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1 Introduction

Understanding the inner workings of our brain has been of great interest for years
and could, for example, lead towards better treatment of cognition and diseases, e.g.
spreading depression. Brain imaging in a variety of regions of the brain has shown
that complex activity patterns can emerge in neuronal tissue [19, 25, 27, 34, 35].

At the mesoscale level of neural populations, it is appropriate to use coarse-grained
continuous space neural field models [1, 7] because these describe the activity measur-
able by, for example, EEG. An example of a neural field model is the Wilson-Cowan
model [33]. The Wilson-Cowan equations describe the neuronal activity of two cou-
pled layers of neurons, one excitatory and one inhibitory [33]. The excitatory neurons
increase the activity in the layers while inhibitory neurons decrease the activity of
both layers. The combination of excitatory and inhibitory layers is a recipe of com-
plex behaviour that has been observed in numerical simulations and mathematical
analysis [7].

The activity in the spatial Wilson-Cowan model decays exponentially in the absence
of external input. Both layers are excited by the neurons in the excitatory layer. In
contrast to the excitatory layer stands the inhibitory layer inhibiting both layers. Next
to the Wilson-Cowan model, we have an adaptive model by Pinto and Ermentrout
[21, 22] consisting of an excitatory and an adaptive neural layer. The adaptive layer
introduces negative feedback and could represent spike frequency adaptation, synaptic
depression, or some other slow process that limits the excitation of the network.

Both models are only excited and inhibited by the neurons more active than a set
threshold value. This threshold introduces an activation function into the neural field
model describing the relation between the activity of the excitatory and inhibitory
neurons and their effect on the rest of the neural field. Rigorous mathematical analysis
has been performed on neural field models with a Heaviside activation function [1,
4, 7, 11] because the Heaviside activation function allows for explicit expressions of
the existence and stability of standing and travelling bumps and breathers [9, 11].
Analysis has established the existence of bump solutions and moving fronts in one-
dimensional neural fields with one excitatory layer [1, 7]. Next to this, the existence of
periodic [7, 10, 12] and travelling solutions [11] in one-dimensional neural field models
with both excitatory and inhibitory layers have been established. Two-dimensional
neural fields have been shown to exhibit breathers and spots [7]. Recent research has
shown the existence of these patterns in neural field models with finite transmission
speeds [9, 13, 16] and instantaneous delays [9]. Pattern-forming systems in reaction-
diffusion systems have been studied intensively [8].

4



Neuro-biological research suggests that physical neural matter does not behave ac-
cording to a Heaviside activation function. Realistically, the activation function be-
haves like a sigmoidal function [18]. Neural field models with a sigmoidal activation
function are not tractable to the same mathematical analysis and require numerical
tools and have received less attention in comparison to the Heaviside analysis.

Neural field equations with a sigmoidal activation have been treated by Fourier
analysis decomposing the synaptic weight function and analysing in Fourier space
[2, 29, 30]. Pinto and Ermentrout have used singular perturbation theory to extend
the existence of travelling bump solutions to smooth activation functions [21].

Numerical continuation is a tool typically used for the numerical analysis of nonlin-
ear dynamical systems. Numerical continuation has been used to analyse neural field
models by Fourier decomposition [10, 24, 26] and Hermite decomposition [26] of the
connectivity function. This method is, for example, not applicable for a Gaussian
connectivity function because the Gaussian connectivity function does not simplify
under Fourier decomposition. For the decomposition to be advantageous, the decom-
position of the connectivity function should simplify the problem at hand.

Our interest is the effect of the steepness of the activation function on the existence
and stability of patterns in neural fields with a Gaussian connectivity function. Our
research question is whether the results of the Heaviside analysis extend to neural
fields with a sigmoidal activation function. To investigate this, we develop a numerical
continuation scheme to continue standing and travelling bumps and breathers of the
neural field with a sigmoidal activation function. Using these numerical tools, we
continue steady and periodic solutions of the neural field to find bifurcation diagrams
with respect to system parameters.

First, we will introduce the excitatory - inhibitory and adaptive neural field models
in sections 2.1, 2.2 and 2.3. Section 2.4 discusses the analysis on the excitatory -
inhibitory neural field with a Heaviside activation function. Next, we will describe the
numerical continuation tools developed to calculate and continue various patterns of
the excitatory - inhibitory model and the adaptive model with a sigmoidal activation
function in section 3. This section also concerns the computation of the stability
of the calculated patterns. Results of the numerical continuations are presented in
section 4. We will reflect on the developed continuation schemes, their performance
and the results in section 5. Finally, we will answer our research question by checking
the existence and stability of patterns for low values of the slope parameter in section
6.
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2 Neural field models

Different neural field models are used to describe spatial neural tissue. This research
concerns two different neural field models. The first neural field model consists of two
layers of neurons, one excitatory layer and one inhibitory layer. This model will be
discussed more in-depth in section 2.1. Next to this model, we will discuss a neural
field model with an adaptation layer instead of another neural layer in section 2.2. In
section 2.3 we introduce the studied patterns in the neural fields. Finally, section 2.4
consists of the Heaviside analysis of the stationary bump in the excitatory - inhibitory
neural field model.

2.1 Excitatory - inhibitory neural field model

The one-dimensional two-layer neural field model consists of an excitatory and an in-
hibitory layer. The excitatory layer ue(x, t) excites both layers: high excitation in the
excitatory layer results in positive feedback on both the excitatory and the inhibitory
layer. The inhibitory layer ui(x, t) inhibits both layers similar: high excitation in the
inhibitory layer results in negative feedback in both layers, Figure 1 shows these re-
lations schematically. The dynamics of the excitatory - inhibitory neural field model
are captured in the neural field equations:

u̇e(x, t) = −ue(x, t) +
∫∞
−∞wee(x− y)fe(ue(y, t))dy

−
∫∞
−∞wei(x− y)fi(ui(y, t))dy,

τ u̇i(x, t) = −ui(x, t) +
∫∞
−∞wie(x− y)fe(ue(y, t))dy

−
∫∞
−∞wii(x− y)fi(ui(y, t))dy.

(1)

Here, the connectivity function is assumed to be Gaussian with strength w̄jk and
width σjk:

wjk(z) =
w̄jk

σjk
√
π
e
−
(

z
σjk

)2

. (2)

Furthermore, we assume the activation function fk to be a sigmoidal function as
suggested as introduced by by Wilson & Cowan [32]. The sigmoidal function has
steepness parameter β > 0 and threshold parameter θk

fk(u) =
1

1 + e−β(u−θk)
. (3)

Examples of the sigmoidal activation function for various values of β are shown in
Figure 2.
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Figure 1: Diagram of a two layer one dimensional neural filed model. Adapted from
[7].

2.2 Adaptive neural field

Next to the excitatory - inhibitory neural field model we introduce the adaptive neural
field model that has been introduced by Pinto and Ermentrout [21, 22] and consists
of an excitatory layer u(x, t) combined with a adaptive layer a(x, t). This adaptive
layer introduces negative feedback and could represent spike frequency adaptation,
synaptic depression, or some other slow process that limits the excitation of the
network. The neural field model is given by{

u̇(x, t) = −u(x, t)− κa(x, t) +
∫∞
−∞w(x− y)f(u(y, t))dy + I(x)

τ ȧ(x, t) = −a(x, t) + u(x, t).
(4)

The synaptic weight function is Gaussian with mean w̄ and width σ as introduced in
equation (3). The excitation is Gaussian as well and given by

I(x) = I0e
−( x

σI
)2

. (5)
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Figure 2: Sigmoidal function with different values of the slope parameter β together
with a Heaviside function. The threshold parameter θk has been set to 0.16. The
domain of the plot depicts typical values of the activity of the neural field.

The adaptive neural field (4) is studied in the β–I0 parameter space in which standing
bump and breather solutions are found [10].

2.3 Patterns in neural field models

Both neural field models (1) and (4) exhibit different patterns in the time evolution
[5, 10, 11, 12]. Figure 3 shows simulations of neural field model (1) exhibiting the
patterns we will study here. First, the stationary bump solution consisting of a single
spatial bump constant in time is plotted in Figure 14a. Next to this, we can find
stationary breather solutions which consist of one spatial bump and are periodic
in time as illustrated in Figure 14c. Both the stationary bump and breather can
drift introducing the travelling bump and the travelling breather in Figure 14b and
14d.

Whilst we study the stationary and travelling bumps and breathers neural field models
exhibit more patterns like spatially periodic solutions [14] and sloshing solutions [10].
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Figure 3: Space-time plots of ue(x, t) illustrating different solution types. Other
parameter values as listed in Table 1
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2.4 Heaviside analysis of excitatory - inhibitory neural field

Neural field models with a Heaviside activation function allow for exact analytic
expressions for the bump solution. We will show this on the basis of the excitatory -
inhibitory neural field model (1) with a Heaviside activation function with threshold
values θk:

fh,k(x) =

{
0 x ≤ θk,

1 x < θk.
(6)

The Heaviside activation function is shown in Figure 2. We will investigate the
existence and the stability of a standing bump solution in section 2.4.1 and section
2.4.2, respectively.

2.4.1 Existence

Stationary bump solutions of neural field (1) require the time derivative to be zero.
This results in the implicit solutionsue(x) =

∫ ξe2
ξe1
wee(x− y)fh,e(ue(y, t))dy −

∫ ξi2
ξi1
wei(x− y)fh,i(ui(y, t))dy,

ui(x) =
∫ ξe2
ξe1
wie(x− y)fh,e(ue(y, t))dy −

∫ ξi2
ξi1
wii(x− y)fh,i(ui(y, t))dy

(7)

Here, the threshold values ξkj are the boundaries of the interval where uk(x, t) ≥ θk.
Because the value of uk(x, t) is equal to the threshold value θk at these boundaries
we introduce the existence equations

ue(ξ
e
1) = θe,

ue(ξ
e
2) = θe,

ui(ξ
i
1) = θi,

ui(ξ
i
2) = θi.

(8)

By expanding the integrals in equation (7), these solutions can be simplified toue(x) = w̄ee
2

[
erf
(
x−ξe1
σee

)
− erf

(
x−ξe2
σee

)]
− w̄ei

2

[
erf
(
x−ξi1
σei

)
− erf

(
x−ξi2
σei

)]
,

ui(x) = w̄ie
2

[
erf
(
x−ξe1
σie

)
− erf

(
x−ξe2
σie

)]
− w̄ii

2

[
erf
(
x−ξi1
σii

)
− erf

(
x−ξi2
σii

)] . (9)

We then use the existence equations (8) to verify the self-consistency at the values of
ξkn, to find the width of the bump profile.
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2.4.2 Stability

The stability of the solution given by equation (9) will be investigated by analysing
the propagation of small perturbations of the solution. We assume a perturbation
ũk = uk + ϕ̃k and find the first-order propagation of the perturbation by linearising
equation (1) around the bump solution (9) to get

˙̃ϕe(x, t) = −ϕ̃e(x, t) +
∫∞
−∞wee(x− y)f ′e(ue(y, t))ϕ̃e(y, t)dy

−
∫∞
−∞wei(x− y)f ′i(ui(y, t))ϕ̃i(y, t)dy,

τ ˙̃ϕi(x, t) = −ϕ̃e(x, t) +
∫∞
−∞wie(x− y)f ′e(ue(y, t))ϕ̃e(y, t)dy

−
∫∞
−∞wii(x− y)f ′i(ui(y, t))ϕ̃i(y, t)dy.

(10)

Assuming ϕ̃k(x, t) = eλtϕe(x) and rearranging terms, we obtain the problem{
−λϕe(x)− ϕe(x) +Neeϕe −Neiϕi = 0,

−τλϕe(x)− ϕi(x) +Nieϕe −Niiϕi = 0,
(11)

where Njkϕk is given by

Njkϕk =

∫ ∞
−∞

wjk(x− y)f ′k(uk(y, t))ϕk(y)dy (12)

=

∫ ∞
−∞

wjk(x− y)δ(uk(y, t)− θk)ϕk(y)dy (13)

= ϕk(ξ
k
1 )
wjk(x− ξk1 )∣∣u′k(ξk1 )

∣∣ + ϕk(ξ
k
2 )
wjk(x− ξk2 )∣∣u′k(ξk2 )

∣∣ , (14)

where we made use of the sifting property of the Dirac delta function.

To identify at which λ equation (11) exhibits non-trivial solutions we try to find
solutions to the equation{

−(λ+ 1)ϕe(x) +Neeϕe −Neiϕi = ge(x),

−(τλ+ 1)ϕi(x) +Nieϕe −Niiϕi = gi(x),
(15)

for some gk to identify when invertibility fails. Invertibility fails whenever the equa-
tions evaluated at the threshold values ξkn with fk(ξ

k
n) = θk give a singular matrix

equation

M(λ)ψ = F , (16)
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where

M(λ) =
−(1 + λ) + wee(0)

|u′e(ξe1)|
wee(ξe1−ξe2)

|u′e(ξe2)| −wei(ξ
e
1−ξi1)

|u′e(ξi1)| −wei(ξ
e
1−ξi2)

|u′e(ξi2)|
wee(ξe2−ξe1)

|u′e(ξe1)| −(1 + λ) + wee(0)

|u′e(ξe2)| −wei(ξ
e
2−ξi1)

|u′e(ξi1)| −wei(ξ
e
2−ξi2)

|u′e(ξi2)|
wie(ξ

i
1−ξe1)

|u′e(ξe1)|
wie(ξ

i
1−ξe2)

|u′e(ξe2)| −(1 + τλ)− wii(0)

|u′e(ξi1)| −wii(ξ
i
1−ξi2)

|u′e(ξi2)|
wie(ξ

i
2−ξe1)

|u′e(ξe1)|
wie(ξ

i
2−ξe2)

|u′e(ξe2)| −wii(ξ
i
2−ξi1)

|u′e(ξi1)| −(1 + τλ)− wii(0)

|u′e(ξi2)|

 ,
(17)

for ψ = [ϕe(ξ
1
e ), ϕe(ξ

2
e ), ϕi(ξ

1
i ), ϕi(ξ

2
i )]

T and F = [ge(ξ
1
e ), ge(ξ

2
e ), gi(ξ

1
i ), gi(ξ

2
i )]

T .

When det(M(λ)) = 0 holds, equation (15) does not have a solution for all f . In that
case there exist non-trivial solutions to equation (11). Therefore, this is an Evans
function [7] E(λ) for the standing bump

E(λ) = det[M(λ)]. (18)

Zeros of E(λ) correspond to eigenvalues of equation (11) and determine the stability
of the solution. When we have Re(λ) < 0 for all λ satisfying E(λ) = 0, we can
conclude the bump solution (7) is stable.

Replacing the Heaviside activation function with a sigmoidal activation function
leaves us with an equation that does not allow us to perform the same existence
and stability analysis because the integrals in equation (1) fail to simplify similarly.
To study the existence of stationary and periodic solutions of neural field (1) we will
therefore develop a numerical continuation scheme in the next section.
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3 Numerical Continuation of patterns in neural

fields

Numerical continuation is a well-established method for finding branches of equilibria
and limit cycles of dynamical systems with respect to varying parameters [15]. We
will develop a numerical continuation scheme to analyse fixed points and limit cycles
of the discretised neural field models by numerical continuation based on previous
work [15, 17] in section 3.1.

A well-known method for investigating limit cycles is single shooting [15, 17]. How-
ever, single shooting methods can have long numerical integration periods in which
orbits can end up outside the area in which linear correction tools can be applied. To
overcome this problem, we include a discretisation of the full orbit to the continuation
variables in section 3.2.3. Including the time evolution of the solution increases the
number of variables in our continuation problem by several orders of magnitude. Nu-
merical continuation requires solving a linear system of equations which is efficiently
solved by matrix-free methods and we implement matrix-free continuation in section
3.3. The matrix-free method requires us to calculate directional derivatives which
can be calculated numerically by finite differences. Section 3.4 investigates the pos-
sibilities of calculating these directional derivatives more accurately. To summarise
the developed methods, section 3.5 presents an overview of the developed numeri-
cal method which will be used in section 3.6 to construct two-parameter bifurcation
diagrams. Finally, we will consider the stability of the patterns in section 3.7.

The following sections will make extensive use of time integration of the neural field.
This will be denoted by

ψt1(u) =

∫ t1

0

F (u, t)dt, (19)

which should be read as the time integration of the initial condition u from t = 0
up to t = t1. This can, for example, be computed numerically with the fourth-order
Runge Kutta scheme [23].

3.1 Numerical continuation

Numerical continuation is a numerical method to find the zeros of a function

F (x, ρ) : Rn × R→ Rn, (20)

which, by the Inverse Function Theorem (IFT), lie on a smooth one-dimensional
curve. To illustrate the procedure of numerical continuation, we focus on the one-
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dimensional dynamical system ẋ = F (x, ρ) given by

F (x, ρ) = x3 − x2 + ρ. (21)

The zeros of equation (21) are plotted in Figure 4 and form a smooth manifold by
the IFT.

Numerical continuation is an iterative predictor-corrector procedure that extends
known zeros of equation (20). First, the continuation direction is determined. Next,
a new point on the curve is predicted. Finally, the estimated new point is corrected
to obtain a new zero of equation (20). This procedure is then repeated by estimating
a new point.

Given two known zeros (x, ρ)i−1 and (x, ρ)i of equation (20), the secant direction
(vx, vρ)i is calculated as

(vx, vρ) = (x, ρ)i − (x, ρ)i−1. (22)

This direction is then used to predict a new approximate zero

(x̃, ρ̃)i+1 = (x̃, ρ)i + h0 · (vx, vρ) (23)

near the curve. The step h0 size is chosen adaptively such that the number of required
correction steps remains small. This process of estimating a new point on the curve
is shown in Figure 4(a) and (b).

Finally, Newton corrections are used to correct (x̃, ρ̃)i+1 to a new point (x, ρ)i+1 on
the curve. Newton’s method can be used to solve a system of equations which has
an equal number of variables and unknowns. This can either be solved by fixing the
parameter ρ and performing Newton iterations on F (x, ρ) for fixed ρ, or by appending
an additional scalar equation

h(x, ρ) = 0. (24)

such that the resulting system

G(x, ρ) =

{
F (x, ρ) = 0,

h(x, ρ) = 0,
(25)

can be solved by Newton iterations. Fixing ρ is called natural continuation and this
is discussed further in section 3.1.1. A special choice of h(x, ρ) is known as pseudo-
arclength continuation, and this will be discussed in section 3.1.2.

14



3.1.1 Natural continuation

Natural continuation performs Newton iterations for fixed ρ [17]. These Newton
corrections will converge to a zero of equation (20) with the same value of ρ. All
points in the x–ρ plane with the same ρ lie on a vertical line shown twice in Figure
4(a).

At regular points, natural continuation converges to the intersection between the
dashed line and the F (x, ρ) = 0 curve in Figure 4(a). The bottom of Figure 4(a)
shows natural continuation at regular zeros. The dashed search line intersects the
solution curve and the Newton iterations converge to the intersection.

The top of Figure 4(a) shows natural continuation at a fold bifurcation; because
the dashed line does not intersect the sought curve, the Newton iterations will not
converge to a point on the curve. Therefore, natural continuation is not suitable to
continue curves around a fold bifurcation. This problem is solved by using pseudo-
arclength continuation, which will be discussed next.

3.1.2 Pseudo-arclength continuation

Instead of fixing ρ and performing Newton corrections on F (x, ρ), we can append an
additional scalar equation (24) such that the resulting system of equations (25) can
be solved by Newton iterations. A natural choice [17] of h(x, ρ) is

h(x, ρ) = 〈(x, ρ)− (x̃, ρ̃)i+1, (vx, vρ)〉 (26)

= (x− x̃i+1)vx + (ρ− ρ̃i+1)vρ, (27)

where 〈·, ·〉 denotes the Euclidean inner product. This requires the correction direction
to be orthogonal to the prediction direction (vx, vρ), and is called pseudo-arclength
continuation [17].

Newton corrections for pseudo-arclength continuation entail the following procedure
iteratively, with (x, ρ)i+1,0 = (x̃, ρ̃)i+1:

b = G((x, ρ)i+1,k) =

[
F ((x, ρ)i+1,k

0

]
(28)

Solve for [dx, dρ]T :
∂G((x, ρ)i+1,k)

∂(x, ρ)

[
dx
dρ

]
= b (29)

Update x, ρ:
(x, ρ)i+1,k+1 = (x, ρ)i+1,k − (dx, dρ) (30)

15



Figure 4: Overview of (a) natural and (b) pseudo-arclength continuation at regular
points (x, ρ)i at the bottom of the figure and folds (x, ρ)j at the top of the figure.
The dashed lines show the subspace in which Newton corrections are performed.
The top part of (a) shows that natural continuation fails close to a fold bifurcation
because the dashed line does not intersect F (x, ρ) = 0, while in the same scenario
pseudo-arclength continuation does intersect as shown at the top of (b).
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until convergence of (x, ρ)i+1,k.

The choice of h(x, ρ) in equation (27) in the context of system (21) makes the direc-
tional derivative in equation (29)

∂G((x, ρ)i+1,k)

∂(x, ρ)

[
dx
dρ

]
=

[
xi+1,k(3xi+1,k − 2) 1

vx vρ

] [
dx
dρ

]
(31)

=

[
xi+1,k(3xi+1,k − 2)dx+ dρ

vxdx+ vρρ

]
, (32)

where we have made use of F in equation (21). The second row of equation (32) can
be interpreted as the requirement that the correction vector [dx, dρ]T be orthogonal
to the continuation direction [vx, vρ]

T , this is denoted by a right angle in Figure
4(b). Figure 4 also shows the difference between natural continuation and pseudo-
arclength continuation, at fold bifurcations at the top of both figures. Because the
method searches a new point orthogonally, the curve can be continued around the
fold bifurcation.

Now that we have introduced numerical continuation with two different correction
methods, we will introduce neural field (1) into this framework in the next sec-
tion.

3.2 Numerical continuation of neural fields

The numerical continuation methods outlined in sections 3.1.1 and 3.1.2 can be ex-
tended to higher-dimensional dynamical systems defined by functions

F (u, ρ) : Rn × R→ Rn, (33)

by replacing the derivative ∂F (x,ρ)
∂x

in equation (29) with the Jacobian matrix ∂F (u,ρ)
∂u .

Using a discretisation of neural field (1)

u̇ = F (u), u ∈ R2×Nx (34)
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with

u =



ue(x1)
ue(x2)

...
ue(xNx)
ui(x1)
ui(x2)

...
ui(xNx)


(35)

for some spatial discretisation

x0 ≤ x1 ≤ · · · ≤ xNx , (36)

we aim to locate and continue patterns in neural field (1) and (4). Numerical contin-
uation of these patterns is the subject of the following sections.

3.2.1 Numerical continuation of stationary bump solutions

We can identify bump solutions of neural field (1) and (4) as the zeros of

F (u) = 0, (37)

because this corresponds to zeros of the right hand side of the neural field equa-
tions.

However, this does not uniquely describe the stationary bump solutions. Both neural
fields (1) and (4) are invariant under translation: given any solution u(x, t) we have
a family of solutions u(x + α, t) parametrised by α ∈ R. In order to disambiguate
between the solutions, we impose that the maximum value of ue(x, t) is attained at
x = 0. Next to this, we observe that the stationary bump solutions are symmetric
around the maximum of the bump, u(x, t) = u(−x, t) for centred bumps. We use this
symmetry to implement the disambiguation with respect to translation by employing
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a symmetrical spatial discretisation to continue the half space solution

uh =



ue(xNx/2+1)
ue(xNx/2+2)

...
ue(xNx)

ui(xNx/2+1)
ui(xNx/2+2)

...
ui(xNx)


. (38)

To continue the stationary bump of the neural field, we find zeroes of the composi-
tion

Fh(uh) = (M−1 ◦ F ◦M)(uh). (39)

M expands the half solution uh to a full solution u by mirroring:

M(uh) =



uNx
...
u1

u1
...
uNx
u2Nx

u2Nx−1
...

uNx+1

uNx+1
...

u2Nx



. (40)

Therefore, we can use numerical continuation to locate and continue bump solutions
of neural field (1) by continuing the zeroes of equation (39).

3.2.2 Numerical continuation of travelling bump solutions

To continue travelling bump solutions of neural field (1), we introduce co-moving
coordinates ξ = x−ct because travelling bump solutions of neural field (1) correspond
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with standing bump solutions in co-moving frame. We rewrite the neural field (1) in
these travelling wave coordinates to obtain:

u̇e(ξ, t) = −ue(ξ, t) + c∂ue
∂ξ

(ξ, t) +
∫∞
−∞wee(ξ − ν)fh,e(ue(ν, t))dν

−
∫∞
−∞wei(ξ − ν)fh,i(ui(ν, t))dν,

τ u̇i(ξ, t) = −ui(ξ, t) + cτ ∂ue
∂ξ

(ξ, t) +
∫∞
−∞wie(ξ − ν)fh,e(ue(ν, t))dν

−
∫∞
−∞wii(ξ − ν)fh,i(ui(ν, t))dν.

(41)

Similar to the stationary bump solution we can locate standing bump solutions by
finding zeros of a discretisation Ftr discr of equation (41) with some spatial discretisa-
tion

ξ0 ≤ ξ1 ≤ · · · ≤ ξNx . (42)

However, the travelling bump is not uniquely characterised by the values of uk(ξi).
The wave speed should also be considered a continuation parameter. Therefore, we
need an additional equation to define the travelling bump uniquely. This equation is
provided by the translation symmetry of the neural field. To fix the neural field we
fix the maximum of ue(x, t) at x = 0.

Combining this, travelling bump solutions correspond to the zeros of

Ftr(u, ρ) =

[
Ftr discr(u, ρ)

h(u)

]
(43)

with

u =



ue(ξ1)
ue(ξ2)

...
ue(ξNx)
ui(ξ1)
ui(ξ2)

...
ui(ξNx)

c


(44)

and
h(u) = uNx/2+1 − uNx/2−1 (45)

requiring the bump to have a maximum at the origin. The evaluation of the dis-
cretised neural field requires the calculation of the derivative ∂uk

∂ξ
which is calculated
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numerically by transforming to Fourier space using FFT, multiplying by
2πξ

L
and

transforming back.

Therefore, we will analyse travelling bump solutions by continuation of the zeros
of

Ftr(u, ρ) = 0. (46)

Periodic solutions can be located and continued similar to stationary solutions. We
will elaborate on this in the next section.

3.2.3 Numerical continuation of stationary periodic orbits

Continuation of periodic orbits is best understood in a single shooting context where
we require

ψT0(u)− u = 0, (47)

together with a phase condition g(u) = 0 to remove the time invariance. This method
is prone to convergence issues for unstable orbits because the numerical integration
can evolve outside the area where linear corrections suffice. To improve numerical
stability for these orbits we choose Nt, n ∈ N and set ∆t = T0

nNt
to introduce a time

mesh
ti = in∆t i ∈ [1, · · · , Nt] (48)

such that t0 = 0 and tNt = T0. We include the sections uti = ψti(u) to the con-
tinuation variables. By adding enough intermediate sections, the integration is only
affected by the local divergence. This is because we only require numerical integra-
tion over a short period of T0/Nt in which the numerical integration does not diverge
too much. The situation has been plotted schematically in Figure 5.

Combining the variables ui and T0 into one vector with all variables gives us

u =



ut0
ut1
...

utNt−1

utNt
T0


. (49)

Similar to the continuation of stationary bump solutions, we break the spatial transla-
tional invariance by introducing the half space discretisation used for the continuation
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of stationary bump solutions. Therefore, the continued half space variables are

uh =



uh,t0
uh,t1

...
uh,tNt−1

uh,tNt
T0


. (50)

The numerical integration is performed in full space variables by composition with
the mirroring function M and its inverse defined in equation (40)

ψhh,n∆t(ut0) = (M−1 ◦ ψn∆t ◦M)(uh,ti). (51)

Finally, to uniquely define the periodic orbits, a periodicity condition uNtn∆t−u0 = 0,
and a phase condition g(u) = 0 are required. Periodic solutions with period T0 of
equation (34) are then the zeros of

F hist
per (uh, ρ) = F hist

per (



uh,t0
uh,t1

...
uh,tNt−1

uh,tNt
T0


) =



ψhn∆t(uh,t0)− uh,t1
ψhn∆t(uh,t1)− uh,t2

...
ψhn∆t(uh,tNt−1

)− uh,tNt
uth,Nt − uh,t0

g(uh)


(52)

with the phase condition g(u) given by

g(uh) = 〈uh,t0 − urh,t0 , u̇
r
h,t0
〉 (53)

with respect to a reference solution urh,t0 to ensure uniqueness along the periodic
solution. This reference solution is taken to be the previous solution along the solution
branch.

3.2.4 Numerical continuation of travelling periodic orbits

Similarly to the continuation of stationary periodic orbits, we can identify travelling
periodic orbits by applying a single shooting method to the neural field in travelling
wave coordinates (41).
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Figure 5: Schematic overview of the variables in Equation (54).

Analogous to the continuation of travelling bumps outlined in section 3.2.2 the wave
speed is added to the system variables and we arrive at

u =

ut0T0

c

 . (54)

The travelling breather solutions correspond to the zeros of

F tr
per(u) = F tr

per

ut0T0

c

 =

ψT0(ut0)− ut0
g(u)
h(u)

 (55)

with phase condition (53) and shift condition (45).

3.3 Matrix free continuation

Introducing the time evolution at a time mesh results in a numerical continuation
problem much larger than the original problem due to the discretisation: u in equation
(52) has dimension 2×Nx × (Nt + 1) + 1 which can be very high. Continuation
outlined in section 3.1 requires iterative calculation of the Jacobian matrix A to solve
Au = b until convergence [15].

For these large problems, explicit calculation of the Jacobian matrix is no longer fea-
sible. To approximate the solution to Au = b, matrix-free methods based on Krylov
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subspace methods can be employed [28, 31]. These iterative methods employ matrix-
vector products Au, which are, in the context of continuation, directional derivatives
in the direction of u at u0. These directional derivatives can be approximated by
Au = F (u0+hu)−F (u0−hu)

2h
for some h > 0 or by a more sophisticated method, which

will be outlined in section 3.4.

We will employ GMRES since it is the most widely used linear solver for non-
symmetric problems [28]. To increase the convergence of GMRES we use a simple
preconditioner which re-scales β to β0 where β = β0β

∗ with β∗ = 500. This ensures
that all elements of u are between 0 and 1.

However, the convection term in travelling wave coordinates (41) results in a line
spectrum in the complex plane [11]. This unbounded spectrum greatly impacts the
convergence of GMRES [28]. Therefore, GMRES will only be employed for stationary
bumps and breathers.

3.4 Exact directional derivative

The matrix-free continuation requires the iterative calculation of the directional deriva-
tive and can be approximated numerically using finite differences. However, we may
attempt to calculate the directional derivative more accurately for the continuation
of fixed points and periodic orbits. To archive this, we will first derive the Jaco-
bian matrix of the discrete neural field (34) in section 3.4.1. Next, we will look at the
derivative of ψt(u) with respect to u in section 3.4.2. We will combine these results in
section 3.4.3. Finally, section 3.4.4 will put this into the context of continuation.

3.4.1 Directional derivative of the neural field

The directional derivative of equation (34) can be obtained exactly by employing the
convolution in neural field (1) to obtain

Juv =
∂

∂[ue,ui]

[
−ue + wee ~ fe(ue)− wei ~ fi(ui)

−ui/τ + wie ~ fe(ue)/τ − wii ~ fi(ui)/τ

] [
ve
vi

]
=

[
−1 + wee ~ f ′e(ue) −wei ~ f ′i(ui)
wie ~ f ′e(ue)/τ −1/τ − wii ~ f ′i(ui)/τ

] [
ve
vi

]
(56)

=

[
−ve + wee ~ f ′e(ue)ve − wei ~ f ′i(ui)vi

−vi/τ + wie ~ f ′e(ue)ve/τ − wii ~ f ′i(ui)vi/τ

]
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where ~ denotes spatial convolution. Similarly, the directional derivative of the

adaptive neural field in the direction v =

[
vu
va

]
can be expressed as

Juv =

[
−vu − κva + w̄e ~ f ′(u)vu

−va/τ + vu/τ

]
. (57)

This directional derivative can be evaluated exactly and can be used for numerical
continuation of stationary bump solutions. Next to this, the exact directional deriva-
tive is used to find the directional derivative of the time evolution with respect to
initial conditions which is the subject of the next section.

3.4.2 Directional derivative of the time evolution

Let us focus on the Jacobian matrix

∂ψT (u)

∂u
, (58)

the derivative of the time evolution from 0 to T with respect to the initial conditions
u. The end time T is generally independent of the period T0. To calculate this
Jacobian matrix, we need the solution itself which is

u(t) = ψt(u) (59)

and is assumed to be known. To find an exact expression of equation (58), we
introduce the variational matrix Y u given by the initial value problem{

Ẏ u(t) = Ju(t)Y
u(t),

Y u(0) = In,
(60)

where Ju(t) the Jacobian matrix is of equation (34) at position u(t). Y u(t)v describes
the propagation of an initial perturbation v during the integration along the periodic
orbit up to time t. Therefore, the directional derivative of ψT (u) in the direction v
is given by

v(T ) = Y u(T )v. (61)

To compute the value of Y u(T )v, we reduce the initial value problem (60) to{
v̇(t) = Ju(t)v(t),

v(0) = v.
(62)
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To evaluate the directional derivative Ju(t))v(t), we employ the exact directional
derivative from equation (57). This gives us an exact variational equation for the
directional derivative of ψT (u)

v(T ) =
∂ψT (u)

∂u
v, (63)

where v(T ) solves the initial value problem (62). The required numerical integration
is performed with the fourth-order Runge Kutta method.

3.4.3 Directional derivative of multiple shooting

To calculate the directional derivative of equation (52) in direction v, we expand its
full Jacobian matrix with respect to the coordinate vector (54):

Jhistper =



∂[ψ∆t(u0)−un∆t]
∂u0

∂[ψ∆t(u0)−un∆t]
∂u1

∂[ψ∆t(u0)−un∆t]
∂u2

· · · ∂[ψ∆t(u0)−un∆t]
∂T0

∂[ψ∆t(un∆t)−u2n∆t]
∂u0

∂[ψ∆t(un∆t)−u2n∆t]
∂u1

∂[ψ∆t(un∆t)−u2n∆t]
∂u2

· · · ∂[ψ∆t(un∆t)−u2n∆t]
∂T0

...
∂[ψ∆t(uNt−1)−uNtn∆t]

∂u0

∂[ψ∆t(uNt−1)−uNtn∆t]

∂un∆t

∂[ψ∆t(uNt−1)−uNtn∆t]

∂u2n∆t
· · · ∂[ψ∆t(uNt−1)−uNtn∆t]

∂T0
∂[uNtn∆t−u0]

∂u0

∂uNtn∆t−u0]

∂u1

∂uNtn∆t−u0]

∂u2
· · · ∂uNtn∆t−u0]

∂T0
∂g(u)
∂u0

∂g(u)
∂u1

∂g(u)
∂u2

· · · ∂g(u)
∂T0



=



Y x0(∆t) −Id 0 · · · 0 F (un∆t)/Nt

0 Y x1(∆t) −Id · · · 0 F (u2n∆t)/Nt
...

0 0 0 · · · −Id F (uNtn∆t)/Nt

−Id 0 0 · · · Id 0
u̇r 0 0 · · · 0 0


. (64)

Here we have employed the phase condition g(u) from equation (53); the Jacobian

matrix of ψn∆t(umn∆t) from equation (61); and the value of ∂ψ∆t(ui)
∂T0

is given by
applying the fundamental theorem of calculus to equation (19).
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Finally, we combine the obtained results to arrive at the exact directional derivative Jhistper v

Jhistper v =



Y x0(∆t) −Id 0 · · · 0 F (un∆t)/Nt

0 Y x1(∆t) −Id · · · 0 F (u2n∆t/Nt)
...

0 0 0 · · · −Id F (uNtn∆t)/Nt

−Id 0 0 · · · Id 0
u̇r 0 0 · · · 0 0




v0

v1

v2
...
vT0

 (65)

=



Y x0(∆t)v0 − v1 + F (un∆t)
vT0

Nt

Y x1(∆t)v1 − v2 + F (u2n∆t)
vT0

Nt
...

Y xNt−1(∆t)vNt−1 − vNt + F (uNtn∆t)
vT0

Nt

vNt − v0

〈u̇r,v0〉


. (66)

Therefore, we have an exact expression of
∂Fhistper (u,ρ)

∂u v. The usage of exact directional
derivatives in matrix free continuation is the subject of the next section.

3.4.4 Using exact directional derivatives for matrix-free continuation

Continuation of the discretised neural field requires us to choose between natural
continuation and pseudo-arclength continuation. To be able to perform natural con-
tinuation we solely the directional derivative ∂F (u,ρ)

∂u du which can be calculated by
using exact directional derivatives.

On the other hand, we have pseudo-arclength continuation. For this, we would need
exact values of the directional derivatives derivatives ∂F (u,ρ)

∂u du and ∂F (u,ρ)
∂ρ

dρ in equa-

tion (29), An exact expression of ∂F (u,ρ)
∂u has been obtained in equation (66), to get

an exact expression of ∂F (u,ρ)
∂ρ

dρ we would need to evaluate the effect of changing pa-

rameters on ψt(u), which is not trivial. Therefore, we cannot use an exact expression
of the directional derivative for pseudo-arclength continuation.

To calculate the complete solution branches for the different patterns, we use a com-
bination of natural continuation and pseudo-arclength continuation. We use natural
continuation by default. However, we cannot continue the pattern through a fold
bifurcation or close to a Hopf bifurcation of a steady state. To overcome this, we
switch temporarily to pseudo-arclength using finite differences whenever the Newton
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corrections of natural continuation fail to converge. By adaptively changing the con-
tinuation method we, can make use of the best of two worlds: on the one hand, we
make use of the speed improvements of exact directional derivatives and on the other
hand, we can continue across fold bifurcations whenever required.

3.5 Overview of continuation schemes

To continue patterns in neural field (1) we use a different defining system per pattern.
Stationary bumps are continued using Fh(u, ρ) defined in equation (39). Travelling
bump solutions are continued in travelling wave coordinates using Ftr(u, ρ) in equa-
tion (46). Stationary breathers are continued in a multiple shooting setting with
F hist
per (u, ρ) defined in equation (52). Finally, travelling breathers are continued in a

single shooting setting F tr
per(u) in equation (55). A single shooting setting is used to

ensure convergence using GMRES.

To obtain the continuation direction, we use a numerically inexpensive secant ap-
proximation [15]. The two points required for the initialisation are obtained by fixing
the continuation parameter ρ and perturbing it to obtain a different parameter value
ρ′ = ρ + hρ. Newton corrections are performed with fixed ρ and ρ′ to obtain the
corresponding zeros u and u′. These two zeros can then be used to find the first con-
tinuation direction v = (u− u′)/||u− u′|| and start the continuation process.

Continuation is generally performed by natural continuation. Whenever this fails to
converge, we switch to pseudo-arclength continuation. After three successful continu-
ation steps, we switch back to natural continuation. The corrections of the stationary
bumps and stationary breathers are calculated by GMRES with a suitable rescaling
of β if this parameter is part of the continuation problem. Travelling bumps and
travelling breathers are corrected using full Jacobian corrections.

The step size h is chosen adaptively such that if the number of corrector steps is
larger than the preferred number of corrector steps, the step size is decreased for the
next iteration and the step size increases if the number of correction steps is small.
Whenever the correction step of the continuation fails we half the step size such that
the estimated new point is closer to the sought curve. The step size is bounded to be
within a predetermined interval [hmin, hmax]. Whenever the step size increases above
hmax the step size is set equal to hmax. In case the step size decreases below hmin the
continuation is halted.
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3.6 Two parameter bifurcation diagrams

We aim to obtain the two-parameter bifurcation diagrams in both the τ–w̄ii parameter
plane to compare to Folias [11] and β–w̄ii parameter spaces of neural field (1) and
in the β–I0 parameter plane of neural field (4) to quantify the effect of the slope
parameter. Numerical continuation of codimension one bifurcations would require the
calculation of second-order derivatives [17, 20]. These calculations are numerically
very expensive and have therefore not been implemented. To obtain these bifurcation
diagrams, we scan the parameter space making use of the developed continuation
schemes to mark the bifurcations in the two-parameter bifurcation diagrams.

Different scanning procedures are used to map parameter space. The different scan-
ning procedures are shown in Figure 6 and consist of scanning between two parallel
bifurcation curves, along a diagonal bifurcation curve, and a procedure to scan along
a horizontal or vertical bifurcation curve. This way, by using meshes, we can find
a complete bifurcation diagram. Codimension two bifurcations cannot be located
directly but we can use our scanning procedures to locate it up to the chosen mesh
size.

Figure 6: Schematic overview of the scanning approaches used for between two bi-
furcation curves in parameter space. (a) shows a scanning procedure to scan between
two bifurcation curves. (b) shows the scanning procedure for scanning along diago-
nal bifurcation curves. Finally, (c) shows the scanning along (mostly) horizontal or
vertical bifurcation curves.
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3.7 Stability analysis of numerical solutions

During the stability analysis of the Heaviside problem in section 2.4.2, we encountered
the integral equation (12). This integral could be calculated explicitly by simplifying
the integral over the Dirac delta function. However, we cannot use this approach for
a Gaussian activation function (3). Therefore, we will calculate the stability of the
patterns by analysing the spectrum of the Jacobian.

Applying neural field (1) defines a finite-dimensional system of equations for the
numerical solution

u̇ = F (u(x)) (67)

for some function F . The stability of this finite dimensional dynamical system can
be calculated by analysing the Jacobian A(x) = ∂F

∂x . The solution u is stable if all
eigenvalues λ1, λ2, λ3, . . . λn, of A satisfy Re[λ] < 0 [15].

The stability of periodic orbits can be derived from the eigenvalues of the Monodromy
matrix Mu(T0) given by the initial value problem{

Ṁu(t) = Ju(t)Y
u(t),

Mu(0) = In,
(68)

defined similarly to the variational formulation for directional derivatives explored
in section 3.4.2. The eigenvalues of the Monodromy matrix describe the stability of
the continued cycle. The periodic orbit is stable if all eigenvalues of the Monodromy
matrix lie in the unit circle [3].

30



4 Results

The numerical continuation schemes outlined in section 3 have been implemented in
MATLAB. We start with numerical simulations of neural field (1) and an investi-
gation into the optimal spatial discretisation in section 4.1.1. After this, the single
parameter scanning results are extended to the complete τ–w̄ii and β–w̄ii parameter
spaces in section 4.1.2. Finally, section 4.2 contains the simulations, single parameter
continuations and scanning results of the neural field with adaptation (4).

4.1 Excitatory - inhibitory Neural field

The excitatory - inhibitory neural field (1) has been simulated and continued making
use of the MATLAB implementation of the methods described in section 3.

Parameter Default value Setting Default value
w̄ee 1 Nx 512
w̄ei 0.84 Correction threshold 10−6

w̄ie 0.8 GMRES maximum iterations 500
w̄ii 0.265 GMRES convergence threshold 10−10

σee 1 Time steps per section n 4
σei 1 Nt 20
σie 1.3 Continuation steps with
σii 1 pseudo-arclength continuation
θe 0.16 after failed natural continuation 3
θi 0.24 Maximum step size hmax 0.05
τ 0.84 Minimum step size hmin 10−6

β 500

Table 1: Default values of parameters and continuation settings.

4.1.1 Spatial discretisation

Different patterns have been integrated numerically at different parameter values,
these are plotted in Figure 3. Travelling breather solutions vary throughout the τ –
w̄ii plane, to illustrate this two different travelling breathers are shown in Figure 7(a)
and 7(b). We have taken c > 0, which implies right travelling waves for the travelling
wave coordinates introduced in section 3.2.2.

Several different patterns have been continued varying a single parameter to inves-
tigate numerical convergence with respect to the spatial mesh. Stationary bumps
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(b) Travelling breather for high w̄ii

Figure 7: Space-time plots of ue(x, t) illustrating different travelling breathers. Other
parameter values as listed in Table 1

have been continued with respect to w̄ii. The maximum value of the bump along the
continued curve has been plotted for Nx ∈ {128, 256, 512, 1024} in figure 8. Spatial
discretisations with Nx ≥ 256 all have very similar results, therefore we can use a
spatial discretisation of Nx = 256.

The stationary breather has been continued with respect to w̄ii in Figure 9 to de-
termine the optimal spatial discretisation, the maximum and minimum values of the
peak along the breather are shown. For Nx ≥ 512 the results are qualitatively similar
and we will use spatial discretisations with Nx ≥ 512.

Breathers in neural field (1) have been continued with respect to τ at different spatial
discretisations. Figure 9 shows continuations started at parameter values listed in
table 1.

4.1.2 Two parameter bifurcation diagrams

The τ–w̄ii parameter space has been scanned using the scanning procedures discussed
in section 3.6. For β = 500, the scanned bifurcation diagram is shown in Figure 10a.
The bifurcation diagram shows a drift-Hopf bifurcation suggested by Folias[11]. An
drift curve of breathers emerges from this drift-Hopf curve which crosses the Fold of
stationary breathers. The curve has been calculated up to w̄ii = 0.33 due to instability
in the continuation of travelling breathers. We also observe the stationary breathers
emerging from the red Hopf curve of stationary bumps destabilizes through a dark
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Figure 8: Convergence of numerical scheme for different values of Nx for the station-
ary bump. The curves have been continued with respect to w̄ii, other parameters are
as listed in Table 1.
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Figure 9: Convergence of numerical scheme for different values of Nx for the station-
ary breather. The curves have been continued with respect to τ , other parameters
are as listed in Table 1.
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blue saddle-node bifurcation curve of stationary breathers. Therefore, no stationary
breathers exist below the dark blue fold curve of stationary breathers. The stability
of the various patterns is calculated by calculating the eigenvalues of the Jacobian,
introduced in section 3.7 and plotted in Figure 13.

At the top of Figure 10a areas with bistability are shown and these are highlighted
in Figure 11. The areas with bistability have been observed and are shown in Figure
11. Two different bistable areas emerge. The left area consists of Stationary bumps
and Travelling breathers. Traversing the drift bump curve we arrive at the right area
where both travelling bumps and travelling breathers coexist.

The same parameter space has also been mapped for β = 300, this is shown in Figure
10b. Qualitatively the bifurcation diagrams of β = 500 and β = 300 are the same
with some quantitative differences. The Hopf and fold curves of both stationary and
travelling breathers move closer together is the most eye-catching difference between
β = 500 and β = 300. These two curves moving together greatly limits the parameter
region in which we can find stable stationary and travelling breathers.

In order to understand the connection between the bifurcation diagrams at β = 500
and β = 300, we scan the β–w̄ii parameter space for τ = 0.90 which is shown in
Figure 12. Figure 12 clearly shows the Hopf curve from which the stationary and
travelling breathers emerge undergo a generalised Hopf bifurcation at β ≈ 230. This
is consistent with the loss of stable breathers observed in Figure 10b with respect to
Figure 10a. The Hopf curve of travelling breathers ends in a drift-Hopf bifurcation at
(β, w̄ii) = (107, 0.291). At this drift-Hopf bifurcation another drift curve of breathers
emerges which ends in another drift-Hopf bifurcation at (β, w̄ii) = (40, 0.366). The
drift curve of bumps connects both areas of travelling bumps into one parameter
region. Furthermore, a fold curve of stationary bumps has been found shown in dark
red. At this curve, the stable bump solutions undergo a fold bifurcation, at which
the stationary bumps destabilise into unstable stationary bumps.

To understand the stability of patterns in Figure 12, we have constructed an overview
of the existence and stability of the patterns in the β–w̄ii parameter space in Figure
14. Due to the instability of travelling breathers, the continuations fail for high
values of w̄ii. Therefore, the region of unstable travelling breathers does not end at
a bifurcation curve but at the w̄ii value continuations failed to converge.
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Figure 10: Bifurcation diagram in the τ–w̄ii parameter space with (a) β = 500 and
(b) β = 300. Other parameter values are as listed in Table 1.
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Figure 11: Bistability in Figure 10b. The top image shows a excerpt of Figure 10a
where bistability exists. Continuation results have been plotted for each of the lines
`i. The value of the amplitude of the breather A plus the wave speed c has been
plotted to show the Hopf and drift bifurcations simultaneously.
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Figure 12: Bifurcation diagram in the β–w̄ii parameter space with τ = 0.90. Black
circles coincide with the Heaviside limit [11]. Other parameter values are as listed in
Table 1.
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(a) Stationary bump (b) Travelling bump

(c) Stationary breather (d) Travelling breather

Figure 13: Stability of the patterns in the τ–w̄ii parameter plane with other param-
eters as listed in Table 1. Green areas indicate the existence of stable patterns. Red
areas indicate the existence of unstable patterns. Orange areas mark areas where
both stable and unstable patterns exist. The existence of travelling patterns is shown
only whenever c > 0 such that the graphs of standing and travelling patterns do not
overlap.
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(a) Stationary bump (b) Travelling bump

(c) Stationary breather (d) Travelling breather

Figure 14: Stability of the patterns in the β–w̄ii parameter plane with other param-
eters as listed in Table 1. Green areas indicate the existence of stable patterns. Red
areas indicate the existence of unstable patterns. Orange areas mark areas where
both stable and unstable patterns exist. The existence of travelling patterns is shown
only whenever c > 0 such that the graphs of standing and travelling patterns do not
overlap.
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4.2 Adaptive neural field

The adaptive neural field (4) has been integrated resulting in three qualitatively
different patterns which are shown in Figure 15. For I0 = 0.9 a stationary bump
solution is shown in the left of Figure 15. The middle figure shows a stationary
breather solution with I0 = 1.9. This stationary breather dies out completely between
the maxima of the breather. Finally, the right figure shows a different stationary
breather at I0 = 1.99 where the breather has a much lower amplitude and oscillates
around the bump solution.
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Figure 15: Integration results for different values of I0 = 0.9 (left), I0 = 1.9 (middle),
and I0 = 1.99 (right). Other parameters are as listed in Table 2.

To find the desired spatial discretisation we continue the stationary breather in the
adaptive neural field (4) for different values of β and Nx. Figure 16 shows the calcu-
lated period throughout the continuation for β = 20, β = 100, and β = 200 against
the external input I0. The period has been plotted because it makes the differences
between the discretisations most clear. Figure 16 makes it is clear that higher val-
ues of β require higher discretisations for accurate results in order to get consistent
cointinuation results. Therefore, we use

Nx =


256 β < 20,

512 20 < β < 100,

1024 β > 100.

In order to connect the different solutions in Figure 15 we construct the bifurcation
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Figure 16: Convergence of the numerical scheme for different spatial discretisations
at different values of β. Other parameters are as listed in Table 2.

diagram at β = 20 shown in Figure 17b. This figure shows a stationary bump solution
that increases destabilizes through a supercritical Hopf bifurcation at I0 = 0.9946.
We follow the blue stationary breather, starting at this supercritical Hopf bifurcation.
First, we encounter unstable breathers for 0.9521 ≤ I0 ≤ 0.9946. At I0 = 0.9521 the
unstable breather stabilizes through a saddle-node bifurcation. This high-amplitude
breather encounters two more saddle-node bifurcations at I0 = 1.9856 and I0 =
1.9530. At this final saddle-node bifurcation, the breathers turn into the smaller
amplitude breather shown in Figure 15(right). This branch of stationary breathers
ends in a subcritical Hopf bifurcation of the stationary breather at I0 = 2.0478 which
stabilizes the stationary bump solution.

When we focus on higher values of β and set β = 100, we encounter a slightly more
complex bifurcation diagram. The stationary breather curve is qualitatively the same
as for β = 20. However, the stationary bump solution undergoes two fold bifurcations
at I0 = 1.3124 and I0 = 1.1649, respectively. This does not change the stability of
the stationary bump as it stays unstable.

Finally, we shift our focus on lower values of β and let β = 6. The stationary bump
is qualitatively the same as for β = 20. The Hopf bifurcation for low I0 has switched
to a supercritical Hopf bifurcation. The emerging stationary bump solution does
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not encounter saddle-node bifurcations and destabilizes through another supercritical
Hopf bifurcation.
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Figure 17: Amplitude at x = 0 for β = 6 (left), β = 20 (middle) and β = 100 (right).
The stationary bump is indicated by the red curves and the stationary breather by the
red curves. Solid and dashed lines represent stable and unstable solutions respectively.

In order to explain the qualitative differences between 17a, 17b, and 17c, we construct
the bifurcation digram in the β–I0 parameter plane. This bifurcation digram is shown
in Figure 18. For (β, I0) = (29.5±0.5, 1.2005±0.0005), we observe a cusp bifurcation
of stationary bump solutions from which two fold bifurcations of stationary bumps
emerge. Another cusp bifurcation is observed at (β, I0) = (10.5± 0.5, 1.947± 0.005)
at which two saddle-node bifurcations of stationary breathers emerge.
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Figure 18: Bifurcation diagram of adaptive neural field (4) in the β–I0 parameter
plane. Red lines indicate the Hopf bifurcation of the stationary bump. Blue curves
indicate fold bifurcations of the stationary bump solution. The yellow curves show
saddle-node bifurcations of stationary breathers.

Parameter Default value Setting Default value
w̄ 1 Nx 128
σ 1 Correction threshold 10−6

σI 1.2 GMRES maximum iterations 500
κ 2.75 GMRES convergence threshold 10−10

τ 10 Time steps per section n 500
I0 1.9 Nt 10
θ 0.375 Continuation steps with
β 20 pseudo-arclength continuation

after failed natural continuation 3
Maximum step size hmax 0.05
Minimum step size hmin 10−6

Table 2: Default values of parameters and continuation settings for continuation of
the adaptive neural field (4).
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5 Discussion

In this project, we set out to identify the effect of the slope parameter on the existence
and stability of patterns in neural field models. Results have been obtained for two
different models, an excitatory - inhibitory neural field model (1) [33] and an adaptive
neural model (4) [21, 22].

5.1 Continuation schemes

We have implemented a continuation scheme based on secant predictions with adap-
tive step size to numerically continue stationary and travelling bumps and breathers
in neural fields. To improve computation time, we have used matrix-free continu-
ation methods based on GMRES to continue stationary patterns. The directional
derivatives have been computed exactly. Stationary breathers have been continued
using a multiple shooting approach to improve convergence along unstable branches.
Travelling bumps and breathers have been continued in travelling wave coordinates
using matrix-free continuation as well. However, due to the convection term in equa-
tion (41), convergence was worse compared to the stationary patterns. By employing
scanning procedures, two-parameter bifurcation diagrams have been obtained. These
bifurcation diagrams map the bifurcations in the τ–w̄ii and β–w̄ii parameter plane of
neural field (1) and the β–I0 parameter plane of neural field (4)

The continuations of neural field (1) have been run on a laptop with an i7-4710MQ
processor with 16GB RAM running Ubuntu 20.04 LTS. One correction step for the
stationary bump with Nx = 512 takes 416 milliseconds on average with 10 GMRES
iterations, one correction for the travelling bump with Nx = 512, Nt = 20 takes
16.7 seconds with 200 GMRES iterations, one correction of the travelling bump with
Nx = 512 takes 2.5 seconds, and one correction of the travelling breather with Nx =
2048 takes about 30 seconds. These runtimes are a big improvement over full matrix
continuation constructed with finite differences where correction for the travelling
breather with Nx = 256 and NT = 20 takes about 30 minutes. Therefore, this is 100
times as slow as our implementation.

The number of GMRES iterations required for the stationary breather scaled with
the number of sections Nt, requiring approximately ten iterations per section. On the
other hand, increasing Nx has no significant influence on the number of GMRES itera-
tions. Larger values ofNx increased the computation time of the numerical integration
when calculating directional derivatives, increasing the computation time.

The limiting behaviour for larger values of the slope parameter shows convergence

43



towards the Heaviside limit. These results are the same as expected because the sig-
moidal activation function converges in measure towards the Heaviside function. Due
to the discontinuity of the Heaviside limit, we cannot use the numerical continuation
method for large values of β; fh(u(x, t)) does not change continuous and numerical
continuation is not applicable.

Next to the stationary and periodic bumps and breathers, neural fields can exhibit
sloshers [9]. Sloshers are asymmetric periodic solutions of the neural field. Although
we have not implemented the continuation of sloshers, this could be performed by
integrating over half the period and employing the asymetricity requiring u(x, t0) =
u(−x, t0 + T0).

5.2 Excitatory - inhibitory neural field model

The excitatory - inhibitory neural field model has been mapped in the τ–w̄ii pa-
rameter plane for β = 500 and β = 300 in Figure 10a and 10b respectively. The
bifurcation diagram with β = 500 corresponds with the numerical simulation results
by Folias[11]. The bistable region and the proposed bifurcation diagrams [11] along
the lines `i in Figure 11 have been confirmed by numerical continuation. Furthermore,
the unstable stationary breathers have been continued to fully map the existence of
stationary breathers in the τ–w̄ii parameter space. In addition to the stable patterns,
we found unstable stationary and travelling bumps and breathers in Figure 13. These
continuations revealed a new fold bifurcation of stationary breathers. Here one eigen-
value of the monodromy matrix crosses the unit circle indicating a stability switch
for breathers.

Comparing the bifurcation diagram of β = 300 with the bifurcation diagram of β =
500, we observe that the fold curve of stationary breathers and the Hopf curve of
stationary bumps move closer together. Therefore, the parameter region in which
stationary breather solutions exists is significantly smaller for β = 300. A similar
change occurs for the lower branch of travelling breather solutions. Equivalent to the
Hopf and fold curves for the stationary breather, the Hopf and fold curves for the
lower branch of travelling breathers move closer together. Therefore, the parameter
region in which stable travelling breathers exist shrinks significantly.

The β–w̄ii bifurcation diagram shows us that unstable breathers exist for low values
of β. Two more drift-Hopf bifurcations have been found for β ≈ 107 and β ≈ 40.
These two bifurcations lie on the same stationary drift curve, and a drift curve of
breathers connects them. Outside of the drift curve of bump solutions, travelling
bump solutions exist. Therefore, we can find travelling bump solutions for β values at
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which no stationary bumps exist. For a stationary bump to exist, the excitatory layer
has to excite itself enough to cancel the inhibitory feedback. However, a travelling
bump can exist; in the absence of inhibition, a travelling bump is excited by the
excitatory layer first. Afterwards, the inhibition overcomes the excitatory input and
the neural field dies out behind the wave, explaining the abundance of travelling
bump solutions.

Two different drift-Hopf bifurcations have been observed in the β–w̄ii parameter
plane. This codimension-two bifurcation has been proposed by Folias [11] and shows
up in our scanning results. The drift-Hopf bifurcation appears when a Hopf bifuca-
tion coincides with a drift bifurcation. At the drift-Hopf bifurcation two additional
bifurcation curves are born: a drift curve of breathers and a Hopf curve of travelling
bumps.

The large dependence on the steepness of the excitatory - inhibitory neural field should
not surprise us by theoretical analysis by Veltz and Faugeras [29] which suggests that
the bifurcation curves of patterns could be disconnected by opening up a transcritical
bifurcation which could be closed by some parameter perturbation.

A sigmoidal activation function with a steepness of β = 300 is still fairly steep
indicated in Figure 2. Therefore, the effect of the steepness parameter is very high
for the excitatory - inhibitory neural field model.

5.3 Adaptive neural field model

The adaptive neural field model has been analysed in the β – I0 parameter plane.
For values of β > 30, the bifurcation diagram does not change qualitatively; the same
patterns emerge. The exact parameter values of the Hopf, fold, and saddle-node
bifurcations changes slightly. Stationary breathers do not change qualitatively for
β > 10. For parameter values of the steepness parameter below β = 10, two saddle-
node bifurcations disappear at the top of the diagram through a cusp bifurcation.
The lower saddle-node bifurcation disappears through a generalised Hopf bifurcation
around β = 7.7. Although the generic unfolding of the Hopf bifurcation along the
curve has been analysed by Folias [10] the saddle-node bifurcations together with the
generalised Hopf bifurcations are new.

The stationary breathers disappear for β < 6 where only stationary bump solutions
remain. The activation function with β = 6 is shown in Figure 2 and is visually
very shallow; whenever the activity of the neural field is zero, it would still excite
itself.
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5.4 Comparison

Comparing the results of the excitatory - inhibitory neural field model with the adap-
tive neural field model raises a difference. The excitatory - inhibitory neural field
model exhibits significant changes for β as high as 250, the patterns in the adaptive
neural field model change at significantly lower values of β. Moreover, in contrast to
the excitatory - inhibitory neural field model, the stable stationary breathers became
more abundant in the adaptive neural field model.

The continuation of stationary breathers did not perform similarly in both neural
field models. The excitatory - inhibitory model has been more friendly towards
the numerical continuation. This difference in performance was mainly due to the
relatively small period T0 < 5 for all breathers in this neural field. The continuation
of stationary breathers in the adaptive model performed worse than in the excitatory
- inhibitory model. The performance hit is due to the period changing T0 = 12,
all the way up to T0 = 30 in some cases. These breathers with large periods are
characterised by long intervals of inactivity. Continuation of these breathers is very
expensive due to the evenly spaced sections.
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6 Conclusion

In this research, we set out to find whether the results of the Heaviside analysis extend
to neural fields with a sigmoidal activation function. We studied both stationary and
travelling bumps and breathers in a 1D excitatory - inhibitory neural field model and
a 1D adaptive neural field model. To investigate the existence and stability of these
patterns we developed the required numerical continuation schemes.

The developed continuation schemes for the stationary bump, stationary breather,
and travelling bump have desirable convergence behaviour. The continuation schemes
can be used to efficiently calculate Hopf and fold bifurcation curves of stationary
bumps, stationary breathers, and travelling bumps. Stability analysis of the travel-
ling bump solutions can be used to calculate Hopf curves at which travelling breathers
emerge. Because of convergence issues of GMRES, the developed continuation scheme
for travelling breathers is a single shooting method. These convergence issues arise
from the unbounded spectrum of the associated operator. Therefore, fold bifurca-
tions of travelling breathers have been numerically expensive to locate. Convergence
of the travelling breather continuation scheme could be improved by, for example,
developing a suitable preconditioner.

The obtained β–w̄ii and β–I0 bifurcation diagrams converge for large values of β.
The convergence of the bifurcation curves is expected and shows consistency in the
obtained results. In the case of the excitatory - inhibitory neural field model, the
curves converge approximately to the bifurcation values found by numerical simula-
tions [11].

The two neural field models have shown different behaviour for lower values of the
slope parameter β. The excitatory - inhibitory neural field model showed a relatively
large dependence on the slope parameter; stable stationary and travelling breathers
disappeared for β < 250. On the other hand, travelling bumps are abundant through-
out the β–w̄ii parameter plane as the travelling bumps do not disappear for low values
of the slope parameter. The β–w̄ii parameter space exhibits two co-dimension 2 Hopf-
drift bifurcations. This bifurcation requires more in-depth research to explore, for
example, its generic unfolding [6] that has not been described in the literature.

The adaptive neural field showed a different response to variations in the slope param-
eter compared to the excitatory - inhibitory neural field model. The β–I0 bifurcation
diagram does not change qualitatively for β > 40. The stationary breathers do not
disappear until β is lower than 10. Finally, the stationary breathers disappear for
β < 6.
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Furthermore, we have not analysed the existence and stability of stationary sloshers.
Analysing stationary sloshers should be possible by numerical continuation by em-
ploying u(x, t0) = u(−x, t0 + T0). Stability analysis of stationary sloshers may point
towards the existence of travelling sloshers.

Obtained results have shown that the effect of the slope parameter is not the same
for neural field models. Different neural field models have different responses to
lower values of the slope parameter. Therefore, we cannot generally assume that
the Heaviside analysis holds for neural tissue. To quantify the effect of the slope
parameter on the existence and stability of patterns in neural fields, neural field
models have to be analysed on a per-model basis using the numerical continuation
schemes developed.
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A Numerical Evans function

During the derivation of the Evans function in section 2.4.2 we have used the Dirac
delta function as the derivative of the activation function which we have used to
simplify equation (12) to the local evaluation of ϕk at ξkn. However, for a sigmoidal
activation function equation (12) does not simplify as before.

In case of the sigmoidal firing rate function, the derivative f ′k does have support on
R. However, for

∣∣x− ξkn∣∣ > 0 the value of f ′k(uk(x)) decays exponentially and we
can approximate f ′k with zero whenever f ′k(x) is smaller than some threshold variable
θzero. This allows us to reduce equation (12) to

Njkϕk =

∫
Ajk

wjk(x− y)f ′k(uk(y, t))ϕk(y)dy (69)

where Ajk = {x|f ′k(uk(x)) > θzero}, figure 19 shows the situation schematically.

Figure 19: Schematic representation of the numerical approximation of f ′k(uk(x))
around the threshold values ξkn. Dashes on the x axis represent the grid points {xl},
θzero is the numerical threshold below which we approximate f ′k(uk(x)) by zero.

This integral can be approximated using the numerical approximation of uk(x) cal-
culated to arrive at

Njkϕk ≈
N∑
l=1

wjk(x− xl)f ′k(uk(xl, t))ϕk(xl)∆x. (70)
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This approximation expands equation (15) to get a matrix equation

M(λ)ψ = F (71)

with

M(λ) =

[
−(1 + λ)I +Mee −Mei

Mie −(1 + τλ)I −Mii

]
(72)

where I is the identity matrix of appropriate size and the matrix elements of Mjk at
(l,m) are given by

Mjk,(l,m) = wjk(xm − xl)f ′(xk(u(xkm))). (73)

Therefore, equation (71) is singular whenever equation (11) has a nontrivial solution.
Due to the scaling of the determinant for large matrices M , evaluating the determi-
nant will not be feasible whenever M is too large. Instead, we find λ and v for which
M(λ)v = 0 by Newton iterations. Given an initial guess (v0, λ0)[

vi+1

λi+1

]
=

[
vi

λi

]
+DF−1(vi, λi)F (vi, λi) (74)

where

F (vi, λi) =

[
A(λ)v
vTv

]
(75)

and

DF (vi, λi) =

[
A(λ) A′(λ)v
2vT 0

]
(76)

In the context of continuation,

[
v0

λ0

]
could be the converged value at the previous

computed point on the curve.
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