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ABSTRACT 

Accurate elements-at-risk data (EaR) are one of the most important components to estimate the loss to 

both natural and anthropogenic hazards, particularly because of the potential increased exposure to these 

hazards, due to rapid urbanisation and poorly planned development strategies in hazardous regions. 

Therefore, it is important to not only map elements-at-risk but also to characterise them with attributes that 

are relevant for risk assessment. Mapping of building EaR includes the footprint information and their 

characteristics; however, acquiring them is difficult because of the following factors: lack of data accessibility, 

missing attribute data of buildings, data incompleteness and positional accuracy error, and many others. 

Major developments have taken place in the collaborative mapping of buildings, using platforms like 

OpenStreetMap. However, many areas in the world still lack this data. Therefore, the mapping of buildings 

footprints and their conversion into usable EaR maps is a challenge. To address these issues, we designed a 

semi-automated workflow that caters to the development of buildings EaR database by (1) detecting 

buildings footprints using a ResU-Net deep learning (DL) model and (2) characterising the footprints using 

building morphological metrics and open-source auxiliary data at a homogeneous block level. Based on our 

results, the building EaR footprints were detected with over 76% F1-score using the DL model and later 

classify them into building occupancy types like residential, commercial, industrial etc. Another major 

investigation that we examined is the transferability of the workflow in a different study area, which 

addresses the reproducibility of the method. After obtaining the final building EaR maps, we assessed the 

exposure of the building EaR by spatially overlaying the EaR maps over the flood susceptibility maps to 

understand how the building function and the occupants are affected. Our study has a huge significance, 

chiefly in (1) generating a building EaR database in data-scarce regions as a first approach (which were 

previously not explored), (2) transferring the methodology over a different test area and achieving good 

results, and for future applications in (3) linking the building occupancy types to hazard vulnerability and 

the subsequent hazard risk, and (4) serving projects and policy developments of regions for risk assessment, 

disaster risk mitigation and risk reduction. 
 

Keywords: Building Detection, Building Characterisation, Building Morphology, Open-Source Data, 

Homogeneous Built-up Area, Exposure Assessment. 
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CHAPTER 1: INTRODUCTION 

The research idea and the associated background that motivates the research in terms of the existing gaps 

are described in this chapter. This chapter includes the (1) background, (2) research problem and scientific 

significance, (3) research objectives, questions, (4) research design and conceptualisation, and (5) literature 

review. 

1.1. Background 

The fast urbanisation and poorly planned development strategies in hazardous regions have increased the 

potential of exposure to both natural as well as anthropogenic hazards. The impacts of hazards are manifold 

such as loss of life, property damage, and economic disruption, that need to be assessed for effective risk 

reduction planning (Eshrati, Mahmoudzadeh, & Taghvaei, 2015). A way of assessing the impacts of hazard 

events is by hazard risk assessment, which allows identifying expected loss caused by probable hazards and 

fosters the necessary information to make decisions on optimal risk mitigation and risk reduction measures 

(Gill & Malamud, 2014). A multi-hazard risk assessment also accounts for possible hazard interactions with 

multiple event probabilities for multiple types of elements-at-risk 1  (EaR) and multiple potential loss 

components. The risk associated with the hazard processes is quantified based on the hazard intensity, 

spatio-temporal probability, the exposed EaR and their respective physical vulnerability2 (Chen et al., 2016). 

Elements-at-risk mapping is crucial for exposure analysis, vulnerability, and hazard risk assessment to 

identify who and what is at risk. 

 

The identification of EaR includes the detection and characterisation of EaR, where detection refers to the 

delineation of existing EaR footprints, and characterisation refers to the associated EaR typological attributes. Typical 

EaR that is exposed to hazards are buildings, people, agricultural lands, vegetated areas, transportation 

networks etc.  Implementing approaches for safeguarding EaR from hazard impacts is crucial and cannot 

be executed without proper datasets. Databases with updated information about elements exposed to 

hazards are fundamental for response activities and support crisis preparedness (Eshrati et al., 2015). Proper 

development of an elements-at-risk database is crucial as it takes into consideration the associated attributes or 

characteristics3 of the EaR. Buildings are one of the most important EaR as it encompasses both population 

and material possessions that are of value. Information such as the building use, the structural type, the 

number of floors, content within the buildings, the replacement value, and the characteristics of the 

inhabitants are important. Furthermore, rapid mapping of EaR is also essential along with such contextual 

information as it has implications for vulnerability assessment of building EaR, disaster management, 

emergency planning, and formulation of mitigation measures (Papathoma et al. 2007).  

 

Citizen based science and collaborative Geo-information Science are popular means of obtaining data on 

buildings EaR. Volunteered Geographic Information (VGI) (See et al. 2019) is one such example that has 

aided in mapping many activities and can be used to acquire information quickly and cheap over large areas. 

 
1 Elements-at-risk are population, properties, economic activities, or any other entity of value that may be affected by hazardous 

phenomena, either directly or indirectly, in a particular area.   
2 Physical vulnerability is expressed as the degree of loss or damage to a given element within the area affected by the hazard (Quan 

Luna et al., 2011). 
3 The words attributes, typology, and characteristics are used interchangeably in the context of the research. 
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With the recent advancements in Geo-information Science (GIS) technology and the progressive emergence 

of citizen science (Goodchild, 2007), collaborative approaches have contributed to many applications like 

land cover mapping (Ribeiro & Fonte, 2015), post-disaster mapping (Panek, 2015), landslide inventory 

mapping (Hao et al., 2020), mapping remote villages (Kanthi & Purwanto, 2016) and community 

development (Panek & Netek, 2019) in countries like South-Africa (Panek, 2015), Spain (López et al. 2014), 

and Malaysia (Husen, Idris, & Ishak, 2018). OpenStreetMap (OSM), which started in 2004, is now one of 

the best-known VGI projects that perform collaborative mapping and has been used for many applications. 

A study by Barrington and Millard-Ball (2017) estimated that OSM data had reached more than 80 per cent 

of completeness on a global scale. This completeness encourages the use of such datasets for developing 

solutions for practical applications in emergency planning, risk mitigation planning and many other fields.  

 

However, the collection of attribute information for objects such as buildings has proven to be problematic. 

OSM data has also shown reasons for concern regarding positional accuracy and quality. Often there is no 

updating of the OSM database, and therefore, buildings on OSM might not be the actual buildings that are 

present in reality. For instance, buildings destroyed by a disaster still display the buildings in OSM that no 

longer exist physically (Foody et al., 2015). Accurate attribute data collection from OSM is also recognised 

as a major challenge as the OSM database has poor building characterisation since the building function 

cannot be seen by the voluntary mappers on the satellite images, and therefore are sometimes left blank 

(Zhang & Pfoser, 2019). The correct and complete attribute information of EaR is important to assess the 

vulnerability of EaR under different hazard scenarios and as input in risk assessment. Building typological 

attributes, for example, based on occupancy class (e.g., single-family dwelling), structure type (e.g., reinforced 

concrete) and the number of floors, is employed in the analysis of the vulnerability, loss estimation, and the 

subsequent risk. Current online products and tools like Mapillary, Google Street View (GSV) images, Google 

Maps, Bing Maps, global land cover maps, land use data, and other such auxiliary datasets can help provide 

contextual information (of occupancy type) about the attributes of the building EaR; however, the 

integration of such information with collaborative mapping can be challenging as the nature of these data 

are different across the board, and they cannot be linked directly. For example, the data of GSV, Google 

Maps, landuse are of three distinct data types: RGB photographic images, point and polygon vector data, 

and image raster data, respectively. Hence, an outlook towards a streamlined EaR identification framework 

is required that can help bridge this gap.  

 

The advent of remote sensing has made ground-breaking contribution to the mapping of EaR. With the 

advances in satellite remote sensing technology, rapid progress in un-manned aerial vehicles (UAV), and 

substantial improvement in data acquisition, processing and interpretation have made it easier to detect land 

surface objects (Wu et al., 2020). Today, remote sensing techniques like Synthetic-Aperture Radar (SAR), 

multi-spectral imaging, hyperspectral imaging, Light Detection and Ranging (LiDAR), and UAVs enable the 

detection of many surface objects.  

 

Traditional efforts in detecting building EaR from remote sensing imageries such as visual interpretation 

and manual digitisation approaches have witnessed significant drawbacks. OSM databases are an example 

that falls under such traditional efforts. As stated by Wu et al. (2020) and Ghorbanzadeh et al. (2020), such 

methods face difficulties, manifested mainly due to the following: (1) subjective visual interpretation; (2) 

discriminating closely located buildings as the same, (3) possibility of omission and misclassification, and (4) 

missing objects (such as buildings), attributes (such as occupancy type) and value (such as residential) in 

OSM data sets (Mobasheri, Zipf, & Francis, 2018), making it challenging to annotate different types of 

surface objects (e.g., buildings). Henceforth, it is essential to look at opportunities that can cater to a low-

cost automated methodology to extract building EaR. There are several methods of classifying EaR like 

pixel-based and object-based classification techniques. While pixel-based methods only extract features from 
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pixels by classifying each pixel accordingly, they do not take the spatial context into account. However, 

object-based methods (object-based image analysis) (Blaschke, 2010; Parker, 2013; Pesaresi, Gerhardinger, 

& Kayitakire, 2008) explicitly extract the spatial information of pixels from satellite images. In the past 

decade, methods such as artificial intelligence (AI), machine learning (ML) algorithms like neural networks 

(NN), support vector machine (SVM), decision trees (DT), Random Forest (RF) and deep learning (DL) 

have been widely employed for improved automation of surface object classification (Karpatne et al. 2016). 

The development of these classification methods has significantly increased the speed and amount in 

extracting information of surface objects. However, ML and DL-based classification are highly dependent 

on the number of training samples of the object of interest (Chen & Zipf, 2019). Obtaining training samples 

from visual interpretation (point/polygon digitisation) of satellite images can be time-consuming; however, 

it can be resolved partially through collaborative mapping (like OSM), as it contains footprint information 

of the building EaR. Thus, the intent for a low-cost-rapid approach for EaR detection through ML-DL 

approaches can have practical advantages in terms of the speed and accuracy of detecting the building EaR 

footprints by employing readily available building footprints as training labels.  

 

The characterisation of building EaR is a challenge as well and needs further research. Remote sensing 

images alone cannot be used for characterising attributes of EaR based on visual interpretation. 

Characterising buildings to estimate typological attributes, for example, building occupancy types from just 

satellite images, is very difficult, especially by interpreting the (1) roof tops, (2) neighbours surrounding the 

buildings and (3) colour of buildings for example. Thus, there is a need to address the characterisation of 

building EaR for effective emergency monitoring, rapid response services, vulnerability assessment, and 

implementation of disaster risk reduction measures. Therefore, the thesis research intends to solve this 

problem. 

1.2. Research Problem and Scientific Significance  

1.2.1. Research Problem 

Problem Statement: Accurate and rapid identification of elements-at-risk for hazard exposure, vulnerability, 

and risk assessment at low-costs is challenging due to the deficiency and incompleteness of existing EaR 

datasets.  

The issue of (1) lack of data accessibility is common, where projects aimed at increasing resiliency of 

infrastructures often lack the required attribute information of EaR for assessing the exposure, vulnerability, 

loss, and the associated risk. Some of the common ways of obtaining EaR and its attribute data are through 

OpenStreetMap (OSM), Mapillary, Google Street View, field visits and others, but (2) the required attribute 

data are sometimes difficult to obtain, are absent or unavailable. Moreover, (3) data completeness and 

positional accuracy is a matter of concern as well. Existing remote sensing data and information are capable 

of interpreting many surface objects worldwide; however, (4) the detection and conversion of the detected 

object footprints into usable elements-at-risk maps is a challenge. (5) The characterisation of buildings at a 

footprint level is also a difficult task. Although there are auxiliary data such as population census, cadastral 

maps, human settlement and built-up area databases, label information from OSM, Mapillary and Google 

Street View, and other proxies that can help approximate the typological attributes of the EaR; however, (6) 

the integration/amalgamation of such data is difficult due to the differences in the type of data they 

inherently exhibit such as photographic images, geotags, and raster maps. The gaps mentioned above are 

realised, which is to be fulfilled by the MSc research thesis.  
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The question of "how to quickly produce quality building EaR database in a cost-effective way?" has become 

urgent. There is an absence of a streamlined-generalised workflow of acquiring EaR data of reasonable 

quality with their respective typological attributes, which can be reproducible in different areas.  

 

1.2.2. Scientific Significance 

The main goal of the research is to perform a first-approximated hazard exposure assessment of a study 

area by investigating the applicability of the generated EaR outputs from DL models and amalgamation with 

the open-source. Furthermore, the research novelty lays its foundation on (1) the development of a 

workflow of identifying EaR at homogeneous spatial units with open-source data, and (2) transferring the 

workflow to be reproducible inn different regions. The development of a generalised-reproducible workflow 

with lost-cost data is crucial. The research is envisioned at serving projects and policy developments inf 

regions that have a deficiency of quality EaR information required for risk assessment, disaster risk 

mitigation and risk reduction.  

1.3. Research Objectives And Questions 

1.3.1. General Objective 

The main objective of the research is the semi-automated detection and characterisation of elements-at-risk into 

homogeneous units of built-up area from open-source data as input for hazard exposure assessment. In order to achieve 

this goal, a range of sub-objectives and research questions are identified as presented below:   

 

Sub-objective 1 (S-O1): To detect building footprints and built-up areas from satellite image and OSM 

data. 

1. Which of the many DL architectures would be suitable for detecting buildings?  

2. To what extent can OSM data be employed as training data in DL? What are the constraints 

associated with the OSM data? 

3. How well can the DL model be used to detect buildings and built-up areas in different study areas?  

 

Sub-objective 2 (S-O2): To develop a methodology for the sub-division of the built-up areas based on the 

characteristics of the building footprints within them. 

1. What are the morphological metrics that can be obtained from buildings footprints? 

2. Can these metrics be used to divide the built-up area into homogeneous unit? How to measure the 

homogeneity level of the units?  

3. How can information on roads, railways, and other linear features help to refine the sub-division 

of homogeneous built-up areas? 

 

Sub-objective 3 (S-O3): To develop a methodology to use geotags and labels from different data sources 

for the characterisation of the occupancy types of the homogenous units. 

1. Can label information from OSM and Google Maps be obtained in an automated manner to 

characterise homogenous units? 

2. Could these label information help to determine the most likely land-use type and occupancy type 

of the homogeneous buildings? 

3. How to determine the occupancy type for units with too few or conflicting label information? 

4. Can the methodology be transferable to different study areas? 

 

Sub-objective 4 (S-O4): To evaluate the applicability of the resulting homogeneous units for exposure and 

vulnerability assessment. 
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1. To what degree are the homogeneous built-up area suitable for exposure, vulnerability, and risk 

assessment? 

2. To what extent can the homogeneous built-up area be used with existing vulnerability curves?  

3. Can the building footprint information be used to quantify exposure and vulnerability better? 

 

The four sub-objectives will be addressed in the succeeding chapters. Bear in mind that the exposure 

assessment itself is not the main goal of the thesis to address, rather an exploration of whether the EaR 

outputs can be used to assess the exposure of the EaR. 

1.4. Research Design and Conceptualisation 

Figure 1 shows the overall design of the research, which is broadly divided as: Literature Review, (S-O1) 

deep learning model training for building detection, (S-O2) building morphometrics and homogenisation, 

(S-O3) auxiliary data for characterisation, (S-O3) final homogeneous built-up area generation through 

characterisation, and (S-O4) exposure assessment to flooding. 

 

 

 

 

Figure 1: Research Design: Literature Review, (S-O1) deep learning model training for building detection, (S-O2) building 

morphometrics and homogenisation, (S-O3) auxiliary data for characterisation, (S-O3) final homogeneous built-up area 

generation, and (S-O4) exposure assessment to flooding. 
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1.5. Literature Review 

1.5.1. Elements-at-Risk Detection 

1.5.1.1. Object-Based Image Segmentation  

The union of Geographic Information System (GIS) and image processing with Object-Based Image 

Analysis (OBIA) started to grow rapidly in the early 2000s, aiming to delineate readily available surface 

objects from satellite imageries by generating image objects that utilise the spectral and contextual 

information for classification of spatial properties through image segmentation. OBIA deals with the 

problem of pixel-based classification by grouping spectrally similar non-overlapping pixels in segments 

(Blaschke, 2010). By nesting pixels within the context of their discrete representations, OBIA mimics the 

human logic process (Parker, 2013). OBIA has been successfully used in many past applications for mapping 

population distribution, building and road footprint detection, and many other fields (Blaschke, 2010; 

Tavakkoli Piralilou et al., 2019). Prathiba et al. (2020) extracted building footprints from very high-resolution 

(VHR) images through the nearest neighbourhood classification after image object segmentation in 

Ahmedabad city in India. However, the problem of segmentation anomalies (over-segmentation and under-

segmentation) that specifies the quality of segmentation goodness for footprint extraction of buildings still 

remained. Whenever the segmentation produces the objects that are used for the classification, the results 

may be influenced by the quality of this segmentation goodness, especially in highly heterogeneous urban areas 

where building and roads could frequently be misclassified (El-naggar, 2018). This issue makes it challenging 

to extract and categorise different types of buildings without prior contextual knowledge of the area (Angela, 

Norbert, & Jochen, 2013); thus, more robust techniques are required to improve building detection from 

satellite imagery. Furthermore, OBIA requires expert-based optimisation of segmentation parameters, and 

hence, the degree of automation is low compared to pixel-based methods(Sameen & Pradhan, 2019) like 

Convolutional Neural Networks discussed ahead.  

1.5.1.2. Convolutional Neural Networks  

During the past decade, DL methods, like Convolutional Neural Networks (CNNs), have achieved 

significant success in remote sensing image classification (Zhu et al., 2017). CNN is a DL algorithm under 

the umbrella of the machine learning family, which stems from the research on artificial neural networks 

and is based on the algorithm of back-propagation that allows feature learning (Zhou, 2018). Multiple 

hierarchical stacking and trainable layers enable CNNs to learn characteristic features and abstractions from 

satellite images (Fu et al., 2019). CNNs can extract hidden features, considering the common ones like 

colour, shape, and size, and deep features of ground objects such as spatial relationship features. CNNs 

consist of three layers: the convolutional layer, the pooling layer, and the fully connected layer. The 

convolutional layer defines a window or a filter that scans an entire image through this window and outputs 

a feature map. The pooling layer help compresses spatial information from the feature maps. Max pooling 

is one of the most popularly used examples; it returns the maximum value present inside the filter for each 

scanning location. Finally, the fully connected layer takes the convolution and pooling process results to 

classify the images. The output of this layer is flattened into a single vector of values, each representing a 

probability of features belonging to a specific label. Such characteristics have enabled CNN-based models 

to exhibit impressive accuracies in image classification (Xie et al. 2020), object detection (Ghorbanzadeh et 

al. 2019; Guirado et al. 2017; Sameen & Pradhan, 2019) and instance segmentation (Dai, He, & Sun, 2015; 

Iglovikov et al. 2018). The inherent characteristics of CNNs make it a plausible candidate for building 

footprint extraction (Alidoost & Arefi, 2018; Cohen et al. 2016; Stewart et al. 2020; Xie et al., 2020; Zhou 

et al. 2019).  
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As the research is interested in closely looking at the classification of buildings in satellite images, semantic 

image segmentation would be addressed from this point onward. "Semantic image segmentation is a classic computer 

vision problem to mask out regions of interest" (Pan et al. 2020). Essentially, it describes the association of image 

pixels to specific class labels such as buildings and non-buildings. In the venture for building segmentation, 

pixel-by-pixel manner semantic segmentation is performed using DL algorithms like Fully Convolutional 

Networks (FCN) (Wu et al., 2018). FCN is one of the most important networks in DL for semantic 

segmentation (Zhu et al. 2017). FCN introduced significant ideas like end-to-end learning of the upsampling 

algorithm via an encoder-decoder structure and skip connections to fuse information from different depths in 

the network. Some popular networks based on FCNs are U-Net (Ronneberger, Fischer, & Brox, 2015)  and 

SegNet (Badrinarayanan, Kendall, & Cipolla, 2017). Many CNN models have been proposed in recent 

studies, such as DenseNet (Liu et al. 2020), U-Net (Yang et al. 2019), Mask R-CNN (Zhao et al. 2018), 

VGG-F (Ajami et al. 2019) and ResU-Net (Diakogiannis et al. 2020). 

 

In recent years, many CNN architectures with excellent performance have been reported and used 

worldwide to classify and detect buildings. The growing development in remote sensing technologies with 

better spatial resolutions has laid the foundation for a whole new set of opportunities for urban risk planning, 

environmental monitoring, and other similar fields. Among many, U-Net proposed by Ronneberger et al. 

(2015) appears to be more adopted for remote sensing applications. Pan et al. (2020) highlight the integration 

of complex U-Net architecture with VHR satellite images to offer accurate building information in complex 

urban villages, which is frequently required for urban redevelopment in urban spaces. The feasibility, 

capability, accuracy, lesser training data-intensive, and overall lightweight nature of U-Net in semantic 

segmentation for high-density buildings was demonstrated in their research. Although the paper stated 

apparent issues with the separation of individual building polygons, the thesis research remains interested 

in a more homogeneous spatial unit based on built-up area rather than focusing on individual building 

footprints for the extraction of building characteristics in the later parts of the thesis. U-Net has also been 

widely used for road detection and road centerline extraction (X. Yang, Li, Ye, Zhang, et al., 2019) and thus, 

exhibits extensive usability of the architecture in many applications. However, recent studies indicate that 

very deep networks are associated with better performance when it came to semantic segmentation tasks. 

To experiment with this observation, Yi et al. (2019) made use of deep residual networks with the 

aforementioned U-Net model to understand how deeper networks really affect the performance and 

published results with an average 3.5% increase in overall F1-score accuracy in building segmentation. 

 

Since CNNs like U-Net and ResU-Net uses the same feature maps that were used for the contraction and 

expansion of a vector (or matrix) to a segmented image in the network (during the encoding and decoding 

phases), this preserves the structural integrity of the image and thus, reduces distortion immensely 

(Ronneberger et al., 2015). Furthermore, the ResU-Net architecture excels at predicting with limited data 

(Qi et al. 2020). Recent research by Alidoost and Arefi (2018) have also reported improved building 

detection using the ResU-Net model, and therefore, the ResU-Net model was chosen for building detection. 
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1.5.2. Elements-at-Risk Characterisation 

Research by Graff et al. (2019) employed the information of buildings EaR from multiple geographical 

databases4 (GDB) produced by national institutes, VGI and archive documents to identify EaR at different 

scales. Their study shed light on adding information about the infrastructure like construction material, 

number of floors, building conditions etc., to the EaR to characterise them at different scales. Moreover, 

their study also emphasised the harmonisation of different GDBs to assess and characterise the EaR. 

However, the availability and accessibility of archive data as GDB can be challenging in some countries due 

to security and administrative reasons. Furthermore, information from VGI, like OSM, need auditing as 

rightly addressed by the author before using it for characterisation due to the possibility of erroneous EaR 

footprints and label information.  

 

The first step towards characterising buildings is by looking at their physical morphology and how they 

relate to nearby buildings as well as the surrounding areas. Such morphological measurements or metrics 

can give meaningful insights about the types of buildings that potentially exist in certain places, linking to 

possible building functions like occupancy types. The current methods for calculating spatial metrics, such 

as FRAGSTAT (Grippa et al. 2018), offer a wide variety of landscape metrics for categorical map patterns. 

Unfortunately, it is limited by the size of the dataset (McGarigal, 2015) and offers limited automation. The 

Momepy urban morphology package (Fleischmann, 2019) is a Python library that was developed for 

quantitative analysis of urban form and morphometrics. The library allows calculation of building diversity, 

adjacency, area coverage and other structural parameters that can be key in clustering buildings into 

homogeneous spatial units (discussed more ahead; see chapter 4). Thus, the tool can be the bridge between the 

detection and characterisation of the building EaR. The intent behind semantic segmentation through DL and 

the focus on homogeneous spatial units revolve around developing the methodology (sub-objectives 1, 2 

and 3) that enables the characterisation of homogeneous buildings (built-up area) required for exposure and 

vulnerability and risk assessment.  

 

The idea of studying building morphologies is inspired by the works of Angela et al. (2013) and Blanco-

Vogt and Schanze (2014) that laid the groundwork for semantically grouping buildings based on building 

characteristics like size, form, proximity to other buildings and building compactness; which can be 

leveraged from the Momepy library. Another crucial research work in employing urban morphometrics for 

characterising building was done by Fan, Zipf, and Fu (2014). While their work holds resemblance to the 

thesis research, the main difference comes from the fact that their study was conducted in five cities in 

Germany involving a complete OSM dataset with proper building data with over 2027 well-labelled 

buildings, thus possessing high data completeness. Such completeness of data can indeed help determine 

the building attributes with relative ease; however, in data-scarce regions like Palakkad and Kollam in Kerala, 

with only over 260 properly labelled buildings ranging over 26.6 km2 of area, the task of identifying building 

tags with just the OSM becomes infeasible. Moreover, much of the building labels are tagged as None and 

Yes, creating confusion about which particular type of building it refers to in reality. Furthermore, the study 

of Fan, Zipf, and Fu (2014) focused on assessing the building types at an individual building level. However, 

due to the diversity and heterogeneity found in the buildings of Palakkad and Kollam and catering to a more 

general level of exposure and vulnerability assessment in terms of the building typology as occupancy type, 

the thesis research focused on determining the building types at a more homogeneous built-up area level.  

 

 
4 Geographic database is defined as a catalogue that stores spatially referenced data. Such databases are collections of data that are 

related either through location, data type, or a common underlying purpose. 
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Furthermore more, their studies did not include the usage of additional proxy data from online products 

and tools such as Facebook Mapping, Mapillary, Global Human Settlement Layer, Global Urban Footprint, 

WSF-3D5, Google Maps, Google Street View, OSM labels, and land use/land cover maps for approximating 

building characteristics, probably as some of the former products were not available at the time of their 

research. Hence some of the products mentioned above will be employed for the purposes of the 

methodology in the succeeding chapters. The use of OSM for estimating building characteristics have been 

explored previously by Fan et al. (2014), Y. Sun, Shahzad, and Zhu (2017), and Cerri et al. (2021), where the 

latter recommended using OSM building information for flood vulnerability modelling stating that such 

openly accessible data makes it easier and cost-effective to study the effect of hazard to building EaR. They 

also discussed the employment of other proxies (or auxiliary) data for improved EaR exposure-vulnerability 

to flooding, which this thesis is partially addressing.  

 

Building occupancy type is a very important attribute that is tightly connected to population activity patterns 

like shopping, residency living, recreation, and meetings. Stewart et al. (2016) developed a method to use 

Bayesian machine learning to estimate building occupancy type from population density tables that uses 

mined data of population statistics for a wide array of buildings for predicting/modelling occupancy of 

buildings. Hasan et al. (2018) used LiDAR data to extract building footprints and building heights 

automatically and estimated the building occupancy types for landslide exposure to EaR by manual 

interpretation efforts. The authors suggested developing a semi-automated process to detect EaR to reduce 

time and cost. The thesis research attempts at a different take on the estimation of the building occupancy 

type by developing a characterisation procedure with open-source data like OSM, Google Maps and 

available land use maps. The details of the methodology regarding the characterisation phase and the respective 

results will be discussed in chapters 5 and 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
5 World Settlement Footprint. Source. 

https://urban-tep.eu/#!pages/dataservices


CHARACTERISATION OF BUILT-UP AREA USING ARTIFICIAL INTELLIGENCE AND OPEN-SOURCE DATA FOR ASSESSMENT OF HAZARD EXPOSURE 

11 

CHAPTER 2: RESEARCH METHODOLOGY, TEST AREAS, 
AND DATA  

This chapter includes (1) the research methodology, (2) the test area description and motivation, and (3) the 

data set acquisition and description. 

2.1 Research Methodology 

In order to integrate the detection and characterisation of buildings into a meaningful EaR identification, 

auxiliary data like Google Maps, OSM building tags, and land use information can be employed to develop 

a methodology of acquiring homogeneous spatial units with aggregated typological attributes. The 

characterisation of the building EaR will remain at a coarser level, where attributes of buildings will be largely 

estimated at a homogeneous block level. 

 
Figure 2 illustrates the overall steps that are taken to accomplish the research sub-objectives. The steps 

include: 

1. Preparation of remote sensing data from satellite images and ground truth data from OSM. (Chapter 

3) 

2. Sampling of data to generate training, validation and test sets, and model training to detect buildings. 

(Chapter 3) 

3. Acquiring characteristics parameters from structural (morphological) and proxy (open-source data 

like OSM, land use data, and Google Maps) data. (Chapters 4 and 5) 

4. Combining the characteristic parameters with the detected buildings to assert typological 

(occupancy type) attributes of the buildings at a homogeneous unit. (Chapter 5) 

5. Exposure assessment with the derived output from the attributes of the buildings at a homogeneous 

unit as a means of exploring the opportunity to assess the exposure of the EaR. (Chapter 7) 

Based on the steps mentioned above, the methodology essentially aims to identify building EaR. Meaning 

that using the state-of-the-art DL models and coupling the resultant outputs with openly available data, the 

amalgamation between them will be used to derive building occupancy types for the study areas (chapters 5 

and 6). 

 

The research sub-objectives 1, 2, 3 and 4 are addressed in chapters 3, 4, 5 and 7. These chapters will explain 

the respective research methods, results, discussions and, in the process, attempt to answer the associated 

research questions. Later on, to test the applicability and reproducibility of the workflow, the methodology 

will be applied to a second study area, where the results and discussion will be conferred in chapter 6. The 

codes for obtaining the different outputs can be found in the appendix section.  
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Figure 2: Research Methodology. Refer to section 1.3.1 for the sub-objectives (S-O1 to S-O4). 
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2.2 Test Areas 

The study areas where the methodology will be tested can be seen below in figure 3. In developing countries 

like India, many regions suffer from data scarcity. In order to assess and evaluate hazard risk in terms of 

both monetary costs and the physical population that can be potentially affected, data of buildings EaR are 

quintessential. The year 2018 was a big year for monsoonal disasters in southwest India, particularly Kerala. 

Local and national news reported several flood and rainfall-induced landslides throughout many districts of 

Kerala, estimating the displacement of 85,000 people (figure 5) and the destruction of many properties 

(figure 6) where water had overrun riverbanks, submerged city buildings and left dozens of people dead 

(Dwyer, 2018). The Kerala State Disaster Management Authority (KSDMA) are portraying their roles in 

Figure 3: Study area of Palakkad (green star) and Kollam (red star). 

Figure 4: Mapathon Kerala initiative. Image Source 

https://mapathonkeralam.in/
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improving the disaster risk management in Kerala in partnership with agencies like the International Centre 

for Free and Open-Source Software (ICFOSS) with collaborative mapping initiatives to develop building 

EaR database. The collaborative mapping initiative known as the Mapathon Kerala (figure 4) is a project that 

prepares maps of Kerala's public assets by public participation. The project realises the importance of 

mapping EaR and how it can be exceptionally supportive in recognizing individuals trapped in locating relief 

camps and recognizing how supplies can be utilized when buildings, bridges, and roads are flooded (Kerala 

State Spatial Data Infrastructure, 2021). It caters towards mapping footprints and adding relevant 

information about the EaR. However, the relevant open data are not available online yet due to the time 

that is required to generate them over different cities. Otherwise, it could have been a very good source of 

validation for the thesis methodology. Moreover, this also brings a challenge in rapid mapping of buildings 

EaR for emergencies. Unlike this project, which has been in the works for the past few months, the thesis 

wants to address the rapid mapping of buildings EaR by quickly developing buildings EaR database in data-

scarce regions that can be used for emergency purposes like relief measures. Refer to appendix section A 

for further information on the time spent on each phase of the methodology of the thesis research.  

 

 Palakkad in Kerala, India, was chosen to 

answer the proposed research questions 

and achieve the research objectives. 

Palakkad (also known as Palghat) is a 

municipal city in the district of Palakkad 

in Kerala, India. Palakkad is one of the 

least urbanised cities in Kerala and is 

surrounded by tributaries of the 

Bharathapuzha River. Palakkad covers 

26.6 km2  of area with a population of 

130,000 people (Census of India, 2011). 

Historically, the city was ruled by Rajas 

and fought off many invasions from the 

East India Company and its allies. 

Palakkad was a huge player in the two Anglo-Mysore wars against the British but ultimately ceded to the 

British (Shodhganga, 2019). The presence of a low mountain pass and the proximity to the major city 

Coimbatore made Palakkad economically very important, being one of the largest industrial hubs in Kerala. 

Therefore, many new projects are being set 

up in the city suburbs, witnessing rapid 

commercial and public development. 

Located on the western ghats of the Indian 

Peninsula and characterised by monsoonal 

rains with approximately 1216 mm of 

average annual rainfall, Palakkad often 

faces many hydrometeorological hazards 

like floods, landslides, and debris flow. As 

of August 2019, nearly 3000 people were 

shifted to relief camps because of rampant 

torrential rain-induced flood and landslides 

in the hilly regions around Palakkad (The 

Hindu, 2019).  

Figure 5: People displaced and seeking refuge along the rivers of 
Palakkad. Image Source 

Figure 6: Destruction of buildings in Palakkad. Image Source 

https://www.npr.org/2018/08/16/639224478/monsoon-hammers-india-with-unprecedented-flood-havoc-killing-scores-of-people?t=1623498005548
https://junglemaps.blogspot.com/2019/08/map-of-kerala-flood.html
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Moreover, to test the applicability of the proposed thesis 

methodology, a second study area in Kerala called 

Kollam will be chosen as a test site to assess the 

feasibility and transferability of the proposed 

framework. Kollam is an ancient seaport and has been a 

strong commercial city as early as the 9th century AD. 

Being an important port city, it was ruled by the 

Pandyas, Venads and later was influenced by the 

Portuguese, Dutch, and finally under the control of the 

British (Leela, 1986). Kollam is a fairly industrialised city 

known for its cashew trading and processing industry, 

encompassing over 34 factories and providing 

employment to around 26,000 workers (Raviz, 2018). 

Similar episodes of disasters were witnessed in the 2018 Kollam floods (figure 7), where flood waters rushed 

into many buildings and inundated many houses and shops, resulting in massive property damage and loss. 

Flood water inundated around 85.84 km2 of the area during the 2018 floods (Lal et al., 2020). Fifty-six relief 

camps were set up to aid 3,600 displaced people (The Hindu, 2018). A massive lake surrounds Kollam 

towards the north and the Arabian Sea to the south, making it a very prone region to coastal and lake 

flooding during the monsoon season. Figure 8 depicts the inundation of the buildings during the 2018 flood 

event.  

Figure 7: 2018 floods in Kollam, Kerala. Image 
Source 

Figure 8: Digital Globe image depicting the inundation of city buildings pre (above) and post (below) 2018 flood event. 

https://www.thehindu.com/news/national/kerala/Many-areas-of-Kollam-get-flooded/article15768607.ece
https://www.thehindu.com/news/national/kerala/Many-areas-of-Kollam-get-flooded/article15768607.ece
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2.3 Dataset Acquisition  

The dataset description covers the datasets and their respective sources in table 1. Urban land-use data was 

downloaded from the Indian geospatial website Bhuvan. The description of the software used in the thesis 

is presented in appendix section B.   

 

The OSM dataset for Palakkad contains approximately 180 major district roads and more than a thousand 

building footprints exist. Such data is crucial for elements-at-risk information. However, most of the 

footprints lack attribute information, making it unfeasible for exposure, vulnerability, and risk assessment 

within the two cities, therefore emphasising and justifying the need for the research conducted.  

 

 

 

 

 

Figure 9: (Top-left) OSM building footprint data, (Top-right) building attribute data, and (below) respective satellite image 
in Palakkad. 
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The figure above compares the image, the OSM building footprints, and the respective building tags to 

contextualise the lack of the attribute information. Also, as seen in the figure, only 20 building footprints 

can be seen in the top-left image, whereas in reality, there are more than 300 buildings in this area in Palakkad 

when seen in the respective satellite image. The figure, hence, depicts the lack of footprints and the lack of 

attribute information that exists in the OSM data of such regions, thus, reinforcing the need for the proposed 

methodology to address such issues. 

 

 

 

 

Table 1: Data set description 

 

 

 

 

 

 

 

 

 
6 The GUF data is freely available for non-commercial academic purposes. 
7 Indian Space Research Organisation 
8 Kerala State Disaster Management Authority 

Data  Type Sources Remarks Purpose in the thesis 

Satellite Imagery Raster TIFF SAS GIS Google Earth Satellite 

image (3 bands) of 

November 2020. 

Used for training the model and 

predicting on the two study areas. 

Study site 

locations  

Vector Polygon MapCruzin Administrative polygon of 

the two study areas. 

Study area map generation and 

boundary delineation. 

Building 

shapefiles 

Vector Polygon OpenStreetMap Mapped building 

footprints. 

Used as training data for the DL 

model. 

Building 

labels/tags 

Vector and 

Point Polygon 

OpenStreetMap 

and Google 

Maps 

Information about 

buildings (school, 

restaurants, offices etc.). 

Used in the characterisation phase 

to aggregate the majority building 

functions from the building tags. 

Global Urban 

Footprint 6 

Raster TIFF GUF-DLR Global urban settlement 

footprint 12 metre 

resolution. 

Used to validate the predictions 

results of the prediction by 

spatially overlaying under the 

predicted footprints. 

Landuse data Raster TIFF and 

vector polygon 

Bhuvan Landuse data from the 

Indian geo-portal services 

under ISRO7. (Scale – 

1:10000) 

Used in the characterisation phase 

to aggregate the majority building 

functions from the land use 

information. 

Susceptibility 

Map 

Vector Polygon KSDMA8 Flood Susceptibility Map 

of 2010. Consist of flood 

extent, no depth 

information. 

Used to perform exposure 

assessment after characterising 

the buildings. 

https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/apdatgis/n0ak2n7vq2zaehn1s07sifdwd0zs.htm
https://mapcruzin.com/free-kerala-country-city-place-gis-shapefiles.htm
https://www.openstreetmap.org/#map=8/52.154/5.295
https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-9628/16557_read-40454/
https://bhuvan-app1.nrsc.gov.in/thematic/thematic/index.php
https://sdma.kerala.gov.in/maps/
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CHAPTER 3: BUILDING DETECTION USING DEEP 
LEARNING 

This chapter aims to answer the first sub-objective and the respective research questions. The chapter is 
divided into sections of data preparation, setting up of the model, results, discussions, and the chapter 
summary. The chapter focuses on buildings as elements-at-risk and is associated to S-O1 in reference to 
figure 1. The challenges, limitations and possible suggestions of the methodology are discussed in chapter 
8.  

 
The workflow for this chapter consists of the following: 

 

1. Obtaining and using the semi-manually labelled dataset from OSM for the study areas. 

2. Establishing a ResU-Net architecture-based CNN model to predict building footprints on the 

satellite imageries of the study areas. 

3. Transfer learning to use learnt weights from the first study area over to the second for seamless 

building detection.  

3.1 Data Preparation 

Existing building footprints were extracted from OSM using the Overpass API9, which serves custom 

chosen parts of the OSM data. OSM data has been widely utilised for several applications, including land 

use and land cover classification studies, building and road footprint extraction (Grippa et al. 2018; Liu et 

al. 2020; Zhao et al. 2018) and thus, states the numerous prospects of being employed for future research 

projects. Although these data are sometimes not officially validated, they do provide contextual and spatial 

background about the buildings. With the help of the Overpass API, inputs as polygon shapefiles are derived 

corresponding to the buildings in the satellite images. A labelled building dataset is prepared (as vector 

polygons) and then used to create binary maps indicating the buildings and the rest as background. This 

binary mapping of the features behaves as annotations for the respective buildings, which are later used in 

the DL model. 

3.1.1 OSM footprints and manual digitisation 

The data set of buildings was downloaded from OSM for the city of Palakkad using the Overpass API. 

However, for DL models, large data are required to train the models to achieve higher accuracy properly. 

As a result, more buildings were digitised manually to increase the number of buildings to be used as training 

samples. The Palakkad data set contains approximately 6000 building polygons which were used for training 

the model. Additional 2000 training labels were manually digitised for improving the model accuracy (see 

section 3.2.3 for metric accuracy evaluation). 

 

Figure 10 is an example of the manual digitisation of buildings in the city of Palakkad. Figure 10-C shows 

how some of the buildings are manually digitised. Table 2 refers to the number of tiles used for training and 

testing in Palakkad.  

 
9 Link: https://overpass-turbo.eu/  

https://overpass-turbo.eu/
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Table 2: Study site characteristics for training and testing sets at Palakkad. 

 

 

 

 

 

 

 

3.1.2 Data Preparation 

A series of steps are taken into consideration to prepare the data set before training the model.  

 

1. After manually digitising the buildings and obtaining the resultant training samples, the polygons 

were converted to raster images with the environment settings10 of the satellite images (Figure 11). 

This step assured the spatial extent, coordinate system and cell size of the rasterised building 

footprints to adhere to that of the satellite images.  

 

2. Following this, the rasterised building footprints were then reclassified as "0" and "255", where "0" 

indicates the non-building class and "255" indicates the building class. 

 

3. This led to the generation of the labelled data that referred to the building and non-building classes. 

 
10 Settings: Maintain same coordinate reference system, mask buildings with satellite image extent, and maintain same pixel size. 

Summary of training-

testing sites 

Size of 

tiles 

Number of 

tiles  

Number of 

patches  

Training set 8000x8000 12 2700 

Testing set 8000x8000 3 300 

Total  15 3000 

Figure 10: Example of manual building digitisation in one of the test sets in Palakkad. A) City of Palakkad with 
training and test sites, B) Testing tile, and C) Close-up of a few buildings manually digitised (in purple). 

A) 

B) 

C) 
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3.1.3 Data Splitting  

The data set was split between training, validation, and test sets. The splitting was done over 15 image tiles 

for Palakkad spread strategically over the study area to encompass the complex environments where the 

buildings are located, which were then further patched into 512x512 sized image patches. The first 13 image 

tiles were further split in a 9:1 ratio, meaning 10 per cent of the image patches were used for validating the 

model. So, in total, 3000 image patches were used in training and validation. In figure 12, the tiling of the 

image into 15 tiles can be observed as an example. The remaining three tiles are used as the testing set where 

the model did not “see” the buildings in these three tiles, thus allowing evaluation of a truly un-seen building 

data assessed through the accuracy metrics described in section 3.2.3.  

 

The red polygons are the training sites, while the blue, yellow, and green tiles are the test sites. The test sites 

will be used after model training to evaluate the metrics on these un-seen data before deploying the model 

for the entire study area of Palakkad. Similarly, the same was repeated for the second study area, Kollam. 

However, Kollam will also be using the learnt weights from Palakkad and re-train those weights to detect 

the buildings in the entirety of Kollam. More on this, in section 6.1.1. 

Figure 11: Data preparation steps using OSM and ArcGIS interface. 
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3.2 Deep Learning Model Set-Up 

3.2.1 Model Architecture 

The detection of building footprints in the study areas was carried out using the ResU-Net model 

(Diakogiannis et al. 2020) that specialises in detecting target objects with fewer training data or samples. The 

ResU-Net model is a semantic segmentation model inspired by the deep residual learning network (ResNet-

50) (He et al. 2016) and U-Net (Ronneberger et al. 2015) that takes the advantage of both Residual network 

and U-Net models in achieving higher accuracies. The ResU-Net structure uses encoder-decoder parts with 

skip connections between them that effectively generate fine-grained segmentation results. These skip 

connections preserve the size of the original image and retain it in the feature maps, which makes them 

suitable for semantic segmentation applications. Figure 13 demonstrates the schematic structure of the 

ResU-Net adopted by Diakogiannis et al. (2020). Generally, the more training data is added, the better are 

the segmentation results (C. Sun, Shrivastava, Singh, & Gupta, 2017). Hence, from the training dataset, 

buildings were divided between training samples (90%) and validation samples (10%) for model training and 

fine-tuning, respectively. The model is then tested on three sites in the study area to test the accuracy and 

capability of the model. 

Figure 12: Example of training (red) and test (yellow, blue, and green) sites in Palakkad. 
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The output after training is a binary classified image that distinguishes building pixels from non-building 

pixels. For training the model with the ResU-Net network, the whole process was run on an NVIDIA P100 

GPU (16 GiB VRAM) and 25 GiB of RAM on Google Colab11. An example of the code to call the ResU-

Net model is given in appendix section C. Please refer to that for further understanding and insight.  

 

In the experiments, Adam optimiser was employed instead of the conventional Stochastic Gradient Descent 

optimiser as suggested by Bottou (2010) and Pan et al. (2020). The former is much faster because of its 

adaptive learning capability and converges faster to reduce the loss, ultimately increasing the overall accuracy. 

Learning rate12 and weight decay13 values were used to optimise the training speed and offset overfitting the 

network model. The output of this step would generate heat maps consisting of probability values belonging 

to classes: "buildings" and "non-buildings". The list of the so-called hyper-parameters that were used while 

training are as follows:  

1. Number of epochs: The number of complete passes of training through a training dataset. 

2. Batch Size: The number of training samples used in a pass of training. 

3. Optimisers: Algorithms used to minimise the loss by updating parameters like weights. 

4. Learning Rate: A hyper-parameter that controls the change in model in response to estimated error. 

3.2.2 Model Tuning 

Hyper-parameter tuning is one of the most important steps in controlling the overall behaviour of the 

model. The goal is to find an optimal combination of hyper-parameters that gives the best result by 

minimising the loss. In the research, two loss functions, namely the conventional Binary Cross-Entropy 

(Mannor, Peleg, & Rubinstein, 2005) and Tversky Loss (Abraham & Khan, 2019), were investigated. The 

Tversky loss has the added advantage of directly improving the Precision and Recall using the so-called beta 

weights. The Tversky loss function has two parameters, alpha and beta, that control the false positives and 

false negatives, respectively, ultimately influencing the Precision and Recall metrics. This parameter allows 

 
11 Colab allows to write and execute arbitrary Python code through the browser, and is especially well suited to machine learning, 

data analysis and education. 
12 Learning rate is a tuning parameter in an optimisation algorithm that determines the step size at each iteration while moving 

toward a minimum of a loss function. 
13 Weight decay is a hyperparameter that causes the weights of model to exponentially decay to zero to prevent the weights from 

growing too large. 

Decoding 

Bridge 

Encoding 

Figure 13: Schematic diagram of the ResU-Net model based on Diakogiannis et al. (2020) 

https://research.google.com/colaboratory/faq.html
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balancing the imbalance between the data as “building” and “non-building” classes and helps reduce the 

loss of the model while training to achieve improvement in accuracy. Hence, differences between the 

Tversky and BCE loss will be also investigated. Other hyper-parameters like batch sizes, number of epochs 

and learning rate are also investigated to fine-tune the ResU-Net model in order to improve the 

segmentation/detection14 of the buildings.  

 

3.2.3 Model Accuracy Assessment 

Using metrics of True Positives (TP), False Positives (FP) and False Negatives (FN), standard accuracy 

assessment like Precision, Recall, and F1 score are calculated for the results. Precision (1) indicates the 

proportion of buildings that are correctly identified by the proposed approach. Recall (2) is the proportion 

of the buildings in the labelled data that were correctly detected by the approach, the F1-score (3) is used to 

balance the Precision and Recall parameters. The Accuracy (4) represents all the predictions that the model 

got right with respect to the True Positives and True Negatives.  

   

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 +𝐹𝑃
           (1) 𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃+𝐹𝑁
   (2) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
    (3) 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (4)   

3.2.4 Model Transferability 

With the ability of automatic learning of feature representations (building features in this case) in the scenario 

of scarce training data, transfer learning can become very effective in transferring the learnt weights from 

previous studies (that is, the trained models) to newer data in different locations (Ravishankar et al., 2016). 

Therefore, to detect buildings in Kollam, transfer learning was used to address fewer training data. 

Moreover, since the building rooftop configurations (texture, shapes, colours) are similar to Palakkad, using 

transfer learning makes more sense than simply training from scratch with only label data from Kollam. 

Transfer learning also helps accomplish faster and seamless detection of buildings in new study areas with 

just a few training samples, thus allowing for effective transferability of the methodology in other regions. 

The results of transfer learning can be found in chapter 6, section 6.1.1. 

   

3.2.5 Validation with existing settlement data from DLR  

The Global Urban Footprint (GUF) data from the DLR15 (Esch et al., 2013, 2012, 2011, 2010) is the mapped 

data of settlements with very high spatial resolutions (12-metre) developed by the DLR using TerraSAR-X 

and TanDEM-X scenes. This data is used for validation purposes after the detection of the buildings to 

substantiate the spatial distribution and extent of the detected buildings using the DL model.  

3.3 Results and Experiments 

3.3.1 Experiments with Hyper-Parameters for Fine-Tuning 

3.3.1.1 The influence of the Binary Cross-Entropy and Tversky loss functions on the accuracy 

As discussed in section 3.2.2, the two loss functions: Tversky loss and BCE, were investigated to see which 

of the two functions gave better results regarding the test set accuracies. Different weights (beta values) 

were experimented with for the Tversky loss to witness the varying differences in the accuracies. Batch sizes 

 
14 Segmentation and detection are used interchangeably in the context of the thesis. 
15 German Aerospace Centre (Deutsches Zentrum für Luft und Raumfahrt). 
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with the respective loss functions were also investigated to observe the best combination for optimal 

accuracy of the model for prediction. 
 

Table 3: Table of BCE and Tversky loss against different batch sizes. Bold numbers are the best values. 

 

 

  

  

The results from table 3 depict that the highest obtainable F1-score accuracies are 73.5% and 76.1% with 

the BCE and Tversky loss functions, respectively, in Palakkad. As illustrated in figure 14, a beta weight of 

0.7 with a batch size of 12 generated the highest F1-score accuracy. Apart from this combination, the rest 

BCE Loss  

Batch Size 

 

Accuracy 

 

Precision 

 

Recall 

 

F1-Score 

 8 0.948 0.732 0.733 0.729 

 12 0.948 0.733 0.735 0.731 

 16 0.950 0.754 0.725 0.735 

Tversky Loss  

Beta weights Batch Size Accuracy Precision Recall F1-score 

0.6 8 0.95 0.73 0.74 0.73 

0.6 12 0.95 0.73 0.76 0.74 

0.6 16 0.95 0.74 0.75 0.74 

0.7 8 0.9536 0.76 0.73 0.74 

0.7 12 0.9535 0.77 0.74 0.76 
0.7 16 0.95 0.78 0.72 0.74 

0.8 8 0.94 0.70 0.806 0.74 

0.8 12 0.95 0.73 0.75 0.74 

0.8 16 0.95 0.75 0.74 0.74 

0.85 8 0.95 0.72 0.78 0.74 

0.85 12 0.95 0.75 0.74 0.74 

0.85 16 0.9532 0.76 0.74 0.75 

0.9 8 0.95 0.75 0.74 0.74 

0.9 12 0.9531 0.76 0.74 0.74 

0.9 16 0.9535 0.784 0.70 0.73 

Figure 14: The effect of different batch sizes and Tversky beta weights on F1-scores. 
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did not produce very different results. Most of the iterations with multiple hyper-parameter combinations 

resulted in similar results with over 72% F1 accuracy. Accordingly, based on the results observed in the table 

and figure 14, the best combination of a batch size of 12 and Tversky beta weight of 0.7 was considered in 

training the model. However, the influence of the learning rate was also important to be explored.  

3.3.1.2 The influence of the learning rate on the Tversky loss 

 
Table 4: Table of accuracies against different learning rates trained with Tversky beta weight of 0.7. Bold numbers 

are the best values. 

Learning Rate Batch 

Size 

 Loss  Accuracy Precision Recall F1-score 

1e-3        
 

8  0.233354 0.952683 0.808754 0.682508 0.734267 

12  0.231113 0.954026 0.7877 0.722834 0.748414 

16  0.254153 0.952634 0.765052 0.720497 0.738014 

1e-4        
 

8  0.500679 0.94818 0.696967 0.785013 0.734116 

12  0.433303 0.952269 0.759382 0.730761 0.740742 

16  0.515036 0.948331 0.755611 0.684054 0.711797 

1e-5        
 

8  0.789249 0.94511 0.669366 0.821011 0.734627 

12  0.79551 0.940987 0.653644 0.789463 0.711991 

16  0.724885 0.948133 0.73289 0.715134 0.720403 

 

 

Table 4 shows the variety of results as an influence of the learning rate after being trained with a Tversky 

beta weight of 0.7. Based on the inference from table 3 and figure 14 discussed earlier, beta weight 0.7 was 

chosen for further experimentation and hence with this weight and batch sizes of 8, 12 and 16, the influence 

of the learning rate was inspected. 
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Figure 15: The effect of learning rate on F1-score with different batch sizes. 
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Figure 15 shows that with a batch size of 12 and a learning rate of 1e-3, the highest F1-score was achieved. 

The same can be seen in figure 16, where the lowest loss is with a learning rate of 1e-3 and batch sizes of 

both 8 and 12.  The loss values are higher when trained with the lower learning rates of 1e-4 and 1e-5. The 

same can be seen in table 4, where the loss values are consistently above 0.5. Therefore, the learning rate of 

1e-3 and batch size of 12 was chosen for final training in Palakkad (see table 5 for final hyper-parameter 

combinations).  
Table 5: List of final hyper-parameter combination used for final training. 

Hyper-parameters Record Remarks 

Number of Epochs 25  The F1-score seems to remain relatively 

close to 76% even after training for more 

than 25 epochs. Also, training takes a long 

time, with 45-50 minutes per epoch. 

Learning Rate 1e-3 The learning rates of 1e-4 and 1e-5 did not 

improve the F1-score metric significantly, 

while 1e-3 showed the best results. 

Optimiser Adam See explanation in section 3.2.2. 

Loss function Tversky loss with a beta 

weight of 0.7 

Tversky loss proves better in all metrics as 

it is better at addressing unbalanced classes. 

3.3.2 Building Detection over Palakkad  

After the model is trained on the first study area (Palakkad), the obtained weights were then used to detect 

buildings in the entire area of Palakkad using the TensorFlow API. In order to reduce the impact of 

boundary artefacts on the predictions, a sliding window method with a stride of 24 was applied to generate 

overlap images over each 512x512 sized patches, and the predictions of the said overlapped images were 

averaged to obtain the final segmentation results. Post-classification was performed to clean out multi-

polygons and false-positive predictions. The final predictions over Palakkad can be seen in figure 17. As 

seen in figure 18, we observe that the predicted buildings of Palakkad overlay appropriately over the GUF 

map, also adhering to the spatial patterns and distribution of the buildings over the GUF. Moreover, as the 

learned weights contain the “knowledge” gained from the first study area, the same weights were used to 

predict buildings on the second study area (Kollam) (see chapter 6 - section 6.1.1).  
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Figure 16: The effect of learning rate on the loss values with different batch sizes. 
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Furthermore, there are predictions observed in the background of the GUF data, which are not false 

positives and are discussed more in the discussion section 3.4.2. The differences can be seen properly in 

figure 19. 

 
Table 6: Summary table of final accuracies on the test set for Palakkad. 

Metrics Scores Scores (in %) 

ACCURACY 0.9535 95.35 

PRECISION 0.779 77.9 

RECALL 0.747 74.7 

F1-SCORE 0.761 76.1 

 

Figure 17: Detected buildings over Palakkad using the ResU-Net model. 
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3.4 Discussion 

3.4.1 Hyper-Parameters 

Based on the hyper-parameter combinations, it was realised that the weights from the Tversky loss function 

influenced the model results. A key issue is the imbalance of the target objects and background. Using 

weighted loss functions, such as the Tversky loss, we can force the model to emphasise learning the target 

Figure 18: Overlay of the detected buildings with the Global Urban Footprint over Palakkad. 

Figure 19: Difference in the predicted data from the GUF-DLR data with the recent satellite image as reference. 
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building pixels when in general, the target pixels occupy a very small proportion in the entire image (Lin et 

al. 2017).  In the table in section 3.3.1.1, the accuracy metrics are almost very similar to each other ranging 

between 72 and 76 per cent F1-score. However, as we use the Tversky loss instead of the BCE loss, the F1-

score increased by 2%. Also, as we increase the beta weights in the Tversky loss, the F1-score starts 

increasing, thus improving the overall accuracy slightly. But the accuracy peaked with the beta weight of 0.7 

as increasing the beta weights further did not help achieve higher accuracies. The reason for this is because, 

with higher beta weights, the model could not properly learn from the training data, and as a result of adding 

higher weights on the false positive, the loss value plateaus while training, thus affecting the overall accuracy 

and hence, does not improve over time. Adding higher weights does not necessarily mean that the imbalance 

in class will be addressed linearly even when the Precision increases, as lower Recall brings the F1-score 

down, resulting in an overall lower F1-score over different batch sizes. Hence, a combination of the hyper-

parameters that gave the best balance between Precision and Recall was considered for the final training. 

 

 

Furthermore, the poor performance of loss values with lower learning rates of 1e-4 and 1e-5 shows that 

such lower learning rates are not good at updating the learnt weights and cannot optimise the training 

properly with the present data. Lower learning rates can cause the updating of the weights to get stuck as 

training will progress very slow due to tiny updates to the weights in the neural network. This process 

ultimately decreases the overall ability of the model to train optimally and hinder the model’s potential 

performance in attaining higher accuracy.  

3.4.2 Overall Prediction Remarks 

There were many false positive predictions over Palakkad. This was because many buildings exhibit similar 

spectral information because of the similarities of many building rooftops with the road infrastructure. Thus, 

it explains the low Precision scores witnessed in the summary table (table 6). However, with careful post-

classification clean-up of the false positives, these non-building artefacts can be easily removed. The near-

perfect overlay of the predicted buildings over the GUF also gives a sense of confidence in the model and 

its output, and thus, from this point on, it was decided to move to the next part of the research, which is 

the characterisation of the detected building footprints. There were some detections observed in the 

background of the GUF, but these detections are not false positives; rather, newer buildings constructed 

recently as the GUF data was generated using TerraSAR-X and TanDEM-X scenes of the years 2013-2014 

(see example in figure 19) and hence, did not include these new buildings. The transfer learning approach 

allowed gaining knowledge from Palakkad and using the learnt weights to recognise similar buildings present 

in Kollam (discussed more in chapter 6).  

3.5 Chapter Summary  

In this sub-chapter, we saw the review of many works of literature and research that delved into the 

investigation of various approaches to detect buildings for several purposes. By learning lessons from the 

literature, the ResU-Net model was chosen due to its sheer advantages compared to the traditional patch-

based CNNs, emphasising using the state-of-the-art Tversky loss function that helps curb imbalance in data 

in model training. The sub-chapter also dealt with data collection and preparation for training, validation, 

and testing purposes. Later, the use of the ResU-Net DL model was discussed to detect buildings using 

openly available data from OSM as ground truth (with few manual digitisations). The results of the evaluated 

metrics on the test sets show that by fine-tuning, the best hyper-parameter combinations were chosen to 

finally detect the buildings over the entire study area of Palakkad. The summary table in section 3.3.1.2 

shows the final accuracies of the model over Palakkad, after which the next step of characterisation of the 

buildings will be investigated. The results here show the possibility of a streamlined automatic process of 

building detection. With the completion of this chapter, the first sub-objectives are achieved.  
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CHAPTER 4: URBAN MORPHOLOGY METRICS AND 
HOMOGENISATION OF BUILT-UP AREA 

This chapter aims to accomplish the second sub-objective of developing a methodology (S-O2 in figure 1) 

to sub-divide the built-up areas based on the characteristics of the building footprints within them. The 

chapter is divided into sections of data clean-up, building morphological metric evaluation, built-up area 

homogenisation, results, discussions, and the chapter summary. 

4.1 Data clean-up 

After the buildings are detected for Palakkad, the 

next crucial step is to clean the buildings that can 

cause issues with the methodology moving forward. 

For the morphological calculations, it is imperative 

not to have multi-and overlaying polygons that could 

potentially affect the calculation of the morphological 

metrics detrimentally. Hence, buildings under 25 sqm 

(square meters) were removed along with false 

positives that were detected on certain road 

infrastructures and overall cleaning of multi-and 

overlaying polygons were removed. Figure 20 shows 

the clean-up process of the data from the detection 

phase by using ArcGIS tools. 

4.2 Building morphological metrics using Momepy 

4.2.1 Measuring building morphology 

After cleaning the building footprints, the next step 

is to employ spatial urban morphological metrics to 

understand the physical morphology of the buildings. 

The Momepy package is a library that allows 

quantitative analysis of urban form and morphometrics (Fleischmann, 2019). Among the many metrics 

available in the library16, twenty-two morphological metrics were used to identify the spatial relationships 

and morphologies of the buildings to themselves and the adjacent surroundings. As the contextual 

configuration highly impacts building types among the building footprints (Fan et al., 2014), the spatial 

morphological analysis is conducted based on two important hypotheses:  

a. Buildings would share attributes like building type, provided their footprints are of similar shape 

and size.  

b. Buildings of similar footprints that are located close to each other would share attributes.  

The Momepy library is installed using Python’s Conda package management system. The core 

functionalities17 of the library allow measuring the morphology of two major urban elements: buildings and 

streets that include building shapes, dimensions, density, diversity, and much more explained in table 7. 

Refer to appendix section D for the sample code on the selection of the morphological metrics. 

 
16 Link: http://docs.momepy.org/en/stable/api.html  
17 Link: http://docs.momepy.org/en/stable/index.html  

Figure 20: Flowchart for data clean-up using ArcGIS 
operations. 

http://docs.momepy.org/en/stable/api.html
http://docs.momepy.org/en/stable/index.html
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In figure 21, we see two examples of the morphologies with the metrics Cover Area Ration and Simpson’s 

Diversity of Area. Table 7 describes the twenty-two morphological metrics and their respective functions as 

definitions used in the methodology to categorise the buildings based on their physical and surrounding 

environmental conditions. 

 

 

 

 
Table 7: List of urban morphological metrics used in the research. Refer website (Fleischmann, 2019). 

Serial No. Urban Morphological Metrics Definition 

 Dimensions 

1 Area Calculates area of each building 

2 Perimeter Calculates perimeter of each building 

 Shapes 

3 Corners Calculates the number of corners of each building 

4 Squareness Calculates squareness of each building 

5 Equivalent Rectangular Index Calculates equivalent rectangular index of each building 

6 Elongation Calculates elongation of buildings seen as elongation of its 

minimum bounding rectangle. 

7 Centroid Corners Mean Calculates mean distance from the centroid 

8 Centroid Corners Standard Deviation Calculates the standard deviation of distance from centroid 

Figure 21: Examples of morphological metrics. (Left) Cover Area Ration and (Right) Simpson’s diversity of area. 
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 Spatial Distribution 

9 Orientation Blocks Calculate the orientation of buildings as blocks 

10 Orientation Tessellation Calculate the orientation of buildings as tessellations 

11 Cell Alignment Calculate the difference between cell orientation and 

orientation of the building 

 Tessellation Dimensions and Shapes 

12 Longest Axis Length of Tessellation Calculates the length of the longest axis of the building 

13 Area of Tessellation Calculates area of each building tessellations 

14 Circular Compactness of Tessellation Calculates compactness index of each building tessellation 

15 Equivalent Rectangular Index of 

Tessellation 

Calculates equivalent rectangular index of each building 

 Intensity using Queen Spatial Weights 

16 Area Ration of Tessellation Calculate covered area ratio or floor area ratio of buildings 

17 Alignment  Calculate the mean deviation of solar orientation of 

buildings on adjacent cells from other building 

18 Neighbours  Calculate the number of neighbours captured by spatial 

weights 

19 Neighbours Distance Calculate the mean distance to adjacent buildings by spatial 

weights 

20 Covered Area Calculates the area covered by neighbours 

21 Mean Inter-Building Distance Calculate the mean interbuilding distance 

22 Building Adjacency Calculate the level of building adjacency 

4.2.2 Homogeneous morphological patterns through clustering 

After calculating the metrics of each individual buildings, the next step is to classify the buildings into clusters, 

where each cluster would contain information about the physical form of the buildings learnt from the 

morphological analysis. The clustering is achieved through K-Means unsupervised classification that allows 

the partitioning of the morphological metrics of the buildings into k clusters in which each observation 

belongs to a cluster with the nearest mean (or cluster centroid). The Silhouette score method18 is then 

performed to determine the optimal number of clusters in the data set. However, the Silhouette score will 

only be considered when it is impossible to communicate with local experts or stakeholders for validation. 

The Silhouette scoring is taken as a reference in the absence of local validation or lack of communication. 

The selection of the number of clusters should be considered based on the input from the local stakeholders. 

An example of the code to perform the clustering is given in appendix section E.  

 
18 The silhouette value is a measure of how similar an object is to its own cluster compared to other clusters (separation). (Marutho, 
Hendra Handaka, Wijaya, & Muljono, 2018). 
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4.3 Built-up area homogenisation  

4.3.1 Homogenisation using road networks 

The next step is to improve the homogenisation from the existing clusters by incorporating a refined unit 

of built-up area extent. This was done to address two issues:  

 

(1) in the absence of administrative units like wards or census tracts, and  

(2) choosing clusters as homogeneous units would mean under-approximating the morphological types 

of buildings when tackling smaller cluster numbers and vice-versa.  

 

For example, considering four as 

the optimal number of clusters 

would mean that only four types of 

buildings (or built-up area) exist in 

the study area, which is practically 

impossible in a city like Palakkad in 

India. In such populous cities 

where there are many different 

types of buildings, such as long-

elongated buildings, dense small 

buildings, dense big buildings, 

open-spaced buildings, and many 

others, choosing a small number of 

clusters does not make sense. 

Therefore, road networks in the 

city are used to split the study area 

into sixty-two city blocks or 

homogeneous built-up area19 that would 

now inherit the majority urban 

morphological characteristics of 

the associated buildings within the 

blocks (figure 22) (discussed in 

depth in chapter 5). Using road networks as blocks for homogenising land parcels is not a new strategy and 

has been employed previously by Zeng et al. (2019) and Kuffer et al. (2020) for land use classification and 

obtained high accuracy of 83 per cent for the same. Furthermore, certain linear features like railway lines 

and river lines were also employed to overcome the lack of primary and secondary road networks in certain 

parts to derive homogeneous units.  

 

 

 

 

 

 

 

 

 

 
19 In the thesis document, the words “homogeneous built-up area”, “city blocks”, and “blocks” are used interchangeably. 

Figure 22: Road networks for built-up area blocks in Palakkad. 
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4.3.2 Homogeneity Score 

In order to realise the homogeneity or similarity of the clusters within each block, it is essential to derive a 

metric that can help assess the true nature of the building morphology within each block. For example, 

buildings portraying morphologies of big buildings within a block, estimated to be rural, are implausible. 

Therefore, observing the homogeneity score can give more information about the similarity of the building 

morphologies present within each block. The formula of the homogeneity score is given below and is 

calculated at the block level. A lower percentage score can help understand what other types of buildings 

will possibly be inherent within that particular block. 

 

Frequency of first majority cluster buildings + Frequency of second majority cluster buildings 

Number of buildings per block 

 

Fan et al. (2014) also used such a metric to assess the similarity between the buildings that presumably shared 

similar morphological attributes.  

4.4 Results  

4.4.1 Urban Morphological Metric (Momepy) 

The study area is clusterised based on the K-Means un-supervised classification on the urban morphological 

metric values obtained from Momepy. Figure 23 shows the cluster classification based on k=8 clusters 

(chosen based on the suggestion of the local expert), thus attributing information about the types of 

buildings morphologically. The K-Means derived clusters for the buildings in Palakkad are described in 

tables 8. 

 

 

 
Table 8: Cluster interpretation of the buildings in Palakkad after local expert validation. 

Cluster Number Interpretation 

1 Large buildings associated with long corridors that are not densely located 

2 Moderately sized buildings that are densely located 

3 Small-sized buildings - Type 1 20 

4 Densely packed moderate-sized buildings 

5 Buildings with open surroundings 

6 Small-sized buildings - Type 2 21 

7 Moderately sized buildings sparsely located 

8 Buildings with relatively fewer open surroundings 

 

 
20 Type 1 is more less regular in shape, meaning it is more circular. 
21 Type 2 is much regular in shape, having crisper boundaries.  

(4) 



CHARACTERISATION OF BUILT-UP AREA USING ARTIFICIAL INTELLIGENCE AND OPEN-SOURCE DATA FOR ASSESSMENT OF HAZARD EXPOSURE 

35 

 

In the figure above, we see the spatial distribution of the clusters of Palakkad. As an example, referring to 

the table above, we can visually notice that building cluster of green (cluster 1) are large buildings with long 

corridors and cluster 2 buildings of colour violet attribute morphologies of moderate-sized dense buildings. 

4.4.2 Homogeneity Score 

As discussed in section 4.3.2, the homogeneity score helps realise the homogeneity or similarity of the 

buildings as clusters within each block. It is essential to derive a metric that can help assess the true nature 

of the building morphology within each block. Based on the map from figure 24, we understand that in 

Palakkad, many homogeneous blocks exhibited scores of below 50%. Only 16 blocks showed homogeneity 

scores above 60%, meaning that buildings in these 16 blocks exhibited similar characteristics 

morphologically, whereas buildings in the remaining blocks are very dissimilar to each other.  

4.5 Discussion 

The clusters of Palakkad depict the morphological attributes of the buildings with respect to the physical 

characteristics of the buildings and their relationship to each other as well as to the surroundings. Many 

building clusters are dissimilar to each other, suggested by the low homogeneity scores in the blocks (figure 

24). A reason for this can be the fact that many of the building footprints were a result of the detection from 

the DL model (chapter 3), and as the results are not always produced with crisp-straight boundaries, there 

are instances of some irregular polygonal building features that might affect the morphological metric 

calculation of Palakkad. Fan et al. (2014) and Qi and Li (2008) mention that the approach for using the 

homogeneity score help find approximately similar building footprints and are suitable for buildings that 

exhibit less detailed geometries. This reason explains why the scoring is less for Palakkad, where some 

buildings are shaped irregularly with many edges, confusing the model while calculating the morphological 

metrics.  

Figure 23: Morphological clusters of the buildings in Palakkad after performing K-Means classification. 
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Therefore, during the 

classification process for 

obtaining the occupancy 

types, care must be taken 

to consider the blocks with 

low homogeneity scores 

while estimating the 

occupancy type. 

Furthermore, these blocks 

would be subjected to 

further in-depth dialogue 

with the local knowledge 

experts for validation to 

ascertain other reasons for 

such low scores. Possible 

reasons can be due to the 

mixed types of buildings 

that are present in the 

blocks that are 

morphologically very 

different building types, 

which can effectively lower 

the scores. The use of 

other boundaries (or linear) 

features such as water 

bodies (canals, rivers), 

topographic differences, 

green zones, and others 

could further improve in determining the homogenous units (as done partially with railway and river lines, 

section 4.3.1). Another point of discussion is the size of the homogeneous units, where smaller units could 

be better suited for aggregating the building occupancy types. Administrative wards and even census tracts 

can be used (if/when available) as the smallest homogeneous units, which could probably separate the built-

up and non-built-up area effectively (discussed more in section 8.1.2).  

4.6 Chapter Summary 

This chapter helped overcome the issues of characterising and estimating building morphology at the 

building level, inadvertently addressing the under-approximation of the estimated morphology. Therefore, 

road networks were established to homogenise the building clusters and categorise them into homogeneous 

built-up area blocks that would now inherit and exhibit the morphological characteristics of the buildings. 

Furthermore, the homogeneity of the blocks was assessed to witness which built-up areas manifested similar 

clusters of buildings, indicating towards the built-up areas that portray different building types 

morphologically. Local knowledge validation was also performed to help further refine the categorisation 

and interpretation of the building clusters of the homogeneous blocks. 

 

 

 

 

 

Figure 24: Homogeneity score of clusters in Palakkad. 
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CHAPTER 5: CHARACTERISATION OF HOMOGENEOUS 
UNITS WITH OPEN-SOURCE DATA 

This chapter aims to achieve the third sub-objective and the respective research questions by amalgamating 
label information from open-source data with the building morphological metrics from the previous chapter. 
The open-source data are used for the characterisation of the built-up area (see figure 1: S-O3). Accordingly, 
the chapter is divided into their respective methodologies, results, discussions, and chapter summary.  

5.1 Auxiliary data acquisition  

In the research, mainly two main types of auxiliary data were chosen for the characterisation of the buildings. 

There was an intention of using free and open-source data that could be available at any point in time. OSM, 

Google Maps and land use maps are such data that are openly available and are of decent quality. Therefore, 

tags are used from OSM and Google Maps as building tags and land use information from the Bhuvan geospatial 

platform.   

5.1.1 Building label information from OSM and Google Maps 

The building labels (or tags) are used from OpenStreetMap and Google Maps. Using the Overpass API, the 

point and polygon data from OSM was downloaded that consisted of the building tags. Information such 

as shops, restaurants, offices, houses, residential apartments, commercial, recreational areas, schools, hotels, 

and many others (figure 25) was extracted from both point and polygon building data. Google Maps label 

data was manually digitised by using the Google Maps plug-in in QGIS to add more label data that were 

missing from the OSM data. 

5.1.2 Landuse data 

The landuse map is a product of the urban land use survey conducted by the Ministry of Urban 

Development, India (MoUD) as a part of the National Urban Information System (NUIS) that generated 

the 1:10,000 scale urban geospatial database. The database can be seen in figure 26. The land use map is first 

downloaded using a Web Map Service using QGIS from the Bhuvan geospatial data platform and is then 

Figure 25: Examples of building tag information from Palakkad. 
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resampled to the required extent of the study area. As the data is in a GeoTIFF22 image format, the GeoTIFF 

is converted to a polygon shapefile by manually digitising the image to obtain a shapefile of the landuse map.  

5.2 Characterisation Strategy 

The characterisation of the detected buildings with the auxiliary data is depicted in the flowchart in figure 

27. Figure 27 is a schematic overview of achieving the characterisation of the buildings at a homogeneous 

built-up level with the auxiliary data from open sources as a proxy for estimating the building occupancy/function 

type as a typological attribute. As we reach a point of having acquired all the necessary data of building tags, 

landuse, homogeneous built-up blocks, and morphological clusters, we can combine them all to commence the 

characterisation procedure.   

5.2.1 Amalgamating auxiliary data into the homogeneous built-up area  

In this step, all auxiliary data are amalgamated or combined. This amalgamation is achieved in two steps: 

 

1. Compile all auxiliary data of OSM, Google Maps and landuse, road network blocks and clustered 

morphology data and fuse them into one shapefile data using the Spatial Join tool in ArcGIS. This 

shapefile data is at a building footprint level, herewith called the cluster-level data. Next, the built-up 

area polygons made using the road networks herewith called the block-level data.  

 

 
22 GeoTIFF is a raster-based TIFF format image that is used as an interchange format for georeferenced raster imagery (Earthdata, 
2019). 

Figure 26: Bhuvan NUIS land use database for the region of Palakkad (Source). 

https://bhuvan-app1.nrsc.gov.in/thematic
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2. The data at the cluster-level are then used to calculate the majority cluster number, building tag, land 

use information, the homogeneity score (from section 3.2.5.2), and the number of buildings at the 

block-level using the shapefile key of the blocks.  

 

This majority calculation is executed in a Python environment, and the code can be found in the appendix 

section (sections F and G).  

5.2.2 Voting of the auxiliary data within homogeneous blocks for built-up area classification  

A rule of majority condition is employed to assert the majority characteristics of the clusters to help homogenise 

according to the individual blocks. For example, if block number 2 has several buildings with different 

cluster numbers, but the majority of the buildings shared cluster number 7, then the block would be 

attributed and homogenised according to cluster number 7, meaning that block 2 now has the characteristics 

of cluster 7. Similarly, the majority information on the building tags and landuse will be attributed to the 

respective blocks accordingly.  

Figure 27: Flowchart of characterising buildings with data from OSM, land use maps, Google 
Maps, morphological metric information on the detected buildings and local expert 

validation. 
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After attaining the blocks with majority information of cluster number, building tags, landuse information, 

homogeneity score and the number of buildings, the information from these will be used to infer the 

classification of the blocks into semantic groups asserted to the building occupancy/function type. The 

voting system to achieve this can be observed in figure 28 and is described below:  

 
1. Sort the data according to the 

homogeneity score. 

2. Based on the scoring and the majority 

cluster value, the associated building 

morphology is interpreted with the 

building tags. 

a. If information from the 

building tags is not available, 

then skip step 2 and move to 

step 3 to use the land use 

information in lieu of the 

missing building tags. 

b. If information from the 

building tags is available, 

then use it and then move to 

step 3.  

3. Next, the majority landuse 

information is used for further 

interpretation.  

a. If information from landuse 

is not available, then use the 

building tags from step 2 as 

the class label instead.  

b. If information from landuse 

is available, then use the 

information and move to 

step 4.  

4. Classify the built-up area blocks using 

the inferred/interpreted building type from steps 

2 to 3.  

5. Sort the classified classes from Mixed-Built-up 

and then re-classify based on the distance from the 

Central Business District (CBD) or the city centre.  

 

One of the reasons as to why in step 5, the classified data is sorted and reclassified, as mentioned, is that 

there are no vulnerability curves for such mixed classes in the existing literature like Huizinga et al. (2017), 

where the vulnerability curves are generated empirically. Hence, in order to reclassify them into Residential 

or Commercial classes, distance from the CBD is considered. Refer to section 5.3.2 for further explanation. 

5.2.3 Local expert validation 

The next step is to figure out if the homogenisation with the classification essentially makes sense with what 

is present in reality in the study areas. For this purpose, local expert validation was performed by getting in 

Figure 28: Voting system for building classification based 
on the typology of the occupancy type. 
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touch with the members of the KSDMA and ICFOSS to validate the clusters and overall representation of 

the occupancy types of the buildings that were obtained from the methodology. It is imperative to have 

local knowledge to corroborate information from the clusters obtained programmatically against the reality 

in the study areas. Moreover, the experts can further validate and help improve the building classification 

into the proper building occupancy/function type. The local validation will be noted at two stages: (1) K-

means cluster interpretation in the beginning and (2) final (re-) classification of the homogeneous built-up 

area at the end.  

5.3 Results 

5.3.1 Amalgamation with the open-source data 
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Figure 29: Example of the auxiliary data that are to be combined in the characterisation process. 
The data for (A) buildings tags from OSM and Google Map, (B) cluster values from Momepy, 
(C) landuse information, and (D) road network derived blocks. 
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The auxiliary data shown in figure 29 

are then joined using the Spatial Join 

tool in ArcMap, which are then used 

to find the majority cluster values, 

buildings tags, and landuse 

information per block. Figure 30 

depicts a snippet of the attribute table 

for the combined data. 

5.3.2 Local expert validation 

Based on the recommendations and 

suggestions from the local expert, the 

cluster interpretation and final 

classification were adjusted to the authentic setting of the study area. Some example questions that were 

asked to the local experts during the clustering and final classification stages are shown in figure 31.  

 

The initial number of road-derived homogeneous blocks was not enough to properly aggregate the 

amalgamated information properly, and therefore, the number of blocks was then increased based on the 

suggestions of the local experts. Moreover, to address the Mixed-Built-Up classes, the distance from CBD 

was considered for reclassification of the blocks. The classification would change from commercial, 

Figure 30: Snippet of the combined data at the block level after spatial 
join in ArcMap. 

Figure 32: Distance from the CBD based classification approach. 

Figure 31: Schematic diagram of the local expert questioning and validation. 
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residential urban, public, industrial, and residential rural with increasing distance (figure 32). This distance-

based classification is a suggestion from the local expert who recommended using this approach in the 

context of the study areas.  

5.3.3 Final classification of buildings after the voting system 

After interpreting, validating, and finalising the results, the resulting attributes depict the building occupancy 

type (or function type) per block in the study area with additional information on the number of buildings 

and the area per block. The final classification of each block is derived based on expert-based knowledge, 

where the classification is based on the information from the majority building tags from OSM and Google 

Maps, majority land use information and majority cluster number. Figure 35 shows the final classification 

of the occupancy types of Palakkad. In this example in figure 34, with the help of the voting system (figure 

28), the data is sorted according to the homogeneity score and then based on the majority cluster value, tags, 

and the landuse data, the classification as Public Area Recreational is decided upon in block 1. The final 

classification assigned as a Public Area Recreational is justified as buildings in such spaces are owned by the 

Figure 34: Final classification (red) snippet with the majority information from the auxiliary data of Palakkad for building 
occupancy type. 

Figure 33: Reference of temple structures in Palakkad. Sources (left and right). 

https://en.wikipedia.org/wiki/Kottankulangara_Devi_Temple#/media/File:Kottankulangara_Sri_Bhagavathy_Temple.JPG
https://www.keralatourism.org/destination/ochira-temple-kollam/357
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public sector (or the government sector) and is maintained by the municipality of Palakkad. Furthermore, 

the majority cluster as 4(5)23 is associated with buildings with open surroundings, which is true in the case of 

recreational buildings like those situated in parks or the Palakkad fort in this case. Figure 35 shows the final 

classified homogeneous built-up area (blocks) of Palakkad with the occupancy (or function) type after 

compiling, interpreting, and validating the results from the local expert. As we see, the outer-skirts of the 

city are classified appropriately as Residential Rural while the inner CBD is mainly classified as Commercial 

Areas with its own type of other occupancies like office, residential mix and so forth for the other occupancy 

types as well.  

5.4 Discussion 

5.4.1 Amalgamation and local knowledge 

The amalgamation of the auxiliary open-source data is one of the first attempts at approximating the building 

occupancy type at a homogeneous built-up level. The degree of completeness, quality, positional accuracy, 

and usability of the open-source data makes this methodology very limited to expand on. However, even 

with an area like Palakkad, where OSM tags and land use information are not abundantly available, it was 

still possible to reach a level of characterisation that can help understand the building function/occupancy 

types. Moreover, with additional input from the local experts and stakeholders, it was possible to refine the 

 
23 The clusters numbers in figures 34 and 41 are sorted from 0 to 7 instead of 1 to 8, hence, here 4 means 5.  

Figure 35: Occupancy types of the homogeneous built-up area in Palakkad. 



CHARACTERISATION OF BUILT-UP AREA USING ARTIFICIAL INTELLIGENCE AND OPEN-SOURCE DATA FOR ASSESSMENT OF HAZARD EXPOSURE 

45 

classification to a great degree, which now represents the plausible building characteristics that exist in 

reality. However, due to the unavailability of certain other open-source data like the WSF-3D data, important 

attributes such as the building height could not be integrated for a more robust methodology to derive the 

number of floors per homogeneous block. The open-source data is the strength and the weakness of the 

methodology at the same time, whereby the availability or the deficit of open data will dictate the extent to 

which the methodology could be successfully applicable for the built-up area characterisation. Other 

obvious limitations that are associated with the open-source data, like the manufacturing date of the landuse 

maps where possible temporal uncertainties might be correlated and hamper the quality of the resulting 

output. Further limitations will be discussed in chapter 8.  

5.4.2 Final Classification   

Similar to the previous section, the final classification was possible due to manual interpretation of the 

building blocks based on the majority of building information like building tags, landuse information, 

clusters, and additional information from the distance from CBD. Apart from this, local expert suggestions 

helped shape the proper classification of the built-up area (or blocks) into building occupancy types. There 

were obvious challenges that were met which will be discussed more in-depth in the 8th chapter, but in short, 

had implications in the form of subjective classification of the buildings that is later resolved by local experts. 

The interpretation always requires prior knowledge to be combined with the information at hand, which is 

essentially external knowledge. Thus, different people holding different prior background knowledge would 

have a different interpretation. Such techniques make the methodology very subjective, especially at the 

building footprint level, and therefore, the research wanted to compensate for this by accomplishing the 

objectives at a homogenous level to counter the mentioned drawbacks. For each of the occupancy type, 

information such as the number of buildings, total floorspace area of buildings, percentage of built-up area 

per homogeneous unit, and the number of floors can also be calculated that can be later on used to estimate 

population data per homogeneous units, thus also giving us the population EaR data apart from the 

buildings.  

 

Moreover, the time taken to refine the classification of the blocks with the local experts/stakeholders solely 

depends on the availability of said experts to spend time and hold numerous sessions to reach a point of 

agreement on the final classes of the occupancy types. However, with proper local knowledge and help from 

local stakeholders, it was possible to refine and improve on existing interpretations and reach a point of 

approximating the real potential classification of the built-up area. Furthermore, with compliance of the 

local stakeholders for the possible occupancy types in the study area, ruled out in favour of the applicability 

of the methodology overall in other data-scarce regions. Therefore, the reproducibility in terms of the 

methodology and the time taken, will be tested to investigate how fast the methodology could be transferred 

to a new area in chapter 6.   

5.5 Chapter Summary 

One of the most important questions that the research attempts to answer is “how far it is possible to characterise 

the buildings in data-scarce regions with minimal auxiliary data that is available as open-source?”. The approach was to 

develop the database, starting from generating building footprints to characterising built-up area 

homogeneously. The thesis research practically delivered a workflow to identify building EaR that is useful 

for exposure, vulnerability, and hazard risk assessment in hazard-prone data-scarce areas. So far, based on 

the results and outcomes of the research, it has been possible to develop a semi-automated method of 

integrating aspects of DL and open-source auxiliary data to reach a point of characterising buildings, albeit 

at a homogeneous unit of level. The main focus of this chapter was to employ physical (morphological) 

characteristic metrics of buildings, coupled with information from auxiliary data, to be able to classify 

buildings based on certain typological attributes like occupancy type.  
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CHAPTER 6: APPLICATION OF THE METHOD IN A NEW 
TEST AREA 

This chapter aims to test the developed workflow on the second study area of Kollam in Kerala, India, to 

investigate the reproducibility and time taken on newer-different regions. 

6.1 Description and Results  

6.1.1 Element-at-Risk Detection using Transfer Learning 

With the ability of automatic learning of feature representations (building features in this case) within the 

scenario of scarce training data, transfer learning can become very effective in transferring the learnt weights 

from previous studies (that is, trained models) to newer data in different locations (Ravishankar et al., 2016). 

Therefore, to detect buildings in Kollam, transfer learning is used to address fewer training data. The Kollam 

data set contains 1100 building polygons in the training tiles, and the rest were manually digitised within the 

five training tiles (table 9 shows the number of tiles used for training and testing in Kollam). Moreover, 

since the building rooftop configurations (texture, shapes, colours) are similar to Palakkad's, using transfer 

learning makes more sense than simply training from scratch with label data from Kollam alone. Transfer 

learning also helps accomplish faster and seamless detection of buildings in new study areas with just a few 

training samples, thus allowing for effective transferability of the model in other similar regions. Such ability 

to detect buildings over a new and completely un-seen environment makes the use of such deep networks 

advantageous.  

 

Using transfer learning from the weights learnt in Palakkad, the model trained over Kollam achieved over 

74.6% F1-score accuracy. The predictions of buildings over Kollam can be seen in figure 36, and the 

respective overlay with the GUF for validation of the spatial distribution and patterns of the detection can 

Figure 36: Detected buildings over Kollam using the ResU-Net model. 
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be seen in figure 37. Based on the figure, it can be seen that the detected building footprints overlay 

appropriately over the GUF data.  

 

Table 10 shows the final scores after training the model, where the F1-score of 74% is relatively similar to 

that of Palakkad (76%). In this case with Kollam, the total time taken to prepare the building label data 

(manual digitisation) and detect the buildings with the ResU-Net model took around 8 hours. Please refer 

to appendix section A for further information.  

 
 

 

 

 

 

 

Table 10: Summary table of final accuracies on the test set for Kollam. 

 

Table 9: Study site characteristics for training and testing sets at Kollam. 

Summary of training-

testing sites 

Size of 

tiles 

Number of 

tiles  

Number of 

patches  

Training set 8000x8000 5 1125 

Testing set 8000x8000 3 300 

Total  8 1300 

Metrics Scores 

ACCURACY 0.8794 

PRECISION 0.8018 

RECALL 0.6975 

F1-SCORE 0.7460 

Figure 37: Overlay of the detected buildings with the Global Urban Footprint over Kollam. 
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6.1.2 Urban Morphological Metrics 

Figure 38 shows the cluster classification based on k=8 clusters (chosen based on the suggestion of the local 

expert), thus attributing information about the types of buildings morphologically. The K-Means derived 

clusters for the buildings in Kollam are described in table 11. 

 
 
 

 
 

In Kollam (figure 38), it can be seen that very large buildings belong to cluster 5 and the interpretation from 

table 11 compliments very well. Similarly, cluster 3 interpreted as sparsely located moderate-sized buildings 

in the table can be visually observed in the map of Kollam as located sparsely in the zoomed part of the 

Kollam map. In this way, all the clusters are distributed geographically over the study areas, and the 

respective morphological metrics from Momepy helped cluster (or soft-classify) them into similar types of 

buildings. 
 
The total time taken to clean the prediction outputs from the detection, followed by generating the 
morphological metrics of the buildings, took around 8 hours.  
 

Table 11: Cluster interpretation of the buildings in Palakkad after local expert validation. 

Cluster Number Interpretation 

1 Moderate-sized buildings 

2 Densely located moderate-sized buildings 

3 Sparsely located moderate-sized buildings - Type 1 

4 Sparsely located moderate-sized buildings - Type 2 

5 Very large and long buildings 

6 Small-sized buildings 

7 Large buildings with sharp corners 

8 Very small-sized buildings 

Figure 38: Morphological clusters of the buildings in Kollam after performing K-Means classification. 
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6.1.3 Homogenisation with Road Networks and Homogeneity Score 

 

Similar to Palakkad, the road networks 
24 were used to improve the 

homogenisation from the existing 

clusters by incorporating a refined unit 

of built-up area extent (figure 39). 

Much of the buildings are similar to 

each other in Kollam in various blocks 

(figure 40). From the DL detection 

point of view, Kollam buildings were 

predicted with the learnt weights from 

Palakkad as well as trained with new 

building training samples, which has 

affected the predictions to be far better 

than that of Palakkad. Furthermore, 

post-processing after the detection can 

also explain why the buildings are 

much clearer and resemble the more 

regular polygonal shape. The Momepy 

library handles such errors or noise 

from irregular polygons fairly well; however, such situations are unavoidable and may affect the calculation 

of the morphological metrics.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
24 In the instance of Kollam, railway lines were also used to help homogenise the study area along with road networks. 

Figure 39: Road networks for built-up area blocks in Kollam. 

Figure 40: Homogeneity score of clusters in Kollam. 
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The total time taken to generate the road networks with other linear features like river and railway lines was 

about 1 hour. 

6.1.4 Final Classification 

Figure 42 show the final classification of the occupancy types of Kollam. This result was obtained by 

employing the majority voting system (figure 28) similar to Palakkad in section 5.3.1 and 5.3.3. An example 

of the final tabular results (obtained from the voting system) is explained in figure 41 whereby in block 17, 

the majority building tag as place_of_worship, majority land use as Public & Semi-public, and majority cluster as 

5(6) (which relates to regular buildings that are small in size), help classify the block as a Public Area. Places 

of worship like temples in such regions are located in places where fewer buildings surround it and are often 

small in size (small temples, archway gates, refer to figure 33); therefore, asserting a class of Public Area made 

sense. Therefore, in a similar manner, all the blocks were analysed based on such interpretations and were 

finally classified into occupancy types. Also similar to Palakkad, local knowledge validation was also 

performed for Kollam to investigate, improve, and refine the occupancy type classification. 

 
The steps to achieve the final classification of the homogeneous built-up area generally consisted of (1) 
downloading the auxiliary data, (2) generating land use maps, (3) digitisation of buildings tags manually from 
Google Maps, (4) amalgamating the auxiliary data and interpretation through the voting system, and (5) local 
expert validation, and took around 10 hours to classify them as building occupancy types in Kollam.  

Figure 41: Final classification (green) snippet with the majority information from the auxiliary data of Kollam for building 
occupancy type. 
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6.2 Overall Discussion 

6.2.1 Transfer Learning 

The transferability test results suggest the potential of the building detection model to be transferred to 

other areas. Normally, new regions require lots of training data to adapt to the new variations of the new 

study image; however, this is avoided due to the weights learnt from the previous study area. As discussed 

in the earlier sections, transfer learning was used in an attempt to detect buildings in Kollam with minimal 

training data added. Due to the complex learning nature of the model followed by retaining information 

from Palakkad as trained weights, the same model was able to perform optimally for predicting buildings 

with over 74% F1-score accuracy. Much of the work in terms of learning the weights with associated training 

data was done in the first training iteration with Palakkad that allowed the optimal detection of buildings in 

Kollam, thus alleviating the need to digitise more building labels in Kollam manually and saving time in the 

process.  

6.2.2 Homogeneity Score 

In contrast to Palakkad, Kollam exhibited high homogeneity scores, which can be understood as much of 

the buildings within the blocks were very similar to each other morphologically. The clusters of buildings in 

Kollam have three blocks with 100 per cent homogeneity scores. Figure 40 shows the disparity in the 

homogeneity or similarity of the building clusters in Kollam. The building clusters in Kollam do not have a 

single homogeneous block under 70 per cent in the homogeneity score. This good scoring depicts that the 

buildings with the respective clusters (and their probable interpretations) are comparable and similar to each 

Figure 42: Occupancy types of the homogeneous built-up area in Kollam. 
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other. Such scoring also gives a sense of confidence in the overall clusterisation of the buildings in Kollam, 

meaning that the interpretations in table 11 are reasonable interpretations and can be reliable during the 

classification routine for the occupancy type in the next steps moving forward. 

6.2.3 Final Classification 

Similar to what was seen in Palakkad, the amalgamation of the auxiliary open-source data allowed 

approximating the building occupancy type at a homogeneous built-up level. Many factors play a role in 

how well the auxiliary data can be used, especially in terms of the degree of completeness, quality, positional 

accuracy, and usability of the open-source. However, the final results were still conceivable to a great extent 

using the methodology in a different study area. Moreover, with additional input from the local experts and 

stakeholders, it was possible to refine the classification to a great degree, representing the plausible building 

characteristics that exist in reality. 

6.2.4 Time required for reproducibility  

This chapter attempted to address the reproducibility of the methodology over a new area by keeping in 

mind the time required to develop a buildings EaR database. With the collected information of the time at 

each phase, it took over 27 hours at generating the database. This relatively short amount of time required 

to generate building occupancy types as typological attributes with just open-source data paves an interesting 

path towards producing buildings EaR database, which can be suitable for data-scarce regions in emergency 

situations.  

 

Appendix section A highlights the time taken to generate a database from the very beginning, that is, without 

transfer learning from previous areas (like in this chapter), which otherwise saves much time. Therefore, 

differences in the overall time required to complete the methodology are witnessed between this chapter 

and appendix section A.  

6.3 Chapter Summary 

The point of this chapter and an important part of the MSc thesis research were to investigate whether the 

methodology can be feasible and reproducible in other areas. Based on the results seen in the sections above 

(performed over Kollam), related to: 

 

(1) using transfer learning for seamless detection of buildings using prior weights, 

(2) performing a morphological metric evaluation, 

(3) homogenising buildings into built-up area using road networks, 

(4) amalgamation and final classification, and 

(5) local expert-knowledge validation, 

 

gave confidence and assurance that the methodology can be applicable and reproducible on different test 

sites and quickly produce the required buildings EaR data. With the intent of employing this approach 

towards addressing the mapping of building EaR with attribute information, the methodology sets a good 

development in the direction of mapping building EaR in data-scarce regions. With this realisation, building 

EaR data can be generated in any other country or region, provided there is the availability of such open-

source data which can be coupled with this research methodology.  
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CHAPTER 7: EXPOSURE ASSESSMENT AND THE LINK TO 
VULNERABILITY 

This chapter aims to answer the last sub-objective and the respective research questions (Figure 1: S-O4). 

The chapter is an additional illustration of resulting homogeneous units in the context of hazard exposure 

and the possible link to the vulnerability of the buildings. However, it is to be kept in mind that this is not 

the main goal of the thesis, rather an exploration of the opportunity to assess the exposure of the EaR.  

7.1 Flood Susceptibility Maps 

The flood susceptibility maps were obtained from the KSDMA (website). The maps are binary, meaning 

information of only flood and no flood are present. Unfortunately, because of this reason, hazard intensities 

are not available and hence, vulnerability assessment cannot be investigated. In figure 43, the flood extent 

of the respective areas can be seen.  

7.2 Flood Exposure Assessment  

Flood exposure refers to the quantification of the EaR that are located in the flooded areas (De Moel, Aerts, 

& Koomen, 2011; Koks, Jongman, Husby, & Botzen, 2015). The exposure is calculated by performing a 

spatial overlay between the flood susceptibility map and the homogeneous built-up area blocks. Using the 

key ID (OBJECTID) of the blocks in the shapefile, the percentage of the area that is exposed by the flood 

extent is calculated. Moreover, the number of buildings affected are also reported. This way, the flood 

exposure is calculated using the homogeneous built-up area blocks at the block-level. The method is used in both 

areas of Palakkad and Kollam.  

 

Another way of calculating the exposure is by using the individual building footprints and then aggregating 

them at the block level by using the key ID (OBJECTID) of the blocks, which relates the building footprints 

to their respective blocks, thereby generating the aggregated exposure. This way, the flood exposure is 

Figure 43: Flood susceptibility extent in Palakkad (left) and Kollam (right). 

https://sdma.kerala.gov.in/maps/
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calculated using the building footprints aggregated at the block-level. Examples of the code that is used to calculate 

the exposure at both block-level and the aggregated block-level are shown in the appendix section H.   

7.3 Results and Discussions 

The crucial information that the thesis research provides is the classification of the built-up area. The 

exposure map provides information of the exposed buildings associated with their quantity, spatial 

distribution, and typological attributes based on the occupancy type. This information can be later used in 

scenarios where the hazard intensity is present (like flood depth) and can be used with vulnerability curves 

to associate the vulnerability of the buildings to their occupancy/functional type. Table 12 also relay the 

information of the number of exposed buildings per block in both study areas. 

 

The number of blocks that were exposed in Palakkad are reported in the attribute table with the percentage 

affected by the flood extent can be seen in figure 44, and the exposure statistics are shown in table 12. 

Twenty-one homogeneous blocks are exposed to the flood in Palakkad both at the block-level and the 

aggregated block-level.  

 

 

Similarly, the same was repeated for Kollam to report the exposure of the percentage area exposed to floods 

at both the block-level and the aggregated block-level, the number of buildings exposed, and the type 

(occupancy) of buildings that were exposed (figure 45 and table 12). Eight-teen homogeneous blocks are 

exposed to the flood in Kollam both at the block-level and the aggregated block-level. 

 

 

 

 

Figure 44: Flood exposure map of Palakkad with exposure as the percentage of the block exposed to flood (left) and the 
percentage of buildings within the blocks exposed to flood (right). 



 

56 

Table 12: Information of the buildings exposed in terms of - number of buildings exposed, the percentage 

block exposure, and the percentage of buildings within the block exposure in Palakkad and Kollam. 

 

 Homogeneous 

Blocks 

No. of 

buildings 

exposed 

Occupancy Type Percentage of 

block exposed 

to flood (%) 

Percentage of buildings 

within the block exposed 

to flood (%) 

P
a
la

k
k

a
d

 

0 11 Residential Rural 26 27.5 

11 92 Residential Urban 30 19.2 

21 30 Residential Rural 79 72.8 

22 74 Residential Rural 34 14.6 

23 19 Residential Rural 17 12.4 

24 7 Residential Rural 42 20.6 

25 20 Residential Rural 15 10.4 

27 13 Residential Rural 11 8.03 

41 1 Residential Urban 8 0.96 

45 2 Residential Rural 0 0.19 

46 56 Commercial Area 34 45.7 

47 198 Residential Rural 42 31.1 

48 4 Residential Rural 18 12.4 

49 133 Residential Urban 38 23.6 

51 46 Residential Urban 52 30.5 

54 16 Residential Urban 12 5.4 

55 74 Residential Rural 37 19.1 

56 3 Public Area 3 2 

57 133 Residential Urban 36 22.38 

58 11 Public Area 1 3.8 

59 6 Residential Rural 4 3.8 

      

K
o

ll
a
m

 

0 53 Residential Urban 23 20 

1 42 Public Area 45 40 

2 74 Public Area 25 18 

3 81 Residential Urban 48 47 

4 26 Commercial-

Residential Mixed 

39 24 

5 72 Commercial Area 49 69 

6 64 Public Area 48 45 

7 95 Public Area 37 30 

8 84 Public Area 34 29 

9 3 Public Area School 1 1 

19 3 Residential Urban 1 2 

20 41 Residential Urban 21 25 

33 18 Public Area 47 43 

35 3 Public Area 11 31 

38 130 Residential Urban 30 30 

41 1 Public Area 

Hospital 

1 1 

44 36 Residential Urban 26 31 
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The differences between the obtained results between the values of the exposure at block-level and the number of 
exposed buildings per block show some interesting results. The resulting outputs show differences in the percentage 
exposure of some blocks. Particularly blocks 11, 22, 23, 24, 41, 46, 47, 51, 54, and 57 in Palakkad, and blocks 4, 5, 8, 
35, and 53 in Kollam have significant differences in the percentage of built-up area blocks exposed to the floods. The 
main reason for such differences is the non-uniform spatial distribution of the building footprints within the blocks. 
Hence, when compared against the percentage exposure at the block-level, the differences are apparent.  A good 
example of this phenomenon is given in figure 46. As we see in the green box in the figure, the buildings are distributed 
non-uniformly in the entire block. Therefore, the percentage exposure of the buildings aggregated at the block-level is 

Figure 46: Flood exposure to blocks against the building footprints in Palakkad. 

Figure 45: Flood exposure map of Kollam with exposure as the percentage of the block exposed to flood (left) and the 
percentage of buildings within the blocks exposed to flood (right). 
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19.1%, whereas the overall block is exposed to 37% of the flood. Due to the distribution of most buildings towards 
the north, north-west and the west of the block, the percentage of buildings exposed is 19.1%.  

Therefore, the final exposure assessment results are decided to be the values of the aggregated footprint 

level but reported at the block-level. Meaning that the values of exposed percentage will be that of the 

aggregated footprints but will be described on the built-up area blocks instead of the individual building 

footprints. 

7.4 Link to vulnerability: the next journey 

One of the crucial research questions to answer was how this methodology could link towards the physical 

vulnerability assessment. One of the main requirements of calculating the vulnerability is a physical 

vulnerability curve for buildings. The global flood-depth damage curves by Huizinga et al. (2017) are a useful 

resource to assess the physical vulnerability of buildings based on their occupancy/building function type. 

However, another crucial requirement is a hazard map that contains the hazard intensity. Since the available 

flood maps are susceptibility maps with values 0 (no-flood) and 1 (flood), it was not possible to perform a 

vulnerability assessment. However, provided there was a flood or any other hazard map, it would have been 

realistically possible to assess the physical vulnerability of the two study areas based on the research 

methodology. As the research output is homogeneous built-up areas with occupancy type as typological 

attributes, these attributes can be easily linked to the vulnerability curves by Huizinga et al. (2017) and can 

assess the vulnerability of said built-up areas (through the building footprints within the homogeneous 

units). The applications of this study can cater to not just large-scale areas but also smaller regional to city-

scale areas. Studies by Q. Yang et al. (2020) have used these vulnerability curves in the city of Lishui in China 

for flood exposure and vulnerability assessment, where the city area (in sqm) is almost similar to that of 

both Palakkad and Kollam. Furthermore, the application of the vulnerability is subsequently used in loss 

estimation, risk assessment, and the ensuing measures and policies to reduce, mitigate, and avoid the risk of 

hazards. With the help of such curves for flood hazards but also for landslide hazards at a more general 

scale with landslide building vulnerability curves like Glade (2003), it is possible to estimate the vulnerability 

of the built-up area blocks based on the occupancy/function type and would be the direction for future 

research. 
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CHAPTER 8: LIMITATIONS, RECOMMENDATIONS AND 
FINAL CONCLUSION 

In this chapter, the various limitations are discussed along with the possible suggestions to solve or counter 

these limitations, followed by the final conclusion of the thesis research.  

8.1 Limitations 

The limitations of the study are discussed in the sections below regarding each phase of the research. 

8.1.1 Detection Phase 

Prior to the training phase, it is commonly known that the DL model performs the best when huge sets of 

training data are available. In short, the more training data is available, the better would be the predicting 

capability of the model. Shortage of training samples from OSM and manual digitisation led to an average 

F1-score of 76% for Palakkad and 74% for Kollam. Additional training data could have helped in improving 

the overall F1-score and thus, allowing for better predictions by reducing the false-positive and refining the 

prediction of the building delineation.  

  

Another core problem witnessed during the training phase was the lack of computing power despite using 

Google Colab. This is because the model was trained with a patch size of 512 over sample images of 

8000x8000 pixels. Patch sizes under 512 cannot be used as the session crashes at every attempt due to the 

limited RAM allocation of 25GB. The investigation of the influence of patch size was, therefore, not possible 

because of this reason. Furthermore, data augmentation25 techniques could not be investigated as well 

because of the deficit in RAM capacity in Google Colab. Augmenting the training samples with rotations, 

scaling, contrast changes, and cropping was not possible as a consequence.   

 

Finally, the training of the ResU-Net model takes a very long time due to the deep network architecture of 

the model. Therefore, the training time of each epoch took around one hour. Coupled by the fact that 

Google Colab runs for only 24 hours before resetting the session, only 25 epochs of training were possible. 

Training with higher epochs was, hence, not possible.  

8.1.2 Characterisation Phase 

In the initial phases of using OSM data, some common issues witnessed concerned positional accuracy, data 

quality, lack of attribute information, and others, to name a few. As a result of this, building tags from 

Google Maps had to be incorporated to supplement the lack of such typological data of the buildings. 

Furthermore, the tags from Google Maps cannot be downloaded despite the fact that volunteers have placed 

them, thus posing a challenge in utilising all of the tags, thus requiring manual digitisation in Google Maps. 

Moreover, tags for residential buildings are not given, so there is a strong bias towards non-residential 

buildings, with an emphasis on commercial buildings. Lastly, even when there are building tags, due to the 

small number of individual tags present within a block, sometimes using the majority tags might not be the 

best way to represent the actual building occupancy. 

 

In evaluating the morphological metrics, the limitations of the Momepy library stemmed from the fact that 

the clustering was based on the nature of the building footprints. Although the library is well-suited to 

 
25 Data augmentation are techniques utilised to increase amount of data or information by adding modified duplicates of existing 

data.   
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address noise from irregular-polygonal distortions, polygon overlays, and multi-polygons, such noisy errors 

are, unfortunately, still unavoidable. Therefore, the noise would affect the overall calculation of the 

morphological metrics at times, further affecting the clustering in the proceeding steps.  
 

Another limitation was the homogeneity score of the building clusters in Palakkad, which were lower 

compared to Kollam due to the predictions as false positives after detection as irregular polygons and multi-

polygons. These false-positive polygons can affect the morphological metric calculations and thus, affect 

the true understanding of the prevalent building morphologies in reality.  

 

The road network was used in lieu of missing administrative units like wards or census tracts to counter 

under/over-approximation of the homogeneity within the clusters, provided the number of clusters was 

either too low or too high. However, due to the introduction of the roads as the foundation for the 

homogeneous blocks, there can be instances where due to the lack of secondary roads in certain regions, 

the road networks cannot appropriately be employed to aggregate the occupancy types. Sometimes, there 

are issues where vast areas or blocks are used for the aggregation of the building occupancy types, which 

could be counter-intuitive. Other linear features such as railway lines, river lines, topographic differences 

and others can be used, but it would very well vary for different topographies/regions in relation to finding 

the most suitable size of homogeneous units. For example, railway lines and river lines were used for 

homogenising units in Palakkad, but the absence of rivers in Kollam devoid the use of river lines for 

homogenising.  

 

Moreover, uncertainties from the open-source data are one of the major concerns, and thus, attention must 

be given to carefully consider the quality, type, resolution, and source of the open-source data. The 

limitations of the landuse maps are also quite important to discuss. The year of the landuse maps from the 

Bhuvan portal was generated during 2015-2016, and therefore, possibly, there can be many uncertainties 

associated with it. The availability of landuse maps is also a point of discussion where normally, such maps 

might not be available in other areas. Therefore, in the voting system (refer back to figure 28), the building 

tags were set higher in the voting hierarchy while classifying the built-up area as the buildings tags were 

obtained from OSM and are more up-to-date.  

 

Another limitation witnessed is that of the interpretation of the voting system, which can change accordingly 

at different places and hence would require local validation every time. Because of this reason, the 

methodology cannot be fully automated as there will always be a point where local knowledge validation 

would be necessary to authenticate the results.   

8.1.3 Exposure and Vulnerability 

The lack of hazard maps for the study areas did not allow the employment of the building occupancy types 

to assess the vulnerability. The requirement of the flood hazard intensities like flood height (in cm) is crucial 

to estimate the level of vulnerability and possible damage to buildings of certain occupancy types.  

8.2 Suggestions and recommendations for future research 

Some possible solutions and recommendations to counter the limitations faced in the research are listed 

below: 

 

1. Using cloud machines like Microsoft Azure and other stronger machines with higher RAM capacities 

can help alleviate some of the time-constraint issues with training for more than 24-hours and training 

with smaller patch sizes to investigate the improvement of accuracies.   
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2. As mentioned previously about the issue of polygon irregularity, edge detection of buildings using 

OpenCV tools like Canny Edge can be incorporated to improve building boundary delineation.  
 

3. Transfer learning can also be used temporarily in the same city to assess the changes in the building 

dynamics to study urban behavioural patterns, which can relay information about the construction of 

buildings towards hazard-prone areas. This approach can help prevent potential damage and suggest 

policies and measures to address the exposure to hazards and develop disaster mitigation plans. 

 

4. The employment of more auxiliary data such as the WSF-3D data for building height can help refine 

the classification by estimating the number of floors per block. This information along with the 

average population at night and daytime from the CDMP26 (Ara, 2013), can be used to estimate the 

population per block. 
 

5. Another interesting suggestion can be the use of object detection DL algorithms like YOLO (Pham 

et al. 2020) with oblique photos from GSV for applications like (1) recognising the number of windows 

for estimating the number of building floors, (2) recognising occupancy types from signs outside the 

buildings, and many more. 

 

6. The advent of smaller wards/homogeneous blocks can also further refine the information of built-up 

area by improving the aggregation within the blocks.  

 

7. The development of a code to automate the voting system can greatly improve the time that is taken 

to classify the built-up area. Such a code can also streamline the process of the voting system and can 

accordingly change the hierarchy of the majority information that is used for the classification, 

depending on which auxiliary data to prioritise on.   

 
8. The exposure results can also be broadcasted to the footprint level to address the issues of spatial 

non-uniformity, and also the loss can be calculated at the footprint level but then aggregated to the 

block level. 

8.3 Final Conclusion 

As discussed previously, one of the essential components for risk assessment is the elements-at-risk 

information which often lacks in certain developing nations. The research attempted to resolve this 

deficiency by developing a semi-automated detection and characterisation method to design an EaR database for 

buildings. The research sub-objectives were achieved by first (1) detecting buildings in Palakkad with an F1-

score of 76%, followed by (2) homogenising the buildings into built-up areas with road networks and 

deriving the building morphological characteristics, and (3) obtaining the building EaR occupancy types like 

residential, commercial, industrial etc., by amalgamating data from open-sources. Moreover, we also tested 

the reproducibility of the methodology in a different region called Kollam. We achieved an F1-score of 74% 

in building detection and building occupancy type as the characterisation output. After obtaining the final 

building EaR maps, (4) we quantified the exposure of the buildings by spatially overlaying the EaR maps 

over the flood susceptibility maps, which can now also be used for vulnerability assessment with the building 

occupancy type output (provided hazard intensities are available).  

 

The research addresses the needs to face hazards that can potentially damage and destroy EaR (buildings in 

this instance) and helps increase the resiliency of said EaR to tackle hazards more effectively and efficiently. 

 
26 Comprehensive Disaster Management Programme (https://www.preventionweb.net/events/view/33066?id=33066) 

https://www.preventionweb.net/events/view/33066?id=33066
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The research shows that it is possible to obtain the EaR information as building occupancy type using 

remote sensing image data in combination with freely available data on geotags and OSM by means of the 

state-of-the-art DL models, open-source remote sensing products, and validation with local 

expert/stakeholder. The research enabled the development of a building EaR database in data-scarce regions 

as the first step for estimating hazard vulnerability, risk assessment, rescue missions, and rehabilitation. This 

methodology also has implications for dasymetric mapping in developing nations or regions that lack 

building typological information. 

 

Another important aspect of the research was to check how this methodology can be used for situations of 

emergency where rapid or timely mapping of EaR can be crucial for effective risk mitigation and disaster 

relief measures. Hence, section A in the appendix will shed light on the time taken for each step (or phase) 

to generate the required data whereby, it can be important in real-world crises to produce the buildings EaR 

database quickly.  
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APPENDIX 

A. TIME FRAME FOR EACH PHASE 

A.1 Detection Phase 

The time frame for the detection phase can be divided into three parts: (1) training data generation, (2) 

model training, and (3) model prediction. 

A.1.1 Training data generation 

The time required for the training data generation by manually digitising the buildings from the satellite 

image takes around 5 hours. Apart from that, downloading OSM building footprints and correcting them 

geometrically takes around 1 hour. In total 6 hours. 

A.1.2 Model Training 

As discussed in the limitations, the model takes around 24 hours to train completely with the various 

combinations of hyper-parameters. However, with transfer learning, the total time could be as low as 2 

hours when using trained weights from previous studies. 

A.1.3 Model Prediction 

Luckily, model prediction takes around 5 mins to complete in the entire study area of Palakkad. Therefore, 

combining with Kollam, the final prediction of buildings in the two areas take about 10 minutes. 

 

Total time in the detection phase = 30 hours and 10 mins. 

A.2 Characterisation Phase 

The time frame for the characterisation phase can be divided into four parts: (1) Cleaning the prediction 

output, (2) downloading and generating primary data from the open sources (3) generating results from the 

Momepy library, (4) amalgamation of the results to generate final classification of building occupancy, and 

(5) local expert/stakeholder validation. 

A.2.1 Cleaning the prediction output 

Post-processing to remove building overlaps, multi-polygons, and false-positives takes about 3 hours for 

each study area. In total, 6 hours.   

A.2.2. Downloading and generating primary data from the open sources 

Downloading primary data from OSM, Google Maps and the Bhuvan landuse NUIS data takes around 30 

minutes together. However, generating the resulting data by manual digitisation for the Google Maps, 

landuse data, and generating the road networks takes around 4 hours. In total 4 ½ hours.  

A.2.3 Generating results from the Momepy library 

The generation of the morphologically distinct clusters of buildings with the Momepy library takes around 

2 hours. First, the generation of tessellation and calculating the morphological metrics take around 1 ½ 

hours followed by clustering the buildings based on the calculated morphological metrics (half hour).   
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A.2.4 Amalgamation to generate building occupancy 

The entire process of the voting system (figure 28) takes around 2 hours to interpret the majority clusters, 

building tags, landuse and the other information like the number of buildings, distance from the CBD to 

classify the built-up are blocks into the respective occupancy types. Takes 4 hours in total including the two 

study areas.  

A.2.5 Local expert/stakeholder validation 

Getting in touch with the local expert to interpret, re-evaluate and re-classify the cluster meaning and the 

occupancy types took about 3 hours over four sessions of discussions.  

 

Total time in the characterisation phase = 19 hours and 30 minutes.  

A.3 Exposure Phase 

The time frame for the detection phase can be divided into two parts: (1) downloading and generating flood-

susceptibility maps and (2) using Risk Changes Desktop library to perform exposure assessment. 

A.3.1 Downloading and generating flood- susceptibility maps 

The flood susceptibility maps were downloaded from the KSDMA. The conversion of the flood map from 

a polygon to a raster and then finally generating the flood raster maps take about 10 minutes.  

A.3.2 Risk Changes Desktop library to perform exposure assessment 

The use of the flood raster map with the final outputs of the characterisation phase to generate the exposure 

maps takes around 5 minutes.  

 

Total time in the exposure phase = 15 minutes. 

A.4 Total Time 

The total time taken from all the three phases to arrive at a point of characterising homogeneous built-up 

area with building typology as an important attribute for studies and research on exposure assessment is   

 

= Detection Phase + Characterisation Phase + Exposure Phase 

 

= (30 hours + 10 mins) + (19 hours + 30 mins) + (15 mins) = 49 hours + 55 minutes 

 

 ≈ 50 hours 

 

≈ 2 days and 2 hours. 
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B. RESOURCES AND MATERIALS USED 

For the research, the following resources were utilised: 

 

1. Overpass API: A read-only API tool of OpenStreetMap that provides custom selected parts of the 
OSM map data.   
 

2. ArcGIS: A geographic information system software developed by ESRI for working with maps, 
compiling geographic data, analysing mapped information, and managing geographic information 
in a database. 
 

3. QGIS: QGIS is a free and open-source cross-platform desktop geographic information system 
application that supports viewing, editing, and analysing geospatial data. Overpass API can be used 
as a plug-in in QGIS.  
 

4. Jupyter Notebook: Open-source web application that allows the creation of python codes and leverage 
machine learning libraries like Keras and TensorFlow to develop deep learning algorithms for the 
research. 
 

5. Google Colab: A product from Google Research that allows writing and executing arbitrary code 
through the browser for machine learning, data analysis and education purposes. 
 

6. Momepy Toolkit: A library for quantitative analysis of urban form and urban morphometrics.  
 

7. Bhuvan web-portal data: Urban land use data in the scale of 1:10,000. 
 

8. Google Maps and Open Street Map: Map data that consists of geocoded address and place names, road 
routes, building footprints and labels and many other information. 
 

9. Risk Changes Desktop: A library developed by ITC and AIT, Thailand that can be used to calculate 
and estimate the exposure, vulnerability, loss, and risk of EaR against hazards such as floods, 
landslides, earthquakes, and others.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://overpass-turbo.eu/
https://github.com/ashokdahal/RiskChangesDesktop
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C. SAMPLE CODE OF THE DEEP LEARNING MODEL  

#Residual network as an encoder for U-Net 

from tensorflow.keras.applications import ResNet50 

 

def ResUNet(loss, pretrained_weights=None, input_size=(PATCHSIZE, PATCHSIZE, NBANDS)

): 

    inputs = Input(input_size, name="input_image") 

     

    encoder = ResNet50(input_tensor=inputs, include_top=False, pooling=None)     

    #encoder.trainable=False 

    for l in encoder.layers: 

        l.trainable = False 

         

    skip_connection_names = ["input_image", "conv1_relu", "conv2_block3_out",  

                             "conv3_block4_out", "conv4_block6_out"] 

    encoder_output = encoder.get_layer("conv5_block3_out").output  

         

    f = [3, 64, 256, 512, 1024] #[16, 32, 64, 128, 256, 512, 1024, 2048] * 32 

    x = encoder_output 

    for i in range(1, len(skip_connection_names)+1, 1): 

        x_skip = encoder.get_layer(skip_connection_names[-i]).output 

        x = UpSampling2D((2, 2))(x) 

        x = Concatenate()([x, x_skip]) 

         

        x = Conv2D(f[-i], (3, 3), padding="same")(x) 

        x = BatchNormalization()(x) 

        x = Activation("relu")(x) 

         

        x = Conv2D(f[-i], (3, 3), padding="same")(x) 

        x = BatchNormalization()(x) 

        x = Activation("relu")(x) 

         

    x = Conv2D(1, (1, 1), padding="same")(x) 

    x = Activation("sigmoid")(x) 

     

    model = Model(inputs, x) 

    print(model.summary()) 

    model.compile(optimizer=optimizer, loss=loss, metrics=metrics) 

 

    if(pretrained_weights): 

      model.load_weights(pretrained_weights)  

    return model 
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D. SAMPLE CODE FOR MORPHOLOGICAL METRICS 

# Dimensions 

clean_plyg["sdbAre"] = mm.Area(clean_plyg).series 

clean_plyg["sdbPer"] = mm.Perimeter(clean_plyg).series 

 

# Shapes 

# clean_plyg["ssbCCo"] = mm.CircularCompactness(clean_plyg, "sdbAre").series 

clean_plyg["ssbCor"] = mm.Corners(clean_plyg).series 

clean_plyg["ssbSqu"] = mm.Squareness(clean_plyg).series 

clean_plyg["ssbERI"] = mm.EquivalentRectangularIndex(clean_plyg, "sdbAre", "sdbPer")

.series 

clean_plyg["ssbElo"] = mm.Elongation(clean_plyg).series 

cencon = mm.CentroidCorners(clean_plyg) 

clean_plyg["ssbCCM"] = cencon.mean 

clean_plyg["ssbCCD"] = cencon.std 

 

# Spatial distribution 

clean_plyg["stbOri"] = mm.Orientation(clean_plyg).series 

clean_plyg_tess["stcOri"] = mm.Orientation(clean_plyg_tess).series 

clean_plyg["stbCeA"] = mm.CellAlignment(clean_plyg, clean_plyg_tess, "stbOri", "stcO

ri", "uID", "uID").series 

 

# Tessellation dimensions and shapes 

clean_plyg_tess["sdcLAL"] = mm.LongestAxisLength(clean_plyg_tess).series 

clean_plyg_tess["sdcAre"] = mm.Area(clean_plyg_tess).series 

clean_plyg_tess["sscCCo"] = mm.CircularCompactness(clean_plyg_tess, "sdcAre").series 

clean_plyg_tess["sscERI"] = mm.EquivalentRectangularIndex(clean_plyg_tess, "sdcAre")

.series 

 

# Intensity 

clean_plyg_tess["sicCAR"] = mm.AreaRatio(clean_plyg_tess, clean_plyg, "sdcAre", "sdb

Are", "uID").series 

 

queen_1 = Queen.from_dataframe(clean_plyg_tess, ids="uID") 

 

clean_plyg["mtbAli"] = mm.Alignment(clean_plyg, queen_1, "uID", "stbOri").series 

clean_plyg["mtbNDi"] = mm.NeighborDistance(clean_plyg, queen_1, "uID").series 

clean_plyg_tess["mtcWNe"] = mm.Neighbors(clean_plyg_tess, queen_1, "uID", weighted=T

rue).series 

clean_plyg_tess["mdcAre"] = mm.CoveredArea(clean_plyg_tess, queen_1, "uID").series 

 

clean_plyg_queen = Queen.from_dataframe(clean_plyg, silence_warnings=True) 
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queen3 = mm.sw_high(k=3, weights=queen_1) 

 

clean_plyg["ltbIBD"] = mm.MeanInterbuildingDistance(clean_plyg, queen_1, "uID", quee

n3).series 

clean_plyg_tess["ltcBuA"] = mm.BuildingAdjacency(clean_plyg, queen3, "uID", clean_pl

yg_queen).series 

E. SAMPLE CODE FOR CLUSTERING 

s = {} 

for n in range(2, 15): 

    s[n] = [] 

    for r in range(5): 

        kmeans = KMeans(n_clusters=n, random_state=r).fit(clean_norm3) 

        labels = kmeans.labels_ 

        s[n].append(metrics.silhouette_score(clean_norm3, labels, metric='euclidean'

)) 

 

vals = [] 

clus = [] 

 

for c, v in s.items(): 

    vals += v 

    clus += [c] * 5 

 

silhouettes3_clean = pd.DataFrame({'n_cluster': clus, 'silhouette': vals}) 

sns.lineplot(x="n_cluster", y="silhouette", 

             data=silhouettes3_clean) 

 

# Display 

kmeans4 = KMeans(n_clusters=4, random_state=1).fit(clean_norm3) 

clean_blg.plot(kmeans.labels_, figsize=(10,10), categorical=True, legend=True) 
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F. SAMPLE CODE FOR EVALUATING MAJORITY TAGS 

def Majority_building_tag(df): 

     

    ''' 

    This function finds the majority building tag in a geodataframe 

    df: The geodataframe that consists of the building tags. 

    ''' 

     

    # We need to select the building tags here 

    building = df['Tag'].tolist() # Convert from a series to a list 

     

    # Remove the unwanted "NONE" and "yes" values 

    res = [] 

    for val in building: 

        if (val != None) & (val!='yes'):             

            res.append(val)             

    n=len(res) 

    if n==0: 

        print("No tags") 

    else: 

        maxCount = 0 

        index = -1  

        for i in range(n): 

            count = 0 

            for j in range(n): 

                if(res[i] == res[j]): 

                    count += 1 

             # update maxCount if count of current element is greater 

            if(count > maxCount): 

                maxCount = count 

                index = i  

        print(f"{res[index]}") 

 

n_clusters=8 

for i in range(0,n_clusters): 

    df_btc = bld[bld['K_means_La']==i] 

    Majority_building_tag(df_btc)    

    print(f"in cluster number {i+1}") 
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G. SAMPLE CODE FOR EVALUATING MAJORITY LANDUSE 

# Define a function to find the majority landuse  

def Majority_landuse(df): 

    ''' 

    This function finds the majority landuse in a geodataframe 

    df: The geodataframe that consists of the landuse information. 

    ''' 

    # We need to select the cluster number here 

    landuse = df['Landuse'] 

    landuse = landuse.values.tolist() 

                

    n=len(landuse) 

    maxCount = 0 

    index = -1  

    for i in range(n): 

        count = 0 

        for j in range(n): 

            if(landuse[i] == landuse[j]): 

                count += 1 

         # update maxCount if count of current element is greater 

        if(count > maxCount): 

            maxCount = count 

            index = i  

    print(landuse[index]) 

 

# Find majority landuse at block level 

street_blocks=54 

 

for blocks in range(0,street_blocks): 

    df_landuse = bld[bld['Block_numb']==blocks] 

    Majority_landuse(df_landuse) 

#     print(f"in block number {blocks+1}") 
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H. SAMPLE CODE FOR THE EXPOSURE ASSESSMENT 

# !pip install RiskChangesDesktop 

import RiskChangesDesktop as RCD 

from RiskChangesDesktop import DataManage 

import Exposure 

from RiskChangesDesktop import Loss 

from RiskChangesDesktop import Risk 

 

DataManage.CheckProjectionVector("data/footprint data/Kollam/footprints.shp") 

DataManage.CheckProjectionVector("data/block data/Kollam/block.shp") 

DataManage.MatchProjection("data/flood data/Kollam/flood_kollam.tif", "data/footprin

t data/Kollam/footprints.shp") 

 

#Compute exposure at the block level 

ear_block="data/block data/Kollam/block.shp" 

susceptibility="data/flood data/Kollam/flood_kollam.tif" 

ear_key_block="Block_numb" 

outputname="data/exposure output/Kollam/exposure_block" 

outputformat="shp" 

 

Exposure.ComputeExposure(ear_block, susceptibility, ear_key_block, outputname, outpu

tformat) 

 

#Compute exposure at the aggregated block level using the building footprints 

ear_foot="data/footprint data/Kollam/footprints.shp" 

susceptibility="data/flood data/Kollam/flood_kollam.tif" 

ear_key_foot="OBJECTID" 

admin_unit="data/block data/Kollam/block.shp" 

agg_col="Block_numb" 

outputname="data/exposure output/Kollam/exposure_assessed_foot_agg" 

outputformat="shp" 

 

Exposure.ComputeExposureAgg(ear=ear_foot, hazard=susceptibility, ear_key=ear_key_foo

t,  

                            admin_unit=admin_unit, agg_col=agg_col, outputname=outpu

tname, outputformat=outputformat) 
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I. GITHUB LINK 

The GitHub link contains the code and the data available to replicate the entire thesis. The data will be 

available till the end of July, after which interested parties would need to contact the author for the data. 

The GitHub link contains the codes for: 

 

1. Building Detection 

2. Building Characterisation 

3. Exposure Assessment 

 

LINK: https://github.com/kushanavbhuyan/Building-Identification-for-Exp-Vul-Risk-Assessment 

Email: kushanavb@gmail.com   

https://github.com/kushanavbhuyan/Building-Identification-for-Exp-Vul-Risk-Assessment
mailto:kushanavb@gmail.com

