UNIVERSITY OF TWENTE.

Faculty of Electrical Engineering,
Mathematics & Computer Science

',;'Zero-downtime PostgreSQL database
schema migrations in a continuous
deployment environment at ING

/ Nick Geral Richter
Master of Science Thesis
Business Information Technology
Data Science & Business
October 2021

. Supervisors:
° dr.ir. Maurice van Keulen
dr. Abhishta Abhishta

ir. Jorryt-dan Dijkstra (ING)

Abstract

Migrating a database schema to the next version without interrupting clients performing queries, aka
downtime, is important for many reasons. A tool to perform such transformations is proposed which
uses the database management system PostgreSQL, but findings are also applicable to other relational
databases. The tool can be used as a step within a continuous deployment environment to provide
automatic zero-downtime updates of applications when database schema changes are required.

As more services are made available around the globe by organizations, every minute or longer that
the service is not reachable can cost organizations millions of euros. Most parts of an application can be
updated without downtime due to redundancy measures, where multiple versions can co-exist. However,
the database schema is not one of those things that can be updated with normal SQL queries while
clients are still querying the database. A solution for this helps organizations increase the availability of
their services and will provide clients with more satisfaction. Next to that, it enables a shorter time-to-
market of bug fixes and features by allowing organizations to release multiple updates each day without
availability loss.

This master thesis considers state-of-art tools from literature that promise database schema mi-
grations without downtime. These tools are checked against a list of criteria that was retrieved from
literature and furthermore ranked by experts. The best tool is chosen to be developed further and vali-
dated against various experiments. Next to that, a list of key challenges is made that currently limit the
adoption of the tool(s), as well as the solutions to solve these problems.

Many existing tools are either not available online, the original developer had no intention of open-
sourcing the tool, or had limited functionality in what it could do. One tool stood out from the rest,
QuantumDB scored the highest on the list of criteria. QuantumDB can perform most schema transfor-
mations without blocking any existing clients from querying the database. Experiments showed that it
could migrate the database schema to a new version without downtime. However, some challenges
remained. Some of these challenges can be addressed with more time spend on further development
while others require a different method to perform schema migrations without downtime.

To conclude, the highest-scoring tool for schema migration without downtime was selected based on
criteria found in the literature. This tool is QuantumDB and during this research, it was improved further
and any bugs that were found were fixed. Through validation, it is shown that QuantumDB can perform
schema migration without downtime. There are still key challenges that organizations need to take into
account before full implementation. To help with adopting the solution a management chapter was made
that describes a business case and some use cases in which QuantumDB can be used. At last, the
discussion chapter lists future work which future researchers can still perform to improve QuantumDB
and give more concrete benefits for organizations to start adopting a zero-downtime schema migration
solution.

ABSTRACT

Acknowledgment

At the beginning of the Research Topics part of the study program, | still had no idea what | wanted to do.
| emailed a professor and she redirected me to some subjects on the open master thesis assignments
page of the website. Here, one subject stood out for me which was 'data-intensive software development
without downtime at ING’, specifically 'using database capabilities to overcome downtime’. | already had
some experience with databases but | wanted to learn more about them. The part where it mentioned
ING also intrigued me as it meant | would also have the opportunity to see how it would be like in a large
company.

My biggest thanks go out to Jorryt Dijkstra for the weekly meetings on Monday and Thursday where
we talked about the issues | was having and how to continue. Without Jorryt | would not have started
this journey but | would also not have completed it in the way it is now. Because Jorryt was already
performing his PDEng thesis at the university, he already had extensive knowledge about the subject
and could make me enthusiastic about doing research on this subject in the first place.

| would also like to thank my supervisors from the university, Maurice van Keulen and Abhishta
Abhishta, for their advice. Many times | was trying different things and had no clear view of what |
wanted but they steered me in the right direction. Establishing a meeting date was sometimes a bit
difficult but always at the right times when | needed some steering.

During my research, | came across some articles by Michael de Jong. He summarized the problems
in the field and had made a tool to try to solve these problems. | would like to thank him for his effort
in making the software, QuantumDB, as clean and tidy as possible. | would not have been able to
comprehend the flow of the software so | could make improvements. | would also like to thank him for
the meetings we had and making time free to review my code submissions and for accepting the pull
requests | made.

Additionally, at ING | was part of a team of both employees and intern students working on their
master thesis. The standup meetings every Tuesday and Thursday helped me in following a schedule
and trying to complete items before starting new ones. The two times we could physically go to the office
were nice, with a great lunch. Thanks for the fun times, Luna and the others!

Lastly, | want to thank my friends who mixed things up from the mostly boring days of writing. The
many Wednesday evenings in the city center will not be forgotten, although | wanted to forget the Thurs-
day mornings as quickly as possible.

| cannot think of any others to thank here. If | have forgotten you, please do not feel like you did
not contribute to this thesis in any way. | am grateful to anyone that contributed time and energy to
helping me reach the end of this research. Now that the finish line has been reached, it is time to start
participating in the job market!

i

ACKNOWLEDGMENT

Contents

[Abstract

[Acknowledgment]

|1.2 Researchquestions|
[1.3 Methodology|
|1.4 Report organization|

Background|

[2.4 Database Management System (DBMS)| . .
[2.5 Schema Migration|
[2.6 Software development|

Literature Review
[3.1 Exploratory literature review|
[3.2 Systematic literature review|

Treatment design|

[5.1 Determining requirements|

[0.5 ldentified key challenges|.
[0.6 Resolutions to the identified key challenges|

Vii

17
17
17
17
18
25
26

31
31
32
32
33

VIII

CONTENTS

.7 Additionally implemented features|

6 Treatment validation|

6.1 Loadtesting|.,
6.2 Consistencytesting]
6.3 Unittesting|

6.5 (inherent) Problems|

|7.1 Interpretations & implications|

9 Conclusion

9.1 Summary & contributions|
9.2 Answers to the research questions|

[References|

_APP C

|A_Code coverage|

[B_TNG application operations|

|C Testing code|

43

................ 43
................ 47
................ 48
................ 49
................ 50

53

................ 53
................ 54

57

................ 57
................ 58
................ 60
................ 60

63

................ 63
................ 64

67

71

75

77

Chapter 1

Introduction

1.1 Motivation

In today’s interconnected world a lot of people are interacting with computer systems everywhere, be it
at work, when browsing on social media or when checking the balance in their bank account. All these
computer systems need to be maintained to ensure correct functioning. No application is ever complete,
without errors and missing features. Quick resolution of these faults and implementation of missing
features provide many customers with additional value. When that happens customers are willing to pay
more or use the application longer which improves the profitability of the business.

Whenever a new application version is released for these systems, management wants every user to
update to this latest version. Some systems, however, cannot be shut down to perform such an update
without (financial) consequences. A lot of research has already been done on how to perform live or on-
line updates to the software of these computer systems, but not a lot of research has been done to also
update the underlying database schema on which these applications depend without downtime. Com-
panies use different strategies to deal with this issue, they either deter updates to the database schema
until it is really needed and then perform a large number of updates at the same time, have regular down-
time windows in which a minimal amount of users use the system and accept the consequences of this
downtime or adopt the Expand-Contract pattern as is discussed in [1]. None of these solutions are ideal
as it puts a brake on the quick and flexible software development approach in continuous deployment.

To provide a much-used example, Wikimedia Foundation, known for Wikipedia and other sites, is
continuously updating its wiki engine called MediaWiki. According to Curino et al. [2], in 2007 MediaWiki
had seen 171 database schema versions. As of writing this thesis, this number is much larger. These
updates provide additional features as well as fix mistakes made in previous versions. However, bringing
Wikipedia and other sites down for maintenance would be disastrous for people or organizations that
depend on it. Providing a temporary snapshot of the site would also not work as any changes committed
during maintenance would not be in the database at the end of the update procedure.

While some research has been done on online updating of database schemas, no article or paper
was found that also looked at the implementation of such tools/strategies/frameworks in a corporation.
There should be various reasons why a solution is not widespread. Solving these problems can lead
to an increase in business value when implemented. In short, decreasing the feedback loop between
end-users and developers can increase customer retention and customer satisfaction.

This research is conducted at ING, the largest bank in the Netherlands. ING is not necessarily a
traditional bank, they are investing heavily in providing the best digital experience possible, requiring a
huge IT development landscape. Using ING and its employees to learn about potential key challenges
and to see how a solution for zero-downtime schema migration would be implemented is therefore useful.

2 CHAPTER 1. INTRODUCTION

1.2 Research questions

The goal of this research is to design a tool that will provide zero-downtime schema migrations. For a
tool to be designed, criteria and requirements need to be known. Before a new tool is build, existing tools
have to be researched to see if they might already fit most, if not all, of the requirements. This would free
up time and resources to progress further into the design cycle where limited time is available. Potential
key challenges and limitations with the best scoring tool can be researched after which a decision can
be made to develop a tool from scratch or continue development with the chosen tool to fix potential key
challenges and bugs and to potentially have the tool comply with more criteria. The tool will have to be
validated to ensure it works and performs as expected. This will raise confidence with executives at the
decision-making level to start incorporating the tool into the development pipeline.

Since this research is not primarily focused on answering research questions but on designing a tool,
the research questions that will be asked have to support the creation of such a tool. Some of these
questions will be answered in Chapter [2] & [3| while others will be answered in later chapters.

The following research questions have been formulated to support the creation of a zero-downtime
schema migration tool in this master thesis:

1. What are the criteria for a zero-downtime schema migration tool?

1.1. Which criteria can be found in literature?

1.2. Can a ranking be made between criteria?

2. Which tools are already available that aim to provide zero-downtime schema migration?
2.1. Can a best tool be identified based on the criteria gathered?

3. What key challenges can be found?

3.1. What technical challenges can be found that will hinder the creation of a tool?

3.2. What challenges can be found that prevent implementation of the tool within an organization?
4. For which use cases can the tool be used?

4.1. Are there specific use cases that the tool would be great for?

4.2. What would need to change for the tool to become better and support more use cases in the
future?

1.3 Methodology

This section discusses the methodology that is used during this master thesis. Since the problem in
question is a design problem, i.e. a solution that has to be found for a problem, the Design Science
Methodology by Roel J. Wieringa [3] is used. The methodology consists of a couple of stages as
described in the book. This book provides guidelines to design information systems (and software
engineering research) in a certain context and how to investigate the performance of the artifact in
the specified context. The methodology is split into four stages, namely the following: implementation
evaluation/problem investigation, treatment design, treatment validation, & treatment implementation.
These are the steps for the engineering cycle. The last step was not performed due to time constraints
limiting what could be done.

The first part of the methodology was performed during the pre-research stage called Research
Topics. During this stage Chapters [2] & [3| were written to provide a complete picture of the current field

1.4. REPORT ORGANIZATION 3

of research and already answer some research questions. During the master thesis part, the treatment
design and validation have been performed and the remaining chapters have been written.

Implementation evaluation /
Problem investigation

° Stakeholders? Goals?

° Conceptual problem framework?

° Phenomena? Causes, mechanisms, reasons?
° Effects? Contribution to Goals?

Treatment implementation

Treatment validation Treatment design

. Artifact X Context produces Effects? . Specify requirements!

. Trade-offs for different artifacts? . Requirements contribute to Goals?
. Sensitivity for different contexts? L Available treatments?

. Effects satisfy Requirements? . Design new ones!

Figure 1.1: Engineering cycle as found in the book [3]

1.4 Report organization

This report is divided into several chapters of which this introduction chapter is the first one. After the
introduction, some background into the field of databases and schema migration will be provided to
refresh knowledge or give the reader a solid understanding of the concepts and nomenclature used in
the field. To get a deeper understanding of the problem, a literature review of zero-downtime schema
migration has been conducted in Chapter[3] After that chapter, a short investigation into the problem is
given, after which the design of the tool is done. Next, the tool is validated to work in various scenarios
using experiments. In Chapter|[7] a discussion is held on the interpretation and implications of the data
gathered, and limitations of the research and tool are given. Next, a business case and use case analysis
is given for managers that want to start using a tool to perform zero-downtime schema migrations. A list
of benefits is also given to provide more incentives to start the adoption. Finally, a conclusion where a
summary is given, the contributions of this research are listed and in short, the answers to the research
question are briefly summarized.

CHAPTER 1. INTRODUCTION

Chapter 2

Background

The background chapter will be used to fill in some knowledge about the subject of zero downtime
database schema migrations. A lot of subjects are connected to the research questions and with this
chapter, the aim is to supply a clear context in which the problem is positioned.

2.1 Databases

A database is a place that stores data in an ordered manner, typically in digital form on a computer
system. Depending on what kind of database model has been used it has various rules about adding,
modifying, retrieving, and deleting data from this place. Over the years many different database models
have been designed, these models indicate how data has to be stored in which format and in what way
the data can be requested. The first database model was called the hierarchical database model and
was developed by IBM in the 1960{1 It uses a tree structure to link data to each other.

The hierarchical database model was innovative as it allowed companies to store, organize, link,
and retrieve information but was inflexible in how it works. In 1969, Edgar F. Codd proposed a different
database model that could solve this inflexibility. This model was called the relational database model [4].
The way this model was implemented is using tables where rows of data have specific columns, a tabular
design. A row of data is also called an object as every object contains the same type of information.
Certain columns can reference objects in other tables to create a link between each other. This way,
many relationship forms can be achieved, whereas the hierarchical model could only achieve a one-to-
many relationship down the tree structure.

2.2 Relational database schema

To specify what kind of data can be stored and retrieved by the relational database, a so-called schema
is needed. This schema allows for consistency between stored pieces of data as it specifies what can
and cannot be in a table with certain columns. A concrete example can be seen in Figure This
figure is made using a modeling language to give an overview of all the tables and columns and which
tables are linked by which columns. This figure consists of 8 tables with the number of columns ranging
from 5 to 20. The first column in the figure specifies the names of the column in the table. The second
column specifies which type of data can be stored in this column, you can see the type int (integer), str
(string), DateTime, and more. The third column specifies the constraints that are placed on the column.
Primary keys are the columns that are uniquely identifying for that table and are used by other tables to

"https://en.wikipedia.org/wiki/Hierarchical_database_model

https://en.wikipedia.org/wiki/Hierarchical_database_model

6 CHAPTER 2. BACKGROUND

History “ [District « Customer «“
id int PrimaryKey id int PrimaryKey id int PrimaryKey
customer Customer Required warehouse Warehouse Required district District Required
date datetime Optional fiame Str Optional fisrt_name str Optional
amont float Optional street_1 str Optional middle_name sir Optional
data str Optional street_2 str Optional last_name str Optional
city Str Optional street_1 str Optional
¢ \ d_zip Str Optional street_2 str Optional
Warehouse « tax float Optional city str Optional
id int PrimaryKey ytd float Optional c_zip str Optional
number int Optional orders Order Set phone str Optional
street_1 str Optional customers Customer Set since datetime Optional
street_2 sir Optional p X . credit str Optional
city str Optional Order <« credit_Lim Decimal Optional
w_zip str Optional d nt Primarykey :islc.ount ﬂoar Opn_onai
tax float Optional warehouse Warehouse Required elivery_cnt (nr op I{onai
ytd float Optional district District \ Required payment_cnt - int Optional
orders Order Set customer Customer “Required balance float Op n_onai
districts District Set ol cnt int Ontional ytd_payment float Optional
stocks Stock Set en_try d datetime Optlenal data_1 tongStr Optional
_\ R) data_2 LongStr Optional
|s_o_de_L|vered bool 7 Optional orders Order Set
- ctock «, : ?rder_l.lnes Orderline Set : history History Set

warehouse Warehouse PrimaryKey Item « p .
item ftem PrimaryKey ;z id int PrimaryKey OrderLine 4«
quantity int Optional stocks Stock Set id int PrimaryKey

ytd float Optional name str Optional item Item Required

order_cnt int Optional price float Optional order Order Required

remote_cnt int Optional data str Optional delivery_d datetime Optional

data str Optional order_lines OrderLine Set amount it Optional

Figure 2.1: TPC-C benchmark schema
(found at: https://editor.ponyorm.com/user/dominovtut/TPCC/designer)

refer to a specific row of data. The ’id’ column of the District table is such a primary key that is used by
2 other tables, namely the Customer table and Order table. A customer can only be associated with 1
district and an order can also only be associated with 1 district. To get all customers of a certain district,
a query would have to be made searching for all customers where ‘district’ equals a certain id. This way
no data would have to be stored multiple times, therefore reducing storage space.

Columns can also be optional, if they do not contain any data there will be no problem whereas if
they are required and a new row of data does not have this information the database would not let you
create this row of data. This can become a problem if at first, a table contains columns that are optional
whereas later a database developer wants it to become required. To solve this, the database developer
has to specify a default value for every row that did not contain this information.

In this figure, a set just means that another table is referring to this table, in a working database this
column does not exist, only as a Foreign Key constraint. This Foreign Key constraint tells the database
that only existing objects from that table can be referenced here. If that object does not exist, no row can
be made. The same holds for deleting a row of data when another table references the to-be deleted
row. The database does not allow it without also deleting the referencing row. An example in Figure
would be if a District is to be deleted, it is only allowed if there are no customers and orders associated
with this district. This makes designing a good database difficult as it is not easy to implement some
changes to this schema at a later date when the database is in production.

https://editor.ponyorm.com/user/dominovtut/TPCC/designer

2.3. OTHER DATABASE MODELS 7

2.3 Other database models

In recent years more database models have been created and are in use by big corporations as well
as small developers. Some of these database models were already used in the early days but are
rising in popularity once more. Popular alternatives to the relational database are the so-called NoSQL
databases (Not Only SQL or non-SQL) [5]. These databases do not work according to the tabular design
but follow a more loose definition where fewer constraints are enforced. This helps corporations deal
with the quickly changing landscape of their applications and their big data. These databases mostly
allow for better horizontal scaling, also called scaling out. This scaling out means that you can just add
clusters of computing power and everything works without concurrency problems. A relational database
can only be scaled vertically, or scaled up. This mostly means substituting the current hardware with
more powerful components. Jatana et al. [5] identified 10 popular database models of which the top 4
are discussed below. Mark Drake [6] also identified these 4 as the most popular NoSQL variants.

2.3.1 Key-value stores

A popular NoSQL database is the key-value store, this database provides a lot more flexibility to devel-
opers than a relational database. Data is stored as a value of any type in combination with a key, this
key is unique in the whole database. The database does not care what type the value is, it may be an
integer, string, or even a series of bytes. The database does not restrict developers from using keys
in different formats, e.g. 'person.john.doe’ vs '1234567890’, or decide which type of value has to be
used. There are however a couple of disadvantages associated with it. One of them is that there is no
overarching architecture that can be used to provide guarantees to applications. Another disadvantage
is that certain query features are not supported by the database and have to be implemented at the
application level, these include the ’join’ and 'group by’ features. For organizations that want to build
robust applications, key-value stores and some other NoSQL databases do not provide the features and
guarantees that relational databases do. This is one of the reasons why this research is solely focused
on relational databases.

2.3.2 Graph databases

In graph databases, information is stored as nodes and edges. Nodes are the entities or instances that
represent an object and can be thought of as a row in a relational database. An edge represents the
relationship between only two nodes. This representation can be directed or undirected depending on
the meaning of the edge. A node can have more than one edge with another node, for example, the
edge 'parent’ and another edge 'family’ can exist between two-person nodes. A node can also have
multiple connected edges of the same type, in this case, the 'family’ edge can be connected to every
node that has the family relation. Graph databases are relational and have been created to address
some limitations of the above-mentioned relation database model. They allow for less strict schema
designs that in turn are more suitable for quickly changing data.

2.3.3 Document stores

A document store stores data in the form of 'documents’, which can be seen as semi-structured. These
documents can include any piece of data but have to be encapsulated in a standard format like XML
or JSON depending on the implementation. To request these documents a unique key is needed like
a path or URI. An advantage of this design is that data can be grouped inside such a document while
it may be scattered throughout a database when a relational database is used. Document stores are

8 CHAPTER 2. BACKGROUND

basically a subset of the key-value stores where the system actually cares in which format the value is
stored.

2.3.4 Columnar databases (Column-oriented)

Relational databases can be designed to store data in two ways. The normal relational database stores
data per row while some workloads perform better when data is stored per column. Requesting, adding,
updating, or deleting a single row is much faster when data is stored per row but when a query requests
the data where a certain column has a value between 1.000 and 10.000 the database has to go through
every entry to return a list (if no indexes are used). A database that stores the data per column can
quickly look up which rows satisfy the query and return this information.

2.4 Database Management System (DBMS)

A database management system is a software that facilitates the addition, modification, deletion, and
retrieval of data in the database as well as the modification of the underlying database schema. A
lot more than just facilitating those functions is happening behind the scenes and users need to know
what guarantees they can expect from the system. In the sections below the most important ones are
highlighted.

2.4.1 Structured Query Language (SQL)

As the name suggests, SQL is the language that was developed to let database developers construct the
database and let applications interact with the data in the database. It mainly consists of 4 categories of
statements, data query language (DQL), data definition language (DDL), data control language (DCL),
and data manipulation language (DML).

DQL & DML

The first language, DQL, is only used to select data from the database. This is one of the most used
statements next to the statements belonging to the DML. The DML contains the INSERT, UPDATE, and
DELETE statements that manipulate the data in the database. Sometimes the SELECT statement is
argued to be part of the DML when combined with some clauses such as WHERE and FROM that do
manipulate the data in some way before returning the SELECTed data but it is strictly speaking still part
of the DQL.

DCL

DCL is the odd one out of the 4, various DMBS implement these statements according to their own
specifications. These statements are GRANT, REVOKE and DENY and are used to give users permis-
sions for various statements on parts of the database. Oracle lets you use the statements of DCL in
the DDL and MySQL calls it Database Administration Statements. PostgreSQL allows for transactional
statements which allow for rollbacks, while SQLite does not implement any DCL statements and relies
on file system permissions to handle who may modify the database.

2.4. DATABASE MANAGEMENT SYSTEM (DBMS) 9

DDL

The last language is the DDL, these statements let you alter the shape of the database schema. The
statements include CREATE, ALTER, DROP and TRUNCATE and are used whenever there is a new
need for how data is to be stored. These statements bring the database from one schema version to the
next one and define how DQL and DML can select and manipulate the data. The focus of this research is
mainly on DDL as these statements mostly block access to the database objects that it alters. However,
DQL and DML are important too as these statements are the ones that cannot be blocked when the
database is online.

There is no standard implementation of these statements and every DBMS has to implement them
individually. Some DBMS decided to not implement some of these statements or alter the way they
work. PostgreSQL has one of the best compliance to the specificatiorE] while other DBMS lack in quite
some areas.

2.4.2 Transaction properties (ACID)

The ACID (Atomicity, Consistency, Isolation, Durability) properties are quite important for relational
DBMS to provide guarantees. The first property, atomicity, enforces that all operations in a transac-
tion either occur all at once or not at all. A characteristic of this property is that a transaction may not
be able to see another transaction being partially executed. This means that at one point in time the
transaction did not happen while at the next point in time it instantly happened. It can also happen that
one of the operations in the transaction failed due to some error, in this case, all already performed
operations have to be reversed. This is called a rollback. An example of why one would want atomicity
is the transfer of balance from one bank account to another bank account. You either want the transfer
to be correct or not happen at all. If only the operation completed where money was deducted and the
operation where money was added to another account failed, an amount of money disappears which is
not how it should work.

The second property called consistency calls for a consistent database in regards to the rules being
enforced. A database schema might consist of rules that are not to be broken. If a column is set up to
be an integer, the database has to ensure nothing else than an integer is being saved at that place. If
a transaction wants to insert a piece of text the transaction gets aborted. The DBMS does not concern
itself with rules that are set in the application such as a minimum or maximum value when it was not
specifically declared when the column was made.

The third property is isolation and comes in different levels of strictness. Isolation determines how
much other transactions can still see from a transaction that has not yet been committed. Ideally, this
isolation should be at the highest level called serializable. At this level, no so-called read phenomena
can occur. These phenomena are dirty reads, non-repeatable reads, and phantom reads, also no lost
updates can occur at this level. However, this level of isolation comes at a price, namely less concur-
rency. If the application for which the database is being used is less strict, a database administrator
might decide to lower the level of isolation to improve performance.

The last property of the 4 in ACID is durability, this means that any changes to the database need
to be permanent whenever they are committed. In most cases, this just means that the data has been
written to non-volatile storage like a hard drive or solid-state drive. Random-access memory (RAM) is
an example of volatile memory and will lose all of its data whenever a system crashes and is therefore
not durable to store for the long term.

Of these properties three of them are present or they are not. For the isolation property, there are
different sub-levels and a database administrator might decide to lower the level to increase performance

2https://www.wikiwand.com/en/SQL_compliance

https://www.wikiwand.com/en/SQL_compliance

10 CHAPTER 2. BACKGROUND

in exchange for some lesser guarantees. Most critical database systems want to use the highest level
while hobby projects can use a lower level because a dirty read might not cause an issue.

2.4.3 CAP theorem & BASE

The CAP theorem by Eric Brewer [7] states that only two of the three following properties can be enforced
at the same time: Consistency, Availability & Partition tolerance. What this basically means is that
distributed systems, like NoSQL systems, cannot provide either consistency or availability at the same
time whenever there is a network failure. The ACID systems described above choose consistency
over availability while distributed systems almost always choose availability. For NoSQL systems this is
called BASE, Basically Available, Soft state & Eventually consistent. It is not necessarily the counterpart
of ACID because some systems still have some properties of ACID. The BASE properties state that
the system is always available, meaning online and able to do work. The soft state property tells us
that data can still change without input, as becomes clear from the last property. Eventual consistency
makes sure that without additional input the system becomes consistent, however, whenever data gets
written a short time exists before this data is redistributed to other partitions of the system. During this
time the database is not consistent.

2.4.4 Concurrency control

Databases differ from other storage architectures, such as spreadsheets and the file system, in the way
that multiple people can concurrently access and operate on pieces of information while not violating
the integrity of the data. To achieve this concurrency, various control mechanisms have been used and
proposed and can be important in determining if some transactions are blocking or non-blocking.

Concurrency methods can be divided into three categories. These are optimistic, pessimistic, and
semi-optimistic. Pessimistic approaches always block operations if the possibility exists that a violation
of the rules can occur. Optimistic approaches do not block operations but only check at the end if all rules
still hold. Semi-optimistic uses a combination of both. All these approaches have different advantages in
certain cases. If the assumption is made that almost no conflict will exist between operations, optimistic
methods will perform better, while pessimistic methods will perform better if conflicting operations occur
all the time.

Locking

Traditionally, databases used a locking protocol to guarantee concurrency. With this method, certain
objects in the database could be locked. A transaction could be changing a table and requires that no
other transaction is operating on the table in some way, this transaction would request to acquire a table
lock for that table. Any subsequent transactions would be blocked until the lock has been lifted. Not
providing table locks would not prove that useful as most transactions only want to read and write one
row. To provide more granularity, locks can be requested in the following levels: database, table, page,
row, and field. The field level lock is rarely implemented.

Next to this granularity, there are multiple types of locks, the most simple one being the binary lock.
This lock just locks and unlocks the resource. A more sophisticated lock is the shared/exclusive lock.
This lock, depending on what it wants to do, will either choose to acquire a shared lock if it wants to
only read a resource or acquire an exclusive lock if it wants to modify the resource. With the shared
lock other transactions that want to acquire a shared lock can also do that because they only read the
resource. An exclusive lock is, as the name says, exclusive and no other transaction can acquire either
the shared lock or another exclusive lock until the lock has been released.

2.4. DATABASE MANAGEMENT SYSTEM (DBMS) 11

A popular locking control method used is called two-phase locking and uses two phases of acquiring
and releasing locks that are followed after one another to ensure no concurrent transaction can view or
alter data that is about to be altered by a transaction. A transaction only starts if it acquired every lock
and not sooner. This does not resolve deadlocks on its own, two transactions can still request locks that
are already acquired by the other.

Timestamps

Another method to provide concurrency is the use of timestamps. This timestamp dictates the order
of transactions and must be unique and monotone, meaning only increasing. Whenever a transaction
wants to start it gets a timestamp, if this timestamp is newer than a transaction that is still running it will
either wait until the older transaction is done or ‘die’ and restart.

Multiversion concurrency control (MVCC) is such a method that uses timestamps and is the dominant
concurrency control method used nowadaysﬂ Together with timestamps it also uses the multi-version
approach to not overwrite existing data but create a new version. This way, the method can provide point-
in-time consistency by serving a snapshot of the data. Read transactions see different versions of data
depending on which isolation level is set. Higher isolation levels ensuring that newer read transactions
see the version of data that corresponds to their timestamp.

Commitment ordering

Next to the two mentioned above, a couple of other models exist. One of them is commitment ordering
(CO) and belongs to the optimistic approach. This approach assumes that the majority of transactions do
not conflict and will not acquire locks or timestamps. This method will control or check if the chronological
commit order is compatible with a so-called precedence graph, i.e. that no conflict is happening by
committing the transaction.

Global serializability

When working with distributed systems different approaches have to be found to make sure the seri-
alizability of the whole distributed database is enforced. Distributed versions of the above-mentioned
methods do not scale too well except for COf}

2.4.5 Procedural language (PL/SQL)

Sometimes an application might want to request some data, do some operations on it and request ad-
ditional information based on the first piece of data. This will cause a lot of overhead sending the data
between the database and application. To solve this problem, DBMS has implemented a procedural
language into their system called PL/SQL. Procedural languages are also available in various other lan-
guages such as Python, Perl and TCL, and many more with plugins which is the case with PostgreSQLE}

Triggers

As part of the procedural language, there is support for triggers. Triggers are functions that execute
when an event happens. These events are 'insert’, 'update’, 'delete’, or 'truncate’ queries that arrive at
the DBMS. By using triggers, databases can be further customized with specific functions such as also

3https ://en.wikipedia.org/wiki/List_of_databases_using_MVCC
4https://en.wikipedia.org/wiki/Commitment_ordering#Distributed_serializability_and_CO
Shttps://www.postgresql.org/docs/current/xplang.html

https://en.wikipedia.org/wiki/List_of_databases_using_MVCC
https://en.wikipedia.org/wiki/Commitment_ordering##Distributed_serializability_and_CO
https://www.postgresql.org/docs/current/xplang.html

12 CHAPTER 2. BACKGROUND

updating another table or deleting some row based on an incoming insert. Triggers can be fired before
or after the query happens but also instead of the actual query if they are defined on a view.

2.4.6 Database vendors

Many DBMS currently exist that are widely used for various purposes. There are some reasons to
choose one DBMS over the other. In the following section, a couple of widely used and popular DBMS
are listed together with their advantages and disadvantages. Two websites have been used to estimate
popularity and widespread usage. Stack Overflow, a website where people can ask questions about
mostly programming-related subjects, performed a questionairg®| to see which DBMS were used. The
second website, db-engines.corrﬂ ranks all DBMS based on a formula that includes mentions on pop-
ular websites, job listings, and people with the DMBS on their profile among other things. A difference
can be noticed between the two rankings which can be attributed to official support answering most
questions for enterprise editions while small developers that use free open-source systems have to rely
on Stackoverflow for support. The 5 most popular relational DBMS: MySQL, PostgreSQL, Oracle DB,
Microsoft SQL Server & IBM Db2 will be listed below. An overview of the various features can be found
in Table 2]

MySQL

MySQL is the most used database management system by developers, according to the survey by Stack
Overflow. It is not a coincidence as it has a lot of advantages over other DBMS. MySQL is used in many
popular web applications including Facebook, Twitter, WordPress, and Joomlaﬂ It is commonly used in
combination with other popular open-source programs such as Linux, Apache, and PHP. MySQL was
acquired and is being developed by Oracle and is distributed in two versions, an open-source edition,
and an enterprise edition.

PostgreSQL

PostgreSQL, or for short Postgres, is an open-source object-relational database management system
(ORDBMS). It supports most of the latest technologies and techniques and is widely used by developers.
According to Stack Overflow, it takes second place in most used DBMS while on db-engines.com it is
listed on the fourth spot. PostgreSQL is not a product of a large corporation that wants to make a profit.
It is being developed by the PostgreSQL Global Development Group and is thus more of a project of
people enthusiastic about building a DBMS. PostgreSQL is not distributed as several editions which
makes it ideal for troubleshooting problems as everybody uses the same system. There are many
plugins or third-party apps that can work with PostgreSQL because of its open-source policy.

Oracle DB

A competitor to PostgreSQL is Oracle DB, Oracle has been developing its database management system
since 1979. Oracle DB does not only support one database model, it supports several models next to the
standard relational model, including many NoSQL models such as key-value stores, graph databases,
and triple stores. It is also highly customizable with many features that can be included. It takes place
8 on the popularity ranking of Stack Overflow but it ranks first on db-engines.com and is used by many

https://insights.stackoverflow.com/survey/2020#technology-databases-all-respondentsd
"https://db-engines.com/en/ranking/relational+dbms
8https://www.mysql.com/customers/

https://insights.stackoverflow.com/survey/2020#technology-databases-all-respondents4
https://db-engines.com/en/ranking/relational+dbms
https://www.mysql.com/customers/

2.4. DATABASE MANAGEMENT SYSTEM (DBMS) 13

Features MySQL PostgreSQL Oracle DB Microsoft SQL Server IBM Db2
Open Source v v X X
Free v v X X X
Large community v v v'(depends) v X
Provides NoSQL capabilities v/ v v v v
Official support v X v v v
ACID compliant v v v v v
SQL compliant X v Mostly Unknown (T-SQL) Unknown
(Third party) Extensibility Somewhat v X Unknown X
Migration to another RDBMS v v X X X
Easy setup v X x (licensing) v X
Advanced security features X X v Unknown Unknown
Master-master replication X v (third party) v v Unknown
High availability v v v v v

Table 2.1: Features in the top 5 RDBMS

large corporations because of the enterprise features it offers. ING uses Oracle DB for some of its
applications.

Microsoft SQL server

Microsoft SQL Server is another widely used DBMS in the enterprise world. It also offers a lot of features
just like the ones above. There is a restricted free version available for use by small developers. Its main
strength comes from Microsoft having a large customer base in other products such as Windows Server
and Microsoft Azure.

IBM Db2

IBM started as one of the first vendors building DBMS and was widely used by corporations. However,
the popularity of IBM has been dropping, and currently, not a lot of new projects that are started include
IBM. Stack Overflow shows that only 2.9% of developers use IBM Db2, way below the other DBMS.
db-engine.com still lists it on the fifth spot but it would not be weird if those are mostly legacy systems
that still have to be supported. It is still included in this list as one of the top enterprise vendors next to
Oracle and Microsoft.

Advantages & disadvantages

All these relational database management systems are made with different ideals and thus contain
many advantages and disadvantages over each other. In Table some of the most used arguments
are listed on why a developer or organization might choose one over the other.

Why PostgreSQL for this research

PostgreSQL has been chosen as the best RDBMS for this research because it is open-source, free,
and does not have restrictive licensing when using or modifying its source code. Another reason that
PostgreSQL has been chosen is the large community that supports this RDBMS and the third party
extensibility, but also its large compliance to the SQL specification. These features make it a great
candidate to be used in a company without any dedication to paying a monthly or yearly fee for usage.

14 CHAPTER 2. BACKGROUND

Database Version Control Tool Database independenﬂ Automatic rollback Transactional Composability Free Open source
Visual studio SQL server data tools | No No No No Yes No
Version SQL No No No No Yes No
Liquibase Yes Yes Yes Yes Yes Yes
FluentMigrator Yes Yes Unknown Yes Yes Yes
Sqitch Yes No Yes Yes Yes Yes
Apricot DB Yes No Unknown No Yes Yes
Flyway Yes No Yes Yes Yes Yes
DBGeni No No Yes Yes Yes No
yuniq| No No Unknown Yes Yes Yes
Alembic Yes No Yes Yes Yes Yes

Table 2.2: Various version control tools with features

Other vendors might also change their licensing down the road, this will not be a huge deal if the solution
is open source as the community will likely fork the project and support it. This has happened with
MySQL in 2009, the fork is called MariaDB.

2.5 Schema Migration

2.5.1 Database version control tools

In a continuous development project the requirements change over time. A changing database schema
is one of the results of that. The database management system already includes ways to change the
structure of the database in the form of DDL statements. However this can get complicated if performing
complex changes that include (foreign key) constraints. DBMS also do not provide a nice way to keep
track of various versions of the schema.

Various tools exist to keep track of different versions and to provide a script to automatically update
(or rollback) the schema. Most of these tools are programming language independent and provide
a structured way to see which changes occurred in which version of the database. Table shows
different tools together with important features that it supports.

The composability feature in the table tells us if the tool can keep track of various versions as 1 atomic
change. These are mostly files that specify the incremental versions of the schema. Transactional
means if the update or rollback is performed in a transaction and can therefore be rolled back in case of
an error. As for the automatic rollback, this tells us if a tool can automatically generate the exact opposite
statements for a set of changes. Some tools let you specify what the undo procedure should be while
two tools do that automatically. Some tools do not provide an undo procedure and just tell you to update
the schema with the opposite statements.

2.5.2 Information loss

Any data that has been deleted cannot be recovered, if the deletion is done properly. But what if after
the data is deleted a rollback is required because the change was not satisfactory. A method to achieve
this is to soft delete the data by either hiding it or moving it to a temporary location where it will stay
dormant for a certain amount of time before it is permanently deleted. However, there is still a problem
with this approach with regard to schema changes. If two columns get merged from a table and the
opportunity to roll back should be available, the original data in the two columns should still be available
if no function exists that can reverse this merge. An example is if both columns contain integers which

9Supports at least PostgreSQL, SQL Server, MySQL & Oracle DB

2.6. SOFTWARE DEVELOPMENT 15

gets summed up in one column. A simple one-way function is needed to go forward but to go backwards
is not possible. 2 + 2 = 4, but 4 can be divided into infinite sums (or only 5 if counting the whole numbers
Ng). Some extra information needs to be stored to provide a rollback, which is in this case one of the
original columns (the other can be calculated). In other examples you need all the original data.

But what if new data is created or data has been updated that did not exist before the schema
change. The original data never existed and can thus not be stored. To still provide a rollback the
application should either provide a default value for the data in the original format or internally work with
the old data format. If eventually the change is so far in the past that the possibility for a rollback is not
required anymore, a hard switch can be made where applications can switch to the new version and
definitely delete the original data. In the mean time, applications can decide to use the new column only
for displaying purposes and create or update information using the old format.

2.6 Software development

Databases are almost never used as a standalone service and are mostly coupled with various appli-
cations. This software does not pop up out of nowhere. Software engineers and programmers have
to design and code the various parts that the software should be capable of doing. To facilitate this
process and provide an organized manner or working, several methodologies have been developed to
give structure to this process. Originally the waterfall method was the standard methodology that was
being used. It came from the mechanical engineering field in which clear requirements were known and
almost everything could be designed beforehand. However, this methodology causes a lot of friction
with software engineering which is quite different. Requirements are almost never known beforehand
and the scope will surely change during the development, partly due to relatively quick improvements in
the software world. To solve this problem, the agile methodology was developed.

2.6.1 Agile

Agile characterises itself with small short improvement 'sprints’ focusing on building a working prototype.
This contrasts with the waterfall approach that first designs the solution, locks requirements and then
starts building the solution. Agile is a popular buzzword and used by a lot of managers to indicate that
their organization moves with the time. It provides several advantages when clients want software but
don’t know all the details yet. Agile is lenient in what can be done at what stage of the project. In
more recent years Agile is being rolled out to large corporations with thousands of employees. These
corporations provide applications to millions, if not billions, of users worldwide. These applications need
to be maintained and improved but users are not happy with big sudden changes to their environment,
many corporations now provide small incremental improvements. However, constantly updating the
application can take a lot of time if some aspects are not automated.

2.6.2 Continuous integration & continuous delivery/deployment

With the advent of small incremental improvements came the need for automatic testing and deployment.
Manually testing every release becomes tedious and running all checks before a new version comes live
is time consuming. Continuous integration and continuous delivery/deployment is the new way to provide
these small incremental updates to applications. Continuous integration is the practice of constantly
merging small improvements into the main production branch. To make sure these improvements do
not break important features developers have to write unit tests that automatically test functions and
features of the application.

16 CHAPTER 2. BACKGROUND

Continuous delivery or deployment is the practice of (automatically) deploying this branch to produc-
tion at regular time intervals. Sten Pittet of Atlassian [8] describes a subtle difference between delivery
and deployment. Whereas with continuous delivery the push to production is still manually done every x
amount of time, say weekly. With deployment this is done automatically as soon as the automated tests
return a success. Developers can already see the change they made a couple minutes after they push
their improvements to the production branch. This does not come with only upsides as for every small
feature or bug fix a new test has to be made or an existing test has to be altered.

The role of load balancers

A load balancer is a sort of entry point that sits before the servers that hosts the main application and
will send users to different servers to balance the load on these servers. Via this way, whenever a new
version of the application comes online, users can continue using the application on a server that has
not updated yet. Load balancers will gradually send users to servers with the new version and servers
with the old version will receive less requests. Whenever a server with an old version stops receiving
connections it can be updated to the latest version and receive users once more. This type of update can
be called a zero-downtime rolling update. For most front-end and back-end updates this works great,
except when an update to the underlying database schema is required.

Problems with CI/CD in databases

Due to the way databases are designed which is already explained in an earlier section, relational
databases like PostgreSQL can only be scaled up, not out. This means that only 1 instance of a database
can be running at a time. This creates two problems when developers want to update the database
without downtime. One of these problems is that updating the schema also means updating the data
that depends on it because the database cannot be in an inconsistent state. If the data happens to
contain millions or billions of objects, it can take quite a while to complete during which the database is
unresponsive to new queries.

The second problem that plagues updating the database without downtime is that the applications
also need to be updated to reflect the change in the schema. But this updating causes there to be at least
two different versions for a short while. Both application versions expect a different database schema
that governs the data. These two problems are why currently many developers postpone updating the
database schema until it is not reasonable anymore to work with. However, this is not according to the
principles of agile and continuous integration and continuous deployment.

Chapter 3

Literature Review

This chapter contains the results of the literature review that has been conducted. This chapter will look
into the literature about (online) schema evolution and the state-of-the-art existing solutions that tackle
zero-downtime schema migrations but will also discuss their flaws or shortcomings.

3.1 Exploratory literature review

At first, an exploratory literature review was conducted. Through the library of the University of Twente
and Google Scholar, different articles on database schema migrations were found. Initially, some 15
articles were found that explained the problem well. Some articles were from researchers at the Univer-
sity of Twente [9] [10] [11]. Also, a paper by Michael de Jong [12] was instrumental in understanding
the subject. References in these articles were checked and interesting titles were picked out. These
include one from Ronstrém [13] about his method on online schema updates for a telecom database
and a paper by Gary Sockut [14] about the online reorganization of databases.

3.2 Systematic literature review

After a first look into the subject, something more systematic is needed to ensure no important articles
are missing in this literature review. Some keywords were brainstormed and put through Scopus. These
keywords include the following: (“online” or "*downtime” or "*blocking”) and ("database” and/or "schema”)
and ("evolution” or "reorgani?ation” or "transformation” or "migration” or "update” or “refactor”) and not
("bio*”). The exclusion of the bio* keywords was done because several biology articles contained key-
words online, database and evolution. This search returned 116 articles of which the title and abstract
were read. Of the 116 articles, 29 were relevant. A large part of the papers was about NoSQL and the
Semantic Web, these were included in the relevant list if there was some mention of it being online and
without downtime.

It became clear that authors named concepts differently. High availability and continuous develop-
ment were terms that were used instead of online or zero downtime but also a couple of other synonyms
for transformation were used, such as upgrade, reconfiguration, and changes.

3.3 Schema evolution

The evolution of database schemas has been widely studied as far back as 1979 by Sockut et al. [15], in
that paper they talked about all kinds of reorganization that a database can have but also changes to the

17

18 CHAPTER 3. LITERATURE REVIEW

schema. In the paper, they also mentioned the problem of having to block user access while maintaining
the database, the problem that is currently also being researched. A paper by Hick et al. [16] developed
a strategy to evolve the database schema in which all steps must be recorded in the conceptual level,
logical level, and physical level as well. A study by Noy & Klein [17] shows that the evolution of schemas
is not the same as the evolution of ontology ("schemas for knowledge bases” as they call it). They say
that there need to be techniques to determine how compatible one version is with another even without
traces.

In a short literature review paper by Roddick [18] in 1992, some papers have mentioned that looked
at temporal databases and how to keep data that were created in a previous schema version into the
next version.

Another possible solution to schema evolution is the schema-on-read strategy [19] that is used in
many big data environments where raw data have to be stored. With this strategy, certain data are
saved according to a schema in the application that requests the storage. When the applications read
the data, it does not know in which format the data are stored, the application must first determine it. This
could be useful if applications store the various versions of the database schema and their respective
upgrade paths. In this way, applications can work with multiple versions of schemas at the same time.
However, the database also has to support this, RDBMS such as PostgreSQL typically do not want to
support such strategies as it will be hard to guarantee certain properties such as ACID.

A paper by Kaas et al. [20] in 2004 mentions that work had been done on schema evolution but did not
consider the special characteristics of multidimensional schemas and queries. They mention that there
has been some research into querying across multiple versions of star and snowflake schemas. The
authors of the paper believe to be the first to present a study that investigates the evolution properties of
star and snowflake schemas and the impact of existing queries. The paper concludes that star schemas
are equal or better than snowflake schemas in all aspects, though they only investigated inserts and
deletions in various levels of the schema. Something to note is that the paper handles OnLine Analytical
Processing (OLAP) instead of OnLine Transactional Processing (OLTP) which can be implemented in
different systems but the authors mention that the most common way it is implemented is via relational
database management systems.

From the paper by Ronstrom [13], which will be discussed in a later section, a couple of papers can
be found in the references that deal with schema evolution and how data have to be transferred to the
new version. One paper developed a new language to accommodate the transfer of objects from an old
schema to new schema objects [21]. Another paper [22] published a tool to gracefully evolve schemas
and the data that it contained. The tool is called PRISM but searches on the internet reveal that the tool
never became widely used. Something to note is that there exists a demo page, but it has been taken
offline. This tool does not provide online schema evolution but focuses on automatic query rewriting to
reduce the cost of evolving the schema. In a paper by the same authors, [23] they mention the following:
"The big players in the world of commercial DBMSs have been mainly focusing on reducing the downtime
when the schema is updated.” They cite a paper by Oracle [24] on their efforts to reduce downtime with
the DBMS_REDEFINITION package introduced in Oracle Database 10g version 2.

3.4 Online schema transformations

3.4.1 Definition

Many words have been used in the literature to describe roughly the same concepts. This research will
use the following definition of online [25] according to The Free Dictionary: ’In production or operation,
often as part of a supply chain’ This means that the schema transformations happen while it is in

3.4. ONLINE SCHEMA TRANSFORMATIONS 19

production or operation. Other words that are used in the literature are 'zero/without downtime’ or ’non-
blocking’. While these words refer to a slightly different concept, in this research the meaning of online
will be meant.

Downtime is also mentioned a lot in literature. It is highly related to the definition of online that is
described above. Downtime is the opposite of online and therefore has the following definition: 'Not in
production or operation, often because of a malfunction.

Another word that has many synonyms in literature is transformation. The other words found are
the following: ’evolution’, 'reorganization’, ‘'migration’, ‘'update’, refactor’, 'upgrade’, 'reconfiguration’ and
‘changes’. In the context of this research the definition of change [26] according to The Free Dictionary
will be used: 'To become different or undergo alteration.’ In the context of this research, it is the alteration
of the database schema. The combination of these two definitions is as follows: ’the alteration of the
database schema while the system is still operating and able to serve clients’

3.4.2 Research

Research into online schema transformations has been conducted in a couple of ways, some have
looked at the strategies that must be used to perform online schema transformations [15]. Others have
researched the performance decreases and which transactions are blocking when performing a mi-
gration [9] [10], while some have taken it upon themselves to create solutions [22] [12]. Also, Oracle
acknowledges this problem and created a partial solution [24]. With the DBMS_REDEFINITION pack-
age introduced in Oracle Database 10g version 2, Oracle made it possible to do some transformations
online such as column addition, renaming, and deletion.

One of the more known papers in the online schema transformation community is the one from
Ronstrdm [13] about doing schema transformations on a telecom database that must stay online no
matter what. Ronstrom proposes a method to use triggers to keep two separate schemas in place and
keep the data in both updated using triggers. The method consists of five phases, where the first two
phases prepare the new schema and the last three validate and either undo or commit the change.
Ronstrdm distinguishes between soft schema changes and hard schema changes. With a soft schema
change, new transactions can use the new schema, and old transactions use the old one concurrently.
Concurrency problems are smaller according to Ronstrom. A hard schema change however waits until
the old transactions stop, makes schema changes and the new transactions can start again. An example
is if the old schema has two columns, namely hours worked and payment per hour, while a new schema
contains only total payment. There is no way for a value in the total payment to go back to hours worked
and payment per hour.

3.4.3 Simple & complex schema changes

Ronstrém also distinguishes between simple and complex schema changes. A simple schema change
can be done in one transaction, while a complex one requires multiple transactions that otherwise would
be a long-running, blocking, transaction. An important part of a database system is the ACID properties.
This means that the transactions should either all complete or none of them. Also if the system fails, it
should not be in an inconsistent state. Therefore, Ronstrdm proposes to work with the SAGA pattern
described in a paper by Garcia-Molina et al. [27], this pattern is widely used in the micro-services archi-
tecture to provide a consistent state between self-contained applications. SAGAs propose also storing
an UNDO transaction in case any transaction in the sequence fails. By following this UNDO transac-
tion, the complete system will be restored to a state before the first transaction in the sequence started
therefore guaranteeing atomicity but also consistency by having a transaction that can be performed in
case of a system failure where some things had been committed. Ronstrom uses a special SAGA table

20 CHAPTER 3. LITERATURE REVIEW

to store these transactions, which is roughly the same as how Liquibase, Flyway, and other schema
evolution tools operate. The paper subsequently discusses the various schema changes and how they
can be implemented using this method.

3.4.4 (Non-)blocking SQL DDL statements

To provide zero downtime a query to the database must not be blocked or fail during the schema trans-
formation. This means that the existing structure of the database cannot be changed in any way as that
would cause failure in existing queries. Blocking transformations thus must be rewritten to a series of
non-blocking transformations and not alter the existing structure. Some research has been conducted
in this area by Wevers et al. [10] but found that different database management systems handled this
differently and could not get some complex transactions to work online on some DBMS. Oracle seemed
to have developed the DBMS_REDEFINITION package in 2005 but it comes with restrictions[ﬂ It also
does not seem to be continuously updated as no mention can be found online of any updates.

3.4.5 Online migration strategies

Various online migration strategies can be identified, of which Rénstrom’s method was already dis-
cussed. Other strategies that are identified are called the fuzzy copy method by Hvasshovd [28] [29]
and the materialized view creation method by Lgland and Hvasshovd [30]. The fuzzy copy method de-
scribes how to copy a table without blocking access to this table and still have all data up to date. This
can be used together with other methods to perform online migration strategies.

The materialized views method is a bit more substantiated and offers a more complete strategy to
perform online migrations. In this strategy, new schema versions are first created in a materialized view
which can already be used by applications running the new version. This has also the advantage of first
being able to test if things work and later committing the change.

3.4.6 Data migration

There are multiple data migration strategies discussed in the literature and recently researchers are
focusing on NoSQL systems [31] [32]. These NoSQL techniques might be translatable to normal SQL
DBMS but more research has to be conducted into that. The main types of data migration are eager data
migration, lazy data migration, and hybrid data migration. For data to be eagerly migrated it means that
as soon as a schema change is made all data will be transformed to the new format. This mostly means
that the DBMS will either take a significant performance hit or block all transactions until the data has
been transformed. This is the preferred method when having a planned maintenance window because
it means that all data will already be in the correct format when bringing the service back up.

Lazy data migration is not as straightforward as one might think. It will only migrate data when it
is requested. This seems fine until you think about what has to happen to data that it depends on,
this data must also be migrated before the current data is migrated. And what if database objects are
several schema versions behind? Several solutions for lazy data migration are proposed to solve this
problem. Wevers et al. [11] propose queue operations as suspended computations in a tree structure.
The solution is not directly usable in RDBMS as it uses key-value data stores, but it might be used
as Rae et al. [33] build an RDBMS on top of a key-value data store with Google’s F1 DBMS. Sheng
et al. [34] also propose a lazy schema change method to perform online schema migrations with less
performance degradation than eager migration. Neamtiu et al. [35] build an implementation that includes

Thttps://docs.oracle.com/en/database/oracle/oracle-database/19/admin/managing-tables.html#
GUID-CB5589F0-B328-4620-8809-C53696972B4C

https://docs.oracle.com/en/database/oracle/oracle-database/19/admin/managing-tables.html#GUID-CB5589F0-B328-4620-8809-C53696972B4C
https://docs.oracle.com/en/database/oracle/oracle-database/19/admin/managing-tables.html#GUID-CB5589F0-B328-4620-8809-C53696972B4C

3.4. ONLINE SCHEMA TRANSFORMATIONS 21

lazy migration in SQLite to perform “online” schema migrations. However, this approach does not allow
for two versions of the schema at the same time.

The combination of eager and lazy data migration is called hybrid data migration. Two strategies are
proposed by Klettke et al. [31], one is called incremental migration, and the other is predictive migration.
With incremental migration once every x schema versions an eager migration is performed to get every
data object to the same version. This is only possible when data objects can be more than one version
behind. The other strategy, predictive migration, might be better suited for applications where data can
only be a maximum of one version behind. In this case, all data is lazily migrated except for a background
process that migrates the data one by one. Depending on the algorithm being used it starts with the
objects that it predicts to be accessed first. This method is especially useful if you want all data to be
eventually on the same version while not wanting to take a performance hit at the moment when you
migrate the schema.

3.4.7 Criteria

This section will consist of the criteria and requirements found in the literature for such an online schema
migration solution. Five articles were identified that listed criteria in 4 categories: functional, perfor-
mance, correctness, and tolerance of errors.

Performing online schema transformations is still a problem to be solved as is apparent from the work
of Wevers et al. In their research they ask the database community to come up with solutions as they
believe currently none exist that meet all their criteria for a good solution. They mention that there is a
need for a solution as evident by the multitude of tools currently developed in the industry [9]. Wevers
et al. have published multiple papers and have provided the community with a set of criteria that the
solution should support [9]. These consist of two categories, namely functional and performance. These
criteria include ideal behavior but also what could be acceptable if such behavior could not be reached.

A paper by Sockut et al. [14] also specifies requirements for the online reorganization of databases.
They split the chapter with applications that require online reorganization and the required characteristics
of strategies to perform online reorganization. The following are requirements for the latter spilit into four
categories, namely functional, correctness, performance, and tolerance of errors. Correctness is defined
as being correct with a specification, in their case following the SQL specification.

Three papers that implemented a solution also came up with their own criteria. These papers of
Sheng et al. [34], Zhu et al., [36] and De Jong et al. [12] provided some requirements that their solution
had to satisfy. These criteria have been summarized in Table and the following sections will more
clearly describe each criterion in these categories.

Each author divided these criteria into categories with different names and some criteria were listed
under different categories. Criteria were reclassified according to the following taxonomy. The functional
criteria state that the solution should be capable of certain tasks or actions to provide more functionality
to the user. This is different from the correctness category as that one means that certain guarantees
should be ensured internally. The performance category lists criteria that relate to performance require-
ments in the database system. Lastly, the tolerance of errors category lists criteria that deal with issues
relating to both system and human errors.

Functional criteria

Wevers et al. specified five functional criteria according to their definition. Three of these criteria are
better classified under the correctness category and will therefore not be discussed here but in a later
section. The first criterion that will be discussed is the expressivity criterion, this criterion implicates that

22 CHAPTER 3. LITERATURE REVIEW

Category Criteria Description

Expressivity All transformations can be performed online
Declarativity The user should not have to deal with specific implementation details

Functional Composability The user can perform many transformations in one go
Concurrently active schemas Multiple schema versions can be active at the same time supporting the same data
Non-invasiveness The solution should not require major work to applications to support it
Aborting The solution should not abort running transactions
Transformation of data All data should be available in the new schema version
Transactional guarantees The solution should satisfy the ACID properties

Correctness Application migration A client should be able to continue querying the database with its current schema version
Referential integrity Foreign key constraints have to be enforced at all times
Schema isolation Clients should not be able to see any other schema version than their own
Consecutive migrations The solution verifies that no other transactions are updating the schema
Performance degradation Performance degradation should be within limits depending on the use case
Space consumption The solution should not significantly fill up available storage space

Performance Finite completion time The solution should perform the transformation in a finite time, preferably as fast as possible
Time to commit Data should not take too much time to transform after clients are already using the new version
Memory usage The solution should not take up more memory than is allocated to the system
Data recoverability The solution should have the means to reverse the transformation
New data reverse transformation New data should have a transformation back to the previous version

Tolerance of errors) - . .)) . . .
Transformation resilience Transformations can be aborted without inconsistencies, preferably restarting from a checkpoint
Successfully online The new schema version should only come online when it is successful

Table 3.1: All criteria found in the literature

every schema transformation can be performed online. Wevers et al. mention that this would be the
ideal case, however, it could be sufficient to allow for a subset of transformations in practice.

Zhu et al. also coined this criterion. According to them, the solution has to be able to handle both
simple as well as complex scenarios. Examples of such complex scenarios are given as multi-table joins
and mergers. However, also in this case some complex scenarios might be achieved by allowing for only
a subset of transactions to achieve the same result.

The second criterion that falls under the functional category is declarativity. What they mean by that
is that the user should not have to deal with the implementation details of the transformation. If users
have to manually declare actions to perform certain operations online there will be a high chance that
mistakes are made and the integrity of the database can become compromised. Wevers et al. mention
that the SQL data definition language can be considered declarative.

A criterion from De Jong et al. describes the same functionality as the declarativity criterion above.
They mention that software engineers should have the ability to perform transformations in one go. They
should not have to deal with developing and deploying intermediate versions. They call this criterion
'Schema Changesets’ as Liquibase provides these declarative changesets.

A second criterion from De Jong et al. that falls under the functional category is the non-blocking
schema changes. This criterion is the same as the expressivity criterion from Wevers et al. as it says
that schema changes should be online and not blocking any queries issued by database clients.

The third criterion of De Jong et al. is concurrently active schemas. De Jong et al. mention that
this criterion avoids putting restrictions on the method of deployment when upgrading web services
depending on a database schema version. At least two schema versions should be able to be active at
the same time because applications might not be able to perform a big flip upgrade.

Non-invasiveness is the fourth criterion from De Jong et al. in the functional category. They state that
the solution should require as little change to the integration with the application as possible. This crite-
rion will ensure that databases with a lot of depending applications will not require immense refactoring
to allow for the solution to work. Preferably, any solution will totally transparent to the clients accessing
the database.

Wevers et al. also coined some performance criteria of which some can be rallied under functional

3.4. ONLINE SCHEMA TRANSFORMATIONS 23

criteria. One of those is similar to the non-blocking schema changes of De Jong et al. However, Wevers
et al. do allow some blocking for short periods of time depending on the application, but not more than
a couple of seconds each time.

A second performance criterion that actually falls under the functional criteria is what Wevers et al.
call aborts. The solution should not abort already running transactions. They propose that snapshot
isolation and translation into the new schema is a way to solve this issue. As well as with the previous
one Wevers et al. do propose that some short-running transactions can be aborted if they do not suffer
from starvation. Starvation in a computer system refers to the problem where a concurrent task is
repeatedly denied access to a resource to the point where the task will never finish.

Correctness criteria

As was already mentioned, the correctness criteria can be confused with the functional criteria but pro-
vide a different meaning of ensuring certain guarantees. Three of the five functional criteria determined
by Wevers et al. can be placed under this category. These criteria are so-called hard criteria in that if
they are not satisfied a tool can not be called a solution as it does not support essential operations or
provide essential guarantees.

The first criterion in this category is called the transformation of data by Wevers et al. This criterion
specifies that all existing data should be available in the new schema. This obviously does not count
for columns that were dropped or other constraints that were lifted in the new version but all other data
should be available in their original format or in the transformed format which was specified by the
schema change.

The second criterion is the transactional guarantees already specified for OLTP transactions. These
transactional guarantees are to ensure the database integrity and correctness of the database programs.
This guarantee can be fulfilled if the schema transformations satisfy the ACID properties: Atomicity,
Consistency, Isolation & Durability.

The third criterion is called application migration. This implies that existing clients can continue to
operate during and after the schema transformation. If this is not the case the solution cannot be called
online and therefore not be a solution at all. Wevers et al. mentioned this criterion but so did Sheng et
al. and Zhu et al. However they only specified that during the installation of the schema old clients still
have to be able to retrieve and update and not necessarily after.

As for correctness criteria from De Jong et al., one of them is referential integrity. Foreign key
constraints have to be enforced at all times to ensure that there is no way any action can leave the data
in an inconsistent state. This applies to both normal use and during the evolution process.

Another criterion from De Jong et al. is schema isolation. Clients should not see any other schema
version apart from their own version. This is to ensure that clients do not get data they did not expect or
update data into the wrong schema version causing all kinds of problems.

Sheng et al. go one step further by saying that transactions should not be able to see any other
schema version. However, this is a consequence of how their solution is implemented. Transactions
might have to request data from other schema versions to provide the client with their version of the
data. In that case, the above-mentioned criterion by De Jong et al. might be better as to not limit the
solution too much.

Sheng et al. further brought up a new criterion not listed by the other authors. This one can be called
consecutive migrations and states that the solution should check if any existing transactions are already
performing DDL statements and if that is the case not perform the current transaction until after the other
one committed. Because the database has to continue to serve clients no lock can be requested on the
tables. With this in mind, a DDL transaction cannot lock a table and therefore not prevent a new DDL
transaction to also change the schema.

24 CHAPTER 3. LITERATURE REVIEW

Performance criteria

Three performance criteria were distilled from the paper of Sockut et al. about online reorganization.
These criteria are vaguely described but give insights into the performance that has to be expected from
the solution. The first criteria mentioned is that the performance degradation experienced by the user
should tolerable. Sockut et al. define performance degradation as the average increased time it takes
for a user transaction to complete while reorganizing the database. To achieve this criterion either more
system resources should be allocated before reorganization is started, the reorganization should be
happening at times when users do not request much from the system or the reorganization should be
run with a low priority to not impact user transactions.

The second criterion mentioned in Sockut et al. is that the space consumption of a reorganization
should be tolerable. Depending on how much reorganization is going on, the methods that are used, or
the size of the database, not enough space can be allocated. At today’s prices per terabyte, storage is
rather cheap and will be getting even cheaper still. This does not mean that no limitations on storage
space exist. Sockut et al. does not mention what type of space is meant, limitations in the amount of
RAM that the system has can also greatly impact performance.

The third criterion in the paper of Socket et al. is that the process of reorganization should eventually
finish. This seems like a given that that should be the case but if user transactions appear quicker than
that the reorganization can handle it will never finish. This will be the case if the reorganization is given
the lowest priority and user transactions almost take up 100% of the resources of the system.

Not only Sockut et al gave performance criteria but Wevers et al. also mentioned six. These criteria
are divided into two categories, the impact of schema transformation on concurrent transactions and
performance criteria for online schema transformations. Two of the former were already discussed in
the functional category and will therefore not be discussed here. Wevers et al. also do not provide
a clear cutoff point for when a criterion is satisfied and when it is not, this entirely depends on the
application of the solution. The first criterion is similar to a criterion already mentioned above and it is
called slowdown. This just means that the decrease in throughput and increase in latency of transactions
should be acceptable to a certain degree.

The rest of the performance criteria of Wevers et al. apply to the performance of the online schema
transformations themselves. The first criterion they observed is that the solution should have a relatively
low time to commit. What they mean by that one is the time that it takes the data to be transformed to the
new schema (or old schema for that matter) after the online transformation has already been completed.
This is especially important for the lazy migration approach that will be discussed later as it will reduce
the performance of the whole system drastically if this value is too high.

Just like the space criterion of Sockut et al. in which memory is not mentioned, Wevers et al. does
mention a memory criterion. They say that ideally a transformation should be performed in-place and
not construct copies of data. However, depending on the application and available hardware resources,
a solution can request additional memory or use memory swapping to complete its transformation.

Tolerance of errors criteria

The tolerance of errors criteria is only coined in the article by Sockut et al., however, some criteria from
the other papers also fall under this category. These criteria deal with errors and how the solution should
handle these. Sockut et al. mention three criteria of which the first is data recoverability. Data that is
being transformed to a new version should always have a reverse associated with it so that if the new
version is not satisfactory it can be transformed back into its original state. Sockut et al. state that
reorganization by copying data can serve as the basis for this criterion. Zhu et al. also coined this
criterion that data should have a reverse if anything goes wrong.

3.5. BENCHMARKS 25

The second criterion that Sockut et al. present in their paper is that any user action that has become
redundant due to online reorganization has to be logged in case of a rollback. If the new version of a
database schema does not store a variable that existed in the previous version it must still be saved
or logged to ensure the correctness of a possible rollback when a problem occurs. Not doing so might
leave the database in an inconsistent state or cause constraints to be violated. This criterion is almost
identical to the previous one in that data should have a reverse transformation but this criterion goes
a step beyond in that new data should also have a reverse even though it never existed in the original
version.

Sockut et al. also mention a third criterion to tolerate errors which is that online reorganization must
be restartable if an error occurs. Not doing so can cause your database to be in an inconsistent state.
Sockut et al. also mention the term checkpointing as a possible strategy to reduce redoing a large
amount of work when an error occurs. One might argue that this criterion can fall under the correctness
category but due to it being related to helping prevent errors it is moved to this category.

Not only Sockut et al. specified tolerance of errors criteria but also De Jong et al. specified one. They
call it resilience, the database should always remain in a consistent state. If anything fails the solution
should be able to roll back and return to the original state without affecting the database clients. This is
similar to how Sockut et al. described it.

Wevers et al. also specified a criterion that deals with resilience. They call it abort and recovery,
and it deals with what has to happen when issues come forward. They mention that it is acceptable
that transformations are aborted before they are started when concurrency issues are detected but
should not be aborted during the transformation. Ideally, the solution can recover and continue with
the schema transformation after a failure occurs but because system failure is rare, safely aborting
and rolling back might be acceptable. New schema transformations should only be rejected if another
schema transformation is still uncommitted and will cause a conflict.

A criterion by Sheng et al. might sound obvious but is important nonetheless. It says that a new
schema version should only come online whenever it successfully commits. Sheng et al. do not mention
how a solution must achieve this. Upon failure, the solution should likely remove any intermediate steps
S0 no one can interact with those in any way.

3.5 Benchmarks

To quantify potential performance loss or gain in case of gained hours not spend on downtime for that
matter, Wevers et al. specified a benchmark framework for online non-blocking schema transformations
[10]. In this paper, they again urge the database research community to address the open issue of non-
blocking schema transformation. This benchmark can be useful in determining if a solution fits certain
criteria already mentioned in previous sections. They do provide characteristics of an ideal solution but
no real solution.

A paper by Moller et al. [37] provides an overview of online schema evolution benchmarks of which
the above one from Wevers et al. is included. Méller et al. found 5 benchmarks in literature dating
from 2008 to 2018, they are the following in chronological order: Phanta Rei [22], STBenchmark [38],
BigBench [39], Twente [10] & Unibench [40]. In their overview, they mention that 3 out of 5 benchmarks
do not directly deal with online scheme evolution but share many similar concepts that can be used as
a benchmark. They found that all benchmarks want to model real-world applications while only 1 uses
actual data from a real-world system, the one from MediaWiki. They also found that all benchmarks use
queries and statements typically found in their specific application domain to measure the performance.
Some used complex queries while others use analytical queries. One benchmark has the performance
metric to see how many queries were still successful after evolution. Most benchmarks also generated

26 CHAPTER 3. LITERATURE REVIEW

Category Requirement

Data model The benchmark should consider data variety, this includes relational data
as well as semi- and unstructured data

Data generation The benchmark has to generate data to prove the correctness of complex queries

Data generation The benchmark should provide a parametrizable, yet deterministic data generator

Queries The benchmark should distinguish between SQL statements (initial queries)
and SMOs statements (queries to move to a new schema version)

Queries The benchmark should use queries or statements
that are typical in the specific application domain

Metrics The benchmark should measure performance. If data is migrated eagerly,
it refers to the efficient immediate transformation. If data is lazily migrated,
it refers to the on-demand transformation time.

Table 3.2: Benchmark requirements

their own test data, except for the benchmark that referenced the MediaWiki dataset. Méller et al.
propose that benchmarks provide a parametrizable, yet deterministic data generator to provide flexibility
and reproducibility of benchmark results.

Table[3.2]list the requirements Méller et al. identified for a standardized schema evolution benchmark.

3.6 State of the art solutions

Some authors have taken it upon them to come up with solutions, an overview of these solutions can
be found in Table[3.3] Some provide similar approaches while others present other innovative solutions.
When looking at the criteria listed in one of the previous sections, it can be concluded that the DBMS
has to support 2 concurrent schema versions that still support the same underlying data.

3.6.1 QuantumDB

One solution by Michiel de Jong called QuantumDB [12] uses a proxy, a middleware application, that
sits between the database driver and the application. It translates requests depending on the schema
version the application expects. To support 2 schema versions the underlying data gets copied to the
table that is in the next schema version and gets synced by using triggers. QuantumDB will then translate
the table name that the application requests to the table name that is present in the database and is
therefore transparent to the application itself. This does provide overhead by having 2 copies of the data
but how much performance degradation there is, has to be tested.

3.6.2 Ratchet

Another tool called Ratchet by Yu Zhu [36] uses a similar setup but instead of just copying all data to a
second table uses materialized views. The advantage over the previous solution is that data does not
needlessly have to be copied as the underlying data is essentially the same. However, for this solution to
work they had to modify the database server a bit. Another difference with the aforementioned solution
is that it does not reuse the database driver but instead uses a custom-made RPC proxy that is capable
of performing the changes and queries. This makes it that all applications need to be changed to

3.6. STATE OF THE ART SOLUTIONS 27

incorporate this new way of talking to the database. Due to Ratchet not being downloadable or online,
the performance degradation has to be taken from the paper itself.

3.6.3 SqlTable & DataTable in Terrier

A different approach to the above two tools is proposed by Yangjun Sheng [34] by using what he calls
SqlTable & DataTable. His method modified the storage engine of an open-source database to separate
how databases store and present tables. This way a new presentation can be made in SqlTable while
the previous view stays the same. This solution is also not downloadable nor found online. Due to the
use of the DBMS Terrier, no request has been made for the source code as it is probably implemented
completely different than how PostgreSQL works. Nevertheless, important findings can be extracted
from this paper.

3.6.4 InVerDa

InVerDa (Integrated Versioning of Databases) by Herrmann et al. [41] is arguably the most advanced
attempt at an online migration tool. It uses the same concept of views as Ratchet in combination with
their own Database Evolution Language, which is explained further in a section later in this chapter.
It can automatically set up bidirectional triggers to keep new data synced with the old data by use of
auxiliary data tables. These additional tables and views can be materialized again to start anew when
a schema version is deemed stable. On their about pageﬂ more information is displayed as well as a
demo application. However, this service is down. A request for the source code has been made, but in
a reply, it was mentioned that the source code has been lost.

3.6.5 DECA

DECA (Database Evolution for Cloud Applications) is described as implementing InVerDa in cloud appli-
cations and has been developed by Mohapatra et al. [42]. The main author of InVerDa is also a co-author
of this paper. It proposes an architecture to integrate DECA into existing tools. The paper mentions that
it does not in any way modify the DBMS but runs as an independent component. They mention that they
define three triggers for each view, this causes a large overhead when row-wise triggers are used. Not
all DBMS have implemented statement-wise triggers, PostgreSQL has implemented it. The same story
as above applies to this tool, it cannot be found online and the professor that oversaw this paper has
said that the source code cannot be found.

3.6.6 PRISM/PRISM++/PRIMA

PRISM (Panta Rhei Information & Schema Manager - ‘Panta Rhei’ (Everything is in flux)) is the oldest
tool that attempted to provide online schema migration support. Curino et al [22] [23] [43] [44] and
Moon et al. [45] developed this tool with 5 needs that according to them had to be addressed. The first
being a language to express complex schema changes. The second is an evaluation of the effects that
such changes are about to have on the database itself. The third need is the optimized translation of
old queries to the new schema version. The fourth one being the automatic migration of data to the
new schema. And the last one is full documentation on change history. PRISM also presents schema
modification operators which will be discussed in the next chapter. Just like the other solutions, this one
was also not downloadable, a demo site was made but is offline. No request was made to acquire this
tool as it is rather old (2010). It looks, however, quite promising with what it can do.

2https://wwwdb. inf.tu-dresden.de/research-projects/inverda/

https://wwwdb.inf.tu-dresden.de/research-projects/inverda/

28 CHAPTER 3. LITERATURE REVIEW

Online migration tool Downloadable Open source Last update Author Comments

QuantumDB Yes Yes Sep/18 De Jong Proxy

Ratchet No No Oct/17 Zhu, Yu Proxy

SqlTable & DataTable in Terrier No No 2019 Sheng, Yangjun Storage engine overhaul

InVerDa No No Sep/17 Herrmann Proxy

DECA No No 2018 Mohapatra/Herrmann InVerDa applied in cloud applications
PRISM No No Nov/10 Curino/Moon Automatic rewriting of queries
pt-online-schema-change Yes Yes Jan/21 Percona toolkit Copy table + atomic rename table
Google F1 (Spanner) No No - lan Rae Cloud

Oracle package Yes No - Oracle Some tools

Oracle Edition based Yes No - Oracle Multi version views

Kvolve No No Apr/16 Karla Saur NoSQL key-value store

gh-ost Yes Yes 2020 Github Copy table + atomic rename table
0SsC Yes Yes 2021 Facebook Copy table + atomic rename table

Table 3.3: Various online migration tools

3.6.7 Other tools

The above tools all account for the serious attempts at solving the issue of online schema migration.
Multiple other strategies and packages have been made to help developers change the schema. pt-
online-schema-change from MySQL is one of them, it will work on a copy of the table and at the end
atomically switch the name of the table.

Also, gh-osﬂ by Github and OSCE] by Facebook use the above strategy of copying tables and at
the end atomically switching table names. To use this strategy, applications have to support 2 schema
versions. When the switch happens the applications can continue working. These are not complete
solutions as there is still some downtime between switching table names and the solution is also not as
transparent as the other solutions.

The package by Oracle called DBMS_REDEFINITION uses materialized views and has the possibility
to roll back and abort. However, this approach is all but transparent to the developer with a lot of added
complexity. Also, the Edition package by Oracle uses views to create different schema editions but this
solution is also complex to use and not transparent.

Google (Rae et al. [33])) also came up with a solution to schema evolution for their distributed rela-
tional database. This database is a little bit different as it is a relational database management system
built on top of a key-value store. The advantage of this design is that the system can be massively dis-
tributed while still following a relational schema. This, however, did come with some problems they had
to solve because of many servers not simultaneously migrating to the new schema version. The protocol
they described allowed them to have 2 schema versions concurrently without any data corruption. In
their solution 2 intermediate states are proposed called "delete-only” and "write-only”, this allows old
or new schema versions to not break constraints. The solution at Google has limitations in that only 2
schema versions can be used simultaneously. Rae et al. also mention that it does not support common
DDL operations because reorganization overhead can be amortized if multiple changes are batches
together.

It seems only QuantumDB can be found online and is open-source. The other solutions either pro-
vided a demo that has been brought down or did not publish any code or executable. The inner workings
of these solutions can be deducted from the papers.

3.6. STATE OF THE ART SOLUTIONS 29

SMO (Bi)DEL ICMO

CREATE TABLE CREATE TABLE ADD PRIMARY KEY

DROP TABLE DROP TABLE ADD FOREIGN KEY
RENAME TABLE RENAME TABLE ADD VALUE CONSTRAINT
ADD COLUMN ADD COLUMN DROP PRIMARY KEY
DROP COLUMN DROP COLUMN DROP FOREIGN KEY
RENAME COLUMN RENAME COLUMN DROP VALUE CONSTRAINT
DISTRIBUTE TABLE DECOMPOSE TABLE

MERGE TABLE MERGE TABLE

COPY TABLE (OUTER) JOIN TABLE

COPY COLUMN SPLIT TABLE

MOVE COLUMN CREATE SCHEMA VERSION

DROP SCHEMA VERSION

Table 3.4: SMO & BiDEL commands side by side

3.6.8 Declarativity & Composability (SMOs & DELSs)

To make the life of developers easier some solutions propose the use of Schema Modification Operators
(SMOs) [22] [45]. These SMO's can be found in Table [3.4] These consist of commands that are com-
monly used when changing the database schema and are an abstraction from the underlying SQL code
that is generated by the solution. In this way, developers do not have to deal with specific implementation
details and the online schema migration solution becomes more transparent.

In a subsequent paper by Curino et al., [43] more SMOs were added to the list. These are the
Integrity Constraints Modification Operators and specify the constraints that certain fields in a table can
have.

InVerDa and DECA both use such SMOs but based on another language they call Database Evolu-
tion Language (DELs). Multiple versions exist of this language, CoDEL [46], INDEL [41] and BiDEL [47],
of which BIiDEL supports more features and guarantees more properties. Just as with the above-
mentioned availability, no implementation is currently available to be downloaded or used. A request
has been made to the author for the code.

QuantumDB uses 'ChangeSets’ from Liquibase as the language to abstract away the complex inner
workings of the solution. The SMOs that Liquibase offers are given in Table These are not all yet
supported by QuantumDB as evident on the sitdﬂand the issues on Githutﬂ However, these changesets
can be used by Liquibase, and due to Liquibase being open source, plugins can be written to extend
functionality.

Shttps://github.com/github/gh-ost
4https://github.com/facebookincubator/0OnlineSchemaChange
Shttps://quantumdb.io/docs/master/
Bhttps://github.com/quantumdb/quantundb/issues

https://github.com/github/gh-ost
https://github.com/facebookincubator/OnlineSchemaChange
https://quantumdb.io/docs/master/
https://github.com/quantumdb/quantumdb/issues

30

CHAPTER 3. LITERATURE REVIEW

Entity Create/Add Drop Change

Table createTable dropTable setTableRemarks
renameTable

Column addColumn dropColumn renameColumn
modifyDataType
setColumnRemarks
addAutolncrement

Index createlndex droplIndex

View createView dropView renameView

Procedure createProcedure dropProcedure

Sequence createSequence dropSequence renameSequence
alterSequence

Table 3.5: Liquibase ChangeSet commands

Chapter 4

Problem investigation

This chapter discusses the problem investigation of the methodology that was used during the master
thesis. This part discusses the problem investigation as was done in the Research Topics document.
Some of the issues that are currently experienced in the industry will come forward.

As specified by the design methodology book of Wieringa [3], there is a template to construct a
design problem. A better understanding can be gained by filling in this template about what it is that has
to be created. It consists of the context in which the problem is situated, the artifact to be designed, the
requirements to help solve the problem, and the goals of stakeholders. An example of such a filled-in
template that would be applicable is:

Improve time to market of schema updates

by designing a tool

that satisfies the zero-downtime requirement

in order to reduce financial costs associated with bringing down applications for maintenance.

This is not the only example that can be thought of and not all parts might be known before starting
the project. In the above example, only the goals and problem context of some stakeholders are high-
lighted while for some other stakeholders they might differ. In the next section, observation is done into
who the stakeholders are.

4.1 Stakeholders

Stakeholders for these design problems can be numerous. Some of these stakeholders are close to the
problem, while others are farther removed from it. The book calls this 'awareness level’, the lower the
awareness level the less the person either knows, cares, or has resources to handle the problem. Some
stakeholders might not even know that they are stakeholders and some have no influence over the final
product, but they are stakeholders nonetheless.

In Table a list of potential stakeholders has been identified from various sources such as books
[48] [49] but also online web pages with job listings. ING has its own job naming convention which can
be found in brackets. This list is by no means exhaustive and might not describe every company or
organization, but most stakeholders are present.

31

32 CHAPTER 4. PROBLEM INVESTIGATION

Awareness level ~Stakeholders Desires Commitment
High Database administrator (Ops Engineer - Database & Middleware) 24/7 functional and correct running database with redundancy Time
Database developer (Dev Engineer - Database & Middleware) Working with an understandable database structure Time
Database architect (Domain Architect - Risk, Security & reliability) Designing and implementing database environments on various levels Time
Database security officer (Security Engineer - Security & IT Risk) ~ Creating an impenetrable database system that is not susceptible to attacks from anywhere Time
Software developer (Dev Engineer - Coding) Being able to make applications as if the database is in a consistent manner Time
Project manager (Chapter Lead) Being able to push updates as soon as they are available and tested Time
Portfolio manager (Chapter Lead) Managing an assortment of projects and redistributing assets depending on performance Time
Quality assurance (Dev Engineer - Testing) Making certain that code is ready for production and if not that updates are performed on time Time
Medium CEO Having a solid product/service that customers can depend on Time
CFO Generating profit while reducing costs associated with maintaining products/services Money & time
[e]e]e) Having an efficient team that can get the work done in the scheduled time frame Time
Low End-user Being able to always use a working product/service that provides value Money
Competitor "Stealing” profit/market share from other competitors No resources
Human resources Healthy and happy employees that do their work correctly and on time No resources
Marketing department Marketing great product features that attract customers that are willing to pay a higher price No resources

Table 4.1: Overview of potential stakeholders with their desires and commitment

4.1.1 Desires & goals

Goals are desires where stakeholders allocated resources. Some stakeholders are not aware or do not
have the resources to spend and therefore have no goal they can obtain. Resources are in the form of a
commitment of money and/or time and these desires and commitment can be found in Table [4.1] Since
this design problem initially only happens within a company, only one stakeholder allocates money, the
CFO. The other stakeholders are employees that commit their time into implementing the solution and
working with it. The end-user is also a stakeholder, if this user is a client, they can commit money
because they want to always be able to use the service. No immediate conflicts, other than the desire
of the competitor, have been identified between stakeholders.

4.2 Conceptual framework

To design a new artifact, the conceptual framework in which the problem lies has to be known. The
definition of a conceptual framework is rather abstract and according to the book is a set of concepts
called constructs. Table 8.1 in the book gives an overview of what can be meant by it. The background
and literature review chapters give a good understanding of the concepts in which this research is placed.
Any further clarification or definition of concepts that have not been discussed in either the background
or literature review chapters will be explained whenever it is relevant.

4.3 Problem description

To design a good solution to a problem, first, the cause, mechanisms, and reasons have to be deducted
why a solution has to be made to solve certain problems. A lot has already been explained in Chapters
[2/&[3 Below is an overview of the reasons and phenomena.

With the inception of Continuous Integration & Continuous Deployment and a 24/7 global economy,
a resting period for companies does not exist anymore. Systems and services need to be available at
all times. It can be night on one side of the world but on the other side, people are using your systems
and services. To just flip a switch and update an application or service for people that are still in the
process of performing their task is not ideal. At best they can continue performing their task but at worst
their task is aborted and they lose precious data and work. It is therefore necessary to only update the
application whenever they have finished their task, but in today’s world, there is always someone starting
a new process. To commemorate this process, the rolling update procedure is used to update people
to the newest version whenever they are not using the service for a while. This method, together with
the 24/7 economy, does come with the implication that multiple versions have to be running at the same

4.4. EFFECTS 33

time, at least for a short while. But there is a problem with this approach, the underlying database cannot
natively handle two or more schema states at the same time. This causes some necessary database
schema upgrades to be delayed until the cost-benefit trade-off between downtime and further delaying
upgrades is not worth it anymore.

Criteria have been defined in literature but have focused most of their attention on the technicalities
of such a solution. While that is important, they have not taken it into a business perspective. Important
questions to get an answer to are the cost of downtime and how much the delaying of updates would
cost. In the previous chapters, it is already described how organizations currently deal with this problem.
Existing solutions have also been proposed but have not been implemented yet. Another important
question is why organizations have not implemented these solutions yet and what defers them. This
would help in designing a solution that will provide value by tackling important hurdles along the way.

4.4 Effects

By designing and implementing a treatment to the above-described problem, many of the desires of
stakeholders can be improved or achieved. Developers and administrators will not have to delay certain
updates until a maintenance window is planned and do not have to work at night on the weekend when
fewer people are using the service. In most cases, a rollback is not immediately possible due to breaking
changes and the need for downtime. A solution will also solve this by handling multiple schema versions
with the same underlying data.

Costs associated with bringing a service or product down will be eliminated or significantly reduced.
Additionally, customers might value the service or product higher which might increase revenue and
profit margin. Organizations might also provide more guarantees to their customers by providing service
level agreements when their service does not need to be brought down for maintenance. More of these
effects can be found in Chapter[8|where a business case analysis is performed and use cases are given
for which a tool would fit well.

34

CHAPTER 4. PROBLEM INVESTIGATION

Chapter 5

Treatment design

The problem has been investigated and it is now time to start designing the treatment. In this chapter,
the design of the treatment on how that process went is written down.

5.1 Determining requirements

Since reinventing the wheel is not smart, using an existing solution and modifying it to accommodate
all the requirements is better, especially when time is limited. Both in scientific literature and on the
internet, multiple solutions have been identified that claim to solve zero-downtime schema updates.
Additionally, multiple criteria were identified that solutions should comply with. To create a ranking
among the solutions, all solutions have been checked to see if they fully comply with the criteria, partially
comply, or do not comply. The results can be found in Tables [5.1] Results were split
between criteria categories for better readability. Because some criteria can be deemed more important
than others, a weight had to be determined for each criterion. To do this, a questionnaire had been made
that experts had to fill in to see what the most important criteria were. Scores for the criteria were given
on a range between one and five, where five indicates that the criterion is important and one indicates
that the criterion is unnecessary.

Unfortunately, not many responses to the questionnaire were recorded. Most likely due to employees
of ING not having the time or knowledge to properly fill in the questionnaire. It has been decided
that these weights will still be used despite the low turn-out. The questionnaire did not include the
two additional criteria. These criteria are, however, of such high importance that they will receive the
maximum weight of five.

Points were awarded to the solutions based on how they ranked for each criterion. Compliance with a
criterion was awarded one point times the weight for that criterion, non-compliance was awarded minus
one point times the weight. For some solutions, it could not be determined if they complied with some
criteria or the solution partly complied but not fully, for these criteria zero points were awarded. The
weights from the questionnaire can be found at the bottom of the tables, these were rounded to the
nearest integer.

5.2 Chosen tool

The scores of the solutions are found in Table As can be seen, QuantumDB comes out on top.
Other solutions score quite lower. This can be partly attributed to the availability and support criteria.
Another reason for the lower score is that some solutions are not open source and compliance could

35

36 CHAPTER 5. TREATMENT DESIGN

Solution Expressivity Declarativity Composability ~Concurrently active schemas Non-invasiveness Aborting
QuantumDB No, complex transformations not supported ~ Yes Yes Yes Yes Yes
Ratchet No, column constraints not supported Yes Yes Yes, but only 2 Yes Yes
SqlTable & Datatable in Terrier Unsure, but probably yes Yes No Yes Yes Yes
InVerDa No, column constraints not supported Yes Yes Yes Yes Yes
DECA No, column constraints not supported Yes Yes Yes, but only 2 Yes Yes
PRISM(++) Yes Yes Yes Yes Yes Unsure
pt-online-schema-change No Yes No No No Yes
Google F1 (Spanner) Unsure Yes Yes Yes, but only 2 Unsure Yes
Oracle package No No No No Unsure Unsure
Oracle Edition based No No No Yes Unsure Unsure
gh-ost No Yes No No No Yes
OSC No Yes No No No Yes
Weight 4 4 2 4 4 3

Table 5.1: Functional criteria

Solution Transformation of data Transactional guarantees Application migration ~ Referential integrity = Schema isolation = Consecutive migrations
QuantumDB Yes Yes Yes Yes Depends No
Ratchet Yes Yes Yes Unsure Depends No
SqlTable & Datatable in Terrier ~ Yes Yes Yes Yes Yes Unsure
InVerDa Yes Yes Yes Yes Depends Unsure
DECA Yes Yes Yes Yes Depends Unsure
PRISM(++) Yes Yes Yes Yes Depends Unsure
pt-online-schema-change Depends Yes No/Depends No No Unsure
Google F1 (Spanner) Yes Yes Yes Yes Yes Unsure
Oracle package Yes Unsure Unsure Unsure Unsure Unsure
Oracle Edition based Yes Unsure Yes Unsure Unsure Unsure
gh-ost Depends Yes No/Depends No No Unsure
osc Depends Yes No/Depends No No Unsure
Weight 3 5 5 3 5 3

Table 5.2: Correctness criteria

Solution Performance degradation Space consumption Finite completion time Time to commit Memory usage
QuantumDB Depends Depends Yes Yes Unsure
Ratchet Depends Depends Yes Yes Unsure
SqlTable & Datatable in Terrier Depends Yes Yes Depends Unsure
InVerDa Depends Depends Yes Yes Unsure
DECA Small Depends Yes Yes Unsure
PRISM(++) Depends Yes Yes Depends Unsure
pt-online-schema-change Depends Depends Yes Yes Unsure
Google F1 (Spanner) Yes Yes Yes Yes Unsure
Oracle package Depends Unsure Yes Yes Unsure
Oracle Edition based Depends Depends Yes Yes Unsure
gh-ost Depends Depends Yes Yes Unsure
0osC Depends Depends Yes Yes Unsure
Weight 3 3 5 4 3

Table 5.3: Performance criteria

Solution Data recoverability New data reverse transformation Transformation resilience Successfully online
QuantumDB Yes Yes Yes Yes
Ratchet Yes Yes Unsure Unsure
SqglTable & Datatable in Terrier Yes Unsure Unsure Unsure
InVerDa Yes Yes Yes Yes
DECA Yes Yes Yes Yes
PRISM(++) Mixed Yes Probably no Unsure
pt-online-schema-change No No Yes Yes
Google F1 (Spanner) Unsure Yes Unsure Unsure
Oracle package Yes Unsure Yes Unsure
Oracle Edition based Yes Yes Yes Unsure
gh-ost No No Yes Yes
0SsC No No Yes Yes
Weight 4 3 5 5

Table 5.4: Tolerance of errors criteria

5.3. TESTING & FIXING THE CHOSEN SOLUTION 37

Solution Availability Support

QuantumDB Yes, open source Yes, developer still reachable
Ratchet No No

SqlTable & Datatable in Terrier No No

InVerDa No No

DECA No No

PRISM(++) No No
pt-online-schema-change Yes, open source Yes, community or paid
Google F1 (Spanner) No No

Oracle package Yes, closed source Yes, paid

Oracle Edition based Yes, closed source Yes, paid

gh-ost Yes, open source Yes, developers

0SC Yes, open source Limited

Weight 5 5

Table 5.5: Additional criteria

Solution Total
QuantumDB 72
DECA 38
Oracle Edition based 36
InVerDa 35
Google F1 (Spanner) 32
PRISM(++) 28
SqlTable & DataTable in Terrier 26
Oracle package 20
Ratchet 19
pt-online-schema-change 17
gh-ost 17
0OSC 17

Table 5.6: Solution score

not be determined from the articles in which they were described. DECA and InVerDa look like great
alternative solutions if not for the fact that the original developers have no intention to disclose the
source code of the solutions. Tools such as pt-online-schema-change, gh-ost, and OSC that promise
online schema migration rank the lowest. This is caused by their extremely limited scope of what they
can do, therefore not scoring high on many criteria.

5.3 Testing & fixing the chosen solution

To see in what state the solution is and if it can be used for real projects, it had to be tested first. As was
already said in Chapter [3| there were no available benchmarks to test database schema migrations.
The benchmark that Wevers et al. [50] specified is just a specification with no implementation. Due
to time constraints, it was decided that it was not possible to implement such a benchmark, partly
because of the huge scope that the benchmark covers. What was used to test the solution were some

38 CHAPTER 5. TREATMENT DESIGN

transformations from the benchmark because of the ease of making a new TPCC-like database structure
with HammerDB.

Initially, testing was done on manually made sets of changes (changesets), found in Appendix [A] that
adapt the TPCC-like schema made with HammerDB version 4.2. Multiple errors stood in the way of
successfully using the solution. Luckily, QuantumDB is open source and could be forked and modified.
After some troubleshooting, the solution was able to run, albeit not without bugs. Before it could be fixed,
the complete source code had to be read through and understood. Thanks to the original developers’
effort to make the code-base as readable as possible, it was relatively easy to understand the flow of
logic of QuantumDB. Multiple weeks were spent fixing java exceptions, bugs, and logic mistakes with
the help of the original developer.

QuantumDB already had a multitude of unit tests using JUniﬂ Some new tests were made and
some existing ones were modified to incorporate new programming logic. Additional column types were
introduced that PostgreSQL uses such as Numeric, Bytea (byte array), Serial (auto-incrementing), and
more. Additionally, the logic to request the type of a column was not correctly implemented, causing a
migrated table to not always have the exact same characteristics as the original table. Testing with a
load on the database revealed another bug that had to be fixed. When a table is copied and kept in sync
using triggers, QuantumDB made indexes non-concurrently. This caused the database to be locked
for a short while. This was, however, easily fixed by adding the 'concurrently’ keyword, introduced in
PostgreSQL version 8.2, to the index creation SQL statement. Many more fixes were implemented but
not discussed here as that would be quite boring and unnecessary, all commits and changes can be
found in the closed pull request section on Githutﬂ In total, 5.809 additional lines were added to the
codebase and 1.737 lines were removed in 42 commits.

5.4 Panel discussion

Getting a clear overview of why a solution was never developed further and implemented is key to
improving QuantumDB to be used in the future. To get multiple opinions from experts in the database
field, a panel discussion was organized to gather opinions from various points of view. Five employees,
of which one in a one-on-one meeting and the other four in a group meeting, from within ING were asked
to participate based on their experience with the topic and possible influence on getting the tool to be
used within ING. Two of these employees had read the paper by De Jong et al. about QuantumDB
when it was released, the other employees got a quick overview and a demo of QuantumDB. After this
demo, they were asked what key challenges they foresaw to QuantumDB getting implemented at ING to
support zero-downtime database schema updates. The following are the identified key challenges that
were discussed during these panel discussions.

5.5 Identified key challenges

5.5.1 The tool is still in alpha

A big challenge that was immediately recognized was that QuantumDB and the other solutions are still
in alpha. Being in alpha means that the software is still subject to a lot of bugs and has not been tested
extensively. To get out of this state and into beta, more features and use cases need to be extensively
tested. A problem with this approach is that organizations do not want to start using or testing the tool

Thttps://junit.org/
https://github.com/quantumdb/quantumdb/pulls

https://junit.org/
https://github.com/quantumdb/quantumdb/pulls

5.5. IDENTIFIED KEY CHALLENGES 39

before it has reached at least beta, and can therefore be trusted not to majorly break the database.
Organizations like ING want to be relatively sure of the software and tools they use as one misbehaving
link in the chain can cause catastrophic damages. This will not be the case with tools that do not
have an important function, but QuantumDB actually changes the structure of all underlying data of an
application, making it a really important piece of software where errors and bugs are not welcome. This
issue is part of a bigger problem, namely trust. If users and organizations do not trust QuantumDB, it
will not be used.

5.5.2 The tool must be simple to use

A general remark that all panel members shared was that the tool should be simple to use and not
require more than approximately 15 to 20 minutes of training on how to use it. If a tool or piece of
software is widely used and already incorporated into a release pipeline, the amount of time it could take
to learn to use the tool can be higher as the benefits of using the tool are already apparent. This is not
the case when getting started with using the tool, if it takes too long to learn or start using it again after
a while, it will not be used.

5.5.3 The mechanics of the tool must be relatively simple to understand

This is another issue related to the trust problem. Due to the importance of databases and how quickly it
can go wrong if faulty SQL statements are supplied, the mechanics of the tool should be relatively simple
to understand. The panel members agreed that if a database administrator or software developer that
has to update the database schema does not know what the tool does or what the tool tries to accom-
plish, they will not trust the tool. Having a black-box solution that ‘'magically’ transforms the database
from one state to the next without being clear on what it does, is not something the person responsible
for the database wants.

5.5.4 Most edge cases must be supported

One of the panel members said that if less than 95% of the edge cases are supported it will not be
used within ING. If organizations start using the tool and they come to the conclusion that what they
want to achieve is not possible they will have to build workarounds or stop using the tool. A difficulty
for the development of the tool is to know in what environments it is going to be used. An example that
was brought up, is a database that is being populated every hour with massive amounts of data, and
subsequently, most of it is deleted by one delete statement. The question is if the tool does not degrade
the performance so much that it will not be usable. Also, databases that use rarely-used features are a
problem as implementation and testing of those features takes a lot of time.

5.5.5 Pipeline integration must be supported

One tip that was given for easier adoption of the tool is to support pipeline integration. If developers
can quickly set up the tool within the deployment pipeline, it will not be such a hassle to start and keep
using the tool. Any manual work will be limited to the things QuantumDB cannot do automatically. ING is
currently using Azure DevOps which provides the deployment pipeline. Azure DevOps is really flexible
and can accommodate almost any step that can be thought of.

40 CHAPTER 5. TREATMENT DESIGN

5.5.6 Benefits are badly quantifiable

A view that did not come from the panel members but was agreed upon is that the benefits of a solution
are not really known. This is most likely due to the panel members having a technical background and
are generally not concerned with the price tag or potential benefits of technology on a larger scale. If it
can be shown that a solution will either save or earn more money, executive managers at ING might be
willing to invest in implementing a solution.

5.6 Resolutions to the identified key challenges

To solve the key challenges listed above, a plan of approach was made. Some solutions were imple-
mented while others would take too much time. The solutions that would take too much time are found
in the future work chapter at the end of this thesis.

The first challenge of the tool being still in alpha can be solved by releasing a new version of Quan-
tumDB and call it beta. However, this will not solve the myriad of bugs or errors that possibly still plague
the tool. Luckily during testing of QuantumDB, a lot of bugs and errors were found and fixed, some more
tests were written, and no further major problems were found. To know in what stage of the software
life cycle QuantumDB currently is in is best known by the original developer. To support the transition
to beta, tests and validation need to show that everything works as expected. Unit tests were already
included and passed successfully. The next step is to validate QuantumDB with real use cases. In the
validation section of the methodology, this will be further specified.

The second identified key challenge is not specific to QuantumDB itself but in general. Users can
interact with QuantumDB via the terminal with several commands. These commands include: ’init’,
‘changelog’, fork’, ‘drop’, 'status’, ‘query’ & the newly implemented 'cleanup’ (more on this one later).
Additionally, these commands also include some parameters that can be set. All of these commands
with parameters can be found in the documentatiorE] where a clear description is given on what it does
and what parameters can be set. Care has to be given that no feature creep happens and that all
commands speak for themselves. Some features do not necessarily need a separate command, instead,
a parameter or flag to an existing command would be better.

To make the solution easier to use, a new feature was implemented such that changesets are not
selected by a random hash anymore but by the changeset id that the user can specify. This will make
using QuantumDB easier as it is known beforehand which changeset can be selected with which name.
Another positive aspect is that it will be easier to support in a deployment pipeline as there will be
no randomly generated hash that first has to be extracted before a migration can happen. To make
QuantumDB more usable, a graphical user interface can be implemented next to the command line
interface. However, this might only help small developers as large organizations want to make it part of
the deployment pipeline. Overall, QuantumDB is rather easy to start and keep using, however, research
on process complexity should happen that compares current best practices and QuantumDB side-to-
side to determine if QuantumDB is actually easier.

As for the third identified key challenge, a complex problem is mostly tackled with a complex process.
QuantumDB does not necessarily work in a complex way but if that process is not shown, also known
as a black box, it might as well be. Luckily, the process can be made more insightful and transparent. To
accommodate that, a new feature was implemented that prints the generated SQL code to the console
or a file. Before migration, the user can inspect the generated code and evaluate if everything works
as it should. It is not sufficient to execute these printed SQL statements yourself as some metadata
SQL statements are left out to make things easier to read. QuantumDB additionally migrates data in

Shttps://quantumdb.io/docs/master/#cli

https://quantumdb.io/docs/master/#cli

5.7. ADDITIONALLY IMPLEMENTED FEATURES 41

batches of 2.000 rows, the SQL statements to achieve that are not printed to the console as it first has
to request the number of rows in the database and iteratively migrate the next 2.000 rows. A different
implementation is needed to support manually executing the code. Additionally, supporting lesser-used
functions and features of PostgreSQL might make some processes more complex. Care has to be used
when implementing these features that normal usage is not being over complicated.

The remark that edge cases have to be mostly supported is a valid opinion. However, it does not
mean that QuantumDB has to support almost all features of PostgreSQL as most features are not
used nowadays. It can be seen in Appendix [B] Table [B.1] that within ING projects only basic operations
are used. Operations such as createTrigger, createFunction, or createProcedure are not used, which
indicates that databases are used to only store data and do not execute any database-side logic. Such
databases are so-called "dumb”, supporting those features is not on top of the priority list if they are not
(widely) used. Support for all column types can be implemented, right now a sub-set is implemented
with the most used types. Types such as CIDR (IP addresses) or geometric shapes are PostgreSQL
specific and are not seen in any ING projects.

Some features to support pipeline integration are already implemented, such as the changeset id be-
ing the one to use with commands instead of a randomly generated hash. Additional support for pipeline
integration can be implemented by using determined hashes instead of randomly generated ones for
table and other database structure names such that it will always be the same in both development as
production environments as this helps in knowing what names are going to be generated beforehand.

The last identified key challenge is not related to a solution to solve zero downtime database schema
migrations but is related to the business side. In Chapter[8] a business case will be given to show that
investments of time and money into a solution are worth it. The business case is made in the hope that
organizations see the positive aspect of a solution to zero-downtime database schema migration and
want to invest in it.

5.7 Additionally implemented features

As was already shortly mentioned above, a couple of new features were implemented to solve some
of the identified key challenges. These features should improve the usability of QuantumDB and cause
organizations to more easily start using it. One of these features is the 'dry-run’ parameter for the
fork’, 'drop’, and ‘cleanup’ commands. This feature will let database administrators first see what SQL
statements get generated before trusting QuantumDB to perform the migration. It is not possible to
manually execute these SQL statements, as some statements to migrate data and insert metadata are
left out. In the future, new migration logic can be made to allow for manual execution by database
administrators. This will increase the level of trust, as you can exactly see what logic gets executed on
the DBMS.

The second implemented feature is the ’cleanup’ command. This command will rename all tables
back to their original name, after which a client can access the database normally, without the query
rewriter. This command is important to let organizations try using QuantumDB while having a way to
remove QuantumDB if it turns out to not add the expected benefit to the project. This command will not
completely remove QuantumDB from the moment it is called. It will first enter into mixed-state where
the last version is the one with all tables in their correct form. The database administrator can drop the
oldest version after which clients can access the database normally. Dropping the ’quantumdb’ schema,
where all metadata is saved, will completely remove all traces of QuantumDB from the database.

42

CHAPTER 5. TREATMENT DESIGN

Chapter 6

Treatment validation

During the design stage various scenarios with manually made changesets were tested and QuantumDB
seemed to work as expected. The next stage in the design cycle as described by Roel J. Wieringa
[3], the time for validation has arrived. In this chapter, QuantumDB is validated on various levels to
ensure a correctly working software product. Stages include testing under load to ensure the zero-
downtime requirement, consistency testing on a real ING project, and (java) unit testing. Any problems
that were found during validation testing were fixed except where they could not reasonably be solved.
These problems have been listed in the last section of this chapter. Validation experiments were re-run
when modifications were made to the code, even when they should not have impacted anything in the
experiment.

6.1 Load testing

One of the key features of QuantumDB is that it can perform migrations while database clients still inter-
act with the database. Proper validation of this feature is a must. Unfortunately, no standard benchmarks
are (yet) available to test QuantumDB against. Getting a precise value for the performance drop that
QuantumDB causes is also not possible as all server equipment, database structures, and client loads
are different. This experiment will validate that QuantumDB does not block client transactions and will
get a rough figure on the performance drop.

To test migrating during load, HammerDB version 4.2 was used. HammerDB is an implementation
of the TPC-C specificatiorﬂ It is not the most ideal benchmarking tool out there, but it is rather simple to
use. A couple of things to note with the specific implementation of HammerDB is that it does not create
and comply with foreign key constraints. When these foreign key constraints are made, roughly 75% of
the transactions do a rollback due to the load function generating invalid data points. Another problem
is that one table does not contain a primary key constraint. Why these points are problematic, will be
explained at the end of this chapter.

To solve some more problems with how HammerDB constructs the schema, all of the nine tables
were modified to include an extra auto-incrementing column as the primary key column due to the
migration function not performing as expected when a composite primary key was used. This also
solved the lack of a primary key constraint of one of the tables. HammerDB ran fine with these changes
and negligible performance loss was expected from these changes.

HammerDB can be configured for multiple workloads to be used on home or enterprise systems.
To generate load, virtual users can be created to query the database. To test various sizes of data in

Thttp://www.tpc.org/tpcc/

43

http://www.tpc.org/tpcc/

44 CHAPTER 6. TREATMENT VALIDATION

databases, HammerDB has an option to create a database with a configurable number of warehouses.
One warehouse equals a fixed number of rows in each table associated with that warehouse. The num-
ber of rows per warehouse can be found in Table To reduce the chance of virtual users requesting
or working on the same data, a minimum of 4:1 ratio of users to warehouses is recommended?| Since
these virtual users take up computer resources, there is a limit to how many a computer can have run-
ning. HammerDB has built-in functionality to also use other computers as secondaries to increase the
number of virtual users querying the database. It was decided that it was not needed as the server on
which the database runs is not that powerful and will not saturate the resources of a personal computer
with virtual users.

The server on which the PostgreSQL instance ran was a virtual machine running Debian 10.9 with
2 virtual CPUs, each having a dedicated physical thread. The server had 8 GB of RAM allocated. The
version of PostgreSQL was 11.12, which was the default packaged PostgreSQL version with Debian at
the time of writing this thesis. During development op QuantumDB, PostgreSQL version 13.3 was used,
but no differences were identified that could cause a problem.

The server on which the load testing scenario was tested was a Virtual Private Server with 2 cores,
8 GB ram, and 100 GB NVMe SSD storage. Various configurations of virtual users were created on
a remote desktop to simulate multiple connections to the database and to simulate transactions hap-
pening. These transactions were performed using stored procedures to lessen the load on the client’s
computer. It does, however, increase resource usage on the server. If a database is only used as a data
store instead of actually performing calculations on incoming data, more transactions can be performed
in any allotted time.

In Table [6.3] &[6.2] the various configurations can be found with which QuantumDB was tested. The
changesets that were used in the migration can be found in Appendix [C| Unfortunately, HammerDB
cannot be run on the new version of the schema. To make it work, additional features like the migration
of stored procedures should be implemented in QuantumDB. To keep all tests the same, HammerDB
was started and allowed to stabilize, after which the migration started. The transactions per minute and
new orders per minute (NOPM) were recorded during the process, as well as the times at which point
the migration started and finished. The Python script to request the TPM and NOPM can also be found
in Appendix [C]

QuantumDB uses 1 connection for the migration process. The migration function also executes
sequentially, this means that PostgreSQL at most uses 1 core of the host machine for the migration. A
simple calculation can be made that QuantumDB reduces the performance of the database server by
roughly 1 / # of cores. However, this is not exactly true as QuantumDB has some wait time and other
checks to perform on the client computer per batch of data. QuantumDB also blocks certain rows during
migrating which will reduce the performance of any other clients currently working with that data. An
experiment was designed to test the relative performance increase of increasing the number of CPU
cores from 2 to 4, but it was not the bottleneck of the migration process as CPU utilization reached a
maximum of 75% throughout the experiments. The bottleneck was the 8GB of RAM which was fully
utilized during the migration process. Increasing this was not possible without increasing the budget for
the VPS which already became too expensive.

The NOPM values for the migrations are shown in Figure[6.7] [6.2] &[6.3} Due to HammerDB creating
a lot of new data, also the number of rows in the database after the migration was recorded. These
values can be found at the bottom of Table For the 1 warehouse with 1 virtual user configuration,
the end amount of rows in the largest table, order_line, was 444.962. For the 10 warehouses and 2
virtual user configuration, the number of rows was 3.276.431. For the 100 warehouses with 10 virtual
user configuration, the number of rows was 36.545.726.

2https://www.hammerdb.com/docs/ch03s07 . html

https://www.hammerdb.com/docs/ch03s07.html

6.1. LOAD TESTING 45

1 Warehouse 10 Warehouses 100 Warehouses

Customer 30.000 300.000 3.000.000
District 10 100 1000
History 30.000 300.000 3.000.000
Item 100.000 100.000 100.000
New_order 9.000 90.000 900.000
Order_line 300.000 3.000.000 30.000.000
Orders 30.000 300.000 3.000.000
Stock 100.000 1.000.000 10.000.000
Warehouse 1 10 100

Total 599.011 5.090.110 50.001.100
Order_line (after) 444.962 3.276.431 36.545.726
Virtual users 1 2 10

Table 6.1: Amount of rows generated for various configurations of warehouses in HammerDB 4.2

1 warehouse (2.000 batch) modified 10 warehouses (2.000 batch) modified 100 warehouses (2.000 batch) modified 100 warehouses (100.000 batch) modified 100 warehouses (100.000 batch) unmodified

Customer 1,64 (0,03) 15,19 (0,25) 158,05 (2,63) 68,19 (1,14) 3009 (!
District 0,01 (0; 0,03 (0) 0,03 (0;

History 1,26 (0,02
Item 3,9 (0,07,
New_order 0,32 (0,01

)

) 124,16 (2,07) 39,85 (0,66,
)

)

Order_line 12,38 (0,21) 126,96

)

)

)

)

)
)
) 3,88 (0,06) 1,13 (0,02
) 36,81 (0,61) 8,7 (0,
2,12) 1267,68 (21,13) 398,47 (6,
Orders 1,24 (0,02,)
Stock 4,75 (0,08)
Warehouse 0,01 (0;)
Total 25,51 (0,43])

123,47 (2,06) 37,24 (0,62
481,17 (8,02) 207,6 (3,46,
0,01 (0;
2195,26 (36,59

0,02 (0;

)
) 761,22 (12,69

Table 6.2: QuantumDB migration time without load in seconds (minutes)

The graphs show that at all times the transactions per minute never dropped to zero for the scenario
where QuantumDB is used to migrate to a new schema version. Tables & show that it takes
quite a lot longer to migrate data to a new version when there is more data. This is expected but is
worrying for companies when QuantumDB is to be used on data sets containing orders of magnitude
more data than is used in this experiment. Increasing the batch size is also not really doable as more
data is blocked for longer. This even caused deadlocks in the experiment with a batch size of 100.000
with 100 warehouses. It has not been proven that it cannot happen when the batch size is set to the
default of 2.000, though it will be highly unlikely as it only blocks certain rows for a couple of milliseconds
and has not happened during testing.

The green line in the graphs are the NOPM when the migration is performed using normal SQL where
no thought is giving into making it non-blocking. It can be seen that as soon as the code is executed,
the line drops to 0. In the 1 warehouse configuration it did not reach 0 as it took less than 1 second to
complete and for the NOPM to go back up again, however it did block the database access for some
time. In the 10 warehouse configuration the block time was a bit longer due to the larger volume of
data contained in the tables, this is also true for the 100 warehouse configuration. The block times were
respectively 7 seconds and 39 seconds. This means that the database would have been unresponsive
for at least those seconds when the migration is happening. This is unacceptable when a service level
agreement is made promising 99,99% up time.

As for the performance drop that is shown at the end of the graphs, not much can be seen of it.
Calculating from the end of the migrations, a 14%, 12%, and 10% decrease in NOPM can be calculated
for respectively the 1, 10, and 100 warehouse configurations. This is reasonable as it is not the point to
keep 2 versions active at all times. However, if it is needed, it can be done without too much performance

46

CHAPTER 6. TREATMENT VALIDATION

1 warehouse (2.000 batch) modified 10 warehouses (2.000 batch) modified 100 warehouses (2.000 batch) modified 100 warehouses (100.000 batch) modified

Customer
District
History

Item

New _order
Order_line
Orders

Stock

Warehouse

Total

1,47 (0,02) 17,12 (0,29) 206,78 (3,45)
0,01 (0) 0,01 (0) 0,09 (0)
1,49 (0,02) 13,84 (0,23) 153,54 (2,56)
3,98 (0,07) 3,84 (0,06) 4,8(0,08)
0,34 (0,01) 3,54 (0,06) 40,61 (0,68)
15,77 (0,26) 140,07 (2,33) 1751,45 (29,19) Deadlock
1,61 (0,03) 13,49 (0,22) 154,34 (2,57)
4,77 (0,08) 49,28 (0,82) 702,16 (11,7)
0,01 (0) 0,01 (0) 0,02 (0)
29,45 (0,49) 241,2 (4,02) 3013,79 (50,23)

4000

3500

3000

2500

2000

1500

1000

500

Table 6.3: QuantumDB migration time with load in seconds (minutes)

1 warehouse NOPM

FRCTRS Y M/\{Mfw ——

NOPM
e Start

Finish

Figure 6.1: New orders per minute with migration using QuantumDB (blue), migration using normal SQL

6000

5000

4000

3000

2000

1000

(green) and without any migration (yellow) with 1 warehouse and 1 virtual user

10 warehouse NOPM

A J\,w\/l_ \/)\'t/\ M/\"\/\\?\f}’\ —vom-cunuats

NOPM
e Start

Finish

Figure 6.2: New orders per minute with migration using QuantumDB (blue), migration using normal SQL

14000

12000

10000

8000

6000

4000

2000

*,/‘UQ

(green) and without any migration (yellow) with 10 warehouses and 2 virtual user

100 warehouse NOPM

“\ik'ﬂ‘h’ AN A Ao { A A e o A / A ‘
AP PR PR GABATNA —o e

= NOPM - SQL
NOPM

Finish

|
‘ o Start

Figure 6.3: New orders per minute with migration using QuantumDB (blue), migration using normal SQL

(green) and without any migration (yellow) with 100 warehouses and 10 virtual user

6.2. CONSISTENCY TESTING 47

difference. A third active version was not tested as the synchronization between the oldest version and
the newest version is not yet fully tested and does not work as expected. Additionally, the graphs show
the performance decrease when clients utilize the resources to the maximum. When there is no high
load on the server, a slightly lesser performance decrease can be expected.

It is also shown that all rows of the ghost tables contain the same data (except for the changed struc-
ture parts of course). Due to the triggers still happening inside a transaction, a client connecting to one
version of a schema cannot see data any earlier than another client connecting to another version. This
is a requirement as DBMS, like PostgreSQL, follow the ACID principles which state that all operations
are atomic and consistent.

The performance drops found in Graph are not easily explained as it happened in all runs that
were done. It might have something to do with the 5:1 ratio of warehouses to virtual users instead of the
10:1 with the other configuration. It might also be the point at which the RAM was saturated and it had to
switch to a different garbage collection process, therefore, limiting the NOPM for roughly half a minute.
However, it did not happen at the 100 warehouses experiment which might indicate a bug in HammerDB
itself.

6.2 Consistency testing

Load testing through HammerDB has shown that clients connected to the original schema version can
continue querying the database and can continue to access the data contained in the database. Via
queries from the query rewrite, it has been shown that all data is also available in the new version. To
validate if QuantumDB can stay consistent with schema operations, a changelog from an ING project
has been chosen to be redone. Unfortunately, this changelog cannot be made public and will not be
found in the appendix.

To ensure that the schema updates were completed, dummy data was inserted at every step, as well
as some update and delete statements were executed. It was then checked if all data acted according
to what the new schema should have done. This process was a time-consuming part as the existing
Liquibase changesets had to be changed as the syntax of QuantumDB is a little bit different from that of
Liguibase. Additionally, these changes were made for an Oracle database, while QuantumDB, right now,
only works with PostgreSQL. These changes translate to the renaming of column types and different
ways of implementing auto-incremented columns.

In the end, a manual inspection was performed to ensure the database is the same as what the
changesets specified. A couple of bugs were fixed along the way but in the end, the schema looked
exactly like it should. One of the problems was the creation of a new primary key index every time a
migration for a table happened. This was fixed by modifying which indexes to copy and which to let the
database make automatically.

A script has been created to be run in the future to test a real project on future versions of Quan-
tumDB, at the end, it will check if the data it returns is the same as what has been returned right now. If
any of the migrations that QuantumDB performed change in a future date, a warning will pop up telling
the user that functionality has changed and that something might be different. The operations in this
changeset are listed in Appendix [C] it does not include all operations possible and does not test all
available variations of input variables. It is however a real project, which is a better validation than many
synthetically made changesets.

During the migration, the code coverage tool JoCoCo was used to determine the code coverage that
was achieved during this experiment. The results can be seen in Appendix [A] Table [A.1] The results
show that for most classes reasonable coverage was achieved. As with the other experiments the Driver
package is not covered which bring the average down. The cli.xml and core.schema package also shows

48 CHAPTER 6. TREATMENT VALIDATION

is low code coverage, which is expected as the changeset did not use all operations and therefore did
not execute those parts of the codebase.

6.3 Unit testing

Due to the ambition of the original developer of QuantumDB to make a well-tested, clearly understand-
able software application, unit tests were made to test the separate components of QuantumDB. Unit
tests are made next to the source code of the project and are intended to test small pieces of the soft-
ware to ensure their functionality is as what it is intended to do. To ensure no large portion of code is
missed in the unit tests, code coverage by JaCoCo is used to determine the areas where the unit tests
do not reach. The results can be seen in Appendix[A] Table[A.3]

Unit tests are not the holy grail of validating code as developers cannot envision all states in which
the program is to be executed. An example would be an if-statement with multiple components where
only one part is checked. Code coverage would say that the line of code is executed and a developer
might think that most cases are covered, while in truth more possibilities could be tested.

Unit tests are great for making sure future versions of the software do not unknowingly change the
intended functionality of a function and therefore the result of the program. However, developers can
make a mistake in expecting what a certain input should return for that function. What can also happen is
that for the tested input a certain output is returned that is correct while a different input for that function
will return an incorrect output.

6.3.1 Components of QuantumDB

QuantumDB consists of multiple components that all perform their own task. QuantumDB consists of
the following packages: core, cli, postgresql, driver, and the query-rewriter package. Currently, only
PostgreSQL is supported but more packages can be made to support the other relational database
management systems, although, they might need a vendor-specific implementation to achieve the zero-
downtime requirement as it currently uses after triggers. The driver package does not contain any unit
tests and has not been tested during the experiments. The cli package originally did not contain any unit
tests but these were created to also test the functionality of the cli package. During the design stage,
multiple bugs were found in the cli package that could have been prevented if unit tests were made
earlier.

Core package

The core package contains the main logic and ontology classes that represent the database structure
and provide the zero-downtime schema migration used to power QuantumDB. The tests in this package
therefore also test if this functionality is correct and will provide correct error messages when an action
is not valid. Two examples of such tests are checking if a table can be made with a NULL name and an
empty string as a name, in both cases the program should return an illegal argument exception because
this is not possible according to the SQL specification. This package contains a total of 233 unit tests,
which all pass. Manual observation shows that not all methods and lines are covered. Specifically, code
to migrate views, indexes, sequences, and identities are not covered. This could become a problem
when QuantumDB is going to be used for such operations.

6.4. KNOWN LIMITATIONS 49

Cli package

The cli package contains the classes which let users perform migrations using commands on the com-
mand line interface like how Liquibase works. This package also contains the necessary classes to
process the XML code in the changesets. It originally did not contain any tests, but it was needed as
multiple bugs were found during testing. Unit tests were made for all operations and included multiple
wrong inputs to see if QuantumDB acts accordingly. Due to failing tests, some functionality was imple-
mented that will warn users when the wrong syntax is provided in the XML. Previously, QuantumDB
would just continue working like nothing was wrong and return an SQL error later when it tried to per-
form a transformation but did not include the malformed syntax. By implementing this functionality, a
malformed syntax is found earlier and the user will be warned before attempting to perform wrong trans-
formations. A total of 22 tests were made for all transformations currently supported and some tests for
malformed syntax.

PostgreSQL package

Together with the core package, the PostgreSQL package is the most important one as it tests the
specific implementation of PostgreSQL. The unit tests in this package also test their functionality on
a real database. To set up, it needs a database development environment where databases can be
created. Most of the tests use the same test scenario of a video store back-end where multiple tests are
performed. Due to the implementation of additional column types, new tests had to be made to ensure
tables were made using the correct types and that data would be in the same format when it would be
synced across multiple tables.

Existing unit tests were only testing small changesets at a time. No multiple changeset migrations
were tested, as were dropping multiple changesets at once. Unit tests for testing mixed-state of more
than 2 versions are not implemented.

Query rewriter package

The query rewriter package includes a couple of unit tests, but not many. This is, in part, because of the
limited functionality that it provides. However, for proper usage of QuantumDB, this package needs to
be fully tested, as a single mistake can cause unexpected malfunctions in production.

6.4 Known limitations

Databases can be used for a lot of tasks, it is therefore not doable to support and test all edge cases.
While performing the validation experiments, a list has been made of what QuantumDB does not cur-
rently support. In theory, all features and edge cases can be supported, but the time required to make
it work will not make sense for most of them. As was already seen in the previous section, within
ING not many, if at all, advanced features of database management systems are used. Many of ING’s
applications use the database to only store data conform to a schema with constraints. These applica-
tions handle any logic on the application level and do not use the database level functions, procedures,
triggers, or any other specialized features.

QuantumDB does not currently support the migration of functions, stored procedures, and triggers.
Migration with ’instead of’ and ’after’ triggers do not work at all, the 'before’ triggers do work on the initial
schema version they were defined on and will propagate their changes to the new schema version,
however, the trigger will not be copied and any clients connecting to the new schema version will not

50 CHAPTER 6. TREATMENT VALIDATION

execute the ’before’ trigger. Manually making a new ’before’ trigger can be done and should work, but
this is not tested.

Functions and stored procedures can be supported, but QuantumDB will need a similar mechanism
as implemented with the query rewriter, substituting any mentions to tables, and including, altering or
removing modified columns. An additional inconvenience is that changing any logic will be difficult as
the previous version has its own functions to change the data according to its own function definition. It
will be much easier to have all logic within the application instead of the database where the blue-green
updating scheme can be done much easier.

Unfortunately, ING did not have any additional projects that did not require massive time investments
to translate between SQL or Liquibase and QuantumDB syntax. Most of these changesets use Liquibase
as the executor of SQL statements and do not use the Liquibase syntax. QuantumDB cannot work with
such statements to provide zero-downtime migrations. A couple of open source projects have been
found using the advanced search feature of GitHub, searching for Liquibase changelogs. However, these
changelogs were either too small, in YAML syntax (instead of the supported XML), also used Liquibase
to run SQL queries, or used Liquibase in other ways that QuantumDB cannot be used for. This will
cause a problem when developers want to redo a project in QuantumDB as most existing syntax is not
exactly compatible. However, this is not a problem when developers create new changesets and keep
the differences and limitations in mind. Efforts can be made to make QuantumDB more compatible with
existing syntax and changelogs used in projects but that would require considerable development time.

6.5 (inherent) Problems

During the validation stage, multiple problems were identified that can not be solved with some additional
programming. These problems happen due to the mechanisms QuantumDB operates with. QuantumDB
does not warn the user when trying to perform a migration when one of the below-mentioned problems
is present. This would be a nice feature to have as it could potentially make the migration process
malfunction and cause the existing application to behave differently.

6.5.1 Table without primary key

QuantumDB migrates data from one table into the next using a migration function. It does this in batches
with a default of 2000 rows where it picks the next 2000 rows starting at the primary key of the last
migrated row in ascending order. It will continue until all data is migrated. This migration function
does not work if there is no primary key. This can not be easily solved as some solutions cause other
malfunctions. One of those solutions is to not migrate data in batches of 2000 rows each time. However,
this will be the same as blocking the whole table for as long as it takes to migrate all data. Another
possible solution is to use a unique index, however, this will mostly only exist on tables with a primary
key. A problem is also that it should not allow NULL values, as the migration function can get into an
infinite loop if there are more than 2000 rows with the same ‘unique’ key.

If functions or stored procedures in PostgreSQL can begin and end transactions within another trans-
action a different migration function can be made that will loop over all data in a single call of the migra-
tion function but other side effects start happening at that point. To conclude, zero-downtime migration
without a unique not null index is not feasible.

6.5. (INHERENT) PROBLEMS 51

6.5.2 Constraint addition

Certain technicalities look like a problem until a closer look is given to them. One of these is what hap-
pens when a foreign key, unique or other constraint is added in the next version of a schema. Suddenly,
data that is migrated and synced, has to comply with this new constraint. And what happens when it
does not comply? The database rolls the whole transaction back. The new constraint is now also in
force on the old version of the schema. It can be said that this would be a problem, as you are changing
how the schema works after it has been defined. But a closer look at the schema update reveals that
when such a constraint normally gets added to the schema, the original data must already be able to
comply with this requirement, otherwise the schema transformation will not succeed and is rolled back.

It will only be a problem if database administrators expect that the original schema will not change
and have not tested if data will comply with the newly introduced constraints. Also, if an application
was responsible for keeping the constraints in check, it might not do it within one transaction. It might
follow the NoSQL consistency variant, eventual consistency. In this case, when the application gets
shut down for maintenance, the database would look like it was always consistent even though it was
not during operation. A solution for this problem might be to assign a function to the column in case
of non-compliance to the new constraint on how to transform it to a compliant one. However, in this
case, both versions would not get the same data or the original version would not insert or update the
specified data. A warning within QuantumDB to prevent users from accidentally causing unexpected
system behavior would be something nice to have but is not implemented right now.

6.5.3 Column ordering

QuantumDB does not depend on fate in assuming PostgreSQL always returns tables with the same
column ordering. While it has yet to happen that a column was in another position during validation, it
is not guaranteed by PostgreSQL. It is not so much a problem as a general awareness that developers
have to be conscious about when interacting with the database, that they always explicitly specify which
column they mean instead of relying on the not guaranteed ordering of columns. Oracle DB does
guarantee the column order in their databases.

An exception to the above statement is the column ordering of indexes. When developers use the
create or drop command for indexes, it is important to keep in mind the differences when placing one
column in front of the other. To remove an index with QuantumDB, a developer has to specifically write
the index with the right columns down. A slightly better way would be to remove indexes by name, but
due to index names being universally unique across the whole database this would not work when the
table is migrated more than once, as QuantumDB would make another name.

52

CHAPTER 6. TREATMENT VALIDATION

Chapter 7

Discussion

During the design and validation steps, data was gathered in various forms. To get information out of
this data it has to be transformed in a certain form. Luckily, when collecting this data, care was given
into already transforming the data into a correct form for usage. Using this information, new knowledge
can be gained by applying algorithms and visualizations and closely looking at possible patterns. One
step further in the DIKW hierarchy (Data, Information, Knowledge, Wisdom) is applying this knowledge
to future cases to make the best possible decisions, which is called wisdom.

In this chapter, results from the previous chapters are discussed and interpreted. The implications
that those results have are also discussed as well as the limitations of the research that was done. At
the end of the chapter, future work and recommendations for further research are given in areas that
have not been investigated due to time constraints.

7.1 Interpretations & implications

What can be interpreted from the information is that QuantumDB works for the specified operations and
that it will migrate to a new schema version without downtime in the sense that clients can keep on
querying the database without receiving an error or timing out. During the migration process, batches
of 2.000 rows are migrated at a time. During testing, this took roughly 40 milliseconds per batch on
the hardware that was used. QuantumDB, however, only reads the rows and should therefore not be
blocking any other transactions on those rows of data. An experiment with a batch size of 100.000 rows
resulted in deadlocks, possibly due to write locks on the new table that data is migrated to, but more
research needs to happen to determine the exact cause. A batch size of 100.000 took roughly 2.500
milliseconds during the experiment, which might have been too long for a read lock.

As was mentioned in Chapter|[6] the performance drop calculated was between 10% and 14%. These
performance drop numbers were noticed for all experiments with 1, 10 and 100 warehouses. This
indicates that a performance drop while migrating happens separate from the amount of queries the
database receives. This means that it can even be used on systems that do not have much headroom
available. Latency and throughput however, will drop by roughly 10% to 14%. It is noteworthy to mention
that performance drop decreases as more users query the database and the database contains more
data. Although this is only seen for one experiment, results might vary with other database layouts and
changelogs.

Due to the unmodified schema performing way worse, QuantumDB cannot properly work with com-
posite primary key constraints. This means that existing databases that use such constraints have to
be adapted. Doing this is not difficult but the schema will look a bit different than before. Database
administrators have to drop the primary key constraint because only one may be active at a time. Next,

53

54 CHAPTER 7. DISCUSSION

they have to add an extra primary key column with auto-increment on. In PostgreSQL, this is as simple
as adding a column using the serial type. At last, they have to add a unique not null index on the original
composite primary key constraint columns. Doing this ensures that QuantumDB can work properly while
still having the primary key constraints on the original columns, albeit in a different syntax.

It can be seen that migrations will take longer the more data is in the database. This would make
migrating a schema in a huge database multiple times a day not doable. However, this would probably
not be the case. At the start of the development of a software product, many updates can be made each
day. At this time, not a lot of data would probably be in the database. Migrating to a new schema version
would therefore not take long. At the end of the development process, fewer updates come out which
are probably bundled, because developers do not want to bother end-users by updating multiple times
each day. Longer migrations are therefore justified.

The above also implicates that QuantumDB is less useful when used in projects that have a large
database, probably from data in earlier applications, that also want to release several times each day. It
can be done if schema updates are not part of many updates or if developers plan schema updates or
group them. Even though QuantumDB promises to let developers perform updates whenever they want
to push a new version, the time-to-market of these updates drops considerably in this case.

7.2 Limitations & future work

It would have been nice to provide a solution to all challenges described in this master thesis, but all
research has to end somewhere as it cannot go on indefinitely. In this section, all of these limitations,
questions, and challenges are discussed that are still open for future research. Some of these listed
might depend on other research in the list that has to be done first.

7.2.1 Limitations

QuantumDB was only tested using the default configuration of PostgreSQL, this includes the default
value of the isolation level. This level defaults to Read Committed, which is the second level in the
SQL standard, but the first in PostgreSQL as Read Uncommitted performs the same due to the MVCC
design. Results might change when the isolation level is increased, in particular, the performance drop
might be more severe and a batch of 2.000 might even cause deadlocks due to stricter rules.

Performance drop numbers were collected using only one experiment, so different workloads, and
schema layouts can probably expect different performance drops, the database developers and adminis-
trators using QuantumDB should first test it with their specific instance before relying on these numbers
to be true. The performance drop numbers were calculated when all tables in the schema got an update.
Most updates only perform updates to one or a couple of tables, performance drop numbers can in that
case be lower.

7.2.2 More testing & start implementing into the pipeline

More additional work can be done on zero-downtime schema migrations and QuantumDB. The next
logical step is to actually implement QuantumDB into a release pipeline, but before that could happen
more testing is required to solve the problem of the tool still being in alpha. To solve this, future re-
search could look at testing more changesets as well as testing changesets with additional complexity.
Future research could also look into running two separate database instances, one with and one without
QuantumDB, next to each other to see potential differences that occur.

7.2. LIMITATIONS & FUTURE WORK 55

7.2.3 Implementing additional features

Future research could also look at implementing additional features that could be migrated. Right now,
triggers, functions, and procedures are not supported as they require a different approach to migrate
without downtime and without (much) human intervention. Migrating these features is not as easy as
just rewriting the different tables and columns inside the code as calculations can become quite different
when columns get changed, added, or deleted. Before this research actually gets started, however, it
first has to be investigated how many database instances still use these features. One of the experts
in the panel discussion mentioned that databases were getting used more as dumb data stores and
that developers decreasingly used these additional databases features. It would be a waste of time to
implement these features if they would not be used.

7.2.4 Mixed-state with more than 2 active versions

Another feature that was not tested was the ability to achieve mixed-state with more than 2 active ver-
sions. Future research could look at fixing and start testing this functionality. A different way it could be
used is to achieve A/B testing, where two different versions spawn from a baseline version to see which
one performs the best, keeping in mind that data between all versions stays the same.

7.2.5 Driver testing

One of the features of QuantumDB, the driver that rewrites queries, was not tested during this research.
In part because of the lack of real applications. The driver package is based on the Java Database
Connectivity (JDBC) driver that handles the connection between the application and the database. The
codebase consists of some specific implementation that lets applications connect to a specific version
and rewrites the query, but most other code is just the same as the normal JDBC driver.

7.2.6 Additional DBMS support

Right now, QuantumDB only supports PostgreSQL. This can be extended to also include DBMS like
Oracle DB, Microsoft SQL Server, and MySQL. These will require their own specific implementation as
these DBMS act a little differently. However, most code can be copied and the specific parts can be
changed to accommodate the differences. One important part that might require special attention is
the integrated function pg_trigger_depth() that QuantumDB uses for the migration in PostgreSQL. Other
DBMS might not support such a feature, which will prove troublesome as a different way to migrate data
has to be found.

7.2.7 Usability testing (complexity)

A solution would not be a solution if it is used in the wrong way with more errors as a consequence.
QuantumDB works for the tested use cases, that is shown, but it has not been shown that it is simpler
or less error-prone than when developers do not use QuantumDB. Future research can look at the
steps in the procedure that is used now and compare it with the procedure when QuantumDB is being
used. Researchers can look at the time spend dealing with the migration and the errors made during
migration. They can also look at the perceived difficulty by developers and the time taken to learn to use
QuantumDB. During this research, additional features can be implemented that would make it easier to
learn and use QuantumDB in the future.

56

CHAPTER 7. DISCUSSION

Chapter 8

Management (business case & use
cases)

This chapter will discuss the business case as well as the use cases of a zero-downtime schema migra-
tion tool. QuantumDB will be mainly used as the reference in the use cases analysis as it was developed
further and validated in this master thesis. Executive management of companies can read this chapter to
get an overview of the benefits and costs of implementing a tool, as well as for which use cases the tool
would fit best and which it would probably not work. Since QuantumDB has not yet been implemented
within an organization, the first to do so will probably encounter additional problems and limitations, but
would have an advantage over competitors not implementing a zero-downtime solution.

8.1 Problem context

Updating database schemas without downtime is one of the only procedures that still does not occur
at organizations when updating applications. The front-end, back-end, and other intermediate software
tools can mostly all be updated without bringing down the system, as multiple versions can co-exist
to some extend. Database schemas are an exception in that the underlying data that is governed by
a format (the schema) has to be the same across all versions that are used. NoSQL databases do
already provide some ways to update a schema without downtime, if such a schema even exists in that
database. However, updating relational SQL database schemas without downtime is still relevant due to
the ACID principles governing the data. NoSQL databases lack some or most of these principles making
it less useful to use them to store data when applications need strict requirements.

The most important part of a solution is that organizations do not need to schedule maintenance
windows each time the database schema needs to be changed. Having to deny clients access to your
service, be it intentional or unintentional, can be detrimental to the perceived satisfaction [51] [52] of
clients with your service or product. If updates happens once a month or less often for a couple of
minutes, most clients would not even notice and satisfaction would drop an negligible amount. However,
if schema updates happens multiple times a day or for a lot longer, say 2+ hours, clients would become
upset that the service is not available when they want to use it.

Adopting a zero-downtime database schema migration solution would solve the above sketched
problem and would even introduce more benefits. These are listed below, together with the cost of
implementing a solution. At the end of this chapter, potential use cases are given for which QuantumDB,
or another solution, would work the best.

57

58 CHAPTER 8. MANAGEMENT (BUSINESS CASE & USE CASES)

8.2 Benefits

Benefits of a solution can be anything, a 1% increase in profit margin, an increase in happiness of
employees, or compliance with some regulation. Some of these benefits are easier to quantify into a
concrete amount of money than others. A 1% increase in profits is rather easy but how do you quantify
the happiness of employees? Chapter 8 of the book Applied Cost-Benefit Analysis by Brent R. J. [53]
goes in depth on how to quantify these intangible and unquantifiable benefits and costs. It mainly
consists of finding a physical unit to measure the benefit or cost metric. For example, noise pollution
can be measured in decibels. After determining this, a monetary value has to be assigned to this unit.
This can be difficult because most of the time no standard value can easily be found in the literature or
online. Research has to be done to find an estimate. Having a single metric to compare costs versus
benefits helps in decision-making. If two metrics are used, one of the values need to be converted into
the other for a better comparison. This value is almost always an amount of money.

If the amount of money the solution brings in outweighs the amount of money it costs, the solution can
be said to deliver value. But not every company implements every solution. Most of the time, companies
have a whole list of potential solutions that they can implement, so which ones do they choose? That
question depends on multiple factors but one of them is that they choose the solutions with the best
cost-benefit ratio [54]. If, for example, a solution only costs one person one day of work but brings in
€10.000, you would be a fool to not do it (except when other more profitable projects are present).
Whereas if it would take one person one month to bring in the same amount, the uncertainty in potential
profit and ratio between cost-benefit would make it less attractive.

No company is the same and so the trade-off between benefit and cost is also different for every
company. Therefore, no clear amount of money can be given that a business will earn with a solution for
zero-downtime schema migrations. A startup might not benefit much from the solution but it would also
not costs that much to implement and keep using, as they probably do not have a large infrastructure,
much data, and many customers yet. Whereas a large corporation might benefit extremely well because
small improvements to a process might bring in a large amount of money.

Depending on the application of the database, various benefits can be achieved. If the database is
used for internal applications used by employees, different benefits are achieved than if the database is
used for externally facing applications that clients/customers are using. This is the first distinction that
has to be made when trying to calculate the benefits of a solution. Implementing a tool for databases
from internal applications has fewer benefits compared to databases from externally facing applications.
A scenario can also exist where both internally facing applications make use of the database as well as
externally facing applications, in this case, benefits from both categories can be combined.

This chapter will focus on the costs and benefits of implementing a zero-downtime database schema
migration solution and give examples of what to include in the cost-benefit analysis that companies
should make to decide to implement a solution.

8.2.1 Internal

Benefits achieved from implementing a zero-downtime schema migration tool in internally facing databases
include various aspects depending on certain circumstances. One of these circumstances is the number
of different shifts in which employees work. If only one shift exists where employees use the application
and therefore the database, benefits are not much. It is only the savings of the additional salary that
is paid (overtime) to the employees performing the migration and additional opening time costs for the
office when performing a migration versus when no tool is used.

If two shifts of eight hours exist, the calculations do not need to be changed as there is still a window
where no one is working with the database. However, if shifts exist around the clock without any time

8.2. BENEFITS 59

in between, then the calculation gets a bit more complicated. To minimize the time in which employees
cannot work with the application, these maintenance windows would have to be scheduled when the
least amount of employees will work with the application. If companies do not plan the migrations during
that time they are unnecessarily losing more productive working time that could have been saved if the
migration had been moved to a quieter time. The benefit of implementing a zero-downtime schema
migration tool is the elimination of lost working time.

Also depending on the nature of the application, the benefits of a solution can differ. Zero-downtime
migration for a crucial application that employees constantly use to perform their tasks has a higher ben-
efit due to the elimination of lost working hours. Applications that employees sometimes use whenever
they have time can be upgraded with downtime for far fewer costs as it matters less that they possibly
have to wait for a while.

To summarize, the benefits of a zero-downtime solution for internally facing applications can range
from a small monetary amount to a substantial one. The benefits of a solution are maximized when
the application is used 24/7 for critical business processes. The benefits include the otherwise lost
revenue during that downtime but also the cost saved by unproductive employees. The benefits of a
solution become increasingly smaller when the application is not used 24/7 or is not critical to business
processes. In that case, only the additional employee overtime costs and extended office opening hours
have to be calculated as saved costs.

8.2.2 External

The benefits of externally facing applications that use a database are more pronounced as more factors
have to be taken into account. One of the benefits is that the service can continue generating revenue
during upgrades where, normally, revenue would be missed. The extra revenue is not the same as the
benefits, as most people might just wait for the service or product to be online again before spending
their money. It has to be measured what percentage of customers do not delay their spending until the
service is up again.

Two questions to answer are: 'How much revenue is missed out on during times when there is a
maintenance window?’ and 'How much extra employee costs are made when there is a maintenance
window?’ Multiply these costs by the number of maintenance windows there are in a year to get the
benefit of not having maintenance windows where the database is updated.

8.2.3 Time-to-market of features & bug fixes

Additional benefits also come in the form of decreased time-to-market [55] of features & bug fixes. If
features or bug fixes are normally delayed for one month before coming online, a zero-downtime solution
can accelerate releases and therefore achieve more value at a quicker rate. To calculate the benefits is
not that easy. Knowledge is needed about the value of these new features and bug fixes and the average
time-to-market when developing them. To begin an estimation, categories of errors can be thought of
from insignificant to critical and for every category, a cost can be assigned. The benefit of a zero-
downtime solution is the decreased time that the errors exist in production. The benefit is the decreased
time in percentage until the release of fixes multiplied by the number of fixes and again multiplied by the
cost of the bugs/errors.

Estimating the benefit of new features can be done by logging the usage of new features and calcu-
lating increased sales, usage, and/or client satisfaction. An increased usage or client satisfaction means
that clients are less inclined to switch to competitors which prolongs the time that they use the service
or product [56]. Bringing these features sooner to your clients can help with client retention as com-
petitors might not have their new features online (yet). This is called competitor advantage and might

60 CHAPTER 8. MANAGEMENT (BUSINESS CASE & USE CASES)

be really important for some industries where first-movers can have significant advantages over their
competitors [57].

One might say that the calculation above is not really a fair calculation as some new features and
most bug fixes do not require a database schema update, and that is true. However, the calculation
becomes more difficult the more aspects are included. By implementing a zero-downtime solution all
feature and bug fix updates can be performed as soon as they are ready which is the advantage of
CI/CD. It will therefore reduce the average time-to-market of all features and bug fixes as developers do
not have to think about if their update should be scheduled during a maintenance window.

8.3 Costs

Costs of implementing a zero-downtime schema migration tool are of course the salary paid to employ-
ees that work on it. Initial costs might be higher as the tool would have to be validated to work, otherwise,
unexpected problems might occur. The release pipeline would have to be changed, depending on how
it is configured before the implementation, either a lot needs to change or little.

Employees would need to be trained in using the tool. Due to the effort in making QuantumDB easy
to use, it is not expected that a lot of time is required to learn QuantumDB. Due to the similar syntax
of Liquibase, if developers and database administrators already use Liquibase, only some additional
training is required for learning the specific utility of QuantumDB.

An unquantifiable cost when implementing a zero-downtime schema migration solution is the missed
opportunity of not being able to go after other projects, because some employees are busy. However,
this is the case with any project that is decided to be done, so these costs can be discarded.

Lastly, every solution will not continue working indefinitely, maintenance will need to happen to ensure
the tool is working on future versions of database management systems. These costs can be higher if
development teams switch to newer software versions more quickly, instead of waiting for the next major
release. If maintenance stops for some reason, the tool cannot be used after a certain while due to
various phenomenon such as bit-rot [58]. Care has to be given into making sure that the tool is to be
swapped out on time for a new tool or development teams have to use a different methodology to achieve
the same results. This process will also cost money as is described by the total cost of ownership (TCO)
model [59]. In short it describes how much you think it will cost to also dispose of the solution at the end
of its lifetime.

8.4 Use cases

QuantumDB is shown to perform well under specific circumstances, while other configurations do not
seem to work or outright will not work, these can be found in Section In case a manager of an exist-
ing project wants to adopt QuantumDB, an analysis will have to be done to ensure QuantumDB can work
with the existing database layout. One of them is that no functions, stored procedures, and triggers exist
on tables. These features might be implemented in the future, but as of writing this thesis, QuantumDB
does not support these. This is not necessarily a hard restriction as these functions, stored procedures,
or triggers can exist, but no transformations can happen on these tables as expected functionality would
break. Secondly, as can be read in Chapter|[6} tables may not contain a composite primary key or have
no primary key constraint at all. Performance drastically drops when using a composite primary key,
likely due to unoptimized indexes. In case of no primary key, a migration on that table might not even
finish in finite time or will cause undefined behavior. The simple fix is to perform a transformation on that
table that introduces a new auto-incrementing column as the primary key.

8.4. USE CASES 61

Also, the amount of data contained in the database might cause issues as more data means longer
migration times. It has been shown that the performance drop of running queries does not considerably
suffer while a migration is running, but if a project wants to release a new version every couple of hours,
it might not be possible due to the time it takes to migrate all the data. Managers for existing projects
need to make clear what their goals are when they want to implement QuantumDB, releasing multiple
times each day with a database containing hundreds of millions of rows might not be doable. Research
needs to be done on how long it takes for a certain amount of rows to migrate on specific hardware.
Managers should also keep in mind that when old schema versions need to be dropped no users should
be using that version anymore.

Projects that have not started yet have an easier time adopting QuantumDB as certain design princi-
ples can be changed before development starts. QuantumDB works best if databases are just used as
simple ‘data stores’, instead of intelligent databases that have to perform operations on data. Therefore,
when using QuantumDB, applications need to take over the calculations that would have been done at
database level. This would not be difficult but would require a bit of planning to perform calculations
at the application level instead of the database level. This would also free up system resources at the
database level where scaling possibilities are more limited, whereas at the application level that is not
the case.

In short, development projects that still have to start or are in the early stages of development can
definitely make use of QuantumDB and the benefits. Some limitations have to be worked around but
will not necessarily limit capabilities. Existing projects will likely need to consider various aspects and
determine if QuantumDB is a good tool to use. Complex functions within the database need to be shifted
to the application level, short release times while huge amounts of data are present in the database have
to be carefully planned, and composite primary keys have to be transformed to unique, not null indexes
while a new column is made that is an auto-incrementing primary key.

62

CHAPTER 8. MANAGEMENT (BUSINESS CASE & USE CASES)

Chapter 9

Conclusion

This chapter first lists a summary and the contributions to science of this master thesis. After that
section, the answers to the research questions are summarized. The threats to validity, key challenges,
and future work were discussed in Chapter[7]

9.1 Summary & contributions

This research resulted in various contributions to science. Firstly, a literature review was conducted to
summarize most of the research in the field of zero-downtime schema migrations. Secondly, criteria for
a zero-downtime schema migration solution were derived from various literature sources. Thirdly, an
overview was given of the solutions that are currently available to be used. During the design cycle of
the methodology, stakeholders were identified together with the goals that they want to achieve.

During the treatment design stage, a more specific criteria list with a ranking was made using a
questionnaire sent to experts. In this questionnaire, experts could indicate which criteria were more
important and which were not. A ranking of the available solutions was made to show which solutions
comply the most with the criteria. The solution with the best compliance to the criteria was tested
and improved. These improvements were partly based on the opinions of experts on identified key
challenges why a solution is not yet used within organizations. Some solutions were implemented as
well to mitigate the identified key challenges.

Next, the solution was validated to work on three different experiments to ensure a correctly working
solution. During validation, some other limitations of the solution were found and ways to solve these
were listed. Some of these limitations are fundamental problems that are yet to be solved by future
research, these are listed in Section

A business case and use case analysis was made for companies to adopt a zero-downtime schema
migration solution. This business case lists the potential benefits and costs and pictures an improvement
in the speed of updates in the development pipeline when using a zero-downtime tool.

Next to all that, QuantumDB, the tool that scored the highest on the criteria, was improved and the
changes to the code were pushed to the official GitHub repositor)ﬂ A total of 5.809 additional lines
and removal of 1.737 lines in 42 commits were pushed. The complete commit history can be viewed in
the issues and pull request tab with additional comments from the original developer. Most issues have
been solved while some are still open and will have to be solved in the future.

At last, future researchers could continue this master thesis research by looking at the list of future
work and limitations that was made in Section Potential areas to explore further are the imple-
mentation of additional features and functionality of QuantumDB, additional testing and validation of

Thttps://github. com/quantumdb/quantumdb

63

https://github.com/quantumdb/quantumdb

64 CHAPTER 9. CONCLUSION

QuantumDB to ensure proper operation, and additional research into why organizations will not invest
in the implementation of a zero-downtime schema migration solution. Additionally, implementing a zero-
downtime schema migration solution in an organization and investigating the key challenges that come
up is also a research direction that can be followed.

9.2 Answers to the research questions
To recap the research questions from the first chapter:

1. What are the criteria for a zero-downtime schema migration tool?

1.1. Which criteria can be found in literature?

1.2. Can a ranking be made between criteria?

2. Which tools are already available that aim to provide zero-downtime schema migration?
2.1. Can a best tool be identified based on the criteria gathered?

3. What key challenges can be found?

3.1. What technical challenges can be found that will hinder the creation of a tool?

3.2. What challenges can be found that prevent implementation of the tool within an organization?
4. For which use cases can the tool be used?

4.1. Are there specific use cases that the tool would be great for?

4.2. What would need to change for the tool to become better and support more use cases in the
future?

All of the answers below are already listed in previous chapters but are summarized here in a con-
densed form.

9.2.1 Research question 1

Research question 1 was asked to get a clear picture of the requirements and to see if a ranking of
importance could be made. Criteria were extracted from various articles that specifically specified them
for zero-downtime schema migration tools. More articles were found that specified criteria but for tools
that would perform a bit differently, these were not included. Via a questionnaire, experts could rank
each criterion with their view of the importance of the criterion. They could also introduce new criteria,
but that did not happen. The criteria can be found in Table 3.1 where they are categorized and a short
description is given. In total, 21 criteria were defined over 4 categories. Tables and
show the results of the ranking at the bottom of each table. Only the composability requirement
got a score of 2, meaning that experts rated compliance to this criterion as unnecessary but nice to
have. Other requirements were all in the range from ’nice to have the compliance’ to 'necessary for
compliance’.

9.2. ANSWERS TO THE RESEARCH QUESTIONS 65

9.2.2 Research question 2

It would have been unwise to start from scratch when a perfectly fine tool already exists. Therefore,
research has been done into which tools exist and a list of tools that promise to provide zero-downtime
schema migrations can be found in Table [3.3] These tools all came with their own limitations, as some
could not even be found except for the article or master thesis that was written about them. Correspon-
dence with most authors also proved unfruitful as they would not send and would not provide support
for the tool they had worked on in the past. Table [5.6/has all solutions ranked based on the compliance
of the tool on the criteria multiplied by the weight given by the experts in the questionnaire. QuantumDB
came out on top with the highest score, therefore indicating that it would be the best tool to continue
with. QuantumDB did not comply with the ’expressivity’ and ’consecutive migrations’ criteria, but features
could be implemented in the future to comply with these criteria.

9.2.3 Research question 3

There are always challenges remaining, if you have not found any, you probably have not searched hard
enough. QuantumDB also had them in the beginning and still has some at the end. Upon first trying to
test QuantumDB, it would not even run. Multiple bugs and errors were preventing the tool from operating
properly. Luckily, with QuantumDB being open-source, these bugs could be fixed. After having a working
demo, a panel discussion with experts was held and they were asked what challenges they foresaw with
having to implement QuantumDB. These challenges are found in Section and resolutions to these
challenges are addressed in Section QuantumDB also came with technical limitations that were
found during validation testing. These limitations and the potential resolutions for these limitations can
be found in Section [6.4] & 6.5

9.2.4 Research question 4

In Chapter |8} a business case and use case analysis was made. Executive managers can read this
chapter to get an idea of the benefits of adopting a zero-downtime migration solution into their release
pipeline. In this chapter can be read that the time-to-market of bug fixes and features would decrease
considerably as well as the costs for downtime if a solution would be implemented. Due to QuantumDB
having some limitations, some use cases would not provide many benefits as workarounds would have
to be made for various aspects.

QuantumDB would work considerably well with projects that are just starting and want to release
multiple times each day. Having to block access to your clients when they are still starting to adopt the
new service is detrimental to the adoption rate. Where QuantumDB also shines is in applications which
are generating revenue around the clock. Having to bring the service down for maintenance a couple
hours each month will hurt sales, even if carefully planned in the least used periods.

66

CHAPTER 9. CONCLUSION

Bibliography

[1] J. Humble and D. Farley, “Continuous Delivery: Reliable Software Releases through Build, Test,
and Deployment Automation,” Continuous delivery, p. 497, 2010.

[2] C. A. Curino, H. J. Moon, L. Tanca, and C. Zaniolo, “Schema evolution in wikipedia - Toward a web
Information system benchmark,” ICEIS 2008 - Proceedings of the 10th International Conference on
Enterprise Information Systems, vol. DISI, pp. 323-332, 2008.

[3] R. J. Wieringa, Design science methodology: For information systems and software engineering,
2014.

[4] E. F Codd, “A Relational Model of Data for Large Shared Data Banks,” Communications of the
ACM, vol. 13, no. 6, pp. 377-387, jun 1970.

[5] N. Jatana, S. Puri, M. Ahuja, |. Kathuria, and D. Gosain, “A Survey and Comparison of Relational
and Non-Relational Database,” Tech. Rep. 6, 2012.

[6] M. Drake, “A Comparison of NoSQL Database Management Systems and Models — DigitalOcean,”
2019.

[7] E. A. Brewer, “Towards robust distributed systems,” no. January 2000, p. 7, 2000.
[8] S. Pittet, “Continuous integration vs. continuous delivery vs. continuous deployment.”

[9] L. Wevers, M. Hofstra, M. Tammens, M. Huisman, and M. Van Keulen, “Towards Online and
Transactional Relational Schema Transformations,” Tech. Rep., nov 2014.

[10] L. Wevers, M. Hofstra, M. Tammens, M. Huisman, and M. van Keulen, “Analysis of the
blocking behaviour of schema transformations in relational database systems,” in Lecture Notes in
Computer Science (including subseries Lecture Notes in Atrtificial Intelligence and Lecture Notes
in Bioinformatics), vol. 9282. Springer Verlag, 2015, pp. 169-183.

[11] L. Wevers, M. Huisman, and M. Van Keulen, “Lazy evaluation for concurrent OLTP and bulk
transactions,” in ACM International Conference Proceeding Series, vol. 11-13-July. Association
for Computing Machinery, jul 2016, pp. 115-124.

[12] M. De Jong, A. Van Deursen, and A. Cleve, “Zero-downtime SQL database schema evolution for
continuous deployment,” Proceedings - 2017 IEEE/ACM 39th International Conference on Software
Engineering: Software Engineering in Practice Track, ICSE-SEIP 2017, no. Section Il, pp. 143-152,
2017.

[13] M. Ronstrom, “On-line schema update for a Telecom Database,” Proceedings - International Con-
ference on Data Engineering, pp. 329-338, 2000.

67

68 BIBLIOGRAPHY

[14] G. H. Sockut and B. R. lyer, “Online reorganization of databases,” ACM Computing Surveys, vol. 41,
no. 3, 2009.

[15] G. H. Sockut and R. P. Goldberg, “Database Reorganization—Principles and Practice,” ACM
Computing Surveys (CSUR), vol. 11, no. 4, pp. 371-395, dec 1979.

[16] J. M. Hick and J. L. Hainaut, “Strategy for database application evolution: The DB-MAIN approach,’
Lecture Notes in Computer Science (including subseries Lecture Notes in Atrtificial Intelligence
and Lecture Notes in Bioinformatics), vol. 2813, pp. 291-306, oct 2003.

[17] N. F. Noy and M. Klein, “Ontology Evolution: Not the Same as Schema Evolution,” Knowledge and
Information Systems, vol. 6, no. 4, pp. 428—440, jul 2004.

[18] J. F. Roddick, “Schema Evolution in Database Systems: An Annotated Bibliography,” ACM
SIGMOD Record, vol. 21, no. 4, pp. 35—40, 1992.

[19] T. Deutsch, “Why is Schema on Read So Useful? — IBM Big Data & Analytics Hub,” 2013.

[20] C. E. Kaas, T. B. Pedersen, and B. D. Rasmussen, “Schema evolution for stars and snowflakes,”
ICEIS 2004 - Proceedings of the Sixth International Conference on Enterprise Information Systems,
pp. 425-433, 2004.

[21] B. S. Lerner and A. N. Habermann, “Beyond Schema Evolution to Database Reorganization,” ACM
SIGPLAN Notices, vol. 25, no. 10, pp. 67-76, jan 1990.

[22] C. A. Curino, H. J. Moon, and C. Zaniolo, “Graceful database schema evolution: The PRISM
workbench,” Proceedings of the VLDB Endowment, vol. 1, no. 1, pp. 761-772, aug 2008.

[23] C. Curino, H. J. Moon, and C. Zaniolo, “Automating database schema evolution in information
system upgrades,” in Proceedings of the 2nd International Workshop on Hot Topics in Software
Upgrades, HotSWUp '09. New York, New York, USA: ACM Press, 2009, p. 1.

[24] A. Oracle and W. Paper, “Oracle Database 10g Release 2 Online Data Reorganization & Redefini-
tion Oracle Database 10g Online Data Reorganization & Redefinition,” Tech. Rep., 2005.

[25] “Online - definition of online by The Free Dictionary.”
[26] “Change - definition of change by The Free Dictionary.”

[27] H. Garcia-Molina and K. Salem, “Sagas,” ACM SIGMOD Record, vol. 16, no. 3, pp. 249-259, dec
1987.

[28] S. O. Hvasshovd, S. O. Hvasshovd, T. Seeter, . Torbjernsen, P. Moe, and O. Risnes,
“A continously available and highly scalable transaction server: Design experience from the
HypRa project,” IN PROCEEDINGS OF THE 4TH INTERNATIONAL WORKSHOP ON HIGH
PERFORMANCE TRANSACTION SYSTEMS, 1991.

[29] J. Laland and S. O. Hvasshovd, “Online, non-blocking relational schema changes,” in Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 3896 LNCS. Springer Verlag, 2006, pp. 405—422.

[80] —, “Non-blocking materialized view creation and transformation of schemas,” in Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), vol. 4152 LNCS. Springer Verlag, 2006, pp. 96—107.

BIBLIOGRAPHY 69

[31] M. Klettke, U. Storl, M. Shenavai, and S. Scherzinger, “NoSQL schema evolution and big data
migration at scale,” in Proceedings - 2016 IEEE International Conference on Big Data, Big Data
2016. Institute of Electrical and Electronics Engineers Inc., 2016, pp. 2764—2774.

[32] S. Scherzinger, U. Storl, and M. Klettke, “A datalog-based protocol for lazy data migration in agile
NoSQL application development,” DBPL 2015 - Proceedings of the 15th Symposium on Database
Programming Languages, pp. 41—44, 2015.

[33] I. Rae, E. Rollins, J. Shute, S. Sodhi, and R. Vingralek, “Online, Asynchronous schema change in
F1,” Proceedings of the VLDB Endowment, vol. 6, no. 11, pp. 1045-1056, aug 2013.

[34] Y. Sheng, “Non-blocking Lazy Schema Changes in Multi-Version Database Management Systems,”
Tech. Rep., 2019.

[35] I. Neamtiu, J. Bardin, M. R. Uddin, D.-Y. Lin, and P. Bhattacharya, “Improving cloud availability with
on-the-fly schema updates,” Tech. Rep., 2013.

[36] Y. Zhu and C. Sciences, “Towards Automated Online Schema Evolution,” Tech. Rep., 2017.

[87] M. L. Mdller, S. Scherzinger, M. Klettke, and U. Stérl, “Why It Is Time for Yet Another Schema
Evolution Benchmark: Visionary Paper,” in Lecture Notes in Business Information Processing, vol.
386 LNBIP. Springer Science and Business Media Deutschland GmbH, jun 2020, pp. 113-125.

[38] B. Alexe, W. C. Tan, and Y. Velegrakis, “STBenchmark: Towards a benchmark for mapping
systems,” Tech. Rep. 1, 2008.

[39] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte, and H. A. Jacobsen, BigBench: Towards
an industry standard benchmark for big data analytics, 2013.

[40] C. Zhang, J. Lu, P. Xu, and Y. Chen, “UniBench: A benchmark for multi-model database
management systems,” Tech. Rep., 2019.

[41] K. Herrmann, H. Voigt, T. Seyschab, and W. Lehner, “InVerDa - Co-existing schema versions made
foolproof,” 2016 IEEE 32nd International Conference on Data Engineering, ICDE 2016, pp. 1362—
1365, 2016.

[42] A. Mohapatra, K. Herrmann, H. Voigt, S. Liders, T. Tsokov, and W. Lehner, “Seamless Database
Evolution for Cloud Applications,” in Proceedings of the 7th International Conference on Data
Science, Technology and Applications. SCITEPRESS - Science and Technology Publications,
2018, pp. 197-207.

[43] C. A. Curino, H. J. Moon, A. Deutsch, and C. Zaniolo, “Update rewriting and integrity constraint
maintenance in a schema evolution support system: PRISM++,” Proceedings of the VLDB
Endowment, vol. 4, no. 2, pp. 117-128, nov 2010.

[44] C. Curino, H. J. Moon, A. Deutsch, and C. Zaniolo, “Automating the database schema evolution
process,” VLDB Journal, vol. 22, no. 1, pp. 73—-98, dec 2013.

[45] H. J. Moon, C. A. Curino, A. Deutsch, C. Y. Hou, and C. Zaniolo, “Managing and querying transac-
tiontime databases under schema evolution,” Tech. Rep. 1, 2008.

[46] K. Herrmann, H. Voigt, A. Behrend, and W. Lehner, “CoDEL — A relationally complete language for
database evolution,” Tech. Rep., 2015.

70 BIBLIOGRAPHY

[47] K. Herrmann, H. Voigt, A. Behrend, J. Rausch, and W. Lehner, “Living in parallel realities -
Co-existing schema versions with a bidirectional database evolution language,” Proceedings of the
ACM SIGMOD International Conference on Management of Data, vol. Part F1277, pp. 1101-1116,
2017.

[48] C. Coronel and S. Morris, Database Systems: Design, Implementation, and Management.

[49] S. Sumathi and S. Esakkirajan, Fundamentals of Relational Database Management Systems,
2007.

[50] L. Wevers, M. Hofstra, M. Tammens, M. Huisman, and M. Van Keulen, “A benchmark for online
non-blocking schema transformations,” Tech. Rep., 2015.

[51] O. Faltejskova, L. Dvorakova, and B. Hotovcova, “Net promoter score integration into the
enterprise performance measurement and management system — A way to performance methods
development,” E a M: Ekonomie a Management, vol. 19, no. 1, pp. 93-107, 2016.

[52] S. Fedushko, T. Ustyianovych, Y. Syerov, and T. Peracek, “User-engagement score and SLIs/S-
LOs/SLAs measurements correlation of e-business projects through big data analysis,” Applied
Sciences (Switzerland), vol. 10, no. 24, pp. 1-16, dec 2020.

[53] Brent R. J., APPLIED COST-BENEFIT ANALYSIS. Edward Elgar Publishing Limited (2006),
2006.

[54] J. Miller, “A proven project portfolio management process,” in Proceedings of the Project
Management Institute Annual Seminars & Symposium, 2002, pp. 347—-352.

[55] J.T. Vesey, “Time-to-market: Put speed in product development,” Industrial Marketing Management,
vol. 21, no. 2, pp. 151-158, may 1992.

[56] G. N'Goala, “Customer switching resistance (CSR): The effects of perceived equity, trust and re-
lationship commitment,” International Journal of Service Industry Management, vol. 18, no. 5, pp.
510-533, 2007.

[57] M. B. Lieberman and D. B. Montgomery, “First-mover advantages,” Strategic Management Journal,
vol. 9, no. S1, pp. 41-58, jun 1988.

[58] V. G. Cerf, “Avoiding "bit rot”: Long-term preservation of digital information,” Proceedings of the
IEEE, vol. 99, no. 6, pp. 915-916, 2011.

[59] A. Zahran and G. Liberopoulos, “Total cost of ownership: a key concept in strategic cost manage-
ment decisions Cite this paper Related papers Flow Cont rol of Failure Prone Manufact uring Syst
ems: Cont roller Design T heory and Applicati....”

Appendix A

Code coverage

71

72

APPENDIX A. CODE COVERAGE

Package Class (%) Method (%) Line (%)

All classes 79,2% (133/168) 35,6% (694/1949) 52,7% (3513/6667)
io.quantumdb.cli 100% (2/2) 55,6% (5/9) 68,8% (22/32)
io.quantumdb.cli.commands 100% (10/10) 85,7% (48/56) 47,8% (214/448)
io.quantumdb.cli.utils 75% (3/4) 50% (8/16) 66,7% (34/51)
io.quantumdb.cli.xml 66,7% (16/24) 44,6% (54/121) 56,9% (250/439)
io.quantumdb.core.backends 50% (1/2) 70,8% (17/24) 69,8% (37/53)
io.quantumdb.core.backends.planner 100% (11/11) 59,6% (53/89) 49,3% (181/367)
io.quantumdb.core.backends.postgresql.migrator 100% (1/1) 60% (3/5) 30,8% (8/26)

io.quantumdb.core.migration
io.quantumdb.core.migration.operations
io.quantumdb.core.planner
io.quantumdb.core.schema.definitions
io.quantumdb.core.schema.operations
io.quantumdb.core.utils
io.quantumdb.core.versioning

100% (4/4)
100% (16/16)
90% (18/20)
56,2% (9/16)
56,5% (13/23)
66,7% (2/3)
95,5% (21/22)

77,3% (17/22)
80,6% (29/36)
67,8% (103/152)
38,9% (88/226)
44,1% (63/143)
62,5% (5/8)
77,2% (176/228)

83,6% (112/134)
63,1% (135/214)
58,1% (936/1610)
36,9% (231/626)
42,9% (120/280)
71% (22/31)
81,6% (1082/1326)

io.quantumdb.driver 50% (4/8) 2% (16/805) 7,3% (70/961)

io.quantumdb.query.rewriter 100% (2/2) 100% (9/9) 85,5% (59/69)
Table A.1: Code coverage for consistency testing

Package Class (%) Method (%) Line (%)

All classes 74,4% (125/168) 33,9% (662/1952) 52,6% (3505/6667)

io.quantumdb.cli
io.quantumdb.cli.commands
io.quantumdb.cli.utils
io.quantumdb.cli.xml
io.quantumdb.core.backends
io.quantumdb.core.backends.planner
io.quantumdb.core.backends.postgresql.migrator
io.quantumdb.core.migration
io.quantumdb.core.migration.operations
io.quantumdb.core.planner
io.quantumdb.core.schema.definitions
io.quantumdb.core.schema.operations
io.quantumdb.core.utils
io.quantumdb.core.versioning
io.quantumdb.driver
io.quantumdb.query.rewriter

100% (2/2)
100% (10/10)
75% (3/4)
50% (12/24)
50% (1/2)
100% (11/11)
100% (1/1)
100% (4/4)
100% (16/16)
90% (18/20)
56,2% (9/16)
39,1% (9/23)
66,7% (2/3)
95,5% (21/22)
50% (4/8)
100% (2/2)

(
77,8% (7/9)
91,1% (51/56)
62,5% (10/16)
33,1% (41/124)
70,8% (17/24)
59,6% (53/89)
60% (3/5)
72,7% (16/22)
72,2% (26/36)
69,1% (105/152)
38,5% (87/226)
30,1% (43/143)
62,5% (5/8)
77,2% (176/228)
1,6% (13/805)
100% (9/9)

90,6% (29/32)
74,3% (333/448)
76,5% (39/51)
43,5% (191/439)
69,8% (37/53)
49,3% (181/367)
30,8% (8/26)
80,6% (108/134)
57,9% (124/214)
57,5% (926/1610)
38,5% (241/626)
30,4% (85/280)
71% (22/31)
80,3% (1065/1326)
6,9% (66/961)
72,5% (50/69)

Table A.2: Code coverage for load testing

73

Package Class (%) Method (%) Line (%)
All classes 83,7% (190/227) 49,6% (1183/2384) 75,1% (9312/12398)
io.quantumdb.driver 0% (0/8) 0% (0/804) 0% (0/1271)

io.quantumdb.core.backends.integration.videostores
io.quantumdb.cli.commands
io.quantumdb.core.schema.definitions
io.quantumdb.core.versioning
io.quantumdb.core.planner

io.quantumdb.cli.xml
io.quantumdb.core.schema.operations
io.quantumdb.core.migration.operations
io.quantumdb.core.backends.planner
io.quantumdb.cli

io.quantumdb.cli.utils

io.quantumdb.core.state
io.quantumdb.core.backends
io.quantumdb.core.migration
io.quantumdb.core.backends.postgresql.migrator
io.quantumdb.query.rewriter
io.quantumdb.core.utils
io.quantumdb.core.backends.integration.types
io.quantumdb.cli.xml.operations
io.quantumdb.core.backends.integration.multistate

85,7% (12/14)
0% (0/10)
90% (18/20)
93,8% (15/16)
100% (19/19)
100% (25/25)
97,1% (33/34)
80,8% (21/26)
91,7% (11/12)
0% (0/2)

0% (0/3)
100% (1/1)
75% (3/4)
100% (5/5)
100% (1/1)
100% (3/3)
83,3% (5/6)
100% (3/3)
100% (14/14)
100% (1/1)

85,9% (61/71)
0% (0/62)
61,3% (203/331)
77,6% (170/219)
92,9% (195/210)
87,5% (56/64)
76,1% (121/159)
85,5% (65/76)
89,1% (122/137)
0% (0/11)

0% (0/11)
60,6% (20/33)
81,4% (35/43)
75,7% (28/37)
57,1% (4/7)
81% (17/21)
92,3% (24/26)
100% (16/16)
100% (42/42)
100% (4/4)

82,7% (1194/1443)
0% (0/459)

72,9% (725/994)
86,7% (1169/1348)
92,6% (1752/1893)
84% (336/400)
77,1% (373/484)
90,6% (511/564)
96,9% (1744/1799)
0% (0/37)

0% (0/51)

72,2% (104/144)
85,2% (195/229)
88,2% (165/187)
32,1% (9/28)

86% (104/121)
89,6% (95/106)
99,1% (460/464)
100% (342/342)
100% (34/34)

Table A.3: Code coverage for unit testing

74

APPENDIX A. CODE COVERAGE

Appendix B

ING application operations

75

APPENDIX B. ING APPLICATION OPERATIONS

aax pam* irs

addColumn 6 79 10
addForeignKey 0 38 0
dropForeignKey 0 3 0
addNotNullConstraint 0 0 4
dropNotNullConstraint 0 10 0
addUniqueConstraint 0 32 0
dropUniqueConstraint 0 7 0
addPrimaryKey 0 34 3
createlndex 8 15 6
createSequence 4 37 0
createTable 2 37 5
dropColumn 4 3 1
dropindex 0 2 2
dropSequence 2 0 0
dropTable 1 4 1
modifyDataType 0 2 1
renameColumn 3 0 5
renameTable 0 0 1
sql 1 0 8
sqlFile 0 5392 1
tagDatabase 0 739 0
update 0 0 2
NChangeSets 10 6131 38
NRollbackableChangeSets 7 1545 24
NChanges 31 6131 50

NRollbackableChanges 23 739

w
g

Table B.1: Liquibase operations from 3 ING applications

Appendix C

Testing code

Listing C.1: HammerDB load testing changelog

2

3

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

1 <?xml version="1.0" encoding="UTF-8"?>

<changelog xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”

xmlns="http://www.quantumdb.io/xml/ns/quantumdb-changelog”
xsi:schemalocation="http: //www.quantumdb.io/xml/ns/quantumdb-changelog -0.3.xsd ">

<changeset id="changeset1” author="Nick Richter”>
<description>Changeseti</description>
<operations>
<addColumn tableName="order_line ">
<column name="ol_tax” type="numeric(3,2)” defaultExpression="0.21"/>
</addColumn>
</operations>
</changeset>

<changeset id="changeset2” author="Nick Richter”>
<description>Changeset2</description>
<operations>
<alterColumn tableName="district” columnName="d_state” newColumnName="d_country”
newDataType="varchar (2)” />
</operations>
</changeset>

<changeset id="changeset3” author="Nick Richter”>
<description>Changeset3</description>
<operations>
<createlndex tableName="item” columnNames="i_name” />
</operations>
</changeset>

<changeset id="changeset4” author="Nick Richter”>
<description>Changesetd4</description>
<operations>
<dropColumn tableName="customer” columnName="c_ytd_payment”/>
</operations>
</changeset>

<changeset id="changeset5” author="Nick Richter”>
<description>Changesetb</description>
<operations>
<addColumn tableName="new_order”>

77

78

APPENDIX C. TESTING CODE

4
42
43
44
45
46
47
48

49

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

68

70

7

72
73
74
75

76

<column name="no._description” type="varchar”/>
</addColumn>
</operations>
</changeset>

<changeset id="changeset6” author="Nick Richter”>
<description>Changeset6</description>
<operations>
<alterColumn tableName="orders” columnName="0 _all_local” newColumnName="

o_partially_local” newDataType="bigint” nullable="true”/>

</operations>
</changeset>

<changeset id="changeset7” author="Nick Richter”>
<description>Changeset7</description>
<operations>
<createlndex tableName="stock” columnNames="s_data”/>
</operations>
</changeset>

<changeset id="changeset8” author="Nick Richter”>
<description>Changeset8</description>
<operations>
<dropColumn tableName="warehouse” columnName="w _street_2"/>
</operations>
</changeset>

<changeset id="changeset9” author="Nick Richter”>
<description>Changeset9</description>
<operations>
<addColumn tableName="history ">

<column name="seller” type="varchar” defaultExpression=""None’”

nullable="true
">

</addColumn>
</operations>
</changeset>

</changelog>

Listing C.2: HammerDB SQL changes to accomodate QuantumDB

N

w

IS

o

o

~

—— Drop existing primary key constraint

ALTER TABLE
ALTER TABLE
ALTER TABLE
ALTER TABLE
ALTER TABLE
ALTER TABLE

—— Add new bigserial

ALTER TABLE
ALTER TABLE
ALTER TABLE
ALTER TABLE
ALTER TABLE
ALTER TABLE
ALTER TABLE

— Add new unique

customer DROP CONSTRAINT customer_it;
district DROP CONSTRAINT district_i1 ;
new_order DROP CONSTRAINT new_order_it ;
order_line DROP CONSTRAINT order_line_il;
orders DROP CONSTRAINT orders_it;

stock DROP CONSTRAINT stock_i1;

auto-incrementing id column as new primary
customer ADD COLUMN id bigserial PRIMARY KEY;
district ADD COLUMN id bigserial PRIMARY KEY;
new_order ADD COLUMN id bigserial PRIMARY KEY;
order_line ADD COLUMN id bigserial PRIMARY KEY;
orders ADD COLUMN id bigserial PRIMARY KEY;

stock ADD COLUMN id bigserial PRIMARY KEY;

history ADD COLUMN id bigserial PRIMARY KEY;

key

index to replace the old automatic primary key index

79

19 CREATE UNIQUE INDEX idx_customer ON customer (c.id, c_w.id, c.d_id);

20 CREATE UNIQUE INDEX idx_district ON district (d.w.id, d_id);

21 CREATE UNIQUE INDEX idx_new_order ON new_order (no_w_.id, no_o.id, no.d.id);

22 CREATE UNIQUE INDEX idx_order_line ON order_line (ol.o.id ,ol_-w_.id,ol_d_id ,ol_-number);
23 CREATE UNIQUE INDEX idx_orders ON orders (o.id, o-w.id, o.d.id);

2« CREATE UNIQUE INDEX idx_stock ON stock (s_i_id, s_w_id);

Listing C.3: Python script to query new orders per minute from database

1 import psycopg2

2 import time

3 import decimal

4

5 conn = psycopg2.connect(host="localhost”, database="tpcc”, user="tpcc”, password="tpcc”)

6

7 def get_-nopm () :

8 with conn.cursor() as cur:

9 cur.execute ('SELECT SUM(d_next.o-id) FROM district; ")

10 nopm_count = cur.fetchone () [0]

11 conn.commit ()

12 return nopm_count

13

14 def get_tpm():

15 with conn.cursor() as cur:

16 cur.execute ('SELECT SUM(xact-commit + xact_rollback) FROM pg-stat_database;’)

17 tpm_count = cur.fetchone () [0]

18 conn.commit ()

19 return tpm_count

20

21

2 if __name__ == ’'__main__":

23 try:

24 old_time = time.time_ns () // 1000000

25 old_nopm = get_nopm ()

26 old_tpm = get_tpm{()

27

28 nopm_file = open(”nopm.txt”, "a”)

29 tpm_file = open(”tpm.txt”, "a”)

30

31 nopm_file.write ("——New run--\n")

32 tpm_file.write ("——New run--\n")

33

34 while True:

35 if (time.time_ns() // 1000000000) != (old-time // 1000):

36 new_nopm = get_nopm ()

37 new_tpm = get_tpm ()

38

39 new_time = time.time_ns() // 1000000

40

41 nopm = round ((new_nopm - old_nopm) =« decimal.Decimal(60 / ((new-time -
old_time) / 1000)))

42 tpm = round ((new_tpm - old_tpm) = decimal.Decimal(60 / ((new_time - old_time)
/1000)))

43

44 print(”” + str(new_time) + ”: NOPM: ” + str(nopm) + ” TPM: 7 + str(tpm))

45

46 nopm_file.write (str(new_time) + ”,” + str(nopm) + "\n”)

47 tpm_file . write (str(new_time) + ”,” + str(tpm) + "\n”")

48

80

APPENDIX C. TESTING CODE

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

nopm_file . flush ()
tpm_file . flush ()

old_time = new_time
old_nopm = new_nopm
old_tpm = new_tpm

time.sleep(0.01)

finally:
if conn is not None:
conn.close ()
print ('Database connection closed.’)

tpm_file .close ()
nopm_file.close ()

	Abstract
	Acknowledgment
	Introduction
	Motivation
	Research questions
	Methodology
	Report organization

	Background
	Databases
	Relational database schema
	Other database models
	Database Management System (DBMS)
	Schema Migration
	Software development

	Literature Review
	Exploratory literature review
	Systematic literature review
	Schema evolution
	Online schema transformations
	Benchmarks
	State of the art solutions

	Problem investigation
	Stakeholders
	Conceptual framework
	Problem description
	Effects

	Treatment design
	Determining requirements
	Chosen tool
	Testing & fixing the chosen solution
	Panel discussion
	Identified key challenges
	Resolutions to the identified key challenges
	Additionally implemented features

	Treatment validation
	Load testing
	Consistency testing
	Unit testing
	Known limitations
	(inherent) Problems

	Discussion
	Interpretations & implications
	Limitations & future work

	Management (business case & use cases)
	Problem context
	Benefits
	Costs
	Use cases

	Conclusion
	Summary & contributions
	Answers to the research questions

	References
	Code coverage
	ING application operations
	Testing code

