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ABSTRACT 

 

The interrelationship between landslide susceptibility and land cover is not a very well explored area of 

science. This study thrives to investigate the way future land cover scenarios characterize future landslide 

susceptibility and vice versa. The modelling approach involves two different scenarios, one where land cover 

can change without any consideration to landslide susceptibility and the other where land cover changes in 

a manner that the landslide susceptibility is well-accounted for a duration of forty years (2010-2050). For an 

inventory of 2018, landslide susceptibility modelling was conducted through a Bayesian version of GAMM 

(Generalized Additive Mixed Model) built in R-INLA, whereas land cover prediction was conducted using 

the DynaCLUE model for 2010’s land cover data. In the scenario where landslide susceptibility is accounted 

for, the outputs of both the models were considered as inputs in each other.  

Results show interesting differences in land cover and landslide dynamics. Changes in land cover with 

landslide susceptibility mitigation measures resulted in low landslide susceptibility as opposed to the one 

where no mitigation measures were in place. Landslide susceptibility dynamics also characterized the 

propagation of different land cover classes over space as directed by the scenario rulesets. 

This modelling approach can set the basis of a further research as well as help policy makers and legislators 

for pre-informed decision making. High resolution and recent datasets can significantly improve the model 

performances while iteration of different scenarios may provide vital insights. 
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1. INTRODUCTION AND RESEARCH PROBLEM 

1.1 General introduction 

The landscape of the earth's surface is characterized by natural and anthropogenic processes. Changes in 

land use can have direct or indirect causes possibly consisting of human actions or a complex human-

environment relationship (Contreras-Hermosilla, 2000; Geist & Lambin, 2002; Ojima et al., 1994). These 

changes in land use can eventually lead to changes in land cover (Lambin et al., 2003).  Changes in land use 

and land cover is a rapid driver of global change and might emerge from natural or anthropogenic causes as 

well as from the interaction of both (Promper et al., 2014; P. Reichenbach et al., 2014; Rindfuss et al., 2004; 

Slaymaker et al., 2009). Landslides are rapid natural processes involving complex mass movements of rock, 

debris or soil from upslope to deposition areas (Cruden, 1991; Cruden & Varnes, 1996; Restrepo & Alvarez, 

2006). They can be triggered by rainfall and/or earthquake, loss of vegetation, etc. (Cendrero & Dramis, 

1996; Sidle et al., 1985; Solonenko, 1977; Thomas, 1994). The way in which landslides are distributed 

spatially is characterized by the climatic and environmental conditions, of which land use/cover is an 

important aspect (P. Reichenbach et al., 2014). 

1.2 Land cover prediction 

Many researchers across the world have used several techniques to predict land use and land cover changes 

in the future. The models commonly used for such purposes can be classified into four broad categories, 

namely: 

• Empirical and statistical models e.g. Markov Chain (MC), regression models, etc. (Bell, 1974; Clark, 

1965).  

• Dynamic models e.g. cellular automata (CA) (Mohmand et al., 2011), agent-based models (ABM) 

(R. B. Matthews et al., 2007), artificial neural network (ANN) (Dai et al., 2005), system dynamic 

(SD) models (Shen et al., 2007), etc. 

• Integrated models e.g. CLUE (Conversion of Land Use and its Effects) (P. H. Verburg et al., 2002), 

DynaCLUE model (P. H. Verburg & Overmars, 2009), etc.  

• Hybrid models e.g. MC, CA and regression (Arsanjani et al., 2012), CLUE and SD (G. Luo et al., 

2010) etc.  

CLUE model (Veldkamp & Fresco, 1996) is a popular modelling approach for predicting land use and/or 

land cover changes and different versions (some modified) of the model e.g. Dyna-CLUE (P. H. Verburg 

& Overmars, 2009), CLUE-S (P. H. Verburg et al., 2002), have been applied in different parts of the world. 

For instance, Kucsicsa et al., (2019) predicted the future land use/cover changes in Romania using a CLUE-

S model,  Oh, Choi, Bae, Yoo and Lee, predicted land cover change in Korea using the CLUE model (Oh 

et al., 2010), studies focused on the impact of land-use change on groundwater system using different 

versions of the CLUE model, i.e. Dyna-CLUE (Lima et al., 2015) and CLUE-S (Dams et al., 2008), Cai et 

al., used the CLUE-S model to simulate land use change in Shenzhen, China (Cai et al., 2004), Oh et al. 

predicted the land cover change based on climate change in Korea using Dyna-CLUE model (Oh et al., 

2011) etc. 

Among other models used to predict land use and/or land cover, LSTM (Long Short Term Memory) model 

(Jia et al., 2017) and the Hopfield Neural Network model (Tatem et al., 2002) can be mentioned.  

Because of the limitations of solo modelling approaches, some researchers find integrated modelling 

approaches more appropriate for modelling such processes (Guan et al., 2011). Some also opt for hybrid 

modelling approaches; for instance, Markov-CA (Cellular Automata) model is a popular integrated approach 

adopted by many researchers across the world to predict land use and land cover (Corner et al., 2014; P. 

Ghosh et al., 2017; Guan et al., 2011; Halmy et al., 2015; Hyandye & Martz, 2017; Karimi et al., 2018); the 
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combined approach of Markov and CLUE-S model has also been tested (Han et al., 2015); CA-ANN model 

is another example of such integrated approach (Rahman et al., 2017), etc.  

1.3 Landslide susceptibility 

Landslide susceptibility is the probability of landslide occurrence triggered by some influencing factors over 

the space (Brabb, 1984). Efforts have been made to evaluate the landslide susceptibility throughout the 

world; many researchers have adopted probabilistic methods (Jibson et al., 2000; S. Lee & Talib, 2005; Luzi 

et al., 2000; Ohlmacher & Davis, 2003; Parise & Jibson, 2000). Some researchers followed the combined 

approach of GIS and data mining techniques e.g. artificial neural network, fuzzy logic, etc. to evaluate 

landslides (Ercanoglu & Gokceoglu, 2002; S. Lee et al., 2003, 2004; Pistocchi et al., 2002); whereas some 

others used the geotechnical and safety factor method (Carro et al., 2003; Gokceoglu et al., 2000; Refice & 

Capolongo, 2002; Romeo, 2000; Shou & Wang, 2003; Zhou et al., 2003).  

Using predictive models to assess landslide susceptibility has been in practice since the early 1990s (Carrara 

et al., 1991). Specifically, landslide predictive models are used to discriminate between locations where 

landslides occurred with respect to the locations where landslides are absent (Atkinson & Massari, 1998; 

Erener & Düzgün, 2012; Luigi Lombardo, Opitz, et al., 2018; Pourghasemi & Rossi, 2017). More recently 

this binary susceptibility paradigm has been extended to the landslide intensity (Luigi Lombardo et al., 2019; 

Luigi Lombardo, Opitz, et al., 2018) where one aims at modelling the full spectrum of landslide count.  

Landslide susceptibility modelling can be estimated on the basis of historical/geomorphological inventories 

and event-specific inventories (Luigi Lombardo & Tanyas, 2020). The former case usually produces 

landslide predictive models which are useful in a relatively long timespan, and specifically for land 

management planning. This is achieved because a historical inventory is not tied to a specific trigger but is 

rather the image of where landslides are distributed in a given landscape across a long period of observation. 

Therefore, the validity of such susceptibility is also spread over a long time. Conversely, event-based 

inventories are specifically induced by a single trigger of known date and time. Therefore, susceptibility 

models generated in such cases are typically used in near-real-time or post-disaster phases. 

In both cases, the available validation routines are similar in nature. It is always possible to split a single 

inventory into two parts, one used for calibration and one used for validation. However, this situation is not 

ideal because one should validate the predictive power of a given susceptibility model on the basis of future 

landslide occurrences. This is rarely done as it is particularly difficult to consistently map landslides in space 

and time (Paola Reichenbach et al., 2018).  

Additionally, a class of susceptibility models chiefly deal with transferring the predictive equations over 

unknown datasets. This is primarily the case for transferability models in space, where one may want to train 

a model to predict landslide occurrences in one geographic area and predict over a different area (L. 

Lombardo et al., 2014).  

As for the process of validation - the foremost requirement of such a model (Begueria, 2006), varies from 

historical to event-specific inventories  (Camilo et al., 2017; C. T. Lee et al., 2008). Statistical simulation can 

also be an efficient validation process where a random number of generated predictive functions can be 

used to test the predictive capabilities of a fitted model on anonymous datasets (Luigi Lombardo & Tanyas, 

2020). Much more rarely, this is done involving the very same geographic area but transferring the predictive 

equation in time (P. Reichenbach et al., 2014). 

1.4 Link between landslides and land cover 

Landslides and the changes of land cover are interrelated, though establishing a direct relationship might be 

complicated (Glade, 2003). Changes in land cover is recognized throughout the world to impact landslide 

occurrence (Glade, 2003). Since historical times many researchers have been focusing on landslide 

occurrence in response to changes in land use and land cover in different parts of the world, for instance 

during the Holocene in Europe and adjacent regions (J. Matthews, 1997), in Canada (Goff, 1997; GOFF & 
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HICOCK, 1995), in New Zealand (Page et al., 1994), in Japan (Tomomi Marutani et al., 1999), etc. 

Moreover, landslides are also known to be the significant and in some parts of the world the main reason 

behind the evolution of the landscape, though they vary in different geological and geomorphological 

environments (Cendrero & Dramis, 1996; González Díez et al., 1996; Restrepo & Alvarez, 2006). 

Different measures have been adopted in different environments within different timescales to establish the 

link between the changes of land use & land cover and the occurrences of landslides (Glade, 2003). For 

instance, Glade (2003) in New Zealand analyzed historical data from newspapers, report, scientific articles, 

and other sources, Marutani et al. studied the sediment generation from landslides resulting from clear-

cutting in Japan (T Marutani et al., 2000), Chen and Huang (2013) evaluated a frequency-area distribution 

analysis in Taiwan, to study the relationship between landslide characteristics and different land use types 

etc. Reichenbach et al. (2014), conducted a study in Messina, Italy, where they generated landslide 

susceptibility maps to show the loss of forest lands and increase of bare lands caused the increase of unstable 

slope units. Land use change caused by anthropogenic factors was also found to cause new landslides or 

reactivate old ones in different inhabited parts of the world (Bruschi et al., 2013; Meusburger & Alewell, 

2008; Vanacker et al., 2003). Glade (2003), showed how land use change altered the sediment generation 

processes in downhill basins in New Zealand. By examining the relationship between tea garden numbers 

and landslide density in northeast Turkey, Karsli et al. concluded that changes in land cover caused more 

landslides (Karsli et al., 2009). In the Andean watersheds Vanacker et al., (2003) used specific hydrologic 

parameter settings in a process-based slope stability model to find that the slope movement susceptibility 

depends largely on the recent land use change.  

1.5 Research problem 

Research works so far, scarcely investigated the future landslide susceptibility based on a future land cover 

scenario. Chung and Fabbri in 2008, attempted to analyse the risk of landslides in Lisbon, Portugal by 

predicting the probability of future landslide occurrence based on some given scenarios and likely 

geomorphologic and topographic factors; the study followed a two stage approach (modified from (C.-J. F. 

Chung & Fabbri, 2005; C. J. F. Chung & Fabbri, 2003) ) and was validated through a cross-validation 

approach (C. J. Chung & Fabbri, 2008).  

Shu et al. investigated the historical, present and future scenario of LULC (Land Use and Land Cover) in 

Pyrenees, Spain to analyse the impact of LULC changes on landslide susceptibility for 150 years, for this the 

authors relied on heuristic and deterministic models to predict landslide susceptibility and on Terrset 

software for predicting future LULC (Shu et al., 2019). The study found a clear influence of land use and 

land cover on landslide susceptibility.  

Nevertheless, the approach to study the dynamic influence of land cover on landslide susceptibility and vice 

versa in a continuous feedback manner has not been found to exist in literature. This area of research is 

quite unadorned and the existing literature shows the need for in depth studies and experimenting with 

different models/techniques in different locations to gain knowledge about the existing and future 

relationship between land cover changes and landslide susceptibility. The research problem for this 

particular study is, therefore, to contribute to this area of scientific research by investigating the dynamic 

influence of future land cover on landslide susceptibility through a suitable methodological approach. 

1.6 Study area 

The proposed study area, Idukki District in Kerala (Figure 1), India – is significantly characterized by 

landslides, since the mountainous Western Ghats cover a major portion of the district (Kalaranjini & 

Ramakrishnan, 2020; Sajinkumar et al., 2011). Several studies documented the presence of continuous land 

use and land cover changes and a sharp increase of annual landslide events in and around the study area 

since 1800  (George & Chattopadhyay, 2001; Jha et al., 2000; Kuriakose, 2010; Raju & Anil Kumar, 2006). 

Idukki has experienced a high population increase predominantly from migration for favourable agro-
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climatic conditions and that eventually led to severe deforestation (Jha et al., 2000; Raju & Anil Kumar, 

2006; Sajinkumar et al., 2011).  

1.7 Background and state-of-art 

India is a country where the occurrences of landslides are becoming more prominent over the years (Barnard 

et al., 2001). According to Rao, four zones of the country namely the western Himalayas, eastern and north-

eastern Himalayas and plateau margins, Naga-Arakkan mountain belt and the Western Ghats along with 

some part of the eastern ghats are most prone to landslides (Rao, 1989).  

Kerala – a state of southwestern India, located along the most significant physiographic and orographic 

feature of the Indian Peninsula- the Western Ghats, experiences a population migration, rapid land use and 

land cover changes and subsequent 

landslides (Kuriakose, 2010; Raju & Anil 

Kumar, 2006).  

Several studies have been conducted in 

Kerala to study landslide susceptibility 

using different techniques. The methods 

include frequency-ratio technique, weights 

of evidence method, a combination of 

Dempster-Shafer, Bayesian probability and 

logistic regression methods, heuristic 

landside susceptibility index (LSI) methods 

etc. (Achu et al., 2020; Ajin et al., 2014; 

Thampi et al., 1998; Vijith & Madhu, 2008). 

The Dyna-CLUE model has been used in 

several locations of India, e.g. to analyze 

deforestation in Mahanadi and 

Brahmaputra river basin (M. D. Behera et 

al., 2018), to predict land use and land cover 

in the Ganga river basin (N. K. Behera & 

Behera, 2020), to study land use dynamics 

of future (2025) using decadal satellite 

images in Mahanadi river basin (Das et al., 

2019), to model the land use of the pre-

industrial time in Karnataka (S. Ghosh & 

Shetty, 2017), to analyze future land cover 

and land use with the prime objective of 

predicting future environmental 

vulnerability in the Dwarakeswar-

Gandheswari river basin (Sahoo et al., 

2019), to inspect the impact of water demand on the hydrological regime as a response to future land use 

and land cover change and climate change in Gandheswari river basin (Sahoo, Dhar, et al., 2018), to predict 

future agricultural sustainability based on future land-use suitability in the Dwarakeswar-Gandheswari river 

basin (Sahoo, Sil, et al., 2018), etc.  

2. RESEARCH OBJECTIVES AND RESEARCH QUESTIONS 

This study aims to analyse the interrelationship between landslide susceptibility and land cover change while 

illustrating their influence on characterizing each other in the future in a continuous feedback manner.  

Figure 1: Study area extent 
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2.1 Overall objective 

Predicting future landslide Susceptibility in Idukki district, Kerala based on the future land cover 

scenario by analyzing the land cover of the past.  

2.2 Sub-objectives 

1. Building a reference landslide susceptibility model trained with morphometric characteristics and 

historical land cover data.  

2. Developing land cover scenarios by analyzing the past land cover change and future development plans. 

3. Estimating the land cover of the future by learning from the past land cover.  

4. Estimating landslide susceptibility using the estimated future land cover scenario.  

2.3 Research questions 

Sub-objective 1: Building a reference landslide susceptibility model trained with morphometric 

characteristics and historical land cover data.  

• What are the most relevant covariates in the landslide susceptibility model? 

• Do the land cover classes show a considerable influence on landslide susceptibility?  

Sub-objective 2: Developing land cover scenarios by analyzing the past land cover change and 

future development plans. 

• What are the prominent general trends in the past?  

• What could possibly be the expected future trends? 

Sub-objective 3: Estimating the land cover of the future by learning from the past land cover and 

landslide susceptibility.  

• How well does the model perform in predicting the determined land cover classes? 

• Does the landslide susceptibility influence the land cover change in the future? 

Sub-objective 4: Estimating landslide susceptibility scenarios in the future according to the 

estimated future land cover scenario. 

• How the landslide susceptibility of the future differs from that of the past in respect to the land cover 

evolution within Idukki? 

• Is there any difference in predicted landslide susceptibility if it is accounted for in the future land cover 

change? 

3. RESEARCH DESIGN AND METHODS 

This chapter elaborates the combined methodological approach followed in this study to attain the 

aforementioned research objectives and answer the associated research questions. The research design 

consists of eight (8) phases through which the modelling methodology has been executed. Figure 2, 

illustrates the methodology process flow.  

3.1 Beginning phase 

3.1.1 Scenario development and setting boundary conditions 

This study aims to investigate the influence of landslide susceptibility and land cover change on each other 

in a continuous feedback manner. It illustrates how changes in land cover in the future contribute to the 

change in future landslide susceptibility and vice versa. A time span of forty (40) years (2010-2050) was 

considered for this study but the modelling process was conducted for eight time steps – each corresponding 
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five years. They are: 2010-2015, 2015 -2020, 2020-2025, 2025-2030, 2030-2035, 2035-2040, 2040-2045 and 

2045-2050. Landslide susceptibility was calculated for the beginning and end year of each time step.  

For better understanding and clarity, adopting a scenario-based approach deemed appropriate. Therefore, a 

number of recent statistics, literature, future development plans were studied as well as an interview with a 

local expert (details mentioned in the Appendices) has been conducted. 

To summarize the acquired information,  Idukki though was recorded to experience a population decline 

(Board, 2014), settlements were reported to be doubled during 1990 to 2012 (Ramachandran & Reddy, 

2017). Idukki often requires shifting of settlements due to landslide occurrence or susceptibility (KSDMA, 

2018, 2019). To provide for the past loss of agricultural plantation, in 2021 the government has announced 

new projects to promote agricultural plantation (The Hindu, 2021). Reserved forests and wetlands are 

planned to be preserved and protected from conversions in the future (Board, 2014), though Idukki has 

been successfully controlling deforestation (Ramachandran & Reddy, 2017). Though Ramachandran and 

Reddy (2017) has recorded settlements to be doubled from 1990 to 2012, as a part of the 2030 plan - all 

sorts of constructions would be highly regulated (Board, 2014). According to the local expert, the villagers 

or land-owners are allowed to retain the ownership of their lands in landslide susceptible areas as well as 

continue agricultural activities but they are not allowed to live there anymore. The government also conducts 

some plantation activities as a part of a future plan in landslide susceptible areas.  

Based on this information, for this research two different scenarios for both land cover and landslide 

susceptibility prediction have been developed.  

• Scenario – 1: Business as usual / No landslide mitigation (NL): Land cover changes without any 

consideration of landslide susceptible zones. No private or public actions taken to account for the high-

risk zones. Protected areas remain intact without any conversions. In the following parts of this 

document (including figures) the abbreviation- “NL” has been used to represent this scenario. 

• Scenario – 2: Sustainable future / With landslide mitigation (WL): Land cover changes in a pre-

meditated and controlled manner to account for landslide susceptibility. Controlled private or public 

actions are taken to reduce risk and effective land cover zonation policies are in effect. Land cover 

changes normally (business as usual) in non-susceptible areas whereas risk reduction measures e.g. 

plantation are undertaken in susceptible areas. Protected areas remain intact without any conversions. 

In the following parts of this document (including figures) the abbreviation- “WL” has been used to 

represent this scenario. 

It was also assumed that in both the scenarios, the land cover demands for each year remain the same but 

for scenario-2 (sustainable future) land cover changes are only allowed in non-susceptible areas. Land cover 

and landslide susceptibility was estimated for every 5 years, for both the scenarios from 2010 to 2050.  

For scenario -2 (sustainable future), land cover of the final year of each time step (5 years) was used to 

calculate landslide susceptibility of that year, which was then used to estimate land cover of the final year of 

the next time step. In other words, for scenario-2, the outputs of the model are considered as inputs of the 

landslide susceptibility model and vice versa, for better illustration of their influence on each other. 
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Figure 2: Methodology process flow 
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It was also assumed that in both the scenarios, the land cover demands for each year remains the same but 

for scenario-2 (sustainable future) land cover changes are only allowed in non-susceptible areas. Land cover 

and landslide susceptibility were estimated for every 5 years, for both scenarios from 2010 to 2050.  

For scenario -2 (sustainable future), the land cover of the final year of each time step (5 years) was used to 

calculate landslide susceptibility of that year, which was then used to estimate land cover of the final year of 

the next time step. In other words, for scenario-2, the outputs of the model are considered as inputs of the 

landslide susceptibility model and vice versa, for better illustration of their influence on each other. 

 

3.2 Input data 

Several datasets from different sources with different resolutions were acquired for this research. The 

datasets and their sources are briefly presented in Table 1. 

3.2.1 DEM (digital elevation model) 

For this study, the ASTER DEM with 30m resolution was selected which is made available by NASA, 

METI, AIST, Japan Spacesystems and U.S.-Japan ASTER Science Team (2019). It was subjected to 

thorough inspection and corrections for potholes/sinks within the study area in the preparation phase.  

Table 1: Source and details of input datasets 

 

Data type Source Description 

Digital elevation model 
(dem) 

Aster dem 30m resolution; good for modelling 
purposes. 

Soil data Soilgrid (www.soilgrids.org) 
(hengl et al., 2017) 

Global soil properties dataset with 
250m resolution. 

Selected parameters: bulk density, 
cation exchange capacity, clay, coarse 
fragments, soil ph, sand, silt and soil 

organic carbon 
Selected depth: 60-100 cm 

Land cover data Kerala state disaster management 
authority (ksdma) 

(www.sdma.kerala.gov.in ) 
 

Level 2 land cover data of 2010 
 

Landslide point data Doi:10.17026/dans-x6c-y7x2 
(westen, 2020) 

Point data of landslides mapped in 
2018 (June to August). 

Rainfall data Worldclim (www.worldclim.org) 
 

Bioclimatic variables – annual average 
precipitation (bio12) – 30s 

 

Road network data Kerala state disaster management 
authority (ksdma) 

(www.sdma.kerala.gov.in ) 
 

Major roads of Idukki – linear 
features 

Protected area data Protected planet – world 
database of protected areas 
(unep-wcmc & iucn, 2021) 
(www.protectedplanet.net) 

Authoritative data on protected areas 
and other effective area-based 

conservation measures. 

http://www.soilgrids.org/
http://www.sdma.kerala.gov.in/
https://doi.org/10.17026/dans-x6c-y7x2
http://www.worldclim.org/
http://www.sdma.kerala.gov.in/
http://www.protectedplanet.net/
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3.2.2 Landslide point data 

A database of landslide point data created in 2018 for the entire state of Kerala, was acquired for this study 

(Westen, 2020). The database was created based on two inventories which were based on object-based image 

analysis (OBIA) and field surveys. Out of a total of 4728 landslides, 2477 by OBIA, 973 by field survey, 422 

by both OBIA and field surveys and 856 were mapped by visual interpretation of Google Earth imageries 

(Hao et al., 2020; Westen, 2020). 

3.2.3 Soil data 

The soil properties data were acquired from www.soilgrids.org; this dataset is a set of global maps of soil 

properties for six depth intervals and has a resolution of 250m (Hengl et al., 2017). Eight soil parameters 

were selected for the study, namely: bulk density, cation exchange capacity, clay, coarse fragments, soil pH, 

sand, silt and soil organic carbon. The selected depth range of the obtained parameters was 60-100 cm.  

3.2.4 Land cover data 

For this study, acquiring relevant land cover data, using that as a covariate in the susceptibility model and 

also for predicting the future land cover, are part of the initial goal. Therefore, the land cover data of the 

year 2010 was acquired from the Kerala State Disaster Management Authority (KSDMA). This dataset was 

selected because of its accuracy, reliability, collection method and completeness. The acquired land cover 

dataset was thoroughly examined and the Level-2 data was selected for it having the optimum level of details 

for the modelling purpose. 

3.2.5 Rainfall data 

The rainfall data used in this study was acquired from WorldClim (Fick & Hijmans, 2017) – 30 seconds 

bioclimatic variables. This dataset contains the annual rainfall average for the initial year 2010 (the same year 

as the acquired land cover data). 

3.2.6 Road network data 

The major road network data was acquired from KSDMA (Kerala State Disaster Management Authority). 

The dataset contains only the major roads of the Idukki district as a linear feature.  

3.2.7 Protected area data 

Idukki contains a significant extent of protected areas that are maintained by the local government. The 

dataset containing the spatial extent of the protected areas in Idukki was acquired from Protected Planet 

(www.protectedplanet.net) (UNEP-WCMC & IUCN, 2021). Figure 15, shows the spatial extent of the 

protected areas in Idukki. 

3.3 Preparation phase 

3.3.1 Masking out landslides  

Out of 4728 mapped landslides in the Kerala-wide dataset, a subset of 2223 landslides was created that are 

located within the study area – Idukki district. In this stage, the landslide dataset was pre-processed and a 

matrix containing their presence or absence on the selected mapping unit level was prepared. 

3.3.2 Correction of resolution and clipping 

All the datasets used in both the landslide susceptibility and land cover change model were projected to the 

same local coordinate system (UTM Zone 43N). A resolution of 100 meters was considered optimal for this 

study and all the acquired datasets were resampled to this resolution to maintain uniformity. The number of 

pixels, as well as the number of rows and columns, were also matched within the datasets to avoid errors 

during the modelling process explained in the following sections. All the input datasets were also ‘clipped’ 

to maintain their spatial extent as per that of the study area. 

http://www.soilgrids.org/
http://www.protectedplanet.net/
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3.3.3 Computing location factors / covariates 

The acquired datasets were used as location factors in the land cover model and as covariates in the landslide 

susceptibility model. The list of all the covariates/location factors considered in this study is presented in 

Table 2.  

All the acquired soil properties, elevation and slope calculated from the DEM, Euclidean distance to roads 

and the rainfall data were considered as location factors in the reference land cover model. Additionally, for 

the ‘WL’ scenario (see section 3.1.1), the calculated landslide susceptibility of the final year of the previous 

time step was considered also as a location factor for modelling the land cover of the next time step. 

A plethora of factors contribute to slope stability, slope dynamics and the occurrence of landslides (Juang 

et al., 1998; Lv et al., 2017). As considered in a number of relevant studies (Luigi Lombardo, Opitz, et al., 

2018; Luigi Lombardo & Tanyas, 2020; L. Luo et al., 2020), slope and elevation were calculated from the 

DEM in a GIS platform and used as morphometric covariates (Luigi Lombardo, Saia, et al., 2018; Paola 

Reichenbach et al., 2018). Euclidean distance to roads and the acquired soil properties were also 

incorporated as locational covariates along with the size and shape of slope units as a mapping unit. The 

land cover data (past or estimated future scenarios) were considered as entropic covariates in the landslide 

susceptibility model. 

3.4 Mapping unit definition 

For this study, two different mapping units were used for landslide susceptibility and land cover modelling. 

For the land cover model (built-in DynaCLUE v2.0 - section 3.6.1), it is vital to use grid-cells as has been 

implemented with a native structure that only makes use of raster data. But for the landslide susceptibility 

model (built in R-INLA - section 3.5), the mapping unit could be either grid-cells or slope-units.  

For this study, slope unit was chosen, which are geographical objects bound by ridges and streamlines 

(Alvioli et al., 2016). The reason behind this choice is mainly geomorphological; in fact, when a theoretical 

landslide occurs, unless of extremely large proportions, it initiates and propagates within the same slope 

unit. Therefore, this spatial partition reflects the morpho-dynamic behaviour of a landslide. 

Moreover, considering the area of interest of this study (Idukki), which covers an entire district and contains 

a large number of landslides (Westen, 2020), grid-cells as a mapping unit might have a massive number of 

pixels requiring enormous computational time  for landslide susceptibility modelling in R-INLA than that 

of the slope units. Hence, slope unit was considered as the most suitable mapping unit for susceptibility 

modelling in this particular study. Slope units were calculated from the DEM using the “r.slopeunits” 

software (Alvioli et al., 2016; Luigi Lombardo et al., 2019),  where a small slope unit area is targeted to ensure 

that the landscape is well represented. 

Finally, all the selected covariates or location factors were aggregated to the respective mapping units chosen 

for both models. As for the feedback process (WL scenario), where the outputs of the landslide susceptibility 

modes are passed as an input for the land-cover prediction model, and vice-versa, an additional processing 

step is required. In fact, the output of the landslide susceptibility is expressed at the slope unit scale and 

needs to be downscaled at the pixel resolution required to run the land cover change model. In other 

words,the output of the land cover change model needs to be upscaled to the slope unit resolution, and this 

step is consistent irrespective of the NL or WL scenarios.  
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Table 2: List of location factors / covariates 

Serial No. Name 
Source/ Name of input 

dataset 
Used in 

1 Bulk density Soil data 
Both land cover and landslide 

susceptibility model 

2 Cation exchange capacity Soil data 
Both land cover and landslide 

susceptibility model 

3 Clay content Soil data 
Both land cover and landslide 

susceptibility model 

4 Coarse fragments Soil data 
Both land cover and landslide 

susceptibility model 

5 Soil pH Soil data 
Both land cover and landslide 

susceptibility model 

6 Sand Soil data 
Both land cover and landslide 

susceptibility model 

7 Silt Soil data 
Both land cover and landslide 

susceptibility model 

8 Soil organic carbon Soil data 
Both land cover and landslide 

susceptibility model 

9 Elevation DEM 
Both land cover and landslide 

susceptibility model 

10 Euclidean distance to roads Road network data 
Both land cover and landslide 

susceptibility model 

11 Slope steepness DEM 
Both land cover and landslide 

susceptibility model 

12 Rainfall Rainfall data Only in land cover model 

13 Predicted land cover 
Land cover data of 2010 

and outputs of land cover 
model 

Only in landslide susceptibility model 
(both NL and WL scenarios) 

14 Predicted landslide susceptibility 
Output of landslide 

susceptibility model 

Only in land cover model (WL 

scenario) 

 

3.5 Susceptibility modelling phase 

The landslide susceptibility model used for this study is a Bayesian version of a binomial Generalized 

Additive Mixed Model (GAMM) (Brenning, 2008; Luigi Lombardo et al., 2020) with necessary 

modifications. The reasoning for choosing a Bayesian framework to model landslide susceptibility is to 

estimate the uncertainty in the landslide prediction (Luigi Lombardo & Tanyas, 2021). This allows for a 

robust simulation step (see section 3.7.2) where the posterior distributions of each model component are 

used to randomly generate a number of predictive functions to be solved for the same morphometric 

characteristics and the changing land cover distribution in space and time. GAMM models are reported to 

be extensively used in landslide susceptibility studies (Nefeslioglu et al., 2008; Paola Reichenbach et al., 

2018). The model has a several implementations in R-studio (Team, 2013), one of which can be run by using 

the library R-INLA (Bakka et al., 2018; Martins et al., 2013). R-INLA was opted for due to its ability to 

precisely and promptly calculate Bayesian statistics (Rue et al., 2017). For landslide susceptibility calculation, 

the model used for this study can be summarized as: 
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η(P) = β0 + β1X1 + …… + βm Xm + f (Yn) 
 

3.1 

In equation 3.1, η is the logit link, β0 is the global intercept, β1 to βm are the estimated regression coefficients 

of the corresponding covariates used linearly in the model and f represents a non-linear function of the ‘Y’ 

covariate discretized in a n number of classes. In this study, the chosen non-linear function is a first order 

random walk (RW1) (Bakka et al., 2018). The difference between GAMs and GLMs (Generalized Linear 

Model) is that, GLMs can only feature linear or fixed effects whereas GAMs is an extension that can feature 

different non-linear relationships (Luigi Lombardo & Tanyas, 2021). For the detailed procedure and 

scripting, the step-by-step methods of Lombardo et al. (2019) were followed.  

In order to ensure that all the co covariates have comparable effects, they were rescaled with mean zero and 

unit variance (L. Luo et al., 2020). The regression coefficients were then estimated and the associated 

distributions were extracted at this stage.  

From the estimated distribution of each regression coefficient, simulations were developed. Meaning that a 

number of predictive functions were extracted from the estimated regression coefficients’ distributions and 

these were solved for all the time-invariant predictors which were kept constant, and for the time-variant 

component related to the land-cover. This means that the element corresponding to the land cover 

responsible for the landslide occurrences in 2010, was substituted with the estimated future land-cover 

(more explanation in section 3.7.2).  

This procedure enables estimating the way landslide susceptibility may change in spatial patterns as a 

function of the spatial pattern of a potential future land-cover.  

Slope, as known to have a random effect in various literature (Luigi Lombardo & Tanyas, 2020; L. Luo et 

al., 2020), was modelled as a first order random walk (RW1) with adjacent-class dependency (Lindgren & 

Rue, 2008). Whereas all the other covariates including land cover classes were considered as a fixed effect. 

In other words, they were modelled as linear covariates. 

3.6 Land cover prediction phase 

3.6.1 DynaCLUE modelling 

For estimating the future land cover the Dyna-CLUE model (P. H. Verburg & Overmars, 2009) was used 

in this study, which is a modified version of the CLUE-s model (Castella & Verburg, 2007; P. H. Verburg 

et al., 2002). The spatial allocation of demands for land cover types acts as the base of the model, whereas 

the model combines a top-down and bottom-up approach for allocating land-use change to grid cells and 

determining the conversions of land cover types respectively (P. H. Verburg & Overmars, 2009).  

3.6.1.1 Model structure and functioning 

The model consists of one spatial and one non-spatial module. The land cover data of the starting year, 

restriction policies, and drivers are considered as input for the spatial module whereas locational 

characteristics, land cover conversion settings, conversion elasticity, demand information, and convergence 

conditions are the inputs of the non-spatial module (M. D. Behera et al., 2018; N. K. Behera & Behera, 

2020). 

The change of the area of the given land-use types are calculated within the non-spatial module and is 

considered as the demand input for the spatial module to allocate demands to grid cells in an iterative 

process until the demand has been satisfied (P. H. Verburg & Overmars, 2009).  

The influence of the location factors on a particular land cover type to occur in a specific grid-cell can be 

explained through a binomial logit function in equation 3.2 , where ‘Pk’ refers to the probability of that grid 

cell to have that particular land cover class in location ‘k’, ‘F’s refer to the location factors and ‘β’s refer to 
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the regression coefficients calculated from a logistic regression where the land cover is considered as the 

dependent variable (P. Verburg, 2010).  

𝑙𝑜𝑔(
𝑃𝑘

1 − 𝑃𝑘
) =  𝛽0 + 𝛽1𝐹1,𝑘 +  … … … . + 𝛽𝑛𝐹𝑛,𝑘 3.2 

The total probability calculated by the model is the sum of location suitability, neighborhood suitability, 

iteration variables (representing competitive advantage of one land cover class over another) and conversion 

elasticity (P. Verburg, 2010; P. H. Verburg & Overmars, 2009). Equation 3.3, shows the total probability 

calculation, where Ptotal, Ploc, Pnbh, CElas and ItVar are total probability, location suitability, 

neighborhood suitability, conversion elasticitiy and iteration variable respectively, whereas, k, t and lc 

represent location/grid-cell, time and land cover type respectively. 

𝑃𝑡𝑜𝑡𝑎𝑙𝑘,𝑡,𝑙𝑐 = 𝑃𝑙𝑜𝑐𝑘,𝑡,𝑙𝑐 + 𝑃𝑛𝑏ℎ𝑘,𝑡,𝑙𝑐 + 𝐶𝐸𝑙𝑎𝑠𝑙𝑐 + 𝐼𝑡𝑉𝑎𝑟𝑙𝑐 3.3 

The location and neighborhood suitability are ascertained by empirical methods, expert and process 

knowledge, analysis, etc. The conversion elasticity determines the cost of conversion of the initial land cover 

types to another (P. H. Verburg & Overmars, 2009). Through a conversion matrix, the model determines 

which conversions are allowed for each type of land cover classes by taking the spatial policies and 

restrictions into account (N. K. Behera & Behera, 2020; P. H. Verburg & Overmars, 2009). 

3.6.2 Analyzing historical data 

For estimating the future land cover scenarios, the land cover of 2010 along with the demand assumed from 

the future development plans, current statistics and expert opinion was used (see section 3.1.1). The level 2 

data of this dataset was considered in this study and the listed land cover classes were aggregated to eight 

(8) classes as per their relevance. Table 3, enlists the reclassified new land cover classes used for this study 

along with the class names in the level-2 dataset from which they were originally assigned from. 

Table 3: List of land cover classes 

Number Assigned new land cover class Class name in L-2 data/assigned from 

1 Villages / Built-up Villages (rural) 

2 Cropland Crop land (paddy), fallow 

3 Agricultural plantation Plantation 

4 Grassland Grassland, land with or without scrub 

5 Forest Evergreen/semi-evergreen, deciduous (dry/moist) 

6 Forest plantation Forest plantation 

7 Waterbodies Water bodies, river/stream, reservoir 

8 Rocks & others Barren rocky/stony waste, mining/industrial wasteland 

Eight binary maps were prepared for each of the land cover classes and converted to ASCII file format. The 

protected area extent map was also used in this stage to apply restrictions to the land cover allocation 

process.  

3.6.3 Extracting regression coefficients and calibrating the model 

For the model to be able to detect, all the individual land cover classes and location factor maps were 

converted to binary and then to ASCII file format. A total of fifteen location factors were considered in this 

study, including landslide susceptibility for the ‘WL’ scenario, whereas for the ‘NL’ scenario, the landslide 

susceptibility did not have any influence on the model as a location factor. The land cover classes: 

‘waterbodies’ and ‘rocks & others’ were assumed to be static throughout the timeline, hence they were also 

considered as location factors for this study. The model needs four system files namely, ‘demand’, ‘alloc1’, 

‘allow’ and ‘main’ to perform and these were prepared based on all the location factors. Besides, the 

protected areas were considered as the “region1” file, which would not allow any changes within its extent. 
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3.6.3.1 Alloc1 file preparation 

The ‘alloc1’ file includes the regression results for each land-cover type (except for the waterbodies and 

rocks & others) with all the significant location factors that might control the suitability of a location for the 

specific land-use type.  

Before conducting the regression in a statistical software, the GIS data are converted to a supported file 

format for a statistical software using the “convert.exe” tool provided with the Dyna-CLUE package (P. H. 

Verburg & Overmars, 2009). Each land cover type was converted one by one with all the location factors 

using the convert tool. The resultant stat files were imported in SPSS (IBM, 2019). In SPSS, all the stat files 

were subjected to binary logistic regression with a forward-conditional method where the specific land cover 

types were considered as dependent variables. The Alloc1 file was constructed as per the outputs obtained 

from the “variables in equation” block. Regression was conducted for six land cover types except for 

‘waterbodies’ and ‘rocks & others’, as they were considered static. Hence, for these two classes a fixed 

regression coefficient: 0.5 was used in the ‘alloc1’ file (Figure 16). 

3.6.3.2 Allow file preparation 

The ‘allow’ file contains the conversion matrix that determines the specific grid cells that are allowed to 

convert to other land use types and restricts those that are not (Figure 16). The value “0” and “1” of a cell 

indicates that conversion is respectively not allowed and allowed (P. Verburg, 2010). The number code of 

the land cover types starts from 0, so for this study, the land cover type code ranges from “lc0” to “lc7”. 

As per the knowledge gained from expert opinion and recent statistics (see section 3.1.1), for the ‘NL’ 

scenario we assumed that all the land cover classes can convert to their own classes, but ‘grasslands’ and 

‘forests’ can convert to ‘villages’ and ‘agricultural plantations’. In other words, ‘villages’ and ‘agricultural 

plantations’ can replace ‘grasslands’ and ‘forests’.  As for the ‘WL’ scenario, the same rules were assumed to 

be applicable but only in the ‘non-susceptible areas. It is crucial to mention here that for the land cover 

model for the ‘WL’ scenario, ‘susceptible’ and ‘non-susceptible areas are defined using a fixed susceptibility 

threshold of 0.95 from the susceptibility generated by the land cover model (in section 3.5) while passing it 

on to the land cover model as a location factor (explained at the beginning of section 3.6.3). 

3.6.3.3 Demand file preparation 

The demand file contains the land requirements of each year for all the land cover types. This helps the 

model to allocate land cover changes as per the land requirements for each year while keeping the difference 

between both in an iterative way (P. Verburg, 2010). The first line of the demand file contains the number 

of years including the initial year. The following lines of the demand file contain the individual requirements 

of all land cover types in a way that the total area (number of pixels) remains the same in each year (P. 

Verburg, 2010).  

For this study, we assumed that from 2010 to 2050, ‘villages’ and ‘agricultural plantation’ would increase by 

25% and 10% respectively, which they would gain from the ‘grasslands’ and ‘forests’ (in low susceptible 

areas in the WL scenario; see section 3.6.3.2) to maintain the total count of pixels. As per these assumptions, 

villages and agricultural plantations had 0.56% and 0.24% annual growth rate respectively. The annual 

growth rate was calculated from the compound annual growth rate equation suggested by Fernando (2021), 

equation 3.4 shows the modified version of it. 

The demand file was populated considering the annual growth rate for the specified land cover types while 

maintaining the total count of pixels within the study area in each year (Figure 16). 
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𝐶𝑜𝑚𝑝𝑜𝑢𝑛𝑑 𝑎𝑛𝑛𝑢𝑎𝑙 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 = (
𝐹𝑖𝑛𝑎𝑙 𝑦𝑒𝑎𝑟′𝑠 𝑑𝑒𝑚𝑎𝑛𝑑

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑦𝑒𝑎𝑟′𝑠𝑑𝑒𝑚𝑎𝑛𝑑
)

1
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑦𝑒𝑎𝑟𝑠 − 1 3.4 

3.6.3.4 Setting main parameters/main file preparation 

The main file contains the values of several factors required for the model to run properly, e.g., number of 

land cover types, the maximum number of factors in one regression, conversion elasticity (0 – 1), iteration 

variables, etc. The iteration variables used for this study were ‘0.4’ for ‘cropland’, ‘agricultural plantation’, 

‘forest’ and ‘forest plantation’, ‘1’ for ‘villages’ and ‘waterbodies’, ‘0.3’ for ‘grassland’ and ‘0.2’ for ‘rocks & 

others’. This indicates that a relative competitive strength (P. Verburg, 2010) assigned to the ‘villages’ and 

‘waterbodies’ were the highest and lowest for ‘rocks & others’ (Figure 16).  

3.6.4 Aggregating to mapping unit level 

The predicted land covers were used in the landslide susceptibility model as a covariate. Hence, the predicted 

land cover generated from the DynaCLUE model were aggregated to the slope unit level and applied as an 

input in the statistical simulation stage (see section 3.7.2).  

3.7 Validation and simulation phase 

3.7.1 Multi-fold cross validation 

For the validation, a multi-fold cross validation routine was adopted, and it was an internal validation 

performed only for one landslide inventory (2018) as a reliable multi-temporal description of landslide 

occurrences is not available after this period. The dataset was split into two parts, one for fitting the model 

and one for validating it through a series of constrained Bootstrap replicates. Overall, 90% of the data was 

used to train the model and 10% was used for the validation. More specifically, the same random process 

was repeated ten times to generate ten mutually exclusive subsets, whose union represent the entirety of the 

study area. In other words, at each random extraction the following one was constrained to not sample the 

same slope units as the previous, thus creating ten 10% partition of Idduki. To estimate the actual 

performance for each validation, the ROC (Receiver Operating Characteristics) curves and AUCs (Area 

Under the Curve) were computed. 

3.7.2 Statistical simulation 

As mentioned in, section 3.5, the reference model returned a posterior distribution of potential regression 

coefficients. These were exploited in this simulation stage by removing the land cover component mapped 

in 2010. And, by adding instead the forecasted land cover for a specific future scenario. In reality, we 

generated 1000 simulations from these distributions and substituted the land cover component from the 

reference fit with the predicted future land cover, for a total of 16 combinations and 1000 simulations for 

each case. These 16 combinations consist of 8 scenarios, one every 5 years from 2010 to 2050, and the two 

different territorial management strategies, with (WL) or without (NL) landslide mitigation practices in place. 

This way, we projected changes in the susceptibility patterns, due to the changes in the land management 

practices. Since the simulated susceptibility outputs and predicted land cover inputs in this stage needed to 

be represented through their respective mapping units, intermediate downscaling and upscaling steps were 

involved in this stage.  Figure 3, adopted from Luo et al., (2020), represents a summary workflow to provide 

better visualization of the simulation stage adopted in this study. For each year and from the 1000 

simulations generated, we then extracted the mean predictive map to represent the central tendency, 

together with the distance measured from the 2.5 and 97.5 percentiles to measure the 95% credible interval 

of all the simulated scenarios.  
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Figure 3: Process flow of statistical simulation (modified from Luo et al., 2020) 
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4. RESULTS AND DISCUSSIONS 

This chapter consists of the generated results of all the processes performed in chapter 3: ‘Research design 

and methods’ as well as the discussions required to facilitate clearer insight. This was done through two 

broad sections namely ‘Land cover modelling’ and ‘Landslide susceptibility’. This chapter also includes an 

overall discussion, associated uncertainties and limitations and implications of further studies in three 

different sections.  

4.1 Land cover modelling 

This section contains an overview of the land cover modelling performed in section 3.6 and analyzes the 

predictive performance, presents the regression results and the model outputs with necessary explanations.  

4.1.1 Regression outputs 

As mentioned in section 3.6.3.1, a binary logistic regression was conducted individually for six (6) land cover 

classes considering a specific land cover class as the dependent variable and all the location factors (other 

than landslide susceptibility) as independent variables. The number and type of the significant variables for 

each land cover class were different. For ‘villages’, ‘cropland’, ‘agricultural plantation’, ‘grassland’, ‘forests’ 

and ‘forest plantation’ classes the number of significant variables was 5, 9, 11, 8, 11 and 8 respectively. Table 

4 lists all the location factors used in the regression and their respective significance for all the land cover 

classes. The regression coefficients of all the significant location factors for their particular land cover class 

were extracted and using those the “alloc1” file was prepared (Figure 16). 

Table 4: Location factors and their significance as per regression 

Test 
Variable(s) 

Villages Cropland Agricultural 
Plantation 

Grassland Forest Forest 
Plantation 

Bulk 
Density 

Not Significant Significant Significant Not Significant Significant Significant 

Cation Significant Significant Significant Significant Significant Not Significant 

Clay Not Significant Not Significant Significant Significant Significant Not Significant 

Coarse Significant Not Significant Significant Significant Significant Significant 

DEM Not Significant Significant Not 
Significant 

Not Significant Not 
Significant 

Not Significant 

Euclidean 
Distance to 

Roads 

Significant Significant Significant Not Significant Significant Significant 

pH Not Significant Significant Significant Significant Significant Not Significant 

Rainfall Not Significant Significant Significant Significant Significant Significant 

Sand Significant  Significant Significant Significant Significant 

Silt Not Significant Significant Significant Significant Significant Significant 

Slope Not Significant Significant Significant Significant Significant Significant 

Soil 
Organic 
Carbon 

Significant Significant Significant Not Significant Significant Not Significant 
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4.1.2 Predictive performance 

To analyze the model’s performance in predicting the probability of each of these land cover classes based 

on their significant location factors (according to the regression results), we computed the ROC curves and 

AUCs. Table 5 contains the AUCs for six land cover classes (‘villages’, ‘cropland’, ‘agricultural plantation’, 

‘grassland’, ‘forests’ and ‘forest plantation’).  

Table 5: AUCs (Area under the curves) of land cover prediction model 

Land Cover Class AUC Performance Indicator (Yang & Berdine, 2015) 

Villages 0.757 Excellent 

Cropland 0.855 Excellent 

Agricultural 
Plantation 

0.855 Excellent 

Grassland 0.643 Acceptable 

Forests 0.839 Excellent 

Forest Plantation 0.731 Excellent 

 

Figure 4 shows the ROC curves for ‘cropland’ and ‘agricultural plantation’ – the two land cover classes with 

the best predictive performance (AUC 0.855). ROC curves of the rest of the land cover classes are presented 

in Figure 17. 

 

According to Yang & Berdine (2015), other than the ‘grassland’ class, the model performance in predicting 

all the other land cover classes was “excellent”. The model’s performance was the best in predicting 

“cropland” and “agricultural plantation” and the worst in predicting “grassland” class. Though the model 

performance for grassland can be considered “acceptable” by some scholars (Yang & Berdine, 2015), it can 

be considered “poor” by some others (Mandrekar, 2010).  

To better understand the spatial extent of the probability for each land cover class we also computed the 

probability maps using the DynaCLUE v2.0’s built-in function. The probability maps of ‘cropland’ and 

‘agricultural plantation’ is presented in Figure 5 and the rest of the maps are presented in Figure 18 and 

Figure 19. 

Figure 4: ROC curves of cropland (left panel) and agricultural plantation (right panel) 
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The missing parts in the northern and southern parts of the probability maps indicate the extent of the 

protected areas (Figure 15), and so the model did not calculate any probability for those areas. It’s noticeable 

from the probability maps that all the land cover classes show different probabilities but some show 

significant variation. This occurs perhaps for the scenario based rule set and the allowed conversion settings 

implemented in the model as well as the pre-dominant location of a certain land cover class. For instance, 

agricultural plantations show a widespread high probability of occurrence whereas waterbodies show no 

probability throughout the study area other than very high probability in some places. Such differences 

occur because ‘agricultural plantation’ had an increased demand in the final year, allowed to replace other 

land cover types and was predominantly widespread, whereas waterbodies are modelled as ‘static’ and not 

allowed to covert to or from any other land cover classes, therefore the probability is very high only in its 

predominant locations.  

4.1.3 Land cover model outputs 

The land cover model was first run for the ‘NL’ scenario for each time step (8 time steps: 2010-2050) without 

considering the landslide susceptibility. For the ‘WL’ or the landslide mitigation scenario, the model was run 

next for each time step with the simulated landslide susceptibility (outputs from section 3.7.2). Additionally, 

the same conversion rules were applied to both the scenarios but for the ‘WL’ scenario, conversions were 

only allowed in ‘non-susceptible zones (see explanation in section 3.6.3.2). A total of sixteen (16) land cover 

maps were prepared (8 for each scenario) and presented in Figure 20 - Figure 24. The land cover map of 

the initial year as acquired from the dataset of 2010 with the redefined classes is presented in Figure 6. The 

predicted land cover maps of the final year (2050) for both the scenarios are presented in Figure 7. 

 

 

Figure 5: Probability maps of cropland (left panel) and agricultural plantation (right panel) 
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It is clearly visible from the presented maps 

that the conversions took place as directed by 

the scenario rule sets. Replacement of 

grasslands by agricultural plantations is the 

most apparent phenomena from visual 

inspection. 

To visualize the differences of the land cover 

maps of both the scenarios for each time 

step, we calculated their individual 

differences and presented them through 

maps in Figure 26 and Figure 27. Only the 

final year’s (2050) difference of estimated 

land covers is shown in Figure 8. As seen in 

the difference maps, in the initial years the 

differences were very low between the two 

scenarios (notable: no difference in 2015). 

Though in the latter years some differences 

are noticeable along the northern parts, 

differences over the years are also mostly 

confined around the central Idukki. The 

differences were low in the initial years 

perhaps because of the fact that the scenario 

rule sets take a considerable amount of time 

to show notable differences, besides the 

modelling resolution might also be an 

imposing factor. Additionally, the northern 

and southern parts are mostly covered by the 

protected areas, thus no changes occurring in 

those directions can be justified. The 

landslide susceptibility differences occurring 

also in the central part of the study area 

(Figure 14), could be a significant imposing factor as it is considered as a location factor in the ‘WL’ scenario. 

The pixel differences among the land cover scenario difference maps for each time step is presented in 

Table 6. As the maps suggest, the year 2050 has the highest difference in terms of changed pixel count 

(0.5%-pixel change). 

Table 6: Pixel differences of land cover scenario difference maps 

Year 
Changed Pixel 

Count 
Unchanged Pixel 

Count 
Total Number of 

Pixels 
Percent Pixel 

Change 

2015 0 436803 436803 0% 

2020 262 436541 436803 0.06% 

2025 415 436388 436803 0.10% 

2030 691 436112 436803 0.16% 

2035 981 435822 436803 0.22% 

2040 1337 435466 436803 0.31% 

2045 1733 435070 436803 0.40% 

2050 2168 434635 436803 0.50% 

Figure 6: Land cover of year 2010 (Starting year) 
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Difference maps were also calculated for the initial year (2010) and the final year (2050) for both the 

scenarios, and they are presented in Figure 9 with their in-between difference map. Additionally, their pixel 

count differences (for each time step) are also presented in Table 7. 

Table 7: Difference between 2010 & 2050 (Scenario NL, WL and scenario difference) 

 

It is evident from Figure 9, that for both scenarios the model successfully predicted future land cover with 

substantial difference between the starting and the final year as directed by the scenario conditions. The 

difference for each scenario appears quite spread out whereas the scenario difference shows they were 

varying mostly in the central part of Idukki. Table 7 suggests that there was almost no difference between 

the scenarios (only ‘1’ extra pixel count in WL scenario, no change in percent pixel change) but their in-

between difference (scenario difference) was about 0.49% (pixel change). That indicates that land cover 

Scenario 
Changed 

Pixel Count 
Unchanged Pixel 

Count 
Total Number of 

Pixels 
Percent Pixel 

Change 

Scenario NL 19085 417718 436803 4.37% 

Scenario WL 19086 417717 436803 4.37% 

Scenario 
Difference 

2147 434656 436803 0.49% 

Figure 7: Estimated future land cover of 2050 (Left panel: 'No landslide mitigation' scenario, 
Right panel: 'With landslide mitigation' scenario) 
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changes took place from 2010 to 2050 in different locations in different scenarios, though there is a 

negligible difference in their pixel count. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Centralized land cover changes are perhaps influenced by the coarse resolution of the input datasets and 

also the landslide susceptibility being centralized (though landslide susceptibility and land cover influence 

each other in scenario 2). The restriction introduced by the protected areas is also a substantial factor in this 

regard. 

 

  

Figure 8: Difference between scenarios in 2050 
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Figure 9: Land cover difference between the first (2010) and final (2050) year; TL : NL scenario, TR: WL scenario, Bottom: 
Difference between scenarios (TL vs. TR) 
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4.2 Landslide susceptibility 

The outputs of the landslide susceptibility model developed in R-INLA (Bakka et al., 2018) along with the 

simulation results are presented in this section. The effect of the covariates, predictive performance of the 

model and the generated susceptibility and uncertainty maps are also presented and discussed in the 

following subsections. 

The landslide model was ran initially for the year 2010. Its structure featured the variables whose effects on 

the landslide occurrences were modelled linearly (fixed effects) and a variable assumed to behave non-

linearly (random effect). The latter corresponded to the mean slope steepness per slope unit, the ordinal 

structure of which was retained in the model by imposing an adjacent class dependence.  

For both the scenarios considered in this study, the landslide susceptibility model was ran for each time 

steps from 2010 to 2050. Land covers of the final year of each time step (from the land cover model outputs 

of both scenarios) were used to calculate 

landslide susceptibility of that year.  

4.2.1 Covariates’ effects 

We considered both fixed and random 

effects in this study. Figure 10 shows the 

significant fixed effects (top) and random 

effect (bottom) estimated for the slope 

steepness.  

The narrow posterior distributions of these 

covariates suggest that the model well 

estimated the contribution of each 

parameter with respect to landslide 

occurrences. As the covariates were rescaled 

by mean zero and unit variance in a pre-

processing step, their respective posterior 

distributions are expressed in the same 

unitless scale, making their contribution to 

the model comparable (L. Luo et al., 2020). 

Clay mean and clay standard deviation show 

remarkable influence on the susceptibility 

pattern, which is also the highest of all the 

covariates. This can be interpreted in terms 

of clays’ expansion capacity when imbued 

with water during a rainfall event. An 

opposite effect has been estimated for the 

bulk density. In this case, one can assume 

that a greater density implies greater 

compaction of the soil cover draping over 

the bedrock. Thus, greater compaction 

should be associated with a proportional 

cohesion, which in turn may reduce the 

probability of landslide occurrence per slope 

unit.  It is crucial to mention that five land 

cover classes (‘villages’, ‘agricultural 

plantation’, ‘grassland’, ‘forest’ and ‘forest 

plantation’) show a significant and positive 

influence on the landslide susceptibility, of 

Figure 10: Top: Significant fixed effects (blue dots depict the posterior 
mean and black dots depict 95% CI); Bottom: Random ordinal effect of 
slope steepness (blue line highlights the mean and black lines highlight 

95% CI) 
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which ‘agricultural plantation’ influences the susceptibility pattern the most. These agricultural plantations 

mostly correspond to cardamom, cinnamon, tea and some other herbs and shrubs. Their influence on slope 

instability may be mostly due to the way local farmers manage the slope. The harvesting cycle for such plants 

is quite frequent, thus as the plants are removed, the soil surface gets exposed to rainfall discharges and 

weathering. 

As shown in Figure 10, the distribution of slope steepness depicts a clear non-linear trend, behaving as a 

sigmoidal function. This sigmoid rapidly increases the landslide susceptibility as the mean slope steepness 

per slope unit increases, up to approximately 22 degrees. After that, there is an inversion that still presents 

positive regression coefficients until 29 degrees and becomes much more uncertain and negative on average 

for steepness values up to 45 degrees. This is a typical trend for slope steepness especially when shallow 

landslides are involved. An important reminder here is that the slope steepness is an aggregation over the 

whole slope unit, which means that the higher portion of the mapping unit will most likely exhibit an even 

higher steepness. Therefore, for average steepness values greater than 30 degrees per slope unit, the common 

source areas for landslides will not have much soil available because, at very high steepness, even common 

erosional processes would remove the soil cover. Hence, the negative contribution to the susceptibility at 

high steepness conditions (>30) as well as at very low steepness conditions (<8) coincide with floodplain 

characteristics. 

4.2.2 Predictive performance 

The model performance was estimated via a multi-fold cross validation (10-fold) scheme. This operation 

was executed by splitting the whole dataset into two subsets, one where 90% of the data is contained and 

used to train our model and the complementary 10% data used for validation. This random partition was 

repeated ten times, at each time constraining the 10% extraction to not share any slope unit with the others. 

This in turn produces ten 10% subsets that are mutually exclusive and represent the variability of the whole 

study area. As presented in Figure 11, each validation was estimated by using ROC (Receiver Operating 

Characteristics) curves and their area under the curve (AUC) distributions.  

 

As for the ROC curves, (left) they clearly do not spread, which graphically confirms the very low variability 

among cross-validated subsets. This is once again depicted in the AUC distribution (right), where the 

interquartile distance is less than 0.03 and the difference between the maximum and minimum AUC is less 

than 0.05. 

Figure 11: Left: Ten cross validated ROC curves of the reference landslide susceptibility model; 
Right: Associated AUC distribution 
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4.2.3 Susceptibility model outputs 

The reference landslide susceptibility model was run for the landcover of 2010, the resulting landslide 

susceptibility and the associated uncertainty are reported in Figure 12. Higher susceptible zones are mostly 

noticeable in the central sector of Idukki.  

The subsequent scenario simulations at changing land cover have been run for two situations, one where 

no landslide mitigations strategies are put into place by local authorities and on a private accord (denoted as 

‘NL’, which stands for No-Landslide mitigation) and the other one where local authorities and land-owners 

act on unstable slopes (i.e., slope units previously estimated with a probability of landslide occurrence equal 

or greater than 0.95) by assigning different mitigation strategies (denoted as ‘WL’, which stands for With-

Landslide mitigation). For both the mitigation scenarios, the landslide susceptibility model was ran with a 

time step of five (5) years, keeping all morphometric covariates the same and varying the land cover 

distribution in accordance with the respective simulations obtained from the land cover model’s output. In 

other words, for each scenario landslide susceptibility was calculated for eight (8) years: 2015, 2020, 2025, 

2030, 2035, 2040, 2045 and 2050. 

All the generated landslide susceptibility and uncertainty maps are presented in Figure 28 - Figure 35 and 

only the final year’s (2050) susceptibility and uncertainty maps of both the scenarios are presented in Figure 

13. Judging from the low uncertainty values in all the maps, it can be said that the model performance in 

simulating landslide susceptibility was quite satisfactory. To better visualize the differences between both 

the scenarios, difference maps for all simulated years were also prepared and presented in Figure 36 & Figure 

37. The difference maps were prepared by subtracting the landslide susceptibility simulated for WL scenario 

from the susceptibility simulated for the NL scenario (No landslide mitigation – With landslide mitigation). 

Figure 12: Calculated landslide susceptibility (left panel) and uncertainty (right panel) of year 2010 
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Figure 14 shows this difference for year 2050. There, the clear difference between the two mostly resulted 

in positive values indicate a larger landslide susceptibility for the NL scenario with respect to WL scenario. 

Figure 13: Simulated landslide susceptibility (top and bottom left) and uncertainty (top and bottom right) of 2050; 
Top panels: NL scenario, Bottom panels: WL scenario 
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This is to be expected, as in scenario NL, no consideration to slope instability mitigation strategies is given 

whereas in scenario WL the land cover is constrained to include mitigation measures to account for landslide 

susceptibility (see section 3.1.1). 

It is also noticeable from the difference maps of each time step, that in the initial years the differences are 

quite low and it increases with time, also the differences become more noticeable in the central part of 

Idukki. Land cover changes being confined to central Idukki as well as their differences being low in the 

initial years are probably the reasoning behind this. 

4.3 Overall discussion 

In order to assess the reciprocal influence of landslide susceptibility and land cover, it was crucial for the 

land cover classes to appear significant in the susceptibility model. Five out of the eight selected land cover 

classes actually show a mean regression coefficient and a significant posterior distribution. This supports 

the logic of following this methodological approach. However, it should be noted that the mean regression 

coefficients are quite small compared to those estimated for other covariates (see Figure 10).  

This in turn implies that the susceptibility model is mostly controlled by morphometric characteristics and 

that the variations in the simulations, as the land cover changes, may be only slightly visible as it actually 

appeared. This being said, the overall proposed workflow is at least theoretically correct, because despite 

Figure 14: Difference of landslide susceptibility in 2050 
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the relatively small contribution of land cover, the overall model performance is constantly above the 

“excellence” AUC threshold. 

From the presented landslide susceptibility, land cover and the difference maps, it is apparent that the 

changes over the years mostly occur around the central part of the study area. The scenario differences of 

landslide susceptibility maps imply that if land cover changes in the future can be directed in a manner that 

essentially addresses the landslide susceptible zones (through risk reduction measures e.g. 

afforestation/reforestation/plantation activities), then the number of landslide susceptible zones becomes 

less than the scenario where no consideration was given towards landslide susceptibility.  

4.4 Novelty in modelling approach 

Investigating the influence of landslide susceptibility and land cover change on each other through a 

continuous feedback process is a novel modelling approach as per best knowledge. Besides, calculating 

landslide susceptibility using R-INLA is a relatively new area of research and such an approach have not 

been adopted to calculate landslide susceptibility in the study area – Idukki or in Kerala. Estimating future 

land cover change using the DynaCLUE model is also a growing field of research and in the context of the 

study area this model has not been used to estimate land cover of the future. Overall, the combined approach 

of predicting future landslide susceptibility based on a separately estimated future land cover scenario using 

R-INLA and DynaCLUE models is a novel approach. In terms of statistical modelling, the combination of 

Bayesian (for landslide susceptibility) and Frequentist (for land cover) approach also introduces modelling 

novelty in the study. 

4.5 Uncertainties and limitations of the study 

Other than the associated uncertainties of both the landslide susceptibility and land cover models, an 

additional degree of uncertainty was also introduced to this study from a number of factors.  

Firstly, the two scenarios that we considered in this study were developed mostly based on an “educated-

guess” from the knowledge gained from statistics, literature, future development plans and expert opinions. 

We have used the land cover data of the past and modelled until present and beyond, but the modelled 

outputs of until present (e.g., until 2021) might be very different from the reality. In scenario-based 

modelling approaches this is quite common as such approaches do not necessarily thrive to represent reality 

as it is but create simplified versions of reality through different scenarios. Which not only gives the 

advantage of incorporating the broad local knowledge and future plans but also aids in extensive analysis 

(Swetnam et al., 2011).  

As all the input datasets were resampled to a certain (100 meter) resolution to maintain uniformity (specially 

for the land cover model), the upscaling and downscaling of datasets might have caused a loss of some 

details (Singh & Kumar, 2017). In other words, 100m resolution might be a bit too coarse for modelling 

fine details, especially because an additional aggregation step is required to express the modelled information 

at the respective mapping unit for both models. 

During the modelling process, the outputs of the landslide susceptibility and land cover model needed to 

be repeatedly converted to raster from vector and vice versa, for the output of one to be regarded as input 

of the other. This process might have also introduced a degree of uncertainty and loss of details for the 

algorithms used by the GIS platform to perform such conversions (Arnone et al., 2016). 

To implement WL mitigation strategy, we informed the land cover model of the unstable slopes by using a 

fixed susceptibility threshold equal to 0.95. This choice is arbitrary and we opted for it as the most 

conservative one we could come up with. For instance, any slope unit with an estimated susceptibility greater 

than 0.95 should be very unstable and therefore most likely to undergo a slope failure in the future. However, 

even slope units with 0.9 < susceptibility < 0.95 could experience slope instability, which we did not account 

for. So, an additional degree of uncertainty may originate from the probability threshold one may choose. 
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4.6 Implications of the study 

The methodological approach followed in this study provides a novel framework for assessing the 

interrelationship between future land cover and landslide susceptibility. The outcomes of this study though 

might not replicate exact reality, they can provide crucial insights of what can be expected in the future in 

respect to the applied scenario rulesets.  

Calibrating the models with high resolution and more recent datasets can significantly improve the model 

outputs whereas iterating this modelling approach for more scenarios would certainly give greater insight, 

and therefore, help in efficient decision making. Incorporating predictive meteorological modelling with the 

framework proposed in this study would also unveil a new area of research and provide outputs that can 

better resemble reality. 

This study can set the basis for numerous fields of scientific research such as vulnerability and risk studies, 

urban planning, geological studies, agricultural research, forestry, watershed management studies and so on. 

The local government if not directly make use of the outcomes, can surely use this framework to have a 

glimpse of the future.  

More specifically, this framework can be used to analyze what might happen in the future if certain choices 

are made in the present and based on that formulate effective policies, enact relevant construction and 

agricultural legislations, assemble efficient preparedness and mitigation plans and accordingly educate the 

mass population for ultimate capacity development. This in turn would reduce landslide risk significantly, 

increase community resilience and redefine sustainable land use while exploiting land cover in a pre-

informed and planned manner.  

 

5. CONCLUDING REMARKS 

The effects of future land cover dynamics on landslide susceptibility do not only possess great research 

importance but also of extensive importance in terms of legislation and practical applications. In order to 

meet the overall objective, the methodology followed in this study estimated future land cover until 2050 

and using that information predicted future landslide susceptibility. The following paragraphs attempt to 

address each sub-objectives and the associated research questions with a view to facilitating greater 

comprehension. 

Sub-objective: 1: Building a reference landslide susceptibility model trained with morphometric 

characteristics and historical land cover data. 

As explained in section 3.5, using the INLA libraries in R, a (Bayesian version of GAMM model) reference 

landslide model was built based on the land cover data of year 2010. Besides the redefined land cover classes, 

a number of morphometric covariates were used to train the model. The outputs of the model aid in 

answering the two associated research questions.  

• What are the most relevant covariates in the landslide susceptibility model? 

In this study, slope steepness was modelled non-linearly and the rest of the covariates were modelled linearly. 

Slope steepness thus, having a random effect on the susceptibility showed a sigmoidal behavior depicting a 

significant increase of landslide susceptibility as the slopes get steeper until about 29°. From thereafter, it 

shows high uncertainty and a negative influence. Of the fixed effect covariates, clay mean and clay standard 

deviations showed highest positive significance whereas bulk density mean had a significant negative 

influence on the landslide susceptibility.  

• Do the land cover classes show a considerable influence on landslide susceptibility?  
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Out of eight land cover classes considered in this study, five classes (‘villages’, ‘agricultural plantation’, 

‘grassland’, ‘forest’ and ‘forest plantation’) were found to have a significant and positive influence on the 

landslide susceptibility (see section 4.2.1). Though, ‘cropland’ was found to have the most effect than the 

four other land cover classes, in comparison to the morphometric covariates the effect of land cover classes 

on the landslide susceptibility was quite low (see Figure 10).  

Sub-objective 2: Developing land cover scenarios by analyzing the past land cover change and 

future development plans. 

For this study we developed two scenarios initially for estimating the future land cover and using that the 

future landslide susceptibility scenarios. The scenarios denoted as ‘NL’ and ‘WL’ represent two situations 

where no consideration is given to landslide susceptibility and landslide susceptibility is well-accounted for 

with necessary mitigation strategies in the other (explained in 3.1.1). 

• What are the prominent general trends in the past?  

Statistics show that Idukki experienced a population decline in the past (Board, 2014) but the settlement 

showed an increasing trend (Ramachandran & Reddy, 2017). The fact that the settlements often had to be 

relocated due to landslide occurrences could be the reason behind this. It was also understood that Idukki 

experienced some losses in terms of ‘agricultural plantation’. ‘Forests’ (also forest plantation) and 

‘waterbodies’ are well protected and did not experience any significant change over the years.  

• What could possibly be the expected future trends? 

As suggested by future development plans and expert opinions, agricultural plantations are expected to 

increase as budgets have been allocated within the study area to invest more in this sector. Villages are also 

likely to increase following the past increasing trend and settlement relocations. Protected areas containing 

mostly forest plantations and waterbodies are not likely to change other than having some fringe effects.  

Sub-objective 3: Estimating the land cover of the future by learning from the past land cover and 

landslide susceptibility.  

• How well does the model perform in predicting the determined land cover classes? 

According to the logistic regression conducted for the land cover classes individually (other than 

waterbodies and rocks as they are modelled as ‘static’), the predictive performance of the model was tested 

through AUCs and ROC curves. Cropland and agricultural plantations have the highest AUC value (AUC 

= 0.855) of all the land cover classes. For the other land cover classes, the model performed also relatively 

well other than the ‘grassland’ class. AUCs for ‘villages’, ‘forests’ and ‘forest plantation’ were 0.757, 0.839 

and 0.731. Whereas for ‘grassland’ the model performance was just acceptable/poor (as argued by different 

researchers) as the AUC was 0.643. 

The DynaCLUE model also calculated probability maps for each land cover class, where significant and 

logical probability distribution across the study area were noticed for different land cover types. The model 

also performed well in not assigning any probability within the protected areas (more explanation in section 

4.1.2).  

• Does the landslide susceptibility influence the land cover change in the future? 

As modelled in the ‘WL’ scenario (with landslide susceptibility mitigation scenario) the future land cover 

was estimated using the calculated landslide susceptibility (of the initial year of each time step) as a location 

factor. The outcomes suggest that there were some notable differences between the predicted land cover of 

the two scenarios. Though in the initial years there are little to no differences, the differences become more 

prominent in the latter years. So, it can be asserted that the landslide susceptibility influenced and 

characterized the predicted land cover (see section 4.1.3). 
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Sub-objective 4: Estimating landslide susceptibility scenarios in the future according to the 

estimated future land cover scenario. 

• How the landslide susceptibility of the future differs from that of the past in respect to the land cover 

evolution within Idukki? 

As elaborated in section 3.5 and 3.7.2, the land cover component was used as a time variant fixed effect 

covariate in the calculation of landslide susceptibility. Hence, the susceptibility results are characterized by 

the estimated land cover scenarios. As portrayed in section 4.2.3, the calculated susceptibilities show 

significant differences over the years. Though its mostly confined (high susceptible zones) to the central 

part of the study area, it shows some increases and decreases as per the mapping unit. In other words, over 

the time span modelled in this study, landslide susceptibility increases and decreases in different locations 

as a response to the estimated future land cover dynamics. 

• Was there any difference in predicted landslide susceptibility if it is accounted for in the future land 

cover change? 

The landslide susceptibility was calculated for two scenarios as mentioned in section 3.1.1. The results 

suggest that if landslide susceptibility is accounted for through mitigation measures, then the susceptibilities 

over the years show a declining trend as opposed to the scenario where landslide susceptibility is not 

accounted for. As portrayed in Figure 14, the susceptibility increases in the NL scenario as compared to the 

WL scenario for the final year (2050), clarifies that there were more slope units (as a mapping unit) 

experiencing increased susceptibility than those experiencing a decrease in respect to the estimated future 

land cover.  

It is crucial to mention here that this study was designed based on two different scenarios with specific 

rulesets. Though, the scenarios were developed mostly based on an ‘educated-guess’ from expert opinion, 

statistics and future plans, it tried to reflect reality to a great extent. Hence, the actual reality might have 

substantial difference with the outcomes of this study.  

However, the modelling approach followed in this study and the outcomes can be an important tool for 

policy formulation, planning and future developments. It also sets the basis for further research in a plethora 

of scientific fields.  
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APPENDICES 

Name of Interviewed local expert: Dr. Sekhar L. Kuriakose 

Designation: Head, Kerala State Emergency Operations Centre – Member Secretary (Ex-officio) 

 

 

 

  

Figure 15: Protected Areas of Idukki 
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Figure 16: DynaCLUE system files (TL: Alloc1 file, TR: Main file, Middle: Demand file, Bottom: Allow file) 
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Figure 17: ROC curves of villages (top left), grassland (top right), forests (bottom left) and 

forest plantation (bottom right) 
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Figure 18: Probability maps of villages (TL), grassland (TR), forest (BL) and forest plantation (BR) 
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Figure 19: Probability maps of waterbodies (L) and Rocks & others (R) 
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Figure 20: Estimated future land cover (NL scenario) (2025, 2030, 2035, 2040) 
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Figure 21: Estimated future land cover (NL scenario) of 2045 

Figure 22: Estimated future land cover (WL scenario) (2015 & 2020) 
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Figure 23: Estimated future land cover (WL scenario) (2025, 2030, 2035, 2040) 
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Figure 24: Estimated future land cover (WL scenario) of 2045 

Figure 25: Estimated future land cover (WL scenario) (2015 and 2020) 
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Figure 26: Difference between land cover scenarios (2015, 2020, 2025 and 2030) 
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Figure 27: Difference between land cover scenarios (2035, 2040 and 2045) 
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Figure 28: Simulated landslide susceptibility (2015, 2020, 2025 & 2030) – Scenario NL 
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Figure 29: Simulated landslide susceptibility (2035, 2040 and 2045) - Scenario NL 
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Figure 30: Simulated landslide susceptibility (2015, 2020, 2025, 2030) - Scenario WL 
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Figure 31: Simulated landslide susceptibility (2035, 2040 and 2045) - Scenario WL 
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Figure 32: Simulated uncertainty (2015, 2020, 2025, 2030) - NL scenario 
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Figure 33: Simulated uncertainty (2035, 2040 and 2045) - NL scenario 
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Figure 34: Simulated uncertainty (2015, 2020, 2025 and 2030) - WL scenario 
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Figure 35: Simulated uncertainty (2035, 2040 and 2045) - WL scenario 
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Figure 36: Landslide susceptibility differences (2015, 2020, 2025 and 2030) 
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Figure 37: Landslide susceptibility differences (2035, 2040 and 2045) 


