
1

Faculty of Thermal and Fluid Engineering

Applying discrete particle
simulations to industrial-sized
problems using MercuryDPM

J.W. Bisschop — s1597116
Internship

April-June 2019

Supervisors:
dr. D. Pinson (BSL)

prof. dr. A. R. Thornton (UT)
dr. T. Weinhart (UT)

Coke and Ironmaking Technology
BlueScope Steel Limited

Port Kembla, Australia

Multi-Scale Mechanics Group
Faculty of Thermal and Fluid Engineering

University of Twente
Enschede, The Netherlands





Preface

During my study Mechanical Engineering at the University of Twente in Enschede,
the Netherlands I got more and more interested in the research done by the Multi-
Scale Mechanics group. It all started with my bachelor thesis on the failure line in
rotating drums with granular materials and Deepak Tunuguntla and Anthony Thorn-
ton were the ones who actively helped and motivated me throughout, which led me
to choose a master study in this field. Once chatting with Anthony he mentioned
David Pinson, a guy in Australia who is always interested in having some master
students around. This once in a lifetime opportunity was handed to me just like that
and so I ended up at BlueScope Steel in Port Kembla, Australia. Here David was a
great supporter and motivator for the work I carried out and in the mean time taught
me some life lessons as well. He and his colleagues showed me around on site,
which was an impressive and fun experience. A short description on BlueScope
Steel and a reflection on my position can be found in Appendix A. I hereby want
to thank David very much for this opportunity and the help he gave me, as well as
Anthony and Thomas Weinhart who were my contacts from back home.
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Summary

Steelmaking, as well as many other industrial and natural processes, involves gran-
ular materials and one way to study their behaviour is by making discrete particle
simulations, for which in this work MercuryDPM, a code developed at the Univer-
sity of Twente, is used. The main project involves a waste gas cleaning plant, in
which activated carbon particles slowly descend, while waste gas from the sintering
process is blown through them and the SOx molecules are absorbed. A few other
projects are looked at as well, the first being about the difference between using
solid walls versus periodic boundaries in a 2D model of a blast furnace. Another
project uses a profile scanner and belt weigher to try and calculate the bulk density
of a material on a conveyor belt and the last project repeats the simulation of a sim-
ple experiment done before to find the influence of the particle-particle sliding and
rolling friction coefficient on the angle of repose.

To properly resemble reality certain simulations parameters have to be decided
on, which is done by comparing simulations with experiments. These experiments
are a box test, a cubic box filled with particles and after removing one side the angle
of repose of the remainder is measured; a tube lift, where a tube filled with parti-
cles is slowly lifted from a flat surface and the angle of repose of the pile that forms
is measured; and a bridging test, a hopper filled with particles with different sized
orifices to see whether or not bridging (particles blocking the outflow) is happening.
Simulations of the box test and tube lift are varied with different sliding and rolling
friction coefficients and after comparing the angle of repose with the experiments
their values are chosen to be respectively 0.25 and 0.4. Simulations of the bridging
test are mainly used for a quick comparison and are in agreement with the experi-
ment. Experience has taught that a particle stiffness of 40000N/m2 and a restitution
coefficient of 0.25 are proper values and furthermore a timestep of 1e− 5s is used.

Particles are inserted by a rotary valve at the top of the waste gas cleaning plant
and land on centering rings, which center the stream of particles, after which they
land on the distributor and split into four directions, namely two long and two short
arms in respectively the positive and negative x- and z-direction. The rotary valve
is imitated by considering four cases, namely particles dropped at the outer most
positive x-, xz- and z- direction as well as the exact center. Areas in the system
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VI SUMMARY

containing stationary particles are filled as much as possible beforehand to reduce
computation time. The simulations show the particles are not equally distributed,
mainly because the centering rings bounce the particles to the opposite side of
which they are dropped instead of centering them. Extending the cylindrical part of
the centering rings might help prevent this. Furthermore, the long arms barely have
any particles rolling down on them.

A 2D slot model and 3D model with periodic boundaries of a blast furnace are
simulated and are kept completely filled at all times, while being discharged with
a certain mass flow rate at the bottom sides. Once the system is in steady state
the data is coarse grained in order to get continuum fields from the discrete particle
data. By plotting the velocity magnitude it is easy to see if a deadman will form and,
in agreement with previous studies, this does happen for the 2D slot model, but not
for the 3D model with periodic boundaries. In addition a higher discharge mass flow
rate decreases the deadman size.

To calculate the bulk density of the material on a conveyor belt the mass flow rate
and volume flow rate are used, of which the former is given by a belt weigher and
the latter is calculated using a profile scanner. The profile scanner gives the outline
of the material, which can be thought of being the cross-section of the material and
the area can be approximated by rectangles by assuming the belt is fully pressed
on the conveyor belt rollers, which themselves are assumed to have a fixed known
position. After multiplying the area with the known belt velocity the volume flow rate
is obtained and the bulk density can be calculated. Plotting this shows clusters of
points with a lot of variation within clusters as well as variations between clusters.
The former is expected to be because of uncertainties in measurements and small
calculation errors, while the latter is expected to be from a change in belt velocity or
possibly an actual change in bulk density. Integrating the actual belt velocity in the
volume flow rate calculation will likely get rid of the big variations.

The influence of the particle-particle sliding and rolling friction coefficient on the
angle of repose of the box test is studied in more detail by setting their range to re-
spectively 0.05−0.5 and 0.01−0.28, both divided in 10 equal increments. Simulations
are run 10 times with their random seed changed, where in the end the average is
taken, as well as for 3 different materials sinter, pellet and coke. A few scripts are
written to easily run the 3000 simulations, get a screenshot of their last frame and
use that to get the angle of repose. A 3D plot of the sliding and rolling friction coeffi-
cient and the angle of repose shows little difference between the different materials
used. A higher sliding or rolling friction coefficient results in a higher angle of repose,
however at some point the curve flattens, and really low values of one could cancel
out the influence of the other. The influence of other factors, e.g. the coefficient of
restitution, remain a subject for future research.
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Chapter 1

Introduction

1.1 Motivation

Many industrial and natural processes involve granular materials and there is still
much to learn about their behaviour. Making simulations using the discrete element
method can be very time consuming and in need of lots of computation power, how-
ever it is often the only way to get insight in the processes studied. At the University
of Twente a code for discrete particle simulations has been developed called Mer-
curyDPM [1], which is the main tool used for the projects described in this report. All
simulations in this report use the LinearViscoelasticFrictionSpecies, which consists
of the LinearViscoelasticNormalSpecies and the FrictionSpecies. The former uses
a linear spring dashpot model and the latter considers the sliding friction, rolling
resistance and torque resistance to describe the linear tangential contact forces.

1.2 Framework

In the steelmaking process at BlueScope Steel in Port Kembla, Australia the waste
gas from the iron ore sinter plant is cleaned in a waste gas cleaning plant, in which
the waste gas is blown through a bed of activated carbon particles absorbing the
SOx molecules from the gas stream. These particles are initially cylindrical, but end
up smaller and more spherical after multiple uses. The particles are added at the top
of the system and slowly descend, while being removed at the bottom. In the past a
few temperature excursions have occurred, which heavily implicate the performance
of the feed system and it is suspected that this is a free surface and segregation
problem.

The plant itself is continuously running and cannot be put on halt without affecting
the production process. Even if it was possible it would still be a challenge to find a
way to have a proper look inside. Making simulations of the plant is a good way to get
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2 CHAPTER 1. INTRODUCTION

around this problem and will give more insight of what might be happening. Since
the particle-equipment ratio is very large it is not feasible to make simulations of
the plant as a whole, therefore the first step in understanding the particle behaviour
inside the plant is by looking at the insertion of particles at the top of the system and
studying how the distribution of particles is happening.

Although the waste gas cleaning plant is the main project in this report, once the
simulations are running other projects are worked on as well. These projects include
simulations of a blast furnace, data analysis of a conveyor belt used in coke making
and extending simulations of a basic experiment to find the influence of the rolling
and sliding friction on the angle of repose.

In a blast furnace solid particles are continuously added at the top and slowly
descend, while being discharged at the bottom sides. At the bottom center a dead-
man will form, which consists of stationary particles. Our model is a small cross
section of a blast furnace and we are interested in the difference in the formation of
the deadman between using solid walls versus periodic boundaries for the front and
back wall, i.e. the difference between a 2D slot model and a 3D model with periodic
boundaries.

The fuel used in a blast furnace is called coke and it is produced by baking
coal in an coke furnace in the absence of air. The main property of interest is
the bulk density of the coal before entering the furnace. A section of the conveyor
belt transporting the coal contains a belt weigher, which returns the mass flow rate,
and at the same section a profile scanner is placed, which measures the outline
of coal on the belt. This, combined with a known belt velocity, is used to calculate
the volume flow rate and together with the mass flow rate the bulk density is easily
calculated.

The box test as described in Section 2.1 is simulated again, but more extensively
in order to find a more detailed answer as to what the influence of the particle-particle
sliding and rolling friction coefficient is on the angle of repose.

1.3 Research questions

A research question is formulated for each of the projects addressed in this report,
respectively the waste gas cleaning plant, blast furnace, conveyor belt and box test:

• Is the distribution of particles at the top of the waste gas cleaning plant done
in a equal manner?

• What is the difference between using solid walls versus periodic boundaries
for the formation of a deadman in a cross section of a blast furnace and how
does this compare to previous studies?
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• Can a profile scanner and belt weigher be used to accurately describe the bulk
density through time?

• How do the particle-particle sliding and rolling friction coefficient influence the
angle of repose of the box test?

1.4 Report organization

The main project of this report is described in two chapters, namely Chapter 2, which
describes the experiments done to find certain simulation parameters, and Chapter
3, in which the actual simulation of the top part of the waste gas cleaning plant is
elaborated. Following up are Chapter 4, which describes the simulation of the blast
furnace, Chapter 5, which is about calculating the bulk density from a belt weigher
and profile scanner, and Chapter 6, on the influence of the particle-particle sliding
and rolling friction coefficient on the angle of repose in a box test. Finally, Chapter 7
gives conclusions drawn from this report and recommendations for future research.
All relevant codes made during the research can be found in Appendices B to F.
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Chapter 2

Experiments

Before starting any simulations it is important to find the correct parameters to mimic
the behaviour of the actual particles. This is done by comparing a few simple ex-
periments with simulations of these experiments. The activated carbon particles
are initially cylindrical, but through reuse become more spherical once they start
breaking down and thus the general mix consists of cylindrical and roughly spheri-
cal particles, with sizes ranges from 11 − 1.2mm. For simplicity the simulations use
perfectly spherical particles as well as their average diameter of 5 − 7mm. Expe-
rience has taught that a particle stiffness of 40000N/m and a restitution coefficient
of 0.25 for both particle-particle and particle-wall are good values, as well as a time
step of 1e − 5s. The (sliding and rolling) friction coefficients for particle-particle and
particle-wall are taken to be the same and, by comparing simulations with the ex-
periments described below, their values are found to be 0.25 and 0.4 for respectively
the sliding and rolling friction. In Appendices B.1, B.2 and B.3 the drivers code for
respectively the box test, tube lift and bridging test can be found.

2.1 Box Test

The first experiment involves a simple cubic box of size 150mm filled with activated
carbon particles. The box is placed at the edge of a flat surface, after which the
side facing the edge is removed and the particles spill out over the edge. The slope
formed by the particles left in the box, called the angle of repose (AoR), is measured
for multiple experiments and their average is taken. Because of friction contact with
the front and back wall the AoR is a little bit bigger at the sides compared to the
middle of the box. The latter is used for simulations the compare with, since in the
simulations periodic boundaries are used for these walls, which, with a distance of 5
times the biggest particle diameter between them, decreases the computation time
by about half. Figure 2.1 shows the result of a simulation for a sliding and rolling
friction coefficient of respectively 0.25 and 0.4.

5



6 CHAPTER 2. EXPERIMENTS

Figure 2.1: Box test simulation result for a sliding and rolling friction coefficient of
respectively 0.25 and 0.4

2.2 Tube Lift

For the second experiment a tube standing on a flat surface is filled with activated
carbon particles and then slowly lifted. The particles slowly spill from underneath
the tube and, once the tube is completely lifted, a pile is formed for which the AoR
is measured at three different places around the pile and after multiple repetitions of
the experiment their average is taken. For the simulations the tube has an upward
velocity of 1mm/s and a tube diameter and height of 100mm. Figure 2.2 shows the
result of a simulation for a sliding and rolling friction coefficient of respectively 0.25

and 0.4.
Table 2.1 shows the result for the box test and tube lift simulation. More sim-

ulations have been done, but they are not all shown here. From experiments the
average value of the AoR were found to be 38.0 and 30.9 for respectively the box test
and tube lift. For now it is not important to be really exact and therefore a sliding and
rolling friction coefficient of respectively 0.25 and 0.4 are chosen to be used for all
future simulations.

2.3 Bridging Test

A third experiment involves a hopper where at the bottom different sizes orifices can
be attached, see Figure 2.3 for a schematic drawing. Once the hopper is filled with
activated carbon particles the orifice is opened. For smaller sized orifices bridging
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Figure 2.2: Tube lift simulation result for a sliding and rolling friction coefficient of
respectively 0.25 and 0.4

sliding rolling AoR Box AoR Tube
0.2 0.2 28 -
0.3 0.2 34 34
0.3 0.3 35 38

0.25 0.4 35 33
0.25 0.5 33 34

Table 2.1: Box test and tube lift simulation results

occurs, which means the particles block the orifice and the flow stops. Table 2.2
shows the results from experiments and simulations, where only the smallest three
diameters are shown, since the bigger diameters did not show bridging and were
therefore not the starting point of the simulations. Notice that for an orifice diame-
ter of 45mm tapping was required during the experiment to maintain flow. Only the
smallest diameter orifice showed bridging happening and the remaining simulations
kept running for a long time, but after not showing any sign of bridging they were
stopped. For these cases bridging was not expected to happen, since the parti-
cles were perfect spheres compared to the actual shape of the particles used in
the experiments. Since the result of this experiment was mainly used for a quick
comparison and because the focus of this paper is not on bridging it was decided to
continue without looking into this any further.
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Figure 2.3: Schematic drawing of the hopper in mm

Diameter (mm) Flow experiment Flow simulation
55 Yes Yes
45 Yes/No Yes
30 No No

Table 2.2: Bridging test experiment and simulation results



Chapter 3

Waste Gas Cleaning Plant

As mentioned in the introduction, our interest lies in the distribution of particles at
the top of the waste gas cleaning plant, of which a 3D model is shown in Figure
3.1. Particles are inserted by a rotary valve and land on a distributor, which splits
the stream of particles into four directions, namely negative and positive x- and z-
direction as shown in Figure 3.2. Since the rotary valve does not drop the particles
exactly in the middle, the distribution would not be done equally were it not for the
centering rings located above the distributor and although it is easy to assume they
help a great deal, it is not actually certain how well they work. At this stage the rotary
valve itself is ignored and its effect is imitated by dropping the particles at different
points above the centering rings. Four cases are considered: a drop at the exact
center and drops at the outer most positive x-, xz- and z-position. The drivers code
of the simulation can be found in Appendix C.1.

3.1 Particle insertion

Figure 3.3 shows the three different parts of the system. The centering rings and
long arms have sections, which are naturally filled once the process is running and
the velocity of other particles rolling on top of them is greatly reduced compared to
rolling on a flat surface. To reduce computation time the sections are filled as much
as possible beforehand. In general the number of particles needed to completely
fill a certain section is approximated by dividing the volume of that section by the
volume of an average sized particle and multiplying that by a fill fraction, since there
is always a bit of space in between stacked particles. The fill fraction will always be
between 0 and 1, is found by trial and error and is dependent on the particle diameter
and shape of the section filled. Particles are given a random radius between their
minimum and maximum value and are placed randomly within the boundaries of
a section. It is preferred to have as little particle interaction as possible, because

9
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Figure 3.1: Top part of the waste gas cleaning plant

Figure 3.2: Distributor and centering rings



3.1. PARTICLE INSERTION 11

otherwise particles may shoot off, will not settle as well and in general make it less
predictable what will happen. Every time a particle is placed it is checked if it has
an interaction and if so another position is tried. This is done as many times as
needed, up to a certain limit after which the particle is added anyway even though it
does have an interaction. To help with placing the particle without interactions and
to reduce computation time the upper boundary of a section is set a bit higher, but
should not be unnecessarily high, because that will increase settling time. Usually
multiplying the height of a section by a value of 1−2 does the trick. Besides that, the
boundaries between which the particles are placed are the actual boundaries plus
or minus the particle radius.

Figure 3.3: Top left: Box section. Bottom left: Centering rings. Right: long arm.

The two long arms are placed symmetrically in the yz-plane an are symmetri-
cal themselves in the xy-plane. Besides that each section within them is the same,
expect for the angled part, which in itself has three similar sections. To reduce com-
putation time, for only one section the particle positions are set and these positions
are copied to consecutive sections. This means that the particle positions for all sec-
tions are similar, however their radiuses are all set at random. The particle positions
of the first section are set in the rectangular shape of the section at the origin first,
after which they are rotated by 40◦, the angle at which the long arms are placed, and
translated to the right position.

The centering rings are rotationally symmetric and have two sections, the inner-
middle and the middle-outer ring section. For the particle positions a random posi-
tion radius and rotation angle is chosen, while the y-position is dependent on the po-
sition radius, because the bottom boundary is angled. This angle should be known
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from the 2D drawings and 3D model available, but the exact angle is not very clear.
Instead the 3D model dimensions are used to calculate a ratio as is shown now. A
schematic cross-section of part of the middle-outer ring section can be seen in Fig-
ure 3.4a. In this figure t stands for the top position in y-coordinates, h for the height,
R for the radius and the subscript p for particle, tp being the only unknown. The ratio
of the big triangle is:

ratio =
|tmiddle − touter|+ hmiddle

Router −Rmiddle

(3.1)

Therefore the lowest possible position of the particle is:

tp = touter − ratio · (Router −Rp) (3.2)

The same can be done for the inner-middle ring section and although the ratio
is (and should be) pretty much the same, it is shown here again for completeness.
Figure 3.4b shows a schematic cross section and the ratio of the big triangle is:

ratio =
|tinner − tmiddle| − hmiddle + hinner

Rmiddle −Rinner

(3.3)

And the lowest possible particle position:

tp = tmiddle − hmiddle − ratio · (Rmiddle −Rp) (3.4)

(a) Middle-outer ring section (b) Inner-middle ring section

Figure 3.4: Schematic cross sections of (part of) the centering rings

The box section is filled by a bed of particles at the bottom, on top of that a cone
of particles and at two sides in the positive and negative x-direction another layer
of particles. The particles position in the cone have a similar dependency as the
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centering rings, but here a random angle of 40◦ is chosen and the maximum particle
position is easily calculated to be hcone = (Rcone −Rp) · tan(40).

The rotary valve is imitated by inserting particles in sets of roughly 1kg (∼ 800

particles) in intervals of 0.75s and in a cylindrical shape at the top of the system. In
reality these intervals take longer, however to use the computation time more effi-
cient the next set is inserted once the previous set reaches the box section and while
this set is settling down or rolling away the next set can already start its descend.
The particles have a density of 900kg/m3 and a diameter of 13 − 15mm, which is
larger than the actual/preferred size to decrease computation time. When all parts
of the system are initially filled there are little over 40000 particles, shown in Figure
3.5. Since the simulations are very large they are run on a cluster with 36 proces-
sors. An existing MercuryDPM python script has been modified to easily visualize
the cluster data in Paraview and can be found in Appendix C.2. Since running the
four cases still is very slow, another simulation is started with the particle sizes dou-
bled (26 − 30mm), which means the total number of particles is about eight times
smaller and this, of course, reduces computation times drastically.

Figure 3.5: System when initially filled, with the first set inserted at the outer most
x-position, coloured by particle radius
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3.2 Results

The simulations have been running for about 7 months with a simulation time of a
mere 60− 70s, with about 80− 93 sets of particles inserted. It has become clear that
the centering rings are not centering the particles, but rather bouncing them to the
opposite side of which they fell. This is clearly visible in Figure 3.6, where in case of
the particles being dropped at the center or the positive x-direction on both sides of
the distributor the amount of particles are roughly the same. In case of dropping the
particles at the positive xz-direction or positive z-direction, however, both piles are
definitely not equal and the particles end up a lot more in the negative z-direction. A
set of particles falling through the centering rings is shown frame by frame in Figure
3.7, which shows this very clear as well. The figure suggests that extending the
cylindrical bottom part of the centering rings will bounce the particles back to the
center or at least keep them closer to it, however this has not been tested. In a
highly unlikely scenario the average dropping position of the rotary valve is at the
exact center and the effect of bouncing to the opposite side cancels each other out,
however this defeats the whole purpose of the centering rings and should clearly not
be a starting point.

Figure 3.6: From left to right, top to bottom: particles dropped at the center, positive
x-direction, positive xz-direction and positive z-direction at t ≈ 50s

Most particles fall down the short arms of the distributor and it seems barely
any particles are rolling down the long arms. For all four cases considered the part
of the long arm located at the negative xz-direction is most likely to have particles
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Figure 3.7: Frame by frame falling of one set of particles through the centering rings

rolling down on it and is therefore looked at for comparison. It turns out a drop at the
positive xz-direction is the most likely case to have particles rolling down the long
arm, see Figure 3.8. The least likely case is a drop at the positive z-direction, as
shown in Figure 3.9, where most particles fall down the short arm. It is clear that
even for the most likely scenario very little is happening, which means in general
the long arms barely play a role. It is hard to say if anything significant would have
happened if the simulations were kept running for even longer or that there would
just be a pile forming at the top of the long arms preventing any possible flow along
them. The simulations with bigger particles show the same result and do not give
more insight.
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Figure 3.8: Particles dropped at the positive xz-direction, from left to right t = 22.0s,
t = 46.5s, t = 64.3s (positive z-axis pointing into paper)

Figure 3.9: Particles dropped at the positive z-direction, from left to right t = 22.2s,
t = 44.6s, t = 61.2s (positive z-axis pointing into paper)



Chapter 4

Blast Furnace

In a blast furnace (BF) solid particles are slowly descending and discharged at the
sides at the bottom, while continuously being added at the top. At the bottom center
a pile of stationary particles will form, called a deadman. We want to simulate this
using a 2D slot model with solid walls and a 3D model with periodic boundaries. Our
model is the same as that of Zhang et al [2] and shown in Figure 4.1.

Figure 4.1: Schematic drawing of the BF model in mm [2]

In our simulation the particle discharge is created by calculating the mass that
has to be removed every time step, using the discharge mass flow rate, and cal-
culating to how many particles this corresponds. From the particles touching the
bottom at the discharge regions the correct amount is removed and any remainder
of the mass that has to be removed is saved for the next time step. Initially the BF
is filled as much as possible and at the top an insertion boundary is placed, which

17
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inserts particles with a higher rate than the discharge rate and in this way makes
sure the BF is completely filled at all times. We try to keep as much parameters the
same as that of Zhang’s paper for the case of only glass beads, however to decrease
computation time the particle size is increased as well as the discharge mass flow
rate, which is taken the same as that of Zhou et al [3]. To summarize: a diameter
of 6mm, density of 2500kg/m3 and a discharge mass flow rate of 0.82kg/s are used.
Two more cases are considered, namely the discharge mass flow rate halved and
doubled. The drivers code of the simulation can be found in Appendix D.1, where
the general simulation parameters are taken the same as for the waste gas cleaning
plant.

In order to compare the different simulations in a simple and clear way, the data
is coarse grained, which translates the discrete particle data to continuum fields, for
more information see Tunuguntla et al [4] and Weinhart et al [5]. To find the right
coarse grain width it is good practise to plot the density, velocity or stress at different
points in the system as function of the coarse grain width. Regions in the plot which
show a plateau for all points in the system indicate a good choice for the coarse grain
width. For now the coarse grained data is only used for a quick visual comparison
and therefore it is not important to focus too much on the details. Usually taking
the coarse grain width equal to the mean particle diameter is a good choice and is
therefore used here.

Coarse graining is done by time-averaging over a time interval where the system
is in steady state. To find out when the system is in steady state the energy is
plotted as function of time, as shown in Figure 4.2 for the case of solid walls and a
discharge mass flow rate of 0.82kg/s. A constant energy indicates a steady state, in
this example starting around t = 3s. We are interested in data in the xy-plane, which
means data in the z-direction is averaged. Furthermore a 100× 100 grid is used.

The coarse grained velocity in x-, y- and z-direction is used to calculate the veloc-
ity magnitude, which is then plotted and can be found in Figure 4.3. The boundary
of the deadman, which is plotted as a black dotted line, is where the velocity falls
below 1/9 particle diameter per minute, which is considered the critical solid velocity
by Zhang et al [2]. In case of periodic boundaries the deadman boundary does not
show up and from the plotted velocity magnitude it is also clear that the average
velocity is higher than that of the case with solid walls. This makes perfect sense,
since the particles have a lot of friction with the solid walls, while this is not the case
for periodic boundaries. Previous studies, such as that of Zhou et al [3], agree with
this observation and also mention a decrease is deadman size with a increase of
discharge mass flow rate. This effect , although less pronounced as in Zhou’s paper,
is noticeable here as well.
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Figure 4.2: Energy of the BF plotted over time

The velocity at the sides and at the discharge regions is higher in case of solid
walls compared to periodic boundaries and one reason for this is the way the dis-
charge works. Only particles that touch the bottom are removed and because of the
solid walls the effective area at the discharge regions is smaller, since the area is de-
creased by a particle radius from both walls. Having the same discharge mass flow
rate with a smaller area results in a higher velocity. Another reason is the deadman
itself, which narrows the channel through which the particles flow down.

In case of periodic boundaries the particles spill over the top of the BF, because
somehow the insertion boundary placed at the top of the BF acts a little weird when
combined with periodic boundaries. It seems not to have any influence on the final
result and is definitely not important for us, since this is not an in-dept study, and
has therefore been ignored.
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Figure 4.3: Coarse grained velocity magnitude for using solid walls (left) and pe-
riodic boundaries (right) and a discharge mass flow rate of 0.41kg/s,
0.82kg/s and 1.64kg/s for respectively the top, middle and bottom plots.



Chapter 5

Conveyor Belt

In coke making the bulk density of the coal before entering the furnace is an impor-
tant factor to know. As for now this is done by taking samples and measuring the
bulk density by hand, however this is very labour intensive and therefore not done
too often and thus not giving a very clear picture of the bulk density over time. A
new way is in the early stages of development and involves a belt weigher and a
profile scanner. The belt weigher measures the mass flow rate of the material and
the profile scanner scans the outline of the material on the belt and in that way the
volume flow rate can be obtained. Knowing the mass and volume flow rate the bulk
density is easily calculated. Here we will look at how to get the volume flow rate
from the profile scanner and in the end have a look at what the bulk density looks
like over time.

The belt rests on a flat roller and two 45◦ angled rollers, from now on referred to
as the baseline, as shown in Figure 5.1. Due to internal tension the belt lifts itself
up when it is empty, shown as the dashed line, and when the belt is loaded it is
assumed to be pushed completely in the corners. Also shown are a few of the lines
at which the profile scanner measures the shortest distance from point to sensor.
There are 640 evenly spread lines with a total angle of 57◦ and assuming the lines
are distributed equally left and right of the vertical axis the angle of each line and
thus the x- and y-position of each point are easily calculated. Figure 5.2 shows the
outline and baseline for multiple timesteps. It is clear that the profile scanner has a
range greater than just the belt and also scans part of the construction. Somehow
the way the profile scanner works, there are lines forming from the edge of the belt
to the construction. How this happens is not important, but it does show that first,
the belt exceeds the angled rollers a bit, second, the belt does indeed lift itself up
when it is empty, and third, the assumption that a loaded belt is completely pushed
in the corners is already challenged a bit, since a fully filled belt exceeds the angled
rollers less than a half filled belt.
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Figure 5.1: Schematic drawing of the rollers of the conveyor belt. The dashed and
continuous line indicate an empty and loaded belt, respectively.

Since the outline represent a cross-section of the material at one point in time,
multiplying the area of this cross-section with the known velocity of the belt gives the
volume flow rate at that time. The baseline is at a known fixed position and the x-
values of the outline are used to get the y-values of the corresponding points of the
baseline. To approximate the area rectangles are defined between two consecutive
points, their average y-value and the x-axis for both the outline and the baseline.
From each rectangle of the outline the corresponding rectangle of the baseline is
subtracted and if the result is greater than zero it is added to the total area of the
cross-section. In this way only the points of the outline that are above the baseline,
i.e. on the belt, are taken into account.

Sometimes the profile scanner returns a couple of nan-values, which are as-
signed a x- and y-position of respectively −600 and −1, so that they are definitely
below and beside the belt and their rectangle area will now be negative and thus dis-
regarded. In order to still get a fairly good approximation of the area the points are
sorted with regards to their x-value and in this way, whenever a nan-value is present,
two rectangles are not ignored, but rather approximated by one bigger rectangle.

The Python code for processing the data of the profile scanner to get the volume
flow rate per timestep can be found in Appendix E.1. Now that the volume flow rate
is known and saved in a csv file we can further process this in Octave, of which the
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Figure 5.2: The profile of the belt for multiple timesteps. A empty, half filled and fully
filled belt are clearly distinguishable.

code can be found in Appendix E.2. After removing a delay between the recorded
data of the belt weigher and the profile scanner, the bulk density over time is eas-
ily calculated. A plot is shown in Figure 5.3 and it is clear that the calculated bulk
density varies quite a bit even over the course of just a few hours. Comparing the
plot with measurements done by hand does not give much insight, since these mea-
surements are only done every few days. At best it can be said that the calculated
bulk density is about the same. The plot shows clusters of points, from which it is
suspected that the variation within is due to uncertainties in measurements and cal-
culations, while the variation between clusters is due to a change in belt velocity or
possibly an actual change in bulk density. The latter is not expected, since it is not
expected that the bulk density changes that much during a day. A lot of measure-
ments by hand are needed to thoroughly compare the actual and calculated bulk
density.

The mass and volume flow rate both have the belt velocity in them and their
values should therefore cancel out perfectly when calculating the bulk density. This
is, however, not the case since it is highly likely that the belt weigher uses the actual
belt velocity, unlike the volume flow rate calculation, which uses a fixed belt velocity.
A clear indication for this is the fact that the mass flow rate at times with different
amounts of material on the belt is about the same. With more material and a fixed
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Figure 5.3: The bulk density over time. A day and hour scale are added to give a
better idea of the time frames in the plot.

belt velocity one would expect the mass flow rate to increase, however it seems the
belt is slowed down by the material on it. Furthermore, a lower actual belt velocity
divided by a fixed belt velocity results in a lower calculated bulk density, which is
consistent with observations as well. Future research has to show to what extend
this explains the difference between the clusters of points of the calculated bulk
density by integrating the actual belt velocity into the volume flow rate calculations.
A less preferable but possibly quicker and easier way is to change the belt weigher to
use a fixed belt velocity as well, however the mass and volume flow rate themselves
will not be accurate.

The small variations in the bulk density have multiple causes, small variations in
belt velocity being one of them. Another cause is the matching up of the belt weigher
and profile scanner data. With the current data sets there is a time difference be-
tween the two and the delay was removed by matching up the times at which the
belt was loaded for the first time after it had been empty. However, the belt weigher
measures every minute and the profile scanner every 10 seconds, so there is a lot
of uncertainty in this process. Coupling both systems would most likely solve this
problem and can have a big influence. A third cause is the area calculation of the
cross-section, since the assumption of the belt being fully pushed in the corners of
the rollers likely does not always hold up as well as the sides of the belt curling up
a bit instead of going straight like the angled rollers. The magnitude of this error
depends on the amount of material on the belt. The last cause is the calibration of
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the baseline, because as for now it is taken as a known fixed position and possible
vibrations and heat expansion of the construction shifting the position of the profile
scanner are not considered. This could give different results for day and night, sum-
mer and winter etc. Previously it was thought to use the middle of an empty belt for
calibration, however this has a lot of vibration to it especially because the belt lifts
itself up. A better way would be to use the surroundings, i.e. a rigid point next to the
belt.
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Chapter 6

Box Test

The box test mentioned in Section 2.1 is done again multiple times with different
particle-particle sliding friction coefficient (SFC) and particle-particle rolling friction
coefficient (RFC). They vary respectively from 0.05 − 0.5, with a 0.05 increment,
and 0.01 − 0.28, with a 0.03 increment, resulting in a total of 100 combinations. The
goal is to measure the AoR for each case and present this in a 3D plot with the
SFC and RFC. To better represent the real physical world each simulation is run
10 times, with each time a different random seed, and their average AoR is used.
Simulations are made for three different materials used a lot in steel making, namely
sinter, pellet and coke, their difference being in bulk density, 1660kg/m3, 2150kg/m3

and 525kg/m3 respectively, and porosity, 0.45, 0.41 and 0.51 respectively. General
simulation parameters are a particle radius of 2.5mm, a particle-particle and particle-
wall coefficient of restitution of respectively 0.5 and 0.25, a particle-wall sliding and
rolling friction coefficient of respectively 0.2 and 0.1, a particle stiffness of 40000N/m

and a timestep of 1e− 5s.

Counting all possible combinations of parameters gives a total of 3000 simula-
tions to run and it would, of course, be unrealistic to manually change each parame-
ter and start each simulation by hand. Therefore a shell script is made in which only
the name of the simulation has to be set, for example ”Sinter1”, and the bulk density
and porosity of the material. The shell script then builds the MercuryDPM drivers
code and copies the executable with a different name, so that the drivers code itself
can be changed and compiled again without affecting the current simulation. A csv
file containing all 100 combinations of SFCs and RFCs is read in and the executable
is called with these parameters as well as the bulk density and porosity as additional
arguments. Within the drivers code these additional arguments are read and as-
signed. So in order to run 100 simulations, only the name, bulk density and porosity
have to be set within the shell script and the random seed in the drivers code only
has to be changed once every 300 simulations. The shell script and the drivers code
can be found in respectively Appendix F.1 and F.2. In the shell script it can be seen
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that not only the SFC and RFC are read from the csv file, but also for example the
coefficient of restitution. There is no real reason for this other than the fact that it
was needed for a couple of simulations which were ran before and it might of course
be useful in the future.

Getting the AoR was previously done by hand, but since we are now dealing with
3000 simulations this is simply not doable. Therefore a Python script is made, which
gets the last vtu file of the simulations and takes a screenshot of it in Paraview. Then
an Octave script can be run to take each screenshot and by making a binary image,
cutting of the edges and fitting a line the AoR is obtained. By cutting of the edges is
meant that 10% of both sides of the outline are ignored when fitting a line in order to
prevent influence of possible abnormalities at the left wall and right edge of the box
on the value of the AoR. For both scripts only the name has to be changed to get
the screenshot and AoR of 100 simulations. It is therefore only a matter of minutes
to get all 3000 AoRs. The Python and Octave scripts can be found in respectively
Appendix F.3 and F.4.

Once all AoRs are known and saved in a csv file it is very easy to plot the average
of the 10 different random seeds. The result is shown in Figure 6.1 and interestingly
enough there does not seem to be much difference between the three different ma-
terials. The difference might however come down to small detail and the influence of
other factors, such as the coefficient of restitution, which has not been investigated
further.

The lower the RFC the faster the influence of the SFC flattens and visa versa.
The SFC has a bigger influence than the RFC, which becomes especially clear for
the lowest value of the SFC plotted here, where the influence of the RFC is basically
zero. This makes sense since the RFC in general has a much smaller value than
the SFC. It might be interesting to extend the range of both the SFC and RFC to go
from 0 to 1 to get a complete picture of the influence of both.

From experiments is known that the AoR of sinter, pellet and coke are respec-
tively 33◦, 26◦ and 35◦ and a plot of where they intersect the 3D plot is also shown
in Figure 6.1. Any point on the line would result in the correct AoR, however one
should not forget the influence other factors, such as the coefficient of restitution,
might have. This has not been investigated further.
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Figure 6.1: 3D plot of the AoR as function of the SFC and RFC for sinter, pellet and
coke, as well as a plot of the lines where the 3D plot intersects the AoR
found from experiments
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Chapter 7

Conclusions and recommendations

7.1 Conclusions

The distribution of particles at the top of the waste gas cleaning plant is not done in
an equal manner, mainly because the distributor itself needs the particles to be at
the exact center and since the centering rings bounce the particles to the opposite
side of which they are dropped this is not the case. Besides that, barely any particles
were rolling down the long arms of the distributor.

For a 2D slot model of a blast furnace the solid walls have a huge influence on the
formation of the deadman, since using periodic boundaries results in no deadman
at all. This, and the fact that an increasing discharge mass flow rate results in a
decreasing deadman size, is all in agreement with previous studies [2] [3].

The result of using a profile scanner and a belt weigher to find the bulk density
through time is very promising. Small variations are suspected to be from little un-
certainties in measurements and a lack of fine tuning and bigger variations, mainly
between clusters of data points, are suspected to be from changes in belt velocity
or possibly indicate an actual change in bulk density.

Increasing values of the SFC or RFC result in an increase of AoR, although the
curve flattens for higher values and having a really small value of one could cancel
out the influence of the other. The SFC has a greater influence that the RFC, which
is in agreement with reality. When comparing the AoR with experiments a higher
value of the SFC has to be compensated with lowering the value of the RFC and
visa versa. The different materials considered produce an almost identical AoR plot.

7.2 Recommendations

The simulations of the waste gas cleaning plant took a very long time for what are
fairly basic results. Decreasing computation time is an important improvement and
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the first step towards that is to have a closer look at the initially filling up of areas
with stationary particles and make sure they are rather a bit overflown than not
completely filled. Another improvement is using a particle shape and size closer
to reality, as well as doing more research at what simulation parameters result in
the most realistic particle behaviour. Future research questions might be: How can
the centering rings be improved to properly center the particles? Does the way the
particles leave the rotary valve influence the distribution of them? Do the long arms
of the distributor actually play a roll?

Although the research on the blast furnace was not an in-dept study some im-
provements are still in place, for example taking a closer look at what good values for
the parameters used in coarse graining are instead of using the default ones. Or, like
previous studies, use different coloured layers of particles so that coarse graining is
unnecessary. Furthermore it might be good to have the actual discharge mass flow
rate exactly the same for both solids walls and periodic boundaries by changing the
amount of particles that are removed each timestep or by changing the wall place-
ment, so that the effective discharge area is the same. Future research questions
might be: How do both models compare to an actual 3D model? How do particle
and wall properties effect the formation of a deadman?

Taking the actual belt velocity into account is an important first step to improve the
bulk density calculations. Other steps are the matching up of belt weigher and profile
scanner data, improving the area calculation of the cross-section and calibration of
the baseline. Of course, a thorough comparison between the actual and calculated
bulk density is needed and gives a lot of insight. A future research question might
be: How can the current research be used to live output an accurate bulk density.

Extending the range of the SFC and RFC gives a bit more certainty about for
what values of one the influence of the other is zero as well as at what point taking
higher values makes no difference, i.e. the plot flattens. Future research questions
might be: How do other factors, such as the coefficient of restitution, influence the
angle of repose? When does the particle density play a role on the value of the
angle of repose?
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Appendix A

BlueScope Steel

The Port Kembla steelworks have been a staple for over a century and produces flat
steel. As of 2002 it is owned by BlueScope Steel and with branches in 24 countries
the Port Kembla steelworks still is the largest, with each year 2.6 million tonnes of
raw steel being produced. My position was at the Coke and Ironmaking Technology,
with me being mostly at the office working on my projects. Of course, I have had
a few tours to, among other thing, the waste gas cleaning plant, sinter plant, blast
furnace and slab making and furthermore did some quick experiments to get a feel
of the scale of the plants and material of what I was dealing with in these projects.
I was mostly working on my own, however my supervisor David Pinson was always
available for questions at the office or via email or phone. Every week we had a
short chat about my progress and David shared some other general steelmaking
knowledge. This way of working worked really well for me, since David let me dive
into it and figure things out on my own, without constantly breathing in my neck
asking for results. He really just guided me, made sure I was on the right track, but
let me walk the track myself. In the end we were both very happy with the results
obtained that far.
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Appendix B

Experiments
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1   //Copyright (c) 2013-2018, The MercuryDPM Developers Team. All rights reserved.
2   //For the list of developers, see <http://www.MercuryDPM.org/Team>.
3   //
4   //Redistribution and use in source and binary forms, with or without
5   //modification, are permitted provided that the following conditions are met:
6   //  * Redistributions of source code must retain the above copyright
7   //    notice, this list of conditions and the following disclaimer.
8   //  * Redistributions in binary form must reproduce the above copyright
9   //    notice, this list of conditions and the following disclaimer in the

10   //    documentation and/or other materials provided with the distribution.
11   //  * Neither the name MercuryDPM nor the
12   //    names of its contributors may be used to endorse or promote products
13   //    derived from this software without specific prior written permission.
14   //
15   //THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
16   //ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17   //WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18   //DISCLAIMED. IN NO EVENT SHALL THE MERCURYDPM DEVELOPERS TEAM BE LIABLE FOR ANY
19   //DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20   //(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
21   //LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
22   //ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23   //(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24   //SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25   
26   /*
27   Simple cubic box with periodic boundaries in the y-direction. Once the particles
28   are settled the right side wall is removed and the particles fall away to the side
29   and down. Once they are a bit away from the box they are removed.
30   Goal: measure the angle of repose and compare with experimental data.
31   */
32   
33   #include "Species/LinearViscoelasticFrictionSpecies.h"
34   #include "Mercury3D.h"
35   #include "Particles/BaseParticle.h"
36   #include "Walls/InfiniteWall.h"
37   #include "Walls/IntersectionOfWalls.h"
38   #include "Boundaries/PeriodicBoundary.h"
39   #include "Boundaries/DeletionBoundary.h"
40   
41   class Box : public Mercury3D
42   {
43   public:
44   
45   void setupInitialConditions() override
46   {
47   mass = 4.0/3.0*constants::pi*pow(radius,3)*rho;
48   
49   auto speciesWall =

speciesHandler.copyAndAddObject(LinearViscoelasticFrictionSpecies());
50   auto speciesPar =

speciesHandler.copyAndAddObject(LinearViscoelasticFrictionSpecies());
51   
52   // Wall species
53   speciesWall->setDensity(rho);
54   speciesWall->setStiffnessAndRestitutionCoefficient(stiffness,CORWall,mass);
55   
56   speciesWall->setSlidingStiffness(speciesWall->getStiffness()*2./7.);
57   speciesWall->setSlidingFrictionCoefficient(particleWallFriction);
58   speciesWall->setSlidingDissipation(speciesWall->getDissipation()*2./7.);
59   
60   speciesWall->setRollingStiffness(speciesWall->getStiffness()*2./7.);
61   speciesWall->setRollingFrictionCoefficient(rollFricCoeff);
62   speciesWall->setRollingDissipation(speciesWall->getDissipation()/2./7.);
63   
64   speciesWall->setTorsionStiffness(speciesWall->getStiffness()*2./7.);
65   speciesWall->setTorsionFrictionCoefficient(0.1);
66   speciesWall->setTorsionDissipation(speciesWall->getDissipation()*2./7.);
67   
68   // Particle species
69   speciesPar->setDensity(rho);
70   speciesPar->setStiffnessAndRestitutionCoefficient(stiffness,CORPar,mass);
71   
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B.1 Drivers code of the box test simulation



72   speciesPar->setSlidingStiffness(speciesPar->getStiffness()*2./7.);
73   speciesPar->setSlidingFrictionCoefficient(particleParticleFriction);
74   speciesPar->setSlidingDissipation(speciesPar->getDissipation()*2./7.);
75   
76   speciesPar->setRollingStiffness(speciesPar->getStiffness()*2./7.);
77   speciesPar->setRollingFrictionCoefficient(rollFricCoeff);
78   speciesPar->setRollingDissipation(speciesPar->getDissipation()*2./7.);
79   
80   speciesPar->setTorsionStiffness(speciesPar->getStiffness()*2./7.);
81   speciesPar->setTorsionFrictionCoefficient(0.01);
82   speciesPar->setTorsionDissipation(speciesPar->getDissipation()*2./7.);
83   
84   // Wall and Particle species
85   auto speciesWallAndPar =

speciesHandler.getMixedObject(speciesWall,speciesPar);
86   

speciesWallAndPar->setStiffnessAndRestitutionCoefficient(stiffness,CORWall,mas
s);

87   
88   

speciesWallAndPar->setSlidingStiffness(speciesWallAndPar->getStiffness()*2./7.
);

89   speciesWallAndPar->setSlidingFrictionCoefficient(particleWallFriction);
90   

speciesWallAndPar->setSlidingDissipation(speciesWallAndPar->getDissipation()*2
./7.);

91   
92   

speciesWallAndPar->setRollingStiffness(speciesWallAndPar->getStiffness()*2./7.
);

93   speciesWallAndPar->setRollingFrictionCoefficient(rollFricCoeff);
94   

speciesWallAndPar->setRollingDissipation(speciesWallAndPar->getDissipation()*2
./7.);

95   
96   

speciesWallAndPar->setTorsionStiffness(speciesWallAndPar->getStiffness()*2./7.
);

97   speciesWallAndPar->setTorsionFrictionCoefficient(0.1);
98   

speciesWallAndPar->setTorsionDissipation(speciesWallAndPar->getDissipation()*2
./7.);

99   
100   
101   // Wall setup
102   InfiniteWall w0;
103   w0.setSpecies(speciesWall);
104   w0.set(Vec3D(-1.0,0.0,0.0),Vec3D(getXMin(),0,0)); // Left wall
105   wallHandler.copyAndAddObject(w0);
106   w0.set(Vec3D(1.0,0.0,0.0),Vec3D(getXMax(),0,0)); // Right wall (index 1), 

which will be removed
107   wallHandler.copyAndAddObject(w0);
108   w0.set(Vec3D(0.0,0.0,1.0),Vec3D(0,0,2.0*getZMax())); // Top wall, to prevent 

particles from shooting up too high while settling
109   wallHandler.copyAndAddObject(w0);
110   
111   IntersectionOfWalls w1;
112   w1.setSpecies(speciesWall);
113   w1.addObject(Vec3D(0.0,0.0,-1.0),Vec3D(0,0,getZMin())); // Bottom wall
114   w1.addObject(Vec3D(-1.0,0.0,0.0),Vec3D(getXMax(),0,0)); // Bottom wall: 

right edge
115   wallHandler.copyAndAddObject(w1);
116   
117   // Solid boundaries y-direction
118   //        IntersectionOfWalls w2;
119   //        w2.setSpecies(speciesWall);
120   //        w2.addObject(Vec3D(0.0,1.0,0.0),Vec3D(0,getYMax(),0)); // Back wall
121   //        w2.addObject(Vec3D(-1.0,0.0,0.0),Vec3D(getXMax(),0,0)); // Back wall: 

right edge
122   //        wallHandler.copyAndAddObject(w2);
123   //
124   //        IntersectionOfWalls w3;
125   //        w3.setSpecies(speciesWall);
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126   //        w3.addObject(Vec3D(0.0,-1.0,0.0),Vec3D(0,getYMin(),0)); // Front wall
127   //        w3.addObject(Vec3D(-1.0,0.0,0.0),Vec3D(getXMax(),0,0)); // Front wall: 

right edge
128   //        wallHandler.copyAndAddObject(w3);
129   
130   // Periodic boundaries y-direction
131   PeriodicBoundary b0;
132   b0.set(Vec3D(0.0,1.0,0.0),getYMin(),getYMax());
133   boundaryHandler.copyAndAddObject(b0);
134   
135   
136   // Deletion boundary at right side wall and bottom to remove particles 

outside the box
137   DeletionBoundary db0;
138   db0.set(Vec3D(1,0,0),getXMax()+5*radius);// Definitely outside the box and 

not interfering with particles partly inside the box
139   boundaryHandler.copyAndAddObject(db0);
140   db0.set(Vec3D(0,0,-1),getZMin()-5*radius); // Definitely below minimum and 

not interfering with particles partly inside the box
141   boundaryHandler.copyAndAddObject(db0);
142   
143   
144   // Particle setup
145   int numPar =

fillFraction*(std::abs(getXMax()-getXMin()))*(std::abs(getYMax()-getYMin()))*(
std::abs(getZMax()-getZMin()))/(4./3*constants::pi*pow(radius,3.0)); // 
Number of particles to be inserted

146   int numParInserted = 0; // Number of particle inserted
147   Vec3D pos; // Position particle
148   while( numParInserted < numPar )
149   {
150   double radiusPar =

random.getRandomNumber(radius-radiusVariation,radius+radiusVariation);
151   BaseParticle p0;
152   p0.setSpecies(speciesPar);
153   p0.setRadius(radiusPar);
154   
155   int failCounter = 0;
156   do
157   {
158   pos.X =

random.getRandomNumber(getXMin()+radiusPar,getXMax()-radiusPar);
159   pos.Y = random.getRandomNumber(getYMin(),getYMax());
160   pos.Z = random.getRandomNumber(getZMin()+radiusPar,1.5*getZMax());
161   p0.setPosition(pos);
162   p0.setVelocity(Vec3D(0,0,0));
163   
164   failCounter++;
165   if (failCounter==1000)
166   break;
167   }
168   while (!checkParticleForInteraction(p0));
169   
170   particleHandler.copyAndAddObject(p0);
171   
172   numParInserted++;
173   }
174   
175   std::cout << "Finished creating particles" << std::endl;
176   std::cout << "Number of particles inserted: " << numParInserted << std::endl;
177   std::cout << "Particles settling down" << std::endl;
178   step = 2; // Allow next step to be executed
179   checkTime = getTime() + .1; // 0.1 Time to check the total kinetic energy
180   }
181   
182   void actionsBeforeTimeStep() override
183   {
184   // Open the gate once the kinetic energy is low enough to consider the 

particles settled (value found by trial and error)
185   if (step==2) // To stop checking the kinetic energy once the particles are 

settled
186   {
187   if (getTime() > checkTime) // Only check at certain times
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188   {
189   std::cout << "Current KE: " << getKineticEnergy() << std::endl;
190   if (getKineticEnergy() < 0.0001) // For 0.0001 the particles are 

settled quite well
191   {
192   step = 3; // Allow next step to be executed
193   std::cout << "Particles settled" << std::endl;
194   wallHandler.removeObject(1); // Remove right wall
195   std::cout << "Gate open" << std::endl;
196   }
197   else
198   {
199   checkTime = getTime() + .1;
200   }
201   }
202   }
203   }
204   
205   
206   void setFillFraction (double ff)
207   {
208   fillFraction = ff;
209   }
210   
211   void setRadiusVariation (double rv)
212   {
213   radiusVariation = rv;
214   }
215   
216   void setDensity (double r)
217   {
218   rho = r;
219   }
220   
221   void setRadius (double r)
222   {
223   radius = r;
224   }
225   
226   void setCOR (double wallCOR, double parCOR)
227   {
228   CORWall = wallCOR;
229   CORPar = parCOR;
230   }
231   
232   void setCollisionTime (double coltime)
233   {
234   tc = coltime;
235   }
236   
237   void setStiffness (double k)
238   {
239   stiffness = k;
240   }
241   
242   void setFrictionCoeff (double pwf, double ppf, double rfc)
243   {
244   particleWallFriction = pwf;
245   particleParticleFriction = ppf;
246   rollFricCoeff = rfc;
247   }
248   
249   double getLargestParticleDiameter ()
250   {
251   double lpd = 2*(radius+radiusVariation);
252   return lpd;
253   }
254   
255   private:
256   
257   double fillFraction;
258   double rho, radius, radiusVariation, mass;
259   
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260   double CORWall, CORPar, tc, stiffness;
261   
262   double particleWallFriction, particleParticleFriction, rollFricCoeff;
263   
264   double checkTime;
265   int step;
266   };
267   
268   int main(int argc, char *argv[])
269   {
270   // Problem setup
271   Box problem;
272   
273   problem.setFillFraction(0.55);
274   problem.setRadiusVariation(0.0005); // 0.5mm added to or subtracted from radius
275   problem.setDensity(900);
276   problem.setRadius(0.003);
277   problem.setCOR(0.25,0.25); // Wall, particle
278   problem.setFrictionCoeff(0.25,0.25,0.40); // SET sliding particle-wall, sliding 

particle-particle, rolling friction coefficient
279   problem.setStiffness(40000); // SET 40000
280   
281   problem.setName("Box"); // SET: Box_pwf025_ppf025_rfc040
282   problem.setSystemDimensions(3);
283   problem.setGravity(Vec3D(0.0,0.0,-9.81));
284   problem.setXMin(0.0);
285   problem.setYMin(0.0);
286   problem.setZMin(0.0);
287   problem.setXMax(0.15);
288   problem.setYMax(5.*problem.getLargestParticleDiameter());
289   problem.setZMax(0.15);
290   problem.setTimeMax(5.0); // SET
291   problem.setTimeStep(1.0e-5); // SET 1.0e-5
292   
293   problem.setSaveCount(1000); // SET
294   problem.dataFile.setFileType(FileType::ONE_FILE);
295   problem.restartFile.setFileType(FileType::ONE_FILE);
296   problem.fStatFile.setFileType(FileType::NO_FILE);
297   problem.eneFile.setFileType(FileType::NO_FILE);
298   
299   problem.setXBallsAdditionalArguments(" -solidf -v0 -s 8");
300   
301   problem.solve(argc, argv);
302   
303   return 0;
304   }
305   
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1   //Copyright (c) 2013-2018, The MercuryDPM Developers Team. All rights reserved.
2   //For the list of developers, see <http://www.MercuryDPM.org/Team>.
3   //
4   //Redistribution and use in source and binary forms, with or without
5   //modification, are permitted provided that the following conditions are met:
6   //  * Redistributions of source code must retain the above copyright
7   //    notice, this list of conditions and the following disclaimer.
8   //  * Redistributions in binary form must reproduce the above copyright
9   //    notice, this list of conditions and the following disclaimer in the

10   //    documentation and/or other materials provided with the distribution.
11   //  * Neither the name MercuryDPM nor the
12   //    names of its contributors may be used to endorse or promote products
13   //    derived from this software without specific prior written permission.
14   //
15   //THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
16   //ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17   //WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18   //DISCLAIMED. IN NO EVENT SHALL THE MERCURYDPM DEVELOPERS TEAM BE LIABLE FOR ANY
19   //DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20   //(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
21   //LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
22   //ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23   //(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24   //SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25   
26   /*
27   A tube standing on the ground is filled with particles and once settled the tube
28   is slowly lifted upwards so that the particles spill out from the bottom.
29   Goal: measure the angle of repose and compare with experimental data.
30   */
31   
32   #include "Species/LinearViscoelasticFrictionSpecies.h"
33   #include "Mercury3D.h"
34   #include "Particles/BaseParticle.h"
35   #include "Walls/InfiniteWall.h"
36   #include "Walls/AxisymmetricIntersectionOfWalls.h"
37   
38   class Cylinder : public Mercury3D
39   {
40   public:
41   
42   void setupInitialConditions() override
43   {
44   mass = 4.0/3.0*constants::pi*pow(radius,3)*rho;
45   
46   auto speciesWall =

speciesHandler.copyAndAddObject(LinearViscoelasticFrictionSpecies());
47   auto speciesPar =

speciesHandler.copyAndAddObject(LinearViscoelasticFrictionSpecies());
48   
49   // Wall species
50   speciesWall->setDensity(rho);
51   speciesWall->setStiffnessAndRestitutionCoefficient(stiffness,CORWall,mass);
52   
53   speciesWall->setSlidingStiffness(speciesWall->getStiffness()*2./7.);
54   speciesWall->setSlidingFrictionCoefficient(particleWallFriction);
55   speciesWall->setSlidingDissipation(speciesWall->getDissipation()*2./7.);
56   
57   speciesWall->setRollingStiffness(speciesWall->getStiffness()*2./7.);
58   speciesWall->setRollingFrictionCoefficient(rollFricCoeff);
59   speciesWall->setRollingDissipation(speciesWall->getDissipation()/2./7.);
60   
61   speciesWall->setTorsionStiffness(speciesWall->getStiffness()*2./7.);
62   speciesWall->setTorsionFrictionCoefficient(0.1);
63   speciesWall->setTorsionDissipation(speciesWall->getDissipation()*2./7.);
64   
65   // Particle species
66   speciesPar->setDensity(rho);
67   speciesPar->setStiffnessAndRestitutionCoefficient(stiffness,CORPar,mass);
68   
69   speciesPar->setSlidingStiffness(speciesPar->getStiffness()*2./7.);
70   speciesPar->setSlidingFrictionCoefficient(particleParticleFriction);
71   speciesPar->setSlidingDissipation(speciesPar->getDissipation()*2./7.);
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72   
73   speciesPar->setRollingStiffness(speciesPar->getStiffness()*2./7.);
74   speciesPar->setRollingFrictionCoefficient(rollFricCoeff);
75   speciesPar->setRollingDissipation(speciesPar->getDissipation()*2./7.);
76   
77   speciesPar->setTorsionStiffness(speciesPar->getStiffness()*2./7.);
78   speciesPar->setTorsionFrictionCoefficient(0.01);
79   speciesPar->setTorsionDissipation(speciesPar->getDissipation()*2./7.);
80   
81   // Wall and Particle species
82   auto speciesWallAndPar =

speciesHandler.getMixedObject(speciesWall,speciesPar);
83   

speciesWallAndPar->setStiffnessAndRestitutionCoefficient(stiffness,CORWall,mas
s);

84   
85   

speciesWallAndPar->setSlidingStiffness(speciesWallAndPar->getStiffness()*2./7.
);

86   speciesWallAndPar->setSlidingFrictionCoefficient(particleWallFriction);
87   

speciesWallAndPar->setSlidingDissipation(speciesWallAndPar->getDissipation()*2
./7.);

88   
89   

speciesWallAndPar->setRollingStiffness(speciesWallAndPar->getStiffness()*2./7.
);

90   speciesWallAndPar->setRollingFrictionCoefficient(rollFricCoeff);
91   

speciesWallAndPar->setRollingDissipation(speciesWallAndPar->getDissipation()*2
./7.);

92   
93   

speciesWallAndPar->setTorsionStiffness(speciesWallAndPar->getStiffness()*2./7.
);

94   speciesWallAndPar->setTorsionFrictionCoefficient(0.1);
95   

speciesWallAndPar->setTorsionDissipation(speciesWallAndPar->getDissipation()*2
./7.);

96   
97   
98   // Wall setup
99   InfiniteWall w0;

100   w0.setSpecies(speciesWall);
101   w0.set(Vec3D(0.0,0.0,-1.0),Vec3D(0.0,0.0,getZMin())); // Bottom wall
102   wallHandler.copyAndAddObject(w0);
103   w0.set(Vec3D(0.0,0.0,1.0),Vec3D(0,0,2.0*getZMax())); // Top wall, to prevent 

particles from shooting up too high while settling
104   wallHandler.copyAndAddObject(w0);
105   
106   Vec3D cylinderCenter = {0.5*(getXMin()+getXMax()),
107   0.5*(getYMin()+getYMax()),
108   getZMin()};
109   
110   AxisymmetricIntersectionOfWalls w1;
111   w1.setSpecies(speciesWall);
112   w1.setPosition(cylinderCenter);
113   w1.setOrientation(Vec3D(0.0,0.0,1.0));
114   w1.addObject(Vec3D(1,0,0),Vec3D(cylinderRadius,0.0,0.0)); // Cylinder wall
115   w1.addObject(Vec3D(0,0,1),Vec3D(2.0*cylinderRadius,0,0)); // Cylinder wall: 

bottom edge
116   wallHandler.copyAndAddObject(w1);
117   
118   
119   // Particle setup
120   int numPar =

fillFraction*constants::pi*pow(cylinderRadius,2.0)*(std::abs(getZMax()-getZMin
()))/(4./3*constants::pi*pow(radius,3.0)); // Number of particles to be 
inserted

121   int numParInserted = 0; // Number of particle inserted
122   Vec3D pos; // Position particle
123   double r, theta, z; // For particle position
124   while( numParInserted < numPar )
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125   {
126   double radiusPar =

random.getRandomNumber(radius-radiusVariation,radius+radiusVariation);
127   BaseParticle p0;
128   p0.setSpecies(speciesPar);
129   p0.setRadius(radiusPar);
130   
131   int failCounter = 0;
132   do
133   {
134   r = random.getRandomNumber(0,cylinderRadius-radiusPar);
135   theta = random.getRandomNumber(0,2.0*constants::pi);
136   z = random.getRandomNumber(getZMin()+radiusPar,1.5*getZMax());
137   
138   pos.X = cylinderCenter.X+r*cos(theta);
139   pos.Y = cylinderCenter.Y+r*sin(theta);
140   pos.Z = z;
141   p0.setPosition(pos);
142   p0.setVelocity(Vec3D(0,0,0));
143   
144   failCounter++;
145   if (failCounter==1000)
146   break;
147   }
148   while (!checkParticleForInteraction(p0));
149   
150   particleHandler.copyAndAddObject(p0);
151   
152   numParInserted++;
153   }
154   
155   std::cout << "Finished creating particles" << std::endl;
156   std::cout << "Number of particles inserted: " << numParInserted << std::endl;
157   std::cout << "Particles settling down" << std::endl;
158   step = 2; // Allow next step to be executed
159   checkTime = getTime() + 0.1; // 0.1 Time to check the total kinetic energy
160   }
161   
162   void actionsBeforeTimeStep() override
163   {
164   if (step==2) // To stop checking the kinetic energy once the particles are 

settled
165   {
166   if (getTime() > checkTime)
167   {
168   std::cout << "Current KE: " << getKineticEnergy() << std::endl;
169   if (getKineticEnergy() < 0.0001)
170   {
171   step = 3;
172   std::cout << "Particles settled" << std::endl;
173   

wallHandler.getObject(2)->setVelocity(Vec3D(0.0,0.0,cylinderVeloci
ty));

174   std::cout << "Cylinder moving up" << std::endl;
175   }
176   else
177   {
178   checkTime = getTime() + .1;
179   }
180   }
181   }
182   }
183   
184   void setFillFraction (double ff)
185   {
186   fillFraction = ff;
187   }
188   
189   void setRadiusVariation (double rv)
190   {
191   radiusVariation = rv;
192   }
193   
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194   void setDensity (double r)
195   {
196   rho = r;
197   }
198   
199   void setRadius (double r)
200   {
201   radius = r;
202   }
203   
204   void setCOR (double wallCOR, double parCOR)
205   {
206   CORWall = wallCOR;
207   CORPar = parCOR;
208   }
209   
210   void setCollisionTime (double coltime)
211   {
212   tc = coltime;
213   }
214   
215   void setStiffness (double k)
216   {
217   stiffness = k;
218   }
219   
220   void setFrictionCoeff (double pwf, double ppf, double rfc)
221   {
222   particleWallFriction = pwf;
223   particleParticleFriction = ppf;
224   rollFricCoeff = rfc;
225   }
226   
227   void setCylinderRadius (double cr)
228   {
229   cylinderRadius = cr;
230   }
231   
232   double getCylinderRadius()
233   {
234   return cylinderRadius;
235   }
236   
237   void setCylinderVelocity (double cv)
238   {
239   cylinderVelocity = cv;
240   }
241   
242   private:
243   
244   double fillFraction;
245   double rho, radius, radiusVariation, mass;
246   
247   double CORWall, CORPar, tc, stiffness;
248   
249   double particleWallFriction, particleParticleFriction, rollFricCoeff;
250   
251   double checkTime;
252   int step;
253   
254   double cylinderRadius, cylinderVelocity;
255   };
256   
257   int main(int argc, char *argv[])
258   {
259   
260   // Problem setup
261   Cylinder problem;
262   
263   problem.setFillFraction(0.50);
264   problem.setRadiusVariation(0.0005); // 0.5mm added to or subtracted from radius
265   problem.setDensity(900);
266   problem.setRadius(0.003);
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267   problem.setCOR(0.9,0.831); // Wall, particle
268   problem.setCylinderRadius(0.05);
269   problem.setCylinderVelocity(0.001);
270   problem.setFrictionCoeff(0.25,0.25,0.50); // SET sliding particle-wall, sliding 

particle-particle, rolling friction coefficient
271   problem.setStiffness(40000); // SET 40000
272   
273   problem.setName("Cylinder2"); // SET: Cylinder_pwf025_ppf025_rfc040
274   problem.setSystemDimensions(3);
275   problem.setGravity(Vec3D(0.0,0.0,-9.81));
276   problem.setXMin(0.0);
277   problem.setYMin(0.0);
278   problem.setZMin(0.0);
279   problem.setXMax(2.*problem.getCylinderRadius());
280   problem.setYMax(2.*problem.getCylinderRadius());
281   problem.setZMax(0.1);
282   problem.setTimeMax(55.0); // SET
283   problem.setTimeStep(1e-5); // SET 1.0e-5
284   
285   problem.setSaveCount(1000); // SET
286   problem.dataFile.setFileType(FileType::ONE_FILE);
287   problem.restartFile.setFileType(FileType::ONE_FILE);
288   problem.fStatFile.setFileType(FileType::NO_FILE);
289   problem.eneFile.setFileType(FileType::NO_FILE);
290   
291   problem.setXBallsAdditionalArguments(" -solidf -v0 -s 7 -moh 115"); // -moh 

horizontal offset of negative .. pixels
292   
293   problem.solve(argc, argv);
294   
295   return 0;
296   }
297   
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1   //Copyright (c) 2013-2018, The MercuryDPM Developers Team. All rights reserved.
2   //For the list of developers, see <http://www.MercuryDPM.org/Team>.
3   //
4   //Redistribution and use in source and binary forms, with or without
5   //modification, are permitted provided that the following conditions are met:
6   //  * Redistributions of source code must retain the above copyright
7   //    notice, this list of conditions and the following disclaimer.
8   //  * Redistributions in binary form must reproduce the above copyright
9   //    notice, this list of conditions and the following disclaimer in the

10   //    documentation and/or other materials provided with the distribution.
11   //  * Neither the name MercuryDPM nor the
12   //    names of its contributors may be used to endorse or promote products
13   //    derived from this software without specific prior written permission.
14   //
15   //THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
16   //ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17   //WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18   //DISCLAIMED. IN NO EVENT SHALL THE MERCURYDPM DEVELOPERS TEAM BE LIABLE FOR ANY
19   //DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20   //(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
21   //LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
22   //ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23   //(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24   //SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25   
26   /*
27   Hopper filled with particles, which (once settled) drop away from the bottom
28   through different diameter orifices and are then removed.
29   Goal: find out for which diameter orifice bridging starts happening and compare
30   with experimental data.
31   */
32   
33   #include "Species/LinearViscoelasticFrictionSpecies.h"
34   #include "Mercury3D.h"
35   #include "Particles/BaseParticle.h"
36   #include "Walls/InfiniteWall.h"
37   #include "Walls/AxisymmetricIntersectionOfWalls.h"
38   #include "Boundaries/DeletionBoundary.h"
39   
40   class Bridging : public Mercury3D
41   {
42   public:
43   
44   void setupInitialConditions() override
45   {
46   mass = 4.0/3.0*constants::pi*pow(radius,3)*rho;
47   
48   auto speciesWall =

speciesHandler.copyAndAddObject(LinearViscoelasticFrictionSpecies());
49   auto speciesPar =

speciesHandler.copyAndAddObject(LinearViscoelasticFrictionSpecies());
50   
51   // Wall species
52   speciesWall->setDensity(rho);
53   speciesWall->setStiffnessAndRestitutionCoefficient(stiffness,CORWall,mass);
54   
55   speciesWall->setSlidingStiffness(speciesWall->getStiffness()*2./7.);
56   speciesWall->setSlidingFrictionCoefficient(particleWallFriction);
57   speciesWall->setSlidingDissipation(speciesWall->getDissipation()*2./7.);
58   
59   speciesWall->setRollingStiffness(speciesWall->getStiffness()*2./7.);
60   speciesWall->setRollingFrictionCoefficient(rollFricCoeff);
61   speciesWall->setRollingDissipation(speciesWall->getDissipation()/2./7.);
62   
63   speciesWall->setTorsionStiffness(speciesWall->getStiffness()*2./7.);
64   speciesWall->setTorsionFrictionCoefficient(0.1);
65   speciesWall->setTorsionDissipation(speciesWall->getDissipation()*2./7.);
66   
67   // Particle species
68   speciesPar->setDensity(rho);
69   speciesPar->setStiffnessAndRestitutionCoefficient(stiffness,CORPar,mass);
70   
71   speciesPar->setSlidingStiffness(speciesPar->getStiffness()*2./7.);
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72   speciesPar->setSlidingFrictionCoefficient(particleParticleFriction);
73   speciesPar->setSlidingDissipation(speciesPar->getDissipation()*2./7.);
74   
75   speciesPar->setRollingStiffness(speciesPar->getStiffness()*2./7.);
76   speciesPar->setRollingFrictionCoefficient(rollFricCoeff);
77   speciesPar->setRollingDissipation(speciesPar->getDissipation()*2./7.);
78   
79   speciesPar->setTorsionStiffness(speciesPar->getStiffness()*2./7.);
80   speciesPar->setTorsionFrictionCoefficient(0.01);
81   speciesPar->setTorsionDissipation(speciesPar->getDissipation()*2./7.);
82   
83   // Wall and Particle species
84   auto speciesWallAndPar =

speciesHandler.getMixedObject(speciesWall,speciesPar);
85   

speciesWallAndPar->setStiffnessAndRestitutionCoefficient(stiffness,CORWall,mas
s);

86   
87   

speciesWallAndPar->setSlidingStiffness(speciesWallAndPar->getStiffness()*2./7.
);

88   speciesWallAndPar->setSlidingFrictionCoefficient(particleWallFriction);
89   

speciesWallAndPar->setSlidingDissipation(speciesWallAndPar->getDissipation()*2
./7.);

90   
91   

speciesWallAndPar->setRollingStiffness(speciesWallAndPar->getStiffness()*2./7.
);

92   speciesWallAndPar->setRollingFrictionCoefficient(rollFricCoeff);
93   

speciesWallAndPar->setRollingDissipation(speciesWallAndPar->getDissipation()*2
./7.);

94   
95   

speciesWallAndPar->setTorsionStiffness(speciesWallAndPar->getStiffness()*2./7.
);

96   speciesWallAndPar->setTorsionFrictionCoefficient(0.1);
97   

speciesWallAndPar->setTorsionDissipation(speciesWallAndPar->getDissipation()*2
./7.);

98   
99   

100   // Wall setup
101   Vec3D center = {0.5*(getXMin()+getXMax()),
102   0.5*(getYMin()+getYMax()),
103   getZMin()};
104   
105   InfiniteWall w0;
106   w0.setSpecies(speciesWall);
107   w0.set(Vec3D(0,0,-1),Vec3D(center.X,center.Y,-orificeHeight)); // Bottom 

wall, which will be removed
108   wallHandler.copyAndAddObject(w0);
109   
110   AxisymmetricIntersectionOfWalls w1;
111   w1.setSpecies(speciesWall);
112   w1.setPosition(center);
113   w1.setOrientation(Vec3D(0,0,1));
114   w1.addObject(Vec3D(1,0,0),Vec3D(outerCylinderRadius,0,0)); // Outer cylinder
115   wallHandler.copyAndAddObject(w1);
116   
117   AxisymmetricIntersectionOfWalls w2;
118   w2.setSpecies(speciesWall);
119   w2.setPosition(center);
120   w2.setOrientation(Vec3D(0,0,1));
121   std::vector<Vec3D> w2Points(3);
122   w2Points[0] = Vec3D(outerCylinderRadius,0,topConeHeight);
123   w2Points[1] = Vec3D(innerCylinderRadius,0,bottomConeHeight);
124   w2Points[2] = Vec3D(innerCylinderRadius,0,0);
125   w2.createOpenPrism(w2Points); // Cone and inner cylinder
126   wallHandler.copyAndAddObject(w2);
127   
128   AxisymmetricIntersectionOfWalls w3;
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129   w3.setSpecies(speciesWall);
130   w3.setPosition(center);
131   w3.setOrientation(Vec3D(0,0,1));
132   std::vector<Vec3D> w3Points(4);
133   w3Points[0] = Vec3D(outerCylinderRadius,0,0); // outerCylinderRadius is used 

just a random point greater than orificeRadius
134   w3Points[1] = Vec3D(orificeRadius,0,0);
135   w3Points[2] = Vec3D(orificeRadius,0,-orificeHeight);
136   w3Points[3] = Vec3D(outerCylinderRadius,0,-orificeHeight);
137   w3.createOpenPrism(w3Points); // Orifice
138   wallHandler.copyAndAddObject(w3);
139   
140   
141   // Deletion boundary at bottom to remove particles that left the hopper
142   DeletionBoundary db0;
143   db0.set(Vec3D(0,0,-1),getZMin()-orificeHeight-5*radius);// Definitely below 

minimum and not interfering with particles partly inside the hopper
144   boundaryHandler.copyAndAddObject(db0);
145   
146   
147   // Particle setup
148   double fillHeight = 8.0*2.0*orificeRadius;
149   double volume;
150   if (fillHeight<=topConeHeight)
151   {
152   volume =

1.0/3.0*constants::pi*pow(fillHeight/topConeHeight*outerCylinderRadius,2.0
)*fillHeight; // Volume cone

153   }
154   else
155   {
156   volume =

1.0/3.0*constants::pi*pow(outerCylinderRadius,2.0)*topConeHeight +
constants::pi*pow(outerCylinderRadius,2.0)*(fillHeight-topConeHeight);
// Volume cone + outer (top) cylinder

157   }
158   
159   int numPar = fillFraction*volume/(4./3*constants::pi*pow(radius,3.0)); // 

Number of particles to be inserted
160   int numParInserted = 0; // Number of particle inserted
161   Vec3D pos; // Position particle
162   double r, theta, z; // For particle position
163   while( numParInserted < numPar )
164   {
165   double radiusPar =

random.getRandomNumber(radius-radiusVariation,radius+radiusVariation);
166   BaseParticle p0;
167   p0.setSpecies(speciesPar);
168   p0.setRadius(radiusPar);
169   
170   int failCounter = 0;
171   do
172   {
173   r = random.getRandomNumber(0,outerCylinderRadius-radiusPar);
174   theta = random.getRandomNumber(0,2.0*constants::pi);
175   z = random.getRandomNumber(getZMin()+topConeHeight,1.5*getZMax());
176   
177   pos.X = center.X+r*cos(theta);
178   pos.Y = center.Y+r*sin(theta);
179   pos.Z = z;
180   p0.setPosition(pos);
181   p0.setVelocity(Vec3D(0,0,0));
182   
183   failCounter++;
184   if (failCounter==1000)
185   break;
186   }
187   while (!checkParticleForInteraction(p0));
188   
189   particleHandler.copyAndAddObject(p0);
190   
191   numParInserted++;
192   }
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193   
194   std::cout << "Finished creating particles" << std::endl;
195   std::cout << "Number of particles inserted: " << numParInserted << std::endl;
196   std::cout << "Particles settling down" << std::endl;
197   step = 2; // Allow next step to be executed
198   checkTime = getTime() + .1; // 0.1 Time to check the total kinetic energy
199   }
200   
201   void actionsBeforeTimeStep() override
202   {
203   // Open the gate once the kinetic energy is low enough to consider the 

particles settled (value found by trial and error)
204   if (step==2) // To stop checking the kinetic energy once the particles are 

settled
205   {
206   if (getTime() > checkTime) // Only check at certain times
207   {
208   std::cout << "Current KE: " << getKineticEnergy() << std::endl;
209   if (getKineticEnergy() < 0.0001) // For 0.0001 the particles are 

settled quite well
210   {
211   step = 3; // Allow next step to be executed
212   std::cout << "Particles settled" << std::endl;
213   wallHandler.removeObject(0); // Remove bottom wall
214   std::cout << "Gate open" << std::endl;
215   }
216   else
217   {
218   checkTime = getTime() + .1;
219   }
220   }
221   }
222   }
223   
224   
225   bool continueSolve() const override
226   {
227   // CheckTime+1.0 just to be sure not to stop solving while the particles are 

settling
228   // Comparing energies is a useful criteria to determine arresting flow 

(according to website mercuryDPM)
229   if (getTime() > checkTime+1.0 && getKineticEnergy() < 1e-5*getElasticEnergy())
230   {
231   std::cout << "No more flow" << std::endl;
232   return false;
233   }
234   else
235   {
236   return true;
237   }
238   }
239   
240   void setFillFraction (double ff)
241   {
242   fillFraction = ff;
243   }
244   
245   void setRadiusVariation (double rv)
246   {
247   radiusVariation = rv;
248   }
249   
250   void setDensity (double r)
251   {
252   rho = r;
253   }
254   
255   void setRadius (double r)
256   {
257   radius = r;
258   }
259   
260   void setCOR (double wallCOR, double parCOR)
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261   {
262   CORWall = wallCOR;
263   CORPar = parCOR;
264   }
265   
266   void setCollisionTime (double coltime)
267   {
268   tc = coltime;
269   }
270   
271   void setStiffness (double k)
272   {
273   stiffness = k;
274   }
275   
276   void setFrictionCoeff (double pwf, double ppf, double rfc)
277   {
278   particleWallFriction = pwf;
279   particleParticleFriction = ppf;
280   rollFricCoeff = rfc;
281   }
282   
283   void setCylinderRadius (double ocr, double icr)
284   {
285   outerCylinderRadius = ocr;
286   innerCylinderRadius = icr;
287   }
288   
289   double getOuterCylinderRadius()
290   {
291   return outerCylinderRadius;
292   }
293   
294   void setConeHeight (double bch, double tch)
295   {
296   bottomConeHeight = bch;
297   topConeHeight = tch;
298   }
299   
300   void setOrificeDimensions (double odr, double odh)
301   {
302   orificeRadius = odr;
303   orificeHeight = odh;
304   }
305   
306   private:
307   
308   double fillFraction;
309   double rho, radius, radiusVariation, mass;
310   
311   double CORWall, CORPar, tc, stiffness;
312   
313   double particleWallFriction, particleParticleFriction, rollFricCoeff;
314   
315   double checkTime;
316   int step;
317   
318   double outerCylinderRadius, innerCylinderRadius;
319   double bottomConeHeight, topConeHeight;
320   double orificeRadius, orificeHeight;
321   };
322   
323   int main(int argc, char** argv)
324   {
325   // Problem setup
326   Bridging problem;
327   
328   problem.setFillFraction(0.5);
329   problem.setRadiusVariation(0.0005); // 0.5mm added to or subtracted from radius
330   problem.setDensity(900);
331   problem.setRadius(0.003);
332   problem.setCOR(0.25,0.25); // Wall, particle
333   problem.setCylinderRadius(0.375,0.0525); // Outer, inner
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334   problem.setConeHeight(0.08,0.58); // Bottom, top
335   problem.setOrificeDimensions(0.055/2,0.006); // Radius hole, height
336   problem.setFrictionCoeff(0.60,0.25,0.30); // SET sliding particle-wall, sliding 

particle-particle, rolling friction coefficient
337   problem.setStiffness(40000); // SET 40000
338   
339   problem.setName("Bridging"); // SET: Bridging_pwf060_ppf020_rfc040_odia0030
340   problem.setSystemDimensions(3);
341   problem.setGravity(Vec3D(0.0,0.0,-9.81));
342   problem.setXMin(0.0);
343   problem.setYMin(0.0);
344   problem.setZMin(0.0);
345   problem.setXMax(2.0*problem.getOuterCylinderRadius());
346   problem.setYMax(2.0*problem.getOuterCylinderRadius());
347   problem.setZMax(1.16);
348   problem.setTimeMax(500.0); // SET
349   problem.setTimeStep(1.0e-5); // SET 1.0e-5
350   
351   problem.setSaveCount(1000); // SET
352   problem.dataFile.setFileType(FileType::ONE_FILE);
353   problem.restartFile.setFileType(FileType::ONE_FILE);
354   problem.fStatFile.setFileType(FileType::NO_FILE);
355   problem.eneFile.setFileType(FileType::NO_FILE);
356   
357   problem.setXBallsAdditionalArguments(" -solidf -v0 -s 3");
358   
359   problem.solve(argc, argv);
360   
361   return 0;
362   }
363   
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1   //Copyright (c) 2013-2018, The MercuryDPM Developers Team. All rights reserved.
2   //For the list of developers, see <http://www.MercuryDPM.org/Team>.
3   //
4   //Redistribution and use in source and binary forms, with or without
5   //modification, are permitted provided that the following conditions are met:
6   //  * Redistributions of source code must retain the above copyright
7   //    notice, this list of conditions and the following disclaimer.
8   //  * Redistributions in binary form must reproduce the above copyright
9   //    notice, this list of conditions and the following disclaimer in the

10   //    documentation and/or other materials provided with the distribution.
11   //  * Neither the name MercuryDPM nor the
12   //    names of its contributors may be used to endorse or promote products
13   //    derived from this software without specific prior written permission.
14   //
15   //THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
16   //ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17   //WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18   //DISCLAIMED. IN NO EVENT SHALL THE MERCURYDPM DEVELOPERS TEAM BE LIABLE FOR ANY
19   //DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20   //(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
21   //LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
22   //ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23   //(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24   //SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25   
26   /*
27   In progress..
28   Divider at top of waste gas cleaning plant, which spreads the particles out.
29   First fill as must non-moving areas as possible with particles (rings, boxsection, 

I-types).
30   Then insert bunch of particles at certain time intervals at different places above 

rings.
31   Goal: find out what influence the position of the particle drop has on there final
32   position after going through the divider.
33   */
34   
35   #include "Mercury3D.h"
36   #include "Species/LinearViscoelasticFrictionSpecies.h"
37   #include "Walls/TriangleWall.h"
38   #include "Particles/BaseParticle.h"
39   #include "Boundaries/CubeInsertionBoundary.h"
40   
41   class WGCP : public Mercury3D
42   {
43   public:
44   
45   void setupInitialConditions() override
46   {
47   mass = 4.0/3.0*constants::pi*pow(radius,3)*rho;
48   
49   speciesWall =

speciesHandler.copyAndAddObject(LinearViscoelasticFrictionSpecies());
50   speciesPar =

speciesHandler.copyAndAddObject(LinearViscoelasticFrictionSpecies());
51   
52   // Wall species
53   speciesWall->setDensity(rho);
54   speciesWall->setStiffnessAndRestitutionCoefficient(stiffness,CORWall,mass);
55   
56   speciesWall->setSlidingStiffness(speciesWall->getStiffness()*2./7.);
57   speciesWall->setSlidingFrictionCoefficient(slidingFrictionCoefficient);
58   speciesWall->setSlidingDissipation(speciesWall->getDissipation()*2./7.);
59   
60   speciesWall->setRollingStiffness(speciesWall->getStiffness()*2./7.);
61   speciesWall->setRollingFrictionCoefficient(rollingFrictionCoefficient);
62   speciesWall->setRollingDissipation(speciesWall->getDissipation()/2./7.);
63   
64   speciesWall->setTorsionStiffness(speciesWall->getStiffness()*2./7.);
65   speciesWall->setTorsionFrictionCoefficient(0.1);
66   speciesWall->setTorsionDissipation(speciesWall->getDissipation()*2./7.);
67   
68   // Particle species
69   speciesPar->setDensity(rho);
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70   speciesPar->setStiffnessAndRestitutionCoefficient(stiffness,CORPar,mass);
71   
72   speciesPar->setSlidingStiffness(speciesPar->getStiffness()*2./7.);
73   speciesPar->setSlidingFrictionCoefficient(slidingFrictionCoefficient);
74   speciesPar->setSlidingDissipation(speciesPar->getDissipation()*2./7.);
75   
76   speciesPar->setRollingStiffness(speciesPar->getStiffness()*2./7.);
77   speciesPar->setRollingFrictionCoefficient(rollingFrictionCoefficient);
78   speciesPar->setRollingDissipation(speciesPar->getDissipation()*2./7.);
79   
80   speciesPar->setTorsionStiffness(speciesPar->getStiffness()*2./7.);
81   speciesPar->setTorsionFrictionCoefficient(0.01);
82   speciesPar->setTorsionDissipation(speciesPar->getDissipation()*2./7.);
83   
84   // Wall and Particle species
85   auto speciesWallAndPar =

speciesHandler.getMixedObject(speciesWall,speciesPar);
86   

speciesWallAndPar->setStiffnessAndRestitutionCoefficient(stiffness,CORWall,mas
s);

87   
88   

speciesWallAndPar->setSlidingStiffness(speciesWallAndPar->getStiffness()*2./7.
);

89   speciesWallAndPar->setSlidingFrictionCoefficient(slidingFrictionCoefficient);
90   

speciesWallAndPar->setSlidingDissipation(speciesWallAndPar->getDissipation()*2
./7.);

91   
92   

speciesWallAndPar->setRollingStiffness(speciesWallAndPar->getStiffness()*2./7.
);

93   speciesWallAndPar->setRollingFrictionCoefficient(rollingFrictionCoefficient);
94   

speciesWallAndPar->setRollingDissipation(speciesWallAndPar->getDissipation()*2
./7.);

95   
96   

speciesWallAndPar->setTorsionStiffness(speciesWallAndPar->getStiffness()*2./7.
);

97   speciesWallAndPar->setTorsionFrictionCoefficient(0.1);
98   

speciesWallAndPar->setTorsionDissipation(speciesWallAndPar->getDissipation()*2
./7.);

99   
100   
101   // Wall setup
102   // wallHandler.readTriangleWall(filename, species, scaleFactor, 

centerOfRotation, velocity, angularVelocity)
103   

wallHandler.readTriangleWall("wgcp_ac_inlet_3.dem_boxsection.stl.stl",speciesW
all,1,Vec3D(0,0,0),Vec3D(0,0,0),Vec3D(0,0,0));

104   
wallHandler.readTriangleWall("wgcp_ac_inlet_3.dem_I-type-1.stl.stl",speciesWal
l,1,Vec3D(0,0,0),Vec3D(0,0,0),Vec3D(0,0,0));

105   
wallHandler.readTriangleWall("wgcp_ac_inlet_3.dem_I-type-2.stl.stl",speciesWal
l,1,Vec3D(0,0,0),Vec3D(0,0,0),Vec3D(0,0,0));

106   
wallHandler.readTriangleWall("wgcp_ac_inlet_3.dem_rings.stl.stl",speciesWall,1
,Vec3D(0,0,0),Vec3D(0,0,0),Vec3D(0,0,0));

107   
wallHandler.readTriangleWall("wgcp_ac_inlet_3.dem_adsorber.stl.stl",speciesWal
l,1,Vec3D(0,0,0),Vec3D(0,0,0),Vec3D(0,0,0));

108   
wallHandler.readTriangleWall("wgcp_ac_inlet_3.dem_floor.stl.stl",speciesWall,1
,Vec3D(0,0,0),Vec3D(0,0,0),Vec3D(0,0,0));

109   
110   
111   // Particle setup general
112   double volumePar = (4./3.*constants::pi*pow(radius,3.0)); // Volume of one 

particle
113   Vec3D pos; // Position particle

C.1. DRIVERS CODE OF THE SIMULATION 57



114   double r, theta, y; // For position particle in cylindrical coordinates
115   double radiusPar; // For temporary random particle radius
116   BaseParticle p0;
117   p0.setSpecies(speciesPar);
118   p0.setVelocity(Vec3D(0,0,0));
119   
120   
121   // Particle setup for I-type
122   /*
123           Both I-types are identical and have a symmetry line at z=0.
124           One section at the top on the small leg at in positive x- and z-coordinates 

is "filled" with particles.
125           While this is done, each particle position is mirrored to fill the I-type 

halves and translated to fill
126           the consecutive sections.
127           This is first done for all the rectangled sections, after which the angled 

sections are filled in a similar way.
128           */
129   if (createParItype)
130   {
131   double angle = -40./180.*constants::pi; // Angle of I-types from degree 

to radians
132   Vec3D pos2; // To temporarely save position
133   
134   // Particle setup one small section
135   double zsideItypeTopLeg = zsideBoxsection-widthItype; // Top leg 

z-position from zsideItypeTopLeg to zsideBoxsection
136   int numParItype = widthItype*spaceItype*heightItype/volumePar*0.5; // 

0.5 fill fraction
137   int numParItypeInserted = 0, numParItypeInteraction = 0;
138   while (numParItypeInserted < numParItype)
139   {
140   int failCounter = 0;
141   do
142   {
143   // Position withing one section volume at origin
144   pos.X = random.getRandomNumber(radiusPar,spaceItype-radiusPar);
145   pos.Y = random.getRandomNumber(radiusPar,2*heightItype); // 

factor 2 to prevent interaction
146   pos.Z = random.getRandomNumber(radiusPar,widthItype-radiusPar);
147   // Rotate positions in xy-plane
148   pos2.X = cos(angle)*pos.X-sin(angle)*pos.Y;
149   pos2.Y = sin(angle)*pos.X+cos(angle)*pos.Y;
150   // Translate positions to top of small leg
151   pos.X = pos2.X + xsideBoxsection;
152   pos.Y = pos2.Y + bottomBoxsection;
153   pos.Z += zsideItypeTopLeg;
154   // Set particle position
155   p0.setPosition(pos);
156   
157   failCounter++;
158   if (failCounter==1000)
159   {
160   std::cout << "Added particle with interaction" << std::endl;
161   numParItypeInteraction++;
162   break;
163   }
164   }
165   while (!checkParticleForInteraction(p0));
166   
167   // Increase counter for number of particles in one section
168   numParItypeInserted++;
169   
170   // Save original position
171   pos2 = pos;
172   // For each half I-type fill consecutive sections
173   for (int j=0; j<4; j++)
174   {
175   // 4 combinations of [x,z]: [1,1], [-1,1], [1,-1], [-1,-1]
176   // x-position alternating positive and negative
177   pos.X = pow(-1,j)*pos2.X;
178   // y-position doesn't change
179   pos.Y = pos2.Y;
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180   // z-position positive for first two iterations, then negative
181   if (j<2)
182   {
183   pos.Z = pos2.Z;
184   }
185   else
186   {
187   pos.Z = -pos2.Z;
188   }
189   
190   // Set positions of first section
191   p0.setPosition(pos);
192   // Change radius to random value, so only positions are similar
193   radiusPar =

random.getRandomNumber(radius-radiusVariation,radius+radiusVariati
on);

194   p0.setRadius(radiusPar);
195   // Place particle in first section
196   particleHandler.copyAndAddObject(p0);
197   
198   
199   // 5 more sections to fill for small leg, in total 6 are filled
200   for (int i=0; i<5; i++)
201   {
202   // Go down following small leg, z-position doesn't change
203   pos.X += pow(-1,j)*spaceItype*cos(angle);
204   pos.Y += spaceItype*sin(angle);
205   p0.setPosition(pos);
206   
207   // Change radius to random value, so only positions are 

similar
208   radiusPar =

random.getRandomNumber(radius-radiusVariation,radius+radiusVar
iation);

209   p0.setRadius(radiusPar);
210   
211   particleHandler.copyAndAddObject(p0);
212   }
213   
214   // Next start at top of main leg
215   pos.X += pow(-1,j)*spaceItype*cos(angle)*3; // Skip 3 sections
216   pos.Y += spaceItype*sin(angle)*3; // Skip 3 sections
217   if (j<2)
218   {
219   pos.Z -= zsideItypeTopLeg;
220   }
221   else
222   {
223   pos.Z += zsideItypeTopLeg;
224   }
225   
226   // 9 sections to fill in total for main leg
227   for (int i=0; i<9; i++)
228   {
229   // Go down following main leg, z-position doesn't change
230   pos.X += pow(-1,j)*spaceItype*cos(angle);
231   pos.Y += spaceItype*sin(angle);
232   p0.setPosition(pos);
233   
234   // Change radius to random value, so only positions are 

similar
235   radiusPar =

random.getRandomNumber(radius-radiusVariation,radius+radiusVar
iation);

236   p0.setRadius(radiusPar);
237   
238   particleHandler.copyAndAddObject(p0);
239   }
240   }
241   }
242   
243   /*
244               Now the angled sections connecting the small and main leg are filled.
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245               Since the 3 sections are all a bit different we take a parrallelogram 
like area, which fits all of them.

246               */
247   double ratioItypeParal = 2.5*spaceItype/zsideItypeTopLeg; // Ratio 

angled line: x/z
248   int numParItypeParal =

(widthItype+0.015)*spaceItype*heightItype/volumePar*0.5; // 0.015 
because more parrallelogram shaped, 0.5 fill fraction

249   int numParItypeParalInserted = 0, numParItypeParalInteraction = 0;
250   while (numParItypeParalInserted < numParItypeParal)
251   {
252   int failCounter = 0;
253   do
254   {
255   // See notebook for simple calculations
256   pos.X = random.getRandomNumber(radiusPar,spaceItype-radiusPar);
257   pos.Y = random.getRandomNumber(radiusPar,2*heightItype); // 

factor 2 to prevent interaction
258   if (pos.X <= 0.5*spaceItype)
259   {
260   pos.Z =

random.getRandomNumber(0.03-3./5.*pos.X+radiusPar,widthItype+0
.03-radiusPar);

261   }
262   else if (pos.X > 0.5*spaceItype)
263   {
264   pos.Z =

random.getRandomNumber(radiusPar,widthItype+3./5.*(spaceItype-
pos.X)-radiusPar);

265   }
266   // Rotate positions in xy-plane
267   pos2.X = cos(angle)*pos.X-sin(angle)*pos.Y;
268   pos2.Y = sin(angle)*pos.X+cos(angle)*pos.Y;
269   // Translate positions to lowest section of angled leg
270   pos.X = pos2.X + xsideBoxsection + spaceItype*cos(angle)*8;
271   pos.Y = pos2.Y + bottomBoxsection + spaceItype*sin(angle)*8;
272   // Set particle position
273   p0.setPosition(pos);
274   
275   failCounter++;
276   if (failCounter==1000)
277   {
278   std::cout << "Added particle with interaction" << std::endl;
279   numParItypeParalInteraction++;
280   break;
281   }
282   }
283   while (!checkParticleForInteraction(p0));
284   
285   // Increase counter for number of particles in one section
286   numParItypeParalInserted++;
287   
288   // Save original position
289   pos2 = pos;
290   // For each half I-type fill consecutive sections
291   for (int j=0; j<4; j++)
292   {
293   // 4 combinations of [x,z]: [1,1], [-1,1], [1,-1], [-1,-1]
294   // x-position alternating positive and negative
295   pos.X = pow(-1,j)*pos2.X;
296   // y-position doesn't change
297   pos.Y = pos2.Y;
298   // z-position positive for first two iterations, then negative
299   if (j<2)
300   {
301   pos.Z = pos2.Z;
302   }
303   else
304   {
305   pos.Z = -pos2.Z;
306   }
307   
308   // Set positions of first section
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309   p0.setPosition(pos);
310   // Change radius to random value, so only positions are similar
311   radiusPar =

random.getRandomNumber(radius-radiusVariation,radius+radiusVariati
on);

312   p0.setRadius(radiusPar);
313   // Place particle in first section
314   particleHandler.copyAndAddObject(p0);
315   
316   // 2 more sections to fill, 3 in total
317   for (int i=0; i<2; i++)
318   {
319   // Go up following angled leg
320   pos.X -= pow(-1,j)*spaceItype*cos(angle);
321   pos.Y -= spaceItype*sin(angle);
322   if (j<2)
323   {
324   pos.Z += 0.06;
325   }
326   else
327   {
328   pos.Z -= 0.06;
329   }
330   p0.setPosition(pos);
331   
332   // Change radius to random value, so only positions are 

similar
333   radiusPar =

random.getRandomNumber(radius-radiusVariation,radius+radiusVar
iation);

334   p0.setRadius(radiusPar);
335   
336   particleHandler.copyAndAddObject(p0);
337   }
338   }
339   }
340   int numParItypeInsertedTotal =

4*15*numParItypeInserted+4*3*numParItypeParalInserted;
341   int numParItypeInteractionTotal =

4*15*numParItypeInteraction+4*3*numParItypeParalInteraction;
342   std::cout << "Finished creating particles I-types. \nNumber inserted: "

<< numParItypeInsertedTotal << "\nNumber with interaction: " <<
numParItypeInteractionTotal << std::endl;

343   }
344   
345   
346   // Particle setup rings
347   if (createParRings)
348   {
349   // Particle setup outer-middle ring section
350   int numParOutMidRing =

constants::pi*(pow(radiusRings,2)-pow(radiusMiddleRing,2))*heightMiddleRin
g/volumePar*0.5; // 0.5 fill fraction

351   int numParOutMidRingInserted = 0, numParOutMidRingInteraction = 0;
352   double ratioOutMidRing =

(std::abs(topMiddleRing-topRings)+heightMiddleRing)/(radiusRings-radiusMid
dleRing); // Ratio right angle from middle ring to top

353   while (numParOutMidRingInserted < numParOutMidRing)
354   {
355   radiusPar =

random.getRandomNumber(radius-radiusVariation,radius+radiusVariation);
356   p0.setRadius(radiusPar);
357   
358   int failCounter = 0;
359   do
360   {
361   // See notebook for simple calculations
362   r =

random.getRandomNumber(radiusMiddleRing+radiusPar,radiusRings);
363   theta = random.getRandomNumber(0,2*constants::pi);
364   y =

random.getRandomNumber(topRings-(radiusRings-r)*ratioOutMidRing+ra
diusPar,topRings+3*radiusPar); // 3 times radius to prevent 
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interaction
365   
366   pos.X = r*cos(theta);
367   pos.Y = y;
368   pos.Z = r*sin(theta);
369   p0.setPosition(pos);
370   
371   failCounter++;
372   if (failCounter==1000)
373   {
374   std::cout << "Added particle with interaction" << std::endl;
375   numParOutMidRingInteraction++;
376   break;
377   }
378   }
379   while (!checkParticleForInteraction(p0));
380   
381   particleHandler.copyAndAddObject(p0);
382   numParOutMidRingInserted++;
383   }
384   std::cout << "Finished creating particles outer-middle ring section. 

\nNumber inserted: " << numParOutMidRingInserted << "\nNumber with 
interaction: " << numParOutMidRingInteraction << std::endl;

385   
386   
387   // Particle setup middle-inner ring section
388   int numParMidInRing =

constants::pi*(pow(radiusMiddleRing,2)-pow(radiusInnerRing,2))*heightInner
Ring/volumePar*0.5; // 0.5 fill fraction

389   int numParMidInRingInserted = 0, numParMidInRingInteraction = 0;
390   double ratioMidInRing =

(std::abs(topInnerRing-topMiddleRing)-heightMiddleRing+heightInnerRing)/(r
adiusMiddleRing-radiusInnerRing); // Ratio right angle from inner to 
middle ring

391   while (numParMidInRingInserted < numParMidInRing)
392   {
393   radiusPar =

random.getRandomNumber(radius-radiusVariation,radius+radiusVariation);
394   p0.setRadius(radiusPar);
395   
396   int failCounter = 0;
397   do
398   {
399   // See notebook for simple calculations
400   r =

random.getRandomNumber(radiusInnerRing+radiusPar,radiusMiddleRing-
radiusPar-0.006); // 6mm width ring

401   theta = random.getRandomNumber(0,2*constants::pi);
402   y =

random.getRandomNumber(topMiddleRing-heightMiddleRing-(radiusMiddl
eRing-r)*ratioMidInRing+radiusPar,topMiddleRing+5*radiusPar); // 
5 times radius to prevent interaction

403   
404   pos.X = r*cos(theta);
405   pos.Y = y;
406   pos.Z = r*sin(theta);
407   p0.setPosition(pos);
408   
409   failCounter++;
410   if (failCounter==1000)
411   {
412   std::cout << "Added particle with interaction" << std::endl;
413   numParMidInRingInteraction++;
414   break;
415   }
416   }
417   while (!checkParticleForInteraction(p0));
418   
419   particleHandler.copyAndAddObject(p0);
420   numParMidInRingInserted++;
421   }
422   std::cout << "Finished creating particles middle-inner ring section. 

\nNumber inserted: " << numParMidInRingInserted << "\nNumber with 
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interaction: " << numParMidInRingInteraction << std::endl;
423   }
424   
425   
426   // Particle setup for boxsection
427   if (createParBoxsection)
428   {
429   // Particle setup for boxsection bed
430   double heightBoxsectionBed = 0.03;
431   int numParBoxsectionBed =

2*xsideBoxsection*2*zsideBoxsection*heightBoxsectionBed/volumePar*0.5;
// 0.5 fill fraction

432   int numParBoxsectionBedInserted = 0, numParBoxsectionBedInteraction = 0;
433   while (numParBoxsectionBedInserted < numParBoxsectionBed)
434   {
435   radiusPar =

random.getRandomNumber(radius-radiusVariation,radius+radiusVariation);
436   p0.setRadius(radiusPar);
437   
438   int failCounter = 0;
439   do
440   {
441   pos.X =

random.getRandomNumber(-xsideBoxsection+radiusPar,xsideBoxsection-
radiusPar);

442   pos.Y =
random.getRandomNumber(bottomBoxsection+radiusPar,bottomBoxsection
+heightBoxsectionBed+7*radiusPar);

443   pos.Z =
random.getRandomNumber(-zsideBoxsection+radiusPar,zsideBoxsection-
radiusPar);

444   p0.setPosition(pos);
445   
446   failCounter++;
447   if (failCounter==1000)
448   {
449   std::cout << "Added particle with interaction" << std::endl;
450   numParBoxsectionBedInteraction++;
451   break;
452   }
453   }
454   while (!checkParticleForInteraction(p0));
455   
456   particleHandler.copyAndAddObject(p0);
457   numParBoxsectionBedInserted++;
458   }
459   std::cout << "Finished creating particles boxsection bed. \nNumber 

inserted: " << numParBoxsectionBedInserted << "\nNumber with 
interaction: " << numParBoxsectionBedInteraction << std::endl;

460   
461   
462   // Particle setup for boxsection cone
463   double radiusBoxsectionCone = zsideBoxsection;
464   int numParBoxsectionCone =

1./3.*constants::pi*pow(radiusBoxsectionCone,2)*std::abs(topBoxsection-bot
tomBoxsection)/volumePar*0.5; // 0.5 fill fraction

465   int numParBoxsectionConeInserted = 0, numParBoxsectionConeInteraction = 0;
466   while (numParBoxsectionConeInserted < numParBoxsectionCone)
467   {
468   radiusPar =

random.getRandomNumber(radius-radiusVariation,radius+radiusVariation);
469   p0.setRadius(radiusPar);
470   
471   int failCounter = 0;
472   do
473   {
474   // See notebook for simple calculations
475   r = random.getRandomNumber(0,radiusBoxsectionCone-radiusPar);
476   theta = random.getRandomNumber(0,2*constants::pi);
477   y =

random.getRandomNumber(bottomBoxsection+heightBoxsectionBed+7*radi
usPar,bottomBoxsection+heightBoxsectionBed+7*radiusPar+(radiusBoxs
ectionCone-r)*tan(40./180.*constants::pi)+10*radiusPar);
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478   
479   pos.X = r*cos(theta);
480   pos.Y = y;
481   pos.Z = r*sin(theta);
482   p0.setPosition(pos);
483   
484   failCounter++;
485   if (failCounter==1000)
486   {
487   std::cout << "Added particle with interaction" << std::endl;
488   numParBoxsectionConeInteraction++;
489   break;
490   }
491   }
492   while (!checkParticleForInteraction(p0));
493   
494   particleHandler.copyAndAddObject(p0);
495   numParBoxsectionConeInserted++;
496   }
497   std::cout << "Finished creating particles boxsection cone. \nNumber 

inserted: " << numParBoxsectionConeInserted << "\nNumber with 
interaction: " << numParBoxsectionConeInteraction << std::endl;

498   
499   
500   // Particle setup for boxsection strips
501   double widthBoxsectionStrip = 0.1, heightBoxsectionStrip = 0.05;
502   int numParBoxsectionStrip =

2*zsideBoxsection*widthBoxsectionStrip*heightBoxsectionStrip/volumePar*0.5
; // 0.5 fill fraction

503   int numParBoxsectionStripInserted = 0, numParBoxsectionStripInteraction
= 0;

504   while (numParBoxsectionStripInserted < numParBoxsectionStrip)
505   {
506   radiusPar =

random.getRandomNumber(radius-radiusVariation,radius+radiusVariation);
507   p0.setRadius(radiusPar);
508   
509   int failCounter = 0;
510   do
511   {
512   pos.X =

random.getRandomNumber(xsideBoxsection-widthBoxsectionStrip,xsideB
oxsection-radiusPar);

513   pos.Y =
random.getRandomNumber(bottomBoxsection+heightBoxsectionBed+7*radi
usPar,topBoxsection);

514   pos.Z =
random.getRandomNumber(-zsideBoxsection+radiusPar,zsideBoxsection-
radiusPar);

515   p0.setPosition(pos);
516   
517   failCounter++;
518   if (failCounter==1000)
519   {
520   std::cout << "Added particle with interaction" << std::endl;
521   numParBoxsectionStripInteraction++;
522   break;
523   }
524   }
525   while (!checkParticleForInteraction(p0));
526   
527   particleHandler.copyAndAddObject(p0);
528   numParBoxsectionStripInserted++;
529   
530   // Copy to other side box
531   pos.X = -pos.X;
532   p0.setPosition(pos);
533   particleHandler.copyAndAddObject(p0);
534   }
535   numParBoxsectionStripInserted *= 2;
536   numParBoxsectionStripInteraction *= 2;
537   std::cout << "Finished creating particles boxsection strip. \nNumber 

inserted: " << numParBoxsectionStripInserted << "\nNumber with 

64 APPENDIX C. WASTE GAS CLEANING PLANT



interaction: " << numParBoxsectionStripInteraction << std::endl;
538   }
539   
540   
541   // Particle setup flow
542   if (createParFlow)
543   {
544   int numParFlow =

constants::pi*pow(radiusFlow,2)*heightFlow/volumePar*0.25; // 0.25 fill 
fraction, also to prevent interaction

545   int numParFlowInserted = 0, numParFlowInteraction = 0;
546   while( numParFlowInserted < numParFlow )
547   {
548   radiusPar =

random.getRandomNumber(radius-radiusVariation,radius+radiusVariation);
549   p0.setRadius(radiusPar);
550   
551   int failCounter = 0;
552   do
553   {
554   r = random.getRandomNumber(0,radiusFlow-radiusPar);
555   theta = random.getRandomNumber(0,2*constants::pi);
556   y = random.getRandomNumber(0,heightFlow);
557   
558   pos.X =

r*cos(theta)+cos(anglePosFlow/180*constants::pi)*radiusPosFlow;
559   pos.Y = y-0.15; // LITTLE LOWER 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
560   pos.Z =

r*sin(theta)+sin(anglePosFlow/180*constants::pi)*radiusPosFlow;
561   p0.setPosition(pos);
562   
563   failCounter++;
564   if (failCounter==1000)
565   {
566   std::cout << "Added particle with interaction" << std::endl;
567   numParFlowInteraction++;
568   break;
569   }
570   }
571   while (!checkParticleForInteraction(p0));
572   
573   particleHandler.copyAndAddObject(p0);
574   numParFlowInserted++;
575   }
576   std::cout << "Finished creating particles for Flow. \nNumber inserted: "

<< numParFlowInserted << "\nNumber with interaction: " <<
numParFlowInteraction << std::endl;

577   }
578   
579   
580   std::cout << "Finished creating particles\n";
581   std::cout << "Total number of particles inserted: " <<

particleHandler.getNumberOfRealObjects() << std::endl;
582   
583   }
584   
585   void actionsAfterTimeStep() override
586   {
587   // If particles for flow have to be created
588   if (createParFlow)
589   {
590   // If number of intervals less than total number of intervals
591   if (numIntFlowCount<numIntFlow)
592   {
593   // Calculate check for new interval
594   int checkIntFlow = getTime()/timeIntFlow/numIntFlowCount;
595   // If check is true insert particles
596   if (checkIntFlow==1)
597   {
598   // Particle set up general
599   double volumePar = (4./3.*constants::pi*pow(radius,3.0)); // 

Volume of one particle
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600   Vec3D pos; // Position particle
601   double r, theta, y; // For position particle in cylindrical 

coordinates
602   double radiusPar; // For temporarely random particle radius
603   BaseParticle p0;
604   p0.setSpecies(speciesPar);
605   p0.setVelocity(Vec3D(0,0,0));
606   
607   // Particle setup flow
608   int numParFlow =

constants::pi*pow(radiusFlow,2)*heightFlow/volumePar*0.25; // 
0.25 fill fraction, also to prevent interaction

609   int numParFlowInserted = 0, numParFlowInteraction = 0;
610   while( numParFlowInserted < numParFlow )
611   {
612   radiusPar =

random.getRandomNumber(radius-radiusVariation,radius+radiusVar
iation);

613   p0.setRadius(radiusPar);
614   
615   int failCounter = 0;
616   do
617   {
618   r = random.getRandomNumber(0,radiusFlow-radiusPar);
619   theta = random.getRandomNumber(0,2*constants::pi);
620   y = random.getRandomNumber(0,heightFlow);
621   
622   pos.X =

r*cos(theta)+cos(anglePosFlow/180*constants::pi)*radiusPos
Flow;

623   pos.Y = y-0.15; // LITTLE LOWER 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!

624   pos.Z =
r*sin(theta)+sin(anglePosFlow/180*constants::pi)*radiusPos
Flow;

625   p0.setPosition(pos);
626   
627   failCounter++;
628   if (failCounter==1000)
629   {
630   std::cout << "Added particle with interaction" <<

std::endl;
631   numParFlowInteraction++;
632   break;
633   }
634   }
635   while (!checkParticleForInteraction(p0));
636   
637   particleHandler.copyAndAddObject(p0);
638   numParFlowInserted++;
639   }
640   std::cout << "Inserted new set of particles. Total of " <<

numParFlowInserted << " particles with " <<
numParFlowInteraction << " interactions." << std::endl;

641   
642   // Increase counter number of intervals
643   numIntFlowCount++;
644   }
645   }
646   }
647   }
648   
649   bool continueSolve() const override
650   {
651   // After last interval is started and add 1.0 second to be sure flow started
652   // AND kinetic energy is smaller than 1e-5 times the kinetic energy
653   if ( (getTime() > (((numIntFlow-1)*timeIntFlow)+1.0)) && (getKineticEnergy()

< 1e-5*getElasticEnergy()) )
654   {
655   std::cout << "No more flow" << std::endl;
656   return false;
657   }
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658   else
659   {
660   return true;
661   }
662   }
663   
664   void setDensity (double d)
665   {
666   rho = d;
667   }
668   
669   void setRadius (double r, double rv)
670   {
671   radius = r;
672   radiusVariation = rv;
673   }
674   
675   void setCOR (double wallCOR, double parCOR)
676   {
677   CORWall = wallCOR;
678   CORPar = parCOR;
679   }
680   
681   void setStiffness (double k)
682   {
683   stiffness = k;
684   }
685   
686   void setFrictionCoefficient (double sfc, double rfc)
687   {
688   slidingFrictionCoefficient = sfc;
689   rollingFrictionCoefficient = rfc;
690   }
691   
692   void setBoxsection (double bottom, double top, double xside, double zside)
693   {
694   bottomBoxsection = bottom;
695   topBoxsection = top;
696   xsideBoxsection = xside;
697   zsideBoxsection = zside;
698   }
699   
700   void setRings (double top, double rad, double topMiddle, double radMiddle,

double topInner, double radInner)
701   {
702   topRings = top;
703   radiusRings = rad;
704   topMiddleRing = topMiddle;
705   radiusMiddleRing = radMiddle;
706   topInnerRing = topInner;
707   radiusInnerRing = radInner;
708   }
709   
710   void setHeightRings (double hmr, double hir)
711   {
712   heightMiddleRing = hmr;
713   heightInnerRing = hir;
714   }
715   
716   void setItype (double space, double height, double width)
717   {
718   spaceItype = space;
719   heightItype = height;
720   widthItype = width;
721   }
722   
723   void setAdsorber (double rad)
724   {
725   radiusAdsorber = rad;
726   }
727   
728   void setCreateParticles (bool Itype, bool rings, bool boxsection, bool flow)
729   {
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730   createParItype = Itype;
731   createParRings = rings;
732   createParBoxsection = boxsection;
733   createParFlow = flow;
734   }
735   
736   void setFlow (double rad, double height, double anglePos, double radPos)
737   {
738   radiusFlow = rad;
739   heightFlow = height;
740   anglePosFlow = anglePos;
741   radiusPosFlow = radPos;
742   }
743   
744   void setFlowInterval (int numInt, double timeInt)
745   {
746   numIntFlow = numInt;
747   timeIntFlow = timeInt;
748   }
749   
750   private:
751   double rho, radius, radiusVariation, mass;
752   double CORWall, CORPar, stiffness;
753   double slidingFrictionCoefficient, rollingFrictionCoefficient;
754   
755   double bottomBoxsection, topBoxsection, xsideBoxsection, zsideBoxsection;
756   double topRings, radiusRings, topMiddleRing, radiusMiddleRing, topInnerRing,

radiusInnerRing;
757   double heightMiddleRing, heightInnerRing;
758   double spaceItype, heightItype, widthItype;
759   double radiusAdsorber;
760   
761   bool createParItype, createParRings, createParBoxsection, createParFlow;
762   
763   double radiusFlow, heightFlow, anglePosFlow, radiusPosFlow, timeIntFlow;
764   int numIntFlow, numIntFlowCount=1;
765   
766   LinearViscoelasticFrictionSpecies* speciesWall;
767   LinearViscoelasticFrictionSpecies* speciesPar;
768   LinearViscoelasticFrictionSpecies* speciesWallAndPar;
769   };
770   
771   int main(int argc, char** argv)
772   {
773   WGCP problem;
774   
775   problem.setSystemDimensions(3);
776   problem.setGravity(Vec3D(0,-9.81,0));
777   // Domain boundaries tightly around distributor etc. Comments is around whole 

system
778   problem.setXMin(-2); // -4.037
779   problem.setYMin(-2.4630); // -5
780   problem.setZMin(-0.325); // -2.4
781   problem.setXMax(2); // 4.037
782   problem.setYMax(0); // 0
783   problem.setZMax(0.325); // 2.4
784   problem.dataFile.setFileType(FileType::ONE_FILE);
785   problem.restartFile.setFileType(FileType::ONE_FILE);
786   problem.fStatFile.setFileType(FileType::ONE_FILE);
787   problem.eneFile.setFileType(FileType::ONE_FILE);
788   problem.setWallsWriteVTK(FileType::ONE_FILE);
789   problem.setParticlesWriteVTK(1);
790   
791   problem.setCOR(0.25,0.25); // Particle-wall, particle-particle
792   problem.setStiffness(40000);
793   problem.setFrictionCoefficient(0.25,0.40); // Sliding, rolling
794   problem.setBoxsection(-1.306,-1.046,0.331,0.325); // Bottom, top, xside, zside
795   problem.setRings(-0.5,0.275,-0.538,0.2,-0.6,0.10955); // Top outer, radius 

outer, top middle, radius middle, top inner, radius inner
796   problem.setHeightRings(0.03,0.05); // Middle, inner
797   problem.setItype(0.1,0.05,0.175); // Space, height, width of one section
798   problem.setAdsorber(0.2); // Radius
799   
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800   
801   // Add any configuration which is modified often below...
802   problem.setName("WGCP3"); // Make sure to add an (unique) name here
803   problem.setTimeMax(100);
804   problem.setTimeStep(1e-5);
805   problem.setSaveCount(2500); // 40 fps with timestep 1e-5
806   
807   problem.setDensity(900);
808   problem.setRadius(0.007,0.0005); // Radius, radius variation
809   problem.setCreateParticles(1,1,1,1); // Itype, rings, boxsection, flow
810   problem.setFlow(0.1,0.15,90,0.1); // Radius, height, angle position (0:x, 45:xz, 

90:z), radius position (0:center)
811   // Flow bottom is placed at top adsorber minus 0.15 in the code.
812   problem.setFlowInterval(100,0.75); // Number of flows (default: 1), time between 

flows
813   
814   // Set the number of domains for parallel decomposition
815   problem.setNumberOfDomains({3,1,1});
816   // For whatever reason a species have to be set in main() for parallel 

decomposition
817   LinearViscoelasticFrictionSpecies* species =

problem.speciesHandler.copyAndAddObject(LinearViscoelasticFrictionSpecies());
818   
819   // Now, start the simulation
820   problem.solve(argc, argv);
821   return 0;
822   }
823   
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1   #script to visualise the output of data2pvd of MercuryDPM in paraview.
2   #usage: change the path below to your own path, open paraview
3   #Tools->Python Shell->Run Script->VisualisationScript.py
4   #or run paraview --script=VisualisationScript.py 
5   
6   from paraview.simple import *
7   import os
8   import glob
9   

10   # Set path and name of simulation
11   os.chdir('c:/Apps/MercuryDPM/MercuryBuild/Drivers/USER/BlueScope/WasteGasCleaningPlant

/cluster')
12   name = 'WGCPc3_XZside'
13   
14   #Load data in any order
15   Data = glob.glob('./' + name + 'Processor_*_Particle_*.vtu')
16   
17   # Find the maximum time step and maximum number of processors
18   maxTime = 0
19   maxProc = 0
20   for fileName in Data:
21   tokens1 = fileName.split('.')
22   tokens2 = tokens1[1].split('_')
23   if int(tokens2[-1]) > maxTime:
24   maxTime = int(tokens2[-1])
25   if int(tokens2[-3]) > maxProc:
26   maxProc = int(tokens2[-3])
27   print 'maxTimeStep =',str(maxTime)
28   
29   # For each processor
30   for i in range(maxProc+1):
31   # Create correct order of time steps
32   DataSorted = []
33   for x in range(0,maxTime+1):
34   DataSorted.append('./' + name + 'Processor_' + str(i) + '_Particle_' +

str(x) + '.vtu')
35   
36   # Load the data and visualise it in Paraview
37   particles = XMLUnstructuredGridReader(FileName=DataSorted)
38   glyphP = Glyph(particles)
39   glyphP.GlyphType = 'Sphere'
40   glyphP.Scalars = 'Radius'
41   glyphP.Vectors = 'None'
42   glyphP.ScaleMode = 'scalar'
43   glyphP.ScaleFactor = 2
44   glyphP.GlyphMode = 'All Points'
45   glyphP.Orient = 0
46   Show(glyphP)
47   #glyphP.Coloring = 'Velocity'
48   
49   # Load wall and visualise it in Paraview
50   walls = XMLUnstructuredGridReader(FileName=glob.glob('./' + name + 'Wall_0.vtu'))
51   Show(walls)
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1   //Copyright (c) 2013-2018, The MercuryDPM Developers Team. All rights reserved.
2   //For the list of developers, see <http://www.MercuryDPM.org/Team>.
3   //
4   //Redistribution and use in source and binary forms, with or without
5   //modification, are permitted provided that the following conditions are met:
6   //  * Redistributions of source code must retain the above copyright
7   //    notice, this list of conditions and the following disclaimer.
8   //  * Redistributions in binary form must reproduce the above copyright
9   //    notice, this list of conditions and the following disclaimer in the

10   //    documentation and/or other materials provided with the distribution.
11   //  * Neither the name MercuryDPM nor the
12   //    names of its contributors may be used to endorse or promote products
13   //    derived from this software without specific prior written permission.
14   //
15   //THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
16   //ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17   //WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18   //DISCLAIMED. IN NO EVENT SHALL THE MERCURYDPM DEVELOPERS TEAM BE LIABLE FOR ANY
19   //DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20   //(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
21   //LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
22   //ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23   //(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24   //SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25   
26   /*
27   In progress..
28   Particles are added to a blast furnace, which is kept completely filled by continously
29   adding particles to the top. At the bottom at both sides the particles are discharged.
30   Goal: compare difference between using solid walls and periodic boundaries in 

z-direction.
31   */
32   
33   #include "Mercury3D.h"
34   #include "Species/LinearViscoelasticFrictionSpecies.h"
35   #include "Walls/TriangleWall.h"
36   #include "Walls/InfiniteWall.h"
37   #include "Boundaries/PeriodicBoundary.h"
38   #include "Particles/BaseParticle.h"
39   #include "Boundaries/CubeInsertionBoundary.h"
40   #include "Boundaries/DeletionBoundary.h"
41   
42   class BF : public Mercury3D
43   {
44   public:
45   
46   void setupInitialConditions() override
47   {
48   mass = 4.0/3.0*constants::pi*pow(radius,3)*rho;
49   
50   auto speciesWall =

speciesHandler.copyAndAddObject(LinearViscoelasticFrictionSpecies());
51   auto speciesPar =

speciesHandler.copyAndAddObject(LinearViscoelasticFrictionSpecies());
52   
53   // Wall species
54   speciesWall->setDensity(rho);
55   speciesWall->setStiffnessAndRestitutionCoefficient(stiffness,CORWall,mass);
56   
57   speciesWall->setSlidingStiffness(speciesWall->getStiffness()*2./7.);
58   speciesWall->setSlidingFrictionCoefficient(slidingFrictionCoefficient);
59   speciesWall->setSlidingDissipation(speciesWall->getDissipation()*2./7.);
60   
61   speciesWall->setRollingStiffness(speciesWall->getStiffness()*2./7.);
62   speciesWall->setRollingFrictionCoefficient(rollingFrictionCoefficient);
63   speciesWall->setRollingDissipation(speciesWall->getDissipation()/2./7.);
64   
65   speciesWall->setTorsionStiffness(speciesWall->getStiffness()*2./7.);
66   speciesWall->setTorsionFrictionCoefficient(0.1);
67   speciesWall->setTorsionDissipation(speciesWall->getDissipation()*2./7.);
68   
69   // Particle species
70   speciesPar->setDensity(rho);
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71   speciesPar->setStiffnessAndRestitutionCoefficient(stiffness,CORPar,mass);
72   
73   speciesPar->setSlidingStiffness(speciesPar->getStiffness()*2./7.);
74   speciesPar->setSlidingFrictionCoefficient(slidingFrictionCoefficient);
75   speciesPar->setSlidingDissipation(speciesPar->getDissipation()*2./7.);
76   
77   speciesPar->setRollingStiffness(speciesPar->getStiffness()*2./7.);
78   speciesPar->setRollingFrictionCoefficient(rollingFrictionCoefficient);
79   speciesPar->setRollingDissipation(speciesPar->getDissipation()*2./7.);
80   
81   speciesPar->setTorsionStiffness(speciesPar->getStiffness()*2./7.);
82   speciesPar->setTorsionFrictionCoefficient(0.01);
83   speciesPar->setTorsionDissipation(speciesPar->getDissipation()*2./7.);
84   
85   // Wall and Particle species
86   auto speciesWallAndPar =

speciesHandler.getMixedObject(speciesWall,speciesPar);
87   

speciesWallAndPar->setStiffnessAndRestitutionCoefficient(stiffness,CORWall,mas
s);

88   
89   

speciesWallAndPar->setSlidingStiffness(speciesWallAndPar->getStiffness()*2./7.
);

90   speciesWallAndPar->setSlidingFrictionCoefficient(slidingFrictionCoefficient);
91   

speciesWallAndPar->setSlidingDissipation(speciesWallAndPar->getDissipation()*2
./7.);

92   
93   

speciesWallAndPar->setRollingStiffness(speciesWallAndPar->getStiffness()*2./7.
);

94   speciesWallAndPar->setRollingFrictionCoefficient(rollingFrictionCoefficient);
95   

speciesWallAndPar->setRollingDissipation(speciesWallAndPar->getDissipation()*2
./7.);

96   
97   

speciesWallAndPar->setTorsionStiffness(speciesWallAndPar->getStiffness()*2./7.
);

98   speciesWallAndPar->setTorsionFrictionCoefficient(0.1);
99   

speciesWallAndPar->setTorsionDissipation(speciesWallAndPar->getDissipation()*2
./7.);

100   
101   
102   // Wall setup
103   // wallHandler.readTriangleWall(filename, species, scaleFactor, 

centerOfRotation, velocity, angularVelocity)
104   

wallHandler.readTriangleWall("furnace.dem_furnace.stl.stl",speciesWall,1,Vec3D
(0,0,0),Vec3D(0,0,0),Vec3D(0,0,0));

105   
106   if (useInfWalls)
107   {
108   // Infinite walls in z-direction
109   InfiniteWall w0;
110   w0.setSpecies(speciesWall);
111   w0.set(Vec3D(0,0,-1),Vec3D(0,0,getZMin()));
112   wallHandler.copyAndAddObject(w0);
113   w0.set(Vec3D(0,0,1),Vec3D(0,0,getZMax()));
114   wallHandler.copyAndAddObject(w0);
115   }
116   else
117   {
118   // Periodic boundaries in z-direction
119   PeriodicBoundary b0;
120   b0.set(Vec3D(0,0,1),getZMin(),getZMax());
121   boundaryHandler.copyAndAddObject(b0);
122   }
123   
124   
125   // Particle setup
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126   BaseParticle p0;
127   p0.setSpecies(speciesPar);
128   p0.setVelocity(Vec3D(0,0,0));
129   p0.setRadius(radius);
130   double volumePar = 4./3.*constants::pi*pow(radius,3);
131   
132   // Bottom half
133   int numParBottom =

2*radiusBottomBF*0.5*(getYMax()-getYMin())*(getZMax()-getZMin())/volumePar*0.2
5; // 0.25 fill fraction

134   int numParBottomInteraction =
particleInsertion(numParBottom,p0,-radiusBottomBF+radius,radiusBottomBF-radius
,getYMin()+radius,0.5*getYMax(),getZMin()+radius,getZMax()-radius);

135   std::cout << "Bottom half: inserted " << numParBottom << " particles, " <<
numParBottomInteraction << " with interaction" << std::endl;

136   
137   // Top half
138   int numParTop =

2*radiusTopBF*0.5*(getYMax()-getYMin())*(getZMax()-getZMin())/volumePar*0.25;
// 0.25 fill fraction

139   int numParTopInteraction =
particleInsertion(numParTop,p0,-radiusTopBF+radius,radiusTopBF-radius,0.5*getY
Min()+radius,getYMax(),getZMin()+radius,getZMax()-radius);

140   std::cout << "Top half: inserted " << numParTop << " particles, " <<
numParTopInteraction << " with interaction" << std::endl;

141   
142   std::cout << "Total number of particles inserted: " << numParBottom +

numParTop << std::endl;
143   
144   // Insertion boundary at top blast furnace
145   CubeInsertionBoundary insertionBoundary;
146   

insertionBoundary.set(p0,1,Vec3D(-radiusTopBF,getYMax()-0.066,getZMin()),Vec3D
(radiusTopBF,getYMax(),getZMax()),Vec3D(0,0,0),Vec3D(0,0,0),radius-radiusVaria
tion,radius+radiusVariation);

147   insertionBoundary.setVolumeFlowRate(1);
148   boundaryHandler.copyAndAddObject(insertionBoundary);
149   
150   // Deletion boundary at top BF, to prevent spillage
151   DeletionBoundary db;
152   db.set(Vec3D(0,1,0),getYMax());
153   boundaryHandler.copyAndAddObject(db);
154   
155   }
156   
157   
158   void actionsAfterTimeStep() override
159   {
160   particleDischarge();
161   }
162   
163   
164   double particleInsertion (int numPar, BaseParticle p0, double xmin, double xmax,

double ymin, double ymax, double zmin, double zmax)
165   {
166   int numParInserted=0, numParInteraction=0;
167   Vec3D pos;
168   while (numParInserted < numPar)
169   {
170   int failCounter = 0;
171   do
172   {
173   pos.X = random.getRandomNumber(xmin,xmax);
174   pos.Y = random.getRandomNumber(ymin,ymax);
175   pos.Z = random.getRandomNumber(zmin,zmax);
176   p0.setPosition(pos);
177   
178   failCounter++;
179   if (failCounter==1000)
180   {
181   std::cout << "Added particle with interaction" << std::endl;
182   numParInteraction++;
183   break;
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184   }
185   }
186   while (!checkParticleForInteraction(p0));
187   
188   particleHandler.copyAndAddObject(p0);
189   numParInserted++;
190   }
191   return numParInteraction;
192   }
193   
194   
195   void particleDischarge ()
196   {
197   /*
198           The particles are checked if they touch the bottom at the discharge ports. 

This is done
199           starting from the lowest particle id, since these are likely to be at the 

bottom.
200           When the particles are inserted completely random the order of their ids 

will be arbitrary
201           and a particle touching the bottom can be removed immediately. When the 

order of ids is not
202           arbitrary, for example when inserting sets with different kind of particles 

after each other,
203           there would be a bias towards the kind of particles inserted the latest. In 

both cases the
204           particle ids are first saved, but in case of random insertion the loop is 

stopped once there
205           are enough particles touching the bottom, after which they are all removed. 

In case of non-
206           random insertion, however, the particles to remove are picked at random first.
207           A simple if-statement switches between the two cases.
208           Keep in mind that removing particles needs to be done from the highest 

particle id downwards,
209           to not affect the remaining particles id which still have to be checked or 

removed.
210           */
211   // Mass to be removed per timestep
212   massToBeRemoved += flowRate*getTimeStep();
213   // Number of particles in the system at current time
214   int numPar = particleHandler.getNumberOfObjects();
215   // Average mass
216   double massParAverage = particleHandler.getMass()/numPar;
217   // Number of particles to be removed
218   int numParToBeRemoved = massToBeRemoved/massParAverage;
219   // Declare Vec3D for position particles
220   Vec3D pos;
221   // Declare radius and mass particle
222   double radiusPar, massPar;
223   // Declare vector to save particle id's
224   std::vector<int> idParInRegion;
225   // Declare counter for number of particles in region touching the bottom
226   int numParInRegion = 0;
227   
228   // If particles have to be removed
229   if (numParToBeRemoved > 0)
230   {
231   // For every particle, starting from lowest id since these are likely 

closest to the bottom
232   for (int i=0; i<numPar; i++)
233   {
234   // Get position and radius
235   pos = particleHandler.getObject(i)->getPosition();
236   radiusPar = particleHandler.getObject(i)->getRadius();
237   
238   // If bottom is touched
239   if (pos.Y-radiusPar <= getYMin())
240   {
241   // If within discharge port region
242   if (std::abs(pos.X) > radiusBottomBF-widthPort &&

std::abs(pos.X) < radiusBottomBF)
243   {
244   // Save particle id
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245   idParInRegion.push_back(i);
246   // Increase counter number of particles in region
247   numParInRegion++;
248   // If random insertion and enough particles to remove
249   if (randomInsertion && numParInRegion==numParToBeRemoved)
250   {
251   // Break from loop
252   break;
253   }
254   }
255   }
256   }
257   
258   // If less particles in region than number to be removed
259   if (numParInRegion < numParToBeRemoved)
260   {
261   numParToBeRemoved = numParInRegion;
262   }
263   // Else if non random insertion
264   else if (!randomInsertion)
265   {
266   // Pick random particles to remove, not needed when 

numParInRegion<numParToBeRemoved since they're all removed anyway
267   // Arrange particle ids in random order
268   std::random_shuffle(idParInRegion.begin(),idParInRegion.end());
269   // Sort particle ids of first number of particles to be removed in 

ascending order
270   

std::sort(idParInRegion.begin(),idParInRegion.begin()+numParToBeRemove
d);

271   }
272   
273   // For number of particles to be removed, highest id first
274   for (int i=numParToBeRemoved-1; i>=0; i--)
275   {
276   // Get particle mass
277   massPar = particleHandler.getObject(idParInRegion[i])->getMass();
278   // Remove particle
279   particleHandler.removeObject(idParInRegion[i]);
280   // Update mass to be removed
281   massToBeRemoved -= massPar;
282   }
283   }
284   }
285   
286   
287   void setDensity (double d)
288   {
289   rho = d;
290   }
291   
292   void setRadius (double r, double rv)
293   {
294   radius = r;
295   radiusVariation = rv;
296   }
297   
298   void setCOR (double wallCOR, double parCOR)
299   {
300   CORWall = wallCOR;
301   CORPar = parCOR;
302   }
303   
304   void setStiffness (double k)
305   {
306   stiffness = k;
307   }
308   
309   void setFrictionCoefficient (double sfc, double rfc)
310   {
311   slidingFrictionCoefficient = sfc;
312   rollingFrictionCoefficient = rfc;
313   }
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314   
315   void useInfiniteWalls (bool uif)
316   {
317   useInfWalls = uif;
318   }
319   
320   void setDischargePort (double w)
321   {
322   widthPort = w;
323   }
324   
325   void setDischarge (double fr, bool ri)
326   {
327   flowRate = fr;
328   randomInsertion = ri;
329   }
330   
331   void setFurnace (double rb, double rt)
332   {
333   radiusBottomBF = rb;
334   radiusTopBF = rt;
335   }
336   
337   private:
338   double rho, radius, radiusVariation, mass;
339   double CORWall, CORPar, stiffness;
340   double slidingFrictionCoefficient, rollingFrictionCoefficient;
341   
342   bool useInfWalls, randomInsertion;
343   
344   double widthPort;
345   double flowRate;
346   double massToBeRemoved=0;
347   
348   double radiusBottomBF, radiusTopBF;
349   };
350   
351   int main(int argc, char** argv)
352   {
353   BF problem;
354   
355   problem.setSystemDimensions(3);
356   problem.setGravity(Vec3D(0,-9.81,0));
357   problem.setXMin(-0.215);
358   problem.setYMin(0);
359   problem.setZMin(0);
360   problem.setXMax(0.215); // Half the total width of bottom
361   problem.setYMax(0.8);
362   problem.setZMax(0.03); // Depth of furnace
363   problem.dataFile.setFileType(FileType::ONE_FILE);
364   problem.restartFile.setFileType(FileType::ONE_FILE);
365   problem.fStatFile.setFileType(FileType::ONE_FILE);
366   problem.eneFile.setFileType(FileType::ONE_FILE);
367   problem.setWallsWriteVTK(FileType::ONE_FILE);
368   problem.setParticlesWriteVTK(1);
369   
370   problem.setCOR(0.25,0.25); // Particle-wall, particle-particle
371   problem.setStiffness(40000);
372   problem.setFrictionCoefficient(0.25,0.40); // Sliding, rolling
373   problem.setFurnace(0.18,0.137); // Radius bottom, radius top
374   
375   
376   //Add any configuration which is modified often below...
377   problem.setName("BF"); //Make sure to add an (unique) name here
378   problem.setTimeMax(100);
379   problem.setTimeStep(1e-5);
380   problem.setSaveCount(2500); // 40 fps with timestep 1e-5
381   
382   problem.setDensity(2500);
383   problem.setRadius(0.003,0.000); // Radius, radius variation
384   problem.useInfiniteWalls(1); // 1: Infinite Wall; 0: Periodic Boundary
385   problem.setDischarge(1.64,1); // Mass flow rate (200 g/min), random insertion 

(1: yes, 0: no)
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386   problem.setDischargePort(0.035); // Width 0.035 OR 0.03 DIFFERS PER PAPER!!
387   
388   
389   //Now, start the simulation
390   problem.solve(argc, argv);
391   return 0;
392   }
393   
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1   import math
2   import sys
3   
4   # The offset moves the baseline from the origin to the flat roller
5   offset = 360.0
6   
7   # Corners left and right where the flat and angled rollers meet
8   cornerLeft = -130+2.5
9   cornerRight = 180+2.5

10   angleRoller = 45
11   
12   # Open the xbox data, which is given as an argument in the command prompt
13   with open(sys.argv[1]) as f:
14   # Every line in f corresponds to one timestep
15   for line in f:
16   # Separate line by comma's to get array (0: date; 1-640: data points)
17   t = line.split(',')
18   
19   # Initialize empty x, y and baseline array
20   x = []
21   y = []
22   baseline = []
23   beltempty = False
24   # For every datapoint, so ignoring the first (index 0) element (date)
25   for i in range(1,len(t)):
26   # If the value is a number
27   if t[i] != '-nan':
28   # Convert datapoint (from string) to float, which is the distance to 

the center (xbox)
29   dist = (float(t[i]))
30   # The angle of each point is calculated with the ratio of half the 

total angle (28.5) and 
31   # half the total number of points (320). This is assuming the points 

are evenly distributed, 
32   # i.e. the xbox sensor is perfectly horizontal. 
33   thetax = (28.5*(i-320.0)/320.0 * 3.14/180.0)
34   
35   # Calculate x and y position and add to array
36   x.append(dist * math.sin(thetax))
37   y.append(1500.0 - dist * math.cos(thetax))
38   
39   # If the value is not a number: add to array, but give values outside 

system and below baseline
40   else:
41   x.append(-600)
42   y.append(-1)
43   
44   # Previously the baseline offset was estimated by taking it as the 

middle of a empty belt. 
45   # This of course varies a bit over time and is thus less predictable. 

Besides that it still needed
46   # some correction (e.g. -20), since a running empty belt lifts itself a 

bit from the flat roller. 
47   #            # If belt empty, reestimate offset
48   #            if i == 340 and t[i] != '-nan':
49   #                if y[i-1] < 400:
50   #                    offset = y[i-1] # -20
51   #                    beltempty = True
52   #                    #print("beltempty",offset)
53   #                else:
54   #                    beltempty = False
55   
56   # Sort x (and corresponding y) for more accurate area calculations
57   y = [i for _,i in sorted(zip(x,y))]
58   x = sorted(x)
59   area = 0.0
60   # For every x- and y-coordinate
61   for i in range(len(x)):
62   # Recompute the baseline based on the x-coordinates
63   # Left angled roller
64   if x[i] < cornerLeft:
65   baseline.append(-math.tan(angleRoller*math.pi/180)*(x[i] -
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cornerLeft) + offset )
66   # Flat roller
67   elif x[i] < cornerRight:
68   baseline.append(offset)
69   # Right angled roller
70   else:
71   baseline.append(+math.tan(angleRoller*math.pi/180)*(x[i] -

cornerRight) + offset )
72   
73   # Calculate area baseline and measurement between two consecutive points 

and y=0. 
74   # Distance between x-coordinates times average of y-coordinates. 
75   if i > 1:
76   areabaseline=(abs(x[i-1]-x[i]) * (baseline[i-1] + baseline[i])*0.5)
77   areameasurement=(abs(x[i-1]-x[i]) * (y[i-1] + y[i])*0.5)
78   # Partial area is the difference between both areas
79   A = areameasurement - areabaseline
80   # Only add partial area when it's positive, so only measurements 

above baseline add to total area
81   if A > 0.0:
82   area = area + A
83   
84   # Calculate volume flow rate (and approximate mass flow rate)
85   beltdisplacement = 2.15 * 10.0 # m/10s
86   volrate = (area * 0.000001) * beltdisplacement # 0.000001 m2/mm2 -> m3/s
87   bulkdensity = 800 # kg/m3
88   massrate = volrate * bulkdensity * 360.0 * 0.001 # ton/h 360 samples/h 0.001 

ton/kg
89   
90   # Print date and volume flow rate (and approximate mass flow rate)
91   #print t[0].strip(),",",volrate,",",massrate
92   print t[0].strip(),",",volrate
93   
94   # If the profile outline is needed, uncomment the two lines below (pos, print)
95   # and make sure to comment the line that prints the date and volume flow 

rate above
96   # Position array_x,array_y,array_baseline
97   #pos = [str(a) for a in x]+[str(a) for a in y]+[str(a) for a in baseline]
98   #print(', '.join(pos))
99   
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1   clear, clc
2   
3   # First run profile.py for the raw xbox data. The output csv files containing 
4   # the date/time and volume flow rate are used in this script. 
5   
6   ## MANUAL INPUT ################################################################
7   ## Flags
8   # Removes delay when xbox flow rate is behind on BW
9   removeDelay = true;

10   # Plots day and hour scale. If data is less than one day this will give an error so turn 
off.

11   plotDayHourScale = true;
12   # Plots a "trendline": horizontal lines at average of each cluster of points 
13   plotTrendline = true;
14   # Saves dates and bulk density as two columns in temporary csv file. It will be
15   # overwritten every run and is just there for easy copy paste to another csv/excel file. 
16   saveBulkDensity = false;
17   # Saves figure to fullscreen PDF, with name: BulkDensity_(name)
18   saveFigPDF = false;
19   
20   
21   # Single filename of xbox file from output profile.py
22   name = 'test3';
23   
24   # OR store multiple filenames in cell array and specify index of filename of interest
25   # (Typing three dots ... allows to continue on the next line for clarity)
26   names = {'centerline_2019-03-15_110250_out','centerline_2019-03-18_112120_out',...
27   'centerline_2019-04-02_154520_out','centerline_2019-04-05_082540_out',...
28   'centerline_2019-04-15_083540_out','centerline_2019-04-16_101330_out',...
29   'centerline_2019-05-08_104920_out'};
30   # Specify index of filename in names
31   numFile = 5;
32   # Name is now assigned the numFile^th filename from array with filenames
33   #name = names{numFile};
34   
35   # BW filename
36   BWname = 'BWdata';
37   # To know which column from BW to read, specify the column number (as given in 
38   # excel) of column containing dates of day of interest. We take the number of 
39   # dates (not mass flow rate), because for reading the column and row numbering 
40   # starts from 0, while in excel is starts from 1. So now the next column after 
41   # the dates will be read, which contains the mass flow rate. 
42   column = 26;
43   # Or, in case of multiple filenames stored, store all column numbers in array
44   # corresponding to array with filenames (same order)
45   columns = [14,17,20,23,26,29,32];
46   # Column in now assigned the numFile^th column number from array with column numbers
47   #column = columns(numFile);
48   
49   # To know until which row in BW to read, specify the row number (as given in 
50   # excel) of last row with data. This can be higher without problem (empty cells
51   # ar not read, so just take the last row number of the longest column in BW), 
52   # but when it's lower not all data will be read. 
53   lastrow = 10000;
54   
55   
56   ## READ DATA ###################################################################
57   # Read data BW
58   BWmassrate = csvread([BWname,'.csv'],[1,column,lastrow-1,column]);
59   # Read data xbox. Depending on profile.py output containing the mass flow rate 
60   # or not, comment/uncomment these two lines. 
61   #[date,volrate,massrate] = textread([name,'.csv'],'%s %f %f','delimiter',',');
62   [date,volrate] = textread([name,'.csv'],'%s %f','delimiter',',');
63   
64   
65   ## REMOVE DELAY ################################################################
66   ## It is possible that there is a delay in data between BW and xbox. This was 
67   ## definitely the case for a few datasets starting from 2019-03-15. The delay is
68   ## supposedly solved, so new datasets should not have it. If this is true, this
69   ## section might be completely removed. 
70   
71   if removeDelay
72   ## Check for both xbox and BW the first time the belt is loaded after it has been
73   ## empty. Compare the corresponding values to get rid of delay. 
74   # Initialize
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75   BWbegin = 1;
76   xboxBegin = 1;
77   
78   # Index first time empty
79   while BWmassrate(BWbegin) >= 25
80   BWbegin = BWbegin+1;
81   endwhile
82   # Since xbox is the one behind, index should be higher or equal to corresponding index BW
83   # Volume flow rate is exactly zero only when raw xbox data (ran through profile.py)
84   # has a line with only NaN values, which does not mean the belt is empty
85   while volrate(xboxBegin) >= 0.7 || xboxBegin < 6*(BWbegin-1) || volrate(xboxBegin) == 0
86   xboxBegin = xboxBegin+1;
87   endwhile
88   
89   # Index first time loaded after empty
90   while BWmassrate(BWbegin) < 25
91   BWbegin = BWbegin+1;
92   endwhile
93   while volrate(xboxBegin) < 0.7
94   xboxBegin = xboxBegin+1;
95   endwhile
96   
97   # Delay is difference between corresponding indices
98   delay = xboxBegin-1-6*(BWbegin-1);
99   # Get rid of delay: remove first few elements from array

100   # Date array stays intact, since it's not delayed (only the flow rate is)
101   if delay > 0
102   volrate(1:delay) = [];
103   endif
104   endif
105   
106   
107   ## CALCULATE DENSITY ###########################################################
108   # BW and Xbox measure respectively every 1 minute and 10 seconds, so number of 
109   # full minutes for xbox is number of elements in volrate divided by 6 and rounded down
110   numMinutes = floor(length(volrate)/6);
111   # Average volume rate per minute. First reshape the array to a matrix with 6 rows
112   # (every 10 seconds) and the number of columns equal to the number of full minutes. 
113   # Then take the mean of this matrix (which does this column wise). The result is
114   # a row array, which is transposed (') to give a column array. 
115   volrateMean = mean(reshape(volrate(1:numMinutes*6),6,numMinutes))';
116   
117   # BW and xbox can only be compared for as long as both have data, so the maximum
118   # index for which comparing can be done is equal to the length of the shortest array. 
119   idxMax = min(length(BWmassrate),length(volrateMean));
120   # Calculate density (BW from ton/h to kg/s)
121   density = BWmassrate(1:idxMax)*1000/360./volrateMean(1:idxMax);
122   
123   # Time array. Take every 6th date, i.e. every minute. Uncommenting the last 
124   # brackets will give only the time (without date). 
125   time = char(date(1:6:idxMax*6));#(:,end-7:end);
126   # Temporary "time" array used for plotting x positions
127   timex = [1:length(time)]';
128   
129   # Save bulk density to temporary file
130   if saveBulkDensity
131   # Open file
132   fidTemp = fopen('BulkDensityTemp.csv','w+');
133   for i=1:length(density)
134   # Print to file
135   fprintf(fidTemp,[time(i,:),',',num2str(density(i)),'\n']);
136   endfor
137   # Close file
138   fclose(fidTemp);
139   endif
140   
141   
142   ## CLUSTERS ####################################################################
143   ## First find the start and end indices of all clusters. Then calculate the a
144   ## average density of each cluster. A 1st order polynomial fit has also been tried
145   ## (and can still quickly be uncommented to try it out), but resulted in a mess. 
146   
147   # Get indices of density in appropriate region (ignore empty belt and other irregularities)
148   idxCluster = density>650 & density<900;
149   # Get difference of consecutive terms, which gives 1 and -1 at respectively the

E.2. OCTAVE SCRIPT FOR CALCULATING THE BULK DENSITY 83



150   # start and end indices of the clusters and zeros everywhere else. 
151   idxClusterDiff = diff([0;idxCluster;0]);
152   # Find indices with difference of 1, indicating start clusters
153   startCluster = find(idxClusterDiff>0);
154   # Find indices with difference -1 and subtract 1, to get indices end clusters 
155   endCluster = find(idxClusterDiff<0)-1;
156   # For each cluster
157   for i=1:length(startCluster)
158   # Get corresponding part of the temporary "time" array
159   timexFit{i} = timex(startCluster(i):endCluster(i));
160   # Get a 1st order polynomial fit
161   #coeffs = polyfit(timexFit{i},density(startCluster(i):endCluster(i)),1);
162   #densityFit{i} = polyval(coeffs,timexFit{i});
163   # Get array with same length as timexFit and with mean density of cluster as constant 

value
164   densityFit{i} = ones(size(timexFit{i}))*mean(density(startCluster(i):endCluster(i)));
165   endfor
166   
167   
168   ## PLOT FIGURE #################################################################
169   hf=figure(1); clf(1), hold on
170   # Plot density as function of (temporary) time
171   plot(timex,density,'.')
172   # Plot lines for scale
173   if plotDayHourScale
174   hourplot=plot([timex(end-60) timex(end)],[860 860],'LineWidth',5); # Hour
175   dayplot=plot([timex(end-60*24) timex(end)],[850 850],'LineWidth',5); # Day
176   legend([hourplot dayplot],'Hour scale','Day scale')
177   endif
178   # Plot "trendline"
179   if plotTrendline
180   for i=1:length(startCluster)
181   plot(cell2mat(timexFit(1,i)),cell2mat(densityFit(1,i)),'k','LineWidth',5)
182   endfor
183   endif
184   # Set axis to fit around area of interest ([xmin xmax ymin ymax])
185   axis([timex(1) timex(end) 650 900])
186   # Change axis labels from temporary time values to actual time
187   # First set number of ticks
188   set(gca,'XTick',[timex(1):2000:timex(end-1000),timex(end)])
189   # Set label of each tick to actual time
190   set(gca,'XTickLabel',{char([time(1:2000:end-1000,:);time(end,:)])})
191   hold off
192   
193   # Print to save figure to fullscreen pdf
194   if saveFigPDF
195   print(hf,['BulkDensity_',name,'.pdf'],'-dpdf','-S1280,720')
196   endif
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1   #!/bin/sh
2   
3   # Run this script with AoR.csv as input: ./RunMBox.sh AoR.csv
4   
5   # Set (part of) name of simulation
6   simName="NoNameNew8"
7   # Set bulk density and porosity
8   bulkdensity=525
9   porosity=0.51

10   
11   # Compile simulation code
12   make MBox
13   # Copy executable so that the simulation code itself can continued to be worked on 

and compiled
14   cp MBox MBox_$simName
15   # Initialize line number, only used to skip first line
16   lineNum=0
17   # For every line in file
18   while IFS= read -r line
19   do
20   # Increase line number
21   lineNum=$((lineNum+=1))
22   # Only do stuff once line number > 1, i.e. skip first line
23   if [ $lineNum -gt 1 ]
24   then
25   # Assign values
26   set -- $line
27   ID=$1
28   CORpp=$3
29   CORpw=$4
30   SFCpp=$5
31   SFCpw=$6
32   RFCpp=$7
33   RFCpw=$8
34   # Run simulation with extra command plus arguments (always has to be command + 

10 arguments)
35   ./MBox_$simName -cor_sfc_rfc $ID $CORpp $CORpw $SFCpp $SFCpw $RFCpp $RFCpw

$simName $bulkdensity $porosity
36   fi
37   done < "$1"
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1   //Copyright (c) 2013-2018, The MercuryDPM Developers Team. All rights reserved.
2   //For the list of developers, see <http://www.MercuryDPM.org/Team>.
3   //
4   //Redistribution and use in source and binary forms, with or without
5   //modification, are permitted provided that the following conditions are met:
6   //  * Redistributions of source code must retain the above copyright
7   //    notice, this list of conditions and the following disclaimer.
8   //  * Redistributions in binary form must reproduce the above copyright
9   //    notice, this list of conditions and the following disclaimer in the

10   //    documentation and/or other materials provided with the distribution.
11   //  * Neither the name MercuryDPM nor the
12   //    names of its contributors may be used to endorse or promote products
13   //    derived from this software without specific prior written permission.
14   //
15   //THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
16   //ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17   //WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18   //DISCLAIMED. IN NO EVENT SHALL THE MERCURYDPM DEVELOPERS TEAM BE LIABLE FOR ANY
19   //DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20   //(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
21   //LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
22   //ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23   //(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24   //SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25   
26   /*
27   Pretty much the same as box test (Box.cpp) made before, but some improvement and
28   can handle inputs for COR and sliding and rolling friction. Also a small lip is
29   added at the right wall, so particle-wall friction plays less of a roll for the AoR.
30   
31   Simple cubic box with periodic boundaries in the y-direction. Once the particles
32   are settled the right side wall is removed and the particles fall away to the side
33   and down. Once they are a bit away from the box they are removed.
34   Goal: measure the angle of repose and compare with experimental data.
35   */
36   
37   #include "Species/LinearViscoelasticFrictionSpecies.h"
38   #include "Mercury3D.h"
39   #include "Particles/BaseParticle.h"
40   #include "Walls/InfiniteWall.h"
41   #include "Walls/IntersectionOfWalls.h"
42   #include "Boundaries/PeriodicBoundary.h"
43   #include "Boundaries/DeletionBoundary.h"
44   #include <cstring> // strcmp
45   
46   class Box : public Mercury3D
47   {
48   public:
49   
50   void setupInitialConditions() override
51   {
52   mass = 4.0/3.0*constants::pi*pow(radius,3)*rho;
53   
54   auto speciesWall =

speciesHandler.copyAndAddObject(LinearViscoelasticFrictionSpecies());
55   auto speciesPar =

speciesHandler.copyAndAddObject(LinearViscoelasticFrictionSpecies());
56   
57   // Wall species
58   speciesWall->setDensity(rho);
59   speciesWall->setStiffnessAndRestitutionCoefficient(stiffness,CORpw,mass);
60   
61   speciesWall->setSlidingStiffness(speciesWall->getStiffness()*2./7.);
62   speciesWall->setSlidingFrictionCoefficient(SFCpw);
63   speciesWall->setSlidingDissipation(speciesWall->getDissipation()*2./7.);
64   
65   speciesWall->setRollingStiffness(speciesWall->getStiffness()*2./7.);
66   speciesWall->setRollingFrictionCoefficient(RFCpw);
67   speciesWall->setRollingDissipation(speciesWall->getDissipation()/2./7.);
68   
69   speciesWall->setTorsionStiffness(speciesWall->getStiffness()*2./7.);
70   speciesWall->setTorsionFrictionCoefficient(0.1);
71   speciesWall->setTorsionDissipation(speciesWall->getDissipation()*2./7.);
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72   
73   // Particle species
74   speciesPar->setDensity(rho);
75   speciesPar->setStiffnessAndRestitutionCoefficient(stiffness,CORpp,mass);
76   
77   speciesPar->setSlidingStiffness(speciesPar->getStiffness()*2./7.);
78   speciesPar->setSlidingFrictionCoefficient(SFCpp);
79   speciesPar->setSlidingDissipation(speciesPar->getDissipation()*2./7.);
80   
81   speciesPar->setRollingStiffness(speciesPar->getStiffness()*2./7.);
82   speciesPar->setRollingFrictionCoefficient(RFCpp);
83   speciesPar->setRollingDissipation(speciesPar->getDissipation()*2./7.);
84   
85   speciesPar->setTorsionStiffness(speciesPar->getStiffness()*2./7.);
86   speciesPar->setTorsionFrictionCoefficient(0.01);
87   speciesPar->setTorsionDissipation(speciesPar->getDissipation()*2./7.);
88   
89   // Wall and Particle species
90   auto speciesWallAndPar =

speciesHandler.getMixedObject(speciesWall,speciesPar);
91   

speciesWallAndPar->setStiffnessAndRestitutionCoefficient(stiffness,CORpw,mass)
;

92   
93   

speciesWallAndPar->setSlidingStiffness(speciesWallAndPar->getStiffness()*2./7.
);

94   speciesWallAndPar->setSlidingFrictionCoefficient(SFCpw);
95   

speciesWallAndPar->setSlidingDissipation(speciesWallAndPar->getDissipation()*2
./7.);

96   
97   

speciesWallAndPar->setRollingStiffness(speciesWallAndPar->getStiffness()*2./7.
);

98   speciesWallAndPar->setRollingFrictionCoefficient(RFCpw);
99   

speciesWallAndPar->setRollingDissipation(speciesWallAndPar->getDissipation()*2
./7.);

100   
101   

speciesWallAndPar->setTorsionStiffness(speciesWallAndPar->getStiffness()*2./7.
);

102   speciesWallAndPar->setTorsionFrictionCoefficient(0.1);
103   

speciesWallAndPar->setTorsionDissipation(speciesWallAndPar->getDissipation()*2
./7.);

104   
105   
106   // Wall setup
107   InfiniteWall w0;
108   w0.setSpecies(speciesWall);
109   // Left wall
110   w0.set(Vec3D(-1.0,0.0,0.0),Vec3D(getXMin(),0,0));
111   wallHandler.copyAndAddObject(w0);
112   // Right wall (index 1), which will be removed
113   w0.set(Vec3D(1.0,0.0,0.0),Vec3D(getXMax(),0,0));
114   wallHandler.copyAndAddObject(w0);
115   // Top wall, to prevent particles from shooting up too high while settling
116   w0.set(Vec3D(0.0,0.0,1.0),Vec3D(0,0,2.0*getZMax()));
117   wallHandler.copyAndAddObject(w0);
118   
119   IntersectionOfWalls w1;
120   w1.setSpecies(speciesWall);
121   // Bottom wall
122   w1.addObject(Vec3D(0.0,0.0,-1.0),Vec3D(0,0,getZMin()));
123   // Bottom wall: right edge
124   w1.addObject(Vec3D(-1.0,0.0,0.0),Vec3D(getXMax(),0,0));
125   wallHandler.copyAndAddObject(w1);
126   
127   // Small lip at right wall
128   IntersectionOfWalls w2;
129   w2.setSpecies(speciesWall);
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130   std::vector<Vec3D> w2Points(4);
131   w2Points[0] = Vec3D(getXMax(),0,getZMin());
132   w2Points[1] = Vec3D(getXMax(),0,getZMin()+0.01);
133   w2Points[2] = Vec3D(getXMax()+0.000001,0,getZMin()+0.01);
134   w2Points[3] = Vec3D(getXMax()+0.000001,0,getZMin());
135   w2.createOpenPrism(w2Points);
136   wallHandler.copyAndAddObject(w2);
137   
138   
139   // Solid boundaries y-direction
140   //        IntersectionOfWalls w2;
141   //        w2.setSpecies(speciesWall);
142   //        w2.addObject(Vec3D(0.0,1.0,0.0),Vec3D(0,getYMax(),0)); // Back wall
143   //        w2.addObject(Vec3D(-1.0,0.0,0.0),Vec3D(getXMax(),0,0)); // Back wall: 

right edge
144   //        wallHandler.copyAndAddObject(w2);
145   //
146   //        IntersectionOfWalls w3;
147   //        w3.setSpecies(speciesWall);
148   //        w3.addObject(Vec3D(0.0,-1.0,0.0),Vec3D(0,getYMin(),0)); // Front wall
149   //        w3.addObject(Vec3D(-1.0,0.0,0.0),Vec3D(getXMax(),0,0)); // Front wall: 

right edge
150   //        wallHandler.copyAndAddObject(w3);
151   
152   // Periodic boundaries y-direction
153   PeriodicBoundary b0;
154   b0.set(Vec3D(0.0,1.0,0.0),getYMin(),getYMax());
155   boundaryHandler.copyAndAddObject(b0);
156   
157   
158   // Deletion boundary angled 45 degrees at right side box
159   DeletionBoundary db0;
160   db0.set(Vec3D(1,0,-1),getXMax());
161   boundaryHandler.copyAndAddObject(db0);
162   
163   
164   // Particle setup
165   double volumePar = (4./3.*constants::pi*pow(radius,3.0)); // Volume of one 

particle
166   Vec3D pos; // Position particle
167   double radiusPar; // For temporary random particle radius
168   BaseParticle p0;
169   p0.setSpecies(speciesPar);
170   p0.setVelocity(Vec3D(0,0,0));
171   
172   int numPar =

fillFraction*(std::abs(getXMax()-getXMin()))*(std::abs(getYMax()-getYMin()))*(
std::abs(getZMax()-getZMin()))/volumePar; // Number of particles to be 
inserted

173   int numParInserted = 0, numParInteraction = 0; // Number of particle inserted
174   while( numParInserted < numPar )
175   {
176   radiusPar =

random.getRandomNumber(radius-radiusVariation,radius+radiusVariation);
177   p0.setRadius(radiusPar);
178   
179   int failCounter = 0;
180   do
181   {
182   pos.X =

random.getRandomNumber(getXMin()+radiusPar,getXMax()-radiusPar);
183   pos.Y = random.getRandomNumber(getYMin(),getYMax());
184   pos.Z =

random.getRandomNumber(getZMin()+radiusPar,2*getZMax()-radiusPar);
185   p0.setPosition(pos);
186   
187   failCounter++;
188   if (failCounter==1000)
189   {
190   std::cout << "Added particle with interaction" << std::endl;
191   numParInteraction++;
192   break;
193   }

F.2. DRIVERS CODE OF THE SIMULATION 89



194   }
195   while (!checkParticleForInteraction(p0));
196   
197   particleHandler.copyAndAddObject(p0);
198   
199   numParInserted++;
200   }
201   
202   std::cout << "Finished creating particles. \nNumber inserted: " <<

numParInserted << "\nNumber with interaction: " << numParInteraction <<
std::endl;

203   std::cout << "Particles settling down" << std::endl;
204   parSettled = false; // Particles are not settled
205   checkTime = getTime() + .1; // Time to check if particles are settled
206   }
207   
208   
209   void actionsBeforeTimeStep() override
210   {
211   // Open the gate once the kinetic energy is low enough to consider the 

particles settled (value found by trial and error)
212   if (!parSettled) // To stop checking the kinetic energy once the particles 

are settled
213   {
214   if (getTime() > checkTime) // Only check at certain times
215   {
216   std::cout << "Current KE: " << getKineticEnergy() << std::endl;
217   if (getKineticEnergy() < 0.0001) // For 0.0001 the particles are 

settled quite well
218   {
219   parSettled = true; // Particles are settled, no longer checking
220   std::cout << "Particles settled" << std::endl;
221   wallHandler.removeObject(1); // Remove right wall
222   std::cout << "Gate open" << std::endl;
223   }
224   else
225   {
226   checkTime = getTime() + .1;
227   }
228   }
229   }
230   }
231   
232   
233   bool continueSolve() const override
234   {
235   // CheckTime+1.0 just to be sure not to stop solving while the particles are 

settling
236   // Comparing energies is a useful criteria to determine arresting flow 

(according to website mercuryDPM)
237   if (getTime() > checkTime+1.0 && getKineticEnergy() < 1e-5*getElasticEnergy())
238   {
239   std::cout << "No more flow" << std::endl;
240   return false;
241   }
242   else
243   {
244   return true;
245   }
246   }
247   
248   void setDensity (double r)
249   {
250   rho = r;
251   }
252   
253   void setRadius (double r, double rv)
254   {
255   radius = r;
256   radiusVariation = rv;
257   }
258   
259   void setFillFraction (double ff)
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260   {
261   fillFraction = ff;
262   }
263   
264   void setStiffness (double k)
265   {
266   stiffness = k;
267   }
268   
269   void setCOR_SFC_RFC (char* COR1, char* COR2, char* SFC1, char* SFC2, char* RFC1,

char* RFC2)
270   {
271   // From char* to double
272   CORpp = strtod(COR1,NULL);
273   CORpw = strtod(COR2,NULL);
274   SFCpp = strtod(SFC1,NULL);
275   SFCpw = strtod(SFC2,NULL);
276   RFCpp = strtod(RFC1,NULL);
277   RFCpw = strtod(RFC2,NULL);
278   }
279   
280   double getLargestParticleDiameter ()
281   {
282   double lpd = 2*(radius+radiusVariation);
283   return lpd;
284   }
285   
286   private:
287   double rho, radius, radiusVariation, mass, fillFraction;
288   double CORpp, CORpw, SFCpp, SFCpw, RFCpp, RFCpw, stiffness;
289   
290   double checkTime;
291   bool parSettled;
292   };
293   
294   int main(int argc, char *argv[])
295   {
296   // Problem setup
297   Box problem;
298   
299   // Initialize simulation ID and (part of) name and bulkdensity and porosity
300   int simID = 0;
301   std::string simName;
302   double bulkdensity = 900, porosity = 0;
303   
304   // Check for additional arguments.
305   // IMPORTANT: When other arguments are passed (e.g. -tmin -tmax) they should be 

put in front of these.
306   // The argument counter (argc) is simply made smaller so the last elements of 

argv are not read in problem.solve().
307   // Not doing this gives errors, because these commands are not known by 

MercuryDPM.
308   // There might be an more elegant way, but this works.
309   for (int i=1; i<argc; i++)
310   {
311   if (!strcmp(argv[i], "-cor_sfc_rfc"))
312   {
313   if (i+10!=argc-1)
314   {
315   std::cout << "WARNING: Make sure -cor_sfc_rfc is the last argument 

called and has exactly 6 inputs! " << std::endl;
316   }
317   
318   // Assign values to variables for the Coefficient Of Restitution, 

Sliding Friction Coefficient and Rolling Friction Coefficent
319   // Order: COR particle-particle, particle-wall; SFC particle-particle, 

particle-wall; RFC particle-particle, particle-wall
320   

problem.setCOR_SFC_RFC(argv[i+2],argv[i+3],argv[i+4],argv[i+5],argv[i+6],a
rgv[i+7]);

321   // Set simulation ID (char to int)
322   simID = strtol(argv[i+1],NULL,10);
323   // Set simulation name
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324   simName = argv[i+8];
325   // Set bulk density and porosity
326   bulkdensity = strtod(argv[i+9],NULL);
327   porosity = strtod(argv[i+10],NULL);
328   
329   std::cout << "Started simulation with name " << simName << " and ID " <<

simID << std::endl;
330   
331   // Decrease argument counter by number of odd arguments
332   argc -= 11;
333   // Increase i by number of inputs to skip these and end loop
334   i+=10;
335   }
336   }
337   
338   problem.setSystemDimensions(3);
339   problem.setGravity(Vec3D(0.0,0.0,-9.81));
340   problem.setXMin(0.0);
341   problem.setYMin(0.0);
342   problem.setZMin(0.0);
343   problem.setXMax(0.1);
344   // YMax is dependent on radius, so set after radius is set
345   problem.setZMax(0.1);
346   problem.dataFile.setFileType(FileType::ONE_FILE);
347   problem.restartFile.setFileType(FileType::ONE_FILE);
348   problem.fStatFile.setFileType(FileType::ONE_FILE);
349   problem.eneFile.setFileType(FileType::ONE_FILE);
350   problem.setXBallsAdditionalArguments(" -solidf -v0 -s 8");
351   problem.setWallsWriteVTK(1);//FileType::ONE_FILE);
352   problem.setParticlesWriteVTK(1);
353   
354   problem.setStiffness(40000);
355   problem.setFillFraction(0.55);
356   
357   
358   // Add any configuration which is modified often below...
359   problem.setName("MBox_"+simName+"_SimID"+std::to_string(simID)); // Make sure to 

add an (unique) name here
360   problem.setTimeMax(10);
361   problem.setTimeStep(1e-5);
362   problem.setSaveCount(10000); // 40 fpx with timestep 1e-5
363   
364   problem.setDensity(bulkdensity/(1-porosity));
365   problem.setRadius(0.0025,0); // Radius, radius variation
366   problem.setYMax(5.*problem.getLargestParticleDiameter()); // Set after radius is 

set
367   // For every new random run, change these parameters to whatever (mercury 

default: 607,273)
368   problem.random.setLaggedFibonacciGeneratorParameters(540,341);
369   
370   
371   // Now, start the simulation
372   problem.solve(argc, argv);
373   return 0;
374   }
375   
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1   # Makes screenshots in Paraview of the last vtu files
2   
3   from paraview.simple import *
4   import os
5   import glob
6   
7   # Set path to vtu files, (part of) name of simulation and path to save screenshots
8   os.chdir('c:/Apps/MercuryDPM/MercuryBuild/Drivers/USER/BlueScope/MultiBoxTest')
9   name = 'CokeNew3'

10   path = 'c:/Apps/ProjectMercuryDPM/Multi Box Test/ImagesNew'
11   
12   # Load simulations in any order
13   Data = glob.glob('./MBox_' + name + '_SimID*Particle_0.vtu')
14   
15   # Find the maximum number of simulation IDs
16   maxID = 0
17   for fileName in Data:
18   tokens1 = fileName.split('.')
19   tokens2 = tokens1[1].split('_')
20   tokens3 = tokens2[-2].split('P') # P of Particle
21   tokens4 = tokens3[-2].split('D') # D of SimID
22   if int(tokens4[-1]) > maxID:
23   maxID = int(tokens4[-1])
24   
25   # For each simulation
26   for i in range(1,maxID+1):
27   # Load all vtu files in any order
28   Data2 = glob.glob('./Mbox_' + name + '_SimID' + str(i) + 'Particle_*.vtu')
29   # Find the maximum time step
30   maxTime = 0
31   for fileName in Data2:
32   tokens1 = fileName.split('.')
33   tokens2 = tokens1[1].split('_')
34   if int(tokens2[-1]) > maxTime:
35   maxTime = int(tokens2[-1])
36   print 'ID and maxTimeStep =', i, maxTime
37   
38   # Load last vtu file and visualise it in Paraview
39   particles = XMLUnstructuredGridReader(FileName='./MBox_' + name + '_SimID' +

str(i) + 'Particle_' + str(maxTime) + '.vtu')
40   glyphP = Glyph(particles)
41   glyphP.GlyphType = 'Sphere'
42   glyphP.Scalars = 'Radius'
43   glyphP.Vectors = 'None'
44   glyphP.ScaleMode = 'scalar'
45   glyphP.ScaleFactor = 2
46   glyphP.GlyphMode = 'All Points'
47   glyphP.Orient = 0
48   Show(glyphP)
49   
50   # Set camera to horizontal front view and zoom to fit
51   view = GetActiveView()
52   view.CameraPosition = [0,0,0]
53   view.CameraFocalPoint = [0,1,0]
54   view.CameraViewUp = [0,0,1]
55   view.Background = [1,1,1] # White
56   view.ViewSize = [1920,1080] # Fullscreen
57   view.InteractionMode = '2D'
58   view.OrientationAxesVisibility = 0
59   ResetCamera()
60   
61   # Save screenshot
62   WriteImage(path + '/MBox_' + name + '_SimID' + str(i) + '.png',view)
63   
64   # Delete generated object for next iteration
65   Delete(glyphP)
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1   clear, clc
2   
3   # Set (part of) name and path to screenshots
4   name = 'CokeNew3';
5   path = 'ImagesNew';
6   # Initialize simulation id
7   id = 1;
8   # Plot figures true/false
9   doPlot = false;

10   
11   # Open temporary file (This is a temporary file, which will be overwritten every
12   # run and is just there for easy copy paste. 
13   fidTemp = fopen('AoRTemp.csv','w+');
14   fprintf(fidTemp,[name,'\n']);
15   
16   # For all simulations
17   while exist([path,'/MBox_',name,'_SimID',num2str(id),'.png'])
18   # Load image
19   rgbImage = imread([path,'/MBox_',name,'_SimID',num2str(id),'.png']);
20   # Get number of rows and columns
21   [rows,columns,numberOfColorBands] = size(rgbImage);
22   
23   # Extract the individual red, green and blue color channels
24   #redChannel = rgbImage(:,:,1);
25   greenChannel = rgbImage(:,:,2);
26   #blueChannel = rgbImage(:,:,3);
27   
28   # Get the binary image
29   binaryImage = greenChannel < 200;
30   
31   # Plot originial and binary image
32   if doPlot
33   figure(1), clf(1)
34   subplot(2,1,1)
35   imshow(rgbImage)
36   title('Original')
37   subplot(2,1,2)
38   imshow(binaryImage)
39   title('Binary')
40   endif
41   
42   # Find the baseline
43   verticalProfile = sum(binaryImage,2);
44   topBed = find(verticalProfile,1,'last');
45   horizontalProfile = sum(binaryImage);
46   sidesBed = [find(horizontalProfile,1), find(horizontalProfile,1,'last')];
47   
48   # Arrays for x,y position bed
49   x = sidesBed(1):sidesBed(2);
50   y = zeros(size(x));
51   
52   # Scan across columns finding where the top of the hump is
53   for i=1:length(x)
54   col = x(i);
55   yy = topBed - find(binaryImage(:,col),1,'first');
56   if isempty(yy)
57   y(i)=0;
58   else
59   y(i)=yy;
60   endif
61   endfor
62   
63   % Cut off 10% at both sides for more accurate representation of AoR
64   cutoff = round(diff(sidesBed)*0.1);
65   xAoR = x(cutoff:end-cutoff);
66   yAoR = y(cutoff:end-cutoff);
67   
68   # Fit straight line through points
69   p = polyfit(xAoR,yAoR,1);
70   y1AoR = polyval(p,xAoR);
71   
72   # Calculate AoR
73   AoR(id) = atand((y1AoR(1)-y1AoR(end))/(xAoR(end)-xAoR(1)));
74   
75   # Write to temporary file
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76   fprintf(fidTemp,[num2str(AoR(id)),'\n']);
77   
78   # Plot outline and AoR line
79   if doPlot
80   figure(2), clf(2), hold on
81   axis equal
82   plot(x,y)
83   plot(xAoR,y1AoR)
84   hold off
85   endif
86   
87   # Increase simulation id
88   id = id+1;
89   endwhile
90   # Close temporary file
91   fclose(fidTemp);
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