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Abstract
Neural Radiance Fields (NeRF) achieve impressive view synthesis results for a variety of capture
settings including forward­facing capture of bounded and unbounded scenes. We present a trans­
fer learning­based method for neural radiance fields to efficiently synthesize novel views of complex
scenes using only a sequence of sample images from the UAVid dataset. We build on transferring the
feature color weights of a multilayer perceptron from low resolution images to high resolution scenes
by modelling the density and color of the scene as a function of 3D coordinates, latent appearance
encodings and viewing directions. Qualitative quantitative metric evaluations are conducted between
our proposed approach and other pre­existing NeRF and NeRF++ models, delivering a significant im­
provement over the later in synthesizing novel scenes at high quality and high fps from very less input
number of captured images.
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1
Introduction

1.1. Motivation & Research Statement
Photorealistic representation and rendering of real­world scenes are a highly challenging research top­
ics, with many important applications that range from movie production to virtual and augmented reality.
Real­world scenes are notoriously hard to model using classical mesh­based representations, as they
often contain structures, semi­transparent objects and topologies that constantly evolves over time due
to the often complex scene motion of multiple objects and people [26]. This ultimately demands the
rendering of the similar scenes from different freely placed viewpoints in a possibly unbounded scene.
This approach of novel view synthesis task is a long­standing problem in computer vision and CGI [8,
13, 25].
Recent deep learning based approaches have led to significant update towards generation of photo­
realistic novel view synthesis. Neural radiance fields (or NeRFs) is one of the recent state of the art
learning methods that are utilize for synthesizing novel views of complex scenes by optimizing an un­
derlying continuous volumetric scene function using a sparse set of input views. In short NeRF is an
implicit MLP­based model that maps 5D vectors (3D coordinates plus 2D viewing directions) to out­
put volume density and view­dependent emitted radiance at that spatial location, using fully­connected
(non convolutional) deep network, computed by fitting the model to a set of training views. The resulting
5D function can then be used to generate novel views with conventional volume rendering techniques
[39]. For instance Fig. 1.1 represents the gist of NeRF approach that optimizes a continuous 5D neural
radiance field representation (volume density and view­dependent color at any continuous location) of
a scene from a set of hundred input images.

Figure 1.1: Novel View renders from optimized NeRF representation [39]

Since its advent over the past two years, there has been a considerable amount of research being car­
ried out pertaining to novel view synthesis of static and dynamic scenes using NeRF. Pumarola, Albert
et al & Park, Keunhong et al in 2020, proposed methods that extended NeRF to dynamic scene do­
main, allowing to reconstruct and render novel images of real objects under rigid and non­rigid motions
from a single camera moving 360◦ around the scene [46, 73]. Same could be related to the case of
the research released by Tianye Li et al in March 2021, on a novel neural 3D view synthesis, which is

1
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able to represent multi­view video recordings of a dynamic real world scene in a compact & expressive
representation that enables high­quality view synthesis and motion interpolation [26].These previous
works propose approaches to decompose a dynamic scene into a canonical neural radiance field and
a set of deformation fields that map observation­space points to the canonical space, thereby enabling
them to learn the dynamic scene from images. This has ultimately led to new found applications of
NeRFs extended to CGI particularly in 3D character animation and motion. NeRF has been used in
reconstruction of animation human models from a multi­view video scenes[50].
In the past, generative adversarial learning approaches such as vid2vid and pix2pixHD approaches
have enabled high­resolution image synthesis [82, 3]. But they largely lack an understanding of the
3D world and the image or video generation process because they do not provide precise control over
camera viewpoint or object pose. Recent NeRF based approaches employ generative model for radi­
ance fields which have recently proven successful for novel view synthesis of a single scene [63]. This
has predominantly led to the applicability of NeRF on satellite imagery. Shadow­NeRF uses a self­
supervising learning framework for novel 3D view synthesis from very high spatial resolution optical
images taken from known viewing angles [14].
Now that we have established the potential of the concept and application aspects of novel view syn­
thesis using NeRF, we would like to introduce this research, where we develop a framework for 3D
scene reconstruction of UAV imagery. Some sample UAV captured imagery are shown below in Figure
1.2.

Figure 1.2: Sample aerial images from public datasets such as UAVid & Aeroscapes, captured using UAVs[33, 43]

1.2. Research Objectives and Expected Outcomes
The primary objective of this research is to develop a new learning framework to improve on the ex­
isiting baseline NeRF models for effecient 3D view synthesis of UAV imagery, with an optimal balance
between computational expenses, execution speed and the overall prediction accuracy. Specifically,
we perform the below­mentioned tasks in this research:

1 Conceptualize a tranfer learning framework for NeRF model for novel 3D view synthesis.

2 Implement and train the above conceptualization on a targeted UAVid dataset available online
[33].

3 Perform a qualitative evaluation of the generated 3D scenes using several standard metrics such
as MSE, PSNR, SSIM, etc.

4 Provide a detailed comparison between the existing NeRF models and our proposed method.

1.2.1. RA 1 Conceptualization
Neural radiance fields for novel view syntesis and 3D reconstruction has been addressed using various
approaches. Conceptualization hence, can be further broken down into the following:
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• Analyze implement the exisiting baseline NeRF based architetures.

• Analyze the shortcomings in the existing architecture and look for possible remedies

• Conduct a background study on the transfer learning.

• Analyze how transfer learning could benefit or improve the existing NeRF architecture for efficient
view synthesis.

• Implement transNeRF on the UAVid dataset [33] and analyze the results based on quantitative
evaluation between pre­existing models.

• Analyze the perfomance of the proposed model based on ablation studies involving the effect of
the input parameters on it’s quantitative efficiency.

1.2.2. RA 2 Implementation Aspects
Nowadays a lot of machine learning (or deep learning) libraries are available today such as TensorFlow
[35], PyTorch [48]etc. After taking into consideration the ease of programming and architecture building,
we decided to move ahead with PyTorch [48], because it has a very consistent programming structure,
multi­GPU setups and supportive documentation. Once the required deep learning libraries are de­
cided, we move on to the implementation of basic pre­existing NeRF models on the UAVid dataset[33],
thereby determining the shortcomings on the existing models and improvement on the prosposed ar­
chitecture.

1.2.3. RA 3 Evaluation & Comparisons
Once the proposed NeRF architecture has been trained, it needs to be evaluated based on standard
quantitative metrics. This stage involves the comparative performance evaluation between our pro­
posed approach and different state­of­the art baseline approaches, explained along the current litera­
ture.

1.3. Research Contributions
After the evaluating differentiating the performance of our proposed approach from the other baseline
models using qualitative and quantitative metrics. We propose a model that is efficient in synthesizing
high quality novel scenes at a higher frame rate from aminimum sequence of sampled UAV imagery. At
the end, we also outline the model’s drawbacks limitations in rendering dynamic scenes and transient
lighting conditions in the UAV imagery, while also suggesting possible future work that could be pursued
for improvement.

1.4. Report Structure
The following document contains 6 chapters. We begin with a detailed related work analysis, and
complete each of the above mentioned objectives in a sequential order. The above mentioned strategy
complies more or less with the overall structure of the report and the research questions have been
answered in respective sections. In the chapter 4 we propose our achitecture/model in detail followed
by the experiments and related results based on quantitative and qualitative analysis in chapter 5.
Chapter 6 details on the ablation studies conducted on our proposed model to evaluate its efficiency
and performance. Towards the end, we present the shortcoming of our proposed idea and suggest
certain possible improvements that could be made as a short conclusion for this research.





2
Related Research

2.1. Structure from Motion
With the recent development & availability of lightweight and compact digital cameras along with the
continuous development of newer and more powerful algorithms in computer vision has revolutionized
the classical aerial photogrammetry approaches leading to a new digital photogrammetry based on a
Structure­from­Motion (SfM) approach that provides excellent results in terms of spatial resolution at a
low computation cost.
Structure from Motion (SfM) is a relatively new photogrammetric approach that is gaining widespread
use for generation of high­resolution mapping products (i.e., point clouds and orthoimages) from im­
agery acquired with inexpensive, consumer­grade cameras with sufficient endlap and sidelap. The
general steps for SfM photogrammetry are shown in Figure 2.1. The processing starts with automatic
extraction of key features from the acquired imagery [75]. The extracted features are described in
multidimensional descriptors like SIFT [32] which match the extracted features based on the multidi­
mensional maximum likelihood of descriptors [69] and outlier rejection criteria [10]. The procedure is
followed by bundle adjustment [77] to simultaneously solve for the intrinsic and extrinsic orientation pa­
rameters of the camera to generate a sparse point cloud[75]. The intrinsic orientation (IO) parameters
describe the optical characteristics of the camera, such as its focal length, principal point, skew coeffi­
cient, and radial and tangential lens distortion coefficients. The extrinsic orientation (EO) parameters
are the 3D position and orientation of the camera when the images were acquired.

Figure 2.1: SfM Photogrammetry workflow for a set of overlapping image sequence captured using a UAV.[21]

These viewing camera positions are coupled with the ground control points (GCP) or the UAV’s global
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navigation satellite system (GNSS) for a secondary bundle adjustment, to render the reconstruction
as per real world coordinate system The sparse point cloud is densified for rendering the depth maps
using an algorithm called multi­view stereopsis (MVS) [15]. Multiview stereopsis generates a depth
map for pixels of the image based on photo­consistency of the pixels in the oriented block from the
secondary bundle adjustment process, which could be later used for rendering mesh surfaces, digital
terrain models (DTMs), and orthorectified imagery [21].

2.1.1. COLMAP
A variety of SfM strategies have been proposed including incremental [69, 2], hierarchical [18], and
global approaches [74, 85]. Arguably, incremental SfM is the most popular strategy for reconstruction
of sequence of photo collections. A recent work by Schonberger, L et al [62] propose COLMAP an in­
cremental SfM strategy that introduces a geometric verification strategy that augments the scene graph
with information subsequently improving the robustness of the initialization and triangulation method
that produces significantly more complete scene structure than the state of the art at reduced compu­
tational cost (see Figure 2.2).

Figure 2.2: COLMAP ­ an increamental SfM technique for efficient reconstruction [62]

They introduce an iterative bundle adjustment, re­triangulation and outlier filtering strategy that signif­
icantly improves completeness and accuracy by mitigating drift effects. The final and most important
contribution from the literature is a more efficient bundle adjustment parameterization for dense photo
collections through redundant view mining. This results in a system that clearly outperforms the previ­
ous state of the art reconstruction techniques in terms of robustness and completeness while preserving
its robustness & efficiency.

2.2. Multi Layer Perceptron
One of the recent works in computer vision and more particularly in the domain of 3D scene recon­
struction involves encoding scenes or objects in the weights of an MLP that directly maps from a 3D
spatial location to an implicit representation of the shape By using a MLP, the researchers leveraged
machine learning to have the machine detect the correct function to represent the scene [11]. As input,
the model takes in a series of 3D coordinates together to sample the scene throughout, in the format
of a fixed­width vector. By taking in these coordinates and producing an RGB and density value along
a ray, the model can composite the ray to generate a final pixel value for an image prediction. It then
compares images it generates to those that already exist, or “ground truth”. It then uses the difference
between its prediction and the ground truth, on a per pixel basis to compute a loss value, or a rough
estimate on how well this iteration of the model performed. Through back­propagation and stochastic
gradient descent, the model can directly use this loss function to adjust its parameters and create a new
iteration of the model that results in a lower loss. MLPs have found their applications recently in map­
ping from low­dimensional coordinates to colors has also been used for representing other graphics
functions such as images [71], textured materials [55, 56], and indirect illumination values [59].

2.3. Neural 3D scene synthesis
Over the recent years, several approaches have been investigated with regard to implicit representa­
tion of continuous 3D shapes as level sets by optimizing deep neural networks that map coordinates
(xyz) to signed distance functions or occupancy fields [17, 22, 37]. However, these models are limited
by their requirement of access to ground truth 3D geometry, typically obtained from synthetic 3D shape
datasets such as Pix3D & ShapeNet [72, 7]
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Subsequent works have relaxed the requirement of ground truth 3D shapes by formulating differen­
tiable rendering functions that allow neural implicit shape representations to be optimized using only
2D images. Niemeyer et al [42] represent surfaces as 3D occupancy fields and use a numerical method
to find the surface intersection for each ray, then calculate an exact derivative using implicit differenti­
ation. Each ray intersection location is provided as the input to a neural 3D texture field that predicts
a diffuse color for that point. Sitzmann et al [67] proposed Scene Representation Networks (SRNs),
a continuous, 3D structure­aware scene representation that encodes both geometry and appearance.
SRNs represent scenes as continuous functions that map world coordinates to a feature representation
of local scene properties. A major advantage of this approach of using SRNs is that it can be trained
end­end from only 2D images and their camera poses, without access to depth (or shape). Though
these studies have been successful in potentially represent complicated and high resolution geome­
try, they been limited to simple shapes with low geometric complexity, resulting in over­smoothed or
sometimes distorted renderings.

2.4. View synthesis & volumetric rendering
Previous studies have shown that, photorealistic novel views could be renderd, given a dense sampling
of views utilising sample interpolation techniques [12, 25]. For novel view synthesis with sparse view
samplings, there has been a substantial progress in domain of computer vision and graphics research
community by predicting traditional geometric appearances and representations from captured images.
One of the recent popular class of approaches involves mesh­based representations of scenes with
either diffuse [79] or view­dependent appearance [13, 86]. Differentiable rasterizers [29, 31] or path­
tracers [27, 44] can directly optimize mesh representations to reproduce a set of input images using
gradient descent.
However, gradient­based mesh optimization based on image reprojection is often difficult, likely be­
cause of local minima or poor conditioning of the loss landscape. Furthermore, this strategy requires
a template mesh with fixed topology to be provided as an initialization before optimization [27], which
is typically unavailable for unconstrained real­world scenes.
Volumetric renderings are a more recent approaches that are able to realistically represent complex
shapes and materials, are well­suited for gradient­based optimization, and tend to produce less visually
distracting artifacts than mesh­based methods. Although early literatures were inclined more towards
captured images to directly color voxel grids [64, 76], recent studies have proven to used a sequence
of multiple scenes (or from a set of sampled input images) to train deep networks to predict sampled
volumetric representation and then use either alpha­compositing [70, 52, 51, 95]to render novel views
at test time. Previously, a combination of convolutional neural networks (CNNs) and sampled voxel
grids have been utilised for volumetric rendering for specific scenes. In these approaches CNN mostly
compensates for discretising from a low resolution voxel grids to a fairly decent resolution output ren­
dering as shown in one of the literatures by Lombardi et al on neural volume rendering depicted in
Fig.2.3 [68, 30].

Figure 2.3: In the “Neural Volumes: Learning Dynamic Renderable Volumes from Images” approach, a latent code is decoded
into a 3D volume and a new image is then obtained by volume rendering from multiview captured images. [30]

While these volumetric techniques have achieved impressive results for novel view synthesis, their
ability to scale to higher resolution imagery is fundamentally limited by time and space complexity due
to their discrete sampling. Moreover, rendering higher resolution images requires a finer sampling of
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3D space [39]. Neural radiance fields tends to solve this challenge by encoding a continuous volume
within the parameters of a deep fully­connected neural network (FCN), thereby producing renderings
with significantly higher quality as compared to prior conventional volumetric rendering approaches
discussed earlier.

2.5. Neural Radiance Fields & related research
Over the past two years the approach of Neural volumetric rendering or Neural Radiance Fields (NeRF),
has garnered significant attention in the computer vision and CGI community [39]. At the backbone
of NeRF is an implicit MLP­based model that maps 5D vectors (i.e, 3D coordinates plus 2D viewing
directions), to opacity and color values. These 5D representation vectors are later computed by fitting
the model to a set of training views. The resulting 5D function can then be used to generate novel
views with conventional volume rendering techniques. The Fig. 2.4 depicts the basic overview of
the NeRF representation process. In NeRF, the continuous 5D input (x,y,z,θ,ϕ) scene representation
is approximated with an MLP network F(Θ) and optimize its weights Θ to map from each input 5D
coordinate to its corresponding directional emitted color (i.e, RGB) & volume density (σ). These colors
and densities form rays that intersect the object. Volume rendering then composites these values into
an actual image. After this image is produced, its rendering loss is computed on a per pixel basis. In the
current NeRF literature[39] researchers have adopted two main strategies to reduce this rendering loss
and generate high quality renderings, namely positional encoding and hierarchical volume sampling.
Positional encoding was mainly adopted to map continuous input coordinates into a higher dimensional
space to enable MLP layer to more easily approximate a higher frequency function (i.e, 5D inputs
comprising of position and directions)[78]. Heirarchial volumetric rendering, inspired by previous work in
volume rendering, was adopted to increase rendering efficiency by allocating samples proportionally to
their expected effect on the final rendering. The author(s) suggest utilizing two simultaneously optimize
networks: coarse and fine for respective sample locations on the final rendering. The hierarchial volume
rendering approach allocates more samples to regions we expect to contain visible content, thereby
improving on the quality of final rendered output scene.

Figure 2.4: In the NeRF approach, synthesized images by sampling 5D coordinates (location and viewing direction) along
camera rays are fed into an MLP to produce a color and volume density. Later using volume rendering techniques these
composite values are converted into the final rendering. [39]

Arguably, the impact of the NeRF paper lies in its simplicity i.e, just an MLP taking in a 5D coordinate
and outputting density and color. However the basic (or vanilla) NeRF model has been open to many
recent opportunities to improve upon such as its ability to represent only static scenes, not able to
generalize over different scenes (or even objects), while coming at a fairly slow training and rendering
speed. More recent works have been instrumental on improving over the baseline NeRF in terms of
its performance, speed of training and rendering [28, 58, 93], pose estimation [91], scene composition
[41]and relighting [34, 4], dynamic scene rendering [47, 88, 26], etc.

2.6. Recent trends in improving Neural Radiance Fields
As discussed breifly in the previous sections, the capacity of NeRF to model view­dependent appear­
ance, in the absence of regularization, leads to an inherent ambiguity between 3D shape and radiance
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that can output degenerate solutions. For any random irregular shape, there is a possibility of radiance
fields that perfectly works fine with the training images, but generalizes poorly to render novel test views
[93].

2.6.1. Neural scene rendering from unconstrained photo collections
Although neural radiance fields have greatly impacted the 3D reconstruction and rendering, it requires
images that are captured in static conditions, minor illumination disturbances and no transient/dynamic
objects in scenes [refer Figure 2.5]. In contrast to the conventional NeRF model [39], NeRF in Wild
proposed by Martin­Brualla, Ricardo, et al [34], enables failry decent & reliable rendering from un­
constrained photo collections. The proposed model separates static and transient objects during the
rendering process using a Generative Latent Optimization (GLO) [60] scheme as means to adapt the
NeRF [39] to variable lighting and photometric post­processing. Since the transient objects are not cer­
tainly located in their current poses in different scenes, their model computes the uncertainty of rays.
Then, based on the computed uncertainty, their model focuses less on rays with high uncertainty for
rendering transient scenes. A major drawback in the NeRF­in­wild framework, which the authors sug­
gest is the degradation in rendering quality pertaining to areas in the scene that are least observable
in the training dataset [34].

Figure 2.5: (a) Random unstructured photos from internet, (b) Scene renderings using NeRF­W [34]

2.6.2. D­NeRF: NeRF for dynamic scene rendering
Despite achieving an unprecedented level of photorealistic rendered images, NeRF [39] is only ap­
plicable to static scenes, where the same spatial location can be queried from different images. The
proposed model by Pumarola, Albert, et al [53] aims to resolve that issue where it only requires a single
view for each timestamp, indicating it is highly applicable to real­world rendering. They achieve this
level of dynamic scene rendering through addition of an additional ”deformation network”. The main
function of this deformation network is to predict the positional difference in a specific timestamp with
respect to a certain location. With estimated location by the deformation network, the conventional
MLP function in the vanilla NeRF [39] predicts colors and volume density. The proposed idea is simple
and intuitive since it enables rendering video sequences with a single view for a specific timestamp.

2.6.3. NeRF++
Based on the recent research by Zhang, Kai, et al. [93] in 2020 & Rebain, Daniel, et al [58] on improving
neural radiance fields, outlined the major downside in the exisiting NeRF [39] model’s challenge in
rendering outdoor scenes due to the ambiguity of setting background depth. In simple terms, NeRF
is incapable of rendering unbounded scenes. NeRF++[93] addresses this issue of disambiguity by
means of foreground and background seperation, where the authors set the unit sphere to separate
the foreground and background of scenes. For the points in the foreground, that is to say, points inside
the unit sphere, they follow the same method from the original baseline NeRF research [39]. However,
for the points in the background, that is to say, points outside the unit sphere, they reparameterize the
coordinate with its distance. As a consequence, the foreground network receives 5­dimensional inputs;
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however, the background network receives 6­dimensional inputs. They label this approach as inverted
sphere parameterization.

2.6.4. Neural radiance fields for shadow­aware multi­view satellite photogram­
metry of aerial images.

Neural radiance fields have found their application extended in the domain of aerial scene reconstruc­
tion, more specifically reconstruction of multi­view satellite imagery. Recently Derksen, Dawa, et al
[14], proposed a generic scene reconstruction approach ”Shadow­NeRF”, that leverages neural radi­
ance fields to harness non­correlation effects (such as that of shadows) in satellite images and use
them as a source of information rather than a source of perturbation for novel 3D views synthesis. For
each scene, Shadow­NeRF is trained using very high spatial resolution optical images as input views
taken from known viewing angles. The learning process is a self­supervised by an image reconstruc­
tion loss & requires no labels or shape priors. To accommodate for transient lighting conditions both
from a directional light source (like the sun) and a diffuse light source (like the sky), Shadow­NeRF
extend the NeRF approach in two ways, firstly by modelling the direct illumination from the sun using
a local light source visibility field and then learning the indirect illumination from a diffuse light source
(sky) as a non­local color field function of the position of the sun. Combinating these two factors during
the volume rendering stage reduces the altitude and color errors in shaded areas as compared to just
utilizing the baseline NeRF model[39]. Figure 2.6 shows the S­NeRF architecture as per the literature
[14].

Figure 2.6: Shadow­NeRF samples multiview satellite imagery for synthesizing novel 3D scenes [14].





3
Transfer Learning

3.1. Preview
Over the past many years, traditional machine learning approaches have achieved great success and
have been successfully applied in many practical applications. But they are still confined to certain limi­
tations for certain real­world scenarios. The ideal scenario of a machine learning approach is that there
are abundant labeled training instances, which have the same distribution as the test data. However,
collecting sufficient training data is often expensive, time­consuming, or even unrealistic in many sce­
narios. Semi­supervised learning [96] or reinforcement learning [84] approaches can partly solve this
problem by relaxing the need of mass labeled data. Typically, a semi­supervised approaches [97] only
requires a limited number of labeled data, and it utilizes a large amount of unlabeled data to improve
the learning accuracy, where as reinforcement learning does not rely on any particular labelled dataset
and functions on a state­action­reward space [84, 23]. But in many cases, unlabeled instances are
also difficult to collect, which usually makes the resultant traditional models unsatisfactory[16].
Transfer learning focuses on ”transferring the knowledge across domains, has been a promising ma­
chine learning method that’s been used for solving the above challenges faced by the conventional
approaches over the recent years. The main science behind transfer learning comes from the human
psycology, where according to the ”generalization theory of transfer” proposed by psychologist C.H.
Judd, suggests that learning to transfer is the result of the generalizing experiences. It is possible to
realize the transfer from one situation to another as long as a person generalizes his experience. Ac­
cording to this theory, the prerequisite of transfer is that there needs to be a connection between two
learning activities. Machine learning researchers take their insights from the classical psychology to
formulate transfer learning categories/approaches in the recent machine learning applications.

3.2. Categorizing transfer learning
Transfer learning could be classified into different categories. For example, transfer learning problems
can be divided into three categories, i.e., transductive, inductive, and unsupervised transfer learning
[45]. These three categories can be interpreted from a supervised or label­setting aspect. Transductive
transfer learning refers to the situations where the label information only comes from the source domain.
Inductive transfer learning involves a scenario if the label information of the target domain instances is
available. If the label information is unknown for both the source and the target domains the situation
is known as unsupervised transfer learning.
According to the survey conducted by Pan, S. J., Yang, Q [45], transfer learning approaches can be
classified into four groups: instance­based, feature­based, parameter­based, and relational­based ap­
proaches. Instance­based transfer learning approaches are mainly based on the instance weighting
strategy. Feature­based approaches transform the original features to create a new feature repre­
sentation; they can be further divided into two subcategories, i.e., asymmetric and symmetric feature
based transfer learning. Asymmetric approaches transform the source features to match the target
ones. Symmetric approaches attempt to find a common latent feature space and then transform both
the source and the target features into a new feature representation. The parameter­based transfer
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learning approaches transfer the knowledge at the parameter level. Relational­based transfer learning
approaches mainly focus on the problems in relational domains. Such approaches transfer the logical
relationship or rules learned in the source domain to the target domain. Fig. 3.1 shows the categoriza­
tion of the transfer learning process.

Figure 3.1: Classifying transfer learning approaches [45]

For our current research we are focusing more towards a feature based transfer learning approach
which is mainly used in applications involving computer vision and visual categorizations [80, 66].

3.3. Transfer Learning in computer vision applications
Transfer learning is a popular method in computer vision because it allows us to build accurate models
in a time saving way[57]. With transfer learning, instead of starting the learning process from scratch,
you start from patterns that have been learned when solving a different problem. This way you leverage
previous learning and avoid starting from scratch. In computer vision, transfer learning is usually ex­
pressed through the use of pre­trained models. Accordingly, due to the computational cost of training
such models, it is common practice to import and use models from published literature like VGG, Incep­
tion, MobileNet, etc, made possible thanks to convolutional neural networks (CNNs). As an example
for a use case for transfer learning in object detection using CNNs shown in Fig. a, the lower layers are
typically responsible for detecting patterns like lines and edges, the middle ones learn filters that detect
parts of objects, while the last layers learn to recognize full objects, in different shapes and positions.
The knowledge gained may be reused in the similar problem domain using transfer learning [92, 6].
The concept of transfer learning is to use most of the layers from a pre­trained model and retrain only
a final few layers for different tasks or adapting to a new domain of tasks.

Figure 3.2: Schematic view of transfer learning approach using convolution neural networks [6]

These type of network based transfer learning approaches (involving CNNs) have been mainly focused
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on two aspects/strategies:

• Feature extraction ­ training a new classifier on top of the pre­trained base model. In this method
we leave the weights learned by convolution layers unchanged and train only the last, fully con­
nected layer. It is a fast, simple, but still quite effective way to use ready­made architecture.

• Fine­tuning ­ where we retrain not only the fully connected layer (FCN), by also adjusting one or
more convolution layers. In this strategy we unlock minimal layers of a base model and train both
the newly­added classifier and the last few layers of the basemodel. The weights from the original
training are treated as the initial learning point. Unlocked convolution layers are not trained from
the beginning, but only tuned to a new task. This method is used to improve model’s performance.
A major drawback is that it can sometimes lead to overfitting and sometimes time­consuming.

The effectiveness of convolutional neural networks has been proven in many computer vision problems
due to their powerful feature representation. Complete algorithms, used in many of our researches,
require only simple data preprocessing and augmentation. It is then followed by re­training final layers
of existing model, according to transfer learning methodology [6].

3.3.1. GANs & transfer learning
Deep learning applications on computer vision involve the use of large­volume and representative data
to obtain state­of­the­art results due to the massive number of parameters to optimise in deep models.
Generative Adversarial Networks (GANs) being one of the prominent deep learning approaches, have
been extremely successful in various application domains such as computer vision, medicine, and nat­
ural language processing since their introduction in 2014 [19]. Generative modeling is an unsupervised
learning task in machine learning that involves automatically discovering and learning the regularities
or patterns in input data in such a way that the model can be used to generate or output new examples
that plausibly could have been drawn from the original dataset. GANs are a clever way of training
a generative model by framing the problem as a supervised learning problem with two sub­models:
the generator model that we train to generate new examples, and the discriminator model that tries to
classify examples as either real (from the domain) or fake (generated), shown in the Figure.3.3 below.
The two models are trained together in a zero­sum game, adversarial, until the discriminator model is
fooled about half the time, meaning the generator model is generating plausible examples [65].

Figure 3.3: The generative adversarial learning framework proposed by Goodfellow, Ian, et al [19]

3.3.2. Transfer learning with GANs
Most of the recent applications of GANs have been centered over the synthesizing highly realistic
scenes using image­to image translation [65, 81, 1, 82] and 3D reconstruction of objects [90, 87]. Wang,
Ting­Chun, et al in their previous works have introduced feature based transfer learning frameworks
using conditional GANs [40] for synthesizing high resolution photo­realistic images from semantic and
instance label maps. They propose coarse­to­fine generator architectures andmulti­scale discriminator
models which are suitable for conditional image generation from lower resolutions to higher resolutions
[81]. The coarse to fine generator architecture comprises of two generator networks­ one for lower
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resolution (G1) scenes and another one for handling high resolution scenes (G2). During the course
of training the input scenes are downsampled to lower resolutions and fed them into the low resolution
network (G1). Features from the last feature layer of G1 are transfered to the intermediate feature layer
of G2. These summed features are then fed into another series of residual blocks to output the higher
resolution images [see Fig.3.3] [82].

Figure 3.4: The proposed generative adversarial learning approach ­ vid2vid for synthesizing high resolution simulated scenes,
by Wang, Ting­Chun, et al [82]





4
TransNeRF

We begin this chapter by introducing transfer learning for improving neural scene rendering and explain­
ing every component of our proposed ”TransNeRF” architecture. This section details on the overview
of our model, the pretraining stage and the final fine tuning aspect for scene rendering. Fig. h repre­
sents the overview of our model. Initially in pretraining stage, we train a coordinate­based MLP function
which is similar to NeRF++ model [93] on unstructured low resolution scenes from the UAVid dataset
and obtain the pretrained model parameter optimized for generalization, which could be useful while
training model for higher resolution scenes. We chose to use two NeRF model as our base for pretrain­
ing since it offers an effective solution that separately models foreground and background, addressing
the challenge of modeling unbounded 3D scenes using an inverted sphere scene parameterization.
Also when compared to the basic NeRF model manages to resolve the shape­radiance ambiguity, as
well as a remedy for the parameterization of unbounded scenes in the case of 360◦ UAV imagery.

4.1. Proposed architecture
During the pre­training process the captured images from the UAVid dataset are downsampled at a
lower resolution from 4K to batches of 512x256, 1024x512 and 2048x1024 resolutions. The proposed
model (shown in Fig. 4.1), primarily comprises of the following units Generative Latent Optimizer(GLO)
and the NeRF model.

Figure 4.1: The pretraining process block of the proposed TransNeRF model with the NeRF++ model comprising of the two
MLP units (MLPθ1 & MLPθ2). Here the sequence of captured images are downsampled at a lower resolution (say 512X256)
while training. GLO stands for Generative Latent Optimization.
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4.2. Generative Latent Optimization (GLO) for photometric varia­
tion

In aerial photography, time of day and atmospheric conditions directly impact the illumination (and
consequently, the emitted radiance) of objects in the scene. This issue is exacerbated by photographic
imaging pipelines, as variation in auto­exposure settings, tone­mapping, etc, across photographs may
result in additional photometric inconsistencies [89]. To account for these photometric inconsistencies
& adapt our TransNeRF model to outdoor lighting variations, we use a Generative Latent Optimization
strategy (proposed by Bojanowski, Piotr, et al[5]).

GLO is a generative model which enjoys many of the desirable properties of GANs [19] including
modeling data distributions, generating realistic samples, interpretable latent space, but more impor­
tantly, it doesn’t suffer from unstable adversarial training dynamics. GLO trains a deep convolutional
generators (proposed by Salimans, Tim, et al [61]) using simple reconstruction losses to account for
these photometric discripancies & encoding scene appearance embeddings. Using these scene ap­
pearance embeddings as input to only the branch of the network that emits color grants our model the
freedom to vary the emitted radiance of the scene in a particular image while still guaranteeing that the
3D geometry (predicted earlier by MLPθ1) is static and shared across all images.

Alternatively, GLO could be modelled as an auto­encoder where the latent representation is not
produced by a parametric encoder, but learned freely in a non­parametric manner. In contrast to GANs,
GLO tracks the correspondence between each learned latent vector and the image that it represents.
Hence, the goal of GLO is to find a meaningful organization of the latent appearance vectors, such
that they can be mapped to their target images. Figure 4.2 shows the schematic overview of the GLO
framework suggested by Bojanowski, Piotr, et al[5]).

Figure 4.2: Generative Latent Optimization model utilizes a deep convolutional generator to map latent appearance features to
the target images[5]

.

GLO learns the parameters θ ∈ Θ of a generator gθ : L→ X with optimal latent appearance vectors li
∈ L for each image xi ∈ X , by solving the following equation:

min
θ∈Θ

1

N

N∑
i=1

[
min
li∈L

L (gθ (li) , xi)

]
(4.1)

where L is the associated loss function measuring the reconstruction error from g(l)i to xi. While using
GLO we jointly optimize the inputs latent appearance vectors along with the model parameters θ.

4.3. Neural Radiance Fields model
NeRF represents a scene using a learned, continuous volumetric radiance field Fθ defined over a
bounded 3D volume. Fθ is modeled using a multilayer perceptron (MLP) that takes as input a function
of 3D coordinate positions (x, y, z) and normal viewing directions as d = (dx, dy, dz), and produces as
output a density σ and color c = (r, g, b). The camera ray (r), emitted from the center of projection of
a camera o through a given pixel on the image plane could be expressed as a function of the viewing
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direction: r=o+td. Based on this, NeRF is available to apporximate the expected color function (Ĉ(r))
on that pixel through:

Ĉ(r) = R(r, c, σ) =

K∑
k=1

T (tk)α (σ (tk) δk) c (tk) (4.2)

where T (tk) = exp

(
−

k−1∑
k′=1

σ (tk′) δk′

)
(4.3)

R(r, c, σ) represents the volume rendering of color c with density σ. c (tk) & σ (tk) denotes the color
and density at point r(t). δk = tk+1 − tk is the distance between two quadrature points or adjacent
samples and exponential function is used α(x) = 1 − exp(−x). NeRF architecture utilizes a stratified
sampling approach to select the adjacent sample points between the near and far planes of the camera.
While the conventional approach of neural volume rendering requires only a single MLP layer with
ReLU activation for representing both color (RGB) volume density functions [39]. In our apporach,
NeRF model represents the volumetric density σ(t) and color c(t) using two simultaneous ReLU based
MLPs with parameters θ=[θ1,θ2] as shown in equations below:

ci(t) = MLPθ2

(
z(t), γd(d), ℓ

(a)
i

)
(4.4)

[σ(t), z(t)] = MLPθ1 (γx(r(t))) (4.5)

γd, γx denote the encoding functions of viewing directions and position respectively. To fit parame­
ters θ, the NeRF models minimize the sum of squared reconstruction errors with respect to an RGB
image collection, where each image Ii is paired with its corresponding intrinsic and extrinsic camera
parameters which can be estimated using structure from motion [62].

4.3.1. 3D scene generating network
The positional encoding of the input location (γx) is passed through 8 fully­connected ReLU layers,
each with 256 channels. A skip connection is included that concatenates this input to the fifth layer’s
activation. An additional layer outputs the volume density σ (which is rectified using a ReLU to ensure
that the output volume density is non negative) and a 256­dimensional feature vector. A final layer with
a sigmoid activation outputs the emitted RGB radiance at position x along with z(t). Figure 4.2 details
on the network architecture of our first submodel: MLPθ1 .

Figure 4.3: A visualization of our fully­connected MLPθ1 network architecture. Input vectors are shown in pink, intermediate
hidden layers are shown in blue, output vectors are shown in red, and the number inside each block signifies the vector’s
dimension. All layers are standard fully­connected layers, black arrows indicate layers with ReLU activations, red arrow
indicate layers with no activation, dashed black arrows indicate layers with sigmoid activation, and ”+” denotes additional vector
concatenation.

4.3.2. Color emmiting network
The secondary NeRF unit (MLPθ1 ) takes viewing direction encoding (γd), z(t) and latent scene ap­
pearance embedding (ℓ(a)i ), from the generative latent optimization strategy [5]) as inputs with 8 fully­
connected layers) to output the parameters that store the encoding features pertaining to sampled color
function (from equation 4.1) which could be expressed sum of all sampled colors ci. The directional
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encoding of the camera views (γd) is passed through 8 fully­connected ReLU layers, each with 256
channels. Similar to the MLPθ1 model a skip connection is introduced here that concatenates this input
to the fifth layer’s activation. Towards the final layer of the network a sigmoid activation outputs the
feature weights of encoded sampled color functions ci. The architecture of the MLPθ2 is depicted in Fig.
4.3. In our model, we try to leverage a transfer of these learnt weights (or feature color encodings) as
inputs along with encoded viewing directions latent appearance embedding to MLPθ2 the while train­
ing the next batch of captured image sequences of high resolution. These appearance embeddings
and feature weights (from the previous batch of low resolution images) are used as input to the branch
of the model that emits color grants MLPθ2 network, the freedom to vary the emitted radiance of the
scene in a particular image while still guaranteeing that the 3D geometry (predicted earlier by MLPθ1 )
is static and shared across the sequence of images. The color emitting function from equation 4.4, with
considerations to our new inputs could be transformed as shown in equation 4.6.

Figure 4.4: A visualization of our fully­connected MLPθ2 network architecture. Input direction vectors (γd) shown in blue,
intermediate layers are shown in green, the latent appearance embedding (ℓ(a)i ) from the GLO is depicted in pink box, output
feature weights are shown in orange box and the number inside each block signifies the vector’s dimension. All layers are
standard fully­connected layers, black arrows indicate layers with ReLU activations, dashed black arrows indicate layers with
sigmoid activation, and ”+” denotes additional vector concatenation.

ci+1(t) = MLPθ2

(
z(t), γd(d), ℓ

(a)
i+1, ci

)
(4.6)

4.4. Optimizing TransNeRF
In the previous sections we discussed about the the core components necessary for modeling a scene
as a neural radiance field and rendering novel views from this representation. However, we observe
that these components are not sufficient for achieving state­of­the­art quality. First we adopt a positional
encoding of the input coordinates that assists the MLP in representing high­frequency functions, and
the second is a hierarchical sampling procedure that allows us to efficiently sample this high­frequency
representation.

4.4.1. Positional Encoding
Over the years researchers have found that having the network Fθ directly operate on position (xyz) &
direction (θϕ) input coordinates results in renderings that perform poorly at representing high­frequency
variation in color and geometry while using function approximators such as neural networks [20]. Pre­
vious research in this domain suggests that deep neural networks are biased towards adapting to low
frequency functions which contain minimal amount of inputs [54]. They additionally show that optimiz­
ing the inputs to a higher dimensional space using high frequency functions before passing them to the
network enables better fitting of data that contains high frequency variation. For our current study we
leverage a similar approach as explained in the previous NeRF literature findings in the context of neu­
ral scene representations, where Fθ could be reformulated as a composite function of Fmlp and γ(p).
γ(p) represents the mapping function that encodes features from lower dimensional space (R) to a
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higher one (R2L). We consider the encoding function suggested in the previous NeRF architecture[39],
shown below. Fmlp is a regular MLP network.

γ(p) =
(
sin
(
20πp

)
, cos

(
20πp

)
, · · · , sin

(
2L−1πp

)
, cos

(
2L−1πp

))
(4.7)

This function γ(p) is applied separately to each of the three coordinate values in x (after they are
normalized to lie in [−1, 1]) and the three components of viewing directions in the cartesian viewing
direction d. We use these positional encoding functions to map continuous input coordinates into a
higher dimensional space to enable our Fmlp to more easily approximate a higher frequency function.
Removing the positional encoding drastically decreases the model’s ability to represent high frequency
geometry and texture, resulting in an oversmoothed appearance, as shown in Figure 4.5.

Figure 4.5: We show the effectiveness of employing positional encoding to improve our model’s ability to represent high
frequency geometry and texture, resulting in a fine realistic appearance (seen in right­side images).

4.4.2. Heirarchial Volume rendering
Although we use a discrete set of samples to estimate the integral, stratified sampling enables us to rep­
resent a continuous scene representation because it results in the MLP being evaluated at continuous
positions over the course of optimization. We use these samples to estimate C(r) with the quadrature
function (equation 4.7) discussed in previous volume rendering literatures [36].

Ĉ(r) =
N∑
i=1

Ti (1− exp (−σiδi))ci, where Ti = exp

−
i−1∑
j=1

σjδj

 (4.8)

Where δi = ti+1 − ti denotes the distance between adjacent samples or scenes. Previous rendering
strategies of densely evaluating the neural radiance field network at N query points along each camera
ray are inefficient as free space and occluded regions are still sampled repeatedly that do not contribute
to the rendered image. Neural Radiance fields take inspiration from the previous works on neural vol­
ume rendering [24], by adopting a hierarchical scene representation that increases rendering efficiency
by allocating samples proportionally to their expected effect on the final rendering. During the volume
rendering phase, our model simultaneously optimizes two networks: coarse and fine.

We first sample a set ofNc locations with the RGB [c(t)] and density [σ(t)] outputs from the proposed
NeRFmodel, using stratified sampling, and evaluate the “coarse” network at these locations. Given the
output of this “coarse” network, we then produce a more informed weighted sampling of points along
each ray where samples are biased towards the relevant parts of the volume as expressed in equation
4.8. Using these weighted colors we compute the final rendered color of the ray for the coarse samples
Ĉc(r).

Ĉc(r) =

Nc∑
i=1

wici, wi = Ti (1− exp (−σiδi)) (4.9)
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The weights are normalized using ŵi = wi/
∑Nc

j=1 wj to produce a Probability Density Function
(PDF). We sample a second set of Nf locations from this distribution using inverse transform sampling,
evaluate our “fine” network at the union of the first and second set of samples, and compute the final
rendered color of the ray using the equation 4.7. An important note: we consider all the samples while
computing the final rendered ray color, i.e, Nc+Nf , at this stage. This is done to ensure that more
samples are allocated to regions we expect to contain visible content. In our approach we use the
sampled values as a non­uniform discretization of the whole integration domain rather than treating
each sample as an independent probabilistic estimate of the entire integral similar to the one used in
the original NeRF approach [39].

4.5. Final volume rendering & Loss function
We optimize a separate neural continuous volume representation network for each scene. The only
requirement is for a dataset of captured RGB images of the scene, the corresponding camera poses and
intrinsic parameters, and scene bounds we use ground truth camera poses, intrinsics, and bounds for
synthetic data, and use the COLMAP structure­from­motion package [62] to estimate these parameters
for the captured images. At each optimization iteration, we randomly sample a batch of camera rays
from the set of all pixels in the dataset, and then follow the hierarchical sampling for samplingNc coarse
samples from coarse network and Nc+Nf fine samples from fine network (described in section 4.4.2).
The final step is the volume rendering using computed rays from each ray of the two samples using the
function in the equation 4.9.

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt, where T (t) = exp
(
−
∫ t

tn

σ(r(s))ds
)

(4.10)

Where C(r) is the expected color of the camera ray r(t)=o+ td. d is the viewing direction values. T (t)
is the transmittance probability along the ray from tn to t, i.e, the probability that the ray travels from tn
to t without hitting any other particle. c is the RGB vector information and σ is the computed density
vector.

4.5.1. Loss function
We estimate our loss function based on the the total squared error between the rendered and true pixel
colors for both the coarse and fine samples. The loss function is shown below in equation 4.10:

L =
∑
r∈R

[∥∥∥Ĉc(r)− C(r)
∥∥∥2
2
+
∥∥∥Ĉf (r)− C(r)

∥∥∥2
2

]
(4.11)

whereR is the set of rays in each batch, and C(r), Ĉc(r) and Ĉf (r) are the ground truth, coarse volume
predicted, and fine volume predicted RGB colors for ray r respectively. Note that even though the final
rendering comes from Ĉf (r), we also minimize the loss of Ĉc(r) so that the weight distribution from the
coarse network can be used to allocate samples in the fine network.





5
Experimental Setup and Results

In this chapter, we demonstrate the effectiveness and the scene rendering efficiency of our proposed
TransNeRF architecture by conducting a comparative study between the pre­existing NeRF models
like the basic NeRF model proposed by Mildenhall, Ben, et al [39] and NeRF++ model proposed by
Zhang, Kai, et al [93] on publically available dataset benchmarks (UAVid)[33].

5.1. Dataset
Robustness of an algorithm can be demonstrated by benchmarking it on multiple, possibly unrelated
datasets. With this ideology in mind, we benchmark our system on the UAVid dataset[33]. UAVid is a
publicly available dataset for urban scene understanding that we use in this research, but unlike other
promimently available public datasets like Cityscapes [9], etc, this dataset is collected from unmanned
aerial vehicles (UAVs). Figure 5.1 shows different captured sample images of the UAVid dataset. This
dataset introduces large scale variations, making it a very competitive and a tough benchmark. The
dataset contains 300 densely labeled images into a total of 8 classes and 100 images are available for
testing [33]. The resolution of the images is 4K i.e.3840×2160, which coupled with the small size of the
dataset, makes it a very challenging benchmark. The reason why we decided to select UAVid datasets
were due to the fact that they provide for a real­time analysis and benchmark for urban­scene under­
standing from different viewpoints, thereby effectively establishing the robustness of our architecture.

Figure 5.1: Sample training images from the UAVid dataset [33]

5.1.1. Training settings
As in original NeRF literature[39], for each scene we train a model initialized to random weights. Our
experimental dataset primarily consists of video/images from the UAVid dataset and also some random
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UAV captured videos from https://www.youtube.com/. Images are sampled at 5 frames per second
& scaled down pre­training .The input images are scaled down from 4K resolution to resolutions of
512x256, 1024x512 and 2048x1024 respectively. Batch­sizes are set at 3 for UAVid and since we
train and evaluate on a single GPU, we do not employ cross­GPU synchronized batch normalization.
Furthermore, training iterations for each batch of image resolutions are set at 500k for UAVid dataset
using Adam optimizer with initial learning rate of 0.001, decaying ten­fold every 150,000 iterations. All
our experiments are conducted on a single NVIDIA RTX 2080Ti, with PyTorch 1.4 [49] and CUDA 10.2.
Regarding our positional encoding functions γ we use 15 frequencies for encoding position and 4 when
encoding viewing direction. During training, 512 points per ray are sampled from each of the coarse
and fine models for a total of 1024 points per ray. We double that number during evaluation to 2048.
The latent embedding vector for appearance has an embedding dimension of size n(a) = 48.

5.1.2. Training procedure
We initially sample 150 input scenes from the UAVid dataset [33] videos at 4 frames per second. For the
initial training phase we scale down the image resolution (originally at 4k) to a significantly lower ones
like 512x256, 1024x512 2048x1024 resolutions. We train our model (proposed TransNeRF) on the
first batch of low resolution images (i.e, 512x256) with the acquired camera properties (from COLMAP,
[62]), position encoding input γx as inputs for the first 3D scene generating network (MLP θ1) (Figure
4.3, page no:16). This at the end of the training MLP θ1, outputs the RGB vector c(t), the density
vector (σ(t)) and feature vector z(t) which serves as an input to the color emmiting network (MLP θ2)
(Figure 4.4, page no:17). The second layer of the model, (MLP θ2) is trained simultaneously with the
latent appearance embedding input from the GLO, the viewing directional encoding (γd) that stores the
viewing directions (θϕ) and feature vector z(t) to output the feature color weights ct. These feature color
weights (which store RGB embeddings) are crucial as they are ”resued” or ”transfered” to the MLP θ2,
while training for the next batch of high resolution image samples. The outputs from the MLP θ1 &
MLP θ2 namely the RGB and density features are later processed using volume rendering techniques
for scene reconstruction. The subsequent training and validation losses for each batch of input image
resolution are shown in the Figures. 5.2 & 5.3 below.

Figure 5.2: The training loss for each batch of the input image resolution (from 512x256 pixels to 2048x1024 pixels) over 500k
iterations

Figure 5.3: The validation loss for each batch of the input image resolution (from 512x256 pixels to 2048x1024 pixels) over
500k iterations
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5.2. Experimental Results
We qualitatively (section 5.3.1) & quantitatively (section 5.3.2) show that our proposed approach outper­
forms prior work on a standard benchmark dataset and provide extensive ablation studies to validate
our design choices. We show results on complex real­world scenes captured with roughly forward­
facing images from the UAVid dataset. Our current experiments are carried out on 7 scenes captured
via forward facing images from the UAVid at 4k resolution. We have tried to select mostly static scenes
with very minimal motions of people and vehicles moving, as our model does not account for the the
positional difference at a particular timestamp with respect to a particular location.

5.3. Comparisons
To evaluate our model we compare against current top­performing baseline techniques for neural view
synthesis such as NeRF & NeRF++, detailed in the coming sections. All methods use the same set of
input views i.e, 150 images (sampled at 4 fps) to train a separate network for each scene. For training
the NeRF and NeRF++ models, The camera poses are estimated by COLMAP SfM [62]. For NeRF, we
normalize the scene such that all cameras are inside the sphere of radius 1

8 . This normalization ensures
that the unit sphere covers the majority of the background scene content (although some background
geometry still lies outside the bounding unit sphere). To numerically compute the volumetric rendering
integral for each camera ray, we uniformly sample points from the ray origin to its intersection with the
unit sphere. Since NeRF++ ray­casts both inner and outer volumes and hence uses twice the number
of samples per camera ray compared to a single volume, we also double the number of samples used
by NeRF for the sake of fairness. Specifically, NeRF’s coarse­level MLP uses 128 uniform samples,
while the fine­level MLP uses 256 additional importance samples. Under this hyper­parameter setting,
NeRF has roughly the same computation cost and GPU memory footprint during training and testing
as NeRF++. We randomly sample 2048 camera rays at each training iteration, and train NeRF and
NeRF++ for 500k iterations with a learning rate of 5e−4. A comparative analysis based on the training
& validation loss for the different approaches is shown in Fig. 5.4 & 5.5 respectively.

Figure 5.4: The training loss for NeRF, NeRF++ TransNeRF (our approach) over 500k iterations. The input image are
sampled at 2048x1024 resolution while training NeRF, NeRF++ TransNeRF.

Figure 5.5: The validation loss for NeRF, NeRF++ TransNeRF (our approach) over 500k iterations. The input image are
sampled at 2048x1024 resolutions.
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5.4. Qualitative Evaluation
5.4.1. Rendering stable & consistent scenes
Comparisons on test­set views for scenes from UAVid dataset generated with a physically­based ren­
derer are shown in Fig 5.6. It is clearly visible that our method is able to reconstruct fine details in both
geometry and appearance while maintaining the structural stability of the scene when compared to the
previous baseline models of NeRF and NeRF++. Comparisons on test­set views of real world scenes.
NeRF and NeRF++ models are specifically designed for use case involving forward­facing captures of
real scenes. Our method is able to represent fine geometry more consistently across rendered views
than the conventional NeRF & NeRF++ models, as shown in rendering of different car models in Town
A, Town C, Town D & Town E in Figure 5.6 below.

Figure 5.6: Qualitative evaluation of different scenes from the UAVid dataset using the NeRF, NeRF++ and TransNeRF
architectures based on rendering stability and generation of consistent scenes.

5.4.2. Maintaining color balance across the rendered scene
TransNeRF is successful in rendering scenes that maintains the RGB & volume integrity of the captured
images. This could be observed from the reconstructed scene in Fig. 5.7, where our approach is able to
render reconstruction of the scene with the right color balance while maintaining the structural integrity
of the objects within the scene, as observed in Town B (scene 2) & Construction site (scene 4).
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Figure 5.7: Qualitative evaluation of different scenes from the UAVid dataset using the NeRF, NeRF++ and TransNeRF
architectures based on maintaining color balance across the rendered scenes.

5.4.3. Efficient reconstruction of objects in foreground & background
Ourmethod also efficiently differentiate between & reconstruct the complex foreground and background
objects in the scenes, particularly the scene 7 ­ Forest, where our model is able to render a complicated
object like the building communication grid in the background & forground scene respectively, that
NeRF & NeRF++ model struggles to deliver a fine render [see Fig. 5.8]. Basic NeRF & NeRF++ model
captures only the low­frequency geometry and color variation in each scene but is unable to reproduce
any fine detail.

Figure 5.8: Qualitative evaluation of different scenes from the UAVid dataset using the NeRF, NeRF++ and TransNeRF
architectures based on reconstruction of objects in foreground and backgrounds.

5.5. Quantitative Evaluation
We report Peak Signal to Noice Ratio (PSNR) factor, Structural Similarity Index Metric, and Learned
Perceptual Image Patch Similarity (LPIPS) metric proposed by Zhang, Richard, et al [94] as our main
quantitative metrics for measuring the quality of synthesized test scenes.

5.5.1. Peak Signal to Noice Ratio
Scene enhancement or improving the visual quality of a digital image can be subjective varying from
one approach to another. For this reason, it is necessary to establish quantitative metrics to compare
the effects of image enhancement algorithms on image quality. Peak signal­to­noise ratio (PSNR) is
an expression for the ratio between the maximum possible value (power) of a signal and the power of
distorting noise that affects the quality of its representation. Using the same set of tests images, different
3D reconstruction approaches (like NeRF, NeRF++, TransNeRF) could be compared systematically to
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identify whether a particular method produces better results. PSNR metric could be useful metric in
identifying approaches can enhance/reconstruct a degraded known image to more closely resemble
the original. Because many signals have a very wide dynamic range, (ratio between the largest and
smallest possible values of a changeable quantity) the PSNR is usually expressed in terms of the
logarithmic decibel scale (see equations 5.1 & 5.2 below).

PSNR = 20 log10
(
MAXf√
MSE

)
(5.1)

Where MSE is the mean square error expressed as:

MSE =
1

mn

m−1∑
0

n−1∑
0

∥f(i, j)− g(i, j)∥2 (5.2)

In equations 5.1 and 5.2, f represents the matrix data of our original image, g represents the matrix
data of our degraded image in question,m represents the numbers of rows of pixels of the images and
i represents the index of that row n represents the number of columns of pixels of the image and j
represents the index of that column & MAXf is the maximum signal value that exists in our original
“known to be good” image.

5.5.2. Structural Similarity Index Metric
The Structural Similarity Index (SSIM) is a perceptual metric that quantifies image quality degradation
caused by processing such as data compression or by losses in data transmission. Based on the work
byWang, Zhou, et al [83], SSIM calculates the Structural Similarity Index between 2 given images which
is a value between the range [0,1]. A value of 1 indicates that the two given images are very similar
or the same while a value of 0 indicates the two given images are very different. SSIM determines
these values by means of extracting three key features: luminance, contrast and structure from the
generated/rendered scene. The SSIM score between two images (x, y), where x being original one
and y being the reconstructed/generated one is estimated as a function of:

SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ (5.3)

where the l(x, y)] is the luminance comparison function, c(x, y) is the contrast comparison function and
s(x, y) is the structural comparison funciton. α,β and γ denote the relative importance of each metric
function.

5.5.3. Learned Perceptual Image Patch Similarity
Despite the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow
functions, and fail to account for many nuances of human perception. LPIPS is a relatively recent effec­
tive metric that evaluates the distance between image patches. Higher the value of LPIPS, represents
more dissimilarity between the rendered scene and original set of input images. Lower LPIPS score
means there is more similarity between the generated scene and input image sequence.

5.5.4. Quantitative metric results
From the Table 5.1, it is clearly evident that our model outperforms the pre­existing NeRF models by
quite some margin. We see a substantial increase in the PSNR & SSIM metric scores and decrease in
the LPIPS scores for our TransNeRF model compared to the baseline NeRF approaches highlighted in
Table 5.1. We also report the final rendered frame rate of different models & mean± standard deviation
across 7 scenarios with different random initializations. Best results are highlighted in the Table 5.2.
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Scene 1 ­ Town A

Model PSNR ↑ SSIM ↑ LPIPS ↓

NeRF 18.54 0.534 0.598

NeRF++ 19.432 596 0.574

TransNeRF 20.346 0.623 0.498

Scene 2 ­ Town B

Model PSNR ↑ SSIM ↑ LPIPS ↓

NeRF 19.83 0.498 0.634

NeRF++ 19.783 0.498 0.583

TransNeRF 19.98 0.502 0.494

Scene 3 ­ Town C

Model PSNR ↑ SSIM ↑ LPIPS ↓

NeRF 17.65 0.501 0.698

NeRF++ 18.564 0.557 0.543

TransNeRF 19.998 0.628 0.538

Scene 4 ­ Contruction site

Model PSNR ↑ SSIM ↑ LPIPS ↓

NeRF 18.86 0.523 0.686

NeRF++ 19.564 0.589 0.643

TransNeRF 20.487 0.625 0.587

Scene 5 ­ Town E

Model PSNR ↑ SSIM ↑ LPIPS ↓

NeRF 19.86 0.478 0.634

NeRF++ 20.568 0.543 0.584

TransNeRF 21.367 0.572 0.416

Scene 6 ­ Town D

Model PSNR ↑ SSIM ↑ LPIPS ↓

NeRF 19.344 0.523 0.745

NeRF++ 20.178 0.554 0.673

TransNeRF 21.764 0.643 0.534

Scene 7 ­ Forest

Model PSNR ↑ SSIM ↑ LPIPS ↓

NeRF 19.86 0.395 0.632

NeRF++ 20.345 0.496 0.534

TransNeRF 20.796 0.563 0.521

Table 5.1: Quantitative evaluation of the NeRF, NeRF++ & TransNeRF models on different scenes from the UAVid dataset. We
use metrics such as PSNR, SSIM and LPIPS during our evaluation.

Model PSNR ↑ SSIM ↑ LPIPS ↓ FPS

NeRF 18.452±0.005 0.433±0.004 0.644±0.115 6.8

NeRF++ 19.98±0.009 0.486±0.011 0.584±0.113 6.7

TransNeRF 20.546±0.002 0.524±0.012 0.532±0.043 7.1

Table 5.2: Mean ± standard deviation of the metrics across 7 scenes with different random initializations. TransNeRF
outperforms the baseline NeRF models, handling color perturbations efficiently as seen in difference in the PSNR values
between NeRF & TransNeRF model.
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Discussion

From the results section it could be inferred that our approach thoroughly outperform both baseline
NeRF techniques that also optimize a separate network per scene (NeRF & NeRF++) in all scenarios.
Furthermore, we produce qualitatively and quantitatively superior renderings compared to the afore­
mentioned models across all evauation metrics, while using only the input images as our entire training
set. The basic NeRF model proposed in [39], blends between different scene representations for ren­
dering different views in complicated scenes from the UAVid dataset images, resulting in perceptually
distracting inconsistent scenes. NeRF++ model, when compared to the basic NeRF model is able to
differentiate between foreground and background objects in the scene render complicated geometry
and texture, but its representational power for view synthesis is restricted by selection of only a single
depth and color per camera ray. Our model utilises a latent optimization strategy that enables it to com­
pute the latent apprearance features from the images. The biggest practical trade­offs between these
methods are time versus space. However, conventional neural rendering apporaches like Local Light
Field Fusion (LLFF) [38] and Scene Representation Networks (SRNs)[67] produces a large 3D voxel
grid for every input image, resulting in enormous storage requirements (over 15GB for one “Realistic
Synthetic” scene). Our method like the conventional NeRF model requires only 7 MB for the network
weights (a relative compression of 3000× compared to other neural rendering approaches like ), which
is even less memory than the input images alone for a single scene from any of our datasets. Since
our input images are trained over batches of several resolutions (from lower to higher), we face the
challenge of longer training hours and computing memory compared to the baseline models.

Model Memory Training Period (hours)

NeRF 1158.23 MB 18.42

NeRF++ 1176.34 MB 19.25

TransNeRF 1974.56 MB 26.49

Table 6.1: Computational expenses and run­time measurements for all the models have been done on a single RTX 2080Ti,
on an input resolution of 1024×2048

6.1. Ablation Studies
We validate our approach’s design choices and parameters with ablation studies shown below. We
present our mean results over a set of 7 different scenes from the UAVid dataset [33].

6.1.1. Varying input parameters
We study the effect of each input parameter on our model’s efficiency to reconstruct highly realistic
scenes from sample images. Row 1 of the table 6.2, shows a minimalistic version of our model without
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positional encoding (PE), view dependence (VD), latent appearance (LA) embedding and hierarchical
sampling (HV). In rows 2­5 we remove a parameter while training the model. From the quantitave
metric results it is clearly visible that the latent appearance embedding (row 5) & positional encoding
(row 2) provide the largest quantitative benefit followed by viewing directions (row 3) & hierarchical
volume sampling (row 4) respectively. iterations.

Parameter Input No. of Images L (Nc,Nf ) PSNR↑ SSIM↑ LPIPS↓

1) No PE, LA, VD & HV xyz 150 ­ (256,­) 17.367 0.527 0.643

2) No Positional Encoding (PE) xyzθϕ 150 ­ (64,512) 18.673 0.542 0.6418

3) No Viewing Directions (VD) xyz 150 10 (64,128) 18.665 0.546 0.6414

4) No Hierarchial Volume (HV) xyzθϕ 150 10 (256,­) 19.702 0.552 0.6404

5) No Latent Appearance embedding (LA) xyzθϕ 150 10 (64,128) 18.543 0.489 0.684

6) Complete model xyzθϕ 150 10 (64,128) 20.576 0.634 0.453

Table 6.2: An ablation study of our model based on the effect of input parameters on TransNeRF model. Metrics are averaged
over the 7 scenes from UAVid dataset.

6.1.2. Varying resolution of input images
We study the effect of the input resolution images on final rendering using our model based on quan­
titaive metrics. Table 6.3 shows the significant increase in the rendering quality of our approach, as
inferred from the increase in the quantitative metrics, PSNR & SSIM values as the resolution of input
images increases.

Parameter Input No. of Images L (Nc,Nf ) PSNR↑ SSIM↑ LPIPS↓

1) Lowest Resolution (256x512) xyzθϕ 150 10 (64,128) 16.934 0.623 0.523

2) Second lowest resolution (512x1024) xyzθϕ 150 10 (64,128) 19.35 0.603 0.454

3) Complete model (resolution=1024x2048) xyzθϕ 150 10 (64,128) 20.576 0.634 0.453

Table 6.3: Evaluating quantitative metrics (PSNR, SSIM & LPIPS) over increase in resolution of input images using our
approach. Metrics are averaged over the 7 scenes from UAVid dataset.

6.1.3. Effect of number of input images for training the model
In this section we study the effect of the number of input images on the final scene quality of our
proposed approach. From the table 6.4 based on the increase in PSNR & SSIM values, we can see
that our model is able to successfully render novel realistic scenes from a very few sample input images
(say 45­100).

Parameter Input No. of Images L (Nc,Nf ) PSNR↑ SSIM↑ LPIPS↓

1) Very few input images xyzθϕ 45 10 (64,128) 18.543 0.623 0.59

2) Few input images xyzθϕ 100 10 (64,128) 19.96 0.628 0.489

3) Complete model (resolution=1024x2048) xyzθϕ 150 10 (64,128) 20.576 0.634 0.453

Table 6.4: Quantitative comparison of our model’s performance over varying number of input images. Metrics are averaged
over the 7 scenes from UAVid dataset.
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6.1.4. Variations in input frequencies
In this section we study the performance of our approach with respect to the input frequencies of the
positional and viewing direction encoder fucntion. L is the frequency factor used to calculate the po­
sitional encoding γ(x) for x and the viewing directions γ(d) [refer to equation 4.7, page:18]. While
limiting to L=5 frequencies reduces performance of our model, increasing the number of frequencies
from L=10 to L=15 does not improve performance significantly either. The benefit of increasing L is lim­
ited once 2L exceeds the maximum frequency present in the sampled input images (roughly resolution
of 1024x2048 in our dataset)

Parameter Input No. of Images L (Nc,Nf ) PSNR↑ SSIM↑ LPIPS↓

1) Lower Frequencies (L) xyzθϕ 150 5 (64,128) 19.45 0.534 0.624

2) Mid­order Frquencies (L) xyzθϕ 150 10 (64,128) 20.576 0.634 0.453

3) High­order Frequencies xyzθϕ 150 15 (64,128) 20.346 0.625 0.476

Table 6.5: An ablation study of our model. Metrics are averaged over the 7 scenes from UAVid dataset.

6.2. Limitations of our approach
While TransNeRF is able to produce photorealistic and temporally consistent renderings from a se­
quence of sampled captured images, rendering quality degrades in areas of the scene that are rarely
observed in the training images, or only observed at very oblique angles or foreground. Similar to
baseline models like NeRF and NeRF++, our approach is also sensitive to camera calibration errors,
which can lead to distorted reconstructions on the parts of the scene that have been captured by incor­
rectly calibrated cameras. We too are limited by the training time and memory costs incurred during
deployment of our model as compared to the previous NeRF based methods [39, 93]. Another major
limitation of our model is its failure to account for dynamic scenes during reconstruction. Since our
approach leverages images captured from the front­viewing camera and does not account for neither
the deformation/dynamic motion of the objects in the captured scenes nor the time function as an input
while training the model is it unable to render dynamic scenes. This is a similar drawback to the other
baseline NeRF models as well.

6.2.1. Inefficiency during transient lighting conditions
A primary concern or drawback of our model like the conventional NeRF models is that, we address
here is the assumption that the world is geometrically, materially, and photometrically static i.e, that the
density and radiance of the world is constant. It could be attributed to the fact that images from the
UAVid dataset [33] are mostly restricted while exhibiting considerable variation in terms of exposure,
color correction, and tone­mapping. Hence our model is unable to account for the transient lighting
changes during the training phase which could result in poor quality of the final sene rendering.





7
Conclusion

Our work directly addresses deficiencies of prior work that uses MLPs to represent objects and scenes
as continuous functions. We demonstrate that representing scenes as 5D neural radiance fields (an
MLP that outputs volume density and view­dependent emitted radiance as a function of 3D location
and 2D viewing direction) produces better renderings than the previously­dominant approach of train­
ing deep convolutional networks to output discretized voxel representations.
We have presented TransNeRF, a novel approach that leverages transfer learning approach for effi­
cient 3D scene reconstruction of complex environments from sequence of UAV captured images that
builds upon the baseline NeRF model. We learn a per­image latent embedding capturing photometric
appearance variations often present in UAV imagery data. Experimental evaluation on real­world data,
more specifically the UAVid dataset, demonstrates significant qualitative and quantitative improvement
over previous state of the art neural rendering approaches. Our approach of transfering learned color
features from lower resolution input scenes, while training for high resolution static scenes has quantita­
tively and qualitatively outperformed other baseline NeRF based models like NeRF++. Our future work
would be focused on deploying the framework on other standard datasets, especially in the domain of
synthetic objects from the DeepVoxel dataset released by Sitzmann, Vincent, et al [68] and evaluating
its performance quantitatively and qualitatively.
Although we have proposed a hierarchical sampling strategy to make rendering more sample­efficient
(for both training and testing), there is still much more progress to be made in investigating techniques
to efficiently optimize and render neural radiance fields. One possible domain of research could focus
on improving neural scene rendering over the dynamic scenes and objects for efficient 3D scene re­
construction. We will also be looking forward to extending our model to improve on transient lighting
changes while training in the future.
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