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Summary

Queueing networks are used in many different applications to analyse processes on
performance measures, like expected waiting time and number of customers present
in a system. When we consider a queueing network with general arrival and service
processes, these performance measures cannot always be determined in closed form.
If this is the case, approximation methods or simulation are often used to analyse the
system.

In this thesis we develop a method to determine the capacity planning in a queueing
network. This capacity planning should satisfy two conditions. Firstly, at least a certain
percentage of the customers must finish certain parts of a route through the network
within a given target time. Secondly, the servers must work efficiently, meaning that
not more capacity is added than needed to satisfy condition one. In order to satisfy
both conditions we combine an approximation method called the Queueing Network
Analyser (QNA) and Discrete Event Simulation into an iterative method in order to
determine the capacity planning.

This iterative method is first tested on a simple queueing network, for which the optimal
capacity planning is known. We observe here that the capacity allocation determined by
the iterative method is very close the theoretical optimum for this network. After that
we conduct a case study for the cancer department of the Dutch hospital ZGT located
in Hengelo and Almelo. This case study shows that the capacity given by the iterative
method strongly depends on the initialisation of the method. Therefore, we propose
a different initialisation method at the end of the thesis. Lastly, we conclude that the
iterative method developed in this thesis combines QNA and optimisation well and is
suitable for capacity planning problems with strict completion time requirements.
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Chapter 1. Introduction

Chapter 1

Introduction

A queueing network is a collection of stations, each with one or multiple servers and a
waiting room. Customers or jobs arrive to the network with a certain rate and follow a
route through it, encountering multiple stations. When a customer arrives at a station
and the server is busy, the customer waits until it is his turn to be served. By transform-
ing a complex real-life process into a queueing network, one can analyse performance
measures of the system like the expected waiting time and number of customers present.

Queueing networks have a wide range of applications and are often used to evaluate
the performance of manufacturing and communication systems, see among others the
reviews [1] and [2]. For some special cases, like Jackson networks with exponential
interarrival and service times [3] [4], and Kelly Whittle networks [5] the performance
measures can be determined in closed form. Furthermore, a technique called Mean
Value Analysis can be used to obtain the expected value of performance measures for
single queues with exponential interarrival times and general service time distributions
[6]. For the vast majority of queueing networks, where exponential interarrival or
service times are not natural anymore, information about the waiting time and number
of customers in the system cannot be determined in closed form [6]. For these queueing
networks simulations or approximation methods can be used [7].

Both simulation and approximation methods have advantages and disadvantages. A
simulation can resemble the behaviour of a complex network very well, but this method
is also known for its computational costs and becomes intractable when a network
should be analysed multiple times [8]. An example of an approximation method is the
Queueing Network Analyser, or for short QNA, presented in 1983 in the paper of Whitt
[9]. QNA is a parametric decomposition method, which decomposes a queueing net-
work into single queues. The only parameters required for this method are the first and
second moment of both the interarrival times of customers entering the network and
the service times of customers at stations. This enables us to approximate the perfor-
mance measures of a queueing network with only a small amount of input variables
and computational steps and hence in a limited amount of time. However, since it is an
approximation method the results could differ from reality.
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Chapter 1. Introduction

In this thesis we are interested in the capacity needed at every station in a queueing
network to satisfy the demand, while satisfying strict requirements regarding comple-
tion times of parts of a customer’s route. With strict requirements we mean that at least
a certain percentage of the customers must finish their route part within a given time.
One way to solve this would be to assign a very high capacity to every station. However,
most application fields for queueing networks have constraints on the available capacity.
Hence, the servers’ time should be used efficiently and no unnecessary capacity should
be added. For this problem we formulated the following research objective:

We aim to design a capacity allocation method for queueing networks, where we minimise
the sum of capacities needed to meet the strict requirements regarding the completion times
of customers’ route parts.

The capacity allocation method developed in this report uses both QNA and simula-
tion. We propose to use the advantage of one technique – closely resembling reality for
simulation and low computational costs for QNA – to compensate for the disadvantage
of the other – high computational costs for simulation and an approximation error for
QNA. We have to take into account here that when QNA is used in combination with
standard optimisation techniques, the objective function should be convex in order to
be certain that an optimum can be found by these methods. Since the performance
measures, like the waiting time and number of customers in the system, depend non-
linearly on both the first and second moment of the service time in QNA, this is not the
case for this problem [10]. Therefore, we design an iterative method that uses QNA to
come to a capacity allocation fast and that uses simulation to check whether the given
allocation actually satisfies the completion time requirements. We answer the following
sub-questions:

1. In what way is QNA used for optimisation in literature?

2. What problems do we face when we use QNA for optimisation and how can these
problems be overcome?

3. How can we combine QNA and simulation in order to incorporate the strict comple-
tion time requirements?

4. How well does the designed method perform?

To answer the last sub-question, we check the method with a simple test network, for
which we can determine the performance measures in closed form. Afterwards, the
iterative method is used in a case study for the Dutch hospital ZGT. At the beginning
of 2022, this hospital will open an outpatient oncology clinic, where multiple oncology
professionals work together and have outpatient appointments. For this clinic we want
to know the needed capacity to handle the demand for outpatient appointments and
satisfy the requirements set regarding completion times of stages in a patient’s hospital
journey.

This report is organised in the following way. In Chapter 2 we discuss the litera-
ture available about QNA in combination with optimisation problems and answer sub-
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Chapter 1. Introduction

question 1. Thereafter, in Chapter 3 we adress sub-question 2 and give a description of
the queueing network and the mathematical formulation of the problem. Additionally,
Chapter 3 considers sub-question 3 and contains a description of the developed iterative
method to find the optimal capacity allocation. We answer sub-question 4 by looking at
a small test network and the case study for the Dutch hospital ZGT in Chapter 4. Lastly,
in Chapter 5 we draw a conclusion using the results of our iterative method and end
with recommendations for further research. An overview of all mathematical notation
introduced in this report can be found in Appendix A.
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Chapter 2

Literature review

In this chapter we look at the research done regarding the Queueing Network Analyser
in combination with optimisation. QNA was developed by Bell Laboratories and was
first introduced under this name in [9]. The method is an extension of the decomposi-
tion method introduced in [11] by Reiser and Kobayashi and improved by Kuehn [12].
Further developments of this method are described in for example [13], where they also
include features if manufacturing systems like breakdowns and batch services, [14],
where they include the effect of customers interfering with each other, and [15], where
they remove some approximations done in QNA to obtain an approximation method for
queues with phase-type interarrival and service time distributions.

QNA has been applied in different fields and is used for a wide range of applications,
of which we give some examples here. QNA was used by Haverkort to analyse open
queueing networks with finite buffer queues in [16]. Furthermore, Bhatia used QNA
to analyse Mobile Ad-Hoc Networks, also known as MANET [17]. QNA is also used
in the field of communication in the papers by Schneider et al. [18] and Heijink et al.
[19]. Zonderland et al. [20] analysed a preanesthesia evaluation clinic on length of
stay of patients and utilisation of the employees using QNA, where they also showed
the performance of alternative designs of the clinic. Both Alenany and El-Baz [21] and
Albin et al. [22] also applied QNA in a hospital setting. Alenany and El-Baz analysed the
waiting times of patients in a hospital in Egypt, while Albin et al. use QNA to decrease
the waiting time in a health care centre.

For our problem, we are interested in optimising the capacity in a queueing network.
In order to do so, we use the approximation method QNA. Therefore, we now present
literature where QNA is used in combination with optimisation. We focus on papers
addressing the problem of resource allocation, but extend our view to include other
optimisation problems that were investigated using QNA.

The paper of Bitran and Morabito [10] discusses capacity planning in manufacturing
systems with open queueing networks. They look at the optimisation of two problem
classes by changing the capacity: minimise the costs of a network under performance
constraints of the system and minimise the performance costs by allocating the avail-
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Chapter 2. Literature review

able capacity. This is formulated as a linear programme and done, among others, for
networks with general arrival and service time distributions. Here QNA is used as an
analysis technique. For general networks they assume the squared coefficient of the ser-
vice and interarrival times does not change when the capacity changes, to ensure that
the function which is minimised is convex. In the paper of Bitran and Tirupati [23] this
assumption is substantiated for certain circumstances. An application of this method
can be found in the paper of Silva et al. [24]. They apply it to the job-shop of a Brazil-
ian metallurgical plant. The performance measures found with the machine allocation
determined through the linear programmes are checked with a simulation. In total six
different decomposition approximations were tested and the authors concluded that the
best performing approximation came sufficiently close to the results of the simulation.

The paper of Hopp et al. [25] uses QNA to plan the capacity of new semiconductor
fabrication facilities. Their aim is to minimise the facility costs but still meet the re-
quirements regarding mean cycle time and volume. Unlike our problem, they deal with
batch processes in their queueing network. An iterative method is used, which adds
capacity to one station every iteration, to determine the optimal resource allocation.
The results obtained with the iterative method are compared to results obtained via
simulation. The authors note that there can be a big error between the two in some
situations, but conclude that for their context and problem this is acceptable. Another
paper about resource allocation with QNA in a semiconductor fabrication facility is writ-
ten by Connors et al. [26]. Among other things, they take into account tool breakdown
and rework. They minimise the costs of the resources used with a marginal allocation
algorithm, that iteratively adds one tool to the station that causes the largest reduction
in cycle-time until all requirements with respect to the mean cycle-time are met. For
a short numerical example, most performance measures given by QNA were within or
close to the confidence interval of these performance measures given by simulation. In
this paper it is proposed to use simulation for fine-tuning by using it to explore the
neighbourhood of the optimal capacity found by QNA, but this idea is not executed.

Takemoto and Arizono [27] look at the resource allocation in a manufacturing system
with general interarrival and service time distributions and one type of job. Their aim
is to optimise the tardiness costs, which are dependent on the distribution of the lead
time. This distribution is hard to determine for a system with general interarrival and
service time distributions. The system is analysed with QNA and a distribution free
approach is used to find an upper bound for the expected time between the required
lead time and the lead time given by QNA. The optimisation problem is formulated in a
non-linear programme and solved using the Lagrange multiplier method.

QNA has also been used in other optimisation problems than resource allocation. The
paper written by Morabito et al. [28] uses QNA in combination with a cycle cancelling
algorithm to find routes between nodes in a graph that minimise the arc costs. The
waiting time in a hospital department is minimised in the paper of Creemers and Lam-
brecht [29] by finding the optimal number of patients to be served during a service
session. Another health care application of QNA and optimisation can be found in the
paper of Van Brummelen et al. [30], where QNA is used to determine a lower bound
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for the staff members needed in a blood collection organisation such that the expected
waiting time is below a certain level. Furthermore, QNA is not the only approximation
technique used in combination with optimisation in a queueing network. Both Cruz
and Van Woensel [31] and Kerbache and Smith [32], for example, used the Generalised
Expansion Method.

From these papers we can conclude that QNA has been used in combination with optimi-
sation several times. For resource planning often requirements regarding the expected
cycle time should be met. In many of the cases an iterative method is used to come
to the optimal capacity allocation and which is subsequently tested with a simulation.
However, we do not see strict completion time constraints over smaller parts of a cus-
tomer’s route in literature. Papers look at requirements for the expected cycle time,
instead of requirements for a percentage of customers that must finish their route part
within a given target time, as we are interested in. In some fields, like for example
certain departments in health care, we have to deal with these strict requirements.

In this thesis, we present an iterative method which combines QNA and simulation in
order to find the best resource allocation in a queueing network. This is done under
strict completion time requirements for stages of a route and servers should use their
time efficiently. To deal with these requirements, a method is designed which combines
QNA and discrete event simulation. To the best of our knowledge, the combination of
QNA and simulation into one optimisation method has not been made before. Often
simulation is used to check the results afterwards, but it is not included in the optimi-
sation technique.
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Chapter 3

Capacity planning

This chapter describes the mathematical methods used in this thesis for capacity plan-
ning. First we describe the kind of queueing network we consider. Thereafter, we
formulate the problem in a mathematical programme. Then, we introduce a new iter-
ative method, which combines QNA and simulation. Each step of the iterative method
is described extensively in this chapter. Lastly, we look at the convergence of the itera-
tive method. An overview of all mathematical notation and variables introduced in this
chapter, including a description, can be found in Appendix A.

3.1 The queueing network

In this thesis, we consider an open queueing network. Suppose that the customers need
to visit a subset of J different stations, so we have as set of stations {1, 2, . . . , J}. Each
station is modelled as a single server queue, with general arrival processes and general
service time distributions, G/G/1 queues in Kendall’s notation. Customers arrive from
outside of the queueing system and after a number of visits to some stations in the
network they leave the system again. The outside will be referred to as station 0. At
each station customers are served in order of arrival.

We consider multiple customer classes. The number of possible customer classes is
denoted by K. The customers that arrive at the system will follow their own path
through the different stations. For each of the customer classes different requirements
hold regarding the time spent in certain stages of their path. We distinguish a number
of types within a customer class that resemble the possible pathways of this class. Class
k ∈ {1, 2, . . . , K} will have the set of types Sk. The total number of types is then given
by S = |S1| + |S2| + · · · + |SK | and therefore we number the types from 1 until S. A
customer of class k is of type s ∈ Sk with probability pks, with

∑
s∈Sk

pks = 1 for all
k ∈ {1, 2, . . . , K}. Every type has a fixed route through the network. We denote this in
the following way for type s:

r(s, 1), r(s, 2), . . . , r(s, L(s)),
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where r(s, 1) denotes the station visited first by the customer and r(s, L(s)) denotes the
station visited last before leaving the network. Hence L(s) denotes the total number of
stations that a customer of type s visits. A customer may visit the same station multiple
times. The mean service time of a customer at station i = r(s, v) is given by E[G

(s,v)
i ] for

i ∈ {1, 2, . . . , J}, s ∈ {1, 2, . . . , S} and v ∈ {1, 2, . . . , L(s)}.

Customers of type s arrive from the outside to station r(s, 1) with arrival rate γ(s)
0 . The

arrival rate at station j of customers of type s in stage v of their route, for s = 1, 2, . . . , S
and v = 1, 2, . . . , L(s), is given by:

λ
(s,v)
j =

{
γ

(s)
0 , if j = r(s, v)

0, otherwise.

The total arrival rate of a customer of type s to station j, λ(s)
j , is then given by:

λ
(s)
j =

L(s)∑
v=1

λ
(s,v)
j , for j ∈ {1, 2, . . . , J} and s ∈ {1, 2, . . . , S}. (3.1)

Now that we set up the notation of the queueing network, we can move on to the
optimisation problem.

3.2 Optimisation problem

The goal is to determine the capacity needed at every station to handle the demand and
satisfy the completion time requirements. In order to change the capacity, we change
the server’s speed. Each station has a single server, but the servers can work with a
different speed. We define the server’s speed at station i ∈ {1, 2, . . . , J} as βi. This βi
can also seen as the fraction of time a server is working in the given time period. We
assume this fraction can also be bigger than one. We can include the server speed in
our queueing model in the following way. If the mean service length is expressed in the
given time period, we obtain the following service rate for customers of type s in stage
v at station i:

µ
(s,v)
i =

βi

E[G
(s,v)
i ]

,

for i ∈ {1, 2, . . . , J}, s ∈ {1, 2, . . . , S} and v ∈ {1, 2, . . . , L(s)}. This fraction βi thus de-
termines the rate with which the single server is working. We assume that the capacity
is equally divided over the given time period, meaning that the server works full-time,
but with a lower speed. Hence we need to adjust the service time with this fraction as
well. If a server works with twice the rate, he works twice as fast, hence a customer
will be finished in half the original service time. Therefore, we have as adjusted mean
service time:

E[B
(s,v)
i ] =

1

µ
(s,v)
i

=
E[G

(s,v)
i ]

βi
.
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This adjusted service time could be larger or smaller than the original service time,
depending on the available capacity. For the variance of the service time we have the
following:

Var(B
(s,v)
i ) =

Var(G
(s,v)
i )

β2
i

.

Note that the squared coefficient of variation of the service time does not change.

Now we can formulate our problem as a mathematical optimisation problem. We are
looking for the state of our system, a capacity allocation β̂ = (β1, β2, . . . , βJ), which
optimises our queueing network. In order to do so, we need to take into account two
main conditions; the servers’ time must be used efficiently and the capacity allocation
must satisfy strict time requirements regarding completion time of route parts.

The first condition means that we do not use more capacity than needed. This becomes
the objective function of our problem. We aim to minimise the total capacity at all
stations. Note here that the capacity at each station is different, meaning that we cannot
move capacity from one station to the other. This is due to the fact that we assume that
a server at a station requires a specific skill in order to serve there.

The second condition gives the constraints for the optimisation problem. For each re-
quirement and customer class, we have a given completion time which must not be
exceeded. The completion time requirements are very strict; all customers must com-
plete certain phases of their route within a certain amount of time. However, since we
are dealing with uncertainty in interarrival and service times this would result in a lot
of capacity for the stations. Hence, for modelling purposes, we make the requirements
slightly less strict by introducing a threshold, which tells us what fraction of the cus-
tomers at least must be seen within the completion time requirements. We assume that
the network occupation is high, such that the waiting times of customers are of much
larger order compared to the service times. Therefore, we look at the sum of waiting
times of a route part for determining whether the requirements are satisfied.

In order to formulate this mathematically, we first need to introduce some notation.
Let N denote the set of completion time requirements. Then requirement m ∈ N and
customer class k ∈ {1, 2, . . . , K} must be finished within an amount of time τ (k)

m , which
we refer to as the target time. The threshold is denoted by x(k)

m , which states that at most
x

(k)
m · 100% of the customers of class k may exceed the completion time requirement m.

Lastly, the random variable which denotes the sum of the waiting times of a customer of
class k over the stations in requirement m is given by W(k)

m . The optimisation problem
is formulated as follows:

min
J∑
i=1

βi (3.2a)

s.t. P
(
W(k)

m ≥ τ (k)
m

)
≤ x(k)

m , ∀m ∈ N , k ∈ {1, 2, . . . , K}, (3.2b)
βi ≥ 0, ∀i ∈ {1, 2, . . . , J}. (3.2c)
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The random variable of the waiting time over a requirement is the sum of the wait-
ing times at the stations included in the route part of the requirement. For complex
queueing networks, one can approximate the mean and variance of this variable, but
the cumulative distribution function is less straightforward to approximate. Also, the
approximation formulas depend on the coefficient of variation of the interarrival and
service times, where the first is found via a system of equations. Hence, the left side
of the constraints are not necessarily convex functions with respect to β1, β2, . . . , βJ .
Therefore, we are not sure whether this programme converges to the optimal solution
with the standard optimisation techniques. Also, non-convex optimisation problems can
have multiple local optima, but we need to find the global optimum. We hypothesise
that for the complex queueing network considered here, the resulting programme is
non-convex, due to the complex relation between the coefficients of variation of the
interarrival and service times. Therefore, we design an iterative method to solve this
problem. The problems addressed here are discussed while describing the procedure.

3.3 Iterative method to determine the capacity

In order to determine the capacity needed to satisfy the demand and the completion
time requirements, we design an iterative method. This method combines the Queueing
Network Analyser (QNA) and Discrete Event Simulation. We use QNA to find a capacity
allocation fast and afterwards we check the requirements for this capacity allocation
with the simulation. Therefore, we distinguish a QNA phase and a simulation phase.
During the QNA phase we fix a capacity allocation and analyse the system using QNA.
Afterwards we check the completion time requirements and update the capacity if the
requirements are not yet satisfied. Since QNA is an approximation method and we deal
with strict requirements regarding completion time, we also include a simulation phase
in the iterative method to make sure the capacity allocation satisfies the requirements.
If the requirements are not satisfied according to the simulation, we move back to the
QNA phase. A general overview of the iterative method can be found in Figure 3.1. The
parts of the QNA phase are highlighted in orange and the parts of the simulation are
highlighted in blue.

We distinguish the following six phases of the iterative method, corresponding to the
blocks in Figure 3.1: initialisation (Section 3.3.1), performance analysis using QNA
(Section 3.3.2), stopping criterion of QNA (Section 3.3.3), update rule (Section 3.3.4),
discrete event simulation (Section 3.3.5) and stopping criterion of the iterative method
(Section 3.3.6). In Section 3.3.7 we summarise the steps in an algorithm written in
pseudo-code. The performance analysis, update rule and stopping criterion of QNA
need to be carried out for every iteration and the discrete event simulation and stop-
ping criterion for the simulation for some of the iterations. However, we omit a counter
for the number of iterations passed in the notation such that the variables are not over-
loaded with sub- and superscripts.
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Start
Fix capacity alloca-
tion

Analyse the current
capacity with QNA

Are the require-
ments satisfied
according to QNA?

Update capacity Run the simulation

Is the total capacity minimised
and are the requirements satis-
fied according to the simulation?

StopNo Yes

Yes

No

Figure 3.1: Overview of the iterative method.

3.3.1 Initialisation

We start the iterative method with the initialisation. In order to analyse the network, we
combine the different types into one single type and initialise the capacity. We merge
the different types by aggregating the arrival and service processes. For the arrival rates
to the stations this is done by summing up the arrival rates of all types:

λj =
S∑
s=1

λ
(s)
j , for j ∈ {1, 2, . . . , J}, (3.3)

where the type specific arrival rates follow from Equation (3.1). Besides this, we should
also aggregate the original service time. This is done by looking at the fraction of
arrivals of a certain type. This yields the following:

E[Gj] =
1

λj

S∑
s=1

L(s)∑
v=1

γ
(s)
0 E[G

(s,v)
j ]1{r(s, v) = j}, for j ∈ {1, 2, . . . , J}. (3.4)

From the original service times we can obtain the adjusted service time by dividing by
βj:

E[Bj] =
E[Gj]

βj
, for j ∈ {1, 2, . . . , J}.

The next step is to initialise this capacity (β1, β2, . . . , βJ). Since the mathematical pro-
gramme we use is assumed to be non-convex, the objective function could have multiple
local optima. Which optimum is found by the iterative method depends on the initialisa-
tion. In order to avoid ending up in a local minimum which is not the global optimum,
we use a method also known as repeated local search or random restart [33]. Here we
randomly generate M initial states (β1, β2, . . . , βJ) and these allocations are the starting
points for the iterative method. Hence, the iterative method runs multiple times and
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the capacity allocation with the smallest sum of capacities is then chosen as the optimal
capacity allocation.

We randomly generate the initial capacities as follows. We have two conditions that
the randomly generated initialisation state must satisfy: the capacity must be allocated
such that the queueing system of Section 3.1 is stable and the allocation must not yet
satisfy all completion time requirements. In order for a queueing system to be stable,
the utilisation per server should be less than one. The utilisation at station j is given by:

ρj = λjE[Bj] =
λjE[Gj]

βj
, for j ∈ {1, 2, . . . , J}. (3.5)

If we then set ρj to be less than one we obtain the lower bound for all stations:

βj > λjE[Gj], for j ∈ {1, 2, . . . , J}.

We choose βj,stab for j ∈ {1, 2, . . . , J} such that this condition is just satisfied. From this
state β̂stab, we generate an initial capacity by adding a number δ̂ to one of the stations’
capacities h times in order to obtain β̂. To which station this δ̂ is added is decided
randomly following a uniform distribution. In total we generate M initial capacities
in this way. By only taking a limited amount of h steps from the capacity that just
satisfied the stability condition, we try to avoid starting the iterative method with an
initialisation that already satisfies all completion time requirements.

3.3.2 Performance analysis using QNA

During the performance analysis phase we analyse the queueing network with the pre-
determined capacity. We are looking for the performance measure waiting time. In
order to do so, we use the Queueing Network Analyser (QNA) described in [9]. This is
a parametric decomposition method, which only requires the first and second moment
of the arrival and service processes. Hence, it makes approximate analysis of more ex-
tensive queueing networks possible, where we have general arrival and service time
distributions. Moreover, QNA can analyse a queueing network with multiple types of
customers. The method described below is specifically for a network of single server
queues.

Input
We start with the input for QNA. The first step is to aggregate the expected arrival rates
and service times, which we already did in Equations (3.3) and (3.4). Besides this, we
also require the aggregated internal flow rate, i.e. the flow from station i to station j:

λij =
S∑
s=1

L(s)−1∑
v=1

γ
(s)
0 1{r(s, v) = i, r(s, v + 1) = j}, for i, j ∈ {1, 2, . . . , J}.

The aggregated external arrival rate is the sum of external arrival rates per type:

λ0j =
S∑
s=1

γ
(s)
0 1{r(s, 1) = j}, for j ∈ {1, 2, . . . , J}.
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We also need the aggregated departure rate for each station, given by:

λi0 =
S∑
s=1

γ
(s)
0 1{r(s, L(s)) = i}, for i ∈ {1, 2, . . . , J}.

With these flow rates we can calculate the routing matrix Q, which contains the propor-
tion of customers travelling from station i to station j:

Qij =
λij∑M
l=0 λil

, for i, j ∈ {1, 2, . . . , J}.

Furthermore, we need the squared coefficient of variation (SCV) of the external arrival
process, which is given by:

C2
0j = (1− wj) + wj

(
S∑
s=1

(C
(s)
0 )2γ

(s)
0 1{r(s, 1) = j}

λ0j

)
, for j ∈ {1, 2, . . . , J},

with C(s)
0 the SCV of the external arrival process of type s and

wj = (1 + 4(1− ρj)2(ûj − 1)2)−1,

with ρj the utilisation at station j calculated as in (3.5) and

ûj =

 S∑
s=1

(
γ

(s)
0 1{r(s, 1) = j}

λ0j

)2
−1

.

Lastly, we need the aggregated SCV of the service time. This can be calculated by using
the following formula:

C2
bj =

∑S
s=1

∑L(s)
v=1 γ

(s)
0 E[B

(s,v)
r(s,v)]

2((C
(s,v)
br(s,v))

2 + 1)1{r(s, v) = j}
E[Bj]2λj

−1, for j ∈ {1, 2, . . . , J}.

Pre-processing the queueing network: eliminating immediate feedback
In the queueing network, it could happen that a customer returns to the same station
multiple times in a row. In [9] and [12] it is described that one could convert the
network such that this immediate feedback is eliminated in order to obtain a better
approximation. QNA obtains this elimination by letting the customer receive his/her
total service, i.e. the service times of all the subsequent services together, at once when
this customer can be seen by the server. In this way, the customer is put in front of the
waiting line after finishing one service, instead of at the back. A customer routes from
station j back to station j with probability Qjj. Hence the number of visits to station j is
geometrically distributed with success probability of leaving station j of 1−Qjj. Hence
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we can find the expected total service time by analysing the sum of service times with a
geometrically distributed number of terms. This yields:

E[B̂j] =
E[Bj]

1−Qjj

,

Ĉ2
bj = Qjj + (1−Qjj)C

2
bj,

Q̂ij =

{
0, for i = j,
Qij

1−Qii
, for i 6= j.

Since we altered the routing matrix Q, we should recalculate the arrival rates at every
station, using the following traffic equations:

λ̂j = λ0j +
M∑
i=1

λ̂iQ̂ij,

from which follows that λ̂j = (1−Qjj)λj. Hence, we do not need to update the utilisa-
tion, since ρj = λ̂jE[B̂j] = λjE[Bj] = ρj.

After calculating the expectation and variance of the waiting time, we compensate for
the changes made to eliminate the immediate feedback to obtain the performance mea-
sures for the original system. This will be discussed at the end of this section.

Waiting time
Now we can start with the approximation of the performance measures. The first step
is to obtain the variability of the internal arrival process, by calculating the SCV of the
arrival process. These approximations are based on renewal theory. This yields the
following system of equations:

C2
aj = aj +

J∑
i=1

C2
aibij, for j ∈ {1, 2, . . . , J},

where the constants aj and bij are derived from the input data:

aj = 1 + wj

(
P0jC

2
0j − 1 +

M∑
i=1

Pij(1− Q̂ij + Q̂ijρ
2
ixi)

)
,

bij = wjPijQ̂ij(1− ρ2
i ),

xi = max{Ĉ2
bi, 0.2},

and

Pij =
λ̂iQ̂ij

λ̂j
,

wj = (1 + 4(1− ρj)2(uj − 1)2)−1,

uj =

[
M∑
i=0

P 2
ij

]−1

.
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By doing these calculations, we can describe each station in the network with four pa-
rameters: the first and second moment of the interarrival time and the first and second
moment of the service time. We decomposed the queueing network into individual sta-
tions which are analysed separately. An approximation of the expected waiting time can
now be calculated using:

E[Ŵj] =
C2
aj + Ĉ2

bj

2

ρj
1− ρj

E[B̂j]gj, for j ∈ {1, 2, . . . , J}, (3.6)

where we define gj as:

gj =

exp{−2(1−ρj)

3ρj

(1−C2
aj)2

C2
aj+Ĉ2

bj

}, if C2
aj < 1,

1, if C2
aj ≥ 1.

For C2
aj < 1 this expression reduces to the Kraemer and Langenbach-Belz approximation

[34], while for C2
aj ≥ 1 this yields the Kingman approximation [35].

In order to approximate the variance of the waiting time, we first look at the probability
of delay, denoted by ΠŴ . This is given by:

ΠŴj
= P(Ŵj > 0) = ρj + (C2

aj − 1)ρj(1− ρj)hj, for j ∈ {1, 2, . . . , J},

with hj depending on ρj, C2
aj and Ĉ2

bj:

hj =


1+C2

aj+ρjĈ
2
bj

1+ρj(Ĉ2
bj−1)+ρ2j (4C2

aj+Ĉ2
bj)
, for C2

aj ≤ 1,

4ρj

C2
aj+ρ2j (4C2

aj+Ĉ2
bj)
, for C2

aj ≥ 1.

For an M/G/1 queue, this reduces to ΠŴj
= ρj, the fraction of time a server is working.

Besides this, we also need the squared coefficient of variation of the conditional delay
variable, i.e., the waiting time given that the server is busy. This random variable is
denoted by D̂j for station j ∈ {1, 2, . . . , J} and its SCV can be calculated with:

C2
Dj = 2ρj − 1 +

4(1− ρj)d3
bj

3(Ĉ2
bj + 1)2

, for j ∈ {1, 2, . . . , J}

with

d3
bj =

E[B̂3
j ]

E[B̂j]3
.

If the third moment of the service time is unavailable, one can approximate it based on
the Erlang or hyperexponential service distribution. This yields the following approxi-
mation:

d3
bj =

{
(2Ĉ2

bj + 1)(Ĉ2
bj + 1), if Ĉ2

bj < 1,

3Ĉ2
bj(1 + Ĉ2

bj), if Ĉ2
bj ≥ 1.

20



Chapter 3. Capacity planning

Now the variance of the waiting time is given by:

Var(Ŵj) = E[Ŵj]
2C2

Ŵj
, for j ∈ {1, 2, . . . , J},

where

C2
Ŵj

=
C2
Dj + 1− ΠŴj

ΠŴj

.

Post-processing the queueing network after elimination of immediate feedback
After calculating the performance measures, we should adjust these to take into account
the elimination of immediate feedback. The post-processing expressions are based on
heavy-traffic theorems for networks of queues. We are interested in the waiting time
of an original visit to this station, which we obtain by multiplying the expected waiting
time obtained from QNA by the factor 1−Qjj :

E[Wj] = (1−Qjj)E[Ŵj], for j ∈ {1, 2, . . . , J}.

The parameters, like arrival rate and service time, can be transformed to their original
values as follows:

λj =
λ̂j

1−Qjj

,

E[Bj] = (1−Qjj)E[B̂j],

C2
bj =

Ĉ2
bj −Qjj

1−Qjj

.

Furthermore, we want to know the variance of the waiting time. In order to find an
expression, we go through several steps. We start with a pre-approximation for the
variance of the waiting time of an individual visit to station j. We use here that a cus-
tomer arriving at the queue needs to wait on average all service times of the customers
before him. The number of customers in the queue is given by the random variable Nj.
This results in:

Var(W ′
j) = Var

 Nj∑
`=1

B`
j


= E[Nj]Var(Bj) + E[Bj]

2Var(Nj),

where B`
j represents the service time of the `th customer in the system with immediate

feedback, but since the aggregated service times of all customers are identically dis-
tributed we change this to Bj. The expected number of customers at station j can be
determined using Little’s law, where we take the expected waiting time given by QNA
before post-processing it:

E[Nj] = λ̂j(E[B̂j] + E[Ŵj]).

21



Chapter 3. Capacity planning

Note that the number of customers at a station does not change due to the elimination
of immediate feedback. For an M/G/1 queue, the variance of the number of customers
is as follows:

Var(Nj)M/G/1 = λ̂jE[Ŵj] + ρj + ρ2
j Ĉ

2
bj + λ̂2

jVar(Ŵj).

For a general G/G/1 queue, we need to make some modifications and use the results
obtained for M/G/1 in the factor:

c2
Nj

=
Var(Nj)M/G/1 · Z1

Z2

,

with

Z1 =
1− ρj + ΠŴj

max{1− ΠŴj
+ ρj, 0.000001}

and Z2 = max{(ρj + λ̂jE[Ŵj])
2, 0.000001}.

The variance for an G/G/1 queue is then given by:

Var(Nj) = E[Ŵj]
2c2
Nj
.

Next we calculate the SCV of the pre-approximation of the sojourn time of an individual
visit to station j, by adding the waiting time and service time variable:

C2
T ′j

=
Var(W ′

j) + Var(Bj)

(E[Wj] + E[Bj])2
.

Through the above expression, we find an approximation for the total sojourn time of
all subsequent visits to station j. Suppose Yj is the random variable for the number of
subsequent visits to station j, which is geometrically distributed with success probability
1−Qjj. By heavy traffic limit theory, the total sojourn time T̂ ′j is approximated by T ′jYj,
the number of visits times the duration of a single visit. This results in:

C2
T̂ ′j

=
E[(T ′j)

2]E[Y 2
j ]

E[T ′j ]
2E[Yj]2

− 1

= (C2
T ′j

+ 1)(C2
Yj

+ 1)− 1

= C2
T ′j

(1 +Qjj) +Qjj.

Next, we obtain the variance for the total sojourn time by using the definition of the
SCV:

Var(T̂ ′j) = C2
T̂ ′j
E[T̂ ′j ]

2

= C2
T̂ ′j

(E[Yi]E[T ′j ])
2

= C2
T̂ ′j

(
1

1−Qjj

(E[Wj] + E[Bj])

)2

= C2
T̂ ′j

(E[Ŵj] + E[B̂j])
2.
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With the last expression we are able to obtain the variance of the waiting time in a
network with immediate feedback. We divide the variance of the total sojourn time
by the mean number of subsequent visits to station j and subtract the variance of the
service time to obtain the following approximation:

Var(Wj) = (1−Qjj)Var(T̂ ′j)− Var(Bj).

3.3.3 Stopping criterion of QNA

We require enough capacity such that the strict completion time requirements can be
satisfied. However, we also want that the time of a servers is used efficiently, since they
could have multiple tasks to complete and are not employable in the network the whole
week. Hence, we need to design a realistic stopping criterion for this problem.

For a feasible solution of the capacity, we must have that Equation (3.2b) is satisfied for
all requirements and customer classes. However, determining the left side of these in-
equalities exactly is not possible for this queueing network. Hence, we use Chebyshev’s
inequality [36] to determine whether the completion time requirements are satisfied
and approximate inequality (3.2b). Now we only need to determine the expectation
and variance of the sum of the waiting times over the stations included in the require-
ment.

Some of the requirements include multiple stations and hence we need some notation
to specify the stations included in a requirement. For each type s ∈ {1, 2, . . . , S}, we
need to define the phases of the route which are contained in a requirement m ∈ N .
We define the stage b(s)

m as the begin stage and e(s)
m as the end stage of requirement m for

type s. The station of the beginning of the requirement and ending of the requirement
will then be given by r(s, b(s)

m ) and r(s, e
(s)
m ), respectively. When a type s does not take

part in the requirement m, we let both b(s)
m and e(s)

m be zero.

With this notation, we can define the random variable for the waiting time over all
stations contained in a requirement for a certain customer class. This is done by taking
the weighted sum over all types and its phases contained in the requirement:

W(k)
m =

∑
s∈Sk

pks1{b(s)
m 6= 0, e(s)

m 6= 0}
e
(s)
m∑

v=b
(s)
m

Wr(s,v), for m ∈ N , k ∈ {1, 2, . . . , K},

where we take into account the probability that a customer is of a certain type. Note
that the waiting time at a station is the same for all customer types.

With the information obtained from the performance analysis step, we can determine
the expectation of this random variable by using the linearity of the expectation.

E[W(k)
m ] =

∑
s∈Sk

pks1{b(s)
m 6= 0, e(s)

m 6= 0}
e
(s)
m∑

v=b
(s)
m

E[Wr(s,v)]. (3.7)
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In order to do the same for the variance of a weighted sum of random variables, we
need the fact that all variables are independent. By using QNA, we decompose the
network of queues into individual parts and analyse each queue separately, as if the
performance measures are independent. Hence, we assume here that the waiting time
random variables of each station are independent, such that we can sum the variances
of the individual stations to obtain the total variance:

Var(W(k)
m ) =

∑
s∈Sk

pks1{b(s)
m 6= 0, e(s)

m 6= 0}
e
(s)
m∑

v=b
(s)
m

Var(Wr(s,v)). (3.8)

Note, however, that in reality there is a correlation between the waiting times at each
station. Not much is known in literature about this correlation and hence we assume
for practical purposes that the waiting times are independent.

With these two performance measures we need to determine whether the requirements
are satisfied under the current resource allocation. For this we use Chebyshev’s inequal-
ity, which states:

P

∣∣W(k)
m − E[W(k)

m ]
∣∣ ≥

√
Var(W(k)

m )

x
(k)
m

 ≤ x(k)
m . (3.9)

Through this equation we know that values of the random variableW(k)
m lie outside the

interval: E[W(k)
m ]−

√
Var(W(k)

m )

x
(k)
m

,E[W(k)
m ] +

√
Var(W(k)

m )

x
(k)
m

 ,

with probability less than x(k)
m . Hence x(k)

m part of the waiting times does not exceed the
upper bound of this interval, so for our stopping criterion we must have that:

E[W(k)
m ] +

√
Var(W(k)

m )

x
(k)
m

≤ τ (k)
m , for all m ∈ N , k ∈ {1, 2, . . . , K}. (3.10)

When the current capacity allocation is not able to satisfy the stopping criterion, we
need to update the capacity and return to the performance analysis for this new alloca-
tion. When the capacity does satisfy the stopping criterion, we have found the capacity
needed in the system and we stop the QNA part of the iterative method. However, since
QNA is an approximation method and we make the assumption that all stations can
be analysed separately, we want to be sure that the completion time requirements are
satisfied with the current capacity. In this case the next step of iterative method would
be to use discrete event simulation to check the waiting times calculated by the itera-
tive method and also find the percentage of customers which cannot be seen within the
requirements. Hence, we have two options, which are described in the next sections.
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3.3.4 Update rule

After the analysis step is performed, one outcome would be that the current capacity
allocation does not yet satisfy the completion time requirements. In this case, we decide
at which station the capacity needs to be updated and move back to the analysis step.
Hence, we aim to design a smart update rule. However, there is not only one correct
assignment of capacity to the stations. Since some of the requirements include multiple
stations, these could be satisfied by increasing any of those stations. Therefore, we need
to find a method to decide which station is updated.

We use a neighbourhood search procedure to find the station to be updated, meaning
that we look at the neighbourhood of the current state and choose a new state within
this neighbourhood. The current state is the capacity allocation β̂. The neighbourhood
of state β̂ is given by the set Ω(β̂), which contains all neighbours of β̂. For this problem,
we take the parameter δ as the amount with which we could update the capacity by
adding this amount to the capacity of one station. This means that we have as set of
neighbours:

Ω(β̂) =
{
β̂ + δ · êi : i ∈ {1, 2, . . . , J}

}
,

where êi stands for the unit vector with a one at the ith place in the vector, corresponding
to station i, and a zero everywhere else. Note that this implies that we only update one
station each iteration. Also, this step size δ could be different from the step size δ̂ used
for the initialisation.

Neighbourhood search now prescribes that each iteration we choose one state in Ω(β̂)
as our update. We still need to determine which of the states in the neighbourhood
of β̂ is the best choice as our next state when minimising the total capacity used. The
constraints (3.10) used for the stopping criterion depend on the SCV of the arrival
process and the service time, which change at a station when the capacity is changed.
Hence, these constraints are not necessarily convex.

In literature, some propose the assumption that the SCV of the arrival process and the
SCV of the service process are independent of changes in the server’s speed [10][23].
The approximation function (3.6) for the expected waiting time becomes convex with
respect to β1, β2, . . . , βJ under this assumption (for a proof see [23]). Also, for an in-
crease in number of customer types, the influence of the server speed on the SCV seems
to decrease, as the departure process of a customer class then approaches its arrival
process [23]. However, this only holds for specific cases. Therefore, we assume dur-
ing this step of the iterative method that the SCVs are constant, such that we can use
convex optimisation techniques, but during the analysis step, we do update the SCV of
the arrival process and the SCV of the service process at each station. By using multiple
states as starting point of the iteration, as described in Section 3.3.1, we try to avoid
ending in a local minimum.

Now we can decide which of the states in Ω(β̂) is going to be our next state. We need to
satisfy a number of constraints while keeping the sum of capacity minimal. Hence, we
are looking for an update direction which results in the biggest step towards satisfying
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the requirements. We use Equation (3.10) as an approximation of the constraints (3.2b)
in the mathematical programme, since those cannot be determined exactly. Hence, we
look at Equation (3.10) to determine the update rule. The left side of this inequality
depends on both the expectation and the variance of the waiting time. For each norm m
and customer class k we have a constraint. When we assume the SCVs of the arrival and
service process are constant, only the expectation is convex with respect to the capacity.
The variance has a complicated dependency on the capacity. Hence, we update the
capacity for the station that results in the biggest decrease in the expectation of the
waiting time.

In order to substantiate this choice, we have the following reasoning. When the ex-
pectation of the waiting time decreases by increasing the capacity at one station, this
results in a better distribution of the load over the stations in the network. If the load
is lower in a network, then the difference in waiting time between customers becomes
smaller, since the probability on high waiting time decreases. Therefore, the variance
of the waiting time also decreases. So even though we only look at the influence of
the capacity change on the expectation, we still may assume that the overall variance
decreases as well. This does not yield that by only looking at the expectation we know
for sure that we obtain the biggest decrease in the constraints of Equation (3.10), but it
gives an indication that we made a good decision.

For the expected waiting time we can determine the influence of updating a station j
by taking the gradient with respect to the server’s speed βj. This results in the following
function U (k)

m,j(β1, . . . , βJ):

U
(k)
m,j(β1, . . . , βJ) =

∂E[W(k)
m ]

∂βj
=
∑
s∈Sk

pks

e
(s)
m∑

v=b
(s)
m

∂E[Wr(s,v)]

∂βj
.

Note that each element in the sum only depends on the server speed of the station it
corresponds to. This causes that only the elements corresponding to the station of which
we take the partial derivative remain. We choose to not state the partial derivatives of
E[W(k)

m ] explicitly in this report, but it can be easily derived from Equation (3.6).

Now that we have the partial derivative for one requirement and station, we need to
determine what the influence of updating this station is on all requirements. When do-
ing this, we only need to consider the requirement and customer class combination that
do not yet satisfy the completion time requirements. Let Ψ denote the set containing
these combinations (m, k) of requirement m and customer class k for which the target
time is not yet reached. We then have

Uj(β1, . . . , βJ) =
∑

(m,k)∈Ψ

U
(k)
m,j(β1, . . . , βM), for j ∈ {1, 2, . . . , J}.

If we fill in the current capacity allocation, we can find the station to update, denoted
by j∗, by looking at the station with the smallest sum of partial derivatives, and hence
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the largest total decrease in the expected waiting time:

j∗ = arg min
j∈{1,2,...,J}

Uj(β1, . . . , βJ).

This means that we choose neighbouring state β̂+ δ · êj∗ as our next capacity to analyse
using QNA.

3.3.5 Discrete event simulation

To check the results of an approximation method for queueing networks often simula-
tion is used. For this network we develop a discrete event simulation, which models the
arrival streams of customers and their routes through the network. The basic idea is
that we jump in time from one event to next event, which is either an arrival or a depar-
ture of a customer at one of the stations. The times of events are randomly generated
following the probability distributions of the interarrival and service rates of customers.
If a server is already busy upon arrival of a customer, the customer is placed in a queue.
The information we collect from an individual customer, like waiting time at stations, is
called an observation.

The simulation starts with a warm-up period, such that the network is in a stable state
when we start to gather observations regarding the performance measures we are inter-
ested in. For the warm-up period, we look at the waiting time at each station and wait
until enough customers have departed such that the waiting time has stabilised at each
station. We determine the stabilisation using a technique similar to the moving average
method with window size q proposed by Welch [37]. Of a total of ni observations at
station i, we look at the last q observation and compare the average of those to the
mean of the observations in the z periods of length q before the last observation. In this
way we can determine whether the waiting time at a station has changed a lot during
the last departures. If not, the network has stabilised and we end the warm-up period.
This can be formulated in the following stopping criterion:∣∣∣∣∣

1
q

∑ni

`=ni−qWi(`)

1
z

∑z
j=1

1
q

∑ni−j
`=ni−q−jWi(`)

− 1

∣∣∣∣∣ ≤ ω, for all i ∈ {1, 2, . . . , J},

where ω is the parameter chosen for this stopping criterion and must be close to zero.
After every departure at some station in the network, we calculate this stopping crite-
rion for this station. In this way, ni is incremented by one for each calculation. After
the warm-up period, we start to gather the observations to check the completion time
requirements.

When enough arrivals are generated and performance measures like waiting time and
number of customers in the system are stored for every customer, we are able to draw
statistically meaningful conclusions from the data gathered by the simulation. In this
case we are mainly interested in the number of customers who are not able to finish their
route parts within the completion time requirements, so the value of P(W(k)

m ≥ τ
(k)
m ). We
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start by defining a new observation X(k)
m (`), linked to the observation of the time spent

on the completion time requirement m from a customer of class k, which is denoted by
W(k)

m (`). This observation takes the following value:

X(k)
m (`) =

{
1, ifW(k)

m (`) ≥ τ
(k)
m ,

0, otherwise,
for m ∈ N , k ∈ {1, 2, . . . , K},

where τ (k)
m is the target time of requirement m and customer class k. We use the Batch

Means Method [38] to analyse this performance measure.

For the Batch Means Method only one long simulation run is needed with one warm-
up period, instead of multiple shorter runs each with its own warm-up period. The
observations collected during the long simulation run are divided into r batches, such
that each batch is approximately independent of the others. Often, a number between
25 and 50 is chosen as r. First we determine the batch size, if we have a total of n(k)

m

observations. Since the number of observations does not need to be divisible by the
number of batches, we have as batch size of batch y:

ν(k)
m,y =


⌊
n
(k)
m

r

⌋
+ 1, for y = 1, 2, . . . , F

(k)
m − 1,⌊

n
(k)
m

r

⌋
, for y = F

(k)
m , F

(k)
m + 1, . . . , r,

with

F (k)
m = n(k)

m − r

⌊
n

(k)
m

r

⌋
.

To calculate the mean of every batch, we sum over the elements in the batch and divide
by the size of the batch. With these batches we are able to determine a confidence
interval of the probability that the time spent on the completion time requirement is
longer than the target time. For this we need the sample mean and variance of the
batches. If the mean of batch y is denoted by X

(k)

m,y, we get as sample mean:

X
(k)

m =
1

r

r∑
y=1

X
(k)

m,y.

The sample variance can be calculated as follows:

(S
(k)

m )2 =
1

r − 1

r∑
y=1

(X
(k)

m,y −X
(k)

m )2.

Now we determine a (1 − α) · 100% confidence interval. For batches of a size large
enough, we may assume that the batch means are approximately normally distributed.
Hence we have as (1− α) · 100% confidence interval for P(W(k)

m ≥ τ
(k)
m ):X(k)

m −
tr−1,1−α/2

√
(S

(k)

m )2

√
r

,X
(k)

m +
tr−1,1−α/2

√
(S

(k)

m )2

√
r

 , (3.11)
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with tr−1,1−α/2 as the (1 − α/2)-percentile of the Student’s t-distribution for r − 1 de-
grees of freedom. This is the main performance measure we are interested in. We also
determine the confidence interval of the mean sojourn time over a completion time
requirement using the batch means method, using observations ofW(k)

m .

3.3.6 Stopping criterion of the iterative method

When QNA has found a capacity allocation which satisfies the completion time require-
ments, we move to discrete event simulation and determine the performance measures
found as described in the previous chapter. With these results we aim to decide whether
QNA has found a reasonable capacity allocation or whether the results obtained there
gave too big approximation errors and the capacity planning could be optimised more.
In this section, we describe a stopping criterion for the simulation, and with that for
the whole iterative method. We also describe the steps that need to be taken when the
stopping criterion is not satisfied.

We run the simulation twice each simulation phase with different capacity allocations.
Of course one of these capacity allocations is given by the QNA phase, which satisfies the
completion time requirements according to the QNA stopping criterion. This allocation
is called the current allocation and has variable β̂cur. The second capacity allocation for
which we run the simulation is referred to as the previous allocation and is denoted
by the variable β̂prev. This capacity is used to check whether we did not add too much
capacity. We subtract the step size δ from the current capacity of each of the stations
to obtain this allocation. If the station becomes unstable after subtracting δ, we set the
capacity back to the minimum capacity for which ρ < 1. Hence,

β̂i,prev =

{
β̂i,cur − δ, if β̂i,cur − δ > β̂i,stab,

β̂i,stab, otherwise,
for i ∈ {1, 2, . . . , J}.

We look at the performance measures of both capacity allocations given by the simula-
tion and compare the two.

With Equation (3.11), we are able to determine the probability that a customer does
not meet the completion time requirements. The confidence interval tells us that with
(1−α) ·100% confidence, we can say that the value of P(W(k)

m ≥ τ
(k)
m ) lies within the two

bounds. This means that if we would look at a different set of n observations multiple
times and determine the confidence interval in (3.11) for each, in (1− α) · 100% of the
cases the value of P(W(k)

m ≥ τ
(k)
m ) will lie within the bounds. Note therefore that the

(1− α) · 100% has nothing to do with the threshold x(k)
m we set earlier.

Now for the strict requirements, we must have that the upper bound of the confidence
interval of P(W(k)

m ≥ τ
(k)
m ) must lie below the threshold x

(k)
m . If this is the case, we can

say with (1 − α) · 100% confidence that P(W(k)
m ≥ τ

(k)
m ) is smaller than the threshold.

If x(k)
m lies within the confidence interval, P(W(k)

m ≥ τ
(k)
m ) could still be above or below

the threshold. We always keep the α · 100% of the cases where P(W(k)
m ≥ τ

(k)
m ) is not
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contained in the interval, but that is the consequence of analysing a complex queueing
system which cannot be approached exactly. Now the completion time requirements
are satisfied if:

X
(k)

m +
tr−1,1−α/2

√
(S

(k)

m )2

√
r

≤ x(k)
m , for all m ∈ N , k ∈ {1, 2, . . . , K}. (3.12)

Since we run the simulation two times, with two different capacity allocations, we could
have the following situations:

1. The current allocation satisfies the requirements and the previous does not.

2. The current and previous allocation both do not satisfy the requirements.

3. The current and previous allocation both satisfy the requirements.

In situation 1, we know we are close to an optimal allocation and QNA did a good job in
approximating the performance measures. However, we do not know if the completion
time requirements would still be satisfied for an allocation somewhere in between the
current and previous allocation. Since we have a discrete step size δ for updating the
capacity, it could be that we added too much capacity and could do with less. Therefore
we decrease the step size, until we consider the step size sufficiently small. The step
size is updated following:

δ ← δ/η. (3.13)

Hence, we have the following rule for this situation:

When situation 1 occurs and the step size is still sufficiently large, move back to QNA.
Decrease the update step size following Equation (3.13) and start with the previous capacity
allocation. If the update step size is smaller than δmin, we stop the iterative method for this
initial capacity and the optimal capacity allocation is the current allocation.

The value of δmin depends on the problem at hand and a suitable value should be care-
fully considered.

For the second situation, QNA has underestimated the time used for the requirements.
We have not yet reached the capacity needed to satisfy the completion time require-
ments. Hence, we need to update the capacity again. Since using simulation for this
would take too long if it needed to be run multiple time, we move back to QNA. How-
ever, since the current allocation already satisfied the completion time requirements,
any capacity update will still do the same. Hence, we need to update our stopping cri-
terion for QNA or rather the values used in this stopping criterion for the requirement-
class combinations that are not yet satisfied. We denote the set containing these combi-
nations again by Ψ.

First we calculate the error between the mean value of time passed in the completion
time requirements determined by the simulation, W(k)

m , and by QNA, E[W(k)
m ]. For this
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we use the function:

ε2 =
E[W(k)

m ]−W(k)

m

W(k)

m

, for (m, k) ∈ Ψ. (3.14)

Since the waiting time given by the simulation is bigger than the one given by QNA
for this situation, this error has a negative value. Now we use this value to update the
target time for the completion time requirements, which yields:

τ (k)
m ← (1 + ε2)τ (k)

m , for (m, k) ∈ Ψ. (3.15)

The new target time will be smaller than the old and hence we can use QNA and its cor-
responding stopping criterion again without immediately satisfying the requirements.
Note that this updating is meant for the QNA part of this iterative method and that we
never use this updated target time when checking the capacity allocation using simu-
lation. Also, we can immediately update the capacity, since we know that the current
capacity does not satisfy the requirements yet. Therefore, we apply the following rule
in situation 2:

When situation 2 occurs, move back to QNA. Update the target time for the completion
time requirements as stated in Equation (3.15) with the results of the current simulation
and start with the current allocation updated following Section 3.3.4.

Lastly, we have as possible scenario situation 3. In this case QNA has used more capacity
than needed according to the simulation. In this situation, we do not change the target
times as in situation 2, since we are not interested in the difference in expectation
between QNA and the simulation. This is due to the fact that this difference could
either be positive or negative, depending on whether QNA stopped too late due to the
generality of Chebyshev’s inequality or the overestimation of the waiting time. Hence, in
this case we look at the difference between the upper bound of the confidence interval
of the probability that the target time is exceeded given in Equation (3.12) and the
threshold for this probability.

Following QNA in combination with Chebyshev’s inequality, the current allocation does
satisfy all the requirements while the previous allocation does not. Therefore, we know
for the classes that do not satisfy a requirement in the previous allocation that we over-
estimated the fraction of customers that has not finished their route part within the
target time. By looking at the difference between the fraction given by the simulation
in (3.12) and the threshold, we update the threshold for QNA, such that QNA stops for
a lower capacity. This yields the following update factor:

ε3 =
x

(k)
m − CI(k)

m

CI(k)
m

, for CI(k)
m = X

(k)

m +
tr−1,1−α/2

√
(S

(k)

m )2

√
r

, (3.16)

where we use the values of the previous capacity allocation. Note that for some of the
norms which are already satisfied, ε3 can take a very big value if C(k)

m is very small.

31



Chapter 3. Capacity planning

However, we observed that situation 3 is a very rare case and therefore we decided to
solve this by only changing the threshold for the class-norm combinations that have
CI(k)

m > x
(k)
m /2. The updated threshold then becomes:

x(k)
m ← (1 + ε3)x(k)

m , for all (m, k) for which CI(k)
m > x(k)

m /2. (3.17)

Again, we do not use this updated threshold when checking a capacity allocation using
simulation.

For the start allocation we cannot use the current or previous allocation, since they both
use too much capacity. Hence, we need to go back to a capacity allocation which for
sure did not satisfy the completion time requirements according to the simulation. This
is exactly the allocation which was tested during the last time we switched from QNA
to the simulation. If in the previous simulation we had situation 1, we take the previous
allocation from this simulation. If, on the other hand, situation 2 had occurred, we take
the current allocation from this simulation. This all results in the following rule for
situation 3:

When situation 3 occurs, move back to QNA. Update the threshold for the completion time
requirements as stated in Equation (3.17) with the results of the previous allocation. Start
with the allocation of the previous simulation. If in this simulation we had situation 1,
start with the previous allocation, if we had situation 2, start with the current allocation.

3.3.7 Algorithm iterative method

In Algorithm 1 a summary of the iterative method can be found. The algorithm contin-
ues on the next page.

Algorithm 1: The iterative method for capacity planning
Step 1a. Initialisation
Aggregate arrival rates and service times. Initialise the capacity as a list of M
capacities. Each initialisation is created by giving each station minimal capacity
for which ρ < 1 and randomly add δ̂ to h stations. Also, initialise step size δ.

For n = 1, . . . ,M :
Select capacity β̂n from initial capacity list.

Step 2. Performance analysis using QNA
Find the expectation E[W(k)

m ] and variance Var(W(k)
m ) of the waiting time of

norm m and class k for capacity β̂n using QNA.

Step 3. Stopping criterion of QNA
If the following holds for β̂n move to Step 5:

E[W(k)
m ] +

√
Var(W(k)

m )

x
(k)
m

≤ τ (k)
m , for all m ∈ N , k ∈ {1, 2, . . . , K}.

Else move to Step 4.
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Step 4. Update rule
Select station j∗ by looking at the largest decrease in waiting time of the
requirements for the smallest increase of capacity. Update capacity as follows:

β̂n ← β̂n + δ · êj∗ .

Continue with Step 2.

Step 5. Discrete event simulation
Execute discrete event simulation for capacity allocation β̂cur and β̂prev, with
β̂cur = β̂n and

β̂i,prev =

{
β̂i,cur − δ, if β̂i,cur − δ > β̂i,stab,

β̂i,stab, otherwise,
for i ∈ {1, 2, . . . , J}.

Use the Batch Means Method to determine X
(k)

m and (S
(k)

m )2, the sample mean
and variance of the probability that the target time of norm m is exceeded by
class k.

Step 6. Stopping criterion of the iterative method
Check the following constraints for both β̂cur and β̂prev:

X
(k)

m +
tr−1,1−α/2

√
(S

(k)

m )2

√
r

≤ x(k)
m , for all m ∈ N , k ∈ {1, 2, . . . , K}. (3.18)

If Inequality (3.18) holds for β̂cur, but not for β̂prev (situation 1):
If step size δ < δmin then n = n+ 1, if n = M then move to Step 7.
Else let δ ← δ/η and move to Step 2. Let β̂n ← β̂prev.

Elif Inequality (3.18) does not hold for both β̂cur and β̂prev (situation 2):
Decrease target time τ (k)

m for (m, k) ∈ Ψ and let β̂n ← β̂cur. Continue with
Step 4.

Elif Inequality (3.18) holds for both β̂cur and β̂prev (situation 3):
Loosen thresholds x(k)

m and let β̂n ← β̂cur if the last simulation ended in
situation 2 or β̂n ← β̂prev if last simulation ended in situation 1. Continue
with Step 2.

Step 7. Optimal capacity
The optimal capacity is given by:

β̂opt = min
n∈{1,...,M}

β̂n.
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3.4 Convergence of the iterative method

For the usability of our iterative method, we are interested in whether the method actu-
ally stops after a limited amount of time and whether it the convergences to a solution
close to the optimal capacity allocation. In Section 3.3.6, we described the interaction
between QNA and the simulation and when we are satisfied with the capacity alloca-
tion given. In this section we first argue why the method stops and afterwards why this
method converges.

When running the simulation, we see three different situations when looking at the
current and previous capacity allocation, where for each situation we take a different
action. Only situation 1 can lead to the end of the iterative method, since we decide to
stop in this situation when the step size δ for updating is sufficiently small. This is also
the only situation where we decrease the step size, such that it can become sufficiently
small, since we know we are close to the optimal solution. Beforehand, we set a bound
for the step size, which it must transcend to be sufficiently small. Together with the
method for updating the step size, we can determine the number of times situation
1 must occur before the iterative method stops. Therefore, we know that if we have
situation 1 for a limited amount of times, the iterative method will stop.

In the QNA phase of the method, we only add capacity each iteration. Hence, each
iteration we come closer to a capacity that satisfies the completion time requirements,
i.e. the constraints (3.2b), if these were not satisfied yet. Note that this does not
necessarily mean that we come closer to the optimal capacity, since we could have
already surpassed the optimal capacity when only adding capacity each step. Next,
we run the simulation phase to check the capacity allocation, where we could end up
in 3 different situations. These situations and the possibilities after each situation are
described in Figure 3.2. We call a capacity allocation feasible if it satisfies the completion
time requirements according to the simulation.

Sit. 1 Sit. 2 Sit. 3

Decrease step size,
come closer to stop-
ping

Decrease the
target time

Loosen the
threshold

Sit. 1 Sit. 2 Feasible
Infeasible,
closer to
optimum

Sit. 1 Sit. 3 Sit. 2

Feasible,
closer to
optimum

Infeasible

Sit. 1 Sit. 3 Sit. 2

Figure 3.2: Possible progress in the iterative method.
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In situation 1, we decrease the step size and come closer to the end of the method. In
the next simulation phase we could end up in situation 1 again, or in situation 2, if
not enough capacity was added to satisfy the requirements according to the simulation.
Note that if we end up in situation 1, the new solution will be closer or just as close to
the optimal solution.

When the simulation gives situation 2, we adjust the target time for the norms that are
not satisfied yet and start a new QNA phase. This new QNA phase will therefore end
with an allocation that has a bigger total capacity than the QNA phase before. Either
the capacity allocation is closer to the optimum, but still does not satisfy the completion
time requirements, or it is a feasible solution. These options correspond to situation 2
or situation 1 or 3.

Lastly, we have situation 3. In this case, we adjust the requirement thresholds, such
that they become more strict, which causes that the QNA phase stops for a lower total
capacity. We start the next QNA phase with a capacity allocation that did not yet satisfy
the requirements. Consequently, in the next iteration the capacity given by the QNA
phase will either be closer to the optimal capacity and satisfy the completion time re-
quirements or will not be feasible yet. These options correspond to situation 1 or 3, or
situation 2.

Because we are always striving to come closer to the optimum with the adjustments to
the constraints, we come closer to ending up in situation 1 as well. However, the error
of QNA with respect to the simulation is hard to predict and may not always be the
same. Therefore, we cannot say with certainty how many times we end up in situation
1. However, the difference between QNA and the simulation does give an indication of
the error for the current capacity allocation and hence can also give an indication of the
error for capacity allocations in the neighbourhood. Therefore, it is very likely that we
reach situation 1 after a limited number of QNA phases. Since we only need to have
situation 1 a limited number of times, the iterative method will eventually stop.

For this method, we always stop in situation 1, which means that the current capacity
allocation satisfies all the completion time requirements, while the previous did not.
Therefore, we know that the current capacity must be close to the optimal capacity.
Since the stopping criterion after the simulation is quite strict, we always end up in
a feasible solution with respect to the constraints (3.2b). It still could happen that at
one station we added too much capacity, but by using multiple initialisations, we make
different decisions regarding the station to which we add capacity. Hence, we increase
the probability that the method converges to a capacity allocation close the optimum.
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Chapter 4

Results

In this chapter we discuss the results obtained with the iterative method, described in
the previous chapter. First, we test the iterative method with a simple network, for
which the performance measures can be determined in closed form. Furthermore, we
carry out a case study for a Dutch hospital called ZGT in Section 4.2. We describe the
problem in this hospital and the patients’ care pathways through the hospital. There-
after, we link the problem to a queueing network and our iterative method and explain
the data and analysis done. Lastly, we discuss the results for this case study.

4.1 Testing the iterative method

We test the iterative method using a simple test network, for which we can determine
the waiting time distribution in closed form. If a network has this characteristic, we are
able to find the optimal capacity for the given constraints. First we introduce the chosen
network and discuss the optimal capacity. Afterwards, the iterative method is run for
this network and we compare the found capacity allocation with the optimal capacity
allocation determined using the closed form results available for the network.

4.1.1 The test network

The test network consists of three M/M/1 stations and two customer classes, each with
only one type. Customer class 1 visits stations 1, 2 and 3 on its route, which is given as
the dashed arrows in Figure 4.1. Customer class 2 visits stations 1 and 2, which is given
as the solid arrows in Figure 4.1. The completion time requirements are given in this
figure as well. For class 1 we have the two completion time requirements in orange:
station 1 must be finished within 8 time units and station 3 must be finished within 10
time units. For class 2 we have one completion time requirement in blue: station 1 and
2 must be finished within 15 time units.
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1 2 3

<8 <10

<15

Figure 4.1: Test queueing network.

The expectation and SCV of the service and interarrival times can be found in Tables 4.1
and 4.2, respectively. We assume the service time at each station is the same for both
customer classes.

Table 4.1: Service process at each station.

Station i E[Gi] C2
bi

1 1/4 1
2 1/3 1
3 1/2 1

Table 4.2: Arrival process for each class.

Class/Type s γ
(s)
0 (C

(s)
0 )2

1 6 1
2 4 1

The network shown in Figure 4.1 is a single server tandem network, which is a queueing
network with nice properties. Namely, the sojourn time variables at the stations are
independent [39], which enables us to determine the waiting time distribution at each
station, but also over multiple stations. Therefore, we can find the optimal capacity at
each station for which the completion time requirements are satisfied. The distribution
of the waiting time for an M/M/1 queue is given by:

P(Wi > t) = ρie
−µi(1−ρi)t, for i = 1, 2, 3 and t ≥ 0, (4.1)

where µi = βi/E[Gi]. This cumulative distribution function can be interpreted as a mix-
ture of two distributions; the waiting time is 0 with probability (1−ρi) and exponentially
distributed with parameter µi(1− ρi) with probability ρi. Two of the requirements only
include one station, so for these the above formula suffices. However, the requirement
for customer class 2 contains two stations. Since the waiting times are independent,
we can take the convolution of the density functions of the waiting time distribution to
obtain the density function of the total waiting time:

fW1+W2(z) =

∫ z

0

fW1(t)fW2(z − t)dt.

Since the waiting time is a mixture of distributions, the density is not straightforward
to determine by taking the derivative of the cumulative distribution. Therefore, this
convolution is also not straightforward. However, we mentioned in Section 3.2 that we
assume that the network occupation is high and we therefore can look at the sojourn
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time instead of the waiting time. We use this same assumption here and say that the
waiting time distribution is approximately the sojourn time distribution, which gives the
following:

P(Wi > t) ≈ e−µi(1−ρi)t, for i = 1, 2, 3 and t ≥ 0,

Note that ρi < 1 and hence this probability is always larger than the one given in (4.1).
Therefore, when taking this probability, we always have sufficient capacity to satisfy the
requirements. This gives the following density function:

fWi
(t) ≈ (1− ρi)µie−µi(1−ρi)t, for i = 1, 2 and t ≥ 0.

By integrating fW1+W2(z) we can obtain the cumulative distribution function of the wait-
ing time over station 1 and station 2.

Taking 0.05 as threshold for all completion time requirements, we obtain the optimal
capacities as given in Table 4.3.

Table 4.3: Optimal capacities in test network at each station.

Station i Optimal capacity
1 2.593
2 3.426
3 3.148
Total 9.167

4.1.2 Numerical results

We run the iterative method for the test network and compare the results to the optimal
capacity determined in the previous section. We first state some parameter values taken
for this test network. These are given in Table 4.4.

Table 4.4: Parameters for the iterative method.

Description Parameter Value

Step size used for initialisation of random restart δ̂ 0.025
Number of (distinct) initialisations M 8
Number of stations to which the initial step size is added h 3
Starting step size for iterative method δ 0.1
Update factor for the step size η 2
Window size in the moving average method q 10
Periods to look back at in moving average method z 3
Stopping parameter for the warm-up period ω 0.05
Number of batches r 25
Confidence interval percentage α 0.05
Sufficiently small step size δmin 0.025
Total number of departures in the simulation - 1, 000, 000
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Each time situation 1 occurs (see Section 3.3.6 for the explanation of this situation) in
the simulation phase of the iterative method, the step size for updating the capacity is
divided by 2. This means that situation 1 must be reached 3 times before the iterative
method stops. The iterative method is executed twice for 5 initial capacities. Among the
10 initial capacities, 8 distinct initial capacities were considered as 2 initial capacities are
considered twice. The results for the iterative method are given in Table 4.5, as well as
the optimal capacity and the relative difference between the two. This difference gives
the increase of the capacity given by the iterative method compared to the optimal
capacity. In the table, the optimal capacity given by the iterative method is referred
to as the optimal IM capacity. The sub-optimal capacity allocations from other initial
capacities are referred to as IM capacities.

Table 4.5: Capacity given by the iterative method compared to the optimal capacity in
test network.

Station i Optimal IM capacity Optimal capacity Absolute difference Relative difference
1 2.601 2.593 0.008 0.31%
2 3.435 3.426 0.009 0.26%
3 3.151 3.148 0.003 0.10%
Total 9.187 9.167 0.020 0.22%

We see that the optimal capacities given by the iterative method are close to the optimal
values. The optimal IM capacities are always larger than the optimal values, which
means that the iterative method has determined capacities which indeed satisfy the
completion time requirements. The relative difference between the two is less than 1
percent for each station and in total only 0.22%.

The fact that there is a difference between the IM capacity and the optimal capacity can
be explained by the decision to take a discrete step size when updating the capacity. The
smallest step size taken is 0.025. We see that for this optimum, the absolute difference is
always less than this step size. However, this is not the case for every initialisation. We
note that different initialisations can lead to different optima, but the same initialisation
can also lead to a different optimum in this iterative method. In Table 4.6 we see some
initialisations with their capacity allocation according to the iterative method.

Table 4.6: Capacity given by the iterative method for different initialisations.

Initialisation per station IM capacity per station
1 2 3 1 2 3

Initialisation 1 2.551 3.360 3.001 2.601 3.435 3.151
Initialisation 2 2.551 3.360 3.001 2.626 3.435 3.151
Initialisation 3 2.551 3.335 3.026 2.626 3.460 3.176

In the table, initialisation 1 gives the optimal capacity given by the iterative method.
Initialisation 2 has the same initial capacities, but a different IM capacity was obtained.
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We note that at most one step size is added to the optimal capacity in the outcome
of initialisation 2 and 3. For the other initialisations the IM capacity differed at most
two step sizes from the optimal IM station. For this example, this results in a worst case
relative difference between an IM capacity of a single station and the optimum obtained
in Table 4.3 of 1.69%. The total relative difference is at most 1.31%.

The cause of this difference between multiple runs, even with the same initialisation,
lies in the simulation phase. In Section 3.3.6 about the stopping criterion of the whole
iterative method, we describe that the whole confidence interval of the probability that
the target time is exceeded must lie below the threshold for each requirement. Other-
wise, we do not view this requirement as satisfied. Due to the nature of a confidence
interval we are very strict here. Each time we run the simulation the confidence inter-
val will be slightly different, since we are dealing with uncertainty in interarrival and
service times. Therefore, the number of requirements that is satisfied can be different
even though we give the same capacity allocation as input.

Taking a small update step size also affects the simulation outcome, since it results in
a higher chance of having simulation results for the current and previous allocation
that are very similar. However, this small step size also provides the possibility to come
closer to the optimum. Moreover, the initial stable capacity was given by the vector
β̂ = (2.501, 3.335, 3.001). If we compare this to the optimal capacity, only a small amount
of capacity should be added to reach it. Therefore, it is important to choose the step size
according to the problem, not only for the update step size δ, but also the initialisation
step size δ̂.

Since we use multiple initialisations, we see that we can still come very close to the
optimal capacity. Also, because we take a small step size, the difference between the
optimal capacity and the optimal IM capacity is never big. If for this step size we would
translate the capacity allocation into working hours in a 40-hour work week, this would
results in an extra hour per added step size. Therefore, the capacity could differ 1 or 2
hours per station.

Lastly, we look at the course of the iterative method, with respect to the number of QNA
and simulation phases. In Figure 4.2 the number of QNA phases and the situation given
in the simulation after each QNA phase are shown for the optimal IM capacity. We see
similar routes for the other initial capacities. The dark grey nodes give the number of
QNA iterations done before moving to the simulation phase. The light grey nodes give
the situation obtained in the simulation phase. The whole iterative method for 10 initial
capacities takes around 4.5 hours, when executed on the laptop model Thinkpad T460s
Signature Edition, with processor Intel(R) Core(TM) i5-6200U CPU @ 2.30GHz 2.40
GHz, RAM of 8.00 GB and Windows 10 version 21H1.
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Figure 4.2: Course of iterative method for optimal IM capacity.

In the figure we can see that 10 simulation phases were needed and 14 QNA iterations.
Note that the number of simulation phases is the same as the number of QNA phases,
since a simulation phase is always preceded by a QNA phase. In general, we see that
the first QNA phase is 3 or 4 iterations long, depending on the initial capacity. The first
simulation phase then results in either situation 1 or 2. After situation 1 we often have a
shorter QNA phase than right after the start. We see that if situation 1 occurs again after
this, the length of the QNA phase decreases and is most of the times only one iteration
long. After situation 2 the next QNA iteration results immediately in a next simulation
phase, with only a few exceptions where the QNA phase is two iterations long. We
execute the next simulation for a different capacity allocation when this happens, since
we update the current capacity after situation 2 and begin the QNA phase with this new
capacity.

The fact that we see situation 2 in multiple subsequent iterations with only one QNA
phase in between implies that the update rule for the target times in situation 2 does
not influence the stopping criterion of QNA a lot. Only a capacity update for one of the
stations, which we execute directly after situation 2, is already enough to start a new
simulation phase. However, we still see situation 2 occurring afterwards, which means
that we could have set an even stricter stopping criterion for QNA. This implies that the
QNA phase often underestimates the fraction of customers that cannot finish their route
part within the given target time. Note that this can also be a consequence of taking the
upper bound of the confidence interval of the fraction of customers that cannot finish
within the target time in the simulation, which is a rather strict bound.

From this test network we can conclude that the iterative method is able to come very
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close to the optimal capacity. The sum of the optimal capacity given by the iterative
method only differs 0.22% from the actual optimum. We do note that per initialisation
the IM capacity can be slightly different due to the sensitivity of the simulation. Also,
for this test network the iterative method needs to execute quite a large number of
simulation phases compared to the number of QNA iterations. For larger networks this
could result in a long run time.

4.2 Case study: outpatient oncology clinic

Besides the simple test case in the previous section, we also conduct a case study for
a hospital in the Netherlands. Therefore, we first give the problem description. After-
wards, we discuss the care pathways of patients and the completion time requirements
which must be satisfied within these care pathways. The link between the hospital situ-
ation and a queueing network is described next and the used data is explained. Lastly,
we show the capacity planning results obtained with the iterative method.

4.2.1 Problem description

Ziekenhuisgroep Twente (ZGT) is a hospital in the east of the Netherlands with two
locations, one in Almelo and one in Hengelo. In 2017, the two hospitals together had
over 3200 employees and around 300 volunteers [40]. In 2018 the hospital decided to
make the distinction between the two locations more clear by distinguishing the health
care offered at the locations [41]. Almelo was given the focus on the intensive care,
high risk care and the clinical patients, while Hengelo developed into a service oriented
treatment centre for short stays (at most one night). This includes an outpatient on-
cology clinic where the health care should become patient-centred by means of more
intensive interdisciplinary collaboration.

In the current situation, different parts of the cancer patient’s care pathway take place at
both locations. A pathway consists of the referral to a specialist by a family doctor or col-
league specialist, the first intake with the specialist, the diagnostics, a multidisciplinary
meeting, the treatment and the follow up care. A patient visits multiple outpatient
clinics, each with its own specialisation, but this is about to change.

At the end of 2021, the ZGT in Hengelo will become the meeting point for the majority
of the oncology specialists, nurse practitioners, oncology nurses and supportive practi-
tioners. At the outpatient oncology clinic a team of dedicated oncology professionals
will work together interdisciplinary such that the health care can be centred around the
patient. This will be done in close collaboration with the oncology professionals at the
outpatient clinic in Almelo and at the clinical oncology departments. Most of the pro-
fessionals will be working partly in Hengelo and partly in Almelo. For their outpatient
appointments patients have to visit one outpatient clinic most of the time, in which
the most of the care pathway will take place, from the intake until the follow up care.
Moreover, this will also benefit the specialists as they can interact more easily during

42



Chapter 4. Results

the day.

To establish the situation described above a reevaluation of the current situation around
outpatient appointment planning is recommended. We analyse the availability of spe-
cialists and medical staff needed to meet the requirements regarding the time horizon
of an oncology care pathway. In the report of the organisation Stichting Oncologische
Samenwerking (SONCOS, English: Foundation for oncological collaboration) norms for
the maximum time between the stages of the care pathways is specified [42]. The spe-
cialists should use their time efficiently, so that they have enough time for their other
tasks. All this asks for a reconsideration of the capacity planning.

With the SONCOS norms and completion time constraints and the limited availabil-
ity of specialists, this problem is suitable for our iterative method. We investigate the
outpatient appointment hours needed per medical professional in order to satisfy the
completion time requirements. We focus on the care pathways of the department breast
oncology. The outpatient appointments of this department will fully take place in Hen-
gelo after the establishment of the outpatient oncology clinic.

4.2.2 Patients’ care pathways and completion time requirements

An important part of the iterative method are the routes of customers used as the input
for the model. In the hospital case, we call them care pathways. For each oncology
patient we can roughly distinguish the same stages in the care pathway. These care
pathways consist of the referral to a specialist in a hospital by a family doctor or col-
league specialist, the first intake with the specialist and nurse practitioner or oncology
nurse, the diagnostics phase, a multidisciplinary meeting (MDO, Dutch: multidisciplinair
overleg), the treatment and the follow up care. This is of course a very generalised care
pathway and the interpretation of the stages differs per patient and cancer type. In
Figure 4.3, a graphical representation of the stages of the care pathway can be seen.

Referral
to hospital

Intake
specialist

Diagnostics MDO Treatment Follow-up
care

<1 week

if surgery
<3 weeks

<6 weeks

Figure 4.3: Care pathway stages with SONCOS time requirements.

The organisation SONCOS writes a yearly report about the expectations with regard to
the multidisciplinary vision on the quality of the oncological health care in the Nether-
lands [42]. The first report came out in 2012 and every year since then a new report is
written, where the previous one is updated and improved. Hospitals have one year to
implement the requirements, unless stated otherwise. The report contains some general
requirements of the oncological health care and some cancer-type-specific requirements.
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This report includes, among other things, standards about the length of each stage of
the care pathways in the oncological care. The time requirements set by SONCOS can
also be found in Figure 4.3.

When the family doctor suspects someone is a possible cancer patient they will refer the
patient to see a specialist in a hospital. An appointment will be made with the hospital.
In the newest report of SONCOS the norm is set that in general the waiting time for the
first intake must not exceed one week [43]. If the patient has had the first intake with
the specialist and the nurse practitioner or oncology nurse the diagnostics trajectory
can begin. We often already see the first appointment at the hospital as a part of the
diagnostics. The complete diagnostics trajectory may not last more than 3 weeks [43].
This can include for example physical examination, a computerised tomography (CT)
scan or biopsy depending on the cancer type.

The next step is an MDO with all concerned oncology professionals and the possibility
of consultation with external parties, like an academic hospital. The medical staff that
should be present for every cancer type are specified in [43]. In most departments,
these meetings are held weekly at a fixed time, often during lunch hours or at the end
of the day, unless the cancer type allows a less frequent meeting. SONCOS states that
these meetings should discuss at least 90% of the patients [43]. During these meetings
the treatment path is discussed. Many departments discuss a patient in an MDO before
the treatment plan is discussed with the patient. Some care pathways also contain
a postoperative MDO discussion. This is only the case when the first treatment is a
surgical intervention. After each MDO the family doctor of the patient is updated about
the topics discussed in the MDO.

When a patient starts their treatment, this must be within six weeks after the first intake
at the hospital [43]. Treatments can consist of, but are not limited to: a surgical inter-
vention, chemotherapy, radiation or some combination of those. The goal is to let the
patient see the same specialist every time, if possible. Every patient will also be assigned
to a case manager, which will be their point of contact throughout their hospital journey
and in the follow-up phase. The low complexity treatments take place in Hengelo, but
the more complex interventions, such as extensive surgery with ICU backup or robot
surgery, will be executed in Almelo. Hengelo will only be the location for short stays
(at most one night). Sometimes surgery is performed in other surrounding hospitals.
Radiotherapy is conducted in Enschede and Deventer. The only exception is the breast
cancer care pathway, this almost fully takes place in Hengelo, except for radiotherapy.

The last part of the care pathway is the follow-up care. Depending on the cancer type
this is a meeting 2 weeks, 1 month, 3 months, 6 months or 1 year et cetera after the
ending of the treatment phase. Every care pathway makes their own agreements about
content and frequency of the follow up care following the national guidelines [43].
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4.2.3 Queueing network design and data analysis

The problem of ZGT can easily be modelled as a queueing network. We are interested
in the capacity needed for outpatient appointments per medical profession. Hence, we
can see the different professions as the stations in the queueing network, where we
make no distinction between individual specialists, but rather look at their role in the
care pathway. The following professions are included in the breast cancer pathway and
therefore represent a station in the queueing network:

• Breast surgeon
• Nurse practitioner medical oncology
• Medical oncologist
• Breast doctor
• Breast nurse
• Day treatment nurse
• Radiotherapist
• Nurse practitioner breast

With the server speed, we determine the fraction of a 40-hour work week that is needed
for outpatient appointments. Since we have multiple staff members per profession, this
server speed could also be bigger than one.

In the hospital we have different types of cancer. Per type different diagnostic phases
and treatments are possible, which results in a different sequence of outpatient appoint-
ments. Also, for each type the SONCOS norms are specified. The cancer types represent
the customer classes. In this case study we only look at one cancer type, namely breast
cancer, so we have one customer class. The possible routes represent the types within
a class. It could happen during a customer’s path that a consultation is with multiple
oncology professionals, for example a specialist and a nurse practitioner. These profes-
sionals also have some consultations on their own, so we cannot model it as one station.
Hence, we model an appointment with for example a specialist and a nurse practitioner
as first a visit to the specialist’s station and afterwards a visit to the nurse practitioner’s
station. In this way we can also have appointments with a single practitioner, but still
capture the actual demand arriving to each profession. We assume the arrival of pa-
tients happens according to a Poisson process. Moreover, the service times are assumed
to be deterministic.

In order to determine the routes through the network of possible types, we look at the
data gathered by the hospital and information gained from conversations with health
care professionals. In this way we also determine the length of appointments. The
ZGT provided the data of all outpatient appointments held in 2018 and 2019 which are
linked to the oncology breast department. In this data we can see the appointments
an oncology patient has had in these two years along with additional information, for
instance on the length and date of the appointments. In Table 4.7 a few fictional patients
are given together with the most important information about their appointments.

45



Chapter 4. Results

Table 4.7: Outpatient appointments in the data set.

Patient number Start date Appointment length Medical staff Appointment code
12345678 05-11-2018 15 min Specialist 1 BELCONS
12345678 12-01-2019 30 min Nurse 2 HCM
23456789 03-03-2019 10 min Medical oncologist 1 NCONC
34567890 24-07-2019 20 min Nurse practitioner 3 HCONC

We refer to a patient by their patient number, given by the first column. The second
and third column give the date at which the appointment took place and the scheduled
time for the appointment. The fourth column specifies the professional who held the
appointment, which, in the original data set, is given as the name of the individual
and not as the profession. In the last column we can find the appointment code which
gives the nature of the appointment. BELCONS, for example, denotes a phone consul-
tation, while HCM stands for a repeated consultation. Besides the columns given in
the table, we also have information about the registration date of the appointment, the
planned start and finish time and whether the appointment was cancelled or not. These
cancelled appointments are deleted from the data. Since we have the patient number
for each appointment, we can see the path of outpatient appointments a patient has
followed.

After talking to a breast nurse, we learned that most appointments with both a surgeon
and a nurse are only registered for the surgeon. Therefore, the data underestimates the
number of appointments with a breast nurse. To take into account this extra demand,
we assume that all appointments with a surgeon in the data were also attended by a
nurse. This was confirmed by the breast nurse as a reasonable assumption.

From the data we need to extract care pathways. However, each patient is unique and
therefore not many patients follow the exact same route through the hospital. In order
to know whether the SONCOS norms are satisfied, it is important that we can distin-
guish a certain number of routes and define route parts which have a completion time
requirement. Therefore, we talked to different professionals and used the information
gained from them to establish a number of paths through the network. Based on the
load for each station obtained from the data we selected a subset of these paths to use
in the iterative method. The selected paths can be found in Table B.3 of Appendix B.1.
The arrival rates of each path are also given in Table B.3. Since the paths are purely
based on the loads per station and only a subset is taken from the paths established in
consultation with health care professionals, the results are meant as an illustration of
the practical applicability of our iterative method, not as a direct advise for ZGT.

Within each path we need to determine the stations included in a SONCOS norm. These
norms include the waiting time until the first intake, the diagnostic phase and the time
between the first intake and the start of the treatment. The intake and diagnostics
norm can easily be determined from the paths in Table B.2 included in Appendix B.1.
However, the start of the treatment is not so easily determined from only outpatient
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appointments, since patients do not have an appointment just before their treatment.
From health care professionals we learned it takes approximately 10 days until a treat-
ment starts after the last appointment. Therefore, we take the last outpatient appoint-
ment before the surgery or start of the chemotherapy as the start of the treatment and
subtract 10 working days from the original norm of 6 weeks. We also assume for the
norms that people can only arrive during working hours and that 1 week contains 40
working hours. This yields the target times given in Table 4.8.

Table 4.8: Target times of the SONCOS norms for breast cancer.

Norm Target time (hours)
Intake 40
Diagnostics 120
Start treatment 160

We note that some of the stations are not included in any of the norms. These stations
are the radiotherapist, since radiotherapy is never the first treatment, the nurse prac-
titioner breast, since this profession is only involved in the follow-up phase, and the
nurse practitioner medical oncology, since this profession is only involved in the treat-
ment itself. In this report we decided to only focus on the waiting time of stations in
the norms, but if needed one could add an extra requirement for those single stations
to reduce the waiting time there.

4.2.4 Numerical Results

We use the iterative method to find the number of outpatient appointment hours that
need to be scheduled in order to meet the SONCOS norms in our case study. In the
previous section we described the path and station inputs. All remaining input values
for the simulation and step size used to generate the results can be found in Appendix
B.2. For the ZGT case we decided to use a fractional step size instead of a discrete step
size to generate the different initial capacities. This means that instead of adding a fixed
amount to the capacity, we add a certain percentage of the stable capacity. This decision
was made since we noted a big difference in needed capacity between the stations, such
that for some stations this discrete step size had a much bigger influence on the waiting
time than for other stations.

The iterative method is used for different thresholds, to see the behaviour of the capacity
allocation under different thresholds. We used the thresholds 0.05, 0.025 and 0.01 and
the threshold was the same for all norms in each run. This means that the results give
the capacity such that at least 95%, 97.5% and 99% of the patients can be seen within
the target times of the norms. The optimal capacity for each threshold together with the
stable capacity can be found in Table 4.9. In this table the server speeds are translated
into outpatient appointment hours needed per week. All capacities are rounded up to
ensure enough capacity is used to satisfy the SONCOS norms. Again, we do not advise
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the ZGT to use these results, since the input is based on the loads per station and not
on the real data.

Table 4.9: Optimal number of outpatient appointment hours per 40-hour working week
for different thresholds.

Station Stable capacity x
(k)
m = 0.05 x

(k)
m = 0.025 x

(k)
m = 0.01

Surgeon 37.28 38.16 38.29 38.79
Nurse practitioner medical oncology 10.62 10.62 10.62 10.62
Medical oncologist 19.04 19.54 19.54 19.54
Breast doctor 14.76 15.77 15.91 16.77
Breast nurse 110.39 111.39 111.39 111.89
Day treatment nurse 2.71 3.24 3.21 3.24
Radiotherapist 2.12 2.12 2.12 2.12
Nurse practitioner breast 11.06 11.06 11.06 11.06
Total 207.95 211.86 212.11 213.98

In the table we can see that in order to satisfy the SONCOS norms for the different
thresholds a bit more capacity should be used than the capacity needed for a stable
system. However, for individual stations this difference is never very big, meaning
the target times required are not very strict for the arrival rates of patients used in
this case study. Depending on their part in the care pathways and the length of their
appointments, some health care professions need many outpatient appointment hours,
like the breast nurse, while others need only a few, like the radiotherapist and the
day treatment nurse. Moreover, as expected, we see that the capacity at the stations
nurse practitioner medical oncology, radiotherapist and nurse practitioner breast do not
change during the iterative method, since they are not included in any of the norms.
Therefore, the stable capacity of these stations is the optimal capacity.

For the other stations we do see a change in capacity when we run the iterative method
and decrease the threshold. When we look at the total hours of outpatient appointments
needed to satisfy the norms, we see that the number of hours increases if the threshold
increases. For the individual stations, this is most often the case as well. For a threshold
of 0.05, however, the outpatient appointment hours for the day treatment nurse is higher
than for a threshold of 0.025. Also, for the stations medical oncologist and breast nurse
the optimal capacity does not change when we increase the threshold.

One way to explain the decrease in capacity of the day treatment nurse when increasing
the threshold, is the increase of capacity of other stations. The day treatment nurse is
only part of the start treatment norm, in which a lot of other stations are also involved.
We see an increase in the stations surgeon and breast doctor, which results in less ca-
pacity needed for the day treatment nurse to still satisfy the stricter start treatment
norm. A different initialisation has also played a role, since the difference is smaller
than the minimal step size of the capacity. Therefore, the difference must be caused
by the initialisation step, since there we increase the capacity fractionally instead of
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discretely.

Similar as for the test case, we see that different initial capacities lead to different opti-
mal capacities found by the iterative method. Since we now consider more stations and
more complex patient routes, multiple capacity allocations can lead to a feasible sys-
tem, with respect to the completion time requirements. We see that it really depends on
the initialisation which capacity is decided to be the optimum according to the iterative
method. In Table 4.10 the outcome of three different runs of the iterative method, each
with 10 initial capacities, can be seen for a threshold of 0.05. The stations not included
in any of the norms have been omitted, since the capacity for these stations did not
change in any of the runs.

Table 4.10: Optimal number of outpatient appointment hours per 40-hour working
week for different initial capacities with threshold 0.05.

Station Run 1 Run 2 Run 3
Surgeon 38.16 38.29 38.16
Medical oncologist 19.54 19.54 19.54
Breast doctor 15.77 16.06 15.91
Breast nurse 111.39 111.89 111.89
Day treatment nurse 3.24 3.21 3.21
Total 211.86 212.77 212.49

Run 1 gives the minimal capacity out of the three iterative method runs, while run 2
and 3 are the capacity allocations found in the other runs. From the table we note that
both run 2 and 3 gave a higher or equal capacity for all of the stations included in one
of the norms compared to run 1, except for the station of the day treatment nurse. We
can relate this difference to the minimum step size taken as input. This namely has the
value of 0.0125, which is converted to a 40-hour work week equal to half an hour. We
observe that for all stations, except the breast nurse, the outcomes of run 2 and 3 lie
within this half an hour from the outcome of run 1. Therefore, we can conclude that it
depends on the initialisation which minimal outcome is found by the iterative method.
for the station of the breast nurse we see the effects of the careful decisions we make
regarding the feasibility of a capacity allocation in the simulation phase. Moreover, we
needed to take a small step size for this case study, which makes the difference between
the current and previous capacity analysed with the simulation very small.

If we compare run 2 and run 3, we see they are very similar, except that run 2 has
added more capacity to the stations of the surgeon and the breast doctor. Again, this
is a consequence of a different initial capacity. This suggests that we could possibly use
the information from the old initial capacities to choose new initial capacities. We note
that the initial capacity of the stations surgeon and breast doctor in run 3 enable the
iterative method to end up with a lower overall capacity. Therefore, we could decide to
fix the initial capacities of run 3 for those stations and only change the other stations
when generating an initial capacity. We should be careful though that we do not make
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this decision too soon, since then we could miss out on other initial capacities which
lead to a more optimal capacity allocation.

Lastly, we look at the behaviour of the iterative method. Situation 1 must have hap-
pened three times in order for the iterative method to stop. Similar as for the test case,
we see that besides situation 1, situation 2 happens the most often. During the three
different runs, each with 10 different initial capacities, situation 3 occurred only twice.
The course of the iterative method for initial capacity resulting in the optimal capacity
for a threshold of 0.05 can be found in Figure 4.4. The whole iterative method for 10
initial capacities takes around 2 hours, when executed on the computer HP Pavilion
Desktop 595-p0xx, with processor Intel(R) Core(TM) i7-9700F CPU @ 3.00GHz 3.00
GHz, RAM 16.0 GB and Windows 10 version 21H1. Note that this is a different com-
puter than the one used to run the test case.

Start 4 Sit. 2 1 Sit. 1 4 Sit. 2

1Sit. 21Sit. 21Sit. 15

Sit. 2 1 Sit. 1

Number of QNA iterations
Situation obtained by the simulation

Figure 4.4: Course of iterative method for optimal capacity and threshold 0.05.

We see that after a simulation resulting in situation 2 only one QNA phase is executed,
which we also saw in the test case. This means that the current capacity of this simula-
tion only differs in one station compared to the last simulation, since after situation 2
capacity is added to only one station. Again, the target time update did not influence the
QNA phase a lot. We note that whenever the iterative method comes closer to a feasible
capacity, the simulation is executed more often to check if the current capacity already
satisfies the completion time requirements. When situation 1 occurs, it takes multiple
QNA phases until the next simulation. For the different initialisations the number of
times situation 2 occurs ranges from 0 to 6.
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Chapter 5

Conclusion and discussion

In this master thesis we have designed an iterative method for capacity planning in
queueing networks. The iterative method combines an approximation method, called
the Queueing Network Analyser (QNA), and Discrete event Simulation. The iterative
method was tested on a small test network and afterwards a case study was conducted
for the hospital ZGT. In this chapter, the main conclusions are presented and recom-
mendations for further research are discussed.

5.1 Main conclusion

The aim of this research was to design a capacity allocation method for queueing net-
works, such that the total capacity used is minimised and the strict requirements for
the completion time of customer’s route parts are satisfied. We looked into two possi-
ble methods to analyse a general queueing network, namely the approximation method
QNA and Discrete Event Simulation. Due to the advantages and disadvantages of both
methods and the strict completion time requirements, we decided to combine them into
one iterative method.

Based on the test case we have seen that the designed method is capable of finding
a capacity very close to the theoretical optimum. Furthermore, we observed that the
method uses QNA to take the first steps in the direction of the optimal solution. When
approaching the optimum, simulation is used more often to check regularly if we have
actually reached it. This shows that it is important to check the completion time require-
ments with a simulation after the QNA phase has found a feasible capacity allocation,
since we observe that often they are not immediately satisfied. Therefore, the interac-
tion between QNA and the simulation within the iterative method is as we intended it
to be.

We have shown an application of the iterative method in the case study for the hospital
ZGT. The cancer department has to deal with norms regarding the completion time of
parts of a patient’s care pathway, which makes the iterative method developed here a
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suitable way to determine the capacity planning. We see the same interaction between
QNA and the simulation as in the test case. Also, the initial capacity and the sensitivity
of the simulation greatly influence the outcome of the iterative method. Therefore, it is
important to look at multiple initial capacities, as we do with random restart.

Overall we can conclude that the iterative method developed in this thesis is suitable
for capacity allocation and it introduces a new way to use QNA in combination with
optimisation. Moreover it addresses strict time requirements, whereas most capacity
allocation methods in literature only look at the requirements for the expectation of the
completion time. Therefore, the method is able to find a capacity allocation in situations
where we are interested in more than the expectation, for example in a hospital setting.

5.2 Discussion and further research

During the research, we have noted several ways to improve and extend the iterative
method. In this section we discuss these points and give recommendations for future
research.

As we observed earlier, we have seen that the simulation is used more often when we ap-
proach a feasible capacity allocation and each time only one QNA phase is needed. We
use QNA such that we do not need to check a lot of different capacity allocations with
the simulation, since a simulation can take a long time. However, in this method we
still need to run multiple simulations, which can result in a long running time for more
extensive queueing networks with many possible routes for customers. This should
be taken into account when using this method in other situations, but on the other
hand it should be noted that capacity allocation does not need to be determined regu-
larly. Therefore, a long running time is not a huge disadvantage for a capacity planning
method.

To reduce the running time, one could consider to change the target time update after
situation 2 has occurred in the simulation phase, in order to decrease the number of
simulations used. We look here at the difference in expected waiting time between
QNA and the simulation, while we are actually interested in the fraction of customers
that exceeds the target time. The mean waiting time should give an idea about the
general difference in QNA and the simulation, but not directly about the difference in
fraction of customers that is supposed to be within the target time. A possibility would
be to update the threshold (similar as for situation 3) instead of the target time for all
requirements that are not yet satisfied. However, in that case we do not have a direct
link between QNA and the simulation. Therefore, we could also look at the variance of
the waiting time, in combination with the mean. Perhaps one could use the right hand
side of Chebyshev’s inequality for the sample mean and variance from the simulation
and compare the result with the one of QNA. This difference can then be used to update
the target time. These are two possible changes for the update in situation 2, but more
research should be done regarding the practical use of both of them.
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Chapter 5. Conclusion and discussion

Due to the strict completion time requirements, the method is very careful when decid-
ing whether a capacity allocation is feasible or not. Since we look at the upper bound
of the confidence interval constructed by the simulation of the probability that any-
one exceeds the target time, we could decline an already feasible capacity allocation.
Therefore, the optimal capacity allocation given by the iterative method could turn out
higher than what is actually needed. We also saw this in the test case when running the
iterative method twice for the same initial capacity. The same initial capacity can lead
to different optimal capacities, but due to the use of random restart we still come close
to the theoretical optimum. This shows that the outcome of the simulation is a very
important factor in defining the course of the iterative method. However, in the case of
very strict requirements, we decided that it is better to add a bit too much capacity than
ending up having too little.

Next, we would like to expand on the topic of multiple initial capacities. For this master
thesis we chose to use random restart, since it is an easy method to implement and it still
enables the method to start from different points within the stable capacity region and
therefore to avoid ending up in a local minimum. However, there are also sophisticated
methods to decide on different initialisations, which use the information obtained from
the initial capacities already analysed to generate new initial capacities. We discussed
a possible restart method in Section 4.2.4, which follows this idea. This would be a
way to smartly choose the next initial capacity to be analysed and therefore reduce the
number of initial capacities needed.

In this research, we aim to minimise the total sum of capacities. However, in some
situations the costs of adding extra capacity can differ per station or for some stations it
may be harder to find staff. In the objective in Equation (3.2a) we consider all stations
to be equal. Hence, we recommend for further research to add weights to the capacity
of each station to resemble the possible difference between stations. One should also
incorporate these weights in the update rule at the end of the QNA phase of the iterative
method.

Lastly, it would be interesting to test the iterative method on a larger network with more
customer classes and types. The network we have considered in the ZGT case study is
still quite small with only 8 stations, 1 customer class and 11 possible routes. Running
the iterative method for a bigger network can give new insights in the behaviour of
the method and running time. Also, we would advise to increase the number of ini-
tial capacities analysed, due to the different results we have seen for different initial
capacities.
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[36] M. Capiński and P. E. Kopp, Measure, Integral and Probability. London: Springer,

2004, vol. 14.
[37] P. Welch, “Chapter 6 the statistical analysis of simulation,” The Computer Perfor-

mance Modeling Handbook, Notes and Reports in Computer Science and Applied
Mathematics, vol. 4, pp. 268–328, Jan. 1983.

[38] H. Tijms, Operationele Analyse, Dutch, ser. 54. Epsilon Uitgeverij, 2004, tweede
herziene druk.

[39] J. Walrand and P. Varaiya, “Sojourn times and the overtaking condition in Jack-
sonian networks,” Advances in Applied Probability, vol. 12, no. 4, pp. 1000–1018,
1980.

[40] ZGT, “ZGT richting 2022. Onze keuze voor de toekomst,” 2017.
[41] ZGT, Jaardocument 2018, "https://www.zgt.nl/media/19549/jaardocument-

2018.pdf", Accessed on 23-01-2021, 2019.
[42] Stichting Oncologische Samenwerking, Normeringsrapport, "https://www.soncos.

org/kwaliteit/normeringsrapport/", Accessed on 20-07-2021.
[43] Stichting Oncologische Samenwerking, “Multidisciplinaire normering oncologis-

che zorg in Nederland,” SONCOS, Utrecht, Tech. Rep. 9, 2021.

56

 "https://www.zgt.nl/media/19549/jaardocument-2018.pdf"
 "https://www.zgt.nl/media/19549/jaardocument-2018.pdf"
 "https://www.soncos.org/kwaliteit/normeringsrapport/"
 "https://www.soncos.org/kwaliteit/normeringsrapport/"


Appendix A. List of notation

Appendix A

List of notation

List of notation used in this paper in order of first appearance.

J : Number of stations in the network.
K : Number of customer classes.
S : Number of customer types.
pks : Probability that a customer of class k is of type s.
r(s, v) : Station visited in the vth stage of the route of customer type s.
L(s) : Number of stages of the route of customer type s.

G
(s,v)
i : Service time at station i for a customer s in stage v of his route.

γ
(s)
0 : Arrival rate of customer type s at the first station of their route.

λ
(s,v)
j : Arrival rate at station j of customer type s in stage v of their route.

λ
(s)
j : Arrival rate at station j of customer type s.
βi : Capacity, expressed in server speed, at station i.

µ
(s,v)
i : Service rate at station i of customers of type s and in stage v of their route.

B
(s,v)
i : Adjusted service time at station i for customer type s in stage v of their

route.

β̂ : Vector containing the capacities at each station.
N : Set containing the completion time requirements.

τ
(k)
m : Target time for requirement m and customer class k.

x
(k)
m : Threshold for requirement m and customer class k.

W(k)
m : Waiting time over requirement m for customer class k.

λj : Aggregated arrival rate at station j.
Gj : Aggregated service time at station j.
Bj : Adjusted and aggregated service time at station j.
ρj : Utilisation at station j.
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β̂stab : Minimal capacity for which ρi < 1 for all stations i.

δ̂ : Step size used to generate multiple initialisations for the capacity.
M : Number of initial capacities.

h : Number of times the step size δ̂ is added to a station to obtain the initial
capacities.

λij : Internal flow from station i to j.
λ0j : External arrival rate to station j.
λi0 : Departure rate from station i.
Qij : Proportion of customers travelling from station i to station j.
C2

0j : Coefficient of variation of the external arrival process at station j.
C2
bj : Coefficient of variation of the service process at station j.

C2
aj : Coefficient of variation of the arrival process at station j.

Wj : Waiting time at station j.
ΠWj

: Probability of delay at station j.
Dj : Waiting time at station j given that the server is busy.
Nj : Number of customers at station j.
Tj : Sojourn time at station j.
Yj : Number of subsequent visits to station j.

b
(s)
m : Begin stage of requirement m and customer type s.

e
(s)
m : End stage of requirement m and customer type s.

Ω(β̂) : Neighbourhood of capacity allocation β̂.

U
(k)
m,j(β̂) : Function for the derivative with respect to βj of the expected waiting time

over requirement m and customer class k.
Ψ : Set with all combinations of requirements and customer classes that are

not satisfied.

Uj(β̂) : Function of the sum of derivatives U (k)
m,j(β̂) over all unsatisfied combina-

tions of requirements m and classes k.
q : Window size of moving average method.
ni : Number of observations in the simulation at station i.
z : Number of periods to look back at for the moving average method, in or-

der to determine the end of the warm-up period.
Wi(`) : Waiting time at station i of the `th customer in the simulation.
ω : Parameter for the stopping criterion of the warm-up period in the simula-

tion.

X
(k)
m (`) : Observation with value 1 if customer ` of class k does not satisfy the tar-

get time of requirement m and 0 otherwise.

n
(k)
m : Number of observations in the simulation of customers of class k and re-

quirement m after the warm-up period has ended.
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r : Number of batches for the Batch Means Method.

ν
(k)
m,y : Batch size of the yth batch of observations of customer class k and norm

m.

X
(k)

m : Mean of the Batch Means Method for observations X(k)
m (`).

S
(k)

m : Sample variance of the Batch Means Method for observation X(k)
m (`).

tr−1,1−α/2 : The (1 − α/2)-percentile of the Student’s t-distribution for r − 1 degrees
of freedom.

β̂cur : Vector containing the capacities after a QNA phase.

β̂prev : Vector containing the capacities after a QNA phases minus the step size.
η : Update factor for the step size when in situation 1.
δmin : Minimum step size for which the iterative method continues.
ε2 : Update error for the target time in situation 2.
CI(k)

m : Upper bound of the confidence interval of the fraction of customers that
has exceeded the target time in the simulation.

ε3 : Update error for the threshold in situation 3.
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Appendix B

Input for iterative method in ZGT case

This appendix contains tables with the input data of the iterative method for the ZGT
case study. In Section B.1 information about the care pathways of breast cancer patients
can be found. The other input used for the iterative method is given in Section B.2.

B.1 Care pathways for breast cancer

The queueing network constructed for the ZGT case study consists of 8 stations, which
can be found in Table B.1 together with the number we assigned to each station. From
the data and meetings with different health care professionals, we divided the care
pathway in three main sub-paths: diagnostics (D), treatment (T) and follow up (F),
and two optional sub-paths: additional tests (A) and chemo therapy (C). The paths for
each of these phases can be found in Table B.2. Only the used sub-paths are stated here,
but originally we constructed more of them, which is why the numbering of the paths
is not consistent. The red number states the number of days until the start of the actual
treatment. Lastly, Table B.3 gives the complete patient routes considered for the ZGT
case together with their arrival rates. The patient routes which are represented by a
health care profession only visit the station corresponding to the profession.

Table B.1: Number assigned to each profession for stations involved in breast cancer.

Number Profession
1 Breast surgeon
2 Nurse practitioner medical oncology
3 Medical oncologist
4 Breast doctor
5 Breast nurse
6 Day treatment nurse
7 Radiotherapist
8 Nurse practitioner breast
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Table B.2: Breast patients’ sub-care pathways.

Path Description Appointments (length in minutes)

D1 Diagnostics, benign 4 (10) - 4 (15)

D3 Diagnostics, malicious 4 (10) - 4 (15) - 5 (15) - 4 (15) - 1 (20) - 5 (20
+ 20)

D5 Diagnostics, benign 1 (10) - 1 (15)

D7 Diagnostics, benign 1 (10) - 1 (15) - 1 (20) - 5 (20 + 20)

A1 Additional tests 1 (10) - 5 (10)

T1 Surgery 1 (30) - 5 (30 + 45) - 10 days - surgery - 1 (30)
- 5 (30 + 45)

T2 Surgery, radiotherapy 1 (30) - 5 (30 + 45) - 10 days - surgery - 7 (30)
- 1 (30) - 5 (30 + 45)

T3 Chemotherapy, surgery 3 (30) - 6 (60) - 10 days - C1 - 1 (30) - 5 (30 +
45) - surgery - 1 (30) - 5 (30 +45)

T5 Chemotherapy, surgery, radiotherapy 3 (30) - 6 (60) - 10 days - C1 - 1 (30) - 5 (30 +
45) - 7 (30) - surgery - 1 (30) - 5 (30 + 45) -
radiotherapy

C1 Chemo appointments 3 (15) - 2 (20) - 3 (15) - 2 (20) - 3 (15) - 2 (20)
- 3 (15)

F3 Follow up without chemo 5 (30) - 8 (15) - 1 (10) - 5 (10+30)

F4 Follow up with chemo 5 (30) - 8 (15) - 1 (10) - 5 (10+30) - 3 (15)

Table B.3: Arrival rates per patient type.

Type number Patient route Arrival rate (per hour)
1 D1 0.390
2 D3A1T2F3 0.073
3 D3T3C1F4 0.035
4 D4A1T1F3 0.321
5 D5 0.212
6 D7A1T1F3 0.034
7 D7T5C1F4 0.032
8 Nurse practitioner breast 0.620
9 Medical oncologist 1.429
10 Nurse practitioner medical oncology 0.593
11 Breast nurse 1.528
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B.2 Other input for the ZGT case

Table B.4: Parameters for iterative method.

Description Parameter Value

Fractional step size used for initialisation of random restart δ̂ 1.05
Number of (distinct) initialisations M 10
Number of stations to which initial step size is added h 4
Starting step size for iterative method δ 0.05
Update factor for step size ν 2
Window size in the moving average method q 10
Periods to look back at in moving average method z 3
Stopping parameter of warm-up period ω 0.05
Number of batches r 25
Confidence interval percentage α 0.05
Sufficiently small step size δmin 0.0125
Minimum number of departures per type in simulation - 5, 000
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