electricity
cost and the battery aging. Even though their work does consider
operational aspects of the bus service, the authors only optimize
for overnight charging schedules. This scenario is considerably
different from a taxi or ridesharing service where vehicles serve a
larger variety of trips which do not follow a planned route. Given
that battery capacities in ETs (i.e. electric taxis) are smaller and that
longer overall distances are covered [11], they will need to charge
in between trips, leading to additional constraints and objectives
which should be taken into consideration.

There are other works that attempt to optimize EV charging from
a transport-operational perspective. However, many of these works
use fixed parameters such as the battery level to determine when
to start and finish a charging session. For instance, Tian et al. [46]
propose a charging station recommendation system for EV taxis.
The times at which the vehicles charge are predetermined based
on a real-world dataset of recharging events, and are therefore not
part of the decision variables for optimization. The authors also
assume that a vehicle must remain at the charger until the battery
is completely full. However, since less power is supplied when
the battery level approaches 100%, charging sessions with varying
duration can be more efficient for the overall transport operation.
Similarly, other authors propose methodologies that do not consider
the duration of charging as a decision variable [34, 50, 57]. This
presents further opportunities for the optimization of charging
schedules within the operational decision-making process.

In [42], Shi et al. propose a linear programming solution to de-
termine the optimal routes for an EV fleet given a set of pickup
and dropoff requests and the battery states of the vehicles. They in-
corporate the spatio-temporal relationship between vertices in the
graph and consider minimization of the waiting time and the travel
distance as the objective of their optimization problem. The authors
demonstrate that the proposed method can find optimal routes
for small-scale problems. However, they add that the optimization
problem is NP-hard and “does not scale well with the number of
customers and EVs”. Therefore, this approach is likely inadequate
for real-time optimization of charging strategies with the scale level
and granularity that are required by full-scale ridesharing services.
Additionally, the authors do not consider the possibility of letting
vehicles charge when they are idle, even though this is arguably
the most advantageous moment to charge from an operational as
well as a customer’s perspective.
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Author Stakeholder Type of transport Decision variables Main objective Approach Centralized Data-driven Real-time Predictive Scalable
Xylia et al. [53] Public transport operator Bus Charging station placement Emissions and energy consumption MILP ✓ ✓ × × ✓
Houbbadi et al. [17] Public transport operator Bus Charging scheduling Minimizing cost and battery aging NLP ✓ × × × ✓
Yang et al. [54] Infrastructure providers Taxi Charging station placement Minimizing infrastructure cost ILP ✓ ✓ × × ×
Lee et al. [27] Charging system operator Private Adaptive charging control Charging time, load distribution Framework × ✓ ✓ × ✓
Yi et al. [55] Charging system operator Private Adaptive charging control Load flattening QP × ✓ ✓ × ×
Wang et al. [51] Charging system operator Private Pricing and scheduling Maximizing charging station profit RL × ✓ ✓ ✓ ✓
Jin et al. [19] Charging system operator Private Charging scheduling Minimizing cost and delays LP × × ✓ × ×
Sundström et al. [43] Vehicle fleet operator Private (fleet) Charging scheduling Minimizing cost, power balancing LP, QP ✓ × × × ×
Nguyen et al. [30] Vehicle fleet operator Private (fleet) Charging scheduling Minimizing peak load LP ✓ × × × ✓
Sassi et al. [38] Vehicle fleet operator Private (fleet) Charging scheduling Minimize charging cost Heuristic ✓ × × × ✓
Shao et al. [40] Vehicle fleet operator Private (fleet) Routing and charging Minimize travel and charging cost Genetic alg. ✓ × × × ✓
Tian et al. [46] Urban taxi provider Taxi Charging station selection Minimizing waiting times Framework × ✓ ✓ ✓ ×
Qin et al. [34] Urban taxi provider Taxi Charging scheduling Minimizing waiting times LP × × × × ×
Wang et al. [50] Urban taxi provider Taxi Dispatching and routing Maximize time before charging Heuristic ✓ × ✓ × ✓
Zhu et al. [57] Urban taxi provider Taxi Charging scheduling Minimizing charging times Heuristic ✓ × × × ×
Asamer et al. [5] Urban taxi provider Taxi Charging station placement Maximizing demand coverage MILP ✓ ✓ × × ✓
La Rocca et al. [36] Urban taxi provider Taxi Routing and charging Income and waiting times Heuristic ✓ × × × ✓
Tu et al. [47] Urban taxi provider Taxi Charging station placement Maximizing demand coverage Genetic alg. ✓ ✓ × × ✓
Shi et al. [42] Ridesharing provider Ridesharing Charging scheduling Maximize transport efficiency MINLP ✓ × × × ×
Kang et al. [23] Ridesharing provider Ridesharing Complete system design Maximize profitability and feasibility SQP ✓ × × × ×
Zhang et al. [56] Ridesharing provider Ridesharing Repositioning routes Minimize waiting times LP ✓ ✓ ✓ ✓ ×
Iacobucci et al. [18] Ridesharing provider Ridesharing Repositioning and charging Minimize cost and waiting times MILP ✓ ✓ ✓ ✓ ×
Pettit et al. [32] Ridesharing provider Ridesharing Routing and charging Minimize cost and emissions DRL × ✓ ✓ ✓ ×
Shi et al. [41] Ridesharing provider Ridesharing Dispatching and charging Minimize societal cost DRL - ✓ ✓ ✓ ✓
Kullman et al. [26] Ridesharing provider Ridesharing Dispatching, repositioning and charging Maximize expected profit DRL - ✓ ✓ ✓ ×

Table 1: Overview of literature related to EV charging optimization.

2.2.1 Predictive scheduling. In contrast to this approach, Zhang
et al. [56] propose an optimization method which attempts to pre-
dictively control repositioning strategies, with charging being a
constraint. Hence, the scheduling of charging sessions was not op-
timized and vehicles would charge at maximum power as soon as
they connect to charging stations. In [18], Iacobucci et al. therefore
extend the former method by integrating the scheduling of charg-
ing as a decision variable in the optimization problem. A numerical
simulation performed with real-world data from Tokyo suggests
that their approach allows “efficient optimization of both aspects
of system operation”. Yet, the authors mention that their approach
is limited in scale, as the computational complexity grows more
than linearly with the simulation size. As a result, solving the opti-
mization problem becomes “infeasible for more than a few tens of
vehicles”, which makes the approach unsuitable for real-time opti-
mization. The authors suggest that heuristics-based optimization
models can be regarded a scalable alternative for large scenarios.
Another limitation of their work is that charging stations are mod-
elled in a relatively simplistic fashion. For instance, the authors
assume that there are no congestion constraints at charging sta-
tions, while in reality most stations will be able to serve only a few
vehicles simultaneously. Moreover, the authors consider a simple
linear battery model and allow vehicles to charge at any vertex in
the network, which also does not represent a realistic scenario.

2.2.2 Heuristic approaches. Similarly, other articles that focus on
the optimization of charging scheduling often employmathematical
optimization techniques such as the ones previously mentioned [23,
38]. In practice, this usually means that such methods are either too
computationally complex to ensure scalability or neglect essential
constraints. An alternative is to use heuristic-based methods [36, 38,
40], which produce fast and feasible solutions but are unable to find
a globally optimal solution. Furthermore, heuristic approaches are
relatively inflexible and therefore can lose their effectiveness when
operational processes or priorities change. For instance, a heuristic
which mainly aims at minimizing customer waiting times could lose
its value when an operator decides that it is more important to focus
on maximizing fleet utilization. Learning-based approaches could

be regarded as a suitable alternative due to their ability to adapt
to highly complex environments while providing full flexiblity in
defining the objective function.

2.2.3 Learning-based approaches. In [32], Pettit et al. propose a
learning-based approach in the form of deep reinforcement learning
(DRL). The authors attempt to optimize the driving and charging
policy for an agent, i.e. a ridesharing EV. Simulations on real-world
data suggest that their agent outperforms the heuristic baselines.
However, the authors only consider a single vehicle in the environ-
ment and focus mostly on the short-term reward from charging.
Hence, the interactions between vehicles as well as the system-wide
operational influences are neglected in this research. Therefore, the
approach is arguably unsuitable for transportation systems with
a central operator, where it is more essential to optimize towards
the system-wide benefits. Shi et al. [41] also propose a reinforce-
ment learning approach, but their work employs a multi-agent
framework where the interactions between vehicles in the fleet
are simulated. The framework produces separate actions for ev-
ery vehicle which are then used by a centralized agent to make
decisions on dispatching and recharging. The authors demonstrate
that their approach outperforms benchmark algorithms in terms
of operational costs and customer delays. However, Kullman et al.
[26] argue that a limitation of this work is that no repositioning is
taken into account in the decision-making process. Therefore, they
propose a multi-agent DRL method which simultaneously makes
repositioning and dispatching decisions. Even though the authors
demonstrate that their method outperforms the baseline approach,
they note that the performance decreases as the number of vehicles
and requests grows. This suggests that their approach does not scale
well with large fleets and complex environments. Additionally, the
authors do not model the environment in high detail: they divide
Manhattan, New York City into 61 taxi zones. In practice, demands
and traffic flows might differentiate significantly between roads and
crossings, and hence a graph representation of the environment
will yield more accurate simulations, and consequently, a more
fine-grained policy. Besides, using a graph representation would be
beneficial for the transferability of the proposed solution, as taxi
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areas are defined differently per city whereas graph representation
can be composed for every road network from ubiquitous sources
such as OpenStreetMap. Another limitation of the work by Kullman
et al. is that repositioning and charging are regarded as a single
action. This prevents vehicles from being able to reposition to or
via any other location than the 302 charging stations. It also ne-
glects the possibility for vehicles to follow a maximum-likelihood
repositioning path where new customers can be picked up along
the way. Furthermore, the duration of a charging session is not
directly determined by the DRL agent, even though we argue that it
potentially has a large impact on the overall operational efficiency.
Overall, this suggests a need for a system which can produce real-
time and predictive decisions on charging behaviour and integrate
the three decision variables when, where and for how long into a
comprehensive control method. It also emerges that the influence
of charging times, locations and duration on the operational per-
formance of a ridesharing system is not yet understood. We have
thus identified a research gap on the integration of charging opti-
mization into the operational decision-making processes in order
to maximize operational efficiency and hence the profitability for
the operator. Our proposed Idle Time Exploitation (ITX) method
aims to bridge this research gap by simplifying the optimization
problem, intuitively making use of idle times as well as ensuring
transferability in real-world scenarios with thousands of vehicles
moving on a fine-grained road network.

3 METHODOLOGY
3.1 Overview
The methodology can be divided in five different components. First,
we preprocess and clean the real-world trip datasets and map the
trips to the vertices in the network under study. Subsequently, we
describe the construction of an environment which simulates the
movement of ridesharing vehicles on the selected road network,
and explain the algorithms that are used to optimally dispatch
the vehicles to the requests and reposition them when they are
idle. We then propose the algorithm which is used for optimizing
the charging schedules of the ridesharing vehicles. In order to
achieve this, we first describe the Graph Convolutional Network
model that is trained to predict idle times, upon which the charging
optimization algorithm acts.

3.2 Datasets
The simulations and control mechanisms are based on a real-world
taxi trip request dataset which contains more than 100 million taxi
trip requests from the city of New York City, USA. The data is
released by the New York City Taxi and Limousine Commission
(NYC TLC) on a monthly basis [44]. We decide to use ‘traditional’
taxi data instead of specific data about ridesharing for a variety of
reasons. First of all, the volume of data is much larger for regular taxi
systems, which benefits the accuracy of our simulations and also
facilitates assessment of the proposed approach and its scalability
in a real-world scenario. Moreover, the high usage of TLC taxi data
in related work means that results can be verified and compared
with other approaches. We argue that data of regular taxi trips
can be used to represent realistic demands. This approach provides
advantages for the majority of real-world scenarios where trip

data about ridesharing is not (yet) available. However, it must be
noted that the volume of trip requests is likely not a completely
accurate method to measure demand, due to the limitations in
availability of New York City taxicabs. As a result, trip request data
will likely produce lower demand estimates than there would be
in reality. While it is difficult to provide more accurate estimates
of demand, one should take into account that results could be
influenced marginally, e.g. delays at peak times being slightly lower
than they would be in reality.

The graph representing the road network was retrieved from
OpenStreetMap using the OSMnx Python library [8]. Upon initial-
ization of the graph, it was saved as a GraphML file in order to be
further processed and utilized with the Igraph Python library [13].

3.3 Preprocessing
The raw trip data from TLC comprises a considerable volume, i.e.
more than 10 GB for the complete year-long period. Therefore, it
is an essential task to clean and process the data to decrease both
the time and space complexity of the simulated environment. Since
mid-2016, TLC uses area codes instead of coordinates to describe the
origin and destination of trips. This makes it harder to accurately
match trips to vertices in the graph. Hence, we use one year of trip
data from July 2015 until July 2016, where the coordinates are still
available. The relevant attributes that are available for every trip
are: pickup date/time, pickup coordinates, dropoff coordinates and
number of passengers.

Only the Manhattan area of New York City was selected in order
to have a clear and well-defined study-area. Subsequently, irregu-
larities and redundancies were treated: duplicate vertices and edges
were consolidated and small isolated sections were removed. Dead-
ends were removed from the graph in order to prevent vehicles
in the simulator environment from getting stuck. The resulting
directed graph contains 3,555 vertices and 8,535 edges.

Based on the road network that is represented by the graph, only
the trips within Manhattan (i.e. both the pickup and dropoff coor-
dinates located in Manhattan) were queried from the trip request
dataset. Also, trips with an average speed of lower than 1 km/h or
more than 100 km/h are considered to be invalid and removed from
the dataset. The trips are matched to the vertices of the graph in
accordance with the methodology proposed in Section 3.3.1.

3.3.1 Matching trips to vertices. We start by defining the set 𝑅 of
trip requests. An individual trip request 𝑟 ∈ 𝑅 contains multiple
attributes: a pickup timestamp, pickup coordinates and dropoff
coordinates. We also define the road network as a directed graph
𝐺 , with a set 𝑁 of vertices and a set 𝐸 of edges. We simply match
the trip’s pickup coordinates with the nearest vertex based on the
haversine distance 𝑑 (𝑃1, 𝑃2), and do the same for the dropoff coor-
dinates. Upon implementation, the performance of this algorithm
is enhanced using vectorization in Python. The proposed approach
is shown in Appendix A.

The algorithm yields an origin-destination mapping (𝑛𝑜 , 𝑛𝑑 ) for
all 𝑟 ∈ 𝑅, with 𝑛𝑜 being the pickup vertex and 𝑛𝑑 being the dropoff
vertex. With the resulting origin-destination mapping, we then
perform the following tasks:
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• We determine the travel times (i.e. the time difference in
seconds between pickup and dropoff time) for all origin-
destination pairs of vertices in the dataset. Accordingly, we
train a time and space-dependent XGBoost model which can
predict the travel times between an arbitrary pair of vertices
in𝐺 . This model uses the origin and destination coordinates,
euclidean distance between the two points, time of day and
day of week as inputs. After training the model with similar
setings as used in [22], the 𝑅2 score on the test set is 0.81.
At fixed intervals (hourly in our simulator), travel times are
predicted for all combinations of vertices in the road network,
i.e. every combination of coordinate pairs.

• We save the original-destination mapping to a dataset, which
will be replayed in the simulator. This way, the trip request
data can directly be coupled to the network vertices in the
simulator such that vehicles can be assigned to the requests,
and can move along the origin and destination vertices, re-
spectively. The related processes are further explained in (1),
(2), (3) and (6) of Section 3.4.

3.4 Simulation
We have developed a simulator which can simulate passenger de-
mand and the trajectories of a ridesharing fleet at intervals of 1
minute. All trip requests in the simulation are exactly reproduced
according to the trip request dataset as described in Section 3.2.
Based on the planned paths (i.e. either when serving requests or
repositioning), vehicles move from vertex to vertex inside the sim-
ulated road network. The path of a vehicle is defined as a queue
containing a sequence of vertices, where the first vertex in the
queue is removed once that vertex has been reached. Their speed
of movement along the edges is determined by the predicted travel
times, which are recomputed at an hourly interval. Vehicles are
objects which individually keep track of the current vertex and the
time that they have spent at that vertex - if the vehicle has been
there longer than the travel time towards the next vertex in the
queue, the vehicle will move to the next location and the first vertex
will be removed from the queue. This process of moving vehicles
through the network based on travel time estimations forms the
fundamental core of the simulator. In Figure 1, a comprehensive
diagram of the simulator processes and modules is shown.

3.4.1 Assumptions and definitions. Several assumptions were made
upon modeling the ridesharing system and the corresponding sim-
ulator. These assumptions are necessary to ensure that the study is
clearly defined and bounded. Also, they help to maintain accept-
able complexity levels, as well as consistency and stability of the
experiments.

• All customers of the ridesharing service are willing to share
their trip with other customers. That is, every customer can
be theoretically combined with any other, subject to the
maximum capacity and current path of the vehicle.

• Requests which cannot be served within 5 minutes are ne-
glected. This means that, with a one-minute a simulation
interval, there are five opportunities for a vehicle to be as-
signed to a request by the dispatch algorithm.

• Demand is assumed to be equal to the actual observed taxi
trips in the dataset, as previously explained in Section 3.2.

• The traffic status in the simulator (e.g. many vehicles moving
along an edge) does not influence the travel time predictions,
hence avoiding the occurrence of feedback loops. Moreover,
movement of other (non-fleet) traffic is not simulated.

• The initial positioning of the fleet is determined randomly
upon initialization using a uniform distribution. Hence, ev-
ery vehicle will be placed at a random vertex in 𝐺 , with all
vertices having the same likelihood of being selected.

• The locations of the charging stations are fixed, and deter-
mined in accordance with Section 3.4.4. Also, the assumption
is made that charging infrastructure is only utilized by the
fleet of the ridesharing service. The presence of other (e.g.
consumer) vehicles is therefore not taken into account.

• If a vehicle runs out of battery, it will hold position for 60
minutes, after which it will be towed to the nearest charg-
ing station. Further detail about towing costs is provided in
Section 3.4.3.

3.4.2 Processes. During a single iteration in the simulator, which
equals a one-minute time interval, several actions are performed:

(1) Request retrieval Retrieve the requests that occur at the
current timestep from the dataset, merge with requests that
could not be served during the last five minutes. Requests
which cannot be served after 5minutes are neglected, leading
to a lower trip acceptance rate.

(2) Request handling Handle the outstanding requests and
compute the optimal vehicles to serve them, based on the
number of vacant seats, distance from the new customer and
the expected delay for existing customers. If the request has
been pending for more than 5 minutes, it is rejected.

(3) Vehicle dispatching Dispatch the vehicles which have ac-
cepted a trip request in Step 2. Compute their updated path,
number of remaining vacant seats and estimated travel time.

(4) Charging control This is the primary action under study in
this work. First, the idle vehicles (i.e. with no occupied seats
and no planned route) are selected. Subsequently, the charg-
ing control algorithm (proposed in Section 3.6) determines
which idle vehicles should charge, and to which charging
stations they will be sent. Moreover, when a vehicle is out
of battery, it will need to hold position for 60 minutes, after
which it will be towed to the nearest charging station.

(5) Vehicle repositioningAfter the charging control algorithm
determines which vehicles are sent to a charging station, the
remaining idle vehicles (i.e. with no occupied seats and no
planned route) are repositioned along a route which is com-
puted by the repositioning algorithm. Repositioning is based
on the current position of a vehicle, the expected demand
and positioning of other vehicles.

(6) Moving vehicles Based on the sum of time spent at the
current vertex and the time advancement in the simulator,
it is determined which vehicles should move to their next
vertex. If a vehicle moves to a new vertex, the corresponding
amount of energy is drawn from the battery. Subsequently,
we check if the vehicle has reached one of the following:

(a) The pickup vertex of its customer, in which case the cus-
tomer is picked up and the number of occupied seats is
increased.
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Figure 1: Schematic diagram of simulator processes and modules

(b) The dropoff vertex of its customer, in which case the cus-
tomer is dropped off and the number of occupied seats is
decreased. If the vehicle is then empty, it becomes idle and
will be dispatched or repositioned in the next iteration.

(7) Saving metrics The relevant metrics are stored in memory.
All measurements are saved to disk periodically at an interval
of 60 minutes (simulator time).

3.4.3 Vehicle modeling. To facilitate the assessment of ourmethod’s
robustness, we attempt to model a heterogeneous fleet with a va-
riety of vehicle types. The main objective is to bring variance in
battery capacity, charging power and seating capacity of the fleet.
Therefore, we decided to model a compact hatchback (Nissan Leaf),
a sedan (Tesla Model 3 LR) and a van (Nissan e-NV200) using
real-world data to build energy consumption and operational cost
models that are reasonably accurate. The parameters for each vehi-
cle model [31, 33, 37], which are used in the energy consumption
step (6) of Section 3.4.2 and the reward function of Section 3.4.5,
are displayed in Figure 2. The simulator environment allows for
the initialization of any number of vehicles of each vehicle type.

The energy consumption behaviour of the battery is determined
by the curb weight, number of passengers, frontal area and fric-
tion coefficients of the respective vehicle type, as described by the
following equations [25]:

𝑃 =
1
2
· 1.225 ·𝐶𝑑 · 𝐴 · 𝑣3 + 9.81 ·𝐶𝑟 ·𝑚 · 𝑣 [𝑊 ] (1)

𝐸 =
𝑃 · 𝑡

3.6 · 106
[kWh] (2)

In this equation, 𝐶𝑑 denotes the drag coefficient, 𝐶𝑟 the rolling
resistance coefficient and 𝐴 the frontal surface, all of which are de-
pendent on the vehicle type (see Section 3.4.3 for the specifications
per type). For every vehicle, we set the idle power 𝑃𝑖𝑑𝑙𝑒 to 1500 W.
The mass𝑚 is determined by the sum of the vehicle’s curb weight

Nissan Leaf

4 passengers

50 kWh

50 kW

1521 kg

2.27

0.013

0.29

0.195 $/km

Tesla Model 3 LR

4 passengers

82 kWh

250 kW

1847 kg

2.22

0.016

0.23

0.195 $/km

Nissan e-NV200

6 passengers

40 kWh

46 kW

1667 kg

3.21

0.016

0.31

0.338 $/km

Capacity

Battery capacity

Charging power

Curb weight

Frontal area

Crolling

Cdrag

Operational cost

m2 m2 m2

Figure 2: Specifications of parameters for every EV model

and the number of passengers multiplied by 80 kg. The travel time 𝑡
in seconds and speed 𝑣 in m/s are derived from the predicted travel
time and the distance of the edge that was traversed.

The charging behaviour of the battery is determined by the
battery capacity and the specified charging power 𝑃𝑚𝑎𝑥 . In a real-
world scenario, the charging rate (i.e. the supplied power) tapers
off after reaching a State-of-Charge (SoC) of approximately 70%
[26]. Therefore we model that, between a SoC of 70% and 100%,
the supply power decreases linearly from the vehicle’s maximum
charging power to zero.

𝑃𝑐ℎ𝑎𝑟𝑔𝑒 (𝑆𝑜𝐶) =
{
𝑃𝑚𝑎𝑥 , if 𝑆𝑜𝐶 ≤ 0.7
1
0.3𝑃𝑚𝑎𝑥 − 1

0.3𝑃𝑚𝑎𝑥 · 𝑆𝑜𝐶, otherwise
(3)

The charging curve therefore is asymptotic and it will be im-
possible to fully charge the battery. Therefore, independent of the
requested charging time, the vehicle will be uncoupled when the
SoC is equal to or larger than 99%.



MSc Thesis Jesper C. Provoost

Figure 3: Random allocation of 500 chargers in Manhattan,
with underlying heatmap of closeness centrality

3.4.4 Charger modeling. The locations of chargers in the simu-
lator are determined using a probabilistic procedure. First, since
EV chargers are often positioned on parking areas, we download
the locations of all off-street parking areas in Manhattan, New
York City using OpenStreetMap. The resulting coordinates are then
matched to the vertices of the road network in accordance with
Section 3.3.1. Subsequently, we compute the closeness centrality
using the Igraph library [13]. Our reasoning for this is that more
chargers are placed in denser and closely connected areas of the
city since there will be a higher energy demand due to increased
vehicle movements through these areas. For all vertices at which a
parking area is located, the closeness centrality score is added to
an array. The values in this array are then normalized and used as
probabilities to perform random sampling of the charger locations.
The sampling is repeated 𝑘 times (depending on howmany chargers
should be placed, which is a simulator parameter) with replacement.
An example of 𝑘 = 500 randomly generated chargers according
to this procedure is visible in Figure 3. Please note that we define
a vertex with one or more chargers as a charging station, i.e. a
charging station is a location where vehicles can plug in to one or
more chargers.

The charger model is based on the Tesla Urban Supercharger
network, which is currently in operation in Manhattan and con-
sists of 72 kW DC fast chargers [45]. During a charging session,
the supply power is therefore determined by the vehicle battery
but limited at 72 kW. The charger is able to deliver its full power
continuously, i.e. independent of other vehicles being charged at
the same charging station. However, depending on whether the
SoC of the battery is above or below the tapering point, the rate at
which the battery is charged might decrease (see Section 3.4.3). We
implement a queuing mechanism at the charging stations: when the
control algorithms decide that a vehicle should charge, it will store

internally the ID of the charging station as well as the planned
charging time. Once the vehicle arrives at the charging station,
it will be placed in a queue. Once a charger within the charging
station becomes available, it is assigned to the next vehicle for the
requested time period (or until the battery is 99% full). The charging
stations therefore operate according to a first in, first out (FIFO)
mechanism. Even though this might result in scenarios where a ve-
hicle can charge later than initially expected upon decision-making,
we argue that such a system represents the real-world better, since
most contemporary charging infrastructure operates according to
a first come, first serve principle. To mitigate the issues, we ensure
that all vehicles have access to the expected waiting times at the
charging stations, based on queue lengths as well as all vehicles
that are currently underway to the charging station.

3.4.5 Reward function. The main reward function is modeled to
represent the operating profit of the ridesharing service. Since a
dynamic ridesharing service on the scale level of this research
does not exist today, there is limited information on the exact
cost items that such a service would face in a real-world scenario.
Therefore, we base our monetary reward function on the existing
regular taxi services in New York City, as well as ridehailing services
such as Uber. We determine that the operating cost consists of
multiple components: the vehicle operational cost𝐶𝑜𝑝 (in $/km),
the charging cost𝐶𝑐ℎ𝑎𝑟𝑔𝑒 (in $/kWh) and the towing costs𝐶𝑡𝑜𝑤
(in case a vehicle gets stranded). The vehicle operational cost is
defined per vehicle type in Section 3.4.3 and based on the work of
Bösch et al. [9]. The charging cost is set to $0.40 per kWh [6, 7].
The base towing cost is $125 plus $2.50 per kilometer to the nearest
charging station [12]. Since only ongoing costs (i.e. those that are
influenced by resource usage and energy consumption) are relevant
in this research, we disregard other costs which are hard to quantify
within our experiments, such as write-off costs, the purchasing cost
of the fleet or the construction cost of the charging infrastructure.

The revenue of the ridesharing service is generated by succesfully
serving requests. Upon acceptance of a new ride request, the fare
of the ride is computed. The fare formula is based on the UberX
fare systems in New York City [3], where 𝐹𝑟 is the total fare in US
dollars of request 𝑟 , 𝑡𝑡𝑟𝑎𝑣𝑒𝑙,𝑟 is the estimated direct travel time in
minutes between the pickup and dropoff vertices of 𝑟 and 𝑑𝑡𝑟𝑎𝑣𝑒𝑙,𝑟
is the network distance in kilometers. The minimum fare is $7.00.

𝐹𝑟 =𝑚𝑎𝑥{2.55 + 0.35 · 𝑡𝑡𝑟𝑎𝑣𝑒𝑙,𝑟 + 1.09 · 𝑑𝑡𝑟𝑎𝑣𝑒𝑙,𝑟 , 7} [$] (4)

Once a customer has been dropped off at the planned destination
within a certain delay (a parameter referred to as the maximum
delay), the fare 𝐹 is allocated. However, 75% of the fare is paid out
to compensate the driver, leaving 25% (based on Uber’s service fees
[48]) for the operator of the service. Hence, 25% of the cumulative
fare is added as a component of the reward function, as this is the
actual amount that is earned by the ridesharing operator. The total
reward 𝑅 in minute 𝑡 , with 𝑅∗ ⊆ 𝑅 being the subset of requests
which were served within the maximum delay and 𝑉 being the set
of vehicles in the fleet, can be defined as follows:

𝑅𝑡 = 0.25
∑
𝑟 ∈𝑅∗

𝐹𝑟 −
∑
𝑣∈𝑉

(𝐶𝑜𝑝,𝑣 +𝐶𝑐ℎ𝑎𝑟𝑔𝑒,𝑣 +𝐶𝑡𝑜𝑤,𝑣) [$] (5)
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3.5 Dispatch and repositioning control
This paper makes use of a sequential decision-making approach, i.e.
separating the charging decision-making process from the dispatch
and repositioning processes. We realize that this introduces poten-
tial suboptimality. However, we argue that this approach provides
advantages in the form of modularity (providing more flexibility
and transferability for operators) as well as performance, since the
optimization problems are often NP-hard and simplification of the
problems is essential to maintain acceptable computation times.
In this section, we describe the dispatch and repositioning control
algorithms that were used in the simulations.

3.5.1 Request handling and dispatch. Before a vehicle can be dis-
patched to a customer, the incoming requests should be handled
and assigned to the fleet, such that the combined delays for all cus-
tomers are minimized. This forms a complex optimization problem
which becomes intractable when the fleet consists of thousands of
vehicles serving customers in a large-scale road network. There-
fore, one should find a sufficiently good, but potentially suboptimal
solution using (meta)heuristic algorithms.

For the handling of requests and dispatch, which is not the main
focus of this research, we employ the Dynamic Trip-Vehicle Assign-
ment method which was proposed by Alonso-Mora et al. [2]. The
authors devise a dispatching method which is suitable for large-
scale ridesharing system. It allows large groups of riders to be
matched to a fleet of shared vehicles in real-time. The proposed
method consists of multiple steps leading to an integer linear opti-
mization which provides an anytime optimal assignment. First, a
pairwise request-vehicle (RV) graph is formed, consisting of both
vehicles and requests. Two requests 𝑟1 and 𝑟2 are connected in the
graph if they can potentially be combined. This is the case when
a virtual (unoccupied) vehicle could pick up and drop off both re-
quests with both customers incurring a delay of less than a certain
constraint. We set this constraint to 5 minutes, matching the defi-
nition of what we consider to be ‘on-time’ (an identical definition
is used in subsequent parts of this research). If the combination
of 𝑟1 and 𝑟2 is feasible, a cost is assigned as weight to the edge
𝑒 (𝑟1, 𝑟2). In this work, we define this cost to be the minimum total
delay that is incurred by both customers. This minimum delay is
computed simply by an exhaustive search, which can be solved
quickly since there are only six possible pick-up/drop-off sequences
for two requests:

(1) 𝑣𝑃𝑈𝑟1 → 𝑣𝐷𝑂
𝑟1 → 𝑣𝑃𝑈𝑟2 → 𝑣𝐷𝑂

𝑟2

(2) 𝑣𝑃𝑈𝑟2 → 𝑣𝐷𝑂
𝑟2 → 𝑣𝑃𝑈𝑟1 → 𝑣𝐷𝑂

𝑟1

(3) 𝑣𝑃𝑈𝑟1 → 𝑣𝑃𝑈𝑟2 → 𝑣𝐷𝑂
𝑟1 → 𝑣𝐷𝑂

𝑟2

(4) 𝑣𝑃𝑈𝑟1 → 𝑣𝑃𝑈𝑟2 → 𝑣𝐷𝑂
𝑟2 → 𝑣𝐷𝑂

𝑟1

(5) 𝑣𝑃𝑈𝑟2 → 𝑣𝑃𝑈𝑟1 → 𝑣𝐷𝑂
𝑟1 → 𝑣𝐷𝑂

𝑟2

(6) 𝑣𝑃𝑈𝑟2 → 𝑣𝑃𝑈𝑟1 → 𝑣𝐷𝑂
𝑟2 → 𝑣𝐷𝑂

𝑟1

Likewise, a request 𝑟 and vehicle 𝑣 are connected in the RV graph
if 𝑟 can be served by 𝑣 with maximally 5 minutes delay. With the
resulting RV graph, the second step of the method is to find cliques
and hence derive potential trips from them. A trip is considered
feasible if every request can be picked up and dropped off by a
single vehicle with a delay of less than 5 minutes. This results in a

new request-trip-vehicle (RTV) graph. To lower computation times,
we set a timeout of 5 seconds for the exploration of new trips.

The last step is to compute the optimal assignment of vehicles
to trips. This is done through optimization of an Integer Linear
Program (ILP), where an initial solution is obtained by performing
a greedy assignment (maximizing the number of requests served
while minimizing cost). The overall cost function to be minimized is
defined as the sum of estimated delays for all requests served, plus
a penalty factor 𝑐𝑘𝑜 (we set 𝑐𝑘𝑜 = 60 minutes) for every rejected
request. We solve the ILP using Gurobi Optimizer in Python with a
time constraint of 10 seconds, after which the solver might return a
suboptimal solution. However, this is a necessary trade-off to make
in order to keep computation times stable during the simulations.

3.5.2 Repositioning. After a vehicle drops off its last customer, it
might be located in an area with low demands, resulting in low
probabilities of serving new requests and producing larger waiting
times for customers. Ideally, at any point in time, the supply (i.e.
the cumulative capacity of vehicles at the vertex level) perfectly
matches the demand, such that requests can be served with mini-
mal waiting times. Since serving trip requests will always position
vehicles suboptimally with regard to the demand, the reposition-
ing process is important to ensure that the fleet will be positioned
in such way that anticipated demand is covered as well as possi-
ble. In current practice, this task is often performed decentrally by
individual drivers.

In this research, we decide to implement a heuristic reposition-
ing algorithm which optimizes the repositioning decisions every
minute. Our reasoning for this is that the repositioning process is
not the main focus of this work. Moreover, a heuristic approach
is shown to yield good results with very low computational costs
[11]. In the optimization task, we attempt to maximize coverage
of the observed demand while minimizing travel times for reposi-
tioning movements. Here the assumption is made that the recently
observed demand is a sufficiently accurate representation of the
demand in the near future. First, we compose an array 𝑋 contain-
ing the average observed demands for every vertex in the past 60
minutes, i.e. |𝑋 | = |𝑁 |. This forms a sliding window of demands. 𝑋
is then multiplied by a parameter 𝐻 which is defined as the horizon
(in minutes) for which the demand should be satisfied. We then
perform an argsort operation, which produces an array of vertices
which are sorted in decreasing order of observed demand. While
not all idle vehicles 𝑉𝑖𝑑𝑙𝑒 ⊆ 𝑉 have been assigned to a vertex for
repositioning, the vertex 𝑛 ∈ 𝑁 with the highest remaining un-
served demand is selected. The remaining idle vehicles 𝑉𝑖𝑑𝑙𝑒 are
then sorted based on a heuristic ℎ(𝑣, 𝑛) =

𝑐𝑣
𝑡
𝑣,𝑛

𝑡𝑟𝑎𝑣𝑒𝑙

which divides
the vehicle capacity 𝑐𝑣 (i.e. the number of seats) by the estimated
travel time from the current position of 𝑣 to vertex 𝑛. The reasoning
behind this is that the vehicle with the highest capacity should be
assigned to the areas with the highest demand while minimizing
the travel time to that demand. After computing the heuristic for
all remaining idle vehicles, we assign the vehicle with the highest
heuristic value to the vertex 𝑛 under the condition that 𝑡𝑣,𝑛

𝑡𝑟𝑎𝑣𝑒𝑙
≤ 𝐻 .

When this condition is fulfilled, we add 𝑣 to the list of repositioned
vehicles and compute the remaining demand 𝑥𝑛 by subtracting the
capacity of the selected vehicle. We then insert the corresponding
vertex at its correct place within the array of vertices, such that it
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Figure 4: Graph Convolutional Network architecture for idle time prediction

is again correctly sorted by the remaining demand. This process
is repeated until all idle vehicles have been repositioned or until∑
𝑥 ∈𝑋 𝑥 ≤ 0, i.e. when all demand has been satisfied. The algorithm

is explained in pseudocode in Appendix B.

3.6 Charging control
The Idle Time Exploitation (ITX) method for charging control con-
sists of multiple components which are executed sequentially dur-
ing the execution of a single timestep in the simulator, as described
in Section 3.4.2. First, the idle vehicles are determined in the simu-
lation, after which the idle times are predicted using a dedicated
Graph Convolutional Network (GCN) model. This process, as well
as the training procedure of the GCN, is described in Section 3.6.1.
Subsequently, a linear assignment problem is formed and solved
with the Hungarian algorithm. The latter process is described in
Section 3.6.2.

3.6.1 Idle time prediction. The essential component of the idle time-
exploitation algorithm is the prediction of idle times throughout the
network. The idle time for an individual vehicle can be defined as
the time elapsed between the dropoff of the vehicle’s last customer (i.e.
moving to an idle state) and the allocation of a new customer to the
vehicle. It should be noted that the idle time prediction model is only
trained on samples where the vehicle becomes idle after having
served all of its customers. Hence, repositioning can occur during
the idle time period but the end of a repositioning action is not
regarded as the starting time for the measurement of an idle time
sample. The reasoning for this is that we aim to enable the model to
learn directly from the system dynamics, including all non-charging
related processes that run inside the simulator. To illustrate, when
a vehicle becomes idle after having served all of its passengers, we
measure the current timestep in the simulator and assign it to the
vehicle object. When a new customer is not immediately assigned to
the vehicle, it will be considered for repositioning. Once the vehicle
gets a new customer assigned to it during or after repositioning, the
simulator time is again measured and the initial time measurement
is subtracted from this new measurement. This way, a new idle
time sample is obtained and added to the training batch, such that
it can be used to train the idle time prediction model.

Given the complexity of the dispatching and repositioning pro-
cesses, it is arguably crucial that the model is provided with enough

information, such that it can infer the spatiotemporal relations be-
tween these processes and the idle times that are measured. We
argue that the idle time is both dependent on the individual vehicle
state (capacity, current location) and the state of the environment
(spatial distribution of other vehicles’ capacities, current time, ob-
served demands at all vertices). We decide to use a one-hot encoding
to represent the current location of the vehicle, i.e. a zero-filled array
with length |𝑁 | where the current vertex is set to 1. Additionally,
we represent the fleet positions (i.e. spatial distribution of other
vehicles) by an identically sized array where the total available
seats is aggregated per vertex in the road network. Lastly, another
layer of input data is created using a sliding window of observed
demands. Here, the aggregated (mean) demand for every vertex
is computed for the past 60 minutes in the simulator. This yields
another array of length |𝑁 |. These three layers of input arrays are
then concatenated into a 3 × |𝑁 | matrix which serves as the main
input for the idle time prediction model. The computed idle time
sample serves as the output. Together with the 3× |𝑁 | input matrix
and an array of temporal features, they form a data sample which
is used to train, validate and test the model.

To enhance the model’s ability to interpret the relations between
vertices, we employ the Graph Convolutional Network (GCN) tech-
nique proposed by Kipf andWelling [24]. In the model structure, we
implement two GraphConv layers using the Spektral library [16],
and in between these layers we use a Dropout layer (with a dropout
rate of 0.5) to reduce overfitting. We place the ReLU activation func-
tion after the GraphConv layers, after which we flatten the tensor
and concatenate it with the array of time features (hour, minute
and weekday). Subsequently, we implement two dense layers (with
ReLU as activation function) which feed into a single neuron that
outputs the idle time in seconds. During training, we use the Mean
Squared Error (MSE) as the loss function. In order to increase pre-
dictive performance, we perform hyperparameter tuning on the
GCN. The most important hyperparameters that should be tuned
are: the number of filters (in the GraphConv layers), the number
of neurons (divided among the two fixed dense layers) and the
learning rate.

During the idle time training runs, we assume a hypothetical
scenario where all vehicles are fully charged and where no energy is
consumed during driving. As a consequence, vehicles do not need to
charge, and therefore the charging decision process is disregarded
upon training of the idle time prediction model. This is to prevent
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Figure 5: Schematic diagram for the comparison of rewards 𝑅 of charging sessions in the temporal domain

feedback loops from destabilizing the system and inducing highly
non-stationary behaviour into the model, thus making it harder
for the model to reliably predict across different scenarios and
environments. Such behaviour is an unavoidable consequence of
using model outputs to (either directly or indirectly) determine
a charging policy, as it will influence the idle times and actions
taken in future iterations. Over time, this positive feedback loop
will move the system away from an equilibrium state. Therefore,
we let the model learn from the system dynamics and policies that
are induced by the two processes that are unconditionally present:
dispatching and repositioning.

3.6.2 Charger-vehicle allocation. To determine how the idle vehi-
cles in the fleet can most optimally exploit the predicted idle time,
an assignment needs to be performed. Suppose that𝑉𝑖𝑑𝑙𝑒 ⊆ 𝑉 is the
subset of vehicles that is currently idle, i.e. not serving any passen-
gers, not dispatching and not repositioning or charging. We define
𝑆 to be the set of chargers that are present inside the simulated
environment. We then form a bipartite graph𝐺 = (𝑉𝑖𝑑𝑙𝑒 , 𝑆,𝑇 ), with
𝑇 being the set of edges that connect an idle vehicle 𝑣 ∈ 𝑉𝑖𝑑𝑙𝑒 to a
charging station 𝑠 ∈ 𝑆 if the algorithm finds that the predicted idle
time 𝑡𝑖𝑑𝑙𝑒,𝑣 can be exploited for charging 𝑣 at 𝑠 . 𝑡𝑖𝑑𝑙𝑒,𝑣 is obtained
by performing an idle time prediction for the current location of 𝑣
and at the current time, while 𝑡∗,𝑖𝑑𝑙𝑒𝑣 represents another idle time
prediction which takes as input the updated location and time after
the (hypothetical) trip to 𝑠 has been completed. For every combi-
nation of 𝑣 ∈ 𝑉𝑖𝑑𝑙𝑒 and 𝑠 ∈ 𝑆 , we compute the Potential Effective
Charging Time (PECT) and assign it to the edge 𝑇𝑣,𝑠 . This yields
a complete bipartite graph. The PECT for edge 𝑒 (𝑣, 𝑠) can be com-
puted using Equation 6. The PECT equation was designed such that
it is negative when the waiting time is larger than the predicted
idle time, i.e. when no idle time can be exploited. The waiting time
𝑡𝑤𝑎𝑖𝑡
𝑣,𝑠 is defined as the maximum of the travel time 𝑡𝑡𝑟𝑎𝑣𝑒𝑙𝑣,𝑠 and
the expected queuing time 𝑡𝑞𝑢𝑒𝑢𝑒𝑠 , i.e. 𝑡𝑤𝑎𝑖𝑡

𝑣,𝑠 =𝑚𝑎𝑥{𝑡𝑡𝑟𝑎𝑣𝑒𝑙𝑣,𝑠 , 𝑡
𝑞𝑢𝑒𝑢𝑒
𝑠 }.

Also, the equation includes a penalty in case that the sum of the
waiting time 𝑡𝑤𝑎𝑖𝑡

𝑣,𝑠 and the predicted idle time 𝑡∗,𝑖𝑑𝑙𝑒𝑣 at the new
location are larger than the idle time at the original location 𝑡𝑖𝑑𝑙𝑒𝑣 .

We argue that this is a suitable way to penalize a potential assign-
ment 𝑒 (𝑣, 𝑠) if it requires 𝑣 to move to a less attractive area 𝑠 (i.e.
lower likelihood of picking up customers) to charge. This could
lead to situations where vehicles have more difficulties finding a
customer as a consequence of their charging decisions, which could
negatively influence operational performance. A compromise is
therefore embedded into the PECT computations such that, after
the charging session, the vehicle has time to reposition to an area
with higher demand. An example schematic of idle time predictions
and corresponding PECT calculations is visible in Figure 5.

𝑃𝐸𝐶𝑇 (𝑣, 𝑠) = 𝑡𝑖𝑑𝑙𝑒𝑣 − 𝑡𝑤𝑎𝑖𝑡
𝑣,𝑠 −𝑚𝑎𝑥{0, 𝑡𝑤𝑎𝑖𝑡

𝑣,𝑠 + 𝑡
∗,𝑖𝑑𝑙𝑒
𝑣 − 𝑡𝑖𝑑𝑙𝑒𝑣 } (6)

After computing the PECT values for all combinations of 𝑣 ∈
𝑉𝑖𝑑𝑙𝑒 and 𝑠 ∈ 𝑆 and assigning them to the edges 𝑒 (𝑣, 𝑠) ∈ 𝑇 . Then the
edges are removed where 𝑃𝐸𝐶𝑇 < 0, such that only the potential
assignments remain where idle time can be exploited for charging.
An exact solution to the resulting assignment problem (i.e. finding
an assignment where the sum of PECT values is maximal) can then
be found in 𝑂 (𝑛3) polynomial time using the Hungarian algorithm
[20]. Subsequently, we store the assignments in the form of tuples
which contains the vehicle ID, the charger ID and the PECT. If the
set of assigned vehicles 𝑉𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 ⊆ 𝑉𝑖𝑑𝑙𝑒 is not empty, we derive a
new set 𝑉 ′

𝑖𝑑𝑙𝑒
by subtracting the assigned vehicles from the initial

set of idle vehicles, i.e.𝑉𝑖𝑑𝑙𝑒−𝑉𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 . We then repeat the previous
steps: first we recompute the PECT values for the combinations of
𝑣 ∈ 𝑉 ′

𝑖𝑑𝑙𝑒
and 𝑠 ∈ 𝑆 (since the queuing times have changed since the

first iteration), after which we remove the edges where 𝑃𝐸𝐶𝑇 < 0
and solve the remaining assignment problem with the Hungarian
algorithm. We perform multiple iterations of this process, until
either (1) there are no edges 𝑒 ∈ 𝑇 for which 𝑃𝐸𝐶𝑇 > 0 or (2) the
remaining set of idle vehicles is empty𝑉 ′

𝑖𝑑𝑙𝑒
= ∅. Through iteration,

we make sure that the optimization problem is tractable, and that
we can assign multiple vehicles to a charging station. This yields
a solution that could be suboptimal but is obtained in polynomial
time. The algorithm is described in pseudocode in Algorithm 1.
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Algorithm 1: Solving charger-vehicle assignment
Input: Idle time prediction model, set of vehicles 𝑉 , set of

charging stations 𝑆
Output: Vehicle-charger mapping (𝑣, 𝑠, 𝑃𝐸𝐶𝑇 (𝑣, 𝑠)) for all

optimized assignments
Initialize set of idle vehicles 𝑉𝑖𝑑𝑙𝑒 ⊆ 𝑉 ; 𝑉 ′

𝑖𝑑𝑙𝑒
= 𝑉𝑖𝑑𝑙𝑒 ;

Initialize empty set of assignments 𝐴 = {∅};
Initialize a bipartite graph 𝐺 = (𝑉 , 𝑆,𝑇 );
Predict the idle times 𝑡𝑖𝑑𝑙𝑒𝑣 for ∀𝑣 ∈ 𝑉 ;
while ∃(𝑣, 𝑠) ∈ 𝑇 and 𝑃𝐸𝐶𝑇 (𝑣, 𝑠) > 0 and |𝑉 ′

𝑖𝑑𝑙𝑒
| > 0 do

for 𝑣 ∈ 𝑉 ′
𝑖𝑑𝑙𝑒

do
for 𝑠 ∈ 𝑆 do

Compute 𝑃𝐸𝐶𝑇 (𝑣, 𝑠) =
𝑡𝑖𝑑𝑙𝑒𝑣 − 𝑡𝑤𝑎𝑖𝑡

𝑣,𝑠 −𝑚𝑎𝑥{0, 𝑡𝑤𝑎𝑖𝑡
𝑣,𝑠 + 𝑡

∗,𝑖𝑑𝑙𝑒
𝑣 − 𝑡𝑖𝑑𝑙𝑒𝑣 };

if 𝑃𝐸𝐶𝑇 (𝑣, 𝑠) > 𝑡𝑚𝑖𝑛 then
Assign 𝑃𝐸𝐶𝑇 (𝑣, 𝑠) to edge 𝑒 (𝑣, 𝑠) in 𝐺 ;

else
Remove edge 𝑒 (𝑣, 𝑠) from 𝐺 ;

end
end

end
Solve assignment problem using Hungarian algorithm;
Append optimal assignments to 𝐴;
Set 𝑉 ′

𝑖𝑑𝑙𝑒
= 𝑉𝑖𝑑𝑙𝑒 −𝑉𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 ;

end

4 EXPERIMENTAL SETUP
4.1 Hyperparameter tuning
As mentioned in Section 3.6.1, the idle time model is trained and
validated on a dataset of idle times which is generated during an
independent simulation run. This simulation run is performed on
a full month of trip request data from November 2015. To prevent
the occurrence of feedback loops, we make sure that all vehicles
are fully charged and that no energy is consumed during driving.
Therefore, no charging takes place during these simulation runs.
After a new customer is assigned to a vehicle, a new row is written
to the dataset containing: the vehicle position upon becoming idle,
the spatial distribution of the fleet upon becoming idle, the observed
demands in the last hour before becoming idle and the cyclic time
features hour, minute and weekday. Finally, we add the dependent
variable, i.e. the observed idle time (in seconds).
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Figure 6: Matrix of grid search for GCN architecture

After performing the simulation run, the dataset of idle time
observations is obtained. This dataset is then randomly shuffled
and split into a 70% training set, 10% validation set and a 20% test
set. We then perform a multitude of training rounds (for 200 epochs,
using the Adam optimizer andwith reference value𝛼 = 0.0001) with
varyingmodel architectures (i.e. the number of neurons and number
of filters in the GraphConv layers) and evaluate the performance
on the validation set using the Mean Absolute Error (MAE) metric.
The resulting grid search will produce a table of MAE values 𝐿𝑛𝑚
for 𝑛 neurons (divided equally among the two dense layers) and𝑚
filters, as visible in Figure 6. The combination 𝑛,𝑚 with the lowest
MAE score is used for the next round of hyperparameter tuning, as
well as training of the final model.

Learning rate 𝛼
10−1 10−2 10−3 10−4 10−5 10−6[ ]
𝐿10−1 𝐿10−2 𝐿10−3 𝐿10−4 𝐿10−5 𝐿10−6

Figure 7: Array of grid search for learning rate 𝛼

With the optimized architecture of the model, we try to optimize
the learning rate 𝛼 which determines the step size at each iteration
of the training process. The aim is to find the right balance between
fast convergence and stability of the loss function. This time, we
evaluate both the 𝑅2 score andMean Absolute Error (MAE) during a
grid search of 𝛼 values from 10−6 to 10−1. The configurations in this
grid search are displayed in Figure 7. Again, for all configurations
the training is performed for 200 epochs with the Adam optimizer.
We select the value of 𝛼 where the 𝑅2 score is highest and the MAE
is lowest.

Finally, we train the model with the optimized hyperparameter
settings on the complete training set for 1,000 epochs. An evalua-
tion of the trained model on the test set will provide a conclusive
performance measure for the idle time prediction model.

4.2 Baseline charging strategies
To evaluate the proposed method, we perform the simulator runs
under identical conditions with a selection of baseline charging
strategies. For these baseline strategies, various levels of complexity
and information provision are considered. For instance, one of the
simplest baseline methods is to charge every vehicle overnight, or
to perform a full charge at the charging station which is closest to
the current position of the vehicle. When one knows the availability
and queuing times of the charging infrastructure, a more intelligent
baseline can be established. All baselines are described in Table 2.

The first two baselines that we use involve a quick charge, i.e.
when a vehicle has less than 10% of its charge left, the battery will
be charged until the tapering point is reached at 70%. This way, we
avoid the problem of the charging rate decreasing and the State-
of-Charge (SoC) slowly reaching the asymptote of 100%, as this is
relatively time-inefficient. The Quick Charge, Nearest Station
(QN) baseline follows this principle and selects the charging station
that is nearest to the vehicle, independent of the availability and
estimated queuing times of the charging stations. Therefore, the
possibility arises that vehicles are distributed in an unbalanced
manner among the charging infrastructure. Together with the Full
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Baseline strategy When to charge? Where to charge? For how long?
Quick Charge, Nearest Station (QN) SoC <10% Nearest charging station Until SoC = 70%
Quick Charge, Available Station (QA) SoC <10% Nearest available charging station Until SoC = 70%
Full Charge, Nearest Station (FN) SoC <10% Nearest charging station Until SoC = 99%
Full Charge, Available Station (FA) SoC <10% Nearest available charging station Until SoC = 99%
Overnight Quick Charge (OQ) Time between 01:30 and 06:30 Nearest available charging station Until 06:30 or SoC = 70%
Overnight Full Charge (OF) Time between 01:30 and 06:30 Nearest available charging station Until 06:30 or SoC = 99%

Table 2: Description of baseline strategies

Charge, Nearest Station (FN) baseline, we argue that this baseline
can be considered as the least intelligent and most comparable to a
real-world scenario where drivers make egoistic charging decisions
and are not aware of the real-time status of the infrastructure.

In contrast to the QN and FN baselines, the Quick Charge,
Available Station (QA) and Full Charge, Available Station (FA)
baselines assume that more information on infrastructure and fleet
status is available to the driver. Similarly to QN and FN, a vehicle
is charged when its SoC is below 10%. However, in QA and FA
the charging location is decided by the availability of the charg-
ing stations. The travel and queuing times are computed for every
charging station based on their current status. Additionally, the
estimated energy consumption will be computed in order to ignore
charging stations that cannot be reached. Consequently, every ve-
hicle obtains a ranking of charging stations. The most attractive
charging station (i.e. with lowest travel plus queuing times) is then
selected as the location to charge. The QA baseline performs a quick
charge until the SoC reaches 70%, while the FA baseline performs a
(near) complete charge up to a SoC of 99%.

We also implement a baseline for Overnight Quick Charge
(OQ) and Overnight Full Charge (OF). After performing an anal-
ysis of the trip request dataset, we conclude that the number of trip
requests decreases drastically between 01:30 and 06:30 in the early
morning [44]. This leaves a five hour window to gradually charge
the fleet. Based on the number of chargers |𝑆 | in the simulation,
the |𝑆 | vehicles with the lowest SoC are sent to these chargers. The
vehicle with the lowest SoC is assigned to the charging station with
the lowest expected travel plus queuing time. Subsequently, once
a charger becomes vacant again, the vehicle with the then-lowest
SoC will be assigned to the corresponding charging station. This
process will continue until either all vehicles have been charged,
or until the time is 06:30 AM.

4.3 Experimental design
4.3.1 Settings and parameters. By performing extensive simulator
runs, we aim to evaluate the effectiveness of the proposedmethod in
comparison to the baseline methods. For the experiments, a period
of one week was selected, from Monday November 2 until Sunday
November 8, 2015. This period was selected based on the criteria
that no public holidays, events or special weather conditions take
place. Therefore, the simulations are arguably performed based
on normal taxi movement patterns in the city of New York. All
vehicles have an initial charge which is randomly sampled from
a continuous uniform distribution between 50% and 100% SoC.
Similarly, the initial location of the vehicles is determined by a
random sampling with equal probabilities of the vertices 𝑁 in the

road network. An initialization period of three simulated days is
used to prepare the simulation for the actual experiments: here no
energy is consumed and charging does not occur yet. This way, we
let the fleet adapt to the demand ahead of the experiments, such that
the starting conditions do not influence the results. Hence, when
the time reaches November 2, 0:00, the experiments will commence
and the metrics will be saved.

We perform the experiments with a fleet of 3,000 Nissan Leaf
hatchbacks, 2,000 Tesla Model 3 LR sedans and 1,000 Nissan e-
NV200 vans. Overall, we therefore simulate a ridesharing system
with a fleet size |𝑉 | = 6000. In the main experimental runs, using
the process described in Section 3.4.4, |𝑆 | = 500 chargers with a
supply power of 72 kW are randomly placed on the road network.
In additional experiments, the impact of the charging infrastructure
on the profitability of the ridesharing service is evaluated. There-
fore, we run the simulations under identical circumstances with
|𝑆 | ranging from 100 to 900 in step sizes of 200. The horizon 𝐻 for
the repositioning algorithm (see Section 3.5.2) is set to 30 minutes.
The minimum charging time 𝑡𝑚𝑖𝑛 for the idle time exploitation
algorithm is set to 5 minutes.

The experiments were performed on computing resources pro-
vided by the Swedish National Infrastructure for Computing (SNIC)
at Chalmers Centre for Computational Science and Engineering
(C3SE) [10]. The computing nodes that were utilized consist of a
Nvidia Tesla T4 GPU and Intel Xeon Gold 6226R CPU.

4.3.2 Assessment framework. The metrics that are used to evaluate
the effectiveness of the proposed methodology can be divided in
two categories. First of all, we assess resource efficiency, which
involves the cost implications for the operator as well as the burden
on the electricity grid, as this would signify eventual improvements
regarding the environmental impact of the ridesharing operations.
Additionally, we consider transport efficiency, which concerns the
delays and comfort experienced by customers of the ridesharing
service. The full list of metrics is defined as follows:

(1) Resource efficiency
• The reward (in $) which is achieved by the operator. This
forms the central objective function of this research, since
we argue that the other metrics greatly influence this re-
ward function and form a function where the weighted
components are represented by their estimated real-world
importance to the overall revenuemodel of the ridesharing
service. The reward function is explained in more detail
in Figure 3.4.5.

• The average SoC of the fleet (in %) over time, which is
defined as the average State-of-Charge (or battery percent-
age) across the entire fleet of vehicles.



MSc Thesis Jesper C. Provoost

• The charger occupancy rate (in %), which is the per-
centage of chargers in the network that is occupied. This
metric enables us to observe whether the charging loads
are spread out over time.

• The power drawn from the grid (in MW) over time and
space. This is strongly related to the previous metric, but
gives some more insight into the actual loads that are
drawn from the grid and the spatial distribution of loads.

• The energy consumed per on-time request (in kWh).
This metric is computed by dividing the total energy con-
sumption of the fleet by the number of requests that were
served on-time (i.e. within 5 minutes delay). This helps
to evaluate whether the charging control functions effi-
ciently in assigning vehicles to charging stations with low
travel and queuing times while mitigating increased idle
times after the charging sessions. This would arguably
lead to lower overall energy consumption in the long run.

(2) Transport efficiency
• The average delay (in minutes) experienced by customers.
To compute the delay for a single trip, we first compute
the interval between the time at which the customer is
delivered to the final destination and the time at which the
request was received. Then we subtract this by the direct
waiting and direct travel time (i.e. the time it would take
to serve the request without having to share the vehicle
with other customers).

• The on-time rate (in %), which is defined as the percent-
age of requests which is served with less than 5 minutes
of delay.

• The average number of customers per vehicle, which
can be regarded as an indicator of the comfort level ex-
perienced by customers. It is preferred when customers
spread out more efficiently across the fleet.

4.3.3 Runtime measurements. To evaluate whether our proposed
method is able to run in real-time, i.e. with a runtime that is consis-
tently lower than 60 seconds (the time resolution of the simulations
and decision control), we perform simulations and measure the
runtimes of the charging control algorithm. We perform the simu-
lations on a single day, Tuesday April 21 of 2015 and vary the fleet
size from 5,000 to 7,000 in steps of 1,000 vehicles. Please note that
we maintain the same ratio of vehicle types in the fleet and use
identical parameters as in Section 4.3.1.

5 RESULTS & DISCUSSION
5.1 Model training and validation
First, following the methodology of Section 4.1, we perform the
training and validation rounds needed to optimize the hyperparam-
eters of the idle time prediction model. For all configurations, a
new model was trained for 200 epochs on the training set using
the Adam optimizer. The results of the first grid search, aimed at
finding the optimal number of filters in the GCN and neurons in
the dense layers, are visible in Figure 8. From the results, it emerges
that finding the right balance the two hyperparameters yields an
optimal result, but generally it seems like a relatively low number of
neurons and high number of filters will provide better results. This

could be explained by the fact that the model could slightly underfit
when a smaller network architecture network is used, whereas an
overly complex architecture might lead to overfitting. The configu-
ration of 64 filters and 512 neurons (spread evenly among two dense
layers, i.e. a 256−256 configuration) performs best on the validation
set, with a Mean Absolute Error of 236.1 seconds. Therefore, this
configuration is selected for the next grid search.
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Figure 8: Results of grid search with differing number of
GCN filters and number of neurons in dense layers
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Figure 9: Results of grid search with differing learning rates
𝛼 on validation set

The results of the second grid search, aimed at finding the opti-
mal learning rate 𝛼 , are visible in Figure 9. It becomes apparent that
the performance on the validation set (i.e. both the 𝑅2 and MAE)
drastically improves as the learning rate decreases towards the
optimum of 10−4. The fact that relatively high values of 𝛼 yield bad
results is likely caused by the risk of learning suboptimal weights
too quickly, which might destabilize the training process. At the
optimum of 𝛼 = 10−4, the MAE equals 211.37 while the 𝑅2 score
equals 0.8772. With an even smaller learning rate, the performance
worsens again. This could be explained by the fact that small learn-
ing rates may slow down the training toomuch or cause the training
process to get stuck, enabling the model to learn less over a period
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of 200 epochs. Hence, we select the learning rate 𝛼 = 10−4 for the
final training round, as it provides a good balance between fast and
stable learning.

Finally, the idle time prediction model (with 64 filters, a 256−256
dense layer architecture and a learning rate 𝛼 = 10−4) is trained for
1,000 epochs on the training set with its definitive configuration.
We then evaluate the performance on the (so far unused) test set,
which produces anMAE of 210.86 seconds and an 𝑅2 score of 0.8792.
The idle time prediction model is then saved, such that it can be
loaded into memory upon initialization of the simulator.

5.2 Simulation runs
First, we look at the results of the simulator runs of the week of
November 2-8. These simulator runs were executed with fleet size
|𝑉 | = 6000. Figure 10a, 10b and 10c show aggregated metrics per
weekday, while Figure 10d, 10e and 10f show the aggregated metrics
for the time of day, i.e. from 0:00 until 23:59. Table 3 provides the
comprehensive metrics for the complete simulator runs. The table
also contains the increase and decrease percentages, which indicate
the gains or losses that our proposed method yields in comparison
to the baseline algorithms that were explained in Section 4.2.

5.2.1 Profitability. The results in Table 3 show that our proposed
method produces the highest monetary reward across the entire
one-week period, i.e. a total amount of $1,487,347. Hence, the ITX
charging strategy is shown to outperform all the baseline strategies
on themain objective function that we defined in Section 3.4.5. Com-
pared to the most well-performing baseline, i.e. the Quick Charge,
Available Station (QA) strategy, an increase in reward of nearly
5% is observed, which amounts to a weekly advantage of $70,000.
This increase can be explained by the more optimal assignment
that the ITX strategy performs in comparison to the QA strategy,
as it produces a distribution in charging behaviour that better cor-
responds to the real-time demand patterns. This ensures that the
charging sessions are spread out over time and space, and that fu-
ture demand is anticipated when performing the charging control
decisions. Consequently, this increases the overall fleet availability
over time and facilitates more trips being served on-time, hence
increasing the cumulative reward in the long term.

5.2.2 Delays and on-time rate. When we consider transport ef-
ficiency, the ITX strategy outperforms the baseline methods for
two of the three metrics that were evaluated. The delay across the
entire one-week simulation period was on average 0.805 minutes,
which equals approximately 48 seconds. Even though it is a rela-
tively small difference, the QA strategy produces a slightly higher
average delay of 0.886 minutes, which is 5 seconds more than the
ITX strategy produces. The improvement is more evident when
looking at the on-time rate: with the ITX strategy, 95.78% of the
customers arrives with a delay of less than 5 minutes while the
QN strategy yields an on-time rate of 89.30%, which is 6.5% lower.
This suggests that a considerable improvement can be made when
implementing ITX over the best-performing baseline, delivering
6.5% more customers to their destinations within the acceptable
delay. The difference between the on-time rate and the delay metric
could be explained by the fact that the QN strategy produces a
higher deviation of delays, resulting in a relatively low average

delay while more customers are delivered with a delay above the
five minute threshold. Meanwhile, for the ITX strategy, delays are
observed to be more consistent. In comparison to the other base-
lines, large improvements are measured. For the overnight charging
strategies OQ and OF, the on-time rate is 14.9% and 20.1% lower,
respectively while the delays are 5 to 6 times higher than those
of the ITX strategy. The accumulation of delays for the overnight
charging strategies, especially the OF strategy, can be explained by
the fact that it might not be possible to charge all vehicles with the
necessary energy during the hours between 1:30 and 6:30. Some
vehicles will therefore run lower on energy during the day and will
have to perform an emergency charging session during the day.
Additionally, during the weekend, demand in the night might be
relatively high, producing higher waiting times when a significant
part of the fleet is unavailable due to charging. The ITX, QA and
FA strategies seem to handle these scenarios better as charging
sessions are spread out more evenly over time, increasing the op-
erational efficiency. Similar patterns are visible when looking at
the delays and on-time rates per day of the week in Figure 10a and
10b. For every day of the week, it is visible that the ITX and QA
strategies consistently produce lower average delays than the other
baselines, while the ITX strategy outperforms the QA strategy and
all other baselines regarding on-time rate. Also, it emerges that the
QN and FN strategies yield particularly high delays which peak on
Thursday. This phenomenon is not visible for the other baselines,
suggesting that the queues for some charging stations accumulate
during the week and could not be elimated during times when
demand is low, therefore gradually increasing the average delay to
very high levels (between 30 and 35 minutes) in the second half of
the week. The overnight strategies seem to produce peak delays
during the Saturday, which is a logical consequence of the fact that
demands during the night are larger on this day of the week.

5.2.3 Passenger comfort. Regarding passenger comfort (measured
by the number of customers per vehicle), the ITX strategy performs
slightly less well than the best-performing baseline QA. While ITX
yields on average 0.611 customers per vehicle, QA performs slightly
better with 0.607 customers per vehicle. However, it should be noted
that the difference is very small, which is also visible in Figure 10c.
From this figure, it emerges the average number of customers for
ITX and QA is almost identical throughout the week. However, both
strategies perform considerably better than the remaining baselines.
The FA strategy results in 16.5%more customers being carried in the
same vehicle. The QN and FN baselines result in 95.6% and 116.3%
more customers carried per vehicle, i.e. essentially a doubling of
the number of customers in a single vehicle. This is likely caused
by the fact that vehicles are unavailable for longer times due to
long queues at charging stations, which drastically constrains the
effective fleet size and forces more trips to be consolidated. Even
though we allow the consolidation of trips in a ridesharing service,
it remains essential to reduce the number of customers per vehicle,
as this suggests that customers are more efficiently spread across
the available fleet which increases the comfort experienced by
customers of the service. The overnight charging strategies OQ
and OF also yield a considerable higher number of customers per
vehicle, i.e. 0.769 and 0.905 respectively. As visible in Figure 10c,
this increase is most evident on Friday and Saturday, which is when
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Charging strategy Reward ($) Delay (min.) On-time rate (%) Customers/veh. Energy/on-time req. (kWh)
Idle Time Exploitation (ITX) 1,487,347 0.805 95.78 0.611 0.975
(B) Quick Charge, Nearest Station (QN) 235,088 (-84.19%) 19.30 (+2,298%) 61.85 (-33.93%) 1.195 (+95.58%) 1.183 (+21.33%)
(B) Quick Charge, Available Station (QA) 1,417,756 (-4.679%) 0.886 (+0.124%) 89.30 (-6.478%) 0.607 (-0.654%) 1.025 (+5.128%)
(B) Full Charge, Nearest Station (FN) 45,554 (-96.94%) 27.19 (+3,278%) 56.93 (-38.84%) 1.322 (+116.3%) 1.239 (+27.08%)
(B) Full Charge, Available Station (FA) 1,412,909 (-5.005%) 2.348 (+191.7%) 84.44 (-8.443%) 0.712 (+16.53%) 1.032 (+5.846%)
(B) Overnight Quick Charge (OQ) 1,086,435 (-26.95%) 3.598 (+347.0%) 80.85 (-14.92%) 0.769 (+25.86%) 1.054 (+8.102%)
(B) Overnight Full Charge (OF) 945,993 (-36.40%) 6.236 (+674.7%) 75.59 (-20.19%) 0.905 (+48.12%) 1.045 (+7.179%)

Table 3: Performance comparison of charging strategies (best-performing denoted in bold) for |𝑆 | = 500 and |𝑉 | = 6000
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Figure 10: Performance comparison of charging strategies, aggregated by day of week (a, b, c) and by time of day (d, e, f)

higher demands during the night are observed. Since a considerable
part of the fleet is charging overnight for the OQ and OF strategies,
the remaining vehicles will need to serve the remaining trips and
will therefore carry a higher number of customers on average.

5.2.4 Energy consumption. With regards to resource efficiency, we
first look at the energy consumed per on-time request (in kWh)
during the entire simulation period. In total, for the ITX strategy,
0.975 kWh is consumed on average per customer that was delivered
on-time. Ideally, one would strive for the charging strategy that
yields the lowest energy consumption, as this suggests that more
efficient assignments (in terms of travel and queuing times) are
produced. From Table 3, it emerges that all baselines result in higher
energy consumption per on-time request. For instance, with the
FN strategy only 0.975 kWh per on-time request is consumed. It
is 5.128% higher for the best-performing baseline QA, and more
than 20% higher for the QN and FN baselines. This suggests that
the ITX strategy is able to produce more optimal vehicle-charger

assignments than the baseline strategies, reducing the necessary
travel and queuing times and hence enabling lower energy con-
sumption. Moreover, the PECT equation takes into account the
impact of spatio-temporal demand fluctuations on the expected
idle time after charging, aiming to reduce the distance to future
demand areas after completing a charging session. This also enables
a reduction of driving distance and energy consumption on the
long term.

5.2.5 Battery levels and peak loads. Looking at the State-of-Charge
(SoC) over time as depicted in Figure 10d, it is visible that the ITX
strategy results in more stable energy levels than the baseline meth-
ods. In comparison to the QN and FN baselines, the average SoC is
higher (on average 42% instead of 24% and 21%), providing a higher
reserve energy level for the vehicles. Merging this information with
knowledge from other metrics, we argue that the SoC for the QN
and FN strategies is so low due to the fact that vehicles spend long
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Figure 11: Comparison of charging station occupancy rates, averaged over the entire simulation period where |𝑆 | = 500

times in queues before being able to charge, which drops the aver-
age SoC for the fleet considerably. For the other baseline strategies,
we see a clear increase in SoC just before evening rush hour at
around 15:00, while the highest energy consumption is observed
during rush hours (i.e. sharply decreasing SoC at around 7:00 and
18:00). In comparison to the ITX strategy, we observe that the SoC
levels for the QA strategy are located around the same average
but show more fluctuations. The same phenomenon is generally
visible with the FA and OF strategies, albeit with a higher SoC on
average. This can be logically explained by the fact that these strate-
gies perform a full charge (to 99% SoC) instead of a ‘quick’ charge
(to 70%), leading to larger energy reserves. However, the transport
efficiency metrics suggest that the Full Charge baselines tend to pro-
duce higher delays due to their relatively long charging times. With
the ITX strategy, the SoC levels are thus slightly lower but more
uniform over time, suggesting that the idle times can be effectively
used to keep the vehicles equipped with sufficient energy during
the day. This finding also implies that the ITX strategy induces
lower peak loads on the charging infrastructure, which is backed
up by Figures 10e and 10f. From these figures, it becomes evident
that the highest peak loads on the electricity grid are generated
with the OQ baseline (1,450 MW), which is a logical consequence
of the policy that all vehicles are charged overnight. With the ITX
strategy, it emerges that this peak load can be reduced by 34.48%
to 950 MW. Compared to the generally best-performing baseline
QA, peak load (1,150 MW) can be reduced by 17.39%. It is visible
that the FA and OF baselines both result in high occupancy rates
but in relatively low peak loads, which seems counter-intuitive at

first. This phenomenon can however be explained by the fact that
the supplied power tapers off when the SoC gets above 70%. As a
result, peak power drawn from the grid will be lower if vehicles
are fully charged instead of charged up to 70% SoC. An incidental
finding of this research is therefore that, even though quick charg-
ing generally improves transport efficiency, full charging sessions
help to spread the load on charging infrastructure over time.

In Figure 10e, a spatial overview of the charging station occu-
pancy rates is provided. This allows us to observe how well the
average charging load is spread out over space. Ideally, the load
is equally distributed, as this reduces the burden on grid infras-
tructure in specific areas. The figure suggests that the ITX method
yields more uniform distribution of charger occupancy over space.
Especially for the QN and FN baselines, the variance in occupancy
rates is very high, which can be explained by the fact that vehicles
egoistically choose the nearest charging station, without taking
the queue length or future demands into consideration. With the
OQ, QA and FA strategies, it is evident that occupancy rates are
slightly more uniform in space, arguably because the availability
of charging stations is taken into consideration. The OF and ITX
strategies both show even higher uniformity in space. The ITX
strategy, however, produces a lower average occupancy rate than
the OF strategy. This can be attributed to the fact that OF lets vehi-
cles charge for a longer period, reducing their charging power and
therefore resulting in more persistent charging occupancy rates.
Overall, the ITX strategy results in the least grid load fluctuations
(both temporally and spatially) in direct comparison to the other
well-performing baselines QA, FA, OQ and OF.
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Combining this knowledge with other metrics, we argue that the
ITX, QA and FA strategies perform best all-round and yield an op-
timal balance between transport efficiency and resource efficiency,
which is supported by the overall reward shown in Figure 3.
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Figure 12: Cumulative reward comparison for varying charg-
ing infrastructure

5.2.6 Influence of charging infrastructure. The results of the ex-
periment with increasing number of chargers |𝑆 | is displayed in
Figure 12. Due to computational constraints, only the four best-
performing strategies with regard to the overall objective function
(i.e. ITX, QA, FA and OQ) were considered for this experiment.
The figure demonstrate that, for all strategies considered, the re-
ward increases rapidly between 100 and 500 chargers, after which
the reward flattens out. For a low number of chargers, i.e. where
|𝑆 | < 500, it is visible that ITX and QA outperform the FA and
OQ baselines by a considerable margin, with ITX being the lead-
ing strategy across the entire experiment. The margins become
thinner as the number of chargers grows, which can be explained
by the fact that more charging infrastructure will lead to lower
queuing times. Therefore, even with a suboptimal charging strat-
egy, the magnitude of the charging infrastructure will compensate
for relatively inefficient decision-making. The results demonstrate
that our proposed method ITX can produce a weekly reward of
$1, 246, 088 for a relatively low number of chargers |𝑆 | = 300, which
is approximately similar to what the OQ strategy achieves for a
much higher number of chargers |𝑆 | = 700. From an operational
perspective, this suggests that, when replacing the OQ strategy
by the ITX strategy, more than half of the charging infrastructure
can be removed while achieving similar levels of profitability. This
could arguably facilitate advancements regarding (cost-)efficiency
and sustainability. Additionally, for |𝑆 | = 300 the results demon-
strate that a 16.75% increase in profitability can be achieved in
comparison to the QA baseline, amounting to $178, 907 on a weekly
basis with a fleet of 6,000 vehicles. All things considered, we argue
that our proposed method is especially suitable for extracting the
maximum performance out of limited infrastructure.

5.2.7 Runtime tests. The results of the runtime tests with increas-
ing fleet sizes is displayed in Figure 13. With fleet size |𝑉 | = 5000,
the mean runtime is 0.967 seconds (with a standard deviation of
0.658), while the peak runtime reaches up to 3.135 seconds. When

0 5 10 15 20 25
ITX runtime (s)

|V| = 7000

|V| = 6000

|V| = 5000

Figure 13: Runtimes of ITX algorithmwith varying fleet size

increasing the the fleet size to |𝑉 | = 6000, the mean runtime in-
creases to 1.573 seconds (with a standard deviation of 1.476) while
the highest outlier is located at 8.302 seconds. Further increasing
the fleet size to |𝑉 | = 6000 increases the mean runtime to 2.970 sec-
onds (with a standard deviation of 3.785) and the maximum runtime
to 24.384. By extrapolation, we therefore devise that the algorithm
runs in polynomial time and suffices the real-time constraint of 60
seconds when fleet size |𝑉 | < 6500. A possibility to further reduce
computational times is to use heuristics to compute the assignment
instead of the Hungarian algorithm.

6 CONCLUSION & FUTUREWORK
In this work, we have presented a predictive charging method for
dynamic ridesharing services. This method relies on Graph Con-
volutional Networks (GCNs) and a linear assignment algorithm to
devise an optimal pairing of vehicles and charging stations. We
first predict the (remaining) idle times for all idle vehicles using
a GCN, after which we compute the potential effective charging
time (PECT) for every possible pairing and solve the resulting as-
signment problem iteratively. The main idea behind this approach
is that predicted idle times can be proactively exploited to charge,
such that unprofitable periods are effectively used to harvest en-
ergy and charging sessions can be spread more evenly across time
and space. Furthermore, the method enables the combination of
three different decision variables (when, where and for how long
to charge) into a comprehensive optimization task that is solvable
in polynomial time. Our results show that the approach is capable
of running in real-time on large-scale networks of 6,000 vehicles
and 8,500 roads, representing the complete road network of Man-
hattan, New York City. We demonstrate using a real-world trip
request dataset that our proposed method is able to deliver fine-
grained and precise decision-making at the real-world scale level
of a ridesharing service.

The proposed Idle Time Exploitation (ITX) strategy outperforms
all baselines in terms of the overall reward (expressed in US Dol-
lars). Compared to the best performing baseline strategy, where
vehicles are charged up to 70% SoC to the nearest available station,
an improvement of nearly 5% can be gained, which amounts to a
weekly gain in operational profits of approximately $70,000 for an
operation of 6,000 vehicles. In comparison to the overnight charg-
ing strategy, which is prevalent in many electric transportation
systems, the ITX strategy can provide a weekly increase of 36.9% in
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profitability, amounting to approximately $400,000 on a weekly ba-
sis. When looking closer at transport efficiency metrics, it emerges
that the usage of the ITX strategy does not significantly reduce the
average delays compared to the best baseline strategy. However,
the percentage of trips that is completed with a delay lower than 5
minutes (i.e. the on-time rate) is increased by at least 6.5% when
using ITX for charging control. Furthermore, customer comfort
levels are higher with ITX than with any of the baseline strate-
gies, facilitating a better spread of customers across the fleet such
that vehicle occupancy remains as low as possible. These metrics
suggest that ITX positions vehicles better after charging, enabling
them to anticipate and act upon new demand areas after finishing
a charging session.

Regarding resource efficiency, the results suggest that the ITX
strategy is able to conserve more stable energy levels throughout
the fleet, therefore providing better reserves during periods where
demand is particularly high. This is further backed up by the ob-
servation that charger occupancy rates and grid loads are more
uniform over time. For instance, the peak load on the electricity
grid is approximately 950 MW for the ITX strategy, while it is 1,450
MW for the OQ strategy and 1,150 MW for the QA strategy. Lower
peak loads alleviate the burden on the electrical grid infrastructure,
providing benefits to the grid operator while also yielding better
resource efficiency for the operator of the ridesharing service. After
all, stable energy reserves help to absorb high peaks in demand,
facilitating better availability of the fleet and hence improvements
of on-time performance and customer comfort.

In the future, we aim to study how the idle time exploitation
technique can be used to combine the dispatch, repositioning and
charging processes into a comprehensive optimization task. We
argue that the three processes, although modeled separately, are
highly intertwined and that the outcomes of one process influence
the other two. For instance, we believe that there are opportunities
to use the predictionmodel to quickly evaluate where vehicles could
reposition to reduce the expected idle times. Also, upon dispatch,
the expected idle time after dropoff of all customers may influence
the optimal strategy, essentially integrating the repositioning pro-
cess into conventional dispatch control. We therefore argue that
the ITX methodology might be further developed for simultaneous
control of dispatching, repositioning and charging strategies. This
could provide operators and service providers with decision-making
capabilities that yield close-to-optimal results while allowing for
modular integration into the existing operations. We also aim to
study the transferability of the ITX solution to other regions and
cities, as we argue that the real-time and data-driven nature of this
solution facilitates easy application of our proposed methodology
in different scenarios. Another research gap arises concerning the
implementation of variable energy costs, which is a contemporary
measure taken by grid operators to reduce peak loads on electricity
infrastructure. One could evaluate the resilience of ITX to these
dynamic pricing models in comparison to the baseline strategies.
Furthermore, we aim to study how the ITX strategy reacts to days
with special demand patterns, such as holidays or large events.
Since the algorithm is driven by a neural network that predicts idle
times, it is likely that these predictions will become less accurate
on such occasions. We argue that the proposed method is better
at building up energy reserves in the fleet, making it possible to

handle unexpected surges in demand. However, it is still of interest
to assess empirically whether ITX is able to handle unconventional
demand patterns better than baseline models. Additionally, we aim
to research whether ITX is able to handle a higher diversity of vehi-
cles in the fleet, with differences in battery capacities and charging
power. We are interested whether ITX is able to structurally out-
perform the baseline models in scenarios where battery capacities
are highly heterogeneous and charging power is limited. Lastly,
a possibly interesting research direction could be to evaluate the
impact of renewable energy production on the performance of the
ITX charging method. For instance, it could be interesting to simu-
late the generation of solar energy at charging stations and assess
whether the use of ITX leads to more efficient use of generated
energy during peak sunlight hours, hence mitigating the need for
expensive high-capacity energy storage. This way, our proposed
methodology could contribute to the improvement of efficiency for
transport, infrastructure and grid operators, reducing the operating
cost of ridesharing systems while alleviating burdens on road and
grid infrastructure and hence paving the way for more sustainable
transport systems.
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APPENDIX
A TRIP MATCHING ALGORITHM
Algorithm 2: Trip matching
Input: Trip request dataset 𝑅, set of vertices 𝑁 from graph

𝐺

Output: Origin-destination mapping (𝑛𝑜 , 𝑛𝑑 ) for all 𝑟 ∈ 𝑅

Initialize trip requests 𝑅 from dataset;
for 𝑟 ∈ 𝑅 do

Get pickup coordinates (𝑥𝑜 , 𝑦𝑜 );
Get dropoff coordinates (𝑥𝑑 , 𝑦𝑑 );
Set 𝑛𝑜 = argmin𝑛∈𝑁 𝑑 ((𝑥𝑜 , 𝑦𝑜 ), 𝑛);
Set 𝑛𝑑 = argmin𝑛∈𝑁 𝑑 ((𝑥𝑑 , 𝑦𝑑 ), 𝑛);
Store origin-destination mapping (𝑛𝑜 , 𝑛𝑑 );

end

B REPOSITIONING ALGORITHM
Algorithm 3: Repositioning
Input: Trip request dataset 𝑅, set of vertices 𝑁 from graph

𝐺 , set of vehicles 𝑉 , current timestep 𝑘 , horizon 𝐻

Output: Origin-destination mapping (𝑣𝑜 , 𝑣𝑑 ) for all 𝑟 ∈ 𝑅

Query requests 𝑅∗ of the last hour, i.e. on interval
[𝑘 − 60, 𝑘];

Initialize set of idle vehicles 𝑉𝑖𝑑𝑙𝑒 ⊆ 𝑉 ; 𝑉 ′
𝑖𝑑𝑙𝑒

= 𝑉𝑖𝑑𝑙𝑒 ;
Intialize zero-filled array 𝑋 , where |𝑋 | = |𝑁 |;
for 𝑟 ∈ 𝑅∗ do

Get pickup vertex 𝑛𝑜 of request;
Get number of passengers 𝑃𝑟 of request;
Update 𝑋 [𝑛𝑜 ] = 𝑋 [𝑛𝑜 ] + 𝑃𝑟 ;

end
Divide 𝑋 by 60 to obtain average demand for 𝑛 ∈ 𝑁 ;
while |𝑉 ′

𝑖𝑑𝑙𝑒
| > 0 and

∑
𝑥 ∈𝑋 𝑥 > 0 do

Select the vertex 𝑛 with highest demand 𝑋𝑛 ;
Initialize ℎ𝑏𝑒𝑠𝑡 = 0 and 𝑣𝑏𝑒𝑠𝑡 = ∅;
for 𝑣 ∈ 𝑉 ′

𝑖𝑑𝑙𝑒
do

Obtain vehicle capacity 𝑐𝑣 ;
Compute heuristic ℎ(𝑣, 𝑛) = 𝑐𝑣

𝑡
𝑣,𝑛

𝑡𝑟𝑎𝑣𝑒𝑙

;

if ℎ(𝑣, 𝑛) > ℎ𝑏𝑒𝑠𝑡 and 𝑡
𝑣,𝑛

𝑡𝑟𝑎𝑣𝑒𝑙
≤ 𝐻 then

Set 𝑣𝑏𝑒𝑠𝑡 = 𝑣 ;
Set ℎ𝑏𝑒𝑠𝑡 = ℎ(𝑣, 𝑛) ;

end
Update 𝑋 [𝑛] = 𝑋 [𝑛] − 𝑐𝑣 ;
Remove 𝑣𝑏𝑒𝑠𝑡 from 𝑉 ′

𝑖𝑑𝑙𝑒
;

Reposition 𝑣𝑏𝑒𝑠𝑡 to 𝑛;
end
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