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1 Summary

This research focuses on the modelling and controller design of snake robots. Snake robots are hyper-
redundant robotic systems. This property offers unique advantages in application. Their high (internal)
mobility gives them unique terrain adaption possibilities. Snake robots may be applied in search and rescue
missions in disaster area’s or (nuclear) area’s unsafe for human inspection. However, the hyper-redundancy
also causes snake robots to be very complex, highly non-linear, underactuated mechanical structures that
can sometimes also be non-fully observable. A snake (robot) propels it self forward by ground friction acting
on its body. All these properties pose significant challenges in modelling and controller design for snake
robots. In this research the kinematics and dynamics of a 4-link snake robot moving over a flat surface are
modelled in 3 different frameworks. Its Newton-Euler, Euler-Lagrange and port-Hamiltonian equations of
motion are derived and simulated in MATLAB and Simulink. These models and the resulting simulations
are verified and turned out to be correct. Based on the derived port-Hamiltonian model of the snake robot
a port-Hamiltonian shape controller is derived with the passivity based Energy-Casimir method. Numerous
possible Casimirs and controller parameters are tested. The performance of the port-Hamiltonian shape
controller is compared to the performance of an established simple joint controller (derived in the Newton-
Euler framework). The performance of the port-Hamiltonian shape controller turns out to be poor. The
control is unstable and has poor tracking performance. Based on the possible reasons of poor performance
different recommendations for the future are given related to the port-Hamiltonian controller design.

iv University of Twente M.P.A. van Bergen



Multiple framework modelling and controller design of 4 link snake robot Introduction

2 Introduction

One of the first snake robots is developed by S.Hirose in 1972 [8]. From this moment on snake robots are
a (new) field of research. Snake robots are robots consisting of serial connected link and joint modules
where the joints can bend about one or multiple axis. Snake robots are called hyper-redundant robotic
systems because they have a very large number of degrees of freedom. The number of degrees of freedom
is (way) higher than its desired motion degrees of freedom. This property makes snake robots an interest-
ing class of mechanisms for research. Hyper-redundant systems pose extra modeling and control freedom
but also extra challenges. To move forward a snake robot requires a synchronized motion of its whole
body. Due to the many degrees of freedom the snake robot dynamics are very complex and non-linear.

Figure 2.1: Schematic representation of possible
applications of snake robots [11]

Furthermore the physical design of the robot requires
a complex set of sensors and actuators. On the other
hand however they also offer unique advantages in appli-
cations. Snake robots can move efficiently through rough
and uneven terrain. Their high (internal) mobility gives
them unique terrain adaption possibilities. Snake robots
may be applied in search and rescue missions in disas-
ter area’s or (nuclear) area’s unsafe for human inspection
[11],[16],[18]. Furthermore they could also be applied in
firefighting applications as hydraulic snake robot [11]. Be-
cause snake robots can move in a very versatile environ-
ment they can also be designed as amphibious robots [12].
A schematic overview of possible applications of snake
robots is given in figure 2.1.

This research focuses on flat surface (2D) snake locomo-
tion without sideslip constraints. This assumption makes
the modelling of the snakes shape and resulting locomo-
tion more realistic than modelling with the sideslip con-
straint (a more elaborate description of the sideslip con-
straint is given in section 4.2).

There are already various models of 2D snake robot lo-
comotion without the sideslip constraints. The Newton-
Euler formulation of the equation of motion on a flat sur-
face is developed by [12] and extended to locomotion on a
slope in [13]. The same equation of motion but obtained
from first-principles is derived by [22]. More models of
2D snake robot locomotion without sideslip constraint are
presented in [4], [6] and [10].

Ground friction allows a snake (robot) to move in a cer-
tain direction. This ground friction can be modelled as
coulomb or as viscous friction. Models with isotropic ground friction are presented by [1] and [20]. [9] studied
the effect of anistropic ground friction on the locomotion of a snake.

Because of the unique features of snake robots the possible applications are very promising. This intern-
ship research contributes to the further understanding and development of snake robots by extending the
modelling and controller design options applicable to snake robots.

The research presented in this report is part of a bigger project. The goal of this project is to develop a
snake robot that can be used in search and rescue missions. The mechanical design and production of the
snake is done by others within the project.

To keep the report concise it is unfortunately not possible to discuss everything done in the research in
detail. For more detailed analysis and derivations there are various references to literature in the report and
more derivations and formula’s are included in the appendices as well.

M.P.A. van Bergen University of Twente 1
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3 Problem definition

In this section the general problem definition and research goals are described. Common definitions in the
field of snake robot modelling and control are used in this section. More in dept analysis of the snake robot
locomotion, modelling, control and related definitions and terms can be found in chapter 4.

Among others P̊al Liljebäck [11] derived the kinematics of a N link 2D snake robot. He also derived the
Newton-Euler equations of motion. To control a snake robot’s joints he proposed partial feedback lineariza-
tion in combination with a simple joint controller (or exponentially stable joint controller). With these
controllers he wants to control a snake robot’s shape for locomotion via lateral undulation. The first goal
of this research is to simulate Liljebäck’s proposed model and to control it with the proposed controller to
verify the correctness of the model and to get a better understanding of snake robot dynamics.

The same snake robot motion described by the Newton-Euler equations of motion can also be derived via the
Euler-Lagrange equations of motion. This is already done by [21] but with the sideslip constraint. Therefore
the second research goals is to derive these Euler-Lagrange equations of motion for a snake robot moving
over a flat surface without the sideslip constraint. The resulting equations of motion should give the same
motion of the snake as the Newton-Euler model from [11].

A third way of modelling dynamical systems is via port-Hamiltonian modelling. Modelling systems as port-
Hamiltonian systems offers advantages over other modelling methods. The method is based on the exchange
of power and energy between different (multi-physical) system (parts). Port-Hamiltonian modelling should
make the physical interpretation of complex (multi-physical) systems easier. Port-Hamiltonian modelling is
really modelling for control. To our best of knowledge nobody has yet modelled a snake robot as a port-
Hamiltonian system. Therefore the third research goal is to determine and verify the equations of motion of
the snake robot via port-Hamiltonian modelling. After that the advantages of port-Hamiltonian modelling
are exploited to come up with a port-Hamiltonian controller to control the snake robot’s shape. The design
of this controller is the fourth research goal.

Summarizing the research goals are:

1. Simulate and control the Newton-Euler equations of motion as proposed by P̊al Liljebäck [11]

2. Derive, control and simulate the Euler-Lagrange equations of motion

3. Derive, control and simulate the port-Hamiltonian equations of motion

4. Design a snake robot shape controller in the port-Hamiltonian framework

2 University of Twente M.P.A. van Bergen
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Symbol Description Vector form
xi, yi x and y postion of center of gravity (CoG) of link i X,Y ∈ RN
θi (Absolute) angle of link i with the positive x-axis θ ∈ RN
px, py x and y position of the CoG of the snake p ∈ R2

φi The relative angle between link i and link i+ 1 φ ∈ RN−1

l Half length of the links of the snake robot
m Mass of the link of the snake robot
N Number of links of the snake robot
J Rotational inertia of the links of the snake robot
fR,x,i, fR,y,i Friction force acting on the CoG of link i in the x or y direction. fR,x,fR,y ∈ RN
ui Applied torque by actuator i u ∈ RN−1

hx,i, hy,i Joint constraint force (in x or y direction) from link i+ 1 on link i hx,hy ∈ RN−1

hx,i−1, hy,i−1 Joint constraint force (in x or y direction) from link i− 1 on link i hx,hy ∈ RN−1

Table 4.1: Symbols used to describe the kinematics and dynamics of the snake robot together with a
description and their vector form.

4 Analysis

This section goes in more detail about snake (robot) locomotion, snake robot kinematics, snake robot dy-
namics and the different mathematical steps to derive the different equations of motion for a snake robot.
Furthermore two controller design methods are discussed. The symbols in this report used to describe the
snake robot are defined in table 4.1. Further more throughout this report matrices and vectors are indicated
with thick symbols. Also throughout this report it is assumed that the mass, length and shape of every link
of the snake robot is the same. This results in m, l and J being scalars (without subscript i).

4.1 Snake locomotion

Snake robots are inspired by real snakes. Real snakes generate locomotion in four different ways. They do this
by lateral undulation, concertina locomotion, rectilinear crawling and sidewinding (or crotaline) [5],[8],[11]
and [15]. There are also snakes that can climb and jump off tree branches. The different mechanisms for
locomotion of snakes are applied in different situations and work on different physical principles. Therefore
the mechanisms are also modelled differently. This research focuses on snake robot locomotion obtained via
lateral undulation.

Figure 4.1: Schematic representation
of lateral undulation of a snake [10]

Lateral undulation (also called serpentine locomotion) is the most
common and therefore also most researched mechanism for the loco-
motion of snakes. For this locomotion the snake sends a serpenoid
curve down its body [5], [7], [11] and [22]. In figure 4.1 this is shown
schematically. For more information on the serpenoid curve see ap-
pendix A.2. The propelling forces are generated by the friction be-
tween the snake’s body and the ground. For the locomotion the
snake makes use of anisotropic ground friction. Anisotropic friction
conditions are a necessary requirement for the snake to move for-
ward. Mathematical models for describing the snake dynamics are presented in [4], [11], [12], [14], [19] and
[22]. Lateral undulation is mainly applied by snakes in open rough terrain with not too many obstacles.

Besides the 4 types of locomotion that snakes use in nature there are also various snake robot locomotion
mechanisms developed that are different from those applied by snakes in nature. Examples are snake robots
with active wheels [3]. Other mechanisms like lift rolling and lean sinus-lifting are described in [8].

M.P.A. van Bergen University of Twente 3
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4.2 Kinematic analysis

To set up the dynamic model for lateral undulation of snake robots the approach from [11] is used. This
approach is common since [17] and [22] also used it. For this approach specific matrices and vectors are used
for the calculations. The definitions of these vectors and matrices can be found in appendix A.1. A concise
derivation is given here. For the elaborate derivations see the thesis of P̊al Liljebäck [11]. Within snake robot
modelling the different models distinguish from each other based on what they model (2D/3D motion, type
of locomotion mechanism, etc) and assumptions they make (on type of friction and certain constraints). The
sideslip constraint assumes that the snake’s body cannot move sideways. It is however more realistic (and
complex) to model the snake robot without the sideslip constraint. This posses other requirements on the
friction (model) to make the snake move forward. If the sideslip constraint is not applied the snake needs
anistropic friction forces to move forward [11]. This research uses models without the sideslip constraint.

The modelling starts with the kinematic analysis. The snake robot is modelled as an open kinematic chain
with N links. The kinematic parameters of the snake robot are shown in figure 4.2.

Figure 4.2: Kinematic parameters of the snake robot
[11]

The center of mass position and orientation coor-
dinates of link i (xi,yi,θi) are defined in the global
coordinate frame. The vector’s of all 1 till N xi,
yi and θi positions are denoted X, Y and θ respec-
tively (see table 4.1). Assuming that all links have
the same mass m and length 2l, the position of the
center of mass of the snake robot is defined as in
equation 4.1:

p =

[
px
py

]
=

1

N

[
eTX
eTY

]
(4.1)

The set of generalized coordinates for the snake

robot is q =
[
θ p

]T
. Via the kinematic constraints

at the joints the relation between the link coordi-
nates X,Y,θ and the generalized coordinates q can be derived and are given in equation 4.2.

X = −lKT cosθ + epx (4.2a)

Y = −lKT sinθ + epy (4.2b)

Where K = AT (DDT )−1D ∈ RN×N (see appendix A.1 for definitions of A and D).

Now all the positions of the snake links (centers of mass) are expressed in the generalized coordinates. From
differentiating 4.2 the linear velocities of the links can be calculated from q and q̇ with equation 4.3.

ẋi = ṗx − σiSθθ̇ (4.3a)

ẏi = ṗy − σiCθθ̇ (4.3b)

The definition of σi, Sθ and Cθ are in appendix A.1.

4.3 Friction model

The forces that propel the snake robot forward are friction forces. To model these friction forces different
models can be used. Among others there is the coulomb friction model and the viscous friction model. The

4 University of Twente M.P.A. van Bergen
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viscous friction model is a bit simpler than the coulomb friction model which makes the viscous friction
model more suitable for analysis and control purposes. Therefore in this research the viscous friction model
is used. For both models it is a necessary condition that the friction is anisotropic ground friction (as also
mention in section 4.1).

In both models fR =
[
fR,x fR,y

]T
is the vector with the friction forces acting on the links. fR,x and fR,y

are vectors with the friction forces in the link’s centers of mass in x and respectively y direction in the global
coordinate frame. This results in fR ∈ R2N . The viscous friction model is briefly discussed in section 4.3.1.
The Coulomb friction model in appendix A.4.

4.3.1 Viscous friction

The model for the viscous friction forces on the links is given in equation 4.4.

fR = −
[
ct(Cθ)2 + cn(Sθ)2 (ct − cn)SθCθ

(ct − cn)SθCθ ct(Sθ)2 + cn(Cθ)2

] [
Ẋ

Ẏ

]
(4.4)

ct and cn are the viscous friction coefficients in respectively the tangential and normal direction of a link. To
derive equation 4.4 the rotation matrix Rglobal

link,i (see appendix A.1) and its transpose are used to transform
local friction forces to friction forces in the global coordinate frame. A more detailed derivation is given in
appendix A.3.

From equation 4.4 follows (as expected from physics) that the friction force is opposite to the direction of
motion of the links.

4.3.2 Propulsion force

With the viscous friction model and the states of a snake robot at a certain moment in time the propulsive
force can be calculated via equation 4.5.

Fprop = −Fx(θi)ẋi − Fy(θi)ẏi = −
N∑
i=1

((ctcos
2(θi) + cnsin

2(θi))ẋi + (ct − cn)sin(θi)cos(θi)ẏi) (4.5)

When studying these equations a bit more in depth it becomes clear that cn > ct is required to make a snake
robot move in the forward direction. Furthermore the product Fx(θi)ẋi is positive when the snake is moving
in forward direction. Therefore this term is not contribution (actually opposing) to forward propulsion
of the snake. The propulsive force |Fprop,i| can be increased by increasing the sideways link velocity |ẏi|,
increasing cn relative to ct and by increasing |θi| up to a maximum of |θi| = 45◦. A link i produces the
most propulsive force when θi = ±45◦. A visual impression of the propulsive forces acting on a snake during
lateral undulation is given in appendix A.5.

4.4 Dynamic analysis

4.4.1 Newton-Euler equations of motion

Using the kinematics and having models for the friction forces the Newton-Euler equations of motion can be
derived. To derive the dynamic model, the forces acting on link i are shown in figure 4.3.

M.P.A. van Bergen University of Twente 5
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Figure 4.3: Forces acting on link i [11]

A snake robot with N links has N + 2 degrees of freedom. These
degrees of freedom are N-1 internal ’shape’ degrees of freedom
plus 2 translational and 1 rotational degree of freedom of the
center of mass of the snake. The resulting equation of motion
of the snake robot is given by 4.6.

Mθθ̈ +Wθ̇
2
− lSθKfR,x + lCθKfR,y = DTu (4.6a)

Nm

[
p̈x
p̈y

]
= ETfR (4.6b)

fR is the vector of friction forces. u is the vector with torque
inputs from the actuators at the hinges. This form of the equa-
tion of motion is obtained via various intermediate steps. For a
detailed analysis see [11]. The equations to obtain the symbols
Mθ, W and K are in appendix A.6.

From the equations of motion the internal constraint forces between the links (hx and hy) are already re-
moved since they internally cancel each other at the joints. From 4.6b it becomes apparent that the position
of the center of mass of the snake is solely determine by the summation of all the friction forces. This is as
expected. From equation 4.6a it becomes apparent that the absolute angles of the snake’s links are partly
influenced by the input torques (u) and partly by the friction forces (fR).

A snake robot has N+2 degrees of freedom. However, it only has N-1 actuators. One actuator at every
connection between two links. This results in an underactuated system. There are less actuators than
degrees of freedom. This also becomes apparent from the equations of motion (equation 4.6) since the
position of the robot’s center of mass is influenced by the friction forces and not directly by the input
torques.

4.4.2 Lagrange equations of motion

The snake robots motion can also be expressed in the Lagrange equations of motion. The kinematic analysis
does not change for these equations of motion. The Lagrange equations of motion are given by 4.7.

d

dt

(
∂L

∂q̇
(q, q̇)

)
− ∂L

∂q
(q, q̇) = A(q)λ+ B(q)u (4.7a)

AT (q)q̇ = 0 (4.7b)

q are the generalized coordinates of the snake robot, A(q)λ are the snake robot constraint forces, B(q)u
are the externally applied forces and L is the Lagrangian of the system. The constraint forces are defined
such that they should satisfied 4.7b.

The Lagrangian is defined as:

L(q, q̇) = Ekin(q, q̇)− Epot(q) = Ekin(q, q̇) (4.8)

Where Ekin is the kinetic energy and Epot the potential energy of the snake. In this research the snake
describes planar motion so the Lagrangian is equal to the kinetic energy of the snake (L(q, q̇) = Ekin(q, q̇)).

The Lagrangian for a 4 link snake robot is:

L(q, q̇) =

4∑
i=1

1

2
(m(ẋ2i (q, q̇) + ẏ2i (q, q̇)) + Jθ̇2i ) (4.9)

Where xi(q, q̇) and yi(q, q̇) are given in appendix A.7.

6 University of Twente M.P.A. van Bergen
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4.4.3 Port-Hamiltonian equations of motion

The port-Hamiltonian approach to modelling and control of complex physical systems is a bit different from
the Newton-Euler and Euler-Lagrange modelling explained so far. In port-Hamiltonian modelling a system
is viewed by the energy and power flow between its components. The energy of the system is not described
in term of the generalized coordinates and its derivative (positions and velocities) but in the generalized
positions (q) and the generalized momenta (p) of the system. Port-Hamiltonian modelling can easily be
extended to multiple physical domains although for the snake robot we stay in the mechanical domain only.
Port-Hamiltonian modelling is useful to get a better understanding of what is physically happening in a
system because of its energy and flow description. Because of this properties it is a very suitable technique
to really model for control [2],[23]. The equations of motion are defined in equation 4.10.

q̇ =
∂H

∂p
(q,p) (4.10a)

ṗ = −∂H
∂q

(q,p) +A(q)λ+B(q)u (4.10b)

y = BT (q)
∂H

∂p
(q,p) (4.10c)

0 = AT (q)
∂H

∂p
(q,p) (4.10d)

Where the generalized coordinates are q and the generalized momenta are p. A(q)λ are as in the Lagrange
equations of motion the constraint forces and B(q)u are the externally applied forces.

The Hamiltonian H(q,p) is defined as the total energy of the system (equation 4.11):

H(q,p) = Ekin(q,p) + Epot(q) (4.11)

The Lagrangian and Hamiltonian are very alike and in case of the snake robot moving over a flat surface
they are equal. Because in general the Lagrangian and Hamiltonian are very alike the Lagrange equations
of motion can be transformed to the Hamiltonian equations of motion fairly easy with the use of equations
4.10 and 4.12.

p =
∂L

∂q̇
(q, q̇) = M(q)q̇ (4.12)

M(q) is the mass matrix of the system. The port-Hamiltonian equations of motion from equation 4.10 can
be rewritten in the general input-state-output form from equation 4.13.

ẋ =
(
J(x)−R(x)

)∂H
∂x

(x) + g(x)u (4.13a)

y = gT (x)
∂H

∂x
(x) (4.13b)

x =
[
q,p

]T
. J(x) is the power-conserving internal interconnection structure of the system which connects

all energy storing and energy dissipating elements. R(x) is the resistive (energy dissipating) structure. More
details about the derivation of J(x) and R(x) related to the 4 link snake robot case are given in appendix
A.8.

M.P.A. van Bergen University of Twente 7
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4.5 Control

For the control of the snake robot there are a few different steps and control goals that have to be distinguished
from each other.

There can be many control goals depending on the implementation of the specific snake robot. Some of the
control goals are to move the snake’s center of mass from place A to place B and/or control the snake’s
shape and/or control the snake’s head (which may be equipped with sensors). Depending on the application
there may be different sensors installed on the snake robot. The head can be equipped with a infrared
sensor and/or a CO2 sensor. Furthermore there may be a sensor (camera or someone observing the robot)
to ”measure” the snake’s center of mass position. However, whatever the application, the snake robot will
always need sensors to measure the relative angle between its links to know the snake’s shape because the
snake’s shape through time will determine its locomotion. The focus of this research is on designing a
controller for controlling the snake’s actual shape based on a desired reference shape.

4.5.1 Reference trajectory

As already mentioned in 4.1 a snake propels it’s self forward via lateral undulation by sending a serpenoid
curve down its body. The serpenoid curve moving down a snake’s body can be discretised in N links and
the resulting relative link angles required to form this serpenoid curve are given by equation 4.14 along with
first and second time derivatives (useful for control purposes later on). These time derivatives (4.14b and
4.14c) are valid under the assumption that γ is a constant not depending on time.

φi,ref = αsin(ωt+ (i− 1)δ) + γ (4.14a)

φ̇i,ref = αωcos(ωt+ (i− 1)δ) (4.14b)

φ̈i,ref = −αω2sin(ωt+ (i− 1)δ) (4.14c)

In these equations α is the amplitude of the link angle sinusoidal motion during the locomotion. ω is the
angular frequency of the periodic motion. t denotes time. δ is the phase shift between the different joint
angles and γ is the bias. α,δ and γ determine the shape of the serpenoid curve and ω determines its speed.
If the parameter γ is zero the snake moves in a straight line. Otherwise the snake will follow a more curved
path (see appendix A.2 for the effect of changing serpenoid curve parameters on the resulting serpenoid
curve).

4.5.2 Newton-Euler shape control

The control target for planar snake robot locomotion in general has two stages. First of all, to move the
snake from place A to place B the snake has to send a desired serpenoid curve through its body. The center
of mass will move and based on this movement the desired serpenoid curve will be changed by a controller
to let the snake move from point A to B correctly. Lets call this path control. Secondly the snake robot
link angles have to correspond to the desired link angles from the desired reference serpenoid curve. So the
controller also has to take care of that. Lets call that shape control. This research focuses on designing a
controller for the shape control in the port-Hamiltonian framework.

P̊al Liljebäck already proposed a simple joint controller and exponentially stable joint controller in combi-
nation with partial feedback linearization for shape control (control of the link angles). This controller is
designed in the Newton-Euler framework. For this controller it is desired to separate the equations of motion
in actuated and non-actuated dynamics. Hence a new set of generalized coordinates is introduced. The new
set of generalized coordinates consists of N-1 relative angles φi between two links, 1 absolute angle (of the
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head link of the robot) θN and the two (x and y) positions of the center of mass of the robot. The transforma-

tion from the absolute angels θ to the relative angels φ is given by θ = Hφ̄. φ̄ =
[
φ1, ..., φN−1, θN

]T ∈ RN .
For the definition of H see appendix A.1.

The new set of generalized coordinates becomes:

qφ =

[
φ̄
p

]
(4.15)

Applying a coordinate transformation from q to qφ and pre-multiplying equation 4.6a with HT gives the
decoupled equations of motion. The decoupled equations of motion are in equation 4.16.

M̄(φ̄)q̈φ + W̄ (φ̄, ˙̄φ) + Ḡ(φ̄)fR(φ̄, ˙̄φ, ṗ) = B̄u (4.16)

The equations for M̄ ,W̄ ,Ḡ and B̄ are in appendix A.9.

These equations can be rewritten to the form of equation 4.17.

M̄11q̈a + M̄12q̈u + W̄1 + Ḡ1fR = u (4.17a)

M̄21q̈a + M̄22q̈u + W̄2 + Ḡ2fR = 03x1 (4.17b)

where qa =
[
φ1, ..., φN−1

]T ∈ RN−1, qu =
[
θN , px, py

]T ∈ R3, M̄11 ∈ R(N−1)×(N−1), M̄12 ∈ R(N−1)×3),

M̄21 ∈ R3×(N−1), M̄22 ∈ R3×3, W̄1 ∈ R(N−1), W̄2 ∈ R3, Ḡ1 ∈ R(N−1)×2N and Ḡ2 ∈ R3×2N . In the
uncoupled equations of motion qa represent the actuated degrees of freedom where the qu represent the
unactuated degrees of freedom.

Since we are dealing with an underactuated systems, we cannot apply a full feedback linearization by adding
the inverse dynamics to the actuator inputs. However, a partial feedback linearization is possible. The
partial feedback linearization will cancel all the modelled (highly-nonlinear) counteracting friction forces on
the hinges. This is done by solving equation 4.17b for q̈u and substituting it in 4.17a. After that, equation
4.17a can be solved for u. Replacing q̈a with ū gives the linearizing controller as presented in equation 4.18.

u = (M̄11 − M̄12M̄21
−1
M̄21)ū+ W̄1 + Ḡ1fR − M̄12M̄22

−1
(W̄2 + Ḡ2fR) (4.18)

This control input gives us the mapping q̈a = ū.

The desired (reference) angles of the snake’s links are know (equation 4.14a) and applying a simple joint
controller or exponentially stable joint controller (for the controller equation see appendix A.10) gives the
required ū. Applying equation 4.18 than determines the desired torque to get the required joint accelerations
q̈a.

4.5.3 port-Hamiltonian shape control

Besides a shape controller in the Newton-Euler framework a controller can also be designed in the port-
Hamiltonian framework. This framework should make controller design more convenient. The passivity
based Energy-Casimir method is applied for shape control of the snake robot. When the resistive structure
property R(x) ≥ 0 and energy conserving property of J(x) = −JT (x) are satisfied the Hamiltonian of
the port-Hamiltonian system is a stable Lyapunov function (dHdt ≤ 0). In the Energy-Casimir method the
port-Hamiltonian system is expanded with a Casimir function from which the control law is derived. This
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functions must be a positive (semi) definite energy-like function. The modified Hamiltonian is chosen as
Hmod = H + C. To guarantee stability of the modified system the Lyapunov of the modified system should
also be stable which is guaranteed if dCdt = 0. There can be proven that a suitable Casimir function for a port-
Hamiltonian system with dissipation satisfies 4.19 [2], [23]. Only Casimirs that do not contain derivatives
nor primitives of the states (of the system) satisfied this criterion.

d

dt
C(x(t)) =

∂TC

∂x
(x(t))ẋ(t) = 0 (4.19)

Finding dC
dt = 0 is finding the equilibrium point of the Casimir. The shape control problem in this research is

a tracking problem between the actual and desired link angle. The control problem comes down to bringing
the tracking error to (equilibrium) zero. Therefore the Casimir states are expressed in the tracking error
x̃. Again a coordinate transformation to the actuated and unactuated generalized coordinates (qa and qu
see section 4.5.2) is needed. The control laws are only obtained for the (N-1) actuated degrees of freedom.
This results in 3 Casimirs, one for every actuator. In appendix A.11 the coordinate transformation of the
port-Hamiltonian input-state-output representation to the actuated and unactuated coordinates is given.
Incorporating the coordinate transformation in the (tracking error) states of the Casimirs results in the
applied Casimirs being expressed in x̃i = φi,ref − φi.

The resulting control laws are obtained by solving 4.19 for u1 till u3.

In this research multiple Casimirs are tested to find a suitable control law. The Casimirs are expressed in
the error states x̃q,i = φq,i,ref − φq,i, x̃p,i = φp,i,ref − φp,i, ˙̃xq,i = φ̇q,i,ref − φ̇q,i and ˙̃xp,i = φ̇p,i,ref − φ̇p,i.
Among others the following three Casimirs are used:

Ci =
1

2
ai(x̃q,i)

2 +
1

2
bi(x̃p,i)

2 (4.20a)

Ci =
1

2
(aix̃q,i + bix̃p,i)

2 (4.20b)

Ci = aix̃q,ix̃p,i (4.20c)

Since qa ∈ R(N−1) i = 1, 2, 3.

Equation 4.19 combined with the first Casimir (equation 4.20a) gives:

dCi
dt

ẋ =

a1(φq,1,ref − φq,1)(φ̇q,1,ref − φ̇q,1) + b1(φp,1,ref − φp,1)(φ̇p,1,ref − φ̇p,1
a2(φq,2,ref − φq,2)(φ̇q,2,ref − φ̇q,2) + b2(φp,2,ref − φp,2)(φ̇p,2,ref − φ̇p,2
a3(φq,3,ref − φq,3)(φ̇q,3,ref − φ̇q,3) + b3(φp,3,ref − φp,3)(φ̇p,3,ref − φ̇p,3

 =

0
0
0

 (4.21)

Where (for mechanical systems) the unknown (to solve for) torques and friction forces on the hinges enter
the equation via the φ̇p,i term (see appendix A.11). Therefore only Casimirs which have φ̇p,i in dCi

dt = 0 are
useful in the shape controller design. Ideally the obtained controller should not cancel but use the friction
forces and non-linearity of the system for controlling the snake robot. Port-Hamiltonian control exactly tries
to do that by redirecting energy flows in the system instead of cancelling them with input forces.

The system of equations like equation 4.21 for the second and third Casimir are given in appendix A.12.
Solving the systems of equations for the different Casimirs gives the different control laws for the hinge
actuators. The resulting control laws for the different Casimirs are given in appendix A.13.

The control law for u1 obtained from the first Casimir (equation 4.20a) is a fraction with in the numerator a
multiplication of the terms (φp,1 − φp,1,ref ), (φp,2 − φp,2,ref ) and (φp,3 − φp,3,ref ). These terms can become
zero (which they should in proper tracking). Because of these terms the control law can (and will) become
singular so it is not suitable. The numerator for u2 and u3 also contain the same multiplication terms as u1.

The system of equations resulting from dCi

dt for the first and third Casimir (equation 4.21 and A.19) are
very comparable. This results in their control laws also being very comparable (see appendix A.9). The
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control law for u1 obtained form the third Casimir (equation 4.20c) contains a multiplication of the terms
(φq,1−φq,1,ref ), (φq,2−φq,2,ref ) and (φq,3−φq,3,ref ) in its numerator as well. Also these terms can and will
become zero resulting in a singularity in the control law and therefore a non suitable control law. Again u2
and u3 also contain the same multiplication terms as u1.

The control laws from the second Casimir are worth looking into.
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5 Method

From the analysis part it becomes clear that there are multiple modelling techniques and frameworks in
which equations of motions and controllers can be derived. The solution path for this research consists of
several steps. First of all the dynamics of and controller for the snake robot’s motion are derived via the
Newton-Euler established method to understand the robots dynamics better. The result is implemented
and simulated in both MATLAB and Simulink. The results of the simulations are compared to what is
expected from literature. Further more the results of both simulation in MATLAB and Simulink should be
(approximately) the same. If both these checks give a positive result than the first step in the modelling and
simulation is correctly implemented and the first research goal is met.

For the second step the Euler-Lagrange equations of motion are derived and than implemented and simulated
in MATLAB. The resulting motion of the snake should (with the same input) be corresponding to the motion
of the snake obtained from the Newton-Euler equations of motion simulation in MATLAB. If this is the case
than the second research goal is also met.

From the Euler-Lagrange equations of motion the step to the port-Hamiltonian equations of motions will
be made and the resulting equations are implemented and simulated in MATLAB. The resulting motion
should (with the same input) be corresponding to the results obtained from the Newton-Euler and Lagrange
equations of motion. If the results are corresponding the third research goal is met as well.

Finally a port-Hamiltonian controller will be designed to exploit the benefits of port-Hamiltonian modelling.
The controller will first be designed theoretically and after that it will be implemented and simulated in
MATLAB. From comparing the resulting motion to the desired (reference) motion the performance of the
controller will be studied and compared to the controller derived in the Newton-Euler framework.

This specific solution route is chosen because it is convenient and because the port-Hamiltonian equations
of motion and port-Hamiltonian controller are new for a snake robot.

To summarize the method of this research:

1. Derive the equations of motion and controller for a snake robot in the Newton-Euler framework.
Implement and simulate the results in MATLAB and Simulink

(a) Compare the results from MATLAB with expected from literature

(b) Compare the results from MATLAB and Simulink to each other

2. Derive, implement and simulate (in MATLAB) the Euler-Lagrange equations of motion for a snake
robot

(a) Compare the Lagrange equation of motion results to the Newton-Euler results

3. Derive, implement and simulate (in MATLAB) the port-Hamiltonian equations of motion for a snake
robot

(a) Compare the port-Hamiltonian equation of motion results to the Lagrange results

4. Design and implement a port-Hamiltonian controller

(a) Compare the resulting motion of the snake’s shape to the reference shape and determine the
performance of the controller

The numbers of the method steps (1 till 4) correspond to research goals 1 till 4.
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5.1 Method step 1

5.1.1 MATLAB implementation and simulation

In this section the MATLAB code applied to derive and simulate the equations of motion and controller in
the Newton-Euler framework is enumerated in pseudocode.

1. Initialize parameters snake robot (m,l,N), simulation parameters (simulation steps, simulation time),
reference input parameters (α,ω,δ,γ) and controller parameters (kp,kd)

2. Initialize calculation matrices A,D,K,V,H,e,E (appendix A.1) and initial configuration snake robot
q(0)

3. Determine equation of motion matrices M̄ ,W̄ ,Ḡ and B̄ (equation 4.16) symbolically

4. Determine the friction force equations (equation 4.4) symbolically

5. Starting simulation loop:

(a) Determine required input torques (ū) with simple joint controller or exponentially stable controller
(appendix A.10)

(b) Determine required u (equation 4.18).

(c) Determine resulting q̈φ (equation 4.16).

(d) Obtain q̇φ and qφ via forward Euler time integration

(e) Obtain new states of the snake and increment time till the simulation time is over

Via those steps the motion of the snake robot is simulated in MATLAB and the results for different inputs
and system parameters are saved.

5.1.2 Simulink implementation and simulation

The same Newton-Euler equations of motion and controller are implemented in Simulink to simulate the
snake robot motion. The resulting block scheme is shown in figure 5.1. From this block diagram the complex
feedback between the snake’s movement of the body and the (propelling) friction forces becomes clear.

5.2 Method step 2

For the derivation and simulation of the Lagrange equation of motion the general formula from equation 4.7
is used. In the specific application of this research the external forces (input torques and friction forces) are
transformed to generalized input forces. Hence the term B(q)u becomes a term containing only generalized
input forces (U ext). This means that there are no constraint forces (A(q)λ = 0) because of the generalized
inputs. U ext is calculated with equation 5.1.

Uext =

[
lSθKfR,x − lCθKfR,y + DTu

ETfR

]
(5.1)

The MATLAB code to derive and simulate the equations of motion of the snake robot with Lagrange is very
comparable to the code used for Newton-Euler. The pseudocode for the Lagrange equations of motion is
obtained by replacing the following lines of the pseudocode of the Newton-Euler simulation:

3. Determine equation of motion vector terms d
dt (

∂L
∂q̇ ), ∂L∂q and Uext from equation 4.7 combined with 4.8

and from 5.1.

5. (b) Load u from the Newton-Euler MATLAB simulation.
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Figure 5.1: Simulink block diagram of snake robot. Yellow block: Reference input generation, Blue block:
(Simple joint) controller, Red block: Partial feedback linearization, Pink block: Equation of motion parti-
tioning (see equation 4.17), Purple block: Equation of motion snake, Green block: Time integration, Brown
block: Internal system feedback

(c) Determine resulting q̈ with equation 4.7

(d) Obtain q̇ and q via forward Euler time integration

With these small changes to the simulation code the Lagrange equations of motion are derived and simulated.

5.3 Method step 3

The derivation and simulation of the snake robot locomotion in the port-Hamiltonian framework requires
a bit more attention because of the high non-linearity of the system. To obtain the steps for the port-
Hamiltonian modelling the following lines in the Newton-Euler pseudo code are changed:

3. Determine equation of motion vector terms ∂H
∂p ,∂H∂q and Uext from equation 4.10 combined with 4.11

and equation 5.1.

5. (c) Determine ṗ and q̇ with equation 4.10

(d) Determine q with forward Euler time integration. Determine p with equation 4.12

The term A(q)λ in equation 4.10 is zero just like in the Lagrange equations of motion. Furthermore the
relation between the momenta of the generalized coordinates (p) and the generalized velocities q̇ (equation
4.12) is highly non-linear for q(1:4) (θ1 till θ4). The M(q) term contains a lot of sin and cos terms. It is
not of the form p = Cq̇. That is why not forward Euler but equation 4.12 has to be used to obtain p in the
port-Hamiltonian simulation.

The equation for ṗ contains the influence of Uext. This equation can however not be used to determine p
(via forward Euler time integration). Therefore to still have the influence of Uext in the equation of motion
q̇ values from the Lagrange equation of motion are used. Besides these changes the rest of the simulation
code is the same.
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5.4 Method step 4

To simulate the performance of the designed port-Hamiltonian controller most steps in the simulation are the
same as those for the simulation of the Lagrange equation of motion. The only difference is the generation
of the required u. The change in the Lagrange pseudocode becomes:

5. (c) Determine required u by solving equation 4.21, A.18 or A.19 depending on the chosen Casimir.

To determine the required u φq,i,ref , φ̇q,i,ref and φp,i,ref , φ̇p,i,ref are determined from the reference signal.

To determine φp,i,ref and φ̇p,i,ref the reference signal in combination with equation 4.12 is used. φq,i and
φp,i follow from the measured angles of the snake. To determine φp,i the measured angels (and angular

velocities) in combination with equation 4.12 are used. φ̇q,i and φ̇p,i follow from the input-state-output
port-Hamiltonian system from equation 4.13 combined with the measured states x.
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Figure 6.1: Reference simulation center of mass po-
sition, absolute link angels and joint tracking error.
Simulation settings: α = 45◦,ω = 70◦,δ = 40◦,γ = 0◦,
kp = 70, kd = 5, simple joint controller

Figure 6.2: Reference simulation reference input, fric-
tion forces and actuator torques. Simulation settings:
α = 45◦,ω = 70◦,δ = 40◦,γ = 0◦, kp = 70, kd = 5,
simple joint controller

6 Results and Discussion

The results of the different method steps to reach the different research goals are listed in the following
subsections. Unless otherwise indicated in the caption or legend of the figures with the simulation results
the simulations are done for a N = 4 link snake robot with link mass m = 1kg and (half) link length l = 1m.
The tangential friction coefficient ct is set to 1 and the normal friction coefficient cn to 10. The simulation
time is 40 seconds and the amount of simulation steps is 500. In the figures 6.1 till 6.9 the results from
different simulations are plotted.

6.1 Results and Discussion step 1

6.1.1 Matlab implementation and simulation

The simulation results from the Newton-Euler equations simulated in MATLAB are compared to what can
be expected (from literature).

In figure 6.1 and 6.2 the results for the reference simulation are given. All the other simulations are sim-
ulations with slightly different parameters. These are compared to the reference simulation. In this refer-
ence simulation the snakes center of mass moves in an approximate straight line from the starting point
(x, y) = (4, 0) to approximately (x, y) = (31, 0.3). The snake gets off track slightly while it should actually
not move in the y-direction. This small deviation is probably caused by the error in the numerical integra-
tion scheme. The integration from φ̈ to φ is done with a forward Euler scheme where the curved line of
the input signal (equation 4.14a and figure 6.2) is approximated by a straight line. This causes the error.
Since the center of mass of the snake is not measured (nor controlled) this deviation is not compensated
for. Also the initial transient error between the reference angles φref and the relative angles of the snake φi
(bottom plot in figure 6.1) is big. This error is big because the initial (configuration) states of the snake are

put as q =
[
0, 0, 0, 0, 4, 0

]T
and q̇ =

[
0, 0, 0, 0, 0, 0

]T
which does not correspond with the first values of the
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Figure 6.3: Described path by the snake robot’s center of mass for different reference inputs. Simulation
settings (unless otherwise indicated in the figure legend): α = 45◦,ω = 70◦,δ = 40◦,γ = 0◦, kp = 70, kd = 5,
simple joint controller.

reference input at t = 0 (see equations 4.14a, 4.14b and figure 6.2). These hypothesis are confirmed from
the simulations done with an exponentially stable joint controller instead of a simple joint controller. In
figure 6.4 the motion of the snake robot is plotted for control with the exponentially stable joint controller
instead of the simple joint controller. Further more the initial states of the snake robot are changed to

q =
[
θ1,ref , θ2,ref , θ3,ref , 0, 4, 0

]T
and q̇ =

[
θ̇1,ref , θ̇2,ref , θ̇3,ref , 0, 0, 0

]T
. Changing the initial state of the

snake robot results in an initial transient error of zero (bottom plot in figure 6.4).

Combining the result from partial feedback linearization φ̈ = ū with the control law of the exponentially
stable joint controller (appendix A.10) gives the resulting error dynamics (φ̈ref−φ̈)+kd(φ̇ref−φ̇)+kp((φref−
φ) = 0. The steady state resulting tracking error with exponentially stable controller is the bottom plot
of figure 6.4. This error is much smaller than the tracking error with the simple joint controller (compare
the bottom plot from figure 6.1 with the blue line in the bottom plot of figure 6.4). The resulting tracking

Figure 6.4: Center of mass position and joint track-
ing error snake with exponentially stable joint con-
troller. Errors are only shown for φ1 for clarity. Sim-
ulation settings (unless otherwise indicated in the leg-
end): α = 45◦,ω = 70◦,δ = 40◦,γ = 0◦, kp = 70,
kd = 5, exponentially stable controller

Figure 6.5: Required actuator torque for increased link
masses and lengths. Simulation settings: α = 45◦,ω =
70◦,δ = 40◦,γ = 0◦, kp = 70, kd = 5, simple controller
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errors however are not (as expected) zero. From figure 6.4 follows that decreasing the time steps within the
simulation decreases the integration error and therefore also decreased the steady-state tracking error. The
resulting tracking errors in figure 6.4 are therefore explained by the time integration (forward Euler) scheme.
Further more lowering the controller gain kp to 20 should increase the tracking error which it does. This
supports the claim that the resulting tracking error is caused by numerical integration errors. Implementing
the exponentially stable joint controller supports the hypothesis that initial configuration differences and
time integration errors cause tracking errors and slight path deviations of the snake. The implemented
model therefore can be assumed correct. The fact that the center of mass of the snake travels further in the
reference simulation compared to the simulation with exponentially stable controller does not means that the
simple controller is better. The tracking error is more important because if you want to change the distance
the snake travels you change the reference input and you don’t rely on the uncertain tracking errors (bigger
for the simple joint controller) to make the snake travel more distance.

Comparing figure 6.3 to the reference simulation in figure 6.1 it becomes clear that changing the parameter
γ (as expected from literature) causes the snake to deviate from a straight path and describe a curved
trajectory instead of straight path. From figure 6.3 it becomes clear that decreasing the parameter ω indeed
slows down the movement of the snake as expected from literature. Also as expected follows from figure 6.3
that decreasing the parameter α does decrease the speed of the snake robot.

P̊al Liljebäck claims that a δ value of around 60◦ is optimal for a 4 links snake robot. Comparing figure 6.3
to 6.1 indeed shows that an angle of 60◦ for δ results in more forward velocity than an angle of 40◦. From
literature it is expected that a lower ratio cn

ct
will decrease the propulsive force. Figure 6.3 supports this

conclusion since the snake travels less far compared the reference simulation.

Increasing the masses and length’s of the links of the snake robot results (as expected) in an increase of the
required torque to propel the snake robot. The conclusion is drawn from comparing figure 6.5 to the torque
required in the reference simulation (figure 6.2) . Furthermore increasing the length of the links has more
influence on the required torque than increasing the mass. This is as expected since the inertial for the links
is calculated via J = 1

3ml
2.

6.1.2 Simulink implementation and simulation

Figure 6.6: Described path by the snake robot’s center of mass resulting from Simulink simulations with
different solvers. Simulation settings: α = 45◦,ω = 70◦,δ = 40◦,γ = 0◦, kp = 70, kd = 5, simple joint
controller.

Comparing the results from 6.6 with the reference simulation from figure 6.1 it becomes clear that the
results are comparable but not the same. The different results are probably caused by the difference in time
integration schemes used in MATLAB (a simple fixed step size forward Euler) and those used in Simulink.
In Simulink the variable step size ODE45 (Dormand-Prince), variable step size ODE15s (stiff/NDF), fixed
step size ODE3 (Bogacki-Shampine) and fixed step size ODE1 (Euler) are used. The difference in direction
between the snake center of mass paths can be explained (as also mentioned before) because there is no
feedback control for the snake’s center of mass when it diverges from the intended horizontal straight line.
(Initial) numerical direction errors (differing between the integration schemes) are thus not compensated for.
ODE1 (Euler) is the integration scheme closest related to the forward Euler scheme used in the MATLAB
simulations. However, this integration scheme also diverges significantly from the references simulation.
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While conducting different simulations in Simulink it turned out that for a reference input with a too high ω
the Simulink results diverged unacceptably compared to the MATLAB simulations. This phenomenon could
not be explained exactly although it maybe have to do with the algebraic loops and inverse calculations in
the Simulink model.

6.2 Results and Discussion step 2

In figure 6.7 the motion of the snake robot is plotted obtained from the Lagrange equations of motion.
Comparing this figure to the results in figure 6.1 it becomes clear that the Lagrange equations of motion at
first sight produce the same snake motion as the Newton-Euler equations of motion (as it should). However,
at the bottom of figure 6.7 the error between the Lagrange and Newton-Euler simulation is plotted. The
error at timestep 2 is a numerical error. This error increases with time. For the Lagrange simulations
the input torques from the Newton-Euler simulation are used to check the simulations. Therefore there is
not compensated for the (initial) numerical error during the simulation since the input torques are derived
from the snake states from the Newton-Euler simulations. Because the system is highly non-linear and
has various feedback loops (see figure 5.1) this initial error after a while increases to non-negligible values.
However from the simulation results there can still be concluded that the Lagrange equations of motion
are implemented correctly. First of all, the error in the simulation and its behaviour can be explained by
the initial numerical error. Secondly, from figure 6.7 and 6.8 it becomes clear that (except for a numerical
error) the Lagrange and port-Hamiltonian simulation give the same results and same error behaviour with
respect to the Newton-Euler simulation. This confirms that the Lagrange (and port-Hamiltonian) equations
of motions are implemented correctly and that the error with the Newton-Euler simulation is not related to
incorrect implementation.

6.3 Results and Discussion step 3

As indicated in section 5.3 simulating the motion of the snake in the port-Hamiltonian framework is not as
straight forward as in the Lagrange framework. However the correctness of ∂H

∂p and ∂H
∂q can still be checked.

In figure 6.7 q obtained via Lagrange and via (time integration of) q̇ = ∂H
∂p are compared and they turn out

to be the same (apart from some numerical errors see figure 6.8). Since for both the port-Hamiltonian and
the Lagrange simulation the same input torque from the Newton-Euler simulation are used both simulations
show the same deviation from the Newton-Euler simulation (figure 6.7).

To check if ∂H
∂q is correct is harder since there are no other simulations to check the obtained values with.

However if ∂H∂p is correct it is also very likely that ∂H
∂q is correct since the only difference is the variable where

H is differentiated to. Furthermore ṗ = −∂H∂q + Uext holds. The ∂H
∂q term contains the damping effect of

the energy-storing elements in the system. The snake has only moving masses as energy storing elements.
This expected damping effect is very clearly visible when comparing the plot of ṗ to that of Uext in figure
6.8. Therefore there is a very high likelihood that ∂H

∂q is correct.

6.4 Results and Discussion step 4

In figure 6.9 the results of the port-Hamiltonian controller derived from the second Casimir (equation 4.20b)
are plotted. To analyse its performance it is compared to the result from the reference simulation with the
simple joint controller in figure 6.1. The port-Hamiltonian controller moves the snake in an approximately
straight line as required. However the deviation from a horizontally straight line (as is required) is a lot
bigger with the port-Hamiltonian controller than with the simple joint controller. Further more the tracking
error with the port-Hamiltonian controller is a lot bigger (and increases with time) than with the simple joint
controller. Finally the delivered joint torque from the port-Hamiltonian controller is a lot bigger than that
from the simple joint controller. The port-Hamiltonian controller is therefore not able to redirect the energy
flows in the system as it should (see section 4.5.3). Another point worth mentioning is that the tracking
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Figure 6.7: Position of the center of mass of the
snake robot obtained via the port-Hamiltonian and
Lagrange equations of motion in the top figure. In
the bottom figure the absolute error compared to the
Newton-Euler simulation is plotted. Simulation set-
tings: α = 45◦,ω = 70◦,δ = 40◦,γ = 0◦, kp = 70,
kd = 5, simple joint controller

Figure 6.8: In the top figure the error is plotted for q̇
obtained via the port-Hamiltonian en Lagrange sim-
ulation. The middle figure contains ṗ obtained via
the port-Hamiltonian simulation. The last figure shows
Uext acting on the snake during the port-Hamiltonian
simulation. Simulation settings: α = 45◦,ω = 70◦,δ =
40◦,γ = 0◦, kp = 70, kd = 5, simple joint controller

error (and delivered torque) from the port-Hamiltonian controller are (slightly) increasing with time. The
port-Hamiltonian controller probably will blow up for longer simulation times.

For the port-Hamiltonian control laws derived from the first and third Casimir it was directly clear that the
control laws where not suitable for the control purpose. From figure 6.9 it becomes clear that also the second
Casimir does not result in a suitable control law.

Figure 6.9: Center of mass position, actuator torques and tracking errors port-Hamiltonian controller. Sim-
ulation settings: α = 45◦,ω = 70◦,δ = 40◦,γ = 0◦, Controller parameters: a1,2,3 = 10, b1,2,3 = 1, port-
Hamiltonian controller.

No suitable port-Hamiltonian control law could be derived in this research. There are multiple possible
explanations.
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First of all, maybe the correct Casimir or the correct controller parameters (a1,2,3 and b1,2,3) could not be
found.

Secondly the problem could also be more fundamental. As already indicated before, the snake robot is a
highly non-linear underactuated system with various feedback loops. The relation between p and q̇ is highly
non-linear and makes time simulation in the current port-Hamiltonian model difficult (explained in section
5.3). Furthermore for the tracking problem two coordinate transformations are introduced. One from the
absolute to the relative degrees of freedom (section 4.5.2) and one to the error states (section 4.5.3). It could
be that the combination of all these particularities make the system and control goal not suitable for the
Energy-Casimir method.
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7 Conclusion

From section 6.1.1 there is concluded that the equations of motion in Newton-Euler form are correctly
derived and implemented. Changes in input parameters changes the output of the snake robot locomotion
as expected from literature. Comparing the simulations in MATLAB with those in Simulink (section 6.1.2)
there can be concluded that the time integration solver is very important in determining the motion of the
snake through time. It was not possible to obtain exactly the same motion from the MATLAB and Simulink
simulations. This could be due to numerical errors but the biggest differences are probably caused by the
differences in the time integration (schemes).

From section 6.2 there can be concluded that the Lagrange equations of motion give the same result (except
for some numerical differences) as the Newton-Euler equations of motion as long as the same time integration
solver is used.

From the results from 6.3 there can be concluded that the ∂H
∂p is exactly correct since it gives the same

results as determined in the Lagrange simulation. There is a very high likely hood that also ∂H
∂q is correct

but this can not be concluded with absolute certainty.

From section 6.4 there can be concluded that the performance of the port-Hamiltonian controller is inferior
compared to the controllers derived in the Newton-Euler framework. The Energy-Casimir method used in
this research did not yield a proper control law. There are multiple possible causes mentioned in section 6.4.

Looking back at the research goals defined in section 3 there can be concluded that the first research goal
is achieved although the MATLAB and Simulink models don’t correspond completely. The second research
goal is completely achieved. With a high certainty the third research goal is achieved as well. The last
research goal could unfortunately not be achieved.

8 Recommendations

For future research it can be interesting to further study the differences between the Newton-Euler equations
of motion simulated in MATLAB and those simulated in Simulink. A further understanding about how and
why the different time integration solvers change the simulation outcome the way they do was not the goal
of this research. However, this can be very valuable for future simulations of complex systems like the snake
robots. A too high ω as reference input also causes the Simulink results to excessively diverge from the once
obtained with MATLAB. Fixing the problem in the Simulink model can be beneficial for future research
since the Simulink simulations are significantly faster than those conducted in MATLAB.

The most important recommendations for the future are related to the port-Hamiltonian controller design.
Future research should focus on finding out why it was not possible to find a suitable port-Hamiltonian
controller for this specific problem. Depending on the actual reason why the following steps could be taken:

First of all, future research could try to find a better controller parameter set. In this research various
combinations are tried and the best combination resulted in the presented port-Hamiltonian controller.
However not all possible controller parameter sets could be tested so this is a recommendation for the future.

Secondly it is interesting to try (more complex) Casimir functions to derive controllers from. Various Casimirs
are tried in this research but again a perfect one has not yet been found.

Thirdly, if it turns out that the Energy-Casimir method is not a suitable design method for this problem the
system can be altered to a dynamical control systems in port-Hamiltonian form. Instead of direct application
of the Energy-Casimir method a recourse can be taken to generate Casimirs of a closed-loop system. For
this the port-Hamiltonian form of the dynamical controller system is the starting point. Basically the port-
Hamiltonian form of the plant and that of the controller are interconnected and from there a new controller
can be derived. For more information about this method see [23].
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A Appendix

A.1 Calculation matrices for modelling

The specific calculation matrices used for the modelling are defined as:

A =


1 1

. .
. .

1 1

 D =


1 −1

. .
. .

1 −1



e =
[
1, ..., 1

]T
E =

[
e 0Nx1

0Nx1 e

]

sinθ =
[
sinθ1, ..., θN

]T
Sθ = diag(sinθ)

cosθ =
[
cosθ1, ..., θN

]T
Sθ = diag(cosθ)

sgnθ =
[
sgn θ1, ..., sgn θN

]T
θ̇
2

=
[
θ̇21, ..., θ̇

2
1

]T

H =


1 1 1 ... 1 1
0 1 1 ... 1 1
. .
. .
. .
0 0 0 ... 0 1

 (A.1)

Where A ∈ R(N−1)×N , D ∈ R(N−1)×N , e ∈ RN , E ∈ R2N×2, sinθ ∈ RN , Sθ ∈ RN×N , cosθ ∈ RN ,
Cθ ∈ RN×N ,sgnθ ∈ RN , θ̇2 ∈ RN , H ∈ RN×N .

The rotation matrix from the global frame to the local frame of specific link i is defined as:

Rglobal
link,i =

[
cosθi −sinθi
sinθi cosθi

]
(A.2)

σi is defined as:

σi =
[
a1, a2, ..., ai−1,

ai+bi
2 , bi+1, bi+2, ..., bN

]
(A.3a)

ai =
l(2i− 1)

N
, bi =

l(2i− 1− 2N)

N
(A.3b)

With σi ∈ RN .
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A.2 Serpenoid curve

For lateral undulation a snake sends a serpenoid curve down its body. A serpenoid curve is a planar curve
with a sinusoidally changing curvature. The x and y coordinates of a point on this curve are defined as in
equation A.4.

x(s) =

∫ s

0

cos(acos(bσ) + cσ)dσ (A.4a)

y(s) =

∫ s

0

sin(acos(bσ) + cσ)dσ (A.4b)

The parameter s indicates the distance (of a point) on the curve from the origin. a,b and c are scalar
parameters. In figure A.1 the serpenoid curve from equation A.4 for various parameter combinations is
plotted.

Figure A.1: Various serpenoid curves resulting from various parameter combinations for the parameters a,b
and c [22]

A.3 Viscous Friction model

The viscous friction force on a specific link i in its own local coordinate frame is defined as:

f link,iR,i = −
[
ct 0
0 cn

]
vlink,ii (A.5)

f link,iR,i ∈ R2. vlink,ii is the link velocity (in the local link coordinate frame). link, i indicates the coordinate
frame and f ,R,i indicates that it concerns the friction forces on link i. In case of anisotropic viscous friction
ct and cn are different.

f link,iR,i can be transformed to the global coordinate frame with the rotation matrix (equation A.2). fglobalR,i

than becomes:

fglobalR,i = −Rglobal
link,i

[
ct 0
0 cn

]
(Rglobal

link,i )
T

[
ẋi
ẏi

]
(A.6)

Putting the friction forces on all the links in matrix form the global frame friction forces can be written as
equation 4.4 in the main report.
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A.4 Coulomb Friction Model

The formula to determine the coulomb friction forces is given in equation A.7.

fR = −mg
[
µtCθ −µnSθ
µtSθ µnCθ

]
sgn(

[
Cθ Sθ
−Sθ Cθ

] [
Ẋ

Ẏ

]
) (A.7)

µt and µn are the coulomb friction coefficient in the tangential and normal direction of a link. So these are
with respect to the local coordinate system of the link’s. They are transformed to the global coordinate
system via the rotation Rglobal

link,i matrix and its transpose (just as in appendix A.3). As expected from physics
the friction force is opposite to the direction of motion of the links.

A.5 Visualization of propulsive forces

In figure A.2 the calculated propulsive forces acting on a snake performing lateral undulation are visualized.
Snakes perform weight shifting during lateral undulation. In this research the weight shifting is neglected.

Figure A.2: A: a snake performing lateral undulation on a mirroring surface. B: Calculated propulsive forces
acting on the snake (without internal weight distribution). C: Propulsive forces acting on the snake (with
internal weight distribution).
The green arrows indicate the direction and size of the propulsive forces. The red lines indicate body parts
with a normal force < 1. The black dots are infliction points of the body shape. The red dot is the center
of mass of the snake robot. [9]
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A.6 Newton-Euler modelling: symbol definitions

The symbols Mθ(θ), W (θ), K and V used in the derivation of the Newton-Euler equations of motion are
defined as:

M θ(θ) = JIN +ml2SθV Sθ +ml2CθV Cθ (A.8a)

W (θ) = ml2SθV Cθ −ml2CθV Sθ (A.8b)

K = AT (DDT )−1D (A.8c)

V = AT (DDT )−1A (A.8d)

A.7 Lagrangian transformation to generalized coordinates

To express the Lagrangian in the generalized coordinates the following two equations are applied:

ẋi(q, q̇) = l(

4∑
j=1

(KT
i,jsin(θj)θ̇j) + ṗx (A.9a)

ẏi(q, q̇) = −l(
4∑
j=1

(KT
i,jcos(θj)θ̇j) + ṗy (A.9b)

Where K(i,j) is the ith row and jth column of the transposed K matrix.

A.8 port-Hamiltonian Input-State-Output representation snake robot

For the vectors and matrices dimensions of the port-Hamiltonian input-state-output equations from 4.13
holds the following. Since q ∈ RN+2 and p ∈ RN+2 J(x),R(x) are ∈ R2(N+2)X2(N+2). Furthermore the
actuator input force vector g(x) ∈ R2(N+2)XN−1 since u ∈ RN−1. The interconnection matrix satisfies the
skew-symmetric property J(x) = −JT (x) which is its power conserving property. The resistive structure in
R(x) satisfies R(x) = RT (x) ≥ 0 which represents the energy dissipation (and thus stability) of the system.

To derive the actual vectors and matrices J(x),R(x) and g(x) the following equation manipulations are
necessary. Combining the equations from 4.10 with the equations from 4.13 and using equation 5.1 for u
gives the port-Hamiltonian input-state-output representation from equation A.10.

[
q̇
ṗ

]
=

[
0 I
−I 0

] [∂H
∂q
∂H
∂p

]
+

[
0

Uext

]
(A.10)

To get to the desired shape from equation 4.13 (necessary for controller design) J(x) is straight forward and

becomes

[
0 I
−I 0

]
. R(x) is determined via rewriting the equations from 4.4 to:

R(x) =

[
0 0
0 Rf

]
(A.11a)

Rf = −

lSθK −lCθK
I 0
0 I

[ct(Cθ)2 + cn(Sθ)2 (ct − cn)SθCθ
(ct − cn)SθCθ ct(Sθ)2 + cn(Cθ)2

] [
lKTSθ IT 0T

−lKTCθ 0T IT

]
(A.11b)
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Sθ,Cθ,K ∈ RNXN and I,0 ∈ R1XN .

The resulting g(x) becomes:

g(x) =

 01

DT

02

 (A.12)

Where 01 ∈ R(N+2)X(N−1) and 02 ∈ R2X(N−1)

A.9 Newton-Euler controller design: symbol definitions

The equations for the variables M̄ ,W̄ ,Ḡ and B̄ are:

M̄ =

[
HTM θ(φ̄)H 0N×2

0N×2 NmI2

]
(A.13a)

W̄ =

[
HTW (φ̄)diag(H ˙̄φ)H ˙̄φ

02×1

]
(A.13b)

Ḡ =

−lHTSθK lHTCθK
−eT 01×N
01×N −eT

 (A.13c)

B̄ =

[
IN−1

03×(N−1)

]
(A.13d)

A.10 Newton-Euler controller design: controller equations

The simple joint controller is given by:

ū = kp(φref − φ)− kdφ̇ (A.14)

where kp > 0 and kd > 0

The exponentially stable joint controller is given by:

ū = φ̈ref + kd(φ̇ref − φ̇) + kp(φref − φ) (A.15)

where kp > 0 and kd > 0

A.11 port-Hamiltonian Input-State-Output coordinate transformation

The port-Hamiltonian input-state-output representation for the 4 links snake robot in actuated and unactu-
ated coordinates is given in equation A.16:
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˙̄φ
ṗx
ṗy
˙̄φp
ṗ5
ṗ6

 =



(HTH)−1(HT ((J(x)(1 : 4, :)−R(x)(1 : 4, :))

[
∂H
∂q
∂H
∂p

]
) +HT g(x)(1 : 4, :)

u1u2
u3

)

(J(x)(5 : 6, :)−R(x)(5 : 6, :))

[
∂H
∂q
∂H
∂p

]
+ g(x)(5 : 6, :)

u1u2
u3


(HTH)−1(HT ((J(x)(7 : 10, :)−R(x)(7 : 10, :))

[
∂H
∂q
∂H
∂p

]
) +HT g(x)(7 : 10, :)

u1u2
u3

)

(J(x)(11 : 12, :)−R(x)(11 : 12, :))

[
∂H
∂q
∂H
∂p

]
+ g(x)(11 : 12, :)

u1u2
u3





˙̄φ = [φ̇ θ̇4]T and ˙̄φp = [φ̇p ṗ4]T .

Combining this port-Hamiltonian Input-State-Output matrix with equation A.12 it becomes clear that the
actuator torques u only enter the system via φ̇p. From also combining equation A.11a with the matrix it

becomes clear that the friction forces on the hinges also enter the system via φ̇p.

The result of (HTH)−1HT g(x)(7 : 10, :)u:

(HTH)−1HT g(x)(7 : 10, :)

u1u2
u3

 =

 2u1 − u2
2u2 − u1 − u3

2u3 − u2

 (A.17)

Which is used to check the result of the coordinate transformation. It is done correctly since φ1 = θ1 − θ2
and θ1 is influenced by u1 from actuator 1. θ2 is influenced by u1 (from actuator 1) and u2 (from actuator
2) so φ1 is influenced by u1 twice and once by u2. Comparable arguments prove the same for φ2 and φ3.

A.12 dCi

dt
= 0 for the second and third Casimir

For the second Casimir (equation 4.20b) dCi

dt = 0 is:

dCi
dt

=

(a1(φq,1,ref−φq,1) + b1(φp,1,ref−φp,1))(a1(φ̇q,1,ref−φ̇q,1) + b1(φ̇p,1,ref−φ̇p,1))

(a2(φq,2,ref−φq,2) + b2(φp,2,ref−φp,2))(a2(φ̇q,2,ref−φ̇q,2) + b2(φ̇p,2,ref−φ̇p,2))

(a3(φq,3,ref−φq,3) + b3(φp,3,ref−φp,3))(a3(φ̇q,3,ref−φ̇q,3) + b3(φ̇p,3,ref−φ̇p,3))

 =

0
0
0

 (A.18)

For the third Casimir (equation 4.20c) dCi

dt = 0 is:

dCi
dt

=

(a1(φp,1,ref−φp,1)(φ̇q,1,ref−φ̇q,1)) + (a1(φq,1,ref−φq,1)(φ̇p,1,ref−φ̇p,1))

(a2(φp,2,ref−φp,2)(φ̇q,2,ref−φ̇q,2)) + (a2(φq,2,ref−φq,2)(φ̇p,2,ref−φ̇p,2))

(a3(φp,3,ref−φp,3)(φ̇q,3,ref−φ̇q,3)) + (a3(φq,3,ref−φq,3)(φ̇p,3,ref−φ̇p,3))

 =

0
0
0

 (A.19)

A.13 Energy-Casimir method: control laws

Control law for u1 obtained from solving 4.21 corresponding to the first Casimir (equation 4.20a) (the control
laws for u2 and u3 are very comparable):

u1 =
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−(3φq,1φp,2φp,3a1b2b3φ̇q,1 + 2φq,2φp,1φp,3a2b1b3φ̇q,2 + φq,3φp,1φp,2a3b1b2φ̇q,3 − 3φq,1φp,2φp,3a1b2b3φ̇q,1,ref −
3φq,1φp,2φp,3,refa1b2b3φ̇q,1−3φq,1φp,3φp,2,refa1b2b3φ̇q,1−3φp,2φp,3φq,1,refa1b2b3φ̇q,1−2φq,2φp,1φp,3a2b1b3φ̇q,2,ref−
2φq,2φp,1φp,3,refa2b1b3φ̇q,2−2φq,2φp,3φp,1,refa2b1b3φ̇q,2−2φp,1φp,3φq,2,refa2b1b3φ̇q,2−φq,3φp,1φp,2a3b1b2φ̇q,3,ref−
φq,3φp,1φp,2,refa3b1b2φ̇q,3−φq,3φp,2φp,1,refa3b1b2φ̇q,3−φp,1φp,2φq,3,refa3b1b2φ̇q,3+3φq,1φp,2φp,3,refa1b2b3φ̇q,1,ref+

3φq,1φp,3φp,2,refa1b2b3φ̇q,1,ref+3φq,1φp,2,refφp,3,refa1b2b3φ̇q,1+3φp,2φp,3φq,1,refa1b2b3φ̇q,1,ref+3φp,2φq,1,refφp,3,refa1b2b3φ̇q,1+

3φp,3φq,1,refφp,2,refa1b2b3φ̇q,1+2φq,2φp,1φp,3,refa2b1b3φ̇q,2,ref+2φq,2φp,3φp,1,refa2b1b3φ̇q,2,ref+2φq,2φp,1,refφp,3,refa2b1b3φ̇q,2+

2φp,1φp,3φq,2,refa2b1b3φ̇q,2,ref+2φp,1φq,2,refφp,3,refa2b1b3φ̇q,2+2φp,3φq,2,refφp,1,refa2b1b3φ̇q,2+φq,3φp,1φp,2,refa3b1b2φ̇q,3,ref+

φq,3φp,2φp,1,refa3b1b2φ̇q,3,ref+φq,3φp,1,refφp,2,refa3b1b2φ̇q,3+φp,1φp,2φq,3,refa3b1b2φ̇q,3,ref+φp,1φq,3,refφp,2,refa3b1b2φ̇q,3+

φp,2φq,3,refφp,1,refa3b1b2φ̇q,3−3φq,1φp,2,refφp,3,refa1b2b3φ̇q,1,ref−3φp,2φq,1,refφp,3,refa1b2b3φ̇q,1,ref−3φp,3φq,1,refφp,2,refa1b2b3φ̇q,1,ref−
3φq,1,refφp,2,refφp,3,refa1b2b3φ̇q,1 − 2φq,2φp,1,refφp,3,refa2b1b3φ̇q,2,ref − 2φp,1φq,2,refφp,3,refa2b1b3φ̇q,2,ref −
2φp,3φq,2,refφp,1,refa2b1b3φ̇q,2,ref−2φq,2,refφp,1,refφp,3,refa2b1b3φ̇q,2−φq,3φp,1,refφp,2,refa3b1b2φ̇q,3,ref−φp,1φq,3,refφp,2,refa3b1b2φ̇q,3,ref−
φp,2φq,3,refφp,1,refa3b1b2φ̇q,3,ref − φq,3,refφp,1,refφp,2,refa3b1b2φ̇q,3 + 3φq,1,refφp,2,refφp,3,refa1b2b3φ̇q,1,ref +

2φq,2,refφp,1,refφp,3,refa2b1b3φ̇q,2,ref+φq,3,refφp,1,refφp,2,refa3b1b2φ̇q,3,ref+3φp,1φp,2φp,3b1b2b3
˙̃
φp,1+2φp,1φp,2φp,3b1b2b3

˙̃
φp,2+

φp,1φp,2φp,3b1b2b3
˙̃
φp,3−3φp,1φp,2φp,3b1b2b3φ̇p,1,ref −2φp,1φp,2φp,3b1b2b3φ̇p,2,ref −φp,1φp,2φp,3b1b2b3φ̇p,3,ref −

3φp,1φp,2φp,3,refb1b2b3
˙̃
φp,1−3φp,1φp,3φp,2,refb1b2b3

˙̃
φp,1−3φp,2φp,3φp,1,refb1b2b3

˙̃
φp,1−2φp,1φp,2φp,3,refb1b2b3

˙̃
φp,2−

2φp,1φp,3φp,2,refb1b2b3
˙̃
φp,2−2φp,2φp,3φp,1,refb1b2b3

˙̃
φp,2−φp,1φp,2φp,3,refb1b2b3 ˙̃

φp,3−φp,1φp,3φp,2,refb1b2b3 ˙̃
φp,3−

φp,2φp,3φp,1,refb1b2b3
˙̃
φp,3+3φp,1φp,2φp,3,refb1b2b3φ̇p,1,ref+3φp,1φp,3φp,2,refb1b2b3φ̇p,1,ref+3φp,2φp,3φp,1,refb1b2b3φ̇p,1,ref+

2φp,1φp,2φp,3,refb1b2b3φ̇p,2,ref+2φp,1φp,3φp,2,refb1b2b3φ̇p,2,ref+2φp,2φp,3φp,1,refb1b2b3φ̇p,2,ref+φp,1φp,2φp,3,refb1b2b3φ̇p,3,ref+

φp,1φp,3φp,2,refb1b2b3φ̇p,3,ref+φp,2φp,3φp,1,refb1b2b3φ̇p,3,ref+3φp,1φp,2,refφp,3,refb1b2b3
˙̃
φp,1+3φp,2φp,1,refφp,3,refb1b2b3

˙̃
φp,1+

3φp,3φp,1,refφp,2,refb1b2b3
˙̃
φp,1+2φp,1φp,2,refφp,3,refb1b2b3

˙̃
φp,2+2φp,2φp,1,refφp,3,refb1b2b3

˙̃
φp,2+2φp,3φp,1,refφp,2,refb1b2b3

˙̃
φp,2+

φp,1φp,2,refφp,3,refb1b2b3
˙̃
φp,3+φp,2φp,1,refφp,3,refb1b2b3

˙̃
φp,3+φp,3φp,1,refφp,2,refb1b2b3

˙̃
φp,3−3φp,1φp,2,refφp,3,refb1b2b3φ̇p,1,ref−

3φp,2φp,1,refφp,3,refb1b2b3φ̇p,1,ref − 3φp,3φp,1,refφp,2,refb1b2b3φ̇p,1,ref − 2φp,1φp,2,refφp,3,refb1b2b3φ̇p,2,ref −
2φp,2φp,1,refφp,3,refb1b2b3φ̇p,2,ref−2φp,3φp,1,refφp,2,refb1b2b3φ̇p,2,ref−φp,1φp,2,refφp,3,refb1b2b3φ̇p,3,ref−φp,2φp,1,refφp,3,refb1b2b3φ̇p,3,ref−
φp,3φp,1,refφp,2,refb1b2b3φ̇p,3,ref−3φp,1,refφp,2,refφp,3,refb1b2b3

˙̃
φp,1−2φp,1,refφp,2,refφp,3,refb1b2b3

˙̃
φp,2−φp,1,refφp,2,refφp,3,refb1b2b3 ˙̃

φp,3+

3φp,1,refφp,2,refφp,3,refb1b2b3φ̇p,1,ref+2φp,1,refφp,2,refφp,3,refb1b2b3φ̇p,2,ref+φp,1,refφp,2,refφp,3,refb1b2b3φ̇p,3,ref )/(4b1b2b3(φp,1−
φp,1,ref )(φp,2 − φp,2,ref )(φp,3 − φp,3,ref ))

In the equations for u1 obtained from the first and third Casimir there is the term
˙̃
φp,i. As explained in

appendix A.11 φ̇p,i contains both the actuator torques u and the friction forces on the hinges. When the

systems of equations resulting from dCi

dt are solved for u the term φ̇p,i is split. The resulting term is denoted

as
˙̃
φp,i. Therefore

˙̃
φp,i is φ̇p,i without the actuator torques.

Control laws for u1,u2 and u3 obtained from solving A.18 corresponding to the second Casimir (equation
4.20b):

u1 = −(3a1b2b3φ̇q,1 + 2a2b1b3φ̇q,2 + a3b1b2φ̇q,3 − 3a1b2b3φ̇q,1,ref − 2a2b1b3φ̇q,2,ref − a3b1b2φ̇q,3,ref+

3b1b2b3
˙̃
φp,1 + 2b1b2b3

˙̃
φp,2 + b1b2b3

˙̃
φp,3 − 3b1b2b3φ̇p,1,ref − 2b1b2b3φ̇p,2,ref − b1b2b3φ̇p,3,ref )/(4b1b2b3)

(A.20)

u2 = −(a1b2b3φ̇q,1 + 2a2b1b3φ̇q,2 + a3b1b2φ̇q,3 − a1b2b3φ̇q,1,ref − 2a2b1b3φ̇q,2,ref − a3b1b2φ̇q,3,ref+

b1b2b3
˙̃
φp,1 + 2b1b2b3

˙̃
φp,2 + b1b2b3

˙̃
φp,3 − b1b2b3φ̇p,1,ref − 2b1b2b3φ̇p,2,ref − b1b2b3φ̇p,3,ref )/(2b1b2b3)

(A.21)

u3 = (a1b2b3φ̇q,1 + 2a2b1b3φ̇q,2 + 3a3b1b2φ̇q,3 − a1b2b3φ̇q,1,ref − 2a2b1b3φ̇q,2,ref − 3a3b1b2φ̇q,3,ref+

b1b2b3
˙̃
φp,1 + 2b1b2b3

˙̃
φp,2 + 3b1b2b3

˙̃
φp,3 − b1b2b3φ̇p,1,ref − 2b1b2b3φ̇p,2,ref − 3b1b2b3φ̇p,3,ref )/(4b1b2b3)

(A.22)
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Control law for u1 obtained from solving A.19 corresponding to the third Casimir (equation 4.20c) (the
control laws for u2 and u3 are very comparable):

u1 =

−(3φq,2φq,3φp,1φ̇q,1+2φq,1φq,3φp,2φ̇q,2+φq,1φq,2φp,3φ̇q,3+3φq,1φq,2φq,3
˙̃
φp,1+2φq,1φq,2φq,3

˙̃
φp,2+φq,1φq,2φq,3

˙̃
φp,3−

3φq,1φq,2φq,3φ̇p,1,ref−3φq,2φq,3φp,1φ̇q,1,ref−3φq,2φq,3φp,1,ref φ̇q,1−3φq,2φp,1φq,3,ref φ̇q,1−3φq,3φp,1φq,2,ref φ̇q,1−
2φq,1φq,2φq,3φ̇p,2,ref−2φq,1φq,3φp,2φ̇q,2,ref−2φq,1φq,3φp,2,ref φ̇q,2−2φq,1φp,2φq,3,ref φ̇q,2−2φq,3φp,2φq,1,ref φ̇q,2−
φq,1φq,2φq,3φ̇p,3,ref − φq,1φq,2φp,3φ̇q,3,ref − φq,1φq,2φp,3,ref φ̇q,3 − φq,1φp,3φq,2,ref φ̇q,3 − φq,2φp,3φq,1,ref φ̇q,3 −
3φq,1φq,2φq,3,ref

˙̃
φp,1−3φq,1φq,3φq,2,ref

˙̃
φp,1−3φq,2φq,3φq,1,ref

˙̃
φp,1−2φq,1φq,2φq,3,ref

˙̃
φp,2−2φq,1φq,3φq,2,ref

˙̃
φp,2−

2φq,2φq,3φq,1,ref
˙̃
φp,2−φq,1φq,2φq,3,ref ˙̃

φp,3−φq,1φq,3φq,2,ref ˙̃
φp,3−φq,2φq,3φq,1,ref ˙̃

φp,3+3φq,1φq,2φq,3,ref φ̇p,1,ref+

3φq,1φq,3φq,2,ref φ̇p,1,ref+3φq,2φq,3φq,1,ref φ̇p,1,ref+3φq,2φq,3φp,1,ref φ̇q,1,ref+3φq,2φp,1φq,3,ref φ̇q,1,ref+3φq,2φq,3,refφp,1,ref φ̇q,1+

3φq,3φp,1φq,2,ref φ̇q,1,ref+3φq,3φq,2,refφp,1,ref φ̇q,1+3φp,1φq,2,refφq,3,ref φ̇q,1+2φq,1φq,2φq,3,ref φ̇p,2,ref+2φq,1φq,3φq,2,ref φ̇p,2,ref+

2φq,1φq,3φp,2,ref φ̇q,2,ref+2φq,1φp,2φq,3,ref φ̇q,2,ref+2φq,1φq,3,refφp,2,ref φ̇q,2+2φq,2φq,3φq,1,ref φ̇p,2,ref+2φq,3φp,2φq,1,ref φ̇q,2,ref+

2φq,3φq,1,refφp,2,ref φ̇q,2+2φp,2φq,1,refφq,3,ref φ̇q,2+φq,1φq,2φq,3,ref φ̇p,3,ref+φq,1φq,2φp,3,ref φ̇q,3,ref+φq,1φq,3φq,2,ref φ̇p,3,ref+

φq,1φp,3φq,2,ref φ̇q,3,ref+φq,1φq,2,refφp,3,ref φ̇q,3+φq,2φq,3φq,1,ref φ̇p,3,ref+φq,2φp,3φq,1,ref φ̇q,3,ref+φq,2φq,1,refφp,3,ref φ̇q,3+

φp,3φq,1,refφq,2,ref φ̇q,3+3φq,1φq,2,refφq,3,ref
˙̃
φp,1+3φq,2φq,1,refφq,3,ref

˙̃
φp,1+3φq,3φq,1,refφq,2,ref

˙̃
φp,1+2φq,1φq,2,refφq,3,ref

˙̃
φp,2+

2φq,2φq,1,refφq,3,ref
˙̃
φp,2+2φq,3φq,1,refφq,2,ref

˙̃
φp,2+φq,1φq,2,refφq,3,ref

˙̃
φp,3+φq,2φq,1,refφq,3,ref

˙̃
φp,3+φq,3φq,1,refφq,2,ref

˙̃
φp,3−

3φq,1φq,2,refφq,3,ref φ̇p,1,ref−3φq,2φq,1,refφq,3,ref φ̇p,1,ref−3φq,2φq,3,refφp,1,ref φ̇q,1,ref−3φq,3φq,1,refφq,2,ref φ̇p,1,ref−
3φq,3φq,2,refφp,1,ref φ̇q,1,ref−3φp,1φq,2,refφq,3,ref φ̇q,1,ref−3φq,2,refφq,3,refφp,1,ref φ̇q,1−2φq,1φq,2,refφq,3,ref φ̇p,2,ref−
2φq,1φq,3,refφp,2,ref φ̇q,2,ref−2φq,2φq,1,refφq,3,ref φ̇p,2,ref−2φq,3φq,1,refφq,2,ref φ̇p,2,ref−2φq,3φq,1,refφp,2,ref φ̇q,2,ref−
2φp,2φq,1,refφq,3,ref φ̇q,2,ref−2φq,1,refφq,3,refφp,2,ref φ̇q,2−φq,1φq,2,refφq,3,ref φ̇p,3,ref−φq,1φq,2,refφp,3,ref φ̇q,3,ref−
φq,2φq,1,refφq,3,ref φ̇p,3,ref−φq,2φq,1,refφp,3,ref φ̇q,3,ref−φq,3φq,1,refφq,2,ref φ̇p,3,ref−φp,3φq,1,refφq,2,ref φ̇q,3,ref−
φq,1,refφq,2,refφp,3,ref φ̇q,3−3φq,1,refφq,2,refφq,3,ref

˙̃
φp,1−2φq,1,refφq,2,refφq,3,ref

˙̃
φp,2−φq,1,refφq,2,refφq,3,ref ˙̃

φp,3+

3φq,1,refφq,2,refφq,3,ref φ̇p,1,ref+3φq,2,refφq,3,refφp,1,ref φ̇q,1,ref+2φq,1,refφq,2,refφq,3,ref φ̇p,2,ref+2φq,1,refφq,3,refφp,2,ref φ̇q,2,ref+

φq,1,refφq,2,refφq,3,ref φ̇p,3,ref+φq,1,refφq,2,refφp,3,ref φ̇q,3,ref )/(4(φq,1−φq,1,ref )(φq,2−φq,2,ref )(φq,3−φq,3,ref ))
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B Reflection report

B.0.1 Introduction

Nowadays the world is getting smaller and more focus is on international and multicultural collaborations.
Our university is promoting internationalisation in numerous ways. One of them is changing the language of
our mechanical engineering bachelor to English. Seeing our university becoming more and more international
made me realize that I myself was not becoming very internationally oriented. I realized that almost all my
friends where white Dutch guys and (a few) girls. Furthermore I was speaking Dutch in my student home
and for group assignments in my master I was always working with fellow Dutch white students. I realized I
was missing out on the internationalization and that is the reason I decided to go abroad for my internship.
Preferably far away and definitely outside of Europe.

In this report I formulate my SMART learning objectives in the Learning part of the STARL-method to
prevent writing the same things twice. Furthermore I refer to my graduation assignment a few times. To
give this more context, I am going to do my assignment at the (multicultural) company ASML.

B.0.2 Professional learning objectives

For the STARL-method I will refer to the following 2 situations/tasks to reflect on my professional learning
goals:

Situation 1: I had a personal progress meeting with my supervisor once a week in her office. My supervisor
is an associate professor originally from Malaysia. She is way more introverted and relaxed than me. This
may be related to the culture she is from. Furthermore she is living and working in Adelaide Australia for
a few years now.
Task 1: The goals of these personal progress meetings where to discuss my progress, to determine future
directions of the research and to ask questions related to my research.

Situation 2: I had a project progress meeting with 4 master students (who are originally from China) and
my supervisor once a week. These Chinese students did not speak up and where very passive in their
communication. This may be related to the culture they are raised in.
Task 2: The goal of this meeting was to discuss the progress of the whole project. The Chinese students
had the task to design and build a physical snake robot. My task was to model the snake robot dynamics
and to design a controller for the robot. The long term goal was to combine the work and test my controller
on their physical snake robot.

Professional learning objective 1: I know that Dutch people can be very direct and say what they think.
In the Netherlands we think that it is a good character trait and I have the feeling that we are not always
aware of the fact that other people can think of us a rude. When I look at myself I know that I can be direct
and I am not afraid to speak up when I disagree with someone. Furthermore when an important idea pops
up in my head I sometimes have the bad habit to speak it out loud directly and thus interrupt people while
they are talking. I am aware that I am doing that and I am already paying attention to it the Netherlands.
In international teamwork it is even more important for me to be patient and let other people finish their
story first. Therefore my first personal development goal is:

Be patient in team meetings. Give other people enough room to speak out loud and actively ask other people
for input during the meetings.

Result/reflect: My supervisor asked questions during the team meetings (situation/task 2). I actively sup-
pressed my urge to directly answer here questions and gave the Chinese students time to think. This went
well most of the time although it also happened a few times that I lost my patients and just answered the
questions after seeing that the Chinese students again did not know where we were talking about. In these
group meetings I also had to explain certain snake dynamics and kinematics to the team and my supervisor.
The Chinese students did not ask any questions so when I could see from their faces that they did not
understand it I actively asked them if they understood it and where I could clarify certain stuff. However
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also here at certain moments I lost my patience and just continued my story once I saw my supervisor
understood me (even though I could see that the Chinese students again did not understand what I was
telling). During the personal meetings with my supervisor (situation/task 1) I sometimes forgot to verify
enough if my supervisor understood my story/ followed my analysis. Most of the times if that happened I
realised that after our meetings. The moments I felt I did not check that enough I wrote it down and made
sure I payed more attention to it our next meeting.

Learning: From the team meetings I really learned that people from (some) other cultures do not dare to
speak up. I already read about this prior to going to Australia but now I experienced it. Although I actively
tried to take that into consideration I did lose my patience and willingness to take it into consideration a
few times. It was a very valuable experience. I think the interaction and teamwork with my supervisor went
very well. I really learned to give her enough space during our meetings.
SMART learning objective: I will work on being more patient in (multicultural) group meetings during my
graduation assignment. To measure this I will ask my fellow team members how they experience me during
our group meetings.

Professional learning objective 2: English is not my native language which makes proper communication in
a multinational team environment more challenging. My English proficiency is adequate to communicate
properly on a daily basis. However I could definitely improve. From this follows my second personal
development goal is:

Communicate in English about complex technical topics with colleagues.

Result/reflect: With my Malaysian supervisor the communication went well both in our personal meetings
(situation/task 1) as during the team meetings (situation/task 2). This was due to the high level of English
proficiency of my supervisor. She took the time for our meetings so there was enough room for me to explain
what I wanted to tell, even though I did not always knew the specific words for points I wanted to convey.
It was a different story when we had meetings with my Chinese teammates. My Chinese teammates where
not well acquainted with English. Especially when I explained certain complex dynamics of the snake robot
I could see that they often where not able to understand my explanation. During meetings I sometimes
had to explain the same thing three times before I had the feeling they kind of understood what I was
trying to say. On the other hand the English articulation of my Chinese teammates was very bad. This
made understanding them sometimes very very difficult. After a few meetings I decided to summarize what
I think they wanted to explain to me to check if I understood them correctly. This helped a lot and the
communication between us drastically improved.

Learning: The main thing I got out of this learning goal is that for effective communication it is very helpful
to summarize what you think is the conclusion of your discussion and verify that with the other party.
Further more the lack of English proficiency of my fellow students motivates me to improve my English
vocabulary. This way if people do not understand my message I can use my extended vocabulary to convey
the same message in different words.
SMART learning objective: In (multicultural) group meetings during my graduation I will (when I think it
is suitable) summarize discussions and verify it with the other parties involved.
SMART learning objective: I am going to read at least 3 English books before September 2020 to improve
my English vocabulary.

B.0.3 Personal learning objectives

For the STARL-method I will refer to the following 3 situations/tasks to reflect on my personal learning
goals:

Situation 3: During my time in Adelaide I stayed at a student college with approximately 25 other (PhD)
students (and a few lecturers) of the university of Adelaide and university of South-Australia. Everybody
had his or her own room. We shared kitchen, bathroom and 2 big community living rooms together.
Task 3: My (personal) ”task” was to make friends/ building a new social network.
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Situation 4: My friend had a group of friends where she hang out with every Friday night. When my friend
was still at the college she asked me twice to join them. I was glad I could join since otherwise I had nothing
to do.
Task 4: Again the ”task” was to make new friends

Situation 5: Most of my time I spend working behind my computer in my office. The office was a room
without daylight and it always smelled musty. I had one Dutch student sitting next to me. Further more
there where two French students working there. Unfortunately we could not communicate with them because
they did not speak English. Also there where a few research students from the University of Adelaide working
in our office irregularly.
Task 5: My main tasks where to model the snake robot dynamics and design a control law. In practice I
was sitting behind my desk the whole day reading literature, programming/ debugging my code and doing
analyses and derivations on paper.

Personal learning objective 1: Besides developing myself in international teamwork and communication I
also had some personal developing goals. While studying for more than 5 years in the Enschede I developed
a broad social network. I knew a lot of people in Enschede and I had plenty of friends to hang out with.
This was very nice but it also made me a little bit lazy. I did not meet a lot of new people because there
was not a lot of incentive for me to do so. After those 5 years I thought it was time for something new (also
related to my social life). I wanted to start again and meet new people so my first personal learning goal
was:

Start from scratch with building a new social life (in Australia).

Result/reflect: In the Netherlands I had to say no to social activities frequently because of my full agenda.
On the other side of the world it was literally and figuratively the other way around. To have something to do
during the evenings and weekends I had to actively initiated numerous activities and I invited my roommates
from the college (situation/task 3). Although the people from the college where all very enthusiastic every
time I invited them, they rarely joined. They did not have time and/or already have plans with their own
friends. After a while this really started to frustrate me since I invested a lot of time and energy in new
activities and most of the time I got the response ”sounds fun but I can’t”.

Another example is when my friend left the college. When she had left I asked here friends if I could still
join them on Friday nights (situation/task 4). For me it felt a bid odd. In the Netherlands I would have
waited if they would invite me the moment our communal friend left and if they would not have asked me I
would have accepted that. Inviting myself was a new experience.

Learning: From asking people on activities and receiving the described negative responses I learned that it
can be very hard to make new friends in a situation where all the people around you have already established
their fixed group of friends. This is totally different from starting university where every body is new and
no body has friends yet. Furthermore I learned from situation/task 4 that you sometimes have to enforce
yourself a little bit to make new friends.
SMART learning objective: When going to Eindhoven for my graduation assignment I will change my
expectations related to making new friends in a new city. Also I will look for specific places/ events with
people that are also new to the city.

Personal learning objective 2: I choose an internship assignment within my master specialisation to find out
if I want to work in the field of robotics and mechatronics and to find out what I search for in a future job.
This resulted in the second personal learning goal:

Find out if I would like to work in the field of robotics and mechatronics and find out what I search for in a
future job

Result/reflect: Although on paper I was working in a team with four Chinese students, reality was a bit
different (see situation/task 2 and 5). We had a team meeting once a week where we discussed mainly the
progress of the Chinese students. Besides these meetings I worked alone on the assignment the rest of the
week. Although I found my assignment very interesting and challenging I learned (what I already knew and
that is) that I prefer to work in a team setting.
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Furthermore, after about two months I got less motivated for my assignment and the weeks felt very longer. I
discovered that I like to work on more (aspects of) assignments at the same time to keep the work interesting
and diverse. Having more (brainstorm) meetings and (giving) presentations would have been nice additions.

Learning: I learned that in my future work I want to combine working on multiple (aspects of) assignments
with interaction with people. I also want more diverse work than only coding and engineering behind a desk.
Besides that I luckily also learned that I really like robotics and mechatronics and that I definitely want a
graduation assignment in my specialisation.
SMART learning objective: Discuss my assignment wishes (stated above) with my graduation supervisors
(internal and external) at the beginning of my graduation project.

B.0.4 Reflection on supervisor feedback

The feedback of my supervisor is given in italic and my reflection is added below the feedback. In summary
my supervisor wrote the following things:

The internship product has fulfilled the requirements of the assignment given to the student. The performance of the

student was excellent. He is a fast learner and hardworking student.

It is very nice to receive this feedback. I also think that I fulfilled the assignment requirements. I tried to
get simulation results and answers to my supervisor’s questions as fast as possible. A few times I worked
more outside regular office hours to obtain results we needed for the assignment. I am glad my supervisor
saw that I am a hardworking student.

The trainee communicated well, clear and transparent; both verbally and in writing.

I did my best to send clear and structured emails to my supervisor. Further more I prepared our meetings
and structured my thought prior to our meetings to get my message across. I agree that our communication
went well.

The trainee demonstrated his professionalism. He’s punctual, coping well with feedback, and could work together

with collegiality in a team with four other Masters students/engineers.

I tried to implement all the feedback I got in a correct way and in time. Furthermore as described prior I
actively thought about my behavior in the team meetings to give everybody enough space to ventilate their
thoughts. I agree this resulted in good collaboration (although to improve my behaviour I did come up with
a few new learning objectives stated in B.0.3).

The trainee has demonstrated his ability to face problems or challenges associated with the given tasks. For

examples, when we had a problem in deriving the mathematical model of the snake robot using the PCH approach. It

was quite challenging, the trainee had demonstrated his commitment, persistency and eagerness in solving the

problem and managed to developed it successfully

In the modelling process I got completely stuck (eventually for a month) in obtaining the port-Hamiltonian
equations of motion. Early on I already initiated extra meetings with my supervisor. After being stuck and
meeting frequently with my supervisor for 3 weeks she suggested to send an email to some fellow researchers.
We explained them our problem and ask them about their view. We did not get a direct solution from them
but they did send us some extra literature. In the end (with the help of the extra literature) I found out that
our simulations where not possible from a physical point of view. Figuring this out was very relieving but
it also made me think about the role of my supervisor. Looking back at this period I think my supervisor
should have been more engaged in helping me or helping me finding help. Now I was stuck for a significantly
long period. I lost a lot of motivation and joy in my work. However of course not only my supervisor is to
blame. My SMART learning objectives from this situation are:
When I am stuck with a problem longer than two weeks, step up to my supervisor to ask for more help.
When I get seriously stuck (longer than a week) take a step back. Work on other parts of the assignment
for a while and come back to the problem with a clear mind later on.
These learning objectives can and probably will prevent the tunnel vision and frustration I had during this
period. I think both me and my supervisor can learn from the situation.
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The trainee has demonstrated that he’s a very good engineer and researcher. He could apply his previously acquired

knowledge and skills to perform the given tasks and overcome problems associated with them. I wish him all the best

with his future endeavours. I will be happy to supervise him again if he’s interested in doing his PhD at our

University.

I am very happy to receive this feedback and I will most definitely take future PhD options into account for
the plans after my graduation!
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