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ABSTRACT 

The losses due to natural hazards are very high and show an increasing trend due to climate change; human 

and economic growth; and unplanned development. The risk due to those hazards can be reduced using 

multi-hazard risk assessment using hazard, the element at risk and vulnerability data. However, due to the 

lack of good quality and high-resolution data in developing nations, modelling hazards at infrastructure level 

is difficult. Deep learning-based Super-Resolution can be a solution to increase the spatial resolution of 

freely available global datasets. However, no studies exist that produced high-resolution output from globally 

available DEM data using Super-Resolution to improve the quality of physically based hazard modelling. 

Furthermore, due to differences in data collection sources and value ranges in DEMs, they cannot be 

compared in absolute values, and there is a lack of techniques to evaluate the improvement done with Super-

Resolution in geoscientific data. Moreover, none of the existing research has trained the Super-Resolution 

models in one region and applied them to another region.  

 

To address these problems, our research aimed to increase the applicability of physically based models in 

data-poor regions by improving the spatial resolution of globally available datasets by using deep learning-

based Super-Resolution. To fulfil our objectives, we selected to work on Digital Elevation Models as the 

target variable due to its importance in hazard modelling and global availability. We used the two of the 

most advanced Super-Resolution models (EBRN and ESRGAN), each from different groups of deep 

learning architecture. These models were trained extensively using high-resolution LiDAR DEM data from 

Austria. After proving that they perform better than most used interpolation techniques such as bicubic 

interpolation in the study areas in Austria, they were applied in globally available free datasets in Colombia 

and Dominica. Furthermore, novel loss function and evaluation metrics were developed to train and 

evaluate the results focusing on improving DEM data. Furthermore, physically based modelling was used 

to evaluate the impact of Super-Resolution in multi-hazard modelling. We used 21 different scenarios to 

test the applicability of Super-Resolution compared to existing interpolation techniques and global 

commercial data. Each scenario was calibrated for 20 iterations (total 420 iterations, ~5460 CPU hours) in 

Microsoft Azure, which is the first time that OpenLISEM was used in a cloud computing environment. The 

results were evaluated in terms of the modelled extent of hazardous processes, the height of flow, and the 

time of solid and fluid flow to prove the applicability of the Super-Resolution approach. 

 

The analysis shows that the use of global DEM data with Super-Resolution processing was able to increase 

the accuracy of hazard modelling output as compared to DEMs made with existing interpolation techniques. 

Furthermore, when evaluating derivative DEM products through visual analysis, it is observed that the 

Super-Resolution has increased the crispness of valley lines and ridgelines in the DEM datasets. However, 

the specific topographic features that are not present in low-resolution data could not be reconstructed using 

the Super-Resolution, limiting its use in geomorphological mapping.  The applicability of Super-Resolution 

was tested in multiple locations, and it could prove that the technique resulted in 8-25% improvement in all 

of the study sites. The results also show that the capacity of both models (EBRN and ESRGAN) is generally 

very similar. There are a few challenges in calibration, such as the use of Gradient Descent requiring more 

iterations and the lack of datasets and metrics to compare our results with existing Super-Resolution models. 

Furthermore, we could not compare our results on multi-hazard modelling to other research because there 

is no published work using the Super-Resolution in multi-hazard modelling.  

 

Keywords: Super-Resolution, Deep Learning, Multi-Hazard Modelling, Digital Elevation Models 
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1. INTRODUCTION 

1.1. Background 

 The earth lost almost three trillion US dollars in damage by natural disasters to infrastructure from 1980 to 

2020, of which 75% is evoked by hydrometeorological surface hazards such as floods, storm surge, 

landslides, debris flow, etc. (The World Bank, 2020a). The loss due to natural hazards has increased from 

1.63 to 2.97 trillion dollars (adjusted to inflation and economic factors) from the last two decades of the 20th 

century to the first to decades of the 21st century and is expected to increase more because of climate change, 

unplanned infrastructure, economic and population growth (CRED & UNDRR, 2020). Jongman et al. 

(2012) estimate that by 2050 the exposure due 1/100 year flood events will affect more than 1.3 billion 

people and 158 trillion US Dollars in infrastructure compared to 46 trillion US Dollars in 2010.  

 

To reduce such impact of natural hazards, it is essential to understand and quantify these impacts on the 

infrastructure and population (Sanders, 2017). However, there is a gap in data, understanding, and 

technology in many developing countries to perform risk analysis at the infrastructure level and plan the 

best alternative for disaster risk reduction due to the lack of funds, capacity, and resources (Rahman & Fang, 

2019). The impact of natural hazards can only be reduced if we understand their characteristics, such as their 

location, intensity, frequency, and their impact on the element at risk.  Mapping, monitoring, and modelling 

are the most important aspects to understand the key spatial and temporal characteristics such as location, 

intensity, and frequency of natural hazards. Furthermore, mapping and monitoring helps to understand the 

past and current situation, but for understanding the future scenario and planning disaster risk reduction 

alternatives, modelling natural hazards is necessary.   

  

Numerical modelling of Multi-Hazards and risk is the process of numerically simulating the different 

characteristics of natural hazards either on a physical or data-driven basis to obtain information such as the 

probability of occurrence, intensity, and potential consequences of natural hazards in terms of hazard 

interaction as well as its impact (Komendantova et al., 2014; Thompson & Warmink, 2016). Modelling of 

natural hazards is a data-intense and computationally complex task. Physics-based simulations are best suited 

for the local and infrastructure planning level because of their relatively lower dependency on past event 

data and capacity to deterministically simulate real-world scenarios (Briggs, 2016, p. 153). For this research, 

we primarily consider physically based multi-hazard modelling and do not discuss single hazard modelling 

approaches because multi-hazard modelling combines multiple physical processes and their interaction and 

better represents the real-world scenarios. In the physically based multi-hazard analysis, the interaction 

between various hazards is simulated using the governing physical equations such as the two-phase flow 

equations, which work with the principle of conservation of mass, energy, and momentum (van den Bout 

et al., 2018). Liu et al. (2016) categorise those interactions of hazards as an independent, mutex, parallel, and 

series. Physically based multi-hazard modelling is a data-intensive process and requires ample data to run 

the model. Most of the resources involved in multi-hazard modelling are related to the data collection model 

calibration and validation process.  

 

In many developing countries, high-resolution data required for multi-hazard modelling are not available 

due to the lack of financial and skilled human resources (Hawker et al., 2018). However, there are global 

datasets that are freely available. However, their use in multi-hazard modelling is limited because of (I) low 
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spatial resolution (typically 30 – 10000 meters), (II) high level of uncertainty in the quality because of varying 

noise and error depending on the local geographical characteristics, (III) often not available in continuous 

time series (IV) mostly generated using proxy measurements instead of direct measurement (Li et al., 2019; 

Osuteye et al., 2017). A coarse-resolution dataset can be used for modelling processes on regional scales, 

but to analyse the impact of hazard at the local or infrastructure level, higher resolution data is required 

(Lindersson et al., 2020). Some processes such as gully formation or landslides that have a higher impact on 

agriculture happen on a large cartographic scale and are not possible to model physically using a global 

dataset. In those cases, only susceptibility assessment is possible (Dewitte et al., 2015).  

 

To put things into more perspective, a hillshade image of the Caribbean Island Dominica is shown in Figure 

1. In Figure 1, we can observe that even though both DEMs are resampled to 10 meters resolution, the 

hillshade image from a low-resolution dataset is very blurred, and, during the modelling, uncertainties will 

increase due to the coarse representation of the terrain with such low-quality data. For small size 

infrastructure, it can only provide coarse level information, leading to overestimated or underestimated risk 

in many cases because of the uncertainties in hazard intensity. Therefore, for high-resolution multi-hazard 

modelling for infrastructure level risk assessment, the high-resolution data must be collected at a local scale, 

or the quality and resolution of the freely available global/local dataset must be increased using some 

techniques.  

 
Figure 1: Terrain representation with data from low-resolution SRTM DEM (left) and high-resolution LiDAR DEM 
(right), both are resampled to 10 meters. Basemap sources: ESRI, HERE 

High-resolution data collection is an expensive procedure, and often the costs cannot be covered by the 

local authorities without external funding. Another approach of local-level multi-hazard modelling with a 

cost-efficient approach can be by improving the resolution of the existing global data (GEOSENSENL, 

2018). In the current stage, most of the resolution improvement is done using a technique called Super-

Resolution. Super-resolution is the process in which higher resolution data (mostly raster images) are 

generated based on lower resolution data inputs using a specialised algorithm (Yang & Huang, 2017). 

Application of Super-Resolution in an ideal scenario where all technological constraints, implementation 

constraints, and scientific constraints are perfectly in favour of Super-Resolution can reduce the cost of 
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high-resolution data collection leading to cheaper disaster risk mitigation. However, those constraints might 

lead to a reduction of the applicability of the Super-Resolution.  

 

Before the advancement of deep learning in the 2010s, Super-Resolution was mostly achieved using 

statistical and mathematical techniques such as Interpolation, Maximum Likelihood, Maximum a Posteriori, 

Joint MAP restoration, Bayesian Treatments (Yang & Huang, 2017). For the Super-Resolution of the 

geospatial data, Interpolation and geostatistical approaches such as kriging, co-kriging, regression kriging 

were used widely (Bhunia et al., 2018; Rata et al., 2020). Recent advancement in computer vision and deep 

learning has worked towards a new concept of Super-Resolution based on deep learning. Most of the 

emerging algorithms and approaches use convolution neural networks and Generative Adversarial 

Networks (GAN) for Super-Resolution (Al-falluji et al., 2017; Ji et al., 2020; Ledig et al., 2017; Luo et al., 

2017; Xu et al., 2019). The geostatistical approaches such as the kriging can produce smooth data which 

might be accurate but cannot generate spatial variability, and deeper and faster CNN and GAN-based 

approaches are trying to overcome such problems (Al-falluji et al., 2017). 

1.2. Knowledge Gap 

Most of the deep learning-based Super-Resolution models focus predominantly on improving the resolution 

of multimedia images and videos and do not focus on the Super-Resolution of the geospatial data (Al-falluji 

et al., 2017; Ledig et al., 2017; X. Wang et al., 2018). In the case of multimedia Super-Resolution, perception 

is more important, and if the produced image looks better and more real than the input image, the results 

are considered good (Chu et al., 2020). However, in geospatial data, the Super-Resolution should represent 

the actual values and spatial variability of specific measurements on the earth's surface. Only a few research 

efforts have focused on using Super-Resolution in the geospatial field. One of the interesting examples of 

Super-Resolution is to create a higher resolution Sentinel-2 image from the original resolution (up to 6 times 

upscaling) (Lanaras et al., 2018). Even though the application with Sentinel-2 image was with satellite image 

data, the improvement was done in the reflectance values rather than digital numbers, which makes it 

challenging than image Super-Resolution (Lanaras et al., 2018).  Unlike image fusion technology, where 

images from many sensors are fused to create a new image, the single image Super-Resolution is used to 

improve the resolution of an image without the addition of other data after the deep learning model is 

trained with high-resolution data and its low-resolution counterpart (Zhong et al., 2016).  

 

Most of the Super-Resolution research is done by smoothing original high-resolution data using 

interpolation and then downscaling it using the Super-Resolution. However, none of the works available to 

the author have used the approach to improve the quality of existing low-resolution data. Theoretically, 

training on an available high-resolution and its counterpart low-resolution should generalise the model so 

that it can perform well in the case of Super-Resolution of another set of low-resolution data. However, 

there are no existing evaluation matrices and use cases for the use of Super-Resolution models trained in 

high-resolution data and inference in low-resolution data. Moreover, in our case, if the high-resolution 

dataset is already available for specific locations, there is no need to convert global free datasets to a higher 

resolution. Furthermore, the current state-of-the-art Super-Resolution models are developed for photo and 

video processing, but there are very few studies on using them for downscaling geospatial datasets. The 

deep learning architectures designed for the multimedia Super-Resolution may not perform well in the case 

of the geospatial data and might need modification at the architecture level.  

 

Even though studies on Super-Resolution of DEMs, satellite images, landcover maps, etc. have 

implemented the Super-Resolution for geospatial data (Demiray et al., 2020; Jia et al., 2019; Lanaras et al., 
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2018; Leong & Horgan, 2020), there has not been any study in which the downscaled data were used for 

physically based multi-hazard modelling. Furthermore, those research only focus on one location to observe 

the improvement, but they have not studied whether a model trained at one specific location can be used in 

another location to improve the spatial resolution or not. In the climate model downscaling, Super-

Resolution is used for downscaling the climate variables (Vandal et al., 2018). However, most of the 

downscaling is done on the product of the model and not on the input data, and it is also difficult to claim 

that the downscaling of climate models have enough spatial variability because those models mostly cover 

larger areas and do not depict the high spatial variability of earth surface properties such as elevation and 

soil depth. So, in the current stage, it is unknown whether the Super-Resolution models are suitable for 

downscaling global datasets as better input data for physically based multi-hazard modelling. Demiray et al. 

(2020) suggest that the output DEM from their algorithm works better in flatter terrain where it adds spatial 

variability but performs worse in the mountainous regions. Furthermore, Demiray et al. (2020) also 

suggested that the improvement in the model architecture and training dataset might make it possible to add 

spatial variability in the mountainous terrain as well. On the other hand, this problem might be solved by 

adding functions to minimise the slope error on the training process of GAN models. Further research is 

required to understand if the output from the Super-Resolution model can be further improved by 

calculating and minimising the derivative during the training process or not.  

1.3. Objective 

This study aims to increase the applicability of physically based multi-hazard modelling of 

hydrometeorological hazards in data-poor regions by increasing the spatial resolution of input datasets using 

deep learning-based Super-Resolution techniques. Based on this major objective, the following sub-

objectives are identified: 

1. To design and develop (or adopt) Super-Resolution models and their components using the deep 

learning technology for downscaling global datasets to a higher resolution. 

2. To train, calibrate, and test the Super-Resolution model with a high-resolution dataset and its low-

resolution counterpart.  

3. To define evaluation metrics and evaluate the quality of Super-Resolution output from the global 

dataset relative to the measured high-resolution dataset.    

4. To analyse the applicability of the Super-Resolution in multi-hazard modelling by comparing the 

results produced by the OpenLISEM hazard model using the downscaled DEM data with results 

obtained from lower resolution data.  

Based on the above research objectives and sub-objectives, the following research questions are defined: 

1. To what extent are the Super-Resolution models capable of downscaling geospatial data with higher 

accuracy and spatial variability than the interpolation approach? (Objective: 1) 

2. What architecture of the Super-Resolution models is best for the data downscaling, and which 

modifications will create a more robust model for optimal downscaling of the datasets in question? 

(Objective: 1) 

3. How to optimally minimise the training loss functions, validate, and generalise the Super-Resolution 

models for downscaling the global dataset for multi-hazard modelling? (Objective: 2) 

4. Is the Super-Resolution model capable of generating a better dataset than existing interpolation 

techniques in terms of peak signal to noise ratio and structural similarity? (Objective: 2) 

5. How the different architectures and complexity levels of deep learning models perform in the Super-

Resolution of geoscientific data with different sources? (Objective: 2) 

6. How to compare the quality of Super-Resolution output from the global dataset and their derivatives 

without any available high-resolution counterpart of the data from the same sensor? (Objective: 3) 
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7. Is the output from the Super-Resolution model for the global dataset comparable to that of the actual 

higher resolution data in terms of the evaluation metrics defined above? (Objective: 3) 

8. Does the OpenLISEM hazard model produce similar output from the downscaled data as compared to 

outputs based on higher resolution input data? If not, to what extent the downscaled dataset influences 

the model accuracy? (Objective: 4) 

9. Based on the quantitative assessment of the outputs from multi-hazard modelling, is it possible to use 

the Super-Resolution techniques in data scare regions? (Objective: 4) 

1.4. Research Overview and Thesis Structure 

Figure 2 shows the overall steps followed in the research and the research questions answered by those 

steps. Each step is crucial towards answering the research questions, and some of those steps are qualitative 

such as literature review. Steps 2,3 and 4 are the Super-Resolution model development and training works; 

steps 5 and 6 are quantitative analysis steps.  

 
Figure 2: Research Design shows the overall steps that are followed in the research. 

 

The overall thesis is designed in a conventional way and consists of six chapters. The first chapters provide 

a brief background on the research and its social aspects, followed by a literature review chapter which 

provides a basic understanding of the literature and published work in the field of Super-Resolution and 

rationale to select specific models and data. The third chapter elaborates on data collected, detailed design 

of the models and their input, and modelling and calibration details. The results and analysis chapter (chapter 

4) reports results obtained from the research and its analysis compared with the existing literature where 

possible, followed by a discussion chapter explaining the reason behind such results. The last chapter is the 

conclusion and discussion chapter, which will further conclude the whole research relating to the original 

research questions.  
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2. LITERATURE REVIEW 

This chapter will provide background information on the major concepts required to understand the thesis, 

a literature review on the latest developments in the area, and a rationale for selecting specific data, 

algorithms, and basic background on multi-hazard modelling.  

2.1. Super-Resolution 

Super-Resolution emerged from the medical and nuclear imaging field to define an image enhancement 

process where the spatial or spectral resolution of a low-resolution image is synthetically increased to higher 

resolution using any mathematical, statistical, or deep learning approaches. The term was first used by 

Inouye (1964) to define the process of increasing the resolution gamma-ray spectrum using Fourier 

transformation. Bannore (2009, p. 1) defines Super-Resolution as "an image reconstruction process in which 

the higher resolution image (in terms of spatial resolution) is obtained by the fusion of partial information 

contained within the low-resolution images". This is a more generic and broad definition; in the case of 

single image Super-Resolution, the partial information is obtained from a single image, not multiple images 

making the problem more challenging to solve. The Super-Resolution aims to increase the spatial resolution 

of a lower resolution image, caused by different image degradation factors such as camera motion, camera 

optics, atmospheric interference, and insufficient sampling (Bannore, 2009, p. 2). In terms of research done 

in the field of Super-Resolution, the Scopus (2021) database shows the following number of documents 

published with the keyword "Super-Resolution" from 1964 to April 2021, as represented by Figure 3. It can 

be observed from Figure 3 that after the advancement of computation capacity and availability at around 

2000 A.D, the research in Super-Resolution has increased exponentially. With the implementation of deep 

learning techniques in Super-Resolution from 2015, the number of published works in Super-Resolution 

increased with very high rate.  

 
Figure 3: Number of published documents with the keyword Super-Resolution from 1964 to April 2021. 

Even though Super-Resolution can be applied to different datasets such as image, signal, video, etc., our 

major focus is on the Single Image Super-Resolution (SISR). The SISR is the image restoration problem 

where a higher resolution (HR) image is recovered from a degraded lower resolution image (LR) using some 

restoration process (Soh et al., 2019). In this branch of Super-Resolution, multiple images of the same 

features/scene are not available to fuse, and only a single is used to generate a new HR image. This makes 
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the task more challenging because there can be too many possible solutions to HR images from a single LR 

image (Soh et al., 2019). Our major focus is on using the single image Super-Resolution for geoscientific 

data, so we will not discuss algorithms which are focused on image fusion, video, and signal Super-

Resolution but only discuss the techniques developed for SISR. The SISR Super-Resolution techniques can 

be further classified as mathematical, regularisation, and learning-based approaches which are further 

explained in the following sections.  

 

2.1.1. Mathematical Approaches 

In the mathematical approach, Super-Resolution (SR) images are obtained using a standard function of low-

resolution images, which can be represented as SR=f(LR), where function f can be any mathematical 

function that can estimate the data with higher spatial resolution. The mathematical approach can be further 

classified as a Non-uniform interpolation approach and frequency domain approach (Park et al., 2003). The 

non-uniform interpolation approach directly reconstructs the SR image from the LR image by interpolating 

the grid values near the desired location. Major algorithms for non-uniform interpolation approaches are 

listed as below: 

1. Nearest Neighbour Interpolation: the desired location takes the value of the nearest available data in the 

Euclidian domain even though it is a fast approach, generated data have very low accuracy (Han, 

2013).  

2. Bilinear interpolation: the four nearest pixels from LR in Euclidian distance are averaged to estimate 

the value for the desired location in SR. It provides better results than NN but has poor visual 

quality (Han, 2013). 

3. Bicubic interpolation: the bicubic interpolation considers 16 nearest pixels in a 4x4 grid from the LR 

data and calculates their weighted average to estimate the value at SR image. This method is most 

wildly used and creates relatively smooth results (van Ouwerkerk, 2006). 

4. Bicubic Spline Interpolation: similar to bicubic interpolation, this approach considers 16 nearest pixels 

but instead of taking the weighted average of those pixels, it uses a Cubic Hermite spline to generate 

a continuous function which is then used to estimate the required value at SR. This approach 

generates very smooth results, which might not be useful for many approaches (van Ouwerkerk, 

2006).  

5. Inverse Distance Weighted Interpolation (IDW): It estimates the SR values based on the neighbouring 

locations using the average distance weighted LR values. This approach does not have any 

limitations on the number of LR data points to consider and can be used in different scenarios with 

different data points based on the requirements(Shepard, 1968).  Furthermore, this approach also 

does not require the data to be in a grid, making it more applicable in an irregularly spaced dataset.  
 

In the case of frequency domain approaches, most of the algorithms are based on the Fourier transform 

where the algorithms such as discrete and continuous Fourier transform are used to relate the high and low-

resolution images by the aliasing relationship, and SR images are reconstructed from LR images using 

Fourier transformation (Bannore, 2009, p. 10). This approach is more complex and not used much in 

geospatial data, so it is not further discussed here, please see Bannore (2009, pp. 9–11) and (Tian & Ma, 

2011) for further details. 

2.1.2. Regularisation-based Approaches 

These approaches mostly use statistical or specific methods to reconstruct the SR from LR (Tian & Ma, 

2011). The major algorithms that are used in this approach are Maximum Likelihood, Maximum a Posteriori, 

Joint MAP restoration, Bayesian Treatments (Yang & Huang, 2017, pp. 11–17), and Kriging 

(Panagiotopoulou & Anastassopoulos, 2007; Q. Zhang & Wu, 2015). In general, all those algorithms derive 



SUPER-RESOLUTION AIDED MULTI-HAZARD MODELLING: IS IT POSSIBLE? 

16 

the statistical likelihood from the LR image and inference the values based on statistical equations in the 

grid of SR images. These methods reconstruct the SR image stochastically from the LR where LR images 

are considered stochastic variables, and then based on those LR images, a statistical (mostly Bayesian) model 

is fitted and which is then further used to generate the SR image (Yang & Huang, 2017, pp. 11–13). For 

example, in ordinary kriging, a semi-variogram can be estimated from the low-resolution data, and then that 

pattern of the data can be further used to estimate SR values. Kriging is also considered the best local 

predictor because it tries to preserve the local variance in the data. However, the kriging approach produces 

the image with smooth results, and the output will lack spatial variability.  

 

2.1.3. Learning-Based Approaches 

Learning-based algorithms work in such a way that algorithms learn from one set of LR and HR images 

about the relationship between LR and HR image and then use that information to inference in newer LR 

image to generate SR image. With the advancements in machine learning and deep learning, these methods 

have been extensively researched and implemented. There are many algorithms developed using the deep 

learning-based approaches for Super-Resolution, and in general, all of them use convolution neural networks 

(CNN) as layers of the neural network. Based on the network design and its characteristics, Anwar et al. 

(2020) classified the deep learning-based Super-Resolution techniques as shown in Figure 4. The study of 

Anwar et al. (2020) is very sophisticated and has outlined and explained all major algorithms at the time of 

publication. However, Figure 4 can be further simplified by classifying the existing deep learning algorithms 

as Generative Adversarial Network GAN based models and Non-GAN based models. The reason to classify 

them as GAN-based and Non-GAN based is that the focus of GAN-based models is to generate images 

with better visual representation, and that of Non-GAN based is to generate higher PSNR. Furthermore, 

they are trained in a very different way, and due to the complexity of training and output results from GAN 

based approach are not usually compared with Non-GAN based approach:  

 
Figure 4: Classification of deep learning-based Super-Resolution algorithms. Source: (Anwar et al., 2020) 

 

2.1.3.1. Generative Adversarial Network (GAN) Based Models 

The GAN based model was first developed by Goodfellow et al. (2014); this class of networks features a 

generator network, which tries to create fake data based on noise (or low-resolution data), and the 

discriminator network, which tries to identify if the prediction is artificial or real. Furthermore, if the 

discriminator network identifies the fake data, it calculates the adversarial loss and sends the feedback to 

both the generator and discriminator. During the training process, the generator network tries to minimise 

the adversarial and content loss, whereas the discriminator tries to increase the adversarial loss (Demiray et 
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al., 2020). The generator uses both adversarial and content loss to learn from past errors and generate better 

results in the next epoch, whereas the discriminator uses the adversarial loss to detect the fake high-

resolution data (Ledig et al., 2017). The competition between the generator and the discriminator algorithm 

continues until the stage at which the discriminator network can no longer identify the fake data 

(Goodfellow et al., 2014). GANs can be understood as a money counterfeit problem; the Generator model 

can be considered a counterfeiter who tries to create fake banknotes and discriminator as a bank detective. 

Initially, the counterfeiter creates fake banknotes that the detective can identify, and then the counterfeiter 

learns how to create better and better banknotes whereas, the detective learns how to detect them until a 

convergence point where the counterfeiter produces the banknote so perfectly, the detective can no longer 

identify the fake notes. This process of learning for both counterfeiter and the detective is the overall idea 

of GAN training.  

 

The GAN-based approach is infamous for its difficulty in training and famous for its capacity to generate 

likely images. The first use of Generative Adversarial Network in single-image Super-Resolution application 

was done by Ledig et al. (2017) with their famous Super-Resolution using GAN (SRGAN) model. The main 

highlight of the SRGAN model is that (i) multiple loss functions which provide feedback to the network 

about their performance, were used to generate visually pleasing as well as quantitatively better (high PSNR) 

results, and (ii) use of generator and discriminator model in the adversarial min-max game to improve the 

performance of generator model (Ledig et al., 2017). This research is considered as the benchmark in the 

GAN-based SISR task, and it was further developed by Wang et al. (2018) in their ESRGAN model. The 

ESRGAN modified the generator network with Residual-In-Residual blocks without any batch 

normalisation layers and further modified the loss functions to add relativistic loss functions (X. Wang et 

al., 2018). ESRGAN is the best GAN-based model available in the literature, and it has been used in a 

multitude of the fields such as medical imaging, natural image processing, etc. (Anwar et al., 2020). However, 

the GAN-based approach sometimes generates artefacts that seem to appear from nowhere, ESRGAN has 

tried to reduce those problems by averaging the model, but the problem persists in many GAN-based SR 

applications (Anwar et al., 2020).  

 

2.1.3.2. Non-GAN Based Models 

As shown in Figure 4, there are many deep learning-based SR models with different width, depth, and 

network architecture, but all of them have one thing in common, they all try to increase the PSNR with their 

loss function. The early CNN-based SR models used to be sequential models with stacked convolution 

layers as in the Super-Resolution using CNN (SRCNN) model (Dong et al., 2014). After the development 

of SRCNN, there have been many models with different aims towards solving the SISR problem in different 

scales such as 2x, 3x, 4x. Currently, the 2x, 3x, and 4x Super-Resolution have started to reach a bottleneck, 

but according to one of the most detailed review by Anwar et al. (2020), the Embedded Block Residual 

Network (EBRN) of Qiu et al. (2019) has performed best with the highest PSNR with fewer layers and 

parameters. Dong et al. (2014) stated that the major problem in this type of model is that once the model 

reaches a very high number of parameters, it is very difficult to stabilise the model and train it properly. 

However, EDSR (Lim et al., 2017)and VDSR (Y. Zhang et al., 2018) models have shown that it is possible 

to increase the PSNR with very deep networks and with regularisation, it is possible to train such a deep 

network. However, the major problem is that there is always a trade-off between the computational 

complexity and improvement in accuracy with such a high number of parameters. Another advancement in 

SISR is done by the RCAN model of Y. Zhang et al. (2018), where they treat each band separately with 

"Channel Attention", which proved to have significant improvement in the overall quality of the image, but 



SUPER-RESOLUTION AIDED MULTI-HAZARD MODELLING: IS IT POSSIBLE? 

18 

in our case, most of the geoscientific data are of single band, and it might not improve the quality as such. 

EBRN (Qiu et al., 2019) model uses the block residual network that processes different frequencies of data 

through different complexity levels and concatenates that information at the end of the model. This 

approach has shown the highest PSNR at the time of publication and also at the time of review by Anwar 

et al.(2020). This method could be of good use for geoscientific data because it investigates the data 

frequency and different cases that are very important for geoscientific data, such as Digital Elevation Models 

(DEM), where different slopes could be treated as different frequency and which might help to produce 

better SR images. There are many types of networks in this class of networks but only relevant models are 

reported, for further information please see Anwar et al. (2020), Bashir et al.(2021), and Ooi & Ibrahim 

(2021).  

2.2. Super-Resolution in Geoscientific Data 

Since the research aim to select a single dataset and perform the Super-Resolution on that dataset to check 

its impact on the accuracy of physically based multi-hazard modelling, the dataset was searched to which 

the physically based modelling is most sensitive. In physically based modelling, Franchini et al.  (1996) has 

concluded that their model in hand (TOPOMODEL) was much sensitive to the grid size (spatial resolution) 

of the digital elevation models, and Kelleher et al. (2015) has shown that the physically based hydrological 

modelling was most sensitive to climate factors and then to the topography. In our case, the future climate 

change scenario will not be considered, and we will only run the standard event, so, based on those 

observations, DEM is the best data to check the model performance. Furthermore, the research of (2020) 

has shown that the use of higher resolution data in physically based modelling can provide better 

representation, which is contradicted by the research of H. Zhang et al. (2016), where they suggested the 

impact of resolution largely depends on the quality of data and requirement of the model. Considering the 

availability of DEM data with high- and low-resolution pairs in some countries and the availability of 

multiple global datasets and importance in different kinds of hazard simulations, we decided to perform our 

research with the Digital Elevation Models. However, in the case of statistical modelling and susceptibility 

mapping, the spatial resolution of the terrain dataset does not have much influence, and also, having higher 

resolution might not always generate better quality (Chang et al., 2019).  

 

In the case of the digital elevation models, NASA used a Super-Resolution technique to improve the spatial 

resolution of Flash LIDAR in 2011, and the results were published in 2014 (Bulyshev et al., 2014, 2011). 

NASA used the patented approach for the Super-Resolution purely based on multi-frame matching and 

mathematical projection (Bulyshev et al., 2011). Liu et al. (2018) used Super-Resolution for the lunar surface 

reconstruction using the improved sparse representation. Some works on DEM Super-Resolution use the 

convolution neural network  (Moon & Choi, 2016; Xu et al., 2019) and GAN approaches (Demiray et al., 

2020; Leong & Horgan, 2020; Shin & Spittle, 2019). For the soil moisture data, there are two published 

studies on the Super-Resolution of SMAP data (Nguyen et al., 2019), but there is no published work on 

Super-Resolution for other data such as soil depth. 

 

A limited number of published research in the Super-Resolution of Digital Elevation Models using the Deep 

Learning techniques is available; most of those research focuses on incrementing image quality. However, 

none of the studies has tested their applicability in any modelling. Furthermore, most of the results are 

compared via the raw elevation values than that of the derivatives, but raw elevations are not much used in 

most of the modelling but having relatively better-quality derivatives is very important. This leads to the 

need of having evaluation metrics that consider the derivatives and improvement on the derivatives using 

SR. Furthermore, due to the lack of a standard dataset for comparing the models, the published works are 
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not comparable without any bias. Table 1 lists the available models and their limitations and advancements 

in DEM Super-Resolution in chronological order.  

Model Data Used Advancements Limitations 

Convolutional 

neural network-

based DEM Super-

Resolution (Z. 

Chen et al., 2016) 

DEM in 

mountainous 

regions, source 

unknown. 

The first model to use 

CNN-based SR in 

DEM with a very basic 

CNN-based approach. 

Very small model with very few 

parameters which caused very small 

improvement compared to bicubic 

interpolation. 

Deep gradient prior 

network for DEM 

Super-Resolution: 

Transfer learning 

from image to 

DEM (Xu et al., 

2019) 

Satellite images 

and the LiDAR 

DEM 

Transfer learning-

based approach for 

faster convergence of 

the model and a First 

detailed comparison 

on DEM and its 

derivatives. 

The use of transfer learning is an 

interesting approach, but it might be 

difficult to obtain a very high-

resolution image each time to perform 

Super-Resolution. The stitching of 

output patches is still a problem 

because it shows small lines in between 

each patch.  

LoGSRN: Deep 

Super-Resolution 

network for digital 

elevation model 

(Shin & Spittle, 

2019) 

DEM from 

multiple sensors 

with varying 

spatial resolution 

from 0.5-1 

meters 

They have tested the 

model with multiple 

combinations of 

functions and used the 

Laplacian pyramid to 

reconstruct the data. 

The model is trained and tested in very 

high-resolution data (0.5-1 meters) in 

that scale improvement might seem 

bigger, but using it on globally available 

data might not improve its quality.  

D-SRGAN: DEM 

Super-Resolution 

with Generative 

Adversarial 

Networks 

(Demiray et al., 

2020) 

LiDAR DEM The First GAN-based 

approach on Super-

Resolution, even 

though the model is a 

bit old, is trained 

without any additional 

datasets and only with 

DEM data.  

The researchers mistakenly designed 

their model to improve 16x even 

though they have written 4x 

improvement, the model does not 

perform well in the mountainous 

terrain and performs better in the 

flatter terrain. Furthermore, it is also 

not compared with other models rather 

than Bicubic.  

Super-resolution 

reconstruction of a 

digital elevation 

model based on a 

deep residual 

network (Jiao et al., 

2020) 

SRTM DEM This model shows a 

very high 

improvement in the 

PSNR by using the 

residual layers in the 

model. 

The reconstructed HR image is around 

30 meters, and it is not easy to have any 

visible features at that scale. While 

improving from 120 meters to 30 

meters, the PSNR can improve with a 

large amount because generating the 

LR images due to very high variation in 

the data and bicubic interpolation will 

overly smooth the dataset. 

Furthermore, it also consists of 

usability problems because of using 

SRTM as HR data which is already 

available globally.  
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Model Data Used Advancements Limitations 

ESRGAN-based 

DEM Super-

Resolution for 

enhanced slope 

deformation 

monitoring in 

Lantau island of 

Hong Kong (Wu & 

Ma, 2020) 

SRTM Digital 

Elevation Models 

First ESRGAN based 

approach to use in 

Super-Resolution of 

DEM. This method 

used transfer learning 

from greyscale images.  

The amount of DEM for training is 

very low with just 3601x3601 pixel size 

image, which might overfit the model 

quite fast. The training was done in the 

SRTM data, which dilutes the need for 

developing the Super-Resolution 

model because SRTM data is available 

globally in 30 meters resolution, so the 

Super-Resolution model generates 30 

meters DEM is not much useful. 

Furthermore, research also does not 

compare its results with existing 

research. 

Feedback Neural 

Network-Based 

Super-Resolution 

of DEM for 

Generating High 

Fidelity Features 

(Kubade et al., 

2020) 

Aerial and 

LiDAR DEM 

Use of feedback 

networks with an 

extensive amount of 

data for training and 

testing. 

The model is trained and tested in the 

same data, but evaluation of 

performance in other data such as 

SRTM could have been better. The 

improvement is lower compared to 

FCN based method. Furthermore, the 

authors removed the boundary in 

output with overlapping, increasing the 

PSNR, but it does not mean it has good 

performance. 

AFN: Attentional 

Feedback Network 

Based 3D Terrain 

Super-Resolution 

(Kubade et al., 

2021) 

Use of Aerial 

Images and 

Digital Elevation 

Models 

It is the most recent 

and first model trained 

with enough data 

combined with images 

and has significant 

improvement in the 

output. 

The major problem is the availability of 

very high-resolution images, and also, 

the model is trained and used in very 

high-resolution images only, limiting 

its uses in real-world scenarios.  

Table 1: List of available deep learning-based Super-Resolution techniques for DEM data 

2.3. Multi-Hazard Modelling  

To understand the risk imposed by hydrometeorological or geological hazards in infrastructure and reduce 

the impact of such hazards, understanding hazard characteristics is important. To understand the impact, 

modelling the hazards is generally done using statistical or physically based numerical simulation. The 

physically based models are better suited to provide more detailed information on the underlying process 

of the hazard because they can simulate the information based on the empirical or physical relationships 

between different factors that play a crucial role in hazard characteristics (van den Bout, 2020, p. 4). In 

general definition, multi-hazard modelling is a process of simulating real-world hazard scenarios using 

different input parameters and triggering events with the combined interaction of multiple hazards. Because 

most of the naturally occurring hazards interact with each other and cause intensification in each other's 

frequency, density, distribution, and density(Bell & Glade, 2011; Finlay & Fell, 1997; Yousefi et al., 2020). 

The different interaction between multiple hazards is categorised by van Westen & Greiving (2017, pp. 39–

42) as the following types: 
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1. Independent: where each hazard happens without relation to one another, such as earthquake and 

fluvial flood 

2. Coupled: Both hazards are strongly coupled together and occur most often due to the same 

triggering event as drought and heat waves. The temporal probability of the events is the same 

because of the same triggering events.  

3. Conditional: One hazard occurs due to the impact of another hazard, but with a long-term 

relationship, such as flood plain created by landslides can be flooded after a certain amount of time. 

In this case, one hazard is not a triggering event of another hazard. 

4. Domino or Cascading: One hazard occurs due to the triggering of another hazard that happens in 

a very short duration, such as earthquake and earthquake-induced landslide. This adds more damage 

and extremely difficult to model. 

 

The above-stated relations in multiple hazards are extremely difficult to simulate because multiple earth 

surface processes simultaneously occur (van Westen & Greiving, 2017, p. 39). Each of them has a different 

relationship that can alter the intensity and propagation of the hazards. The relationship between such 

hazards contains many uncertainties in the quantification process because of the multiple interactions and 

dynamic situations, and small change in one process can alter another hazard to a large extent. For example, 

the flood propagation directions and their velocity can be extremely deviated by the landslide occurrence, 

which blocks or formats the dam. Modelling of such events requires multiple physical process simulation at 

the same time. There are very few tools available to model such events, and some of the recent developments 

have increased the computation capacity as well as the theoretical understanding to model such events. Even 

though there are multiple models for physically based single hazard modelling, there is a lack of models 

capable of considering multiple hazards and their interaction at a detailed spatial level(van den Bout et al., 

2018). The OpenLISEM model developed by van den Bout et al. (2018) is a good example of multi-hazard 

modelling, which has implemented such a model which considers shallow slope failure, flash flood, and 

debris flow. Some models also developed using multi-criteria evaluation and machine learning methods 

(Skilodimou et al., 2019; Yousefi et al., 2020). However, even though those models can work on a larger 

scale than physically based models, those methods cannot simulate the events based on the physical 

relationships and largely depend on data limiting the usability in data-poor scenarios.  

 

To further explain the types of quantification of the multi-hazard interactions, Tilloy et al. (2019) has 

classified the multi-hazard quantification (modelling) process as Stochastic, Empirical, and Mechanistic 

models. The stochastic models are designed to assume that all processes show random behaviour and can 

be considered stochastic in nature (Cox & Miller, 2017). These models generally generate data from statistical 

distributions and usually use extreme value and multivariate statistics as processing methods (Tilloy et al., 

2019). The types of stochastic multi-hazard models are copulas and multivariate models, and they are mostly 

used to model compounding hazards; some examples of such models are extreme value copulas models, 

joint tail regions models,  and compounding flood models (Gudendorf & Segers, 2010; Ledford & Tawn, 

1997; Z. Liu et al., 2018). The empirical models are mostly based on the observations and measurements, 

and their modelling is done using the data-based empirical relations observed on the data and such model 

have no capacity to extrapolate beyond the range of the observed data making it difficult to use in future 

scenarios (Tilloy et al., 2019; Zou et al., 2003). Some examples of empirical models are dependence measure 

and regression used in different scenarios (Guzzetti et al., 2007; Svensson & Jones, 2004; van den Hurk et 

al., 2015). The most detailed models are mostly mechanistic models that use physics-based simulations, and 

they are ideal mathematical representations of real phenomena (Devia et al., 2015). These models can be 

further classified as conceptual and physical models based on their calculation strategies. The conceptual 
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models usually describe all the components of a hazardous process using conceptual relationship and require 

a large amount of data and calibration (Tilloy et al., 2019). Some examples of such conceptual models are 

HBV, TOPMODEL and MORDOR (Devia et al., 2015). The physical models usually use standard physical 

equations to simulate such phenomenon using standard equations; the best example of such is the two-

phase flow OpenLISEM model, which considers the relationship between different hazards and models 

such processes using physics-based equations (van den Bout et al., 2018).  

 

The availability of such physically based models is very limited, and the review of Tilloy et al. (2019) have 

presented such availability in Figure 5. We can observe that the multi-hazard models using mechanistic 

approach are largely limited in hydrological context. The models such as linear regression, extreme value 

and hydrodynamic models are most widely used for multi-hazard modelling. The reasons to have such a 

limited number of multi-hazard models might be due to limited computational capacity in large regions and 

understanding interrelationships between such hazards. The need to develop models that can consider 

multi-hazard interactions is growing day by day.  

 
Figure 5: Multi-Hazard models using different modelling techniques. Source: Tilloy et al. (2019) 

 
In multi-hazard modelling, there are many geospatial datasets used, such as Digital Elevation Model, soil 

maps, vegetation maps, etc., to name a few. Such hazard models usually take those maps as input and 

simulate the real-world scenario with different triggering events to estimate the propagation of multi-hazard 

event in different spatial locations. Those simulations and their quality are mostly dependent on the quality 

of the input data, and their performance is limited by the quality of elevation and soil data (van den Bout et 

al., 2018). Furthermore, simplifying modelling equations and assumptions on the data can also increase the 

uncertainties on the output to a large extent (Tilloy et al., 2019). In most of the simulations, DEM is the 

most important input parameter because most of the surface processes (even the effects of geological 

processes on the surface, such as an earthquake) are greatly affected by the terrain parameters such as slope 

steepness, aspect, and elevation. Based on the modelling approach, such as a data-driven or physically based 

approach, such input parameters are fitted or simulated through modelling equations to mimic the real 
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event. In our case, the research mostly focuses on physically based multi-hazard modelling because of its 

intense use of spatial data at pixel levels rather than regional/aggregated level, representing the impact of 

Super-Resolution in a more elaborative manner.     

 

There are many mechanistic simulations in hazard modelling, such as for earthquakes, landslides, floods, 

etc. In our case, hydrometeorological triggered scenarios are chosen as our main hazard modelling approach 

and selected a combined model to process the hydrology and slope failure process in combination.  Table 2 

shows the examples of multi-hazard models (only accessible models) and information about the underlying 

equations as well as modelled hazards and their interaction by those models. Since multi-hazard modelling 

has recently started getting advanced due to the improvement in computation capacity, there are a limited 

number of models and software/ models available as of now.  

 

Physically based 

Multi-Hazard Model 

Modelling Equations Modelled hazards and interactions 

ICRESTRIGRS(K. 

Zhang et al., 2016) 

Integrated CREST and TRIGRS 

model equations. 

Flood and landslide, cascading hazard 

interactions.  

LHT Model (Fan et al., 

2017) 

Integration of Rickenmann, Perla, 

and RAMMS models  

landslide-debris flow model and neglects 

hydrological process. The link between 

hazards is one way.  

EDDA 2.0(Shen et al., 

2018) 

Mass and momentum 

conservation equations 

Integrates the surface failure and the 

erosion of debris flow. 

STEP-TRAMM (von 

Ruette et al., 2017) 

Hydro-mechanical triggering 

model and simple debris flow 

runout model. 

Integrates the shallow landslide and debris 

flow induced by rainfall. 

OpenLISEM (van den 

Bout et al., 2018) 

Saint-Venant equations, factor of 

safety equations, and debris flow 

equation from Pudasaini (2012) 

Integrates the flash floods, debris flow, and 

slope failures for catchment-wide 

modelling. 

Table 2:Overview of different Multi-Hazard Models. 
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3. METHOD AND DATA 

This section provides an overview of the methods used in this research with the explanation of the models, 

methods used to prepare the data, details on training the models, multi-hazard modelling, and evaluation 

approaches. The major workflow of the research is given by the first section, followed by the different steps 

used in research which explains in detail the steps followed in each section. 

3.1. Research Overview 

The research methodology is developed, as shown in Figure 6. The whole research is divided into two major 

phases; the first is the development of a deep learning-based Super-Resolution model, and the second is to 

test the applicability of Super-Resolution in multi-hazard modelling. The first stage is also further divided 

into two tasks: training of the model (green part) and evaluation of the models (yellow part). For this 

research, we have selected the best GAN-based model (ESRGAN) and Non-GAN based (EBRN) model 

for single image Super-Resolution tasks from the review of Anwar et al. (2020). Those models are further 

discussed in their respective sections in this chapter. The training of the model is done using the freely 

available DEM from Austria and its synthetic low-resolution data. After training the models, their quality 

and generalisation are tested at the test sites in Austria using standard computer vision test approaches such 

as PSNR, MSE, and SSIM. The training process of the model is improvised many times to obtain the best 

results, and the best model is used to further evaluate using multi-hazard modelling. 

 

Once the Super-Resolution model reached sufficient accuracy with the test dataset, further two more test 

sites were selected in different locations with completely different terrain characteristics as described in the 

data section and tested the applicability of Super-Resolution. Those test sites are located in Colombia and 

Dominica, where high-resolution DEM, globally available DEM and global commercial DEM are available. 

Furthermore, to test the capacity of the model to reconstruct relative to its trained area, these evaluations 

were also performed in Austria so that we can understand if the model is well generalised or not.  Globally 

available low-resolution Digital Elevation Models from those selected test sites are super-sampled and 

interpolated using bicubic interpolation. The capacity of Super-Resolution to reconstruct the DEM 

derivatives and geomorphological features are analysed and compared relative to high-resolution DEM. 

Furthermore, to compare how globally available commercial DEM can perform compared to that of the 

super-sampled DEM, the same test  was done with TanDEM-X data in Colombia and Dominica Test sites 

as well. This section of research is represented by the blue box in the methodology diagram. The derivative 

test and geomorphological test methodology are newly developed for this research which provides the 

relative information between derivatives of high-resolution DEM and low-resolution DEM. The 

geomorphological test includes visual evaluation by geomorphological experts, and derivative analysis 

includes quantitative analysis using mathematical and statistical functions.  

 

Once that process was completed, one of the two catchments was modelled using the OpenLISEM hazard 

model to physically simulate a multi-hazard scenario, and its results were compared using different methods 

as explained in relative sections. The simulation is done for the specific events to reconstruct those events 

and understand the change of model accuracy using Super-Resolution methods. Furthermore, all simulations 

are conducted in a multi-hazard environment which consists of landslides, debris flow, and flooding. To 

make a fair comparison, firstly, in Dominica, we selected multiple combinations of DEMs and created eight 

scenarios with channel flow and eight scenarios with the non-channel flow to understand how SR-based 

methods improve local drainage overall terrain. Furthermore, we added five more scenarios in Colombia 
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without channel flow to observe Super-Resolution applicability in multiple locations. The OpenLISEM 

model was run and calibrated in the Microsoft Azure cloud computation environment for faster 

computation. The next sections will further discuss the methodology in detail with the reason to use the SR 

models, their explanation, and specific details on their use.  

 
Figure 6: Research Methodology. The figure shows three different phases of research and how each phase was 
conducted; see the specific section for further details. 
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3.2. Dataset and Study Area  

3.2.1. Dataset for Deep Learning (Phase: I) 

To conduct this research, we required two types of datasets, first, a high-resolution dataset with sufficient 

quality to train the model, and second, a low-resolution dataset to inference using the Super-Resolution 

model and compare its quality to its high-resolution counterpart. Since DEMs generated from different 

observation systems over different periods do not have comparable elevation values due to datum shift, 

noise in the data, central location of the grid, and change in the terrain itself, we cannot directly compare 

the elevation values from different sensors. However, it is more relevant to compare their derivatives such 

as slope steepness, aspect, drainage direction, and therefore, a high-resolution DEM was also required for 

the inference area.  

 

For training the deep learning network, we need high-resolution data that is freely available in locations with 

sufficient terrain variability where enough steep slopes and flat terrain are available. For this purpose, we 

found the freely available DEM from the four states of Austria most useful. We collected the 5-meter DEM 

dataset from Austria (Salzburg, Tyrol and Carinthia) and selected six catchments with ranges of 0-30, 30-50, 

and 50-70 degrees slope (Land Carinthia, 2015; Land Salzburg, 2016; Land Tirol, 2018). Each range of slope 

consisted of 2 catchments in random locations to create variable information. Furthermore, we randomly 

selected a square region with sufficient terrain variability to test the unbiased quality of the model 

performance; in this test area, we did not calculate the slope, but it consists of major terrain features such 

as mountains, valleys, and some flatter terrain. Those selected DEMs were then degraded to lower resolution 

data using the Bicubic Interpolation function of MATLAB and then further converted to patches of 

128x128 pixels for HR samples and 32x32 for LR samples. Wang et al. (2018) have shown that using higher 

size patches is better for training bigger networks because it can provide more information about the local 

geographical characteristics of the terrain, which enables the model to learn about geographic relationships 

and use that information in the reconstruction of other images. The regions selected for training the deep 

learning model are shown in Figure 7. 

 
Figure 7: Training and test data samples from Austria LiDAR Data. Basemap sources: ESRI, HERE, OpenStreetMap 
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3.2.2. Dataset for Applicability Test (Phase: II) 

For quality evaluation of the Super-Resolution globally available free DEM dataset and the performance 

evaluation of SR dataset in multi-hazard modelling, we have selected two more sites. The first area that we 

selected is Dominica, located in the Caribbean, and another is Mocoa of Colombia, the description about 

the modelling catchment and the study sites are present in hazard modelling specific details about the data 

(NASA, 2009; Stott, 2018). The global SRTM DEM and TanDEM-X provided by the German Aerospace 

Center (DLR) with Licence was used in both Dominica and Colombia (DLR, 2010). Because of the Non-

disclosure agreement, the data cannot be shared with third parties, but the details about the licence can be 

further provided upon request. However, to test how the Super-Resolution performs in the global dataset 

in Austria compared to those areas, we also performed Super-Resolution with SRTM data in the test site of 

Phase I. For quality evaluation using evaluation metrics such as derivative analysis and geomorphological 

evaluation, we selected the places where high-resolution DEMs were available in both Dominica and 

Colombia; for Austria, the applicability test site was kept the same as the test site from phase I. The regions 

selected for those areas are shown in Figure 8. In Dominica, because the high-resolution DEM was available 

only on the seashore sides and was not available for the whole country (due to problems in data collection), 

we also extracted the SRTM and TanDEM-X DEM in the region where high-resolution DEM was available 

and made the comparison on those regions only. For Colombia, we also clipped the SRTM DEM to 

catchment shape where data was available, and all places where data was not available are set to NoData 

values (not to be confused with zero).  

 
Figure 8: Inference site for global digital elevation models in Dominica and Colombia. The DEMs are clipped to match 
the available pixels of High-Resolution data. Basemap Sources: ESRI, HERE, OpenStreetMap. 

To understand the SR-based approach's capacity to improve the quality of multi-hazard modelling, we 

selected two specific catchments as shown in Figure 9 and their events in Dominica and Colombia. The 

catchment in Dominica was modelled extensively to understand how SR-based methods perform in 

different types of data, such as SRTM data and LiDAR DEM data. The high-resolution DEM we had in all 

the Dominica study sites was degraded using MATLAB bicubic interpolation function to create low-

resolution DEM. The reason for using both globally available free, commercial, and high-resolution DEM 

and its degraded low-resolution is that the deep learning algorithms mostly perform better in the dataset 
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they are trained and the performance changes with the data from a different source different amount of 

noise. Furthermore, the perfect recreation of the training scenario can show the capacity of the model to 

reconstruct HR data from LR data. However, in the case of a globally available dataset, its capacity might 

be degraded, and to evaluate how the performance degrades, we created those combinations of the dataset. 

To evaluate the performance of SR methods, we used multiple DEMs in Dominica, keeping all other 

parameters constant and only changing the DEM and its derivatives. Those DEMs are: 

(1) SRTM bicubic interpolation 

(2) SRTM Super-Resolution using ESRGAN 

(3) SRTM Super-Resolution using EBRN 

(4) LiDAR bicubic Interpolation from degraded DEM 

(5) LiDAR high-resolution without degradation 

(6) LiDAR Super-Resolution from degraded DEM using ESRGAN 

(7) LiDAR Super-Resolution from degraded DEM using EBRN 

(8) Commercial DEM, TanDEM-X 

 

To further understand the applicability of SR in multi-hazard modelling at multiple locations, we further ran 

the multi-hazard model of the events in Colombia only for the SRTM and TanDEM-X datasets. The dataset 

from Dominica was evaluated in more scenarios compared to Colombia to prove that whether SR-based 

methods improve performance in modelling or not. However, when we already have results from Dominica, 

which proves the applicability of SR in multi-hazard modelling, only five scenarios of Colombia are required 

to check its applicability in multiple locations. The DEMs used in Colombia to evaluate applicability in 

multiple locations are listed as below: 

(1) SRTM bicubic interpolation 

(2) SRTM Super-Resolution using ESRGAN 

(3) SRTM Super-Resolution using EBRN 

(4) Commercial DEM, TanDEM-X 

(5) High-resolution DEM 
 

 
Figure 9: Modelling catchment area, Grand Bay in Dominica and Mocoa in Colombia. Basemap Sources: ESRI, HERE, 
OpenStreetMap. 

Dominica is a small island nation with an approximate population of 71,000 people and a GDP of 551 

million USD in 2018 (The World Bank, 2018). The overall terrain in Dominica is mountainous in the central 

part of the country, and the whole country is surrounded by the ocean making it prone to hurricanes. There 
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are many damaging major hurricane events in Dominica, such as Hurricane David (1972), Erika (2015), and 

Hurricane Maria (2017).  For modelling the event, we used the hurricane Maria event, which occurred in 

2017, and the physically based multi-hazard modelling was done in the Grand bay catchment of Dominica. 

The Maria event caused estimated damage of 930.9 million USD, and most of the damage was in the housing 

sector (Government of Commonwealth of Dominica, 2017). The event also caused many landslides and 

flashflood (Government of Commonwealth of Dominica, 2017); their interaction has changed the event's 

overall impact and modelling both hazards simultaneously is very important. The rainfall event that was 

measured in the Canefield Airport station Dominica due to the Maria hurricane is shown in Figure 10. The 

amount of peak rainfall that occurred due to the hurricane reached more than 120 mm/hr, and total 

cumulative rainfall was more than 400 mm, which caused a large amount of landslide and flood around the 

country. The input dataset except for digital elevation models for the Maria event was obtained from the 

existing model of van den Bout et al. (2020, p. 174). To simulate the event, we used canfield airport rainfall 

data as the rainfall scenario, and other data used for simulating the events are listed in Table 3: 

 
Figure 10: Rainfall in Canefield airport due to hurricane Maria. Source: van den Bout  (2020, p. 175) 

Input Parameter Method Used/Source 

Elevation LiDAR DEM, SRTM DEM and TanDEM-X DEM 

Channel Network Created from the DEM source 

Channel Properties Channel width and depth obtained from van den Bout et al. (2020) 

Land Use Obtained from the work of van den Bout et al. (2020) 

Vegetation Density Obtained from the work of van den Bout et al. (2020) 

Soil Depth Obtained from the work of van den Bout et al. (2020), derived from empirical 
relations.  

Urban Elements Vector data from OpenStreetMaps, later rasterized to model grid size of 
10x10 meters 

Soil Physical Parameters  Obtained from van den Bout et al. (2020), the calculation was done by the 
pedo-transfer function from Saxton et al. (2006) 

Soil Strength Parameters Obtained from van den Bout et al. (2020), the obtained internal friction angle 
was later calibrated. 

Precipitation Measured rainfall data obtained from the work of van den Bout et al. (2020) 

Inventory Mass movements and flood inventory maps from the work of van Westen et 
al. (2020) 

Table 3: Input dataset and their sources for Grand Bay, Dominica 

The second catchment is selected in the Mocoa region of Colombia,  a developing South American nation 

with an estimated population of 50 million and a GDP of 323 million USD in 2019 (The World Bank, 
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2020b). Being a mountainous country, Colombia has a frequent occurrence of landslide and debris flow 

causing frequent damage, and the World Risk Report 2020 shows that Colombia ranks 88th country in terms 

of risk due to hazards in between India(89) and Pakistan (87) (Behlert et al., 2020). The report also shows 

that Colombia's high exposure value, compared to India and Pakistan, increases the risk index, even though 

vulnerability and adaptive capacity are better than India and Pakistan.  

 

To simulate the event, we used landslides and flash flood events in 2017 due to extreme rainfall. AON 

Benfield reports that the event caused 336 deaths with 400 injuries and missing (AON, 2017). It is the third 

deadliest hydrometeorological disaster in Colombia and the deadliest disaster in Mocoa in the recorded 

history (Masters & Grenci, 2017; Rojas, 2017). The economic damage of the event was more than 10s of 

millions USD (AON, 2017). The event was triggered by more than 130 mm rainfall during a very short 

period of 23:00 Friday, 31 March and 01:00 Saturday, 01 April 2017, whereas the region usually gets around 

400 mm of rain in a month during that season (Davis, 2017). The overall rainfall graph recorded in the 

Acueducto rain gauge is shown in Figure 11, the total cumulative rainfall for our scenario was 630 mm, and 

peak rainfall was 73.8 mm/hr. This intense rainfall at short duration caused large amount of landslide and 

flooding leading to larger slope failures and loss.   

 

 
Figure 11: Rainfall in Acueducto rain gauge for Mocoa simulation. The time started from 20:30. 

To simulate the event and observe the effect of Super-Resolution in modelling such extreme event, we 

created four different scenarios in the Colombia Mocoa region and used them to further understand the 

possibility of using a Super-Resolution to generate better quality modelling results in Colombia.  

Urban Elements Openstreet Maps, rasterized to map grid 

Soil Physical Parameters  UNGRD and Pontificia Universidad Javeriana (2018) 

Soil Strength Parameters UNGRD and Pontificia Universidad Javeriana (2018) 

Precipitation Obtained from SGC (2017) 

Inventory Created by aerial photographs obtained after the event SGC  
(2017) 

Table 4 shows the available input dataset for Colombia that we used and their sources. 
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Input Parameter Method Used and Source 

Elevation SRTM DEM, ALOS PALSAR (HR) and TanDEM-X DEM 

Channel Network Created from the DEM source 

Channel Properties Created from the DEM source 

Land Use National Cover Map of Colombia scale 1:100.000 (IDEAM, 
2010) used to create Random Roughness and Manning’s 
roughness coefficient (n) using methods suggested by (Floors et 
al., 2018; Papaioannou et al., 2018; van den Bout, 2020) 

Vegetation Density Created using sentinel-2 images as suggested by van den Bout 
(2020) 

Soil Depth UNGRD and Pontificia Universidad Javeriana (2018) 

Urban Elements Openstreet Maps, rasterized to map grid 

Soil Physical Parameters  UNGRD and Pontificia Universidad Javeriana (2018) 

Soil Strength Parameters UNGRD and Pontificia Universidad Javeriana (2018) 

Precipitation Obtained from SGC (2017) 

Inventory Created by aerial photographs obtained after the event SGC  
(2017) 

Table 4: Input dataset for Mocoa region of Colombia 

3.3. Phase I: Deep Learning Super-Resolution 

We had selected two major models (GAN Based and Non-GAN Based) with the highest performance and 

lower computational complexity as compared by Anwar et al. (2020). The specific models and their training 

and evaluation strategies are explained in the following sub-sections. 

3.3.1. EBRN  

The Embedded Block Residual Network (EBRN) was developed by Qiu et al. (2019). The model has specific 

features compared to other methods, making it the best model for PSNR oriented approaches in the review 

of Anwar et al. (2020). Unlike other existing models, EBRN does not process data with all frequency (such 

as elevation difference or slope steepness) through a single network (no matter the number of layers), but it 

has different blocks through which the different frequency domain data get processed (Qiu et al., 2019). In 

our case, the patches with a very high slope and very low amount of slope usually get processed by a single 

network in other models, but in the case of EBRN, such processing is done through a different network 

depth. Having such a network structure is theoretically very beneficial for DEM data because, with different 

elevation changes (slope), different processing levels are required to generate better representation. If the 

terrain has a small slope, a smooth reconstruction might be useful, but a higher amount of processing and 

reconstruction is crucial to generate better SR images for a higher slope. Furthermore, it also developed a 

novel approach for block residual and its embedding through concatenation rather than stacking, proving 

to be better at reconstruction than the existing methods (Qiu et al., 2019).  

 

We have modified the model to work on our case because it was developed for use in optical images, firstly 

we changed the input size of the model from 3 channel input to 1 channel input. Secondly, we added a 

normalization layer at the top, which converts input data from the range 0-8000 to 0-1. We kept the 

maximum value as 8000 because most elevations are in that range, and if we keep the range too big, the 

normalized values will get too small, causing the network to ignore such differences making smoother 

terrain. However, it will be possible to use the model in sub-zero and above 8000 meters by vertical scalings, 

such as in case of more than 8000 meters, we can subtract certain values before processing and adding the 

same amount after processing. This normalization was necessary to limit the data range from which the 

model can learn; otherwise, the model can generate elevation values in very high ranges, which might not 
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be realistic. Thirdly, we added a de-normalization layer at the last of the model, which converts the 0-1 range 

back to 0-8000, giving the elevation values in a similar range to that of the input.  

 

The overall architecture of the model after modification is shown in Figure 12, and In the diagram, we can 

observe that the input LR image is passed through different levels of Block Residual Modules (BRM) based 

on their frequency (in our case, slope). Each BRM, as shown in Figure 13, aims to reconstruct the parts of 

higher resolution images that are in a specific frequency domain and pass the remaining signals to the next 

module, which again reconstructs some level of frequency, the high to low-frequency output are denoted 

by colour lines in the diagram. Once the data enters the BRM module, it first creates a bigger layer of specific 

Super-Resolution scale, such as in our case when we provide input of 32x32 pixel image, it creates 128x128 

pixel image and this image then goes to two places. First, it passes through multiple convolution layers 

shown in Figure 14, which uses several filters of 3x3 kernel size to extract learnable features. The weights 

of convolution layers are adjusted during the training process to better extract terrain features, which helps 

the model better reconstruct the image. Second, the upsampled image gets combined with the input image 

using the subtraction function, which again passes through several convolution filters until it reaches the 

next BRM module. The image that went through the first process does not further pass through another 

BRM module, but the data (same essentially) went through the second process goes through another BRM 

module following the same process. After the next BRM module again generates the 128x128 image, the 

image processed through the first step is added to the recent output, and they are passed through another 

number of convolution layers.     

 

In general, the first BRM module creates the SR image that has gone through a few processing steps and 

can reconstruct low-frequency data with better quality, and it is further processed by another module that 

performs similar operations in the image so on and so forth, and at last, all of them get concatenated. Once 

all the output from BRM is added and passed through convolution layers, it gets concatenated and further 

goes through the convolution layers, which estimates the weights to reconstruct the SR DEM based on all 

that processed information. As we can see in the image, for the last BRM, convolution operation is not done 

in its data which is not added to the previous BRM; this is because when the data is not added, there is no 

need to perform the convolution. After all, it has been done already inside BRM. In simpler terms, each 

BRM module process the information from an input up to its capacity and then passes it to the next BRM, 

which will further process that information to generate better elevation. However, when a higher amount 

of processing is not required, the more complex process can produce unwanted artefacts and to reduce such 

problems, all the outputs are first concatenated and passed through the convolution layer. So, the more 

BRM a data has gone through, the better it is at the reconstruction of higher frequency data, but at last, 

convolution layers will estimate the weights which generate the final elevation value, which should have the 

lowest error value compared to ground truth data. In the training process of this model, the weight of the 

model gets repeatedly adjusted based on some function which calculates the error of super-sampled data 

compared to ground truth. The detailed design of the EBRN model we used is added in Annex 1 to 

reconstruct the model. 



SUPER-RESOLUTION AIDED MULTI-HAZARD MODELING: IS IT POSSIBLE? 

33 

 
Figure 12: Embedded Block Residual Network for the Digital Elevation Model. 

 
Figure 13: Block Residual Module, which shows the combination architecture of BRMS. Source: Qiu et al. (2019) 

 
Figure 14: Simplified process of CNN where filter kernel of arbitrary size performs the convolution operation, each 
filter weights are estimated per number of filters and adjusted during the training process. 

To train this model, we have provided the combination of HR and LR training data as described in the data 

section. The training is the process of adjusting each convolution layer's bias and weights in the model to 

reduce the loss in the model. As we briefly discussed before, the loss function is a simple function that 

calculates the error between ground truth data and the generated images, and an optimizer function updates 

the weights and bias on the model to generate the data that consists of lower loss values. In the original 

paper, they used L1 loss (Mean Absolute Error) as the target function and then fine-tuned it using the L2 

(Mean Squared Error) as shown in Equation 1. However, for our purpose of multi-hazard modelling, only 

having elevation values close to high-resolution is not sufficient because most of the geospatial analysis is 
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not affected by absolute elevation but relative elevation between neighbouring pixels has a very high impact 

on the derivatives and the overall quality of model output. To minimize the relative error between the 

neighbouring pixels, we introduced a novel loss function called TopoLoss function, an abbreviation for 

Topographic Loss as shown in Equation 6, which is derived in the next paragraph. After introducing 

TopoLoss, we created a final loss function with the weighted average of L1 Loss and TopoLoss as in 

Equation 7. However, the model could not converge initially because of complexity, so we first trained the 

model with L1 Loss and then followed by a mixture of L1 Loss and TopoLoss. To train the model, we used 

Adam Optimizer to optimize the training process because of its robustness in such work (Qiu et al., 2019). 

𝑙1 = 𝔼𝑛||𝑦 − 𝑦̅||  

 𝑙2 = 𝔼𝑥𝑖|(𝑦 − 𝑦̅)
2|…………………………… ..  (1) L1 and L2 Loss functions 

 

To derive the topographic loss function, let us consider a convolution window as 

shown in Figure 15, where derivative values will be estimated for the pixel “e”. Then, 

to calculate the slope and aspect as defined by Burrough & McDonell (1998, p. 190), 

we calculated derivative in X and Y direction as shown by Equation 2 

𝑑𝑌𝑥
→ =

(𝑐+2𝑓+𝑖)−(𝑎+2𝑑+𝑔)

8
  

𝑑𝑌𝑦
→ =

(𝑔+2ℎ+𝑖)−(𝑎+2𝑏+𝑐)

8
 …………….. (2) Derivatives in X and Y directions 

With the help of derivatives in x and y directions, we further calculated the slope for ground truth data 𝑌 

and generated high-resolution data (𝑌̅ ) as in equation 3.  

Slope  𝑌=√(
(𝑐+2𝑓+𝑖)−(𝑎+2𝑑+𝑔)

8
)
2
+ (

(𝑔+2ℎ+𝑖)−(𝑎+2𝑏+𝑐)

8
)
2
 

Slope 𝑌̅=√(
(𝑐+2𝑓+𝑖)−(𝑎+2𝑑+𝑔)

8
)
2
+ (

(𝑔+2ℎ+𝑖)−(𝑎+2𝑏+𝑐)

8
)
2
…………….. (3) Slope for ground truth and 

generated data.  

 

 Similarly, we also computed the Aspect values for ground truth data 𝑌 and generated high-resolution data 

(𝑌̅) as shown in equation 4. 

 

𝐴𝑠𝑝𝑒𝑐𝑡  𝑌 =  𝑎𝑡𝑎𝑛2(𝑑𝑌𝑦
→, −𝑑𝑌𝑥

→) ×
180

𝜋
  

= 𝑎𝑡𝑎𝑛2 (
(𝑔+2ℎ+𝑖)−(𝑎+2𝑏+𝑐)

8
, −

(𝑐+2𝑓+𝑖)−(𝑎+2𝑑+𝑔)

8
) ×

180

𝜋
  

𝐴𝑠𝑝𝑒𝑐𝑡  𝑌̅  =  𝑎𝑡𝑎𝑛2(𝑑𝑌̅𝑦
→, −𝑑𝑌̅𝑥

→) ×
180

𝜋
   

=  𝑎𝑡𝑎𝑛2 (
(𝑔+2ℎ+𝑖)−(𝑎+2𝑏+𝑐)

8
, −

(𝑐+2𝑓+𝑖)−(𝑎+2𝑑+𝑔)

8
) ×

180

𝜋
 …………….(4) Aspect for ground truth and 

generated data 

 

Now that we have both aspect and slope, the aspect and slope loss are calculated by subtracting generated 

data from ground truth data. 

𝑆𝑙𝑜𝑝𝑒 𝐿𝑜𝑠𝑠 = 𝔼𝑛
|

|

(

 
 
(√(

(𝑐+2𝑓+𝑖)−(𝑎+2𝑑+𝑔)
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)
2

+ (
(𝑔+2ℎ+𝑖)−(𝑎+2𝑏+𝑐)

8
)
2

)
𝑌

− (√(
(𝑐+2𝑓+𝑖)−(𝑎+2𝑑+𝑔)

8
)
2

+ (
(𝑔+2ℎ+𝑖)−(𝑎+2𝑏+𝑐)
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 Figure 15: Kernel 
defined to TopoLoss 
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𝐴𝑠𝑝𝑒𝑐𝑡 𝐿𝑜𝑠𝑠 = 𝔼𝑛 |(
(𝑎𝑡𝑎𝑛2 (

(𝑔+2ℎ+𝑖)−(𝑎+2𝑏+𝑐)

8
, −

(𝑐+2𝑓+𝑖)−(𝑎+2𝑑+𝑔)

8
) ×

180

𝜋
 )
𝑌
 

− (𝑎𝑡𝑎𝑛2 (
(𝑔+2ℎ+𝑖)−(𝑎+2𝑏+𝑐)

8
, −

(𝑐+2𝑓+𝑖)−(𝑎+2𝑑+𝑔)

8
) ×

180

𝜋
 )

 𝑌̅

)

2

|  … (5) Slope 

and Aspect loss.  

 

After we have slope and Aspect loss, we combined them to create the TopoLoss as represented by equation 

6. Where alpha and beta are regularization parameters 

𝑇𝑜𝑝𝑜𝐿𝑜𝑠𝑠 = 𝛼 ∙ 𝑆𝑙𝑜𝑝𝑒 𝐿𝑜𝑠𝑠 + 𝛽 ∙ 𝐴𝑠𝑝𝑒𝑐𝑡 𝐿𝑜𝑠𝑠 ………. (6) Combined topographic loss. 

 

After combining TopoLoss with the initial EBRN model loss, the final loss function we developed for the 

EBRN model is shown by equation (7), where gamma and delta are regularization parameters. 

 

𝐹𝑖𝑛𝑎𝑙 𝐸𝐵𝑅𝑁 𝐿𝑜𝑠𝑠 =  𝛾 ∙ 𝐿1 𝐿𝑜𝑠𝑠 + 𝛿 𝑇𝑜𝑝𝑜𝐿𝑜𝑠𝑠 ……….. (7) Final loss function for EBRN model. 

 

3.3.2. ESRGAN 

ESRGAN model is one of the most used models in GAN-based Super-Resolution approaches. The model 

is developed with two parts: a generator and a discriminator. The generator model creates the Super-

Resolution image given the low-resolution image, and the discriminator model tries to identify whether the 

generated image looks more like a higher resolution image or not and based on that, adversarial feedback is 

provided to the generator network as a loss function(X. Wang et al., 2018). The generator model of the 

ESRGAN is composed of residual in residual blocks without any batch normalization layers to make it easy 

to converge.  

 

The existing ESRGAN model was modified to add the data normalization and denormalization layer at the 

start and end of the model as discussed in the previous model, and the number of blocks was fixed to 20. 

The normalization and denormalization were done in the range from 0-8000 to 0-1 and vice versa. The 

residual in residual block, unlike the residual block of Ledig et al. (2017), each layer is connected to another 

layer inside the residual block, and the learning is done at different levels (X. Wang et al., 2018). The modified 

network architecture of the Generator model is shown in  

Figure 16. When an input map is normalized and enters the basic block, it first passes through one 

convolution layer with process same as described in the EBRN model, and then it passes through an 

activation function called Leaky Rectified Linear Unit (LReLU).  The LReLU function is a regularization 

function that keeps the non-zero positive values as it is, but the values below zero are converted to very 

small values. This function regularizes the information obtained in the convolution layers and decides which 

information is to be passed to the next convolution layer. The important use of the LReLU function is to 

minimize the extreme negative values in the convolution layers, which can limit the capacity of the model. 

The graphical representation of LReLU function is shown in Figure 17, where the LReLU function 

minimizes the negative values by a factor of 0.01 and keeps the positive values as it is.  Once the data passes 

through the convolution layer and LReLU layer, it again gets mixed with the previous data within that block 

and goes to the next convolution layer. At the last of each block, there is only a convolution layer that creates 

the final output of the block and passes into the next block, which again processes in the same way.  

 

Each residual in the residual block (Basic Block) on the model is densely connected to each other sequentially 

to increase the model's capacity.  When data passes through all the processing steps, it gets enlarged based 
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on the information obtained from learning and then passes through few convolution layers, regenerating 

the elevation data. Unlike the EBRN model, where a different frequency level is processed through different 

layers, all the information is processed through the same network.  After modifying the ESRGAN model 

with the addition of a normalization layer in the start and end and reduction of input channels from 3 to 1, 

the generator model looks like as shown in  

Figure 16. Furthermore, the discriminator model of the ESRGAN model was used as is, without any further 

modification from Wang et al. (2018). The detailed design of the EBRN model we used is added in annex 

2.  

 
Figure 16: ESRGAN Generator model architecture. Modified from Wang et al. (2018) 

 
Figure 17: Leaky ReLU activation function where the negative values are minimized by factor 0.01 and positive 

values are kept as it is. Source: Mujtaba (2020). 

In the ESRGAN paper, the model was trained to minimize the loss functions; initially, we used the L1 loss 

to train and L2  as shown in Equation `1 to fine-tune the generator model before GAN training to avoid 

collapse mode as suggested by Wang et al. (2018). However, to improve the quality of the model to minimize 

the relative elevation values, we introduced TopoLoss as shown in Equation 6 together with the L2 loss, to 

avoid collapse mode; first, we trained the model with L1 loss, and after that, the model was trained with L2 

loss followed by the combination of L2 Loss and TopoLoss. Once the generator model was sufficiently 

trained, the GAN training was started. The GAN training is represented by the following Figure 18. For the 

Generator and discriminator, the Relativistic loss as defined by Wang et al. (2018) was used, which provides 

the likelihood of the SR image looking like an HR image. Since the Generator and Discriminator are 

competing against each other in a zero-sum game, the relativistic loss for the generator is shown in Equation 

8. Component of 1-Dra (xr, xf ) provides the how HR data is not more realistic than SR data, and DRa(xf, xr) 

provides how SR is less realistic than HR data. After combining the content loss and TopoLoss with the 

generator model, the final generator loss is represented by Equation (9). We did not include the perceptual 

loss from the original paper because, in our case, there are no distinguishable features such which could be 
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used for perception and using perceptual loss only increased the complexity of the model without much 

impact.  

 

Disc Relativistic Loss =-𝔼xr [log (Dra(xr, xf)] -𝔼xf [log (1 − Dra(xf, xr)]  

Gen Relativistic Loss=-𝔼xr [log (1 − 𝐷𝑟𝑎(𝑥𝑟, 𝑥𝑓)]-𝔼x𝑓 [log (𝐷𝑟𝑎(𝑥𝑓 , 𝑥𝑟)]  

𝐷𝑟𝑎(xr, xf) = 𝜎(𝐶(𝑥𝑟) − 𝔼[𝐶(𝑥𝑓)])  

𝐷𝑟𝑎(xf, xr) = 𝜎(𝐶(𝑥𝑓) − 𝔼[𝐶(𝑥𝑟)]) ……… (8) Relativistic Loss for Generator and Discriminator. Where 

D is the relativistic discriminator function. Source: Wang et al. (2018) 

 

𝐺𝑒𝑛𝐿𝑜𝑠𝑠 = 𝛼𝐿𝑔
𝑅𝑎 + 𝜂𝐿1 +  𝛽 𝑇𝑜𝑝𝑜𝐿𝑜𝑠𝑠  

𝐿1 = 𝔼𝑥𝑖||𝐺(𝑥𝑖) − 𝑦||  ………. (9) Final Generator Loss function where TopoLoss is represented by 

topographic loss above and function G is generator model. 𝛼, 𝛽, 𝜂 are the regularization weights. 

 
Figure 18: GAN training strategy. 

 

3.3.3. Experimentation Details 

The EBRN model was trained with a 20% randomly selected validation set of the data from the training 

dataset and was trained for 1000 epochs with checkpoints to avoid overfitting, where the best results on 

validation will be saved. The model was trained with Adam Optimizer, and the learning rate was set to 1e-

04 in the beginning and then reduced by a factor of 0.5 in every 100 epochs until it reaches 1e-06. The batch 

size for the model was 10, and there was a total of 500 steps in each epoch. Due to the very complex 

combined loss functions model had problems in converging initially, and to avoid that, we used a similar 

concept as curriculum learning (Bengio et al., 2009) but with increasingly complex loss functions instead of 

increasingly complex datasets. Initially, we used simple Mean Absolute Error, and after the model 

converged, we used Mean Squared Error for the better generalization, and finally, we used a combination 

of L1 Loss and TopoLoss as suggested by Equation 7.  The major reason behind this was that when we 

used the combined loss function without a gradual increase of complexity, it took too long to converge the 

model. To our knowledge, this is the first research to use loss functions in such a way for optimization.  

 

For the ESRGAN Model, the Generator model was trained first without the presence of a discriminator to 

avoid collapse mode because of too weak generator followed by GAN training as suggested by Wang et al. 
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(2018). The training was done using the Adam optimizer with a learning rate initially at 1e-04 and then 

decayed by factor two until it reaches 1e-06 for the generator. The Generator training was done in similar 

ways as the EBRN model with a curriculum-like training, where instead of gradually increasing the data 

complexity, we increased the complexity in the loss function. Firstly, the model was trained with an L1 loss 

followed by L2 Loss and finally, the combination of TopoLoss and L1 Loss. Once the generator was trained 

for 1000 epochs, with L1 and TopoLoss, we started the GAN learning process where both generator and 

discriminator performed against each other for another 1000 epochs. During the GAN training, the 

discriminator learning rate was set to 1e-03 for faster learning in the beginning as compensation to that of 

the pretrained generator, and the generator learning rate was set to 1e-05. After both models converged and 

have reliable and acceptable results, we stopped the training process, and model averaging was done. The 

model averaging identifies the best suitable network weights that have a lower amount of artefacts, higher 

PSNR, and higher visual quality. This approach was suggested by Wang et al. (2018). The averaging was 

done between the pretrained generator network and the GAN-based trained network as in Equation 10, 

where we could decide the factor for each model based on our requirement of higher PSNR or visual quality 

images.  

 

𝐹𝑖𝑛𝑎𝑙 𝑀𝑜𝑑𝑒𝑙 = Α ∙ 𝐺𝑃𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑒𝑑 + (1 − 𝐴)𝐺𝐺𝐴𝑁−𝑡𝑟𝑎𝑖𝑛𝑒𝑑 … (10) Model Averaging function where A is 

the weight ranging from 0-1. 

 

After the model training, during the inference process, we had to create smaller patches according to the 

model shape and again stitch them after prediction. We observed that the model produces noisy data in the 

boundaries of patches introducing artefacts in the inference boundaries. To solve that, we applied a basic 

photogrammetric overlap approach and developed an inferencing program in such a way that the output 

parts from the SR model during inference are overlapped, as shown in Figure 19, to remove noise in 

bordering pixels. A similar approach has been used by Kubade et al. (2021) during the training and evaluation 

process, but such application would mean over-amplification of accuracy/PSNR and only falsely represent 

that the model has better capacity when in reality it does not have. To avoid making such mistakes to get a 

false impression of the model capacity, we implement this approach in inference only, so the quality of the 

model during training and evaluation remained 

 
Figure 19: Overlapping of the Inference Patches. Here, the dotted lines separate the pixels used from each patch, and 

the bold line shows the boundary of the patches. All patches are overlapping with each other, and only certain 
portions of the overlapping area are used. 
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3.3.4. Super-Resolution Evaluation Methods 

After training the Super-Resolution model, the evaluation of the Super-Resolution output must be 

conducted. For that, we have selected four different approaches. The first two (PSNR and SSIM) were 

applied on the dataset from Austria, Dominica, and Colombia, where we used high-resolution and low-

resolution data from the same DEM source. The low-resolution data is created using bicubic interpolation 

degradation from the high-resolution data. The remaining two (Derivatives and Geomorphological testing) 

are used in all sites where we do not have a high-resolution counterpart from the same source for low-

resolution data such as SRTM. Even though LiDAR HR images are available in Dominica and Austria, it is 

not possible to compare them using the PSNR, and SSIM approaches because the elevation values in each 

pixel are different from both sources due to their measurement bias and noise, grid structure, quality of 

measurement, and dates when they are obtained. Therefore, to compare such data from different sources, 

we developed two novel comparison methods:  Derivative Evaluation and Geomorphological Evaluation 

to suit our application.  

3.3.4.1. Peak Signal to Noise Ratio (PSNR) 

The PSNR is emerged from electrical engineering to measure the ratio between the signal's maximum power 

and the power of the noise (MATLAB, 2020). In computer vision and machine learning, it has been used 

frequently for quality checking of the output from different classification algorithms, and it is also a common 

method to check the quality of the Super-Resolution algorithms (Ledig et al., 2017). The PSNR in this 

context will measure the quality of the generated pixels compared to original high-resolution data and will 

not consider the existing errors in the measured high-resolution data. It is the logarithmic version of mean 

squared error, where it is computed based on the maximum possible values. We also evaluated MSE to 

compare the error reduction in each method and relative comparison between improvement by both EBRN 

and ESRGAN. The equation for measuring PSNR is shown in Equation 11. 

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔10 (
𝑅2

𝑀𝑆𝐸
)  …………(11) Where R is the maximum fluctuation in the image data and 

depends on the image's bit depth, such as an 8-bit image will have 256 value of R and MSE is the Mean 

Square Error of the difference between generated and real image (MATLAB, 2020).  

3.3.4.2. Structural Similarity Index Measure (SSIM) 

The PSNR measures the quality of the measurement based on the mean square error and does not consider 

the human perception and spatial variability of the images (Z. Wang & Bovik, 2009). To measure the 

perceived quality, we planned to use the SSIM method, which compares the image quality of the generated 

high-resolution image with the measured high-resolution image. The SSIM method considers the luminance 

(brightness), contrast, and structural information while comparing the data (Leong & Horgan, 2020). In our 

case, the luminance and contrast are represented by the actual ground measurement instead of the digital 

number of the reflectance so, the SSIM is expected to show very high similarity compared to the photo 

Super-Resolution. To better represent the similarity between generated DEM, instead of using the DEM 

directly, we used SSIM because with very small changes in elevation values, the SSIM did not change much, 

and it was already saturated up to 1e-5 range. This method has been further improved for DEM analysis 

and used to show improvement using derivatives such as hillshade instead of raw elevation. It is computed 

using a complex set of equations using covariance and variance.  

3.4. Phase II: Super-Resolution Applicability Test 

In this section, as shown in the methodology diagram, we will test the applicability of Super-Resolution in 

the global dataset and its capacity to improve the modelling output. We will further explain Super-Resolution 

evaluation techniques for the global dataset, physically based modelling, and evaluation methods.  
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3.4.1. Super-Resolution Evaluation in Global Dataset  

To analyse how the Global datasets are changed using Super-Resolution methods compared to that of the 

interpolation techniques, we defined two evaluation methods, the first is the derivative analysis, and the 

second is visual and geomorphological analysis. This section will discuss their needs and the approach that 

they use to evaluate such data.  

3.4.1.1. Analysis of DEM Derivatives 

Our research aims to use global freely available datasets with models trained with the high-resolution dataset 

and apply them when there is no high-resolution counterpart available. In those case, we cannot measure 

the improvement using PSNR and SSIM methods because they always need a high-resolution dataset which 

has exactly aligned pixels. In our case, the SRTM DEM and HR DEM are available to compare, but their 

pixels are not aligned, and it is more important for us to have better derivatives than absolute values. To 

overcome that problem, we developed and used this DEM derivative analysis method to evaluate to what 

extent the bicubic and SR methods can reconstruct the topographic properties compared to high-resolution 

data. This evaluation can provide meaningful information because, in many geoscientific applications, it is 

more important to have the correct derivatives of the DEM than that of the correct and aligned elevation 

itself. Most of the hazard simulation models work on the relative elevation differences of the neighbouring 

pixels rather than that of the absolute elevation.  

 
The major information that can be inferred from this analysis is to understand how derivatives obtained 

from each DEM are more likely linked to that of the higher resolution data. Xu et al. (2019) compared the 

DEM derivatives using the mean absolute error in each DEM compared to a high-resolution DEM, but the 

major problem with that approach is that it can be prone to outliers present in the data and especially in SR 

based techniques, the presence of artefacts can overshadow the overall improvement of the data. Another 

problem with the error-based approach is that if the high-resolution pixel has a certain shift in terrain 

representation, then all the derived derivatives will be shifted by a few pixels, which cause a large amount of 

error even though the actual error might be lower. Furthermore, it also does not show where the SR-based 

methods have improved compared to the interpolation-based methods.  

 

To overcome those problems, we used the Kernel Density Estimation Function. This function can analyse 

the data in a more elaborative manner where we could observe the overall performance of the models in all 

the pixels without being affected by bias. In the derivative analysis, we calculated the relevant derivatives 

(namely Slope steepness, Aspect, and Topographic Wetness Index) and plotted the kernel density estimate 

for each derivative in each study site represented in green colour by Table 5. The kernel density estimate 

function is calculated using the Seaborn library in Python. The kernel density estimation function estimates 

the probability density of the slope, aspect, and TWI in different elevation datasets using equation 12 

(Rosenblatt, 1956). The Kernel Density Estimation function in Equation 12 shows the function to estimate 

kernel density, where K is a kernel function, x and xi are the points where the kernel density is estimated and 

point used to calculate KDE, respectively. The h parameter is the smoothing parameter that decides how 

smooth the histogram we want to generate, and n is the number of points to consider. We used this function 

together with a histogram plot to understand how the derivatives are distributed and how they are more 

likely to be similar to the high-resolution data. To put more perspective, if we compare the histogram usually, 

due to the bars, it is difficult to visualize which data is more likely to be similar to high-resolution data 

(because we have eight different datasets, its difficult to understand the difference) when we use KDE 

function, it smooths the histogram. When plotted, we can visualize the relation between dataset more clearly. 

One example of a histogram plot and its KDE function plot is shown in Figure 20.  
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𝑓 =
1

𝑛ℎ
∑ 𝐾 (

𝑥−𝑥𝑖

ℎ
)𝑛

𝑖=1  ……………………… (12) Kernel Density Estimation Function 

 
Figure 20: Input distribution and its KDE estimation sample. Graph generated from random data using Python. 

To understand how SR-based approaches can perform compared to commercial data such as TanDEM-X, 

we also did the derivative analysis with TanDEM-X data. The combination matrix is shown, where all 

comparison is done with the HR data, and all green combinations have a respective evaluation of slope, 

aspect, and TWI, and due to the unavailability of TanDEM-X in Austria, we have only made the comparison 

with SRTM data. There are 33 different combinations of derivative analysis to check the quality in different 

locations with different derivatives.  

 
Table 5: Evaluation matrix for Derivative analysis. 

3.4.1.2. Visual and Geomorphological Analysis 

To better understand how the improvement is done in the SR-based methods, we did an extensive visual 

and geomorphological evaluation where first we visually compared the results to observe the improvement, 

and after that, we asked geomorphological experts to score them. The PSNR, SSIM, and Derivative 

evaluation were quantitative, but we also considered a qualitative visual analysis to conclude that the Super-

Resolution is working better than the existing method to generate crisp images. Because the quantitative 

analysis can provide information on how the improvement is there numerically, but that might not always 

be useful for geoscience application. For example, even though the mean squared error is low if the terrain 

features are not well reconstructed or visible in the DEM data, it might not improve the quality of model or 

map products. To understand if the geomorphological features such as landslide scars and other features 

are recognizable and clearer in the SR image, we asked the expert opinion from two Geomorphologists. We 

provided the landslide scar (vector point data) and Low resolution, Bicubic interpolated, Super Sampled, 

and High-Resolution hillshading images for the three study locations to two different Geomorphologists 

and asked them to score them from 0-10, being HR data as highest in a relative scoring and fill the following 

Table 6. Then the scores are averaged, and the conclusions are drawn based on those independent 

evaluations in the next chapters. 
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Table 6: Geomorphological evaluation sheet 

3.4.2. Multi-Hazard Modelling 

In our case, we have used the OpenLISEM model as our model of choice because of its flexibility to work 

with different geospatial data and efficient and intuitive graphical user interface. For the study area of 

Dominica, we already have an existing model available from van den Bout (2020), and because of the Covid-

19 pandemic situation, the collection of new data in the field was not possible. The OpenLISEM hazard 

model is based on the different sets of equations for different processes such as flood, landslide, and debris 

flow as shown in Equation 13, 14, 15; the equations are taken from van den Bout et al. (2018); please see 

the source for further explanations and derivation of the flow equations. The model takes different data as 

input as suggested by (van den Bout & Jetten, 2018); there are the following major categories of the data to 

be used in the OpenLISEM multi-hazard model: (i) Topography related maps (ii) Rainfall maps (iii) Surface 

cover maps (iv) Soil surface maps (v) Infiltration maps (vii) Channel maps (viii) Tile drainage maps.  

 
 

…….. (13) Saint Venant Equation for shallow flow modelling where 

h is height, R is rainfall, I Is infiltration and s is friction, and sf is momentum(van den Bout et al., 2018). 

 

……(14) Factor of Safety Equation for Shallow Slope 

Failures, Where SF is the safety factor, b is the slope, c is cohesion, c’ is apparent cohesion,   and f is the 

frictional angle (van den Bout et al., 2018). 

 

 ..(15) 

Debris flow Equation from Pudasaini (2012). Please see the article for further explanation. 
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In the multi-hazard modelling phase of the research, we only selected two test sites, Dominica and 

Colombia, for our test purpose. We did an extensive amount of modelling with 16 different scenarios in 

Dominica and only 4 Scenarios in Colombia because modelling extensively in each study site will be 

redundant because of the similar characteristics of the model and simulation. Firstly, we modelled 16 

different scenarios in Dominica to test the applicability of Super-Resolution in physically based modelling. 

We modelled and calibrated both channel and non-channel flow simulations in Dominica to understand 

how the flow from the 1d channel flow and non-channel flow behaves with super-sampled Digital Elevation 

Models.  The channel flow is the case where all the fluid is flowing through specific channels of a certain 

depth, and non-channel flow is where the flow is directed based on the elevation data rather than channels 

of specific width and depth; this will provide more information on the performance of Super-Resolution on 

improving the channels as well as overall terrain.  

 

To understand how the noise and uncertainties present on the global dataset are addressed by Super-

Resolution methods, we also created a synthetic LiDAR low-resolution dataset by degradation function, 

which was also super-sampled and modelled. This will provide a fair comparison of how the Super-

Resolution performs in a global dataset compared to the dataset with no or less noise. All the combinations 

are run in 10-meter spatial resolution where all DEMs are either super-sampled or interpolated using bicubic 

interpolation. To check the model's applicability in data scare regions, we created a bicubic interpolated and 

super-sampled model dataset from SRTM data and ran and calibrated the model with those datasets. Lastly, 

to compare the quality of super-sampled DEM compared to commercially available global DEMs such as 

TanDEM-X, we also created one scenario with TanDEM-X data resampled from ~12 meters to 10 meters. 

For TanDEM-X, we did not use supersampling because the Super-Resolution model that we developed can 

scale in a factor of 4 and to convert from 12 meters to 10 meters bicubic interpolation suits better than 

using the Super-Resolution because of the flexibility of bicubic interpolation in scaling. Furthermore, to 

understand which genre of super-sampled model performs better (either PSNR oriented- Non-GANs or 

SSIM oriented GANs), we created scenarios with both EBRN and ESRGAN. The combinations of all 

scenarios are shown in Table 7where we can observe that the total number of physically based model 

combinations where scenarios in blue are channel flow and scenarios in green are non-channel flow.  

 

 To calibrate all those scenarios 20 times, we needed at least 400 simulations, and each simulation takes 

around 8 to 12 hours. With a single computer or computation platform, it was impossible to run it for 

almost 4800 hours, so to solve that problem, we used cloud computing and implemented the model in 

Microsoft Azure cloud. These models are run using the OpenLISEM software version 2.0 developed using 

an equation from van den Bout et al. (2018). The software had the capacity to run in the graphical processing 

unit (GPU), so, to simulate multiple scenarios in a shorter time, we used 4 AMD powered GPU in Microsoft 

Azure and one computer with GPU processing capability. To run the OpenLiSEM in Azure cloud, we 

needed GPU with an AMD GPU processor; NVIDIA processors were more expensive and did not support 

OpenLiSEM. Furthermore, the group policy and environmental settings were also tweaked in the Azure 

servers to run OpenLiSEM without any issues. This analysis will simulate the hazards in Colombia and 

Dominica, which will eventually show how the Super-Resolution affects the quality of the model output. As 

a by-product of this thesis, we have also identified ways to utilize high-performance GPUs in Microsoft 

Azure to run the OpenLisem model. A modified and ready-to-use Windows operating system installation 

disk is also available for future use to run OpenLiSEM in Microsoft Azure.  
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Table 7: Combinations for Physically based multi-hazard modelling. 

The models in  Table 7 had different input datasets as described in the data section. Most of the physical 

and soil parameters were kept constant for a fair comparison, but the DEM-derived products, such as slope 

steepness, channel maps, etc., are changed to create each scenario as a completely new dataset from that 

DEM.  Table 8 shows the input dataset that was used in the modelling for both cases and their brief 

description; for the source of those data and detailed preparation methods, please see their relevant sources. 

In the model configuration, we have included the hydrology, slope stability, slope failure, and initial stability 

to mimic the simulated events as explained in the study area and data section. Furthermore, to estimate the 

precise parameters to fit the model, all models were calibrated at least 20 times using a gradient descent 

algorithm (Leon Bottou, 1991). 

Input map Colombia Dominica 

Triggering 

Rainfall Measured data and all catchments have the same values. 

Topographic 

DEM (meters) Obtained from various sources, TanDEMx and SRTM are hydrologically 

corrected during the modelling. The catchment has different values. 

Mask (binary) Processed from DEM for each scenario and used post-processing to create the 

mask file  

channel (meters) Processed from DEM for each scenario and used post-processing to create the 

channel file, standard lddcreate function is used in PcRaster to obtain the channel. 

Spatially varying dataset.   

channel width (meters) N/A Varying in most of the locations 

based on the terrain parameter, 

inferred from ground observation  

channel depth (meters) N/A   
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Input map Colombia Dominica 

Surface 

Manning's N 

(s/[m^1/3]) 

Less varying than Dominica and ranges from 

0.013-0.1 

Spatially varying with a range 

from 0.05 - 0.203 

Building Cover (binary) It was created from vector data mostly varying in spatial locations based on the 

availability of Buildings.  Road Width (meters) 

Vegetation Height 

(meters) 

N/A   

Vegetation Cover 

(fractional) 

Spatially varying, computed from optical imagery 

Smax Canopy (meters) N/A Spatially varying with the 

different range depending on the 

vegetation 

Smax Surface (meters) N/A Spatially varying with the 

different range depending on the 

surface and landuse 

Subsurface 

Ksat (mm/h) Very high range of the difference, from 

0.003 to 157, in most places it has 0.003 

except few which is most likely a lake. 

N/A 

Clay (fraction) N/A Similar to Manning's N with a 

value range from 0.28-0.33 

Sand (fraction) N/A Spatially varying from 0.2 to 0.4 

Gravel (fraction) N/A Constant value of 0.001 

Organic Material 

(fraction) 

N/A Spatially varying, ranging from 0-

130 

Density (kg/m^3) Spatially varying, ranging from 1300-1800 Spatially varying, ranging from 

1000-1270 

Soil Depth (meters) Spatially varying, ranging from 2.0-4.252  Spatially varying, ranging from 0-

2.7286 

Ground Water Height 

(meters) 

N/A N/A 

Internal Friction Angle 

(radians) 

Spatially varying, ranging from 0.17 to 0.57 Mostly same except few pixels 

ranges from 0.52-0.54  

Theta Initial (fraction) Spatially varying, ranging from 0.30 to 0.54 Spatially varying, ranging from 

0.012-0.71995 

Cohesion Top (Pa) N/A Similar to Manning's N with a 

value range from 25-30 

Cohesion Bottom (Pa) Spatially varying, ranging from 7 to 100 Similar to Manning's N with a 

value range from 25-31 

Density Bottom 

(kg/m^3) 

N/A Fixed value of 2700 

Rock Size (meters) Spatially varying, ranging from 0.0002 to 2 The constant value of 0.05 

Table 8: Brief description and properties of the dataset used. 
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The gradient descent algorithm (GD) is a widely used algorithm in deep learning as well as in mathematical 

optimization problems. It first simulates the OpenLISEM model with initial values that we provided, and 

then results of the OpenLISEM model are evaluated using the continuous Cohen’s kappa statistics, and it 

returns an error (1-kappa) value to the GD algorithm. The goal of the GD algorithm is to update the input 

parameters in such a way that it minimizes the error (Leon Bottou, 1991). As shown in abstract Figure 21, 

the goal of the GD algorithm is to reach the blue point of the error space by updating the parameters.  Once 

the error values are obtained from the initial run, it again runs with updated parameters and calculates the 

first derivative. The first derivative provides the slope, making the GD algorithm understand how to update 

the next parameters to minimise the error. After GD knows the slope, it updates the parameters by using 

Equation 16, where learning rate is used to control how much effect the slope has in updating the 

parameters, and momentum is a decay factor that controls the weights from the previous slope, with the 

use of momentum, the GD can remember what the slope in n-1 was run, and better estimate the next 

parameters which lead to a better solution. This approach learns from the data and updates the calibration 

parameters in each step based on the previous step's results, but learning rates and momentum parameters 

are crucial and should be chosen with great care. 

 

Because we had to automate the process due to 420 different simulations, using the GD algorithm was easier 

where we do not have to calibrate the parameters manually. The Internal friction angle, Manning’s N, and 

Cohesion at the bottom of the channel were calibrated 20 times in each scenario using the GD algorithm 

because the model is highly sensitive to those parameters and requires significant adjustment with the new 

Digital Elevation Models. So in our case, in each step of the modelling, the gradient descent calculates the 

first derivative and then multiplies it with the learning rate provided by us to obtain the step size of the 

change used in computing new parameter values (Internal friction angle, Manning’s N and Cohesion at 

bottom) by subtracting the step size from the old parameter value. 

 

 
Figure 21: Error space of GD algorithm where the goal of the GD is to reach the global minima by updating calibration 
parameters 

New coefficient = coefficient – (learning rate * slope) + momentum* previous slope………... (16) Formula 

to update the coefficient in GD algorithm 
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3.4.3. Multi-Hazard Model Evaluation 

This section will further explain the methods used to evaluate the results obtained from multi-hazard 

modelling and will show if and how Super-Resolution can improve the quality of multi-hazard modelling. 

All the methods used in this section are considering all hazards simulated, such as the Cohen’s Kappa will 

use combined slope failure and flood to calculate the Kappa statistics. The root mean square error will use 

the combined height of solid and fluid to calculate root mean square, and in the case of NS-Index, the fluid 

at outpoint is mostly affected by slope failures in the catchment, so NS-Index will account for that effect. 

Therefore, even though it is written as fluid height, it means solid and fluid combined height. 

3.4.3.1. Cohen’s Kappa 

To evaluate the accuracy of the modelled flow (of solid and fluid) extent in a certain region, we need to 

compare it with the observed flow extent. One of the most used methods to evaluate the reliability of the 

output from the model is Cohen’s kappa statistics (Blackman & Koval, 2000). This measure considers not 

only the correct predictions (pixels true positive and true negative in this case) but also the incorrect 

predictions making it a robust measure of agreement between datasets. The Cohen’s kappa will be calculated 

using the pixels with the maximum combined height of solid and fluid above 0.25 meters and the extent of 

(solid and fluid) flow observed from the satellite right after the modelled event. This threshold of height is 

defined in the Continuous Cohen’s Kappa function developed on OpenLISEM software which can take 

different threshold value and calculate the Cohen’s Kappa for modelled values above those thresholds. This 

functionality is specifically designed for evaluating the results from OpenLISEM.  The kappa statistics were 

computed using equation 17, where we can observe that the observed agreement and probability of random 

agreement are used to calculate the Cohen’s Kappa. The probability of observed agreement is calculated by 

the total correct classification divided by the total number of pixels. In our case, it was calculated using the 

sum of true positive and true negative divided by the total pixels. The total number of pixels having a 

maximum combined solid and fluid height above 25 cm that have a hazard in the inventory are true-positive, 

and the pixels that had the maximum combined height less than 25 cm and did not have any hazard in 

observed data are true negative. The probability of random agreement indicates the model predicting the 

affected pixels by random chance. To calculate that, we sum the probability of correct classification and 

probability of incorrect classification as shown in Equation 18. The probability of correct classification and 

incorrect classification is calculated using the formula in Equation 18 for confusion matrix as shown in 

Figure 22, where the green arrow shows true positive and true negative.  Followed by kappa statistics, a 

critical evaluation will be done to evaluate whether the Super-Resolution model significantly impacts the 

model's output.  

𝜅 =
𝑃𝑜−𝑃𝑒

1−𝑃𝑒
 ……… (17) Cohen's Kappa statistics for inter-rater reliability measurement, Po denotes the 

observed agreement between the modelled and observed data, and Pe is the probability of random agreement 

 

 
Figure 22: Confusion matrix for correct and incorrect classification of impacted pixels. Source: Pykes (2020).  
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𝑃𝑜 = (𝐴 +  𝐷)/(𝐴 +  𝐵 +  𝐶 +  𝐷)  

𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = (
𝐴 + 𝐵

𝐴 + 𝐵+ 𝐶+ 𝐷
) ∗ (

𝐴 + 𝐶

𝐴 + 𝐵+ 𝐶+ 𝐷
)  

𝑃𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = (
C+ 𝐷

𝐴 + 𝐵+ 𝐶+ 𝐷
) ∗ (

𝐵 + 𝐷

𝐴 + 𝐵+ 𝐶+ 𝐷
)  

𝑃𝑒 = 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 + 𝑃𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡  ……………...(18)Equations to calculate the probability of observed 

agreement and random agreement. Source Blackman & Koval (2000). 

3.4.3.2. Root Mean Squared Error 

For comparing the (combined solid and fluid) flow height outputs generated using different datasets, we use 

the Root Mean Square Error of the difference between the observed and modelled one. Unfortunately, there 

are no observed solid and liquid heights during this event, so the modelling results with the HR DEM are 

used to represent the “correct” values.  Hypothetically, the OpenLISEM should generate the same flow 

height for a certain multi-hazard event with the same triggering event, but it will not produce the same due 

to the different resolution and quality of the data. To compare and evaluate whether downscaled data 

significantly improves flow height estimation than that of the low-resolution data, we will calculate RMSE 

for each output using high-resolution data as baseline data. The high-resolution data is considered baseline 

data because usually, we do not have the measured/observed flood height maps in many cases. So, in this 

case, we will compare the quality of output using downscaled data to that of the low-resolution data.  

3.4.3.3. Nash–Sutcliffe Efficiency Index 

The Nash-Sutcliffe Efficiency Index is a popular statistical method of accessing the goodness of fit of the 

hydrological models (McCuen et al., 2006). This statistical method calculates the goodness of fit of the 

hydrological model by comparing it with the ground truth data to get the magnitude of residual variance 

(Nash & Sutcliffe, 1970). In our case, we will compare the goodness of fit of the discharge calculated by the 

OpenLISEM hazard model at the channel outlet for different DEM input data. Since the past event data is 

not available, a relative comparison will be done with the model output from high-resolution data. The 

Nash-Sutcliffe efficiency index is computed using Equation 19 defined by Nash & Sutcliffe (1970). We will 

compare the performance of flow propagation quantitatively by comparing the discharge output from the 

model outlet for different scenarios and conclude the usability of Super-Resolution for multi-hazard 

modelling. 

𝑁𝑆𝐸 = [
∑ (𝑌𝑖

𝑜𝑏𝑠−𝑌𝑖
𝑠𝑖𝑚)2𝑛

𝑖=1

∑ (𝑌𝑖
𝑜𝑏𝑠−𝑌𝑖

𝑚𝑒𝑎𝑛)2𝑛
𝑖=1

] ……….. ……. (19) Nash-Sutcliffe Efficiency Index equation.  the indication 

Yobs represent the observed discharge, and Ysim represent the simulated discharge (Moriasi et al., 2007) 

 

After all the fit-for-purpose tests and the quantitative evaluations, we will conclude either the Super-

Resolution models are useful in multi-hazard modelling or not. 
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4. RESULTS AND ANALYSIS 

After comprehensive Super-Resolution training and Multi-Hazard modelling, the results were obtained for 

further analysis. The results obtained from the study and their analysis are presented in this chapter, 

categorized by each phase of the research as defined in the methodology section.  

4.1. Phase I: Deep Learning Super-Resolution Results 

The results from SR models are shown and analysed in this section. The testing represents the use of high-

resolution DEM, and the low-resolution DEM obtained using bicubic interpolation from high-resolution 

DEM. Results shows the capacity of the model to generate SR images. To check the model's applicability 

with the global free LR dataset, we then further evaluate SRTM data without having the HR counterpart 

available from the same sensor; this result will be explained in the next section. Explanation of those 

evaluation metrics are already explained in the methodology chapter. 

 

4.1.1. PSNR and MSE Analysis 

The PSNR obtained for the test area in Austria and the inference area in Colombia and Dominica where 

High-Resolution DEM (mostly LiDAR) were available are represented in Figure 23. As we can observe, 

both EBRN and ESRGAN based methods have improved the PSNR values compared to Bicubic 

Interpolation in all the study sites. We did this comparison based on the practice used in most of the Super-

Resolution studies, where the low-resolution counterpart of HR data is obtained through bicubic 

interpolation. Then a quality assessment is done compared to those HR data with SR data obtained from 

different algorithms using LR data. As we can observe in Figure 23, in all study sites, we can observe that 

the Super-Resolution with DL techniques has superior results compared to other methods.  

 
Figure 23: PSNR with different interpolation and Super-Resolution techniques. 

 

PSNR being a logarithmic scale, the amount of improvement in such scale is difficult to perceive; the 

increase of 1DB of PSNR in the lower range of the data is not similar to that of 1DB increase in the higher 

range. So, to make an absolute comparison mean squared or mean absolute error and improvement in 

reducing such error are a better way of comparison. So, we present the findings as mean squared error in 

Figure 24. As we can observe in Figure 24, the MSE is decreased by a significant amount in both EBRN 

and ESRGAN at all study area with Super-Resolution techniques; also, we can observe that the reduction 
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of MSE from NN to BL is very high and from BL to BC is lower, and BC to SR methods are lowest, this is 

because once the accuracy is high, it is more difficult to improve the quality of data due to the fact that there 

is much less room available for further improvement. Furthermore, all the curves have shown the very same 

pattern on the reduction of MSE, showing that the model can perform similarly with different amounts of 

noise present in the LR data. However, MSE and PSNR techniques only provide the overall alignment of 

the elevation with high resolution. However, these quantitative methods cannot provide information on 

whether there is enough spatial variability increased or how the important features such as ridgelines and 

valleys are conserved/improved or not, and those properties of the improvement will be looked at in the 

following sections.  

 
Figure 24: Mean Square Error in the different study areas with different interpolation and SR techniques. Y-axis in log 
scale for better representation. 

To see relative improvement of the SR techniques compared to different interpolation techniques, we have 

computed the relative percentage improvement, which provides how much the MSE is improved compared 

to that method, and the results are represented in Figure 25. As we can observe in Figure 25, the 

improvement of SR techniques compared to all interpolation techniques, including bicubic, has more than 

20% increase in all the cases.  

 
Figure 25: MSE reduction with ESRGAN and EBRN model compared to different interpolation techniques. 
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4.1.2. SSIM  

Another evaluation metric most extensively used by computer vision scientists in Super-Resolution 

evaluation is the SSIM. In our research, to understand how the model can reconstruct the quality of the 

image, we computed the SSIM for all study areas and models. The results from the SSIM study are shown 

in the following Table 9. As we can observe, the EBRN and ESRGAN model have improved the image's 

visual quality, but the SSIM value has been already saturated with BC interpolation, which shows an almost 

perfect SSIM value. There is an improvement with SR methods, but because of already saturated SSIM, it 

is difficult to observe the improvement. This issue is further discussed in the discussion section for a reason 

behind the saturated performance of SSIM in DEM data. Maybe due to that, most of the DEM SR research 

has not included SSIM in their research (Jiao et al., 2020; Kubade et al., 2021; Shin & Spittle, 2019; Xu et 

al., 2019). Wu & Ma (2020) have represented the SSIM results of their work, and they also have faced a 

similar problem; the bicubic interpolation already has SSIM of more than 0.9999, making the improvement 

visible in the 1e-5 range. While comparing the increase in SSIM from Bicubic to SR-based approach, we 

have higher improvement, but we cannot make any quantitative comparisons because the testing data are 

from different locations.  

 

  Study Area 

  Austria Colombia Dominica 

Im
p

ro
v
em

en
t 

T
ec

h
n

iq
u
e 

NN 0.999734 0.999860 0.999725 

BL 0.999974 0.999995 0.999959 

BSP 0.999971 0.999991 0.999858 

BC 0.999976 0.999995 0.999959 

SR EBRN 0.999984 0.999997 0.999979 

SR ESRGAN 0.999983 0.999996 0.999975 

Table 9: SSIM with different interpolation and SR techniques in different case study sites 

 
To overcome this analysis bottleneck that occurred due to the SSIM method not being able to differentiate 

much in the case of the DEM, we further developed an approach where we converted our elevation data to 

hill shade with the constant azimuth of 315 degrees and altitude of 45 degrees. This allowed us to convert 

the range of data from an unlimited range to 0-255, which makes it more relevant for SSIM and also it can 

perform in similar ways as human comparing the different Hillshade images, similar to SSIM in natural and 

medical images(Renieblas et al., 2017; Z. Wang et al., 2004). The results of SSIM in Hillshade images are 

shown in Figure 26, where we can observe that the SR-based approaches, specifically EBRN, have 

significantly improved the similarity of images to that of the HR images. Furthermore, more interesting is 

to see that, in the case of hillshade Bilinear and Bicubic Spline interpolation methods perform better than 

bicubic interpolation, which represents that for better visualization, Bilinear Interpolation techniques are 

better and for more accurate values, Bicubic Interpolation techniques are better. More interestingly, the 

EBRN model has shown similar characteristics in all regions and study area, but ESRGAN has performed 

better than that of EBRN in Austria, where it was trained but performed less in other study areas; this 

behaviour is due to the architecture of the model and its quality, and it will be further discussed in the 

discussion chapter. Since this is a new approach we used to compare the results, and previous papers have 

not done such SSIM evaluation with derivatives, we cannot compare our model with others in terms of 

visual quality improvement.  
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Figure 26: SSIM in hillshade Images obtained from different techniques. 

To put things into more perspective, we have included some visual samples of the ESRGAN and EBRN 

quality improvement with LiDAR data in Dominica in Figure 27. As we can observe, both EBRN and 

ESRGAN models have increased the visual quality of DEM while improving degraded low-resolution 

LiDAR DEM (by bicubic interpolation) to high-resolution counterpart significantly over the bicubic 

method, which fails to generate a crisp looking image with clear ridge and drainage lines. The ESRGAN and 

EBRN model have very similar results even though in terms of parameters, EBRN is big and complex while 

in terms of training complexity, ESRGAN is more complex; this phenomenon can also be observed in SSIM 

values that they have very similar SSIM, ESRGAN being slightly better, but with the human eye, that 

difference is negligible.  

 
Figure 27: Sample visual evaluation of LiDAR DEM Super-Resolution in Dominica test area. 
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4.2. Phase II: Deep Learning Super-Resolution Results 

This section will first test the applicability of Super-Resolution in generating better derivatives and 

geomorphological mapping followed by multi-hazard modelling results analysis.  

4.2.1. Super-Resolution Evaluation in Global Dataset  

In this section, we evaluate the capacity of Super-Resolution to reconstruct the global dataset and its 

derivatives, as well as visual and geomorphological evaluation. This evaluation section focuses more on the 

applicability in modelling and mapping than technological improvement, whereas the previous section was 

more focused on technological development. This part will deal with the applicability of Super-Resolution 

in the domain of geoscience and natural hazards modelling in specific.  

4.2.1.1. Derivative Analysis 

In the derivative analysis, to understand how the global free DEM has been improved compared to that of 

the high-resolution DEMs in terms of the DEM derivatives, we estimated the KDE function for all the 

available datasets and plotted against high-resolution DEMs in all three study areas in Figure 28. As we can 

observe in subplot [1,1] (to explain better their position row and column represent the sub-images), the 

slope in Dominica, the bicubic interpolation (red line) has its peak in a bit below the peak of the EBRN, 

and ESRGAN methods which are performing very similar, we can also observe that the TanDEM-X have 

its slope distribution closer to that of the high-resolution DEM. Furthermore, we can observe that the 

improvement in ESRGAN and EBRN model is low, but we can observe in all three study sites that the 

distribution of ESRGAN and EBRN are more like HR than that of the Bicubic Interpolation method. If 

we observe the case of Austria, the bicubic interpolation have a higher amount of pixels in 1.0 to 1.2 radians, 

but a lower amount of pixels is present in the 1.2-1.5 radians range. In contrast, HR DEM has a higher 

number of pixels in those regions showing that Bicubic Interpolation have more smooth data, and 

ESRGAN and EBRN have tried to improve that to generate more pixels with the higher slope as shown by 

the upper peak.  

 

In the case of Aspect, we can observe that all the aspects except the TanDEM-X are aligned; this can occur 

due to the quality and sensor of the data. What makes it more interesting is that the aspect has not much 

impact on any interpolation techniques, and it is mostly in alignment with the high-resolution DEM, 

especially in Austria and Colombia. This can be due to the fact that any interpolation techniques are barely 

going to change the overall direction of the terrain so that we can see very little change in aspect in all SRTM 

DEM. As we can observe in [2,2] subplot, the SR-based techniques have very slightly lower curves near the 

peak, making it more towards the high-resolution data, but that improvement is not that significant. 

 

For TWI, we can see that in sub-image [3,3], the TWI from EBRN has almost perfectly aligned with the 

HR data, whereas the bicubic interpolation is less aligned, followed by ESRGAN TanDEM-X. The 

improvement, in this case, is very significant. However, in the case of Dominica, the TWI are mostly 

clustered for each dataset, and in Colombia, even though all the values are clustered together, we can observe 

that the ESRGAN and EBRN models are nearer to HR data than that of the BC data. The case in Dominica 

is more interesting because the HR-DEM that we have available in Dominica do not cover the major 

mountainous part and mostly present in the seashore and relatively flatter areas which might have caused 

such peak and clustering. The further reasons for this behaviour in Dominica will be discussed in the 

discussion section.  
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Figure 28: KDE estimation of multiple DEM and their derivatives 

4.2.2. Visual and Geomorphological Analysis 

The PSNR and SSIM approaches can be used when we have the HR data available, but the goal of this 

research is to use the model trained with HR data in one part of the world to use it in another part of the 

world where the model can be used with low-resolution data. To observe the improvement while using the 

different source data, we used the visual analysis method, where we visually analysed the quality of SR images 

compared to Bicubic Interpolation. Figure 29 and Figure 30shows the sample cases from Austria, Dominica, 

and Colombia with different terrain characteristics in different map scales. As we can observe in the upper 

image of Figure 29 (Colombia), the EBRN has improved the ridge and valley lines in those areas compared 

to SRTM low-resolution and Bicubic Interpolation techniques making the streams and valleys more visible 

and crisper looking. However, the ESRGAN based approach has also increased the number of artefacts in 

the image, making it more unpleasant and has a better and crisp-looking image than bicubic interpolation.  
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In the case of the Austria DEM, where we trained all our models with High-Resolution DEM, we can see 

significant improvement in the quality of hillshade in EBRN and slightly less improvement in ESRGAN 

compared to that of the EBRN. If we observe the SSIM evaluation in Austria in the previous section, we 

can see that ESRGAN has better performance than that of the EBRN in the case of HR DEM, but here by 

visual observation, we can see that when used with SRTM, EBRN has produced better-looking image than 

that of the ESRGAN. This might be due to the difference in model characteristics and capacity of the model, 

but with global freely available data in Austria, the EBRN model shows better visually pleasing results.  

 

In the case of Dominica, we have included a steeper slope and less steep slope as two examples, and we can 

observe that for Dominica, both models have very similar performance in both steep and non-steep slopes. 

The EBRN model has a crisper-looking hillshade image in this case, but it is not a significant improvement 

over the other image. We can also observe that the lower image that we selected intentionally, a noisier 

DEM, has reduced the amount of noise in the SR-based methods compared to that of the LR and BC. 

When there are simple features and ridgelines and valleys, the model has performed better reconstructing 

them and generating more crisp images, but when there is a lot of sudden change in features and elevation, 

the model generates smoother images, as we can see in the lower image, but it is still better than that of the 

BC and LR DEM.  

 

Overall, in other areas as well, we could observe that the model has improved the visual quality of the DEM, 

but due to the lack of a high-resolution counterpart from the same source, it is not possible to check the 

improvement in terms of PSNR. However, with visual assessment, the DEM produced from Super-

Resolution techniques have better visual quality and better reconstruct the features. Especially, the EBRN 

model has performed similarly in all locations and datasets in the reconstruction of the images, but the 

ESRGAN model has produced better results with HR DEM but has lesser performance than that of EBRN 

with SRTM data. Due to the very low resolution of Input data (SRTM DEM), the features such as road are 

not generated and are not recognizable because the SR based methods are good at reconstructing the 

features they have learned during the training. However, it requires some low-resolution/noisy input, and if 

the feature is not visible in input SRTM DEM, it cannot be available in the SR images as well. This 

phenomenon satisfies the theory of data processing inequality, which instructs that any post-processing 

operations in data cannot increase the information content (Beaudry & Renner, 2012). So, with Super-

Resolution techniques, we can make images more visibly plausible and pleasing and increase the sharpness 

of the image but cannot add new features that are not existing in the original image. 

 

From the review of Geomorphological experts, after they evaluate the DEM produced with our approach 

and the quality of commercial DEMs, we present the average score in Table 10. As we can observe in the 

table, The SRTM low-resolution has the lowest score, followed by bicubic interpolation and EBRN. The 

evaluation was more targeted for detection of landslides and landforms, so, obviously, HR high-resolution 

DEM has the highest score, and as we stated before, the data processing inequality also holds in this 

evaluation because the data collected by TanDEM-X have higher information content available, the 

recognizable features in the TanDEM-X data is also higher (Beaudry & Renner, 2012). 
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Figure 29: Visual Evaluation of SR and BC methods in Colombia and Austria 
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Figure 30: Visual Evaluation of SR and BC methods in Dominica 
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Interestingly, on average, the ESRGAN method has better performance in Dominica, whereas the EBRN 

method has better performance in both other regions. However, one of the reviewers scored EBRN as the 

top performer in all three sites and ESRGAN as equal in Dominica, but another reviewer scored  

ESRGAN is the top performer in all the regions making the evaluation more subjective. In general, the 

ESRGAN has better performance in the image's visual quality and should be valid because the GAN-based 

approach is better known for its visually pleasing images (X. Wang et al., 2018). Based on the training data, 

the EBRN has performed best in Austria, where it was trained, but ESRGAN has shown comparatively 

better results in Dominica, but because this is relative scoring per site, we cannot conclusively claim that it 

has performed better in inference data than in test data. 

 

  

DEM Generation Methods 

SRTM 

Low 

Resolution 

SRTM Bicubic 

Interpolation 

SRTM 

SR 

EBRN 

SRTM SR 

ESRGAN 

TanDEM-

X  HR DEM 

T
e
st

 S
it

e
 Dominica 0.75 2.5 3.5 4 4 8.5 

Colombia 0.75 2.5 3.5 3.5 5 8.25 

Austria 0.75 3 4 3.75 NA 9.5 

Average Score 0.750 2.667 3.667 3.750 4.500 8.750 

Table 10: Geomorphological score of different methods for DEM resolution improvement. 

 

Because all the review was done with the geomorphological point of view and the resolution of DEM were 

fixed to 7.5 meters (by resampling all images), the reviewers found that In Dominica, LiDAR has the best 

performance even though due to resampling, many features were not visible furthermore they also 

commented that the TanDEM-X has highly mottled/speckled structure. Furthermore, the SRTM low-

resolution was very coarse and had rounded terrain forms, and both EBRN and ESRGAN had smoother 

surfaces, but landslide detection was still not possible. In the case of Colombia, they had reviewed that, 

similar to Dominica, landform recognition is very difficult at that scale, but SRTM EBRN has a more 

natural-looking hillshade. However, they have commented that it is completely difficult to recognize the 

landslides in the image. In the case of Austria, the LiDAR DEM had a very good image where all 

geomorphological features were available, but in the case of other DEM, it was very difficult to recognize 

those features and interpret them.  

 

In conclusion, the reviewers have suggested that SR images were not better in terms of recognizing the 

geomorphological features, and also the pixel size of 7.5 meters are too large for any good quality recognition 

of the landslide features, making it difficult to use in geomorphological mapping of medium and small-scale 

landslides from global freely available DEMs such as SRTM.  

4.2.3. Multi-Hazard Modelling Evaluation 

In this section, we evaluated the results from multi-hazard modelling. Results are presented for each of the 

case study sites Dominica and Colombia. Each case study site will explain the results obtained in that study 

area. Dominica has more extensive analysis to evaluate whether Super-Resolution is useful in multi-hazard 

modelling or not, and Colombia has fewer scenarios that only test the applicability in multiple scenarios 

locations.  
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4.2.3.1. Case Study Site: Dominica 

After simulating all the scenarios as defined in the methodology section, we further analysed the results 

obtained from the simulation. Firstly, we computed the continuous Cohen’s Kappa statistics which we made 

a comparison with the inventory dataset available, and this evaluation section is the only absolute 

comparison we can make due to the lack of other data such as discharge and flood height in Dominica. The 

continuous Cohen’s Kappa values for different scenarios (1-16), including and excluding channel flow, are 

shown in Figure 31. Before calculating the Cohen’s Kappa value, every scenario was calibrated for 20 

iterations using a gradient descent algorithm and based on the best values with the calibration; we obtained 

the modelling results. 

 

As we can observe in the image, the least performing Cohen’s Kappa value is from TanDEMx data, followed 

by SRTM BC then Super-Resolution techniques. Furthermore, in both the channel and non-channel flow 

cases, the kappa value has been increased by using Super-Resolution techniques. To clarify the increased 

accuracy, the percentage improvements are calculated relative to bicubic interpolation. The relative 

improvement using ESRGAN and EBRN methods in modelling compared to bicubic interpolation is 

shown in Figure 32. As we can observe in Figure 31and Figure 32, the amount of improvement in Cohen’s 

kappa is very similar in all cases; SR-based methods have slightly higher Cohen’s Kappa in Non-Channel 

flow that difference is insignificant.  

 

The improvement by both ESRGAN and EBRN is mostly the same except for the case of SRTM data, 

where ESRGAN has significantly higher performance. This shows that ESRGAN has more improvement 

in reducing noise and generating better surface in the case of SRTM data as well, but in the case of EBRN, 

the improvement is limited in low-resolution data because of the non-generative nature of the model. In 

conclusion, both ESRGAN and EBRN have improved the modelling accuracy by 11%-21% in the case of 

non-channel flow and by 8-21% in the case of non-channel flow, which is a significant improvement 

compared to bicubic interpolation. Moreover, the improvement of the modelling output is largely affected 

by the presence of noise in the low-resolution data.  

 

 
Figure 31: Cohen's Kappa for different modelling scenario 
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Figure 32: Relative improvement compared to bicubic interpolation techniques by using SR methods 

 
To observe the results visually, the map of modelling output from ESRGAN, bicubic, high-resolution and 

TanDEM-X are shown in Figure 33; we did not include the EBRN case because it has very similar 

improvement and results compared to ESRGAN in most of the cases. The results are shown in the extent 

where most of the hazardous process was occurring. Furthermore, the results are also shown only for Non-

Channel flow because output results were very similar, and they were visually indifferentiable.   We can 

observe that SR-based methods have improved the amount of flow spread in multiple pixels compared to 

bicubic methods, making the model more realistic. However, because the output data is largely dependent 

on the input in SR based methods, the flow direction is not much improved, making it slightly non-aligned 

with the inventory data. Furthermore, the amount of slope failures is very low due to the automated 

calibration, and the reasons for that will be further discussed in the discussion section for multi-hazard 

model calibration. If we observe the TanDEM-X results due to the presence of the noise in DEM, there are 

many smaller pixels filled with water; even though the sinks were filled before the modelling process, the 

overall improvement is not much with sink filling. The overall extent of hazard (combined flood and solid) 

is not much aligned, also represented by the Cohen’s Kappa values. In LiDAR, even though the 

improvement in the upper part of the catchment is difficult to visualize, In the flatter area, we can observe 

that the SR-based method has reduced the amount of false positive by a significant amount very similar to 

that of the high-resolution data.  

 
To have a more general understanding of the overall performance of the dataset, we also compared the total 

channel outflow for the modelling scenarios 1-8, which had channel flow included, as shown in Table 11. 

This evaluation is not an absolute evaluation because we do not have the ground truth data from the event, 

but to have a general idea, we considered LiDAR HR DEM as the best performing DEM and calculated 

the relative difference in total channel flow. Compared to LiDAR HR, the absolute error is maximum in the 

case of the TanDEM-X, the reason behind that might be due to the noise and speckle presented in the 

TanDEM-X data, but further discussion will be done in the next chapter. Interestingly, in LiDAR ESRGAN, 

even though Cohen’s kappa value was maximum, the difference in overall channel flow is higher than that 

of LiDAR BC, but the difference between them is very small, which might have also occurred due to other 

factors. Furthermore, in the case of SRTM, the total channel inflow has increased using SR DEM, making 

it more equivalent to that of the LiDAR HR DEM, and the improvement is in line with Cohen’s kappa 

values.  
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Figure 33: Multi-Hazard modelling results in Dominica; most relevant cases are shown in the map. 

 

Dataset Total Channel Flow (mm) Absolute Error relative to LiDAR HR (mm) 

LiDAR EBRN 296.977 7.675 

LiDAR BC 312.494 7.842 
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Dataset Total Channel Flow (mm) Absolute Error relative to LiDAR HR (mm) 

LiDAR ESRGAN 296.620 8.031 

SRTM EBRN 281.190 23.461 

SRTM ESRGAN 278.879 25.773 

SRTM BC 274.360 30.291 

TanDEM-X 357.503 52.852 

LiDAR HR 304.651   

Table 11: Relative comparison of total channel flow with different DEM dataset with LiDAR HR DEM 

 

 To further understand how different approaches have produced the different flood height and compare 

them, we tried to compare the flood heights using RMSE. However, before that, we found in data from 

different sensors that the exact location of pixels might have different features showing a shift in elevation 

data and relatively comparing them pixel-by-pixel without any ground truth data can cause serious problem. 

To further clarify the situation, Figure 34shows one red point, which is the same point in both DEM, but 

as we can observe in both DEMs, the same point lies on the left side of the hill in one LiDAR DEM and 

on the right side of the SRTM DEM. In this case, if we compare the values on a pixel-by-pixel basis without 

having the ground truth, the comparison will produce irrelevant data. Since we did not have any high-

resolution SRTM data so to check whether the SR based methods can improve the quality of height and 

outflow from the channel compared to bicubic interpolation methods, we computed the Nash Sutcliffe 

index at a certain outlet point and also the RMSE in each pixel for the whole study area.  

 
Figure 34: Evaluation of how the same pixel might represent different terrain in DEM. 

In the case of the Nash Sutcliffe (NS) Index (Nash & Sutcliffe, 1970), we observed how each hydrograph 

at the same points (end of the channel) has a different level of flows using the Hydroeval python library 

(Hallouin, 2021). The model versus observation plot of the NS index for different DEM is shown by Figure 

35, where we can observe that LiDAR bicubic interpolation has a significantly higher amount of flow 

compared to LiDAR HR in ranges up to 18 cusecs but after that, it has decreased the amount of flow. This 

phenomenon might be because the LiDAR bicubic interpolation data is smoother than that of the other 

DEMs, making the flow of water and solid less obstructed, leading to higher water flow in BC than HR 

DEM.  Furthermore, if we observe the curves, the ESRGAN model has closer relation in terms of 

hydrographs to LiDAR HR followed by the EBRN model. However, discharge from ESRGAN is more 

fluctuating. To observe and compare numerically, we further checked the NS Index as shown in Table 12, 
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where we can observe that the use of SR techniques has improved the NS Index value. From this 

observation, we can also infer that the SR techniques may also improve the flow to match more realistic 

scenarios in the global dataset. This observation was made at the channel location so that for non-channel 

flow, the observation is not available; the reason to include non-channel flow was to observe how overall 

terrain improvement is affecting the model, but in general, channels are included in flow models, so this 

evaluation more suits for channel included flows.  

 

DEM N-S Index 

LiDAR BC 0.9764 

LiDAR EBRN 0.9928 

LiDAR ESRGAN 0.9934 

LiDAR HR NA 

Table 12: NS Index for multiple DEMs compared to LiDAR HR DEM. 

 
Figure 35: LiDAR HR vs other DEM flow in hydrograph, units in mm. 

The NS Index provided an improvement estimation for a single point with relation to flow time and 

discharge, to further understand how the maximum height of fluid and to differ in SR and Interpolation 

techniques, we computed the root mean squared error, in this case also we could not compare the SRTM 

data with LiDAR DEM due to the above-stated reasons but unlike NS-Index we could compute this for 

non-channel flow as well. The RMSE with different DEM compared to LiDAR HR is shown in Figure 36, 

where we can see that the SR-based methods have improved the RMSE values in both channel and non-

channel flow. Particularly, in the case of Non-channel flow, we can see that the RMSE has been improved 

by more this is because in non-channel flow, most of the fluid flows through the surface, and with better 

DEM, the error in the height of fluid can be minimized. With RMSE we can Hence, from these observations, 

we can conclude that the SR-based approaches have significantly improved the quality of the Physically 

based multi-hazard modelling.  
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Figure 36: RMSE compared to LiDAR HR. 

4.2.3.2. Case Study Site: Colombia  

To further understand the applicability of Super-Resolution in multiple locations, multi-hazard modelling 

was further done in Mocoa of Colombia. We performed the analysis in non-channel flow to test the overall 

performance of SR methods in multi-hazard modelling. This section can only test the performance using 

Cohen’s kappa and total discharge from the catchment; the evaluation using the RMSE and NS-Index is not 

possible because we did not run the model with high, low, and SR combinations from the same data source. 

Because we do not have the ground truth data of the solid and fluid height and the discharge records, and 

by the logic of the reasons explained in the previous section about the non-overlapping of the pixels, we 

cannot make the comparison using RMSE and NS-Index with HR datasets.  

 

The results obtained by Cohen’s kappa for combined solid and fluid flow is shown in Figure 37. We can 

observe that the minimum Kappa value is for the SRTM-BC followed by the TanDEM-X and SRTM based 

approaches. Unlike Dominica, TanDEM-X has a higher amount of kappa value than SRTM bicubic because 

the TanDEM-X in Colombia was less noisy than that of Dominica. We can further observe that the EBRN 

have more Kappa value compared to ESRGAN based methods, which is also contrary to that of the results 

for Dominica, which shows the model’s performance largely depends on the study site than in general. The 

results also show that the SR based methods have surpassed Cohen’s kappa value of the TanDEM-X, 

showing that the SR based methods could obtain better results. However, the HR data is obtained from a 

very similar sensor and spatial resolution as TanDEM-X; it has shown better performance due to post-

processing on the DEM, as explained in the data section. In SRTM and TanDEM-X data, no post-

processing except filling sink was done to reduce the amount of bias on the comparison.  Even though the 

SR based methods have improved Cohen’s Kappa, the overall values of Cohen’s Kappa are very low, 

meaning that in this case, the requirement of High-Resolution data is required; the reasons for such low 

kappa values will be discussed in the discussion section.   
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Figure 37: Cohen's Kappa values for multi-hazard modelling in Colombia 

 

To further observe the quantitative improvement, we computed and plotted the percentage improvement 

using the SR-based methods compared to bicubic interpolation, as shown in Figure 38. We can observe that 

the EBRN model has around 24.9% improvement, whereas the ESRGAN model has 20.2%. The results 

are surprisingly different compared to that of Dominica; in the case of Non-Channel flow in SRTM DEM, 

the improvement was 8-17 % for EBRN and ESRGAN. The reasons to have more percentage 

improvement, in this case, is also because the overall Cohen’s kappa value is a very low and very small 

improvement in Cohen’s Kappa value can be relatively higher but in the case of Dominica, even though the 

absolute change was large relative change was lower. If we compare absolute change both case study site 

has similar (in the range of 0.3-0.5) of improvement.  

 

 
Figure 38: Improvement in Cohen's Kappa using SR based methods in Colombia 

To understand the results better, we have plotted the results in maps for Colombia, focusing on the extent 

to which most of the hazard processes were occurring. In Figure 39, We can observe that the bicubic 

interpolation have mostly a very low amount of combined height, and also it misses the flow in the upper 

right corner, whereas the other all DEMs have flow occurring and almost aligned with the ground truth. 
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Most of the scenarios have a huge flow in the middle part of the area, not recorded in the inventory. This 

might have occurred because of the not-proper representation of terrain, and some channels or flow path 

might not have been visible in the DEMs. Such a high number of false positives is also validated by such a 

high number of false positives. In this case, also many slopes failure process is not well represented. This 

will be further clarified in the discussion section.  

 
Figure 39: Multi-Hazard modelling results in Colombia, compared to inventory datasets. The hillshade images are 

from the respective modelling scenario. 

To further understand the overall performance of the models in creating overall discharge as better as high-

resolution data, we compared the overall discharge in multiple scenarios that we modelled. This observation 

is biased because it depends on high-resolution data. However, due to lack of ground truth on such discharge 

values, we simply compare for the understanding using mean error, and there are still many uncertainties 
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available such as if the high-resolution model is wrong in terms of overall discharge, the comparison will be 

more biased and show complete wrong values. The author suggests understanding this observation critically 

and not as an absolute comparison such as Cohen’s Kappa.   

 

The total discharge for each simulation and their absolute error compared to HR data is shown in Table 13. 

We can observe that the total discharge by SRTM bicubic interpolation is largely less compared to HR data, 

but we can not claim it is bad because of a lack of ground truth. However, if we take HR as standard and 

compare the absolute error with SRTM, BC is very high, and TanDEM-X follows that. SR based methods 

seem to have improved the total discharge amount, and both models show very similar performance on 

total discharge. The difference in total discharge is very less in the case of SR based methods compared to 

other approaches. This result, even though biased, shows that the SR-based methods can generate better 

discharge compared to that of the bicubic interpolation methods because of the capacity of the model to 

reconstruct the terrain better.  

Dataset Total discharge (mm) Absolute Error relative to HR (mm) 

SRTM BC 13.915 24.875 

TanDEM-X 32.245 6.545 

SRTM ESRGAN 35.597 3.193 

SRTM EBRN 35.606 3.184 

HR 38.790  N/A 

Table 13: Absolute error in total discharge compared to high-resolution data. 
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5. DISCUSSION 

The major results and problems that we had during the research are discussed in this chapter. There are five 

major sections in this chapter that will discuss the Super-Resolution results, multi-hazard modelling results, 

comparison of the models, applicability in multi-hazard modelling, and the advancement and limitations of 

the study. The discussion also follows the same sequence as the methodology section 

5.1. Phase I: Super-Resolution 

This section will discuss the deep learning-based Super-Resolution and its details on the training and test 

results.  

5.1.1. Training and Fine-tuning the Models 

Initially, the model was trained with the combined loss functions involving many parameters. This model 

did not converge well after 1000 epochs, and in both cases, the accuracy of bicubic interpolation was not 

exceeded.  To overcome this issue, we tried to remodify the concept of curriculum learning (Avrahami et 

al., 1997; Bengio et al., 2009), which has already proved the better convergence with having gradually 

increased complexity of the data. Since complexity in our data was fixed, we gradually increased the 

complexity of loss functions, meaning that if a neural network was a student, instead of gradually increasing 

the complexity of the curriculum, we increased the complexity of examination, which proved to help us to 

use the novel TopoLoss to reconstruct better ridgelines and valley lines. So, instead of training a model with 

the more complex loss for longer epochs, we first trained the model with a less complex loss function for 

some epochs and then gradually increased the complexity of the loss functions. Furthermore, using the 

gradual increment of the complexity of loss functions also helped reduce the artefacts and gradual errors in 

the output. 

 

When we trained the model with combined loss, it produced a horizontal stripe causing spiky noise in data 

as shown in Figure 40 because the model could not fit the weight in such a way that it can reduce all 

combined loss function. However, when we used the gradual increment of loss functions, it solved those 

problems because the model when training with complex loss functions was already initialized with weights 

obtained from simpler functions. This type of problems is also prominent in computer vision, where the 

model performance is very sensitive to initialization in multimodal loss functions. Without proper 

initialization, the model does not converge well (Candès & Fernandez-Granda, 2013), so with our approach, 

it solved three major problems (1), the problem with proper convergence in the model (2), reduction of 

noise in the output with complex loss functions and (3) better initializers for complex loss function solving 

the requirement to have proper initialization.  

 

The training and testing datasets were obtained from the LiDAR DEM, but we also observed that the input 

data degradation function from LiDAR DEM HR to LR also impacted the model performance. In most of 

the SR literature in computer vision, they have used the MATLAB bicubic interpolation function for the 

image degradation for a fair comparison (Agustsson & Timofte, 2017; Dong et al., 2016; Park et al., 2003; 

X. Wang et al., 2018; Yang & Huang, 2017; Y. Zhang et al., 2018). However, we observed that if we use a 

different library such as OpenCV or ArcGIS, the training performance will be different; also, when we 

perform the testing, the LR created from other sources performs differently than that of LR prepared from 

the same methods. The reason behind that is in the interpolation function even though all the libraries and 

software claim it to be a bicubic interpolation; the weighting strategy is different; for example, the OpenCV 
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and MATLAB use the same function for bicubic interpolation as shown in Equation 20; however, the weight 

value a is different for each software (0.5 for MATLAB and 0.75 for OpenCV) (MATLAB, 2021; OpenCV, 

2021). Furthermore, MATLAB has implemented an anti-aliasing function that completely changes the input 

dataset to the model, and the model performance will not be the same in the case of data prepared through 

different libraries. So, as a standard library used in most of the research, MATLAB is considered the 

standard, and we used it as a basis for our research.  

 

𝑝(𝑥, 𝑦) = ∑ ∑ 𝑎𝑖𝑗𝑥
𝑖𝑦𝑗3

𝑗=0
3
𝑖=0  …. (20) Bicubic interpolation function implemented in multiple libraries. 

 

 

 
Figure 40: Comparison of reconstructed DEM with and without gradual increment of Loss function complexity 

 

Another major challenge we faced during the training of the EBRN and ESRGAN model was vanishing 

and exploding gradients, the major reasons for vanishing gradients and exploding gradients were caused by 

extremely low and extremely high gradients or norms during the training process, which makes the updated 

weights and bias range to infinity making the loss values to Nan (Pascanu et al., 2012). To solve this problem, 

we used gradient clipping and also a lower learning rate to reduce the fluctuating of the model, as suggested 

by Goodfellow et al. (2016, p. 289). Furthermore, in the case of GAN training, we faced more problem of 

collapse mode, which was caused by either the discriminator model was too powerful and its loss becomes 

nearly zero, or both models keep oscillating during the training as observed by Durall et al. (2021). To solve 

that, we used the pretrained Generator model and stopped updating the weights of the discriminator model 

after certain epochs to avoid collapse mode, as suggested by Ham, Jun, & Kim (2020) and X. Wang et al. 

(2018). Furthermore, the hyperparameters were tuned with the different range using the Keras tuner, which 

optimized the learning rate, decay factor for learning rate, and with using model checkpoint with validation, 

we could train the model for 1000 epochs without overfitting the model.  

5.1.2. Test on High-Resolution Data 

The HR DEM inference was used to understand how the Super-Resolution model improves the quality of 

DEM in multiple locations before using it for a global free dataset. The PSNR scale being an MSE dependent 

scale, as we can observe in Figure 23, the Colombian DEM had higher PSNR in all scenarios compared to 

Dominica and Austria, even though it had more noise in the data and the quality of DEM was not better as 

compared to Dominica and Austria. The reason to have higher PSNR was that the MSE value for Colombia 

was less because the noise present in the DEM is smaller. When we degraded the HR image to make it LR, 
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those noises were also smoothed, but when we calculate MSE, which is an average measurement, the mean 

value is very low for Colombia compared to Austria and Dominica. In Austria and Dominica, even though 

the DEM was good quality because of the smoothing function and few large noises, the MSE was higher. 

So, this shows that using PSNR and MSE can show the improvement in noise and error reduction but 

cannot show the quality of the data that should be considered during the training and evaluation.  

 

As we observed in the results section, we could obtain the model accuracy with more than 20% 

improvement in all the locations, but the improvement in EBRN was quite interesting, with the highest 

improvement in Colombia followed by Dominica and Austria. Even though the model was trained in 

Austria, it had more improvement in Colombia and Dominica; this is because the EBRN model has more 

capacity to reduce the noise and improve the data based on its frequency details (Qiu et al., 2019). The 

LiDAR DEM available in Austria was very high quality, and it did not have much noise in its LR counterpart, 

making it very difficult to improve the quality. However, in the case of Colombia, the available HR DEM 

was very noisy and consisted of artefacts that were also preserved in its LR counterpart, and the EBRN 

model being capable of reducing such noise had removed much of the noise from the input dataset, making 

it better in terms of MSE improvement. Furthermore, the quality of DEM in Dominica was also relatively 

better, showing that the MSE improvement is more than Austria but far less than Colombia. This 

observation shows that, in the EBRN model, using more noisy data has more room for improvement, but 

the amount of improvement it can do is less than that of the ESRGAN model. ESRGAN model, on the 

other hand, shows performance based on the input data is received(X. Wang et al., 2018); the model is 

trained in Austria heavily, have more capacity to improve in Austrian terrain. Whereas it also could improve 

better in Colombia than Dominica due to the fact that terrain characteristics in Colombian DEM are very 

similar to that of Austria whereas, being an Island Nation, the Dominican terrain was quite different where 

ESRGAN model suffered to improve as much as EBRN.  

 

Most of the available research has used their algorithms in different locations and with different peak values 

for PSNR without relative comparisons, and we cannot compare those existing works (Argudo et al., 2018; 

Z. Chen et al., 2016; Demiray et al., 2020; Jiao et al., 2020; Kubade et al., 2021, 2020; Shin & Spittle, 2019; 

Wu & Ma, 2020). Furthermore, as opposed to computer vision Super-Resolution, where existing test 

datasets are available for a fair comparison between algorithms, in the geoscience community, especially for 

DEM data, there is no standard dataset for comparison, making it impossible to compare the performance 

of our approach relative to others. Even though the works of Argudo, Chica, & Andujar (2018) (FCND 

Model) and Kubade et al. (2021, 2020) (DSRFB-2020 and AFND-2021)have used data from Austria, their 

scale factor is other than 4 (7.5), and also the resolution of the data they used is 2 meters compared to ours 

five meters making it incomparable. Furthermore, the versions of research by Kubade et al. (2021, 2020), 

which includes RGB images and overlapping in the model, are also not comparable because we do not have 

included any auxiliary information, as well as overlapping, can cause false overrepresentation of accuracy as 

explained in section 3.3.3. The only way to compare our results is by checking the relative improvement 

compared to the existing studies in a similar location with a similar scale (because the model performs 

differently in different scales). The research by OpenDEM (2021) in Austria has provided the relative 

improvement compared to Bicubic Interpolation with RMSE: 7%, whereas our results have improvement 

(In Austria) of 20.397% for ESRGAN and 12.191% EBRN, respectively, which shows our results have 

significantly improved the results than their studies.  

 

On the 4x scale of Super-resolution, Xu et al. (2019) have provided some interesting results. However, 

because the data in the study is not published, we cannot do the absolute comparison and for the relative 
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comparison also, as we can observe in the study of Kubade et al. (2021), relative improvement also largely 

depends upon the study locations making it difficult to make comparisons in the unpublished and non-

standard datasets. One possible way to compare is to compare the model’s capacity to reduce the squared 

root of standard deviation in error (MSE), which shows the capacity of the model to reduce the noise and 

random error compared to bicubic interpolation (because Bicubic is the most wildly used among 

interpolation techniques due to its fast nature with good quality outputs). This approach is less biased to the 

dataset location than the reduction of mean error, but not completely without any bias and should be treated 

accordingly only for relative information. The comparison of our models with the work of Xu et al. (2019) 

is shown in Table 14. As we can see in the table, the standard deviation in RMSE has been significantly 

decreased by our both models compared to BP (Xu et al., 2019), Sun11(Sun et al., 2011), D-SRCNN(Z. 

Chen et al., 2016), DGPN (SRCNN) (Xu et al., 2019)and DGPN (EDSR) (Xu et al., 2019).  

 

Method AVG RMSE RSSE  
Avg St. Dev Improvement 

in RMSE (%) 
Data 

Bicubic 13.635 1.952   

Different 

than ours 

 BP 11.136 1.882 3.586 

Sun11 10.782 1.885 3.432 

 D-SRCNN 10.962 1.919 1.691 

DGPN(SRCNN)  10.130 1.798 7.889 

DGPN(EDSR) 9.785 1.805 7.531 

Bicubic 1.170 2.127   

Ours 

EBRN (Ours) 0.898 1.681 20.957 

ESRGAN (Ours) 0.974 1.813 14.780 

Table 14: Comparison of standard deviation reduction by different methods for the different datasets. 
 

 

While comparing the quality of our model to that of other published work, we have realized that the 

requirement of a standard dataset for modelling and comparing the quality of the model is very important 

and required for geoscience data. In the case of computer vision, there are many such data available such as 

DIV2K (Agustsson & Timofte, 2017),  General100(Dong et al., 2016), and MANGA109 (Aizawa et al., 

2020), which are wildly used in training and testing the model. However, as we mentioned earlier, due to the 

lack of such a dataset in the geoscience community, it is very difficult to compare the quality of the model 

and its output. To make a reasonable comparison, we must consider the terrain the model is trained, the 

degradation function used to train the model, the quality of the input dataset, and the test data itself, but 

there is no other matching dataset that we can make a reasonable comparison with our models. The one 

way to compare how much percentage of MSE, but the presence of noise in multiple datasets are very 

different it is not possible to compare them. To have a relative comparison, we proposed to use percentage 

reduction in the standard deviation of MSE, which represents the capacity of the model to reduce the noise 

can be one approach, instead of directly comparing the MSE, which is largely dependent on data comparing 

the capacity of the model to reduce noise makes more fair comparison. However, this approach is temporary 

and is biased because the complexity of data is not considered, and with different complexity of the dataset, 

it might be difficult to make an absolute comparison making it a temporary solution. Hence, there is a strong 

need for the standard dataset in geoscience for Super-Resolution modelling and comparison.  
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When we started comparing the SSIM values, which is a standard tool to measure the visual quality in 

computer vision Super-Resolution tasks, it considers the visual representation of the data and compares 

their similarity (Z. Wang et al., 2004). However, In the case of DEM, the major problem is that even though 

the DEM is very different, it looks very similar for the observer. The values of SSIM are quite similar in 

both cases, as shown in Table 10, where we can observe that for all DEMs, the SSIM value was extremely 

high, making it difficult to compare and find the difference, this is because SSIM was designed for the optical 

images which have ranged from 0-255 in most of the cases(Z. Wang et al., 2004). All the features in optical 

images are visible, and small changes can be recognized, but in the case of DEM data, the changes are very 

difficult to visualize without converting them to derivatives. To overcome this issue, we used SSIM with 

hillshade images that range from 0-255, and it is easier to compare the difference for the human observer 

with hillshade, which also makes it more reasonable to use SSIM with hillshade images. As per our 

knowledge, we are the first to use SSIM with DEM derivatives to make a reasonable comparison. Most 

DEM SR research has not considered SSIM as evaluation metrics and only focus on PSNR, which lacks the 

part of research to consider improvement in visual quality (Argudo et al., 2018; Z. Chen et al., 2016; Demiray 

et al., 2020; Jiao et al., 2020; Kubade et al., 2021, 2020; Shin & Spittle, 2019; Xu et al., 2019) because the 

major need of SR technique is to generate better-looking images with high quality not only images with high 

PSNR. Furthermore, as we explained before, having higher PSNR might not mean better and noise-free 

images in case of the presence of small frequency noise in the data. Wu & Ma (2020) used the SSIM Index 

in their research, but the problem changed in SSIM with DEM SR was in the scale of 1e-5, which makes it 

very difficult to understand if there is an improvement or not, so, our approach of using SSIM with 

derivatives has proven to be a better metric to measure the improvement in the visual quality of the image.  

5.2. Phase II: Super-Resolution Applicability test 

This section will first discuss the applicability of Super-Resolution in increasing the quality of the global 

digital elevation model and followed by applicability in multi-hazard modelling.  

5.2.1. Super-Resolution Evaluation in Global Dataset  

This section discusses Super-Resolution in the global dataset and its evaluation using the derivative and 

geomorphological evaluations. The quantitative comparison using methods such as RMSE, MSE and other 

methods described by Polidori & Hage (2020) was not possible due to the lack of ground truth data, we 

could have used the HR DEM as ground truth, but the pixels with HR DEM were not aligned to SRTM 

DEM making it impossible to compare pixel-by-pixel. Furthermore, the range of elevation in each pixel are 

also randomly related, and there is no systematic error which made the comparison with HR data more 

biased. For a simple understanding, please observe Figure 41, where SRTM and LIDAR HR dem cross-

section are plotted in a 1600 meters long cross-section; both DEM have no specific error patterns of the 

elevation and SRTM have more similar data in some places and completely different values at other places. 

To overcome those, we used the derivative, visual and geomorphological analysis.  

5.2.1.1. Derivative analysis 

The derivative analysis shows how the SR-based methods can improve the quality of the derivatives 

compared to bicubic interpolation. The major discussion points on using KDE function, are, the pixel-by-

pixel comparison with HR DEM from another source is not possible due to the fact that elevation obtained 

from different sensor have a small shift in the dataset due to their grid structure as well as the spatial 

resolution in which the sampling was done. Such phenomenon of the horizontal shift was observed by many 

authors such as Alganci et al. (2018) and suggested that co-registration was required to solve the issue. 

However, in our case, because the shift was not along a single direction and there was a vast difference in 
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sampling resolution between HR DEM and SRTM DEM, it was difficult to co-register them. Furthermore, 

the research aimed to develop a post-processing algorithm to improve global data in case of lack of high-

resolution data, so we did not perform such post-processing because it might change the model's overall 

performance and make it more biased.  

 

 
Figure 41: Demonstrating the difference in elevation values and its randomness in SRTM and LiDAR DEM. X-Axis 
represents distance, and Y-Axis represents elevation. 

 

The KDE function estimated the kernel density for all DEM, and when we plotted them with each other, 

we could see that the SR-based methods have KDE more near to HR than the BC interpolation. However, 

the differences were comparatively small; in the case of MSE and PSNR, we could observe the differences 

in numerical values, which could show that in absolute terms, but here the derivatives have a very smaller 

range making it difficult to observe the difference. For example, for a 10-meter horizontal distance, if the 

elevation difference changes by 0.5 (let us say from 3 to 3.5), the slope will change by ~0.04 radians which 

is not significant in terms of derivatives but which is very significant in terms of elevation, so drastic change 

in the derivative is very difficult to obtain. However, those smaller changes have a very big impact on the 

physically based modelling because when the slope changes by a very small amount, the stability and flow 

of the pixels can change exponentially. For example, in the case of multiplication by sin(a), if the slope value 

changes by ~0.04, the multiplication factor will change by ~0.039, and such deviation can cause a significant 

change in physically based simulations.  As we observe in all three cases, the slope has been improved (even 

though a small amount), making it more like that of the HR; the impact of this improvement can be observed 

in the results of multi-hazard modelling. The TanDEM-X have a very similar curve to that of the HR DEM 

in most of the case. We can see the impact of initial data collection resolution in this case; as long as the 

high amount of content is available in the original data, the derivatives are more likely to be similar to high-

resolution DEM but due to such feature and terrain variability are not available in the SRTM LR DEM the 

improvement in such cases are very difficult to obtain. This problem is also explained and backed by the 

theory of data processing inequality (Beaudry & Renner, 2012). 

 

 In the case of Aspect, the improvement is very low and negligible, but the HR and SRTM DEM have very 

similar KDE functions; this can be further explained by the fact that small changes in elevations and small 

noises cannot change the direction to which overall terrain is facing to. Even though the small values might 

change on aspect angle, but in a larger context, the overall face of the slope unit will not change by noise. 
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However, in the case of Dominica, TanDEM-X has a more variable aspect compared to the other two 

datasets, with amplified peak and crest. The reason behind such an effect in TanDEM-X is due to very large 

noise and spikes in the dataset. It has created amplified aspect angles due to sudden change in the direction 

of the terrain; other than that, in the case of noise-free data, all kinds of DEM have very similar Aspect with 

a small difference. However, in this case, SR-based methods have also improved the quality of Aspect by 

making their distribution closer to HR DEM.   

 

For TWI, in the case of both Colombia and Austria, we have seen very similar results compared to that of 

the Slope. However, in the case of Dominica, the TWI has shifted a bit far from the HR DEM for all BC 

and SR methods while keeping the similar structure of the curve. This observation represents that more 

pixels had a higher value of wetness compared to HR DEM. The TWI is calculated logarithmically by 

dividing the flow accumulation by slope, and there are two possible reasons to have higher TWI, the SRTM 

DEM is relatively flatter (with lower slope) than that of the HR and TanDEM-X, causing more TWI values 

or due to the smoother DEM more pixel’s flow into the lower region contributing higher TWI. From slope 

KDE, we can safely conclude that the lower amount of slope has caused the higher values to TWI in this 

case, and the value of TWI has not much changed by using SR based methods which is because, in 

logarithmic scale, the change of slope in Dominica is insignificant which makes not much impact on TWI. 

For further reference on explanation, please see how the TWI is calculated and elevation affects the TWI in 

Agren et al. (2014), Mattivi et al. (2019), Qin et al. (2011), and Radula et al. (2018). Furthermore, the majority 

of terrain covered by HR had a relatively lower slope, and in SR based approach, those slopes are not 

changed by a higher amount, which causes the TWI improvement insignificant.  

 

Even though it was the best possible approach to check the distribution on the whole dataset to estimate 

the improvement, the KDE function smooths the data, and usually, the kernel functions remove the 

required variability in the dataset (Hwang et al., 1994). Furthermore, the KDE functions are largely 

dependent on the smoothing functions as well as the kernel width, which is kept constant in our case, but 

this can largely affect the results (Portugués, 2021) 

5.2.1.2. Visual  and Geomorphological  Analysis 

In visual analysis, the results are very self-explanatory, but few things are worth discussing. The model has 

better preserved the ridge, and the valley lines than bicubic interpolation, whereas the middle slopes, are 

crisper, but we cannot find much difference on them. The reason is also related to the theory of data 

processing inequality (Beaudry & Renner, 2012),  here in SRTM LR, because we have a coarse representation 

of the ridgelines and the valley lines, the SR based methods could create better ridge and valley lines. 

However, in most of the terrain, the features on mountain slope are not visible in the SRTM DEM making 

it impossible to generate via SR methods. If SR-based methods generate such features, that would be 

completely wrong and considered as artefacts because without any indication of features in LR data, if SR 

models start to create artefacts, they would increase the noise in the model instead of decreasing. However, 

in the case of SRTM DEM, where smaller feature representation is available and ridge and valley lines are 

visible, the SR-based methods have created a very good representation of them in SR output. This has a 

limitation of SR-based methods in mapping the geomorphological features, which are not available in the 

LR dataset, and this will be discussed in the next section.  

 

Another important point to discuss in the visual analysis is that the ESRGAN based method has smoother 

terrain in most of the cases of SRTM input, the reason lies in the model architecture, the EBRN model 

process different frequency of information with different level and complexity. In contrast, ESRGAN passes 
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all of them through the same network. When the model was trained, we had high-resolution DEM and its 

degraded counterpart, which was better in terms of visual quality compared to SRTM LR. The ESRGAN 

Generator model learned to generate HR data from those perfectly created bicubic samples, but it had 

suffered to provide better quality images when we provided real-world data. However, the ESRGAN model 

has better and comparable performance in the HR DEM and their degraded LR DEM; it suffered heavily 

in SRTM DEM. On the other hand, the EBRN model has different blocks of processing complexity, and 

when it was trained, all those blocks have their weights, and when we provided more noisy data, it could 

pass it through more complex blocks and process to generate the relatively better-looking dataset. The 

model architecture and its development strategy have played a major role in producing such discrepancies 

in similar performing models.  

 

In the visual analysis, we can also observe that the ESRGAN based approach has created some artefacts in 

Colombia DEM and few in Austria DEM, especially in the lower hill of Colombia. Being a Generative 

Adversarial Network, the artefacts are very common on the ESRGAN, and the model averaging has tried 

to reduce the artefacts, but this phenomenon is inevitable, and we can expect some sort of artefacts in 

ESRGAN based networks (X. Wang et al., 2018). However, there are few ways to reduce such artefacts, and 

one of them was to average the pretrained generator with the GAN trained generator network, even though 

we did the model averaging with the factor of 0.5 and taken the mean of the model to ensure that we obtain 

the best visual and PSNR quality, we could still find some artefacts on Colombia case. In contrast, Austria 

and Dominica do not have many artefacts. Therefore, both EBRN and ESRGAN model have performed 

similarly in the case of derivative analysis. However, in the case of visual analysis, the ESRGAN model has 

lower performance than that of the EBRN model in terms of visual clarity and fewer artefacts, and most of 

those effects are due to the architecture of the model and their design for specific tasks.   

 

Multiple experts did the geomorphological evaluation in DEM, and their score and remarks about the 

geomorphological data were analysed. The major comment was, even though the SR-based approach creates 

a crisp-looking image, features such as Landslide detection in those DEMs are not possible. This 

phenomenon is expected, and it is due to the data processing inequality (Beaudry & Renner, 2012), which 

states that information that are not present in the data while collection cannot be obtained by post-

processing. As we can also observe in the visual analysis section, the images produced by SR methods have 

more crisp looking ridgelines and valley lines, and the features that are present have become crisper, but if 

the terrain has less amount of slope, it could not produce any features but just created clearer and crisper 

looking surface. This phenomenon has a very strong impact on the geomorphological mapping from the 

SR methods; in terms of mapping large features such as mountain slope, flood plain, etc., the SR-based 

methods can provide good visualization. However, in terms of mapping features like landslides and faults 

are very difficult with SR-based methods because to generate a better quality hillshade with more features, 

the features in the LR image should be present even though in low-resolution. When there is no feature 

present in Low resolution, it cannot be generated by SR methods and hence cannot be mapped. For better 

understanding, Figure 42 shows that in the upper image where ridge and valley lines were present in LR 

DEM, the SR-based method has created realistic terrain with crisp terrain and crisp ridgelines. However, in 

the lower image, because there was very few features present, even to a bigger extent, there was not much 

improvement in visual characteristics because there were not many features present in the LR image. This 

phenomenon can be both interpreted as boon and curse because the capacity to limit fake artefacts helps to 

generate better terrain, and not being able to create better features by prediction without the availability of 

visible features limits the possibility of using SR methods in mapping small scale geomorphological features. 



SUPER-RESOLUTION AIDED MULTI-HAZARD MODELLING: IS IT POSSIBLE? 

76 

Interestingly, if we have large landslides visible with low-resolution images, SR-based methods can generate 

more crisp-looking landslides making it possible to map them easily.  

 
Figure 42: Dependency of SR products on the information content available in LR image. 

5.2.2. Multi-Hazard Modelling 

The multi-hazard modelling was done with different possible scenarios to understand the impact of SR in 

flow dynamics and flow characteristics. The observation that we had was interesting, with significant 

improvement in the quality of output and data. The major discussion points on multi-hazard modelling and 

applicability of SR in multi-hazard modelling are calibration of the model, brief discussion on results we 

obtained, and applicability of SR methods in data-poor regions.  

5.2.2.1. Calibration of the Models 

All the scenarios were calibrated with the gradient descent algorithm; the major benefit of using GD over 

that of the manual values is, it is adaptable to the current accuracy of the model and adapts quickly than that 

of the manual method (Léon Bottou, 1999). Furthermore, because we had 420 different scenarios to 

simulate, manually calibrating all those was virtually impossible in the given time frame of the research. The 

GD method has proven to be a good estimator, and we could also get better results with some improvement 

over the initial parameters, which were calibrated in Dominica in the existing model. The calibration was 

easier for us because we already had the calibrated parameters from the model run in HR LIDAR DEM, 

and with the use of SR methods, we could obtain better results. The results obtained from the calibration 

are reported as Cohen’s Kappa coefficient in the previous section. 
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 Some of the issues we faced with calibration using GD was, sometimes it created the multiplication factors 

unrealistic such as 400 for manning’s N, and such a high number of multiplication factor had caused very 

small accuracy; we monitored the calibration process via GD and did not consider the accuracy obtained by 

such unrealistic multiplication factors in our analysis. Such unrealistic values are because the GD algorithm 

does not understand the physical relationship between values and their impact on modelling; it just tries to 

minimize the error at any cost. Furthermore, to reach the best minimum error, it might take way more 

simulations because GD is very slow on converging, and if there are multiple local minima, it is possible 

that the model gets stuck in some values and never improves (Chi et al., 2009, p. 472). So, In our context 

with 20 simulations, an expert modeller with a higher understanding of the relation of hazards with input 

parameters might generate better results. This has been observed by the situation in Dominica, where van 

den Bout  (2020, p. 187) could obtain Cohen’s Kappa (without filtering below 25 cm) value of 0.562, whereas 

our approach could only obtain 0.55, this shows that expert modeller like van den Bout can generate better 

results than gradient descent methods in few simulations. However, with the addition of more simulations, 

GD might be able to get better results. The loss function (error function) we used is not a convex 

optimization problem, and reducing any values, in this case, might not show a large effect making it more 

prone to lack of convergence.  To optimize better and faster, the implementation of algorithms such as 

Adam optimizer would help to generate better results (Kingma & Ba, 2015). As we observed in the visual 

evaluation of both Colombia and Dominica, many slope failures were not present in the results. This is 

because when we calibrated the models, the major goal was to reduce (1-Cohen’s kappa) value. 

 

Furthermore, because flood event is spread largely and true prediction of such large event increases with 

more flood and Cohen’s kappa increases reducing the error, compared to when it creates more landslides, 

so, the model calibration output was more biased towards flood. We could not solve this problem because 

we had around 420 simulations to run, and manual calibration of such a huge number of simulations was 

impossible. However, this can be solved in the future by adding multiple or weighted error functions that 

consider slope failure and flooding events separately and add their values with the required weight.  

 

 The parameter of GD, learning rate, and momentum are very sensitive to its performance, and setting those 

parameters right is very important; otherwise, the multiplication factors will be changed unrealistically, as 

suggested by Chen et al. (2019). To set those parameters right, we started calibration from 0.1 for learning 

rate and 0.5 for momentum and calibrated the sample model with a bigger timestep for obtaining good 

parameters; then, we decreased the learning rate multiple times until the model became stable and gave more 

realistic results. The final parameters we used were 0.001,0.9 for learning rate and momentum in both sites, 

which did not let the multiplication factor grow absurd. The major drawback of using GD for calibration is 

that it is difficult to store intermediate results. It is only possible to get the final parameters that are best to 

re-run the model, and visually inspecting intermediate maps is more difficult in GD compared to the manual 

calibration method. However, in this case, our concern was with the results but not the intermediate results, 

and we gave all the scenarios a fair chance of equally calibrating for 20 epochs so that intermediate results 

were not much relevant. 

5.2.2.2. Results With SR Methods: Dominica 

The Cohen’s kappa was used to understand the overall performance of the model instead of the Accuracy 

metrics because the accuracy is a non-normalized scale, and it does not account for the random chance of 

having such classification, but the Cohen’s Kappa statistics compensates for the random chance (Ben-David, 

2008). When we compared the Kappa values, the improvement is higher in the LiDAR DEM, whereas the 

SRTM DEM had a lower amount of improvement. The LiDAR low-resolution DEM is a smoothened DEM 
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from the high-resolution by bicubic interpolation, but no artificial noise is present on the data. When we 

used SR-based methods, our models are better at creating crisper and better-looking ridgelines, valley lines, 

and channels, showing that in the case of LiDAR data, there is significantly higher improvement in the 

modelling output because of the reconstruction. However, in the case of SRTM DEM, the noise present on 

the low-resolution data had limited the capacity of the model to reconstruct the images better. This 

phenomenon is well observed and recorded in computer vision by the works of Guan et al. (2019). 

Moreover, if we observe in the results section, we can observe that the bicubic interpolation has more 

extended flow compared to SR based methods, this is because the bicubic interpolation smoothed the 

channel or rivers, which lead the lower depth of the channel, making the fluid flow more in horizontal 

extent. Figure 43 shows a random cross-section in a channel where both ESRGAN and bicubic interpolation 

is shown, and we can observe that ESRGAN have significantly higher channel depth. 

 
Figure 43: Cross-section in the channel, which shows how bicubic interpolation have smoothened the channel height. 

Furthermore, with the change in input low-resolution data from the different sensor with different noise 

levels, the quality of the output can change significantly (Guan et al., 2019); this might also have had an 

impact on improvement using EBRN and ESRGAN models. However, both models have shown the 

capacity to improve the DEM and modelling output using such data. Comparing our high-resolution model 

with van den Bout (2020, p. 187), the Cohen’s kappa value is lower in our case when we used 0.25 as 

threshold the Cohen’s kappa value is ~0.47, whereas if we do not use the threshold as van den Bout (2020, 

p. 187), our Cohen’s kappa value is 0.55. This shows that the use of threshold reduces Cohen’s kappa value 

significantly, but that is very important because, in most cases, the impact of the hazards is very low, below 

0.25 meters. However, in non-threshold results, our calibration only provided results up to 0.55 due to our 

automated calibration process limitations as described in the calibration section. To reduce such problems, 

either increasing the number of simulations or use of multiple and better error functions such as cross-

entropy will help because of their capacity to check correct classification in a more holistic manner with 

different hazards as different classes (Haussler, 1992).  

 

On the other hand, there is a higher probability of improvement in LiDAR DEM in both channel and non-

channel flow due to less noise in the input dataset and because the model was trained in the LiDAR DEM 

rather than SRTM DEM. This phenomenon is called transferability of Super-Resolution in natural images 

where non-synthetic images suffer to generate better results than the ones which were used to train the 

model, this is a new research field in deep learning-based Super-Resolution, and very active research is going 
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on (Anwar et al., 2020; Guan et al., 2019; Mousavi et al., 2018).  Furthermore, in both LiDAR and SRTM 

DEM, we can observe that the improvement in Channel flow is a bit higher, which is in line with our visual 

observation. The channel flow improvement in LiDAR DEM is very higher than that of SRTM data, which 

is because the channels were visible in LR LiDAR data because it was captured in the HR LiDAR DEM. 

However, due to the smaller ground sampling distance, SRTM had not captured such features making it 

impossible to reconstruct. Non-Channel flow results are very similar to channel flow, showing that the 

improvement in the non-channel area is very low compared to channels. The EBRN model has improved 

less in the Channel and Non-Channel flow of SRTM; this is due to the model architecture, where ESRGAN 

being a generative model, it can produce better images than the EBRN, which works as a noise reduction 

method (Qiu et al., 2019; X. Wang et al., 2018). If we compare the output from our SR data to commercial 

global DEM, we can observe that it has higher improvement, this because in our modelling site, the 

TanDEM-X have very noisy data compared to other places in Dominica shown in Figure 44. This noise in 

DEM compared to SRTM reduced its accuracy to very low in the case of physically based modelling, but if 

we observe the derivative analysis, it has better performance than SR-based methods.  

 
Figure 44: Comparison of TanDEM-X vs SRTM in physically based multi-hazard modelling site 

In the overall channel flow of solid and fluid, when we considered LiDAR HR as standard and observed 

computed the absolute error, we observed that absolute error was significantly reduced while using SR-

based methods compared to that of the BC-based method in SRTM data. However, in the case of LiDAR 

data, the total channel flow in ESRGAN is more erroneous than that of the bicubic interpolation, but when 

we compare kappa values, it shows more improvement. This discrepancy between kappa statistics and total 



SUPER-RESOLUTION AIDED MULTI-HAZARD MODELLING: IS IT POSSIBLE? 

80 

water flow in the channel can be due to 2 major reasons, (1) the ESRGAN method increased the artefacts 

in LiDAR DEM, causing less water to flow towards the channel, (2) when the crisper image was obtained 

using ESRGAN, the amount of flow reduced than that of the smoother data. Furthermore, if we compare 

in the case of LiDAR DEM, the improvement in total flow in the channel is not that significant. With 

bicubic interpolation, the amount of flow was higher than HR, but in SR methods, it is lower, showing that 

the smoother surface cause more water to flow into the channels, and SR based methods creating more 

crisp images cause the lower amount of flow in the channel which can be due to more artefacts in DEM, 

not connected channel flows, etc. The SR-based methods also had the drawback that when creating crisp 

images, they sometimes create hydrologically incorrect DEM causing non-connected flow, making the 

overall channel flow smaller. In the case of SRTM DEM, the results show that the SR-based methods in 

SRTM DEM have improved the quality making more water flow through the channel and reducing absolute 

error compared to LiDAR HR. In this observation, we are confident that the SR-based methods improve 

the performance of the model. In this case, if we compare the TanDEM-X, it has a very high amount of 

total channel flow compared to other methods; this is also caused by noise present in the DEM, which 

created small ponds making a higher amount of water in the channel.  

 
When comparing the NS index and RMSE, the EBRN and ESRGAN model have provided better discharge 

than the bicubic interpolation technique, showing that in multi-hazard modelling of hydrometeorological 

hazards, it is better to use SR based methods for modelling. The NS index is a widely used method for 

hydrographs comparisons, and it has shown that our approach has improved the quality of discharge at a 

random location. However, if we investigate Figure 25, up to 18mm of flow, the SR-based methods have 

way better similarity with HR data compared to BC methods, but after that, SR-based methods show more 

divergence with a higher amount of flow. The reason behind this lies in the DEM itself; when the DEM is 

smoother, the water flows faster, reaching the discharge point due to that the amount of flow in the lower 

range is higher for BC DEM. However, in SR based approach, the flow gets slower because it has to fill the 

terrain undulations and reaches later than that of the BC DEM, making a higher peak in the range of 18-

21mm. The BC also has higher values after 22mm during the peak, showing a higher amount of flow where 

SR-based methods almost perfectly match the LiDAR HR. This might not be due to the time taken to flow 

to that point but might be due to some other processes such as slope failure and debris because the peak of 

rainfall caused that flow, and which has created a huge amount of surface failures in the study area. The 

RMSE also has shown the model output in line with the kappa coefficient; in channel flow, ESRGAN has 

lower RMSE and higher improvement in Kappa, which can be explained with the same reasons as in kappa 

coefficient and NS Index.  

5.2.2.3. Results With SR Methods: Colombia 

After running the models in Colombia, the overall results show that the SR based methods have improved 

the quality of the model at least in two dimensions of flow extent and total discharge. We could not analyse 

the root mean squared error and discharge due to the lack of ground truth data. The use of SR with HR 

data was not used in this case because it was for testing the capacity of SR based methods, not an applicability 

test. We observed that the SR-based methods could improve the quality of the outputs, but the model's 

overall performance is subpar. This model could not obtain good results with our 20 simulations for each 

scenario, and more extensive simulations with manual calibration might improve the results. The problem 

with modelling was that it generated a very high number of false-positive with high-resolution and SR data 

decreasing the kappa value. If we just compare it using the accuracy metric model can be reliable, but with 

Cohen’s kappa values, we can observe that the model is purely unrealistic and cannot show better values. 

Furthermore, because of the automated calibration using gradient descent, we could not observe the 



SUPER-RESOLUTION AIDED MULTI-HAZARD MODELING: IS IT POSSIBLE? 

81 

intermediate results, and the model mostly relied on the Kappa values, which might have limited the cases 

of slope failures. To further analyse this, Figure 45 shows that, even though in most of the inventory areas 

the flow is near the inventory data, there is a large amount of solid and liquid flow in the middle of the study 

area. Furthermore, when calculating Cohen’s kappa, the false negatives are taken very seriously, and that 

created the low values of Cohen’s Kappa. The DEM used as HR, in this case, was from ALOS PALSAR, 

and it had some post-processing done, but due to the lack of features, such errors occurred. A very high-

resolution DEM such as LiDAR is essential for this area to have better modelling result.  

 
Figure 45: Error and false negative in the modelling output with high-resolution data at Mocoa region of Colombia. 
Basemap Sources: ESRI, HERE, NASA and USGS 

The TanDEMx data being observed at 12.5 meters, similar to ALOS PALSAR data, have lower performance 

than that of the SRTM SR data because firstly, the ALOS DEM was post-processed to generate better 

terrain represented, but in the case of  TanDEM-X, we did not perform much post-processing. 

Furthermore, the TanDEM-X had a higher amount of noise in the left parts (mountains) of the study area 

and middle parts where mountain or slope was available, which has reduced its capability. The flatter terrain 

was better in the case of TanDEM-X compared to SRTM DEM, but a major impact on the physically based 

modelling was due to the flow from mountains and slope failures. To further improve the results, 

hydrologically corrected TanDEM-X might be better to use. 
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If we observe the overall results on visual analysis of these outputs, the bicubic interpolation has very limited 

flow, limiting the model's improvement. This is because of the low resolution of the model; the failures are 

limited, and also the flow in the northern part is very low. However, with all other DEMs, the false-positive 

hazard is too much, making it more problematic. Even though those had more Cohen’s kappa values, they 

seem to have failed to generate more realistic data than the inventory. The major reasons for such cases are 

(1) due to lack of high-resolution terrain representation, major streams or flow networks were not visible in 

DEMs, limiting the generation of flow direction, and fluid and solid usually flow in different directions than 

actual. (2) The bicubic interpolation techniques smoothened the terrain to a larger extent, and we 

hypothesize that it can limit the number of slope failures because of more stability in smooth terrain than 

crisper terrain. However, no published work that evaluates different interpolation techniques has what kind 

of impact on slope stability modelling, making it an open question for research. The closest research we 

could found was of Fuchs et al. (2014), which shows that with good input parameters and calibration, the 

higher resolution data can better generate slope failures, which can also be similar for different interpolation 

techniques research is required in this area. (3) in SR and other data, the slope failures in the wrong locations 

might have deviated water flow in different directions, generating more false positives. 

 

The overall improvement in total discharge is very impressive; the reason to have such high error in SRTM 

bicubic interpolation is because all the models have very high false-positive flow in the middle part, which 

essentially increase the total discharge. However, in the case of bicubic interpolation, the amount of flow is 

limited, contributing to the lower amount of total discharge. This shows the overall improvement in SR-

based methods, but we cannot still be sure because of the uncertainties present in the HR data and the lack 

of the ground truth on total discharge. The observed discharge is required for an absolute comparison, and 

similar to the case of Dominica SR based methods have improved the amount of discharge. Furthermore, 

the TanDEMx data had more error than that of the SR-based methods and that DEM also had similar false 

positives in the central part of the study area, indicating that SR-based methods are performing better.  

5.3. Comparison of the Models  

It is very difficult to decide which model works better in the case of SR, but by comparing the number of 

parameters to train, we can make a reasonable choice. To further evaluate our work, we have plotted the % 

improvement in MSE vs the number of model parameters in Figure 46. The model improvement in the 

EBRN model is higher in terms of MSE improvement compared to the ESRGAN model, which is similar 

to the observation of Anwar et al. (2020). EBRN is a PSNR oriented model and processes the different 

frequency of data with different model depth; the model's performance is better in the inference area. 

However, very small changes in MSE after certain values do not have an impact on modelling as we observed 

that both models have a very similar improvement in Cohen’s kappa values for LiDAR DEM in Dominica. 

The number of parameters for the EBRN model is higher (3x) than the ESRGAN Generator model, but 

being Non-GAN based model, it is easier to train the EBRN model even though the training process is 

slower compared to training the ESRGAN model (Kodali et al., 2017). Since the ESRGAN model is more 

focused on visually better images, the ESRGAN output for Austria has higher SSIM as shown in the results 

section, but EBRN has shown better performance in terms of inference. In terms of improving the quality 

of DEM, the EBRN model is better. However, even though the overall SSIM and PSNR are better with the 

EBRN model, we have observed that they both have a similar impact on multi-hazard modelling; this will 

be further explained in the next section.  
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Figure 46: Improvement in MSE by model vs the complexity of the model 

5.4. Applicability of SR in Multi-Hazard Modelling at Data-Poor Regions 

After all the observation and modelling, we have seen that the SR models can improve the DEM quality, 

making it applicable to use in data-poor regions. In mapping geomorphological features, it is impossible to 

expect SR-based methods to predict and create features, but if the features are present with coarse resolution 

in low-resolution data, it is possible to visualize them with a crisp boundary. In the case of modelling, the 

results are very similar for channel and non-channel flow. In practice, most of the modelling works are done 

with including the channel flow in case of hydro-meteorological hazards, and our approach showed that the 

improvement in the global dataset by using Super-Resolution than Bicubic Interpolation can improve the 

results by 8-17% depending on the modelling scenario in Dominica and 20-24% In Colombia. Considering 

the model complexity, the ESRGAN model is suitable for complex areas with more noise, and EBRN is 

more suitable for less complex and flatter terrain with higher noise.   

 

There is still, few non-technical challenges to use the models limited by the capacity and time of modelling 

organization to develop such complex models; in the real-world project, the funds and time are extremely 

limited, and such projects might not have enough time to generate such models to perform deep learning 

training and analysis to create SR models. Furthermore, the current model we developed can be used in 

some of the cases, but its performance largely depends on the terrain in consideration, and it might not 

work globally with the same capacity, which will be further discussed in the limitation section. Another 

problem that we see with the approach is, Deep Learning based algorithms need strong programming 

background and knowledge to run them, and inference from them and small changes in the input datasets 

might create a large discrepancy in the results. Such technical capacity might not be available with multiple 

local organizations in developing countries. Furthermore, a lack of knowledge about the existence of such 

models and processes can also limit the applicability of the SR in multi-hazard modelling. 

5.5. Advancement and Limitation of the study 

The research that we have performed has first tested the applicability of Super-Resolution in physically 

based modelling and proved that SR-based methods can improve the quality of physically based modelling 

in data-poor regions. Furthermore, we also have advanced the knowledge on Super-Resolution in 

Geoscientific data than other research as per our knowledge such as, (1) we used novel TopoLoss function 
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which considers differentiation in the layers itself while the majority of deep learning models perform 

differentiation in the different time epochs only, and such novel TopoLoss has shown the advancement in 

creating better SR outputs compared to that of L1 and L2 loss. (2) The modification of curriculum learning 

to curriculum examination also has proven to be a good way to train the DL models with complex loss 

functions. (3) we also developed an overlapping inference concept inspired by photogrammetric 

observations; even though a similar approach was used by Kubade et al. (2021, 2020), their approach was 

to use it on the model, which overamplified the model accuracy, but we used it during the inference which 

did not have any influence in training and testing but created, even more, better results in inference. (4) 

Definition of multiple approaches for SR-DEM evaluation was more of necessity than novelty because we 

were first to test the applicability of SR in geoscientific modelling. We needed to rethink the existing methods 

such as SSIM to evaluate our work in better ways. That led us to develop a novel approach of evaluating 

using derivatives of SR than that of the DEM itself and derivative evaluation with KDE functions. (5) This 

research also trained the model in data from one source (measurement techniques) and used it in data from 

another source successfully, unlike any existing SR methods in both computer vision and SR-DEM based 

approach where they train and test the model with HR and its degraded counterpart rather than testing on 

another real LR data. (6) Finally, this research has shown higher accuracy than that of the existing SR models 

for DEM analysis and proven to improve the quality in a similar dataset by more than 10 % than existing 

methods of OpenDEM (2021).  

 

Even though there is advancement in the research, there are also few limitations of the study; being heavily 

trained in Austria DEM, the DEM is biased towards the mountainous terrain, which was also a necessity 

for physically based modelling because most of the flow and slope failure processes occur in the 

mountainous terrain. However, when applied to flatter terrain or terrain with a very gentle slope, the 

improvement might not be as much as expected. However, in the case of Dominica, in flatter terrain also 

the results were satisfactory. The model is also inapplicable in terrain above 8000 meters and below sea 

levels because of the limitations during the training, as a solution, the below-sea-level elevation could be 

shifted to zero, and for above 8000 meters, it could be shifted to lower elevations. Another limitation is to 

use it together with elevations that are null values; if any null values exist in the model, we had to fill it before 

using SR-based methods; otherwise, the DL model cannot generate the results making all values null. This 

might be difficult to have in global DEM because SRTM is not filled in most of the world. Another limitation 

with using the SR-based method is that it is not much usable in geomorphological mapping because the 

model's output mostly depends on the input, making it not much applicable in mapping features. The 

calibration of the physically based models was done automatically using the GD methods. However, due to 

the inability of the model to understand the relationship between multiple input maps and a limited number 

of calibration simulations, the model could not find the global minima with the lowest error. Furthermore, 

evaluating or manual calibration of such a large number of simulations was impossible, and calibrating using 

only Cohen’s Kappa largely reduced the number of slope failures.  In the Dominica study site, the TanDEM-

X data was very noisy, followed by lesser noise in Colombia, leading to its lower accuracy than SRTM SR 

methods.  
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6. CONCLUSION AND RECOMMENDATION 

To conclude, with two different types of Super-Resolution models and physically based modelling at two 

different sites, we have revealed that the Super-Resolution can increase the applicability of physically based 

multi-hazard modelling in data scare regions. To further explain, Super-Resolution models could improve 

the Cohen’s Kappa values by 8-25% (for EBRN) in different locations, whereas the ESRGAN model had 

improvement ranging from 17-21%. This improvement was largely dependent on the noise available in the 

low-resolution data and terrain characteristics. Furthermore, with the use of multiple test matrices, we could 

prove that the results in all four aspects of the model results, such as flow extent, height, and duration, are 

improved with the application of SR-based methods than traditional methods. In both Super-Resolution 

models, the quality of the output from physically based multi-hazard modelling is increased significantly. 

This shows the possibility of using free and open data in the data-scarce region for modelling, monitoring, 

and mitigating the hydrometeorological natural hazards. However, the applicability of Super-Resolution is 

also dependent on uncertainties in the dataset, consistency of the global datasets, technological 

understanding, and willingness to use from different stakeholders. 

 

The research was mostly focused on the DEM data resolution improvement because of its major role in 

most of the numerical modelling and its global availability and complexity. Models such as single hazard and 

multi-hazard models simulated through statistical to deep learning-based DEM are extensively used in 

natural hazard modelling. With DEM data, we could prove that SR-based methods can be suitable for 

resolution improvement and which implies that these methods could also be suitable for other datasets 

where global free data and its high-resolution counterpart are available. The SR-based models also have 

shown an excellent capacity to increase the spatial variability and crispness in the images compared to 

traditional techniques such as bicubic interpolation. Furthermore, in the case of application on a global 

dataset where many uncertainties are present, the ESRGAN based model is more suitable than the EBRN 

model because of its generative nature. EBRN can process different level of frequency information with 

different depth of the network, which can be more usable in the case where less error is required in the 

output. In contrast, in the case of higher visual quality and derivative reconstruction, ESRGAN based model 

is suited to increase the crispness and generate better-looking images. We have also demonstrated that even 

though computationally complex, the ESRGAN model is more flexible to a different type of noise present 

in the input data due to its generative nature and can perform similarly to EBRN in data with lesser noise.  

 

In the technological advancement part of the work, to reconstruct better slope and aspect, we developed a 

novel loss function that penalizes the model for not generating better slopes, improving the overall quality 

of our results. Furthermore, to train with the more complex loss functions, we modified the existing 

curriculum learning approach to the curriculum examination approach where we use gradually more 

complex loss function than data itself. Additionally, because there is not much published research to evaluate 

Super-Resolution in data without a high-resolution counterpart, we had to develop novel evaluation 

methods using derivatives of the SR Images rather than SR images themselves. This also inspired us to check 

quantitative SSIM improvement using derivatives rather than that of the DEM itself. Due to the lack of 

standard comparison data, we also had to evaluate based on relative improvement than absolute values, 

which can be detrimental because of the model’s bias on specific locations and noise in the input data. With 

such evaluations, it has been shown in both test and inference data that our approaches have proven to 

work better than published works and shown better performance in the overall improvement of modelling 

quality. However, SR methods are largely dependent on the quality of input data; the mapping hazards using 
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this approach are limited to only the features present in the low-resolution dataset.  Furthermore, we have 

also observed with available commercial DEM that the SR-based methods can only improve quality 

compared to traditional processing methods but cannot reach the level of data that are collected in higher 

resolution, making this a temporary solution when data is not available.  

 

The overall improvement in physically based modelling with global dataset using SR-based methods is better 

compared to interpolation techniques. However, such improvement is nowhere near the actual high-

resolution DEM, making the SR-based solution only useful in case of an absolute lack of data and capacity 

to capture the higher-resolution dataset. This phenomenon of incapacity to increase the information content 

is further supported by the theory of data processing inequality, meaning that we can only improve the 

information quality but not improve the information content using SR-based methods. Furthermore, in case 

of the absolute impossibility to capture a new high-resolution dataset with cost, technology, and time 

limitation, SR-based methods can improve the quality of models, making it a viable solution. However, the 

real-world applicability of the SR-based methods is also limited due to factors such as the availability of 

training data, technological capacity, and time. 

 

For further improvement of the work, (1), we would like to recommend that the more advanced model that 

is developed in 2021 for natural image Super-Resolution might also further improve the generalization of 

the model with higher capacity to generate SR images, and those models could be tested for geoscience data 

as well. (2), the loss function that we developed is still in the immature phase. It could be further improved 

by including other topographic characteristics in loss function such as TWI error function, error in channel 

location, function to estimate the error in drainage density etc. might improve the quality of physically-based 

models. (3), the data that we used in training the current model is from Austria and which might not work 

well in cases of very different terrains. To improve such quality, the addition of more data from different 

types of terrain would help to generate a global model which can generate better global free data. (4), there 

is still a need to develop public training and testing data as well as standard evaluation methods for 

geoscientific Super-Resolution, which will make it possible to compare different models and their quality 

without bias. (5), change of the error functions and faster optimization algorithms or more simulations are 

recommended to generate better results from multi-hazard modelling; the current calibration approach, due 

to the lack of available time, could not perform better than that of the manual calibration. (6), the physics-

aware SR-based methods can be excellent in climate data downscaling to downscale the climate data than 

existing mathematical, statistical, and machine learning methods. Further research on that area can also open 

better possibilities to understand and reduce the global impact of climate change.  
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ANNEX 1: EBRN MODEL DETAILED DESIGN 
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ANNEX 2: ESRGAN MODEL DETAILED DESIGN 
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