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Summary

Moore’s law is proclaimed to be declining while the data science field processes
more and more data. Traditionally, these algorithms were deployed on general pur-
pose processors, but as data sets are growing so is the execution time of the al-
gorithm. This has the potential to limit innovations in research and development.
Recently, there is a trend where data scientists are exploring alternative solutions
to accelerate their algorithms. One such alternative is the use of hardware accel-
erators on Field-Programmable Gate Arrays (FPGAs). However, an issue arises
because it is not straightforward and it is time consuming to map the traditionally
sequential algorithms to reconfigurable hardware. High-level synthesis (HLS) tools
improve this by mapping sequential C/C++ specifications to an FPGA register trans-
fer level description. This process is however not fully automatic, manual changes
are still required. Furthermore, there is evidence that changing the structure of the
code to the Decoupled Access-Execute (DAE) architecture increases the speedup
of the algorithm as it improves the memory accessing part. The DAE architecture
consists of separating the memory accessing patterns from the computational parts
in the C/C++ code.

In this thesis a framework is proposed that automatically transforms the structure
of an algorithm written in the C/C++ programming language to the DAE architecture.
The use of the DAE architecture creates separation of concerns. As the memory
accessing and memory address calculation logic is moved into dedicated units that
operates independently of other units, the computational part has access to memory
only via the dedicated memory accessing units.

The framework does not recognize all different types of memory accessing pat-
terns, therefore it is evaluated against a subset of the algorithms provided by the
MachSuite benchmark. The runtime of the algorithm is measured then it is trans-
formed into the DAE architecture and the appropriate HLS directives are automat-
ically added and again the runtime is measured. Depending on the benchmark a
maximum speedup of 1.63x is observed while in the worst case a negligible speedup
is observed, showing that the transformation highly depends on the algorithm. In
addition to runtime measurement, power and area usage is also measured. Power
usage appears to be directly linked to the speedup: The power usage is increased
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for the algorithms where the speedup also is increased. The amount of area used
for the transformed algorithm also increases for those.
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Chapter 1

Introduction

State-of-the-art data science engineering such as bioinformatics and machine learn-
ing process large complex sets of data. Traditionally, these data sets are processed
on conventional processors. As these data sets are growing in size and complexity
a need for more powerful processors is growing. Now that Moore’s law, an observa-
tion that depicts that the number of transistors in an integrated circuit doubles every
two years, has been proclaimed to be nearing its end [3] and the growing need for
faster processors increases, there is a visible shift towards more specialized hard-
ware that is used to process these data sets. Instead of using a processor only, there
is now a trend where dedicated accelerators are deployed alongside the processor.
These dedicated accelerators have the capability to increase the performance of an
algorithm by implementing it partly or entirely in the accelerator. Various technolo-
gies exist that allow for these accelerators to be implemented, varying from deeply
integrated into hardware (Application-Specific Integrated Circuits (ASICs)) to more
flexible platforms (Graphics Processing Unit (GPU) and reconfigurable hardware).
This thesis specifically targets reconfigurable hardware as it offers a high flexibility
of algorithm implementation onto the hardware while also allowing for it to be altered
once implemented.

There exists multiple different types of reconfigurable hardware namely: Com-
plex Programmable Logic Devices (CPLDs), Coarse-Grained Reconfigurable Arrays
(CGRAs) and Field-Programmable Gate Arrays (FPGAs). The reconfigurable hard-
ware that thesis will focus on is the industry dominating FPGA. This is a silicon
chip that has the ability to be configured after it has been manufactured. FPGAs
have grown in popularity due to their high flexibility at a relatively high efficiency.
This flexibility includes the possibility to reconfigure the hardware to allow for paral-
lel computation. FPGAs are not only growing in interest for bioinformatics but also
for other fields like High-Performance Computing (HPC) and machine learning. All
these fields process a lot of data in complex algorithms. Specialized hardware ac-
celerators for these algorithms improve the throughput and speedup.
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2 CHAPTER 1. INTRODUCTION

Most algorithms are implemented using an imperative programming language,
such as C/C++, on a processor. A hardware description language (HDL) is used for
the implementation of the logic on an FPGA. Conceptually HDLs and imperative pro-
gramming languages differ in that an imperative programming language describes
how to realize an algorithm while a HDL describes the digital logic of an FPGA. This
means that an algorithm written in imperative programming languages can not be
used directly on an FPGA.

1.1 Problem definition and Research questions

Even though FPGAs have many advantages, it is considered hard, time consuming
and an error prone task to map complex algorithms to FPGAs because the developer
needs to know hardware details in order for the algorithm to be efficiently and fully
utilized [4] [5].

Recently, high-level synthesis (HLS) tools are gaining interest as they attempt to
mitigate these issues by allowing the engineer to use the familiar C/C++ specification
to describe the hardware [4]. A HLS tool transforms this specification into a register
transfer level (RTL) implementation that can be synthesized for an FPGA. This is
beneficial as software and hardware developers can implement the C/C++ code
that was initially written for traditional processors and now target FPGAs, taking
advantage of the parallel architecture of FPGAs. This greatly reduces the time-to-
market which makes FPGAs feasible to more software projects [5].

While HLS tools improve the main issues with regards to programming an FPGA
this is not completely automated and it requires manual changes so that the archi-
tecture of the FPGA is efficiently utilized.

Additionally, there is evidence that changing the software architecture to the De-
coupled Access-Execute (DAE) architecture prior to using HLS tools increases the
speedup of algorithms by 1.89x [6] to 2x [2] due to the more efficient data transfers.
This speedup is an average of a diverse set of applications, namely a general matrix
multiplication (gemm), a breadth-first search (bfs), a sparse matrix/vector multipli-
cation (spmv), molecular dynamics (md), a stencil computation, the Needleman-
Wunsch algorithm and the Viterbi algorithm.

This thesis builds upon the observation that the use of the DAE architecture
allows for the creation of C/C++ code that can be optimized for an HLS tool in a
systematic, structured and general way. The DAE architecture splits the algorithm
written in C/C++ to access and execute components, creating separation of con-
cerns. This allows for specific optimizations that are relevant for accessing external
memory and further exploration on optimizations possible on the computational ex-
ecution parts. The use of this standard structure has a threefold benefit, (1) allows
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for automating the process and (2) results in a more efficient hardware design while
also (3) resulting in a potential speedup.

This thesis presents a framework that automatically translates C/C++ code to a
C/C++ code that is optimized for use with a HLS tool by using the DAE paradigm.
The generated C/C++ code from the framework is expected to be human readable
such that the algorithm designer can still experiment by improving other parts of the
algorithm. While also having the aforementioned benefits.

Following this the main research question is formed:

Which steps are required to automatically translate C/C++ code to efficient HLS
code for FPGAs using the DAE paradigm?

The DAE paradigm splits the architecture of the C/C++ code to access and exe-
cute units, a direct research sub-question related is:

1. How can one extract memory and computational parts from the C/C++ code?

These different units need to be interconnected which introduces the following
research sub-questions:

2. How can one solve dependencies (data access) within the different access and
execute units?

3. How can one establish correct communication between the different access
and execute units?

To evaluate the implementation against industry standard benchmarks (for ex-
ample OpenDwarfs [7] or MachSuite [8]) and real-world algorithms. The following
research sub-question is relevant:

4. How does the execution time compare against other hardware implementa-
tions (baseline benchmark, manually optimized)?

1.2 Contributions

Mapping an existing algorithm onto an FPGA is considered a hard, time consuming
and error prone task. HLS tools attempt to solve these shortcomings by transforming
a high-level description of an algorithm into a hardware description. While this solves
some of these shortcomings there is still the need for manual changes as well as
there has been an observation that changing the architecture of the algorithm prior
to using it in the HLS tool improves the speedup.
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This thesis presents a fully automated framework that translates C/C++ code to
C/C++ code that is optimized for use with a HLS tool using the DAE architecture.
This reduces the need for low-level knowledge of the targeted FPGA, lowering the
learning curve for software and hardware developers to target FPGAs. The gener-
ated C/C++ code is human readable allowing for further manual optimizations to the
algorithm by more experienced developers. The automated nature of the framework
reduces the initial time required to get an algorithm efficiently targeted for FPGAs.

1.3 Report organization

Chapter 2 describes the background information for the relevant topics and shows
what their limitations are.

The related work is described in Chapter 3, its range varies from compiler tech-
nologies to high-level synthesis tools and their approach as to how to synthesize to
a register transfer level description.

The design of the framework is described in Chapter 4. How different tools and
techniques are used to implement this framework is described in Chapter 5.

Following the implementation the framework is evaluated in Chapter 6. Lastly,
the conclusions and recommendations are given in Chapter 7.



Chapter 2

Background

This chapter describes the background concepts that are relevant for this thesis. It is
organized as follows: Section 2.1 gives a brief overview of some important aspects
of an FPGA. Followed by the HLS concept and toolings in Section 2.2. This will
then lead into the use of the DAE architecture in Section 2.3. Lastly, the topic of
source-to-source translation is described in Section 2.4.

2.1 FPGA
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Figure 2.1: Simplified architecture of an FPGA

An FPGA is a silicon chip that can be configured after it has been manufactured. It
consists of Configurable Logic Block (CLB) a programmable interconnect and input
and output. The way these CLBs and interconnect is configured happens after the
chip has been manufactured.
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6 CHAPTER 2. BACKGROUND

CLBs are the fundamental building blocks of an FPGA. A CLB consists of multiple
Look-Up Tables (LUTs), memory and shift register logic, arithmetic functions and
multiplexers which are grouped in a slice. Figure 2.1 shows a simplified architecture
of an FPGA.

Nowadays, FPGAs contain additional specialized blocks such as multipliers and
digital signal processing (DSP) blocks to increase computational density and effi-
ciency. A recent trend is to also include a hard processor system, often an ARM
processor core. This can run conventional software while having the ability to call
custom hardware accelerators.

The CLBs and the programmable interconnect make FPGAs very powerful as
it allows the engineer to design a digital hardware circuit after the chip has been
produced. The engineer even has the ability to deploy the a different hardware
circuit when the FPGA has already been shipped to its customers (in the field).

The design for an FPGA is written in a HDL. The most notable ones are VHSIC
Hardware Description Language (VHDL) and Verilog.

2.2 High Level Synthesis

FPGAs are silicon chips that are configured after it was manufactured, its architec-
ture is highly parallel and does not have a predefined Instruction Set Architecture
(ISA), that is used for Central Processing Units (CPUs). HDLs are used to describe
FPGAs as these represent a level at which digital logic can be described. A direct
consequence is that more general purpose programming languages, like C/C++,
can not be used.

HLS attempts to solve that by allowing the engineer to write a hardware descrip-
tion in a (often) C/C++ programming language (most commonly ANSI C [4]). The
HLS tool transforms this into a hardware description (Often VHDL or Verilog) that
can be synthesized onto an FPGA.

Figure 2.2 shows the design flow of a HLS tool. The engineer supplies the HLS
tool with the algorithm (written in C/C++) and a test bench (also written in C/C++)
to verify functional correctness. The most important part about HLS is scheduling,
it determines when a statement in C/C++ is scheduled for execution, depending on
constraints, multiple statements can be scheduled in parallel.

Traditionally, the RTL is verified using a test bench written in a HDL, with HLS
tools it is not needed to write a test bench in this HDL. Instead, the supplied test
bench written in C/C++ is also used to verify functional correctness of the RTL im-
plementation. The test bench allows for verification of functional correctness for the
algorithm written in C/C++ and also the synthesized RTL.
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High-Level Synthesis

Test Bench Constraints/
Directives

C Simulation
C Synthesis

RTL
Adapter

C/RTL
Co-Simulation IP Generator

C/C++

VHDL

IP

Scheduling

Binding

Figure 2.2: HLS design flow overview

The important aspect being that the algorithm is written in C/C++, this is then
verified for functional correctness using C/C++ simulation. The synthesized RTL is
also verified against the C/C++ simulation for functional correctness.

All, this reduces the high expertise needed for developing an algorithm for FP-
GAs. But even with this reduction, there is still the requirement to apply manual
optimizations to the source code to make sure that the FPGA hardware is optimally
used. An example for this is loop pipelining. Depending on the HLS tool used there
are many more options to configure [9] depending on the architecture of the algo-
rithm. Configuring these options wrongly can also result in degraded performance
due to incorrect mapping.

2.3 Decoupled Access-Execute

The Decoupled Access-Execute architecture was originally designed for processors
to improve performance [10]. It features a high degree of decoupling between ac-
cess and execute operands. Separate program streams are responsible for either
memory data accessing or computational execution. The computational stream, ex-
ecute unit, never interacts with memory, it receives and stores its data via queues
that are connected to the memory accessing streams, also known as an access unit.

Figure 2.3 gives an overview of the DAE architecture that will be used in this
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thesis. All units must run in parallel, otherwise a unit will wait for data from units that
have yet to be started, causing a deadlock. The fact that these units need to run in
parallel is a benefit for FPGAs as they excel at running multiple tasks in parallel.

The DAE architecture shown in Figure 2.3 has a clear separation between the
computational and the memory accessing parts of the algorithm. Essentially, the
overall structure of the C/C++ code architecture remains the same when moving
towards the DAE architecture. The main change is that loops are duplicated among
the different units. For example, when the algorithm reads from memory x times
then when moving to the DAE architecture the same number of reads are to be
expected otherwise the units can get out of synchronization.

The DAE architecture proposed by Smith [10] uses two units: an access unit
and an execute unit. Each have their own program stream and their own dedicated
processor. Blocking queues are used to ensure that the processors stay in syn-
chronization. In this thesis a single execute unit will be used, this represents the
implementation of the algorithm as it was provided by the engineer. Depending on
the number of memory accesses multiple access units will be used.

ReadRead

Memory

Access
Unit

Read from queue

Execute
Unit

Read from queue

Access
Unit

Write

Access
Unit

Read from queue

Write to queueWrite to queue

Write to queue

Figure 2.3: The Decoupled Access-Execute architecture

2.4 Source-to-source translation

Source-to-source translation works on a high-level programming language and trans-
lates that into another high-level programming language. Source-to-source transla-
tion is a strategy that is often used for code refactoring.

There exist the ROSE compiler framework [11] that allows for source-to-source
transformations, but it lacks the capability to apply a wide range of code transfor-
mation, for this reason it is not widely used in the compiler and HPC community.
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Instead, the LLVM compiler infrastructure is gaining traction, due to its modular de-
sign. A source-to-source translator described by Balogh et al. [12] has moved away
from the ROSE compiler framework in favour of the LLVM libTooling as this suppos-
edly gives a wider range of code transformations.

While source-to-source translation happens at the high-level programming level.
Compilers have the task to translate a high-level programming language to another
low-level programming language. A compiler generally works on three different
stages: front end, intermediate representation (IR), back end. The front end is re-
sponsible for taking the high-level programming language and translating that to the
intermediate representation. A lexer is used to create a list of tokens that repre-
sent the input code. The preprocessor has the ability fo manipulate the tokens, after
which the tokens are parsed into a parse tree. The parser tree is transformed to
an Abstract Syntax Tree (AST). The parser tree contains more information when
compared to an AST. Finally, the AST is transformed into an IR.

The IR is optimized to improve performance and quality of the low-level program-
ming language. At this stage a Control-Flow Graph (CFG) is built from the IR, which
is used for static analysis of the IR. Compilers generate CFGs for the optimization of
the IR. From CFG it is also possible to generate Data Flow Graph (DFG). It is also
possible to generate a Control Data Flow Graph (CDFG) or Program Dependence
graph (PDG) from the CFG. DFGs show graphically how data flows though an ap-
plication. A node consists of a data transformation, while an edge indicates the flow
of data. Namely the data dependencies become visible in this way.

1 int main() {

2 int v1;

3 int v2 = 0;

4 for (v1 = 0; v1 < 20; v1++) {

5 v2 += v1;

6 }

7 return v2;

8 }

Listing 2.1: The example input code

Listing 2.4 shows the AST generated by the code example shown in Listing 2.1.
From top to bottom it shows a tree structure where a node has children nodes nested
within. The individual nodes also define the meaning of the child nodes, for example:
The for-loop has multiple children, but only the last node (CompoundStmt) contains
information about the body of the loop. All others are related to the parameters of
the loop (initialization, test expression, update statement).

The AST is translated into the IR shown in Listing 2.2. While the AST is already
an abstraction of the input code, the IR shows an even larger abstraction, loops are
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FunctionDecl	0x55d5278f99e0	<llvm_demo.c:4:1,	line:11:1>	line:4:5	main	'int	()'
`-CompoundStmt	0x55d5278f9e00	<col:12,	line:11:1>
		|-DeclStmt	0x55d5278f9b00	<line:5:5,	col:11>
		|	`-VarDecl	0x55d5278f9a98	<col:5,	col:9>	col:9	used	v1	'int'
		|-DeclStmt	0x55d5278f9bb8	<line:6:5,	col:15>
		|	`-VarDecl	0x55d5278f9b30	<col:5,	col:14>	col:9	used	v2	'int'	cinit
		|			`-IntegerLiteral	0x55d5278f9b98	<col:14>	'int'	0
		|-ForStmt	0x55d5278f9d80	<line:7:5,	line:9:5>
		|	|-BinaryOperator	0x55d5278f9c10	<line:7:10,	col:15>	'int'	'='
		|	|	|-DeclRefExpr	0x55d5278f9bd0	<col:10>	'int'	lvalue	Var	0x55d5278f9a98	'v1'	'int'
		|	|	`-IntegerLiteral	0x55d5278f9bf0	<col:15>	'int'	0
		|	|-<<<NULL>>>
		|	|-BinaryOperator	0x55d5278f9c88	<col:18,	col:23>	'int'	'<'
		|	|	|-ImplicitCastExpr	0x55d5278f9c70	<col:18>	'int'	<LValueToRValue>
		|	|	|	`-DeclRefExpr	0x55d5278f9c30	<col:18>	'int'	lvalue	Var	0x55d5278f9a98	'v1'	'int'
		|	|	`-IntegerLiteral	0x55d5278f9c50	<col:23>	'int'	20
		|	|-UnaryOperator	0x55d5278f9cc8	<col:27,	col:29>	'int'	postfix	'++'
		|	|	`-DeclRefExpr	0x55d5278f9ca8	<col:27>	'int'	lvalue	Var	0x55d5278f9a98	'v1'	'int'
		|	`-CompoundStmt	0x55d5278f9d68	<col:33,	line:9:5>
		|			`-CompoundAssignOperator	0x55d5278f9d38	<line:8:9,	col:15>	'int'	'+='	ComputeLHSTy='int'	ComputeResultTy='int'
		|					|-DeclRefExpr	0x55d5278f9ce0	<col:9>	'int'	lvalue	Var	0x55d5278f9b30	'v2'	'int'
		|					`-ImplicitCastExpr	0x55d5278f9d20	<col:15>	'int'	<LValueToRValue>
		|							`-DeclRefExpr	0x55d5278f9d00	<col:15>	'int'	lvalue	Var	0x55d5278f9a98	'v1'	'int'
		`-ReturnStmt	0x55d5278f9df0	<line:10:5,	col:12>
				`-ImplicitCastExpr	0x55d5278f9dd8	<col:12>	'int'	<LValueToRValue>
						`-DeclRefExpr	0x55d5278f9db8	<col:12>	'int'	lvalue	Var	0x55d5278f9b30	'v2'	'int'

Figure 2.4: The AST generated from Listing 2.1

replaced with label jumps, similar to assembly code.
A useful tool is to use a CFG for further code analysis. Figure 2.5 shows the

CFG generated from the IR shown in Figure 2.1. The relation between the different
labels are more clearly visible compared to the IR.

Code block %4 is responsible for checking if the variable v1 is still within the valid
guard. If this is true, then it jumps to the %7 code block, otherwise it jumps to %14
which loads the variable %v2 and returns that as the result of the main function. The
%7 code block handles the body of the for-loop: Sum v1 and v2 and store into v2.
The code block %11 is responsible for incrementing the loop guard v1.
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1 define dso_local i32 @main() #0 !dbg !9 {

2 %1 = alloca i32, align 4

3 %2 = alloca i32, align 4

4 %3 = alloca i32, align 4

5 store i32 0, i32* %1, align 4

6 store i32 0, i32* %3, align 4, !dbg !16

7 store i32 0, i32* %2, align 4, !dbg !17

8 br label %4, !dbg !19

9 4: ; preds = %11, %0

10 %5 = load i32, i32* %2, align 4, !dbg !20

11 %6 = icmp slt i32 %5, 20, !dbg !22

12 br i1 %6, label %7, label %14, !dbg !23

13 7: ; preds = %4

14 %8 = load i32, i32* %2, align 4, !dbg !24

15 %9 = load i32, i32* %3, align 4, !dbg !26

16 %10 = add nsw i32 %9, %8, !dbg !26

17 store i32 %10, i32* %3, align 4, !dbg !26

18 br label %11, !dbg !27

19 11: ; preds = %7

20 %12 = load i32, i32* %2, align 4, !dbg !28

21 %13 = add nsw i32 %12, 1, !dbg !28

22 store i32 %13, i32* %2, align 4, !dbg !28

23 br label %4, !dbg !29, !llvm.loop !30

24 14: ; preds = %4

25 %15 = load i32, i32* %3, align 4, !dbg !33

26 ret i32 %15, !dbg !34

27 }

Listing 2.2: The IR used by a compiler infrastructure

CFG for 'main' function

%0:
 %1 = alloca i32, align 4
 %2 = alloca i32, align 4
 %3 = alloca i32, align 4
 store i32 0, i32* %1, align 4
 call void @llvm.dbg.declare(metadata i32* %2, metadata !13, metadata
... !DIExpression()), !dbg !14
 call void @llvm.dbg.declare(metadata i32* %3, metadata !15, metadata
... !DIExpression()), !dbg !16
 store i32 0, i32* %3, align 4, !dbg !16
 store i32 0, i32* %2, align 4, !dbg !17
 br label %4, !dbg !19

%4:
4: 
 %5 = load i32, i32* %2, align 4, !dbg !20
 %6 = icmp slt i32 %5, 20, !dbg !22
 br i1 %6, label %7, label %14, !dbg !23

T F

%7:
7: 
 %8 = load i32, i32* %2, align 4, !dbg !24
 %9 = load i32, i32* %3, align 4, !dbg !26
 %10 = add nsw i32 %9, %8, !dbg !26
 store i32 %10, i32* %3, align 4, !dbg !26
 br label %11, !dbg !27

%14:
14: 
 %15 = load i32, i32* %3, align 4, !dbg !33
 ret i32 %15, !dbg !34

%11:
11: 
 %12 = load i32, i32* %2, align 4, !dbg !28
 %13 = add nsw i32 %12, 1, !dbg !28
 store i32 %13, i32* %2, align 4, !dbg !28
 br label %4, !dbg !29, !llvm.loop !30

Figure 2.5: Control-Flow Graph



12 CHAPTER 2. BACKGROUND



Chapter 3

Related work

This chapter will discuss related work and how it relates to this thesis. Section 3.1
gives an analysis into existing HLS tools and source-to-source tools. Section 3.2 will
look at other related works that focus on the usage of the DAE architecture.

3.1 HLS and source-to-source translation

Figure 3.1: Design flow of the LegUp framework adapted from [1]

LegUp [1] is an open source HLS tool that uses the LLVM infrastructure to compile
a standard C program to a hybrid architecture with a MIPS softcore processor and
custom hardware accelerators. It specifically targets Intel FPGAs. The architecture
shown in Figure 3.1 is such that it compiles C source code into a binary, this is
executed on a MIPS processor. The MIPS processor is used to profile the binary.
This way it can provide useful information on which sections of a program would
benefit from a hardware implementation. The manually chosen sections should be
appended to a file that is used by LegUp. LegUp then compiles these sections to

13
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synthesizable Verilog. The Verilog is then synthesized to the FPGA implementation
using the Altera/Intel FPGA vendor tool. Lastly the original C code is modified to call
the custom hardware accelerators instead of the software implementation. LegUp
utilizes the LLVM infrastructure by performing optimizations in the LLVM frontend
passes. Then a LegUp code generator is used in the LLVM backend to create the
Verilog output from the LLVM IR. LegUp also employs loop pipelining, but only loops
where the loop body consists of a single basic block can be pipelined by LegUp. As
such it is recommended to avoid if-else statements, replacing those by a C ternary
operator (condition ? expression : expression). This means that the input source
code needs manual changes to reduce the resources and improve pipelining.

The Merlin Compiler [13] is a closed source source-to-source compiler for FP-
GAs. It performs pre-synthesis source-to-source modifications. The Merlin Compiler
can use a variety of vendor HLS tools such as Xilinx SDAccel and Altera OpenCL
SDK, but they also provide their own HLS tool. The source-to-source compiler is
implemented as multiple backend optimization passes in the LLVM compiler frame-
work. The Merlin Compiler also verifies the output using CPU emulation. A runtime
manager is responsible for scheduling tasks on the FPGA and, if desired, a CPU.
The Merlin Compiler assumes a distributed memory model, which means that CPUs
and FPGAs have their own memory space. The data between the different memory
spaces are transferred via a PCIe connection. The focus of the Merlin Compiler is
on automating the entire process at the cost of more fine grained control possible by
the engineer.

Spearmint [14] is a source-to-source translator that translates annotated C/C++
code to parallelized CUDA C/C++ code for a CPU-GPU system using the LLVM com-
piler infrastructure. The annotated C/C++ code can consist of five different types of
pragmas. A modified LLVM Clang tooling library is created to handle the newly de-
fined pragmas, as pragmas are automatically removed from the AST. The Spearmint
framework uses this tool to traverse the AST and replace the annotated code using
LLVMs FrontendAction.

The Spearmint project is a continuation on the Mint [15] project. which used the
Rose Compiler infrastructure, that has support for a mutable AST. The Mint project
changes the AST to change the architecture of the software. The issue with directly
using the AST provided by the Rose Compiler infrastructure is that it is very complex,
thus requiring a huge amount of coding effort to maintain. The move to LLVM in
the Spearmint project reduces this, because LLVM has facilities (FrontendAction,
RecursiveASTVisitor) that allow for source-to-source translation.

Examples that apply the DAE architecture on code written for HLS tools have
been explored in the past. In the bioinformatics field the DAE architecture is used to
create an FPGA accelerator for detection of positive selection in large-scale single-



3.2. DAE FRAMEWORKS 15

nucleotide polymorphisms data [16] [17]. It showed an increased speedup when
compared to software tools varying from 20x to 751x. The reason for the large
speedup of this accelerator compared to the software tools was due to using an
algorithm that exploits the high degree of parallelism of FPGAs.

3.2 DAE frameworks

This section describes what relevant works have been researched in previous works
that specifically use the DAE architecture.

CPU

MEMORY

FETCH
Unit #1

PROCESS
Unit #1

FETCH
Unit #N

PROCESS
Unit #N

Reconfigurable Surface

...

Accelerator #1 Accelerator #N

Parameters

Data

Figure 3.2: Decoupled Access-Execute architecture for Reconfigurable accelera-
tors adapted from [2]

The Decoupled Access-Execute architecture and framework for Reconfigurable
accelerators [2] increases the speedup of an application by expanding the capabili-
ties of the DAE architecture. It specifically targets hybrid systems with one or more
CPUs and FPGAs.

Figure 3.2 gives an overview of the architecture. It consists of multiple fetch
units and processing units, the naming is analogous to the access and execute units
described by the DAE architecture. There is a fetch unit that is connected to the
CPU and memory, where the connection to the CPU is needed for passing program
parameters (start memory addresses, etc.) and the input and output data from the
program is handled by the memory connection. The fetch unit can also access data
from other accelerators in the reconfigurable system. The processing unit performs
all logic and arithmetic operations. The different units are interconnected using first
in first out (FIFO) queues.
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The resulting framework is evaluated using three different benchmarks: gen-
eral matrix multiplication (gemm), sparse matrix/vector multiplication (spmv) and the
Needleman-Wunsch algorithm. The results are compared against an unoptimized
HLS implementation, which only has basic data I/O optimizations. Then its results
are evaluated against an optimized HLS implementation that, in addition to the un-
optimized, has design specific optimization directives (pipelining, unrolling). The
DAER HLS implementation is constructed from the optimized HLS implementation
with the key change of changing a target section with a DAE transformed version.
On average, the proposed architecture achieves a speedup of 2x compared against
the baseline HLS versions due to more efficient data accessing.

The main downside of this framework is that the proposed framework requires
manually changing the entire structure of the source code.

The work described by Chen and Suh [6] uses the DAE architecture to improve
the speedup of algorithms at the cost of area. They observed that the access part
must run faster in the DAE architecture compared to the non-DAE architecture oth-
erwise there would be no improvement in the speedup of the algorithm. In addition
to having access and execute units a memory unit is added that behaves as a proxy
though which memory accessing is handled. The memory unit is responsible for
memory request handling and data forwarding while the access unit remains re-
sponsible for address generation and sending memory requests.

In addition to applying the DAE architecture, a prefetcher is implemented to fur-
ther increase the potential speedup achievable. When only applying the DAE ar-
chitecture the observed speedup is 1.89x while adding prefetching increased the
speedup up to 2.28x.

The main downside here is that this work focuses only on optimizing the speedup.
This thesis has an additional focus on readability such that the engineer can experi-
ment or perform further optimizations to the transformed algorithm.

CASCADE [18] is a novel Decoupled Access-Execute CGRA design. A CGRA is,
by design, an array of Processing Elements (PEs). Most of these PEs are allocated
to Address Generation Instructions (AGIs) in a kernel. The percentage of AGIs used
can range from 20% to 80% depending on when the CGRA uses single-bank or
multi-bank memory.

CASCADE proposes to decouple the address generation to custom designed
programmable hardware. This makes the CGRA focus purely on the computation,
while address generation is handled by specialized hardware (Stream Engine). An
ideal decoupled access-execute CGRA has an on average 5x increase in throughput
compared to an ideal conventional CGRA. The LLVM framework is used to provide
a complete end-to-end solution to compile code to a configuration for the CGRA and
the Stream Engine.



Chapter 4

Framework design

This chapter describes the design of the framework. The system that this thesis
targets is described in Section 4.1. The complete overview of the individual steps
of the framework is described in Section 4.2. Section 4.3 describes how memory
accessing elements are located. The dependencies of the memory accessing el-
ements are solved in Section 4.4. Section 4.5 describes how communication and
synchronization is facilitated between the different units that run in parallel. The code
transformations are not directly applied on the input unparsed code. Instead, they
are applied on an IR the design of which is described in Section 4.6. Section 4.7
shows a demonstration how the framework will apply the methods described on how
to translate C/C++ source code to a DAE version. Section 4.8 describes the limita-
tions that were identified as a result of varying methods to access data from memory
and how it is handled by the rest of the source code.

4.1 System architecture

PL   PS

Memory

Memory
Controller Access

Unit #0
Access
Unit #X

Execute
Unit #0Core #0 Core #1

Access
Unit #Y

Interconnect

Access
Unit #Y+1

Figure 4.1: Targeted system architecture
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This thesis targets a system which consists of two separate components: A Proces-
sor System (PS) and a Programmable Logic (PL). They can be either all on a single
chip (System on a chip (SoC)) or completely separate using an external intercon-
nect. The architecture of this system is depicted in Figure 4.1. The PS contains
multiple processors and an external memory interface controller. The PL contains
the hardware accelerators, in this case an example accelerator is shown that con-
forms the DAE architecture.

Due to area, power and performance constraints the algorithm may be partially
synthesized to PL while the other part can run on the PS, the PS will wait for the PL
until it has completed the relevant part of the algorithm.

4.2 Framework overview

Figure 4.2 shows the general overview of the framework. It essentially consists of
five distinct steps. The framework first needs to parse the C/C++ code to the IR as
it was described in the previous chapter. The following phase is on the extraction of
the different DAE units, optimizing that for high-level synthesis and writing a C/C++
source file that the HLS tool will use to synthesize to a hardware description.

During parsing the developer selects a target block of code to be transformed
to the DAE architecture and prepared for the HLS tool. The selected target code
is parsed into the IR. The AST is used in conjunction with tokens to obtain all the
information needed to parse the code into the IR. The AST is using the preprocessed
C/C++ source code, while tokens represent the text as it is written in the source files
instead of being preprocessed.

After parsing the memory accessing elements are identified using the algorithms
defined in the previous chapter. After identification the memory accessing elements
are used to create the access units. The previously parsed IR represents the exe-
cute unit. Another step is needed to replace the memory accessing elements from
the execute unit, it is replaced by stream links that connect to the access units.

Optimization consists of automatically inserting directives for use with the HLS
tool. Loop pipelining, setting the correct interfaces, local array partitioning and en-
abling parallel tasks are part of this phase. This results in code that is efficient for
HLS tools. The intermediate representation needs to be converted back to C/C++
source files so that that HLS tool can use it. It consists of writing tokens to a source
file making sure that spaces are inserted whenever necessary. The HLS tool is used
to finally synthesize the source files to an RTL description.
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Figure 4.2: The flow of the framework

4.3 Memory accessing patterns

The key factor in the DAE architecture, described in Section 2.3, is the extraction
of memory elements. Suppose that the top-level function vector adder described in
Listing 4.1 is targeted for high-level synthesis. This function contains multiple loops
to calculate M ∗ 1⃗. In other words a matrix M is multiplied with a all-ones vector.

In this example there are two memory accessing elements, one input matrix m1
and one output vector v1.

These memory accessing elements can be located by analyzing how they are
structured. In this case the variable has a name followed by two brackets and a
number in between. Another structure that represents a memory accessing pattern
is dereferencing of pointers (*v1). Algorithm 1 shows how memory accessing pat-
terns are located, in this thesis only the first memory accessing pattern is supported.
The memory accesses are stored in a separate list to be used at a later stage.

1 void vector_adder(int *m1, int *v1) {

2 int i, j;

3 int i_row;

4 int sum;

5

6 for(i=0; i<col_size; i++) {

7 i_row = i * row_size;

8 sum = 0;

9 for(j=0; j<row_size; j++) {

10 sum += m1[i_row + j];

11 }

12 v1[i] = sum;

13 }

14 }

Listing 4.1: Matrix vector addition
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Algorithm 1 Memory access pattern locating
Precondition: source as the algorithmic description

1: function MEMORY ACCESS LOCATOR(source)
2: mem elem← ∅ ▷ mem elem: List of memory accessing statements
3: for all statement ∈ source do
4: if square bracket in statement then
5: if integer in between square bracket then
6: mem elem← mem elem||statement

7: end if
8: end if
9: end for

10: return mem elem

11: end function

4.4 Unit creation

Next to the identification of the accessing elements there are the address generation
of the memory accessing element and the frequency at which it is accessed. As
mentioned in Section 2.3 this thesis uses multiple access units and a single execute
unit. The execute unit is behaviourally identical to the input code with the exception
of the memory accessing element replaced by a stream that is connected to an
access unit.

Consider still the same code snippet depicted in Listing 4.1. The address gener-
ation is in that case handled by the pointer index of the memory accessing elements:
i row + j, needed for the m1 memory access and i, needed for the v1 memory ac-
cess.

At this point a reverse copy of the IR is made at the location where a memory
accessing statement is found. Algorithm 2 describes how this reverse copy of state-
ments is created, all statements listed after the memory accessing statement are
ignored as the head (the current location in the list of statements) is located at the
memory accessing statement. It traverses the list of statements in reverse prepend-
ing statements onto the new unit.

The access unit created now has the complete structure of the final unit, the
memory accessing elements are accessed the same number of times as the input
C/C++ code. The statements that aren’t relevant for address generation are re-
moved as the access unit copy algorithm didn’t take into account the dependencies.
Algorithm 3 describes how this is achieved. It starts from the head, the memory
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Algorithm 2 Access unit creation
Precondition: source statement The complete tree statement structure pointing to

the memory access

1: function REVERSE COPY(source statement)
2: unit← Copy of the head at source statement

3: access head← Copy of the head at unit
4: for previous statements in source statement do
5: unit← Prepend a copy of the current statement
6: unit← Previous unit statement
7: end for
8: return access head

9: end function

accessing statement, and traverses the list of statements backwards to followed by
a check if the statement is used by future statements. If not, it will be removed from
the statement set.

The created access unit needs the statement that contains the memory access-
ing element altered such that it reads or writes the data from memory into a stream
that is connected to the execute unit. Algorithm 4 is used to identify if the memory
accessing element is reading from memory or writing to memory. The entire state-
ment containing the memory accessing element is replaced by either a read or a
write from memory connected to a stream. A stream has a single input and a single
output meaning that it is connected to a single access unit and a single execute unit.

4.5 Unit communication and synchronization

An important aspect of the DAE architecture is that all units run in parallel. The DAE
architecture uses stream queues to link the different units. Any unit that requests
data yet to become available is stalled until data becomes available. This allows the
different unit to run in parallel and at different speeds while never losing synchro-
nization. The responsibility for this stalling and synchronization is handled by the
queues as it’s the connecting element.

As discussed in Section 4.1 an external interface between the units and memory
is used. In this thesis the external AXI4 interface protocol is used. This also has the
ability to perform burst reads and writes, potentially allowing for a higher throughput.
HLS controls whether a burst read or write will be enabled for an interface as it de-
pends on the code structure. For instance, a simple loop that reads from a memory
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Algorithm 3 Dependence elimination
Precondition: access unit A partial copy of the algorithmic description with the ac-

cess at its head.

1: function DEPENDENCE ELIMINATION(access unit)
2: access head← The head of the access unit

3: while access head has previous statement do
4: if access head has no uses in next statements then
5: tmp← access head

6: end if
7: access head← Previous statement in access unit

8: if tmp is set then
9: tmp← Remove statement

10: end if
11: end while
12: end function

Algorithm 4 Memory access read or write identification
Precondition: statement Statement at which the memory accessing element is lo-

cated.

1: function ACCESS READ OR WRITE(statement)
2: if Has equals after memory accessing element then
3: return write access
4: else
5: return read access
6: end if
7: end function

location that increases with a fixed size will have burst reads or writes, but more
complex memory accessing patterns might not.

4.6 The intermediate representation

The DAE architecture does not change the actual amount of data fetching, other-
wise issues might occur where not enough data is fetched resulting in units waiting
for data that will never become available. In source-to-source translation, see Sec-
tion 2.4, abstraction in the form of an intermediate representation is built from the
source code. Transformations are applied in further phases in a compiler infrastruc-
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ture.
For compiler infrastructures a low-level abstract internal intermediate represen-

tation of the source code is used. This abstract form is not desirable as information
such as variable names and/or loop structures may be lost. This means that an in-
ternal representation is to be used that still contains the high-level information from
the source code while also providing the ability to transform that into the DAE archi-
tecture.

Previous
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Node

Next

Node

Previous

InNext

Node
Previous

Node

Node

Figure 4.3: The intermediate representation

Node

Line: Copy of line from code

Tokenlist: List of tokens

...

Token

Type: For, If, Else, While, ...

Text: Text from source

Figure 4.4: Contents of a node
and tokens

Figure 4.3 shows the overview of the designed IR. Any given node has a relation
to other nodes. This is described by the previous, next and in edges. Each node
has a node on the previous edge with the exception of the root node. Each node
can have up to two succeeding nodes: next and/or in. It is also possible for it to
have no consequent nodes. A next edge describes that the following node has a
C/C++ statement that is evaluated after the previous node. An in edge implies that
the following node is the body of the previous node. This could be for example the
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body of an if statement or a for loop.
The contents of each node, shown in Figure 4.4, is structured such that all infor-

mation from the original code is encompassed within it. One of the goals is to have
the output C/C++ code be human readable, as such there is dedicated line field that
holds the line statement as it was written in the input C/C++ code. This ensures that
the input code is regenerated when no code transformation to be performed. It is
implied that this field is read-only, meaning that any code transformation should not
be applied to this line but instead a different field. The tokenlist is used for manipula-
tion. This field contains essentially the same contents as the line field, but structured
as a linked list that can be safely manipulated. A token has the text from the source
code associated with it and a type.

The IR should be rewritten to a C/C++ source file. A dedicated module is used
for this. Based on the line or tokenlist it can build the source file. The tokenlist is
always preferred over the line. The formatting of the tokens into code is also the
responsibility of this module.

4.7 Transformation example

1 stencil_label1:for (r=0; r<row_size-2; r++) {

2 stencil_label2:for (c=0; c<col_size-2; c++) {

3 temp = (TYPE)0;

4 stencil_label3:for (k1=0;k1<3;k1++){

5 stencil_label4:for (k2=0;k2<3;k2++){

6 mul = filter[k1*3 + k2] * orig[(r+k1)*col_size + c+k2];

7 temp += mul;

8 }

9 }

10 sol[(r*col_size) + c] = temp;

11 }

12 }

Listing 4.2: Example input code

To demonstrate how a piece of code is transformed into the DAE architecture the
stencil2d benchmark, part of the MachSuite benchmark suite, is used. Listing 4.2
shows the most relevant code snippet of the algorithm, it consists of four loops and
three external memory accesses via pointers. The complete code of this example
is available in Appendix B.3. Using the AST the structure of the code is extracted.
The most relevant parts of the AST as used by LLVM is shown in Figure 4.5. This
AST is transformed into the intermediate representation. Even though the AST and
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IR present a tree-like structure, they are not interchangeable. The AST evaluates
every individual statement, this is not needed for the IR as it contains structural infor-
mation of loops and conditional statements, everything else is left as is and stored
as a complete statement within a node. For instance, a for-loop would have nested
statements in the IR (an in edge), while an assignment shouldn’t have nested state-
ments. This is in contrast to the AST where a statement can be composed of multiple
statements. In LLVM an expression is a subset of a statement, making a statement
consist of other statements. Figure 4.6 shows the intermediate representation that
is generated from the AST. Each node has a node name for explanation purposes.

Now that the code is in the IR form the next step is to extract the memory access-
ing elements according to Algorithm 1. Starting from the root of the IR the nodes
are recursively traversed. On each node the tokens are compared. Once the first [
is found it can start extracting the memory accessing element. The first [ is found in
node6. The token defined before the [ token is the variable name. To verify correct
code the rest of the tokens are also compared until a ] is found. A reference to this
node is appended to a list that holds all memory accessing elements. Traversing
the entire IR results in the list of memory accessing elements holding nodes with
references to the following memory accesses: filter, orig and sol.

Next up is the creation of access units based on the memory accessing elements.
Considering that the previously defined list contains references, the IR can still be
used to traverse from a given point. Using Algorithm 2 a new subset of the IR is
created by reverse traversing the IR at the current head (i.e. the memory accessing
element). This will form the base of an access unit. Using context information, the
placement of where the memory accessing element, it is determined if the memory
accessing element is a read or write memory accessing element. Listing 4.2 shows
that filter and orig are read from while sol is written to, this information is purely
based on the positioning of the memory element in relation to the equals sign. This
information is also used in the execute unit to replace the memory accessing ele-
ments with the stream that connects to the access units. The resulting IR of the
access unit for the filter memory accessing element is shown in Figure 4.7.

Figure 4.8 shows the final architecture on how the units are connected.

The goal of this thesis is to increase the speedup while also having the resulting
code from the framework in a readable form. To increase the speedup automatically
all loops are pipelined with an iteration interval of one. Meaning that the HLS tool
should try as best as it can to reduce the iteration interval of the outside loop to one.
This might not be possible if memory is accessed multiple times in the same loop
cycle.
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LabelStmt	0x5576d3b3e4b8	<line:15:5,	line:26:5>	'stencil_label1'
`-ForStmt	0x5576d3b3e430	<line:15:20,	line:26:5>
		|-BinaryOperator	0x5576d3b3c6a0	<line:15:25,	col:27>	'int'	lvalue	'='
		|	|-DeclRefExpr	0x5576d3b3c660	<col:25>	'int'	lvalue	Var	0x5576d3b3c318	'r'	'int'
		|	`-IntegerLiteral	0x5576d3b3c680	<col:27>	'int'	0
		|-<<<NULL>>>
		|-BinaryOperator	0x5576d3b3c758	<col:30,	col:41>	'bool'	'<'
		|	|-ImplicitCastExpr	0x5576d3b3c740	<col:30>	'int'	<LValueToRValue>
		|	|	`-DeclRefExpr	0x5576d3b3c6c0	<col:30>	'int'	lvalue	Var	0x5576d3b3c318	'r'	'int'
		|	`-BinaryOperator	0x5576d3b3c720	<./stencil.h:7:18,	stencil.cpp:15:41>	'int'	'-'
		|			|-IntegerLiteral	0x5576d3b3c6e0	<./stencil.h:7:18>	'int'	128
		|			`-IntegerLiteral	0x5576d3b3c700	<stencil.cpp:15:41>	'int'	2
		|-UnaryOperator	0x5576d3b3c798	<col:44,	col:45>	'int'	postfix	'++'
		|	`-DeclRefExpr	0x5576d3b3c778	<col:44>	'int'	lvalue	Var	0x5576d3b3c318	'r'	'int'
		`-CompoundStmt	0x5576d3b3e418	<col:49,	line:26:5>
				`-LabelStmt	0x5576d3b3e400	<line:16:9,	line:25:9>	'stencil_label2'
						`-ForStmt	0x5576d3b3e378	<line:16:24,	line:25:9>
								|-	...
								`-CompoundStmt	0x5576d3b3e350	<col:53,	line:25:9>
										|-BinaryOperator	0x5576d3b3c978	<line:17:13,	col:26>	'int32_t':'int'	lvalue	'='
										|	|-DeclRefExpr	0x5576d3b3c900	<col:13>	'int32_t':'int'	lvalue	Var	0x5576d3b3c550	'temp'	'int32_t':'int'
										|	`-CStyleCastExpr	0x5576d3b3c950	<col:20,	col:26>	'int32_t':'int'	<NoOp>
										|			`-IntegerLiteral	0x5576d3b3c920	<col:26>	'int'	0
										|-LabelStmt	0x5576d3b3e198	<line:18:13,	line:23:13>	'stencil_label3'
										|	`-ForStmt	0x5576d3b3e110	<line:18:28,	line:23:13>
										|			|-	...
										|			`-CompoundStmt	0x5576d3b3e0f8	<col:48,	line:23:13>
										|					`-LabelStmt	0x5576d3b3e0e0	<line:19:17,	line:22:17>	'stencil_label4'
										|							`-ForStmt	0x5576d3b3d010	<line:19:32,	line:22:17>
										|									|-BinaryOperator	0x5576d3b3cae8	<line:19:37,	col:40>	'int'	lvalue	'='
										|									|	|-DeclRefExpr	0x5576d3b3caa8	<col:37>	'int'	lvalue	Var	0x5576d3b3c498	'k2'	'int'
										|									|	`-IntegerLiteral	0x5576d3b3cac8	<col:40>	'int'	0
										|									|-<<<NULL>>>
										|									|-BinaryOperator	0x5576d3b3cb60	<col:42,	col:45>	'bool'	'<'
										|									|	|-ImplicitCastExpr	0x5576d3b3cb48	<col:42>	'int'	<LValueToRValue>
										|									|	|	`-DeclRefExpr	0x5576d3b3cb08	<col:42>	'int'	lvalue	Var	0x5576d3b3c498	'k2'	'int'
										|									|	`-IntegerLiteral	0x5576d3b3cb28	<col:45>	'int'	3
										|									|-UnaryOperator	0x5576d3b3cba0	<col:47,	col:49>	'int'	postfix	'++'
										|									|	`-DeclRefExpr	0x5576d3b3cb80	<col:47>	'int'	lvalue	Var	0x5576d3b3c498	'k2'	'int'
										|									`-CompoundStmt	0x5576d3b3cff0	<col:52,	line:22:17>
										|											|-BinaryOperator	0x5576d3b3cf48	<line:20:21,	col:74>	'int32_t':'int'	lvalue	'='
										|											|	|-DeclRefExpr	0x5576d3b3cbb8	<col:21>	'int32_t':'int'	lvalue	Var	0x5576d3b3c5c8	'mul'	'int32_t':'int'
										|											|	`-BinaryOperator	0x5576d3b3cf28	<col:27,	col:74>	'int'	'*'
										|											|			|-ImplicitCastExpr	0x5576d3b3cef8	<col:27,	col:43>	'int32_t':'int'	<LValueToRValue>
										|											|			|	`-ArraySubscriptExpr	0x5576d3b3cce0	<col:27,	col:43>	'int32_t':'int'	lvalue
										|											|			|			|-ImplicitCastExpr	0x5576d3b3ccc8	<col:27>	'int32_t	*'	<LValueToRValue>
										|											|			|			|	`-DeclRefExpr	0x5576d3b3cbd8	<col:27>	'int32_t	*'	lvalue	ParmVar	0x5576d3b3c160	'filter'	'int32_t	*'
										|											|			|			`-BinaryOperator	0x5576d3b3cca8	<col:34,	col:41>	'int'	'+'
										|											|			|					|-BinaryOperator	0x5576d3b3cc50	<col:34,	col:37>	'int'	'*'
										|											|			|					|	|-ImplicitCastExpr	0x5576d3b3cc38	<col:34>	'int'	<LValueToRValue>
										|											|			|					|	|	`-DeclRefExpr	0x5576d3b3cbf8	<col:34>	'int'	lvalue	Var	0x5576d3b3c418	'k1'	'int'
										|											|			|					|	`-IntegerLiteral	0x5576d3b3cc18	<col:37>	'int'	3
										|											|			|					`-ImplicitCastExpr	0x5576d3b3cc90	<col:41>	'int'	<LValueToRValue>
										|											|			|							`-DeclRefExpr	0x5576d3b3cc70	<col:41>	'int'	lvalue	Var	0x5576d3b3c498	'k2'	'int'
										|											|			`-ImplicitCastExpr	0x5576d3b3cf10	<col:47,	col:74>	'int32_t':'int'	<LValueToRValue>
										|											|					`-ArraySubscriptExpr	0x5576d3b3ced8	<col:47,	col:74>	'int32_t':'int'	lvalue
										|											|							|-ImplicitCastExpr	0x5576d3b3cec0	<col:47>	'int32_t	*'	<LValueToRValue>
										|											|							|	`-DeclRefExpr	0x5576d3b3cd00	<col:47>	'int32_t	*'	lvalue	ParmVar	0x5576d3b3c070	'orig'	'int32_t	*'
										|											|							`-BinaryOperator	0x5576d3b3cea0	<col:52,	col:72>	'int'	'+'
										|											|									|-BinaryOperator	0x5576d3b3ce48	<col:52,	col:70>	'int'	'+'
										|											|									|	|-BinaryOperator	0x5576d3b3cdf0	<col:52,	./stencil.h:6:18>	'int'	'*'
										|											|									|	|	|-ParenExpr	0x5576d3b3cdb0	<stencil.cpp:20:52,	col:57>	'int'
										|											|									|	|	|	`-BinaryOperator	0x5576d3b3cd90	<col:53,	col:55>	'int'	'+'
										|											|									|	|	|			|-ImplicitCastExpr	0x5576d3b3cd60	<col:53>	'int'	<LValueToRValue>
										|											|									|	|	|			|	`-DeclRefExpr	0x5576d3b3cd20	<col:53>	'int'	lvalue	Var	0x5576d3b3c318	'r'	'int'
										|											|									|	|	|			`-ImplicitCastExpr	0x5576d3b3cd78	<col:55>	'int'	<LValueToRValue>
										|											|									|	|	|					`-DeclRefExpr	0x5576d3b3cd40	<col:55>	'int'	lvalue	Var	0x5576d3b3c418	'k1'	'int'
										|											|									|	|	`-IntegerLiteral	0x5576d3b3cdd0	<./stencil.h:6:18>	'int'	64
										|											|									|	`-ImplicitCastExpr	0x5576d3b3ce30	<stencil.cpp:20:70>	'int'	<LValueToRValue>
										|											|									|			`-DeclRefExpr	0x5576d3b3ce10	<col:70>	'int'	lvalue	Var	0x5576d3b3c398	'c'	'int'
										|											|									`-ImplicitCastExpr	0x5576d3b3ce88	<col:72>	'int'	<LValueToRValue>
										|											|											`-DeclRefExpr	0x5576d3b3ce68	<col:72>	'int'	lvalue	Var	0x5576d3b3c498	'k2'	'int'
										|											`-CompoundAssignOperator	0x5576d3b3cfc0	<line:21:21,	col:29>	'int32_t':'int'	lvalue	'+='	ComputeLHSTy='int'	ComputeResultTy='int'
										|													|-DeclRefExpr	0x5576d3b3cf68	<col:21>	'int32_t':'int'	lvalue	Var	0x5576d3b3c550	'temp'	'int32_t':'int'
										|													`-ImplicitCastExpr	0x5576d3b3cfa8	<col:29>	'int32_t':'int'	<LValueToRValue>
										|															`-DeclRefExpr	0x5576d3b3cf88	<col:29>	'int32_t':'int'	lvalue	Var	0x5576d3b3c5c8	'mul'	'int32_t':'int'
										`-BinaryOperator	0x5576d3b3e330	<line:24:13,	col:37>	'int32_t':'int'	lvalue	'='
												|-ArraySubscriptExpr	0x5576d3b3e2d8	<col:13,	col:33>	'int32_t':'int'	lvalue
												|	|-ImplicitCastExpr	0x5576d3b3e2c0	<col:13>	'int32_t	*'	<LValueToRValue>
												|	|	`-DeclRefExpr	0x5576d3b3e1b0	<col:13>	'int32_t	*'	lvalue	ParmVar	0x5576d3b3c0e8	'sol'	'int32_t	*'
												|	`-BinaryOperator	0x5576d3b3e2a0	<col:17,	col:32>	'int'	'+'
												|			|-ParenExpr	0x5576d3b3e248	<col:17,	col:28>	'int'
												|			|	`-BinaryOperator	0x5576d3b3e228	<col:18,	./stencil.h:6:18>	'int'	'*'
												|			|			|-ImplicitCastExpr	0x5576d3b3e210	<stencil.cpp:24:18>	'int'	<LValueToRValue>
												|			|			|	`-DeclRefExpr	0x5576d3b3e1d0	<col:18>	'int'	lvalue	Var	0x5576d3b3c318	'r'	'int'
												|			|			`-IntegerLiteral	0x5576d3b3e1f0	<./stencil.h:6:18>	'int'	64
												|			`-ImplicitCastExpr	0x5576d3b3e288	<stencil.cpp:24:32>	'int'	<LValueToRValue>
												|					`-DeclRefExpr	0x5576d3b3e268	<col:32>	'int'	lvalue	Var	0x5576d3b3c398	'c'	'int'
												`-ImplicitCastExpr	0x5576d3b3e318	<col:37>	'int32_t':'int'	<LValueToRValue>
														`-DeclRefExpr	0x5576d3b3e2f8	<col:37>	'int32_t':'int'	lvalue	Var	0x5576d3b3c550	'temp'	'int32_t':'int'

Figure 4.5: AST of the example code
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In

For        node1
- line -> 
   stencil_label1:for (r=0; r<row_size-2; r++)
- tokens ->
   'stencil_label1', ':', 'for', '(', 'r', '=', '0', ';', ...

Previous

Next

Assignment      node3
- line -> 
   temp = (TYPE)0;
- tokens ->
   'temp', '=', '(', 'TYPE', ')', '0', ';'

Previous

In

For        node4
- line -> 
   stencil_label3:for (k1=0;k1<3;k1++)
- tokens ->
   'stencil_label3', ':', 'for', '(', 'k1', '=', '0', ...

Previous

In

For        node2
- line -> 
   stencil_label2:for (c=0; c<col_size-2; c++)
- tokens ->
   'stencil_label2', ':', 'for', '(', 'c', '=', '0', ';', ...

Previous

In

For        node5
- line -> 
   stencil_label4:for (k2=0;k2<3;k2++)
- tokens ->
   'stencil_label4' , ':', 'for', '(', 'k2', '=', '0', ... Previous

Next

Assignment      node6
- line -> 
   mul = filter[k1*3 + k2] * orig[(r+k1)*...
- tokens ->
   'mul', '=', 'filter', '[', 'k1', '*', '3', '+', 'k2', ']', '*', ...

Previous

Assignment      node7
- line -> 
   temp += mul;
- tokens ->
   'temp', '+', '=', 'mul', ';'

Previous

Assignment      node8
- line -> 
   sol[(r*col_size) + c] = temp;
- tokens ->
   'sol', '[', '(', 'r', '*', 'col_size', ')', '+', 'c', ']', ...

Figure 4.6: IR of the example code

In

For        node1
- line -> 
   stencil_label1:for (r=0; r<row_size-2; r++)
- tokens ->
   'stencil_label1', ':', 'for', '(', 'r', '=', '0', ';', ...

Previous

Next

Assignment      node3
- line -> 
   temp = (TYPE)0;
- tokens ->
   'temp', '=', '(', 'TYPE', ')', '0', ';'

Previous

In

For        node4
- line -> 
   stencil_label3:for (k1=0;k1<3;k1++)
- tokens ->
   'stencil_label3', ':', 'for', '(', 'k1', '=', '0', ...

Previous

In

For        node2
- line -> 
   stencil_label2:for (c=0; c<col_size-2; c++)
- tokens ->
   'stencil_label2', ':', 'for', '(', 'c', '=', '0', ';', ...

Previous

In

For        node5
- line -> 
   stencil_label4:for (k2=0;k2<3;k2++)
- tokens ->
   'stencil_label4' , ':', 'for', '(', 'k2', '=', '0', ... Previous

Assignment      node6
- line -> 
   stream << filter[k1*3 + k2];
- tokens ->
 'stream', '<<', 'filter', '[', 'k1', '*', '3', '+', 'k2', ']', ';'

Figure 4.7: IR of the access unit

Now that all intermediate representations are created that represent the different
units the final step is to convert it to source code that the HLS tool can use. The
code for connecting the units is shown in Listing 4.3. A type stream t is used to
define streams that connect the units. An important aspect here is the usage of the
HLS DATAFLOW pragma, as this allows the units to run in parallel.
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Execute Unit

Access Unit
sol

Access Unit
filter

Access Unit
orig

Memory

Figure 4.8: Complete architecture of example

1 stream_t filter_rs0;

2 #pragma HLS STREAM variable=filter_rs0

3 stream_t orig_rs1;

4 #pragma HLS STREAM variable=orig_rs1

5 stream_t sol_ws2;

6 #pragma HLS STREAM variable=sol_ws2

7 #pragma HLS DATAFLOW

8 fetch_unit0(filter, filter_rs0);

9 fetch_unit1(orig, orig_rs1);

10 process_unit(filter_rs0, orig_rs1, sol_ws2);

11 write_unit2(sol, sol_ws2);

Listing 4.3: Final code for connecting the units

4.8 Current limitations

The transformation to the DAE architecture depends on the structure of the input
C/C++ code. The algorithms defined in the previous chapter do not encapsulate all
possible memory accessing patterns. This section shows the patterns that are not
supported and how to manually adapt the code such that it conforms to the DAE
architecture.

Consider the code in Listing 4.4. Whenever a memory accessing element is ac-
cessed multiple times an issue is introduced as every usage of a memory accessing
element results in a new access unit.

The generated DAE structure of the code is shown in Listing 4.5. There are two
separate access units created for the m1 memory accessing element, one for m1[0]
and one for m1[j]. While that code is not problematic the issue is with connecting
the units and letting them run in parallel. The m access function connects the units
and using the HLS DATAFLOW pragma all of them are run in parallel. This does
introduce the issue where m1 is accessed in parallel by fetch unit0 and fetch unit1
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this is not supported as m1 is synthesized as a single port.
A solution to this issue is to either create two ports for the same memory access-

ing element or to merge the units such that a memory accessing port is connected
to one access unit. The former has the advantage that it can achieve a higher speed
as the two ports can operate independently. Listing 4.6 shows the solution of using
two differently named memory accessing elements. When calling the accelerator,
different parameters should be prepared such that m1 is supplied to both m01 and
m11.

1 void m_access(int *m1, int *out) {

2 int i, j;

3 int mult;

4

5 outer:for(i=0;i<10;i++) {

6 mult = m1[0];

7 middle:for(j=1;j<10;j++) {

8 mult = mult + m1[j];

9 }

10 out[i] = mult;

11 }

12 }

Listing 4.4: Multiple accesses of the same pointer

1 void fetch_unit0(int * m1, hls::stream<int> & m1_rs0) {

2 int i;

3 fetch_unit0_outer: for(i = 0; i<10; i ++) {

4 #pragma HLS PIPELINE

5 m1_rs0.write(m1[0]);

6 }

7 }

8 void fetch_unit1(int * m1, hls::stream<int> & m1_rs1) {

9 int i;

10 int j;

11 fetch_unit1_outer: for(i = 0; i<10; i ++) {

12 #pragma HLS PIPELINE

13 fetch_unit1_middle: for(j = 1; j<10; j ++) {

14 #pragma HLS PIPELINE

15 m1_rs1.write(m1[j]);

16 }

17 }

18 }

19 void write_unit2(int * out, hls::stream<int> & out_ws2) {

20 int i;

21 write_unit2_outer: for(i = 0; i<10; i ++) {

22 #pragma HLS PIPELINE
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23 out[i] = out_ws2.read();

24 }

25 }

26 void process_unit(hls::stream<int> & m1_rs0, hls::stream<int> & m1_rs1,

hls::stream<int> & out_ws2) {↪→

27 int i;

28 int mult;

29 int j;

30 outer: for(i = 0; i<10; i ++) {

31 #pragma HLS PIPELINE

32 mult = m1_rs0.read();

33 middle: for(j = 1; j<10; j ++) {

34 #pragma HLS PIPELINE

35 mult = mult + m1_rs1.read();

36 }

37 out_ws2.write( mult);

38 }

39 }

40 void m_access(int * m1, int * out) {

41 #pragma HLS INTERFACE s_axilite port=m1

42 #pragma HLS INTERFACE s_axilite port=out

43 #pragma HLS INTERFACE s_axilite port=return

44 #pragma HLS INTERFACE m_axi max_widen_bitwidth=512 depth=100 bundle=gmem0 port=m1

45 #pragma HLS INTERFACE m_axi max_widen_bitwidth=512 depth=100 bundle=gmem1 port=out

46 hls::stream<int> m1_rs0;

47 #pragma HLS STREAM variable=m1_rs0

48 hls::stream<int> m1_rs1;

49 #pragma HLS STREAM variable=m1_rs1

50 hls::stream<int> out_ws2;

51 #pragma HLS STREAM variable=out_ws2

52 #pragma HLS DATAFLOW

53 fetch_unit0(m1, m1_rs0);

54 fetch_unit1(m1, m1_rs1);

55 process_unit(m1_rs0, m1_rs1, out_ws2);

56 write_unit2(out, out_ws2);

57 }

Listing 4.5: DAE structure of multiple accesses of the same pointer
The units work independently of one another, this introduces another issue when

a memory accessing element is used multiple times but one stores data while the
other reads. Consider the code in Listing 4.7 it uses the same memory access-
ing element for storing the data. Assume that m1 is an array in memory of size
ten. Essentially every iteration it calculates the sum of all elements then stores it
again in the array. This results in the elements in the array growing. So if the se-
quence is initialized to: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 the resulting sequence will become
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1 void m_access(int *m01, int *m11, int *out) {

2 int i, j, k;

3 int mult;

4

5 outer:for(i=0;i<10;i++) {

6 mult = m01[0];

7 middle:for(j=1;j<10;j++) {

8 mult = mult + m11[j];

9 }

10 out[i] = mult;

11 }

12 }

Listing 4.6: Solution to multiple accesses of the same pointer

55, 109, 216, 429, 854, 1703, 3400, 6793, 13578, 27147. However when transforming this
the the DAE architecture units lose synchronization as the access unit for reading
from memory does not depend on the access unit that writes to memory. As a result
’old’ values from memory can be used in next iterations.

To solution this issue, the same solution used for the previous issue can be used
(i.e. move all logic to a single accessing unit). Another method that is proposed by
Smith [10] is to have a stream for memory addresses and check if a memory store
for this address is already in that stream and stall fetching if it does exist. Listing 4.8
shows the former solution in the transformed code.

1 void read_write(int *m1) {

2 int i, j, k;

3 int mult;

4

5 outer:for(i=0;i<10;i++) {

6 mult = 0;

7 middle:for(j=0;j<10;j++) {

8 mult = mult + m1[j];

9 }

10 m1[i] = mult;

11 }

12 }

Listing 4.7: Read after write limitation
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1 void fetch_unit0(int * m1, hls::stream<int> & m1_rs0, hls::stream<int> & m1_ws1) {

2 int i;

3 int mult;

4 int j;

5 fetch_unit0_outer: for(i = 0; i<10; i ++) {

6 #pragma HLS PIPELINE

7 fetch_unit0_middle: for(j = 0; j<10; j ++) {

8 #pragma HLS PIPELINE

9 m1_rs0.write(m1[j]);

10 }

11 m1[i] = m1_ws1.read();

12 }

13 }

14

15 void process_unit(hls::stream<int> & m1_rs0, hls::stream<int> & m1_ws1) {

16 int i;

17 int mult;

18 int j;

19 outer: for(i = 0; i<10; i ++) {

20 #pragma HLS PIPELINE

21 mult = 0;

22 middle: for(j = 0; j<10; j ++) {

23 #pragma HLS PIPELINE

24 mult = mult + m1_rs0.read();

25 }

26 m1_ws1.write( mult);

27 }

28 }

29 void read_write(int * m1,) {

30 #pragma HLS INTERFACE s_axilite port=m1

31 #pragma HLS INTERFACE s_axilite port=return

32 #pragma HLS INTERFACE m_axi max_widen_bitwidth=512 depth=100 bundle=gmem0 port=m1

33 hls::stream<int> m1_rs0;

34 #pragma HLS STREAM variable=m1_rs0

35 hls::stream<int> m1_ws1;

36 #pragma HLS STREAM variable=m1_ws1

37 #pragma HLS DATAFLOW

38 fetch_unit0(m1, m1_rs0, m1_ws1);

39 process_unit(m1_rs0, m1_ws1);

40 }

Listing 4.8: Solution for read after write of the same pointer

Units are created based upon the identified memory accessing element. A new
IR that is not connected to the IR, that will become the execute unit, is created for
each new access unit. An issue arises when the address of the memory accessing
element depends on the result from another memory accessing element. Consider
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1 void access_depend(int *m1, int *m2, int *out) {

2 int i, j, mult;

3 outer:for(i=0;i<10;i++) {

4 mult = 0;

5 middle:for(j=0;j<10;j++) {

6 mult = mult + m1[m2[j]];

7 }

8 out[i] = mult;

9 }

10 }

Listing 4.9: Memory access depending on another memory access

the code in Listing 4.9 the memory access m1 depends on the memory access m2.
Once a new IR is created for an access unit it also manipulates the node in the
input IR so that the units become connected using a stream. The first accessing
element is created for m1 as it was the first one detected by Algorithm 1. Solving
dependencies results in m2 being accessed in the same access unit. It also replaces
the memory accessing element (m1[m2[j]]) from the execute IR with a stream. The
next memory accessing element m2 results in another access unit, only this time
m2 doesn’t exist in the execute IR. This results in an invalid code transformation as
seen in Listing 4.10.

The solution to this issue is to allow for access units to be connected to other
access units. So there will still be two access units one for m1 and one for m2 but
the access unit for m2 has its stream connected to the m1 access unit instead of the
execute unit. This results in the code shown in Listing 4.11.

It may be possible for loops and conditional statements to depend on memory
accesses. Listing 4.12 shows a for loop that depends on memory accesses. This
on its own doesn’t introduce an issue. The issue arises when within that loop an-
other memory accessing occurs. As every memory accessing element results in
a new access unit, the loops and conditionals are copied from the execute unit to
the access unit. This results in the memory access also being needed in the new
access unit. Listing 4.13 shows how the memory accessing isn’t connected from
one access unit to another in the generated code. A potential solution, shown in
Listing 4.14, is to this issue is to use additional streams for forwarding the accessed
value from one unit to another.
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1 void fetch_unit0(int * m1, int * m2, hls::stream<int> & m1_rs0) {

2 int i, j;

3 fetch_unit0_outer: for(i = 0; i<10; i ++) {

4 #pragma HLS PIPELINE

5 fetch_unit0_middle: for(j = 0; j<10; j ++) {

6 #pragma HLS PIPELINE

7 m1_rs0.write(m1[m2[j]]);

8 }

9 }

10 }

11 void fetch_unit1(int * m2, hls::stream<int> & m2_rs1) {

12 int i, j;

13 fetch_unit1_outer: for(i = 0; i<10; i ++) {

14 #pragma HLS PIPELINE

15 fetch_unit1_middle: for(j = 0; j<10; j ++) {

16 #pragma HLS PIPELINE

17 mult = mult * m1_rs0.read();

18 }

19 }

20 }

21 ...

22 void access_depend(int * m1, int * m2, int * out) {

23 ...

24 hls::stream<int> m1_rs0;

25 #pragma HLS STREAM variable=m1_rs0

26 hls::stream<int> m2_rs1;

27 #pragma HLS STREAM variable=m2_rs1

28 hls::stream<int> out_ws2;

29 #pragma HLS STREAM variable=out_ws2

30 #pragma HLS DATAFLOW

31 fetch_unit0(m1, m2, m1_rs0);

32 fetch_unit1(m2, m2_rs1);

33 process_unit(m1_rs0, m2_rs1, out_ws2);

34 write_unit2(out, out_ws2);

35 }

Listing 4.10: Invalid DAE code as a result of a memory access dependency issue
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1 void fetch_unit0(int * m1, hls::stream<int> & m2_rs1, hls::stream<int> & m1_rs0) {

2 int i;

3 int j;

4 fetch_unit0_outer: for(i = 0; i<10; i ++) {

5 #pragma HLS PIPELINE

6 fetch_unit0_middle: for(j = 0; j<10; j ++) {

7 #pragma HLS PIPELINE

8 m1_rs0.write(m1[m2_rs1.read()]);

9 }

10 }

11 }

12 void fetch_unit1(int * m2, hls::stream<int> & m2_rs1) {

13 int i;

14 int j;

15 fetch_unit1_outer: for(i = 0; i<10; i ++) {

16 #pragma HLS PIPELINE

17 fetch_unit1_middle: for(j = 0; j<10; j ++) {

18 #pragma HLS PIPELINE

19 m2_rs1.write(m2[j]);

20 }

21 }

22 }

23 ...

24 void access_depend(int * m1, int * m2, int * out) {

25 ...

26 hls::stream<int> m1_rs0;

27 #pragma HLS STREAM variable=m1_rs0

28 hls::stream<int> m2_rs1;

29 #pragma HLS STREAM variable=m2_rs1

30 hls::stream<int> out_ws2;

31 #pragma HLS STREAM variable=out_ws2

32 #pragma HLS DATAFLOW

33 fetch_unit0(m1, m2_rs1, m1_rs0);

34 fetch_unit1(m2, m2_rs1);

35 process_unit(m1_rs0, out_ws2);

36 write_unit2(out, out_ws2);

37 }

Listing 4.11: Solution memory access depending on another memory access
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1 void m_access(int *m1, int *m2, int *r, int *out) {

2 int i, j;

3 int mult;

4 int r1;

5

6 outer:for(i=0;i<10;i++) {

7 mult = 0;

8 r1 = r[i];

9 middle:for(j=0;j<r1;j++) {

10 mult = mult + m1[j] + m2[j];

11 }

12 out[i] = mult;

13 }

14 }

Listing 4.12: Memory access depending on loops and conditionals that depend on
memory accesses

1 void fetch_unit0(int * r, hls::stream<int> & r_rs0) {

2 int i;

3 fetch_unit0_outer: for(i = 0; i<10; i ++) {

4 #pragma HLS PIPELINE

5 r_rs0.write(r[i]);

6 }

7 }

8 void fetch_unit2(int * m1, hls::stream<int> & m1_rs1) {

9 int i;

10 int r1;

11 int j;

12 fetch_unit2_outer: for(i = 0; i<10; i ++) {

13 #pragma HLS PIPELINE

14 fetch_unit2_middle: for(j = 0; j<r1; j ++) {

15 #pragma HLS PIPELINE

16 m1_rs1.write(m1[j]);

17 }

18 }

19 }

20 void fetch_unit3(int * m2, hls::stream<int> & m2_rs2) {

21 int i;

22 int r1;

23 int j;

24 fetch_unit3_outer: for(i = 0; i<10; i ++) {

25 #pragma HLS PIPELINE

26 fetch_unit3_middle: for(j = 0; j<r1; j ++) {

27 #pragma HLS PIPELINE

28 m2_rs2.write(m2[j]);
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29 }

30 }

31 }

32 void write_unit4(int * out, hls::stream<int> & out_ws3) {

33 int i;

34 write_unit4_outer: for(i = 0; i<10; i ++) {

35 #pragma HLS PIPELINE

36 out[i] = out_ws3.read();

37 }

38 }

39 void process_unit(hls::stream<int> & r_rs0, hls::stream<int> & r_rs1,

hls::stream<int> & m1_rs1, hls::stream<int> & m2_rs2, hls::stream<int> &

out_ws3) {

↪→

↪→

40 int i, mult, r1, j;

41 outer: for(i = 0; i<10; i ++) {

42 #pragma HLS PIPELINE

43 mult = 0;

44 r1 = r_rs0.read();

45 middle: for(j = 0; j<r1; j ++) {

46 #pragma HLS PIPELINE

47 mult = mult + m1_rs1.read() + m2_rs2.read();

48 }

49 out_ws3.write( mult);

50 }

51 }

52 void m_access(int * r, int * r, int * m1, int * m2, int * out) {

53 ...

54 hls::stream<int> out_ws3;

55 #pragma HLS STREAM variable=out_ws3

56 #pragma HLS DATAFLOW

57 fetch_unit0(r, r_rs0);

58 fetch_unit2(m1, m1_rs1);

59 fetch_unit3(m2, m2_rs2);

60 process_unit(r_rs0, m1_rs1, m2_rs2, out_ws3);

61 write_unit4(out, out_ws3);

62 }

Listing 4.13: Invalid DAE code resulting from loops that depend on access units

1 void fetch_unit0(int * r, hls::stream<int> & r_rs0) {

2 int i;

3 fetch_unit0_outer: for(i = 0; i<10; i ++) {

4 #pragma HLS PIPELINE

5 r_rs0.write(r[i]);

6 }

7 }

8
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9 void fetch_unit2(int * m1, hls::stream<int> & m1_rs2, hls::stream<int> & r_rs0,

hls::stream<int> & r_rs0_) {↪→

10 int i;

11 int r1;

12 int j;

13 fetch_unit2_outer: for(i = 0; i<10; i ++) {

14 #pragma HLS PIPELINE

15 r1 = r_rs0.read();

16 r_rs0_.write(r1);

17 fetch_unit2_middle: for(j = 0; j<r1; j ++) {

18 #pragma HLS PIPELINE

19 m1_rs2.write(m1[j]);

20 }

21 }

22 }

23 void fetch_unit3(int * m2, hls::stream<int> & m2_rs3, hls::stream<int> & r_rs0,

hls::stream<int> & r_rs0_) {↪→

24 int i;

25 int r1;

26 int j;

27 fetch_unit3_outer: for(i = 0; i<10; i ++) {

28 #pragma HLS PIPELINE

29 r1 = r_rs0.read();

30 r_rs0_.write(r1);

31 fetch_unit3_middle: for(j = 0; j<r1; j ++) {

32 #pragma HLS PIPELINE

33 m2_rs3.write(m2[j]);

34 }

35 }

36 }

37 void write_unit4(int * out, hls::stream<int> & out_ws4) {

38 int i;

39 int mult;

40 int r1;

41 int r2;

42 int j;

43 write_unit4_outer: for(i = 0; i<10; i ++) {

44 #pragma HLS PIPELINE

45 out[i] = out_ws4.read();

46 }

47 }

48 void process_unit(hls::stream<int> & r_rs0, hls::stream<int> & m1_rs2,

hls::stream<int> & m2_rs3, hls::stream<int> & out_ws4) {↪→

49 int i;

50 int mult;

51 int r1;

52 int j;
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53 outer: for(i = 0; i<10; i ++) {

54 #pragma HLS PIPELINE

55 mult = 0;

56 r1 = r_rs0.read();

57 middle: for(j = 0; j<r1; j ++) {

58 #pragma HLS PIPELINE

59 mult = mult + m1_rs2.read() + m2_rs3.read();

60 }

61 out_ws4.write( mult);

62 }

63 }

64 void m_access(int * r, int * r, int * m1, int * m2, int * out) {

65 #pragma HLS INTERFACE s_axilite port=r

66 #pragma HLS INTERFACE s_axilite port=m1

67 #pragma HLS INTERFACE s_axilite port=m2

68 #pragma HLS INTERFACE s_axilite port=out

69 #pragma HLS INTERFACE s_axilite port=return

70 #pragma HLS INTERFACE m_axi max_widen_bitwidth=512 depth=100 bundle=gmem0 port=r

71 #pragma HLS INTERFACE m_axi max_widen_bitwidth=512 depth=100 bundle=gmem1 port=m1

72 #pragma HLS INTERFACE m_axi max_widen_bitwidth=512 depth=100 bundle=gmem2 port=m2

73 #pragma HLS INTERFACE m_axi max_widen_bitwidth=512 depth=100 bundle=gmem3 port=out

74 hls::stream<int> r_rs0;

75 #pragma HLS STREAM variable=r_rs0

76 hls::stream<int> r_rs1;

77 #pragma HLS STREAM variable=r_rs1

78 hls::stream<int> r_rs3;

79 #pragma HLS STREAM variable=r_rs3

80 hls::stream<int> m1_rs2;

81 #pragma HLS STREAM variable=m1_rs2

82 hls::stream<int> m2_rs3;

83 #pragma HLS STREAM variable=m2_rs3

84 hls::stream<int> out_ws4;

85 #pragma HLS STREAM variable=out_ws4

86 #pragma HLS DATAFLOW

87 fetch_unit0(r, r_rs0);

88 fetch_unit2(m1, m1_rs2, r_rs0, r_rs1);

89 fetch_unit3(m2, m2_rs3, r_rs1, r_rs3);

90 process_unit(r_rs3, m1_rs2, m2_rs3, out_ws4);

91 write_unit4(out, out_ws4);

92 }

Listing 4.14: Solution to memory access depending on loops that depend on mem-
ory accesses

The IR only contains the code for the selected target. As a result the implementa-
tion for function calls may not be available. Function call will also not be translated to
the DAE architecture as they don’t exist in the IR. Listing 4.15 shows code where a
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memory accessing element has its pointer passed to another function that manipu-
lates the memory element. There are two solutions possible, one would be to define
the function call in another file and feed that to HLS, but this will not be transformed
to the DAE architecture. Another is to move all the logic from a function call into the
body of the targeted code as shown in Listing 4.16.

1 int calc(int *m1) {

2 int i;

3 int sum = 0;

4 middle:for(i=0;i<10;i++) {

5 sum = sum + m1[i];

6 }

7 return sum;

8 }

9

10 void m_function(int *m1, int *out) {

11 int i;

12 int sum;

13

14 outer:for(i=0;i<10;i++) {

15 sum = calc(m1);

16 out[i] = sum;

17 }

18 }

Listing 4.15: A function call from targeted code

1 void m_function(int *m1, int *out) {

2 int i;

3 int sum;

4

5 outer:for(i=0;i<10;i++) {

6 sum = 0;

7 middle:for(j=0;j<10;j++) {

8 sum = sum + m1[j];

9 }

10 out[i] = sum;

11 }

12 }

Listing 4.16: Solution to function calls from targeted code

To summarize the following limitations have been identified:

Limitation 1: Multiple access from the same memory pointer.

Limitation 2: Read after write from the same location in memory.
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Limitation 3: A memory access depending on another memory access.

Limitation 4: A memory access that depends on branching and loops that de-
pend on another memory access.

Limitation 5: Function calls (and its content) are not transformed to the DAE
architecture.
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Chapter 5

Implementation

This chapter describes how the framework is implemented. Section 5.1 describes
how the C/C++ code is parsed into the IR. The framework implementation is de-
scribed in Section 5.2. How the output of the framework is synthesized is described
in Section 5.3. Lastly, how the framework is verified is described in Section 5.4.

5.1 Parsing

As discussed in previous chapters, the initial step is to get the C/C++ code in the
IR that was presented in Section 4.6. For this the LLVM compiler infrastructure [19]
is used. It is a widely used compiler infrastructure that consists of a frontend, an
intermediate representation and a backend. A frontend is responsible for creating
the LLVM IR. LLVM applies its own set of optimizations on top of the IR using multiple
compiler passes. Finally, the backend uses the IR to generate the final machine
code. See Section 2.4 for more information regarding compiler infrastructures.

While LLVM has its own intermediate representation, this does not fulfil the goal
of this thesis: it is too abstract, information is lost from the higher-level algorithm.
This is even true when working directly on the LLVM AST. As seen from the Sec-
tion 2.4, preprocessing is applied on the tokens rather than after the generation of
the AST. This means that macros may be missing from the AST. There is however
an option to get the tokens while traversing the AST. For this reason, this thesis
will use the AST to get structural information from the source code while storing the
relevant tokens from every node from the AST. This ensures that no information is
lost which is important to keep the generated code properly human readable.

LLVM provides two ways to interact with the AST: The libTooling API and the
libclang. LibTooling is recommended for controlling the AST, while libclang allows
for iterating over the AST. The main downside of using libTooling is its unstable
API interface [20]. For this thesis the libclang API provides enough features as

43
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there is no need to control the AST and the libclang API allows for extracting the
structural information as well as the tokens that are relevant for a given part of the
AST statement.

Figure 5.1 shows the final structure that is used to create the IR.

ASTClang API IRInitial parse phase

IR

Cleanup parse phase

C/C++

Figure 5.1: The parsing phases

Prior to parsing, the a code block is selected to be transformed to the DAE archi-
tecture. This means that the IR only contains the complete code that needs to be
accelerated using the DAE architecture.

Libclang is used to parse the code into the intermediate representation. Using
the libclang API the AST is traversed using what is called cursors (CXCursor ). To
get a cursor the input file needs to be parsed by LLVM, that can be done by using
the clang indexSourceFile function, it returns a translation unit which is the prepro-
cessed source code that doesn’t contain dependencies that could have been located
in other source files.

The libclang function that allows for iteration over the AST is the clang visitChildren
function, which recursively iterates through the children. This function expects a cur-
sor as its argument and calls a function repeatedly supplying different child cursors
via function parameters. The clang visitChildren function is used within that function
to completely traverse the AST from beginning to the end.

As seen from Section 4.7 the AST cannot be directly parsed to the intermediate
representation because it evaluates every statement which is not needed for the IR
where structural information from loops and conditionals are enough. Instead, de-
pending on what type of cursor is located it should either add a new node to the
intermediate representation or parse the cursor and its children as a single state-
ment into the intermediate representation. Types that would result in a node that is
located at an in edge are: loops and conditional statements. All others are parsed
into a node located on the next edge of the previous node. Instead of using pars-
ing every node the clang tokenize function is used to get the string representation
directly from the source code, this is to avoid having preprocessed tokens within the
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output of the framework, this way a macro definition remains in the output instead
of being replaced by what the preprocessor has processed (for example a literal
number).

As the structure of the LLVM AST differs from the structure defined by the IR
another internal structure is used that stores all nodes from the AST in subsequent
nodes. So a node only has a previous and next node. To ensure that this internal
structure can be transformed into the final IR the internal structure has an additional
field(offset) that stores to what extend the nodes is nested in the entire intermediate
representation.

Figure 5.2 shows an overview of the initial parsing phase. It consists of traversing
the the AST by recursively calling the clang visitChildren function on every node.
Depending on the type of statement (loop, conditional, compound, the rest) a new
node is appended into a long list in known as the Internal Parsing Structure. This
list is transformed into the IR.

loop1

loop2

stmt3

stmt4

stmt1

stmt2

loop1

loop2

stmt1

stmt2

stmt3

stmt4

loop1

loop2

stmt1

stmt2

stmt3

stmt4

Intermediate
Representaion

Internal
Parsing

Structure

Clang AST
call graph

clang_visitChildren()

clang_visitChildren()

stmt6

stmt5

Figure 5.2: The initial parsing phase

During the parsing of the LLVM AST to the IR there are some steps that introduce
more data in the structure that is not needed as it is already there by means of the
next and in edges. An example of this is the CompoundStmt. Whenever curly
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brackets are used in the code it introduces a CompoundStmt which is another child
in the LLVM AST. In the LLVM AST a loop or a conditional statement has a single
statement as its body, using a CompoundStmt introduces the ability of using multiple
statements within the body of a loop or a conditional statement. The IR uses an in
edge to determine whether a statement is part of the body of another statement,
there is no need to store a CompoundStmt. The internal structure does base the
offset on the number at which a statement is nested, a CompoundStmt increases
this offset. Part of the parsing phase is to clean this up after the complete LLVM
AST has been parsed.

Another important part of this phase is to handle the if-statement. The clang tokenize
function relies on the location range in the source code. This location range is ob-
tained from the cursor that is used to traverse the AST. Listing 5.1 shows a simple
if-else statement and Figure 5.3 shows the corresponding LLVM AST. When the cur-
sor is positioned at the IfStmt the clang tokenize function can be used to get all the
tokens related to the if-statement and its expression. However, notice that there is
no statement that represents the else part, there is only the body of the else state-
ment. That is because the LLVM AST relies on the number of children to determine
if the if-statement has an else part. As there is no cursor for the else part (only the
body) there is no source range that can be used to get the corresponding tokens for
it. This means that while cleaning up the IR a new node is added before the contents
of the else statement.

1 if (r) {

2 r += c;

3 } else {

4 r -= c;

5 }

Listing 5.1: If-else statement

IfStmt	0x55ff148684b8	<line:4:1,	line:8:1>	has_else
|-ImplicitCastExpr	0x55ff14868360	<line:4:5>	'bool'	<IntegralToBoolean>
|	`-ImplicitCastExpr	0x55ff14868348	<col:5>	'int'	<LValueToRValue>
|			`-DeclRefExpr	0x55ff14868328	<col:5>	'int'	lvalue	Var	0x55ff14868210	'r'	'int'
|-CompoundStmt	0x55ff14868400	<col:8,	line:6:1>
|	`-CompoundAssignOperator	0x55ff148683d0	<line:5:5,	col:10>	'int'	lvalue	'+='	ComputeLHSTy='int'	ComputeResultTy='int'
|			|-DeclRefExpr	0x55ff14868378	<col:5>	'int'	lvalue	Var	0x55ff14868210	'r'	'int'
|			`-ImplicitCastExpr	0x55ff148683b8	<col:10>	'int'	<LValueToRValue>
|					`-DeclRefExpr	0x55ff14868398	<col:10>	'int'	lvalue	Var	0x55ff14868290	'c'	'int'
`-CompoundStmt	0x55ff148684a0	<line:6:8,	line:8:1>
		`-CompoundAssignOperator	0x55ff14868470	<line:7:5,	col:10>	'int'	lvalue	'-='	ComputeLHSTy='int'	ComputeResultTy='int'
				|-DeclRefExpr	0x55ff14868418	<col:5>	'int'	lvalue	Var	0x55ff14868210	'r'	'int'
				`-ImplicitCastExpr	0x55ff14868458	<col:10>	'int'	<LValueToRValue>
						`-DeclRefExpr	0x55ff14868438	<col:10>	'int'	lvalue	Var	0x55ff14868290	'c'	'int'

Figure 5.3: if-else statement AST
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5.2 Framework implementation

The framework implements the algorithms described in the Chapter 4.

The first step after the creation of the IR is the identification of the memory ac-
cessing elements. Algorithm 1 specifically searches the intermediate representation
for a variable with an opening and a closing bracket. This is identified as the mem-
ory accessing variable. libclang offers the ability to get the cursor where the current
cursor refers to using the clang getCursorReferenced function. For example m1[i]
refers to a definition type *m1. If the referred cursor is located in the function param-
eter or above it (a global variable) and it has the form of an array then it is added to
the list of memory accessing elements. libclang has a special type for when a cursor
is located in the function parameter list: CXCursor ParmDecl. Function parameters
are added to the list of memory accessing elements if it matches the form of type
* var or type var[x]. This method is slightly different from the algorithm defined by
Algorithm 1 but achieves a similar result but more limiting as local arrays are not
used, they stay local in the execute unit.

For every single element in the list of memory accessing elements, the IR is
traversed from the root. At this point it uses Algorithm 1 to find every memory
access that uses this memory accessing element. Assume a recursive function
DAE LocateAndHandleUniqueMemoryParams that is called for every node. When
it finds a token that matches the name of the element from the list of memory ac-
cessing elements then the next token should start with an open square bracket ([ ),
everything after that is used for address generation until the corresponding close
square bracket (]) is found. At this location a reverse copy of the IR is created, this
will become an access unit. Using Algorithm 4 it is determined if the access is a
read or write. The exact memory accessing element was already defined (For ex-
ample m1[i+j]), if this is located at the start of the statement then it is an access
unit that writes data to memory. Otherwise it results in an access unit that reads
data from memory. The entire statement is replaced by a read or write from mem-
ory to a stream, so when a write was detected the statement is replaced by a read
from stream and write to memory (Example: m1[i] = stream.read()) when a read
was detected it is replaced by the corresponding read from memory into a stream
(Example: stream << m1[i]). The same statement is also replaced in the original
IR with a read or write from a stream. Token manipulation is used to ensure that
the contents that are written remain the same. Meaning that if a write is found it
replaces the contents up to the equals sign with the stream write function (i.e. m1[i]
= 42 transforms into stream << 42).

Xilinx provides a stream library that is used to connect the different units. It is
part of the HLS tool that they provide. The stream is implemented as a FIFO using
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the Xilinx FIFO Generator.
At this point all the IRs are created for the access and execute units. Next,

the function definitions are added before the root nodes of every IR. Access units
have a memory accessing element pointer and a stream, followed by other function
parameters. During the parsing phase any function parameter that wasn’t a memory
accessing element was added to a separate list of data dependencies. The same is
true for other locally defined variables. A locally defined variable is detected by using
information about where a definition of a variable is located in the code with relation
to the function header and the start of the IR. These steps are required as the IR only
contains the target to be transformed to the DAE architecture. The function header
of the execute unit does never contain a memory accessing element, instead it only
has streams and other function parameters (primitive variables).

Loop pipelining is a method to reduce the initiation interval at the cost of an
increased area usage. Loop pipelining is enabled for a loop by adding a HLS
PIPELINE pragma as the first child of a loop node. Algorithm 5 shows algorith-
mically how loop pipelining is enabled for all nodes in the IR.

Algorithm 5 Loop pipelining
Precondition: node Node located in the IR.

1: function PIPELINE LOOPS(node)
2: if node is a loop node then
3: node← Add a pragma node on the in edge
4: end if
5: if node has in edge then
6: pipeline loops(in node)
7: end if
8: if node has next edge then
9: pipeline loops(next node)

10: end if
11: end function

Local arrays can be optimized for speed by using array partitioning, creating more
ports for accessing the array. During parsing local variables are detected by using
information from where it is defined and if it is position in the function that has the
selected target. Local arrays are found if they match the form: type var[x].

The core function, the function that is the root of the selected target, is the last
function that is created. It is the connecting glue that defines the streams and con-
nects the units. The function only has memory accessing elements and the function
parameters as the function parameter. These are the ports that will become visi-
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ble after HLS. As mentioned in Section 4.5 AXI4 interfaces are used for the ports.
The HLS INTERFACE m axi port=x pragma is added for every memory accessing
element to configure the HLS tool to use the AXI4 interface. Then every stream is
defined using hls::stream<Type> stream name.

The most important part before calling every unit is to add the dataflow directive:
HLS DATAFLOW. This schedules all units to run in parallel. Lastly, all units are called
from the core function. The order at which they are added is not relevant as they run
in parallel.

As the code is currently in the IR it needs to be translated to source files that the
HLS tool can use. The implemented method to do this is to iterate over the IR and
write all tokens as a new line to a source file. Generally a token is surrounded by a
space, with the exception of a dot and sometimes also brackets (<>, [], (), and {}).

Appendix A shows the translated C/C++ code shown in Listing 4.1.

5.3 Hardware synthesis

The framework targets the Xilinx Vitis software platform [21] for the hardware syn-
thesis phase. This platform is an umbrella project that encompasses the complete
flow to generate and test C/C++ source code on an FPGA. A host program is re-
sponsible for loading a kernel, the DAE C/C++ code generated from the framework,
onto the FPGA and setting it up. The kernel is generated using HLS or a hardware
description language directly. This kernel is automatically synthesized, placed and
routed for a targeted FPGA device.

The Vitis platform has the ability to perform hardware and software simulation
using the same host code. This allows the engineer to use the same host code and
kernel code for software and hardware emulation reducing the probability for intro-
ducing errors in verification code because there is no need for duplicated verification
code.

The Vitis platform uses the Vitis HLS [22] tool to synthesize the C/C++ algorithm
to a hardware description language. This HDL is then used in the Vivado Design
Suite to be synthesized to a netlist, which is in turn used for the place and route
stage, that is responsible for making sure that the netlist actually will fit on a target
FPGA using the constraints imposed by it.

Xilinx Runtime Library (XRT) [23] is used to facilitate communication between a
host program and a hardware accelerator, it defines a standard API that is similar to
OpenCL for easy development. It consists of a set of user space libraries and Linux
kernel drivers. This allows the host program to download a kernel onto the FPGA
using XRT while also managing the data for both. The host program is responsible
for starting the kernel, for which XRT also provides the necessary APIs.
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5.4 Verification

One of the initial steps of the framework is to parse the C/C++ code into the interme-
diate representation defined in Section 4.6. A key part of the IR is that the original
C/C++ code can be regenerated using the framework. Meaning that correct parsing
and writing generation can be verified by rewriting the input via the IR.

The generated C/C++ code by the framework alters the architecture of the code.
To ensure that this doesn’t cause for erroneous behaviour it is verified using the
Xilinx simulation capabilities.

The following chapter will go into detail on how the framework is evaluated.



Chapter 6

Evaluation and Discussion

This chapter shows the results of the achievable speedup and area usage and power
usage of the MachSuite benchmark [8]. The results are compared against a baseline
implementation that will be explained in the following section.

6.1 Experimental setup

The Berkeley Dwarfs benchmark [24] provides a set of dwarfs. A dwarf is an algo-
rithmic method that describes a specific computation such as dense linear algebra
and structured grids. The OpenDwarfs benchmark [7] provides a set of algorithms
and implementations of these algorithmic methods in the OpenCL programming lan-
guage.

The MachSuite benchmark [8] provides a different set of algorithms and imple-
mentations of these are written in C/C++. It specifically targets HLS, by providing
implementations that can be synthesized directly using the Xilinx HLS tooling. The
framework processes source code written in the C/C++ programming language, for
this reason the MachSuite benchmark is used.

As described in Section 4.8 not all memory accessing structures are supported
by the framework. Table 6.1 shows the various limitations that are identified for any of
the implemented algorithms provided by the MachSuite benchmark. For this reason
a subset of the 19 defined benchmarks is used for the evaluation of the framework.
Table 6.2 shows the benchmarks that will be used for evaluation.

In this work, there are three different versions considered:

• Baseline: The accelerator as provided by the MachSuite benchmark with min-
imal changes so that the interfacing between it and the subsequent other ver-
sion have an identical interface. This ensures a fair comparison amongst the
different versions.

• Framework : The DAE accelerator generated by the framework from this thesis.
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Benchmark Limitation as specified in Section 4.8

aes/aes Limitation 1 & Limitation 2 & Limitation 5

backprop/backprop Limitation 1 & Limitation 2 & Limitation 5

bfs/bulk Limitation 1 & Limitation 2 & Limitation 4

bfs/queue Limitation 1 & Limitation 2 & Limitation 4

fft/strided Limitation 1 & Limitation 2 & Limitation 4

fft/transpose Limitation 1 & Limitation 2 & Limitation 5

gemm/ncubed None

gemm/blocked Limitation 2

kmp/kmp Limitation 1 & Limitation 4

md/knn Limitation 1

md/grid Limitation 1 & Limitation 2 & Limitation 4

nw/nw Limitation 1 & Limitation 2

sort/merge Limitation 1 & Limitation 2 & Limitation 5

sort/radix Limitation 1 & Limitation 2 & Limitation 5

spmv/crs Limitation 3 & Limitation 4

spmv/ellpack Limitation 3

stencil/stencil2d None

stencil/stencil3d Limitation 1

viterbi/viterbi Limitation 1

Table 6.1: Limitations from the framework imposed on the benchmarks



6.2. GEMM BENCHMARK 53

• Optimized : Further manual optimizations applied on top of the DAE accelera-
tor generated by the framework presented in this thesis.

The optimized version has a large domain of exploration so it may be omitted for
some benchmarks as at the time of writing this report, no further optimizations were
found that didn’t drastically change the entire structure of the source code which falls
outside of the scope of this thesis.

The framework uses the Xilinx Vitis 2021.1 platform for the high-level synthesis
phase. Vitis is a software platform that uses the Vitis HLS tool for high-level synthesis
[22]. The Xilinx Alveo U200 Data Center accelerator card is used as the target
FPGA. This card is connected to a host CPU using a PCIe interface.

Again, functional correctness of the kernel is verified for the software implemen-
tation as well as the hardware implementation. For this purpose, the same host
code is used to ensure that the host code doesn’t contain erroneous behaviour.

Benchmark Description

gemm Matrix multiplication O(N3)

spmv Sparse matrix vector multiplication

stencil2d Two-dimensional stencil computation

Table 6.2: Benchmarks considered

6.2 gemm benchmark

General Matrix multiplication of the form prod = m1 ∗m2 produces an output matrix
prod based on the multiplication of matrix m1 and m2. The benchmark uses a naive
O(N3) implementation.

Type Execution time (ms)

Baseline 1.426

Framework 1.420

Table 6.3: gemm: Kernel execution time

Table 6.3 shows the kernel execution time based on profiling the kernel using
hardware emulation. It shows only a small increase in speedup (1.004x). Table 6.4
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shows the latency and initiation interval based on the HLS tool (Vitis HLS) report. A
similarly small decrease in initialization interval is also visible.

Type Latency (cycles) Initiation Interval (cycles)

Baseline 262815 262816

Framework 262746 262612

Table 6.4: gemm: Delay and initiation interval

Type BRAM (%) DSP (%) FF (%) LUT (%)

Baseline 64 (2.96) 11 (0.16) 26244 (1.11) 14692 (1.24)

Framework 64 (2.96) 11 (0.16) 26514 (1.12) 15853 (1.34)

Table 6.5: gemm: Kernel area usage

Table 6.5 shows that the kernel area has slightly increased. The baseline and
framework code is slightly different this alone could cause a slightly increased area
usage because place and routing differs depending on the code.

Type BRAM (%) DSP (%) FF (%) LUT (%)

Baseline 296 (13.7) 18 (0.26) 275264 (11.64) 188827 (15.97)

Framework 296 (13.7) 18 (0.26) 275472 (11.65) 188646 (15.96)

Table 6.6: gemm: Total chip area usage

The total chip area used is shown in Table 6.6. It shows that while the BRAM and
the number of DSPs doesn’t change, the number of flip-flops (FFs) and LUTs show
a relatively small change. The total power consumption of the FPGA, see Table 6.7,
also only shows a small decrease in power usage when moving towards the DAE
architecture. The miscellaneous column represents a part of the power usage that
stays mostly constant. It consists of the URAM, PLL, MMCM, I/O and GTY power
usage. The GTY transceivers take up the majority of the power usage (4.360 Watts).
The 0.004 Watts difference comes from the URAM, all others stay constant.
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Total Hard IP Dynamic Static

Clocks Signals Logic BRAM DSP Misc

Baseline 15.491 0.391 1.935 1.909 1.124 1.683 0.025 5.690 2.733

Framework 15.340 0.391 1.985 1.704 1.124 1.694 0.017 5.694 2.731

Table 6.7: gemm: Power usage (Watts)

6.3 spmv benchmark

The Sparse Matrix Vector multiplication benchmark calculates the result of a sparse
matrix multiplied with a vector. The matrix is stored in the standardized Compressed
Sparse Row (CRS) format [25]. Only nonzero values of the matrix are stored along
with the position of this value. The CRS format uses a specific encoding method for
storing the position. This leads to memory accessing patterns where a data access
depends on the result of another data access.

As described in Table 6.1 the spmv benchmark cannot be used directly with the
HLS tool as the framework has limitations that result in invalid code for the HLS tool.
This benchmark uses memory accesses that depend on other memory accesses
(Limitation 3). The solution proposed in Listing 4.11 is implemented for the spmv
benchmark. The CRS encoding introduces for-loops where the range is not con-
stant, it depends on data supplied from a memory accessing element. This leads
to a limitation where loops in access units depend on data from other access units
(Limitation 4). Here the solution proposed Listing 4.14 is implemented. See the
code in Appendix B.2 for the exact implementation.

The related work by Charitopoulos et al. [2] also tests against this benchmark.
Contrary to the other benchmarks, for this benchmark they provide a schematic
overview of how this benchmark is implemented. See Figure 6.1 for an adapted
overview of the benchmark. All blocks are accessing units with the exception of the
Memory and the Process block. It describes dedicated queues for requesting data
from memory and dedicated queues for forwarding the data into other units.

The schematic in Figure 6.1 introduces a further separation between address
generation and memory access, it uses two queues one for each. The address
generation and memory accessing occur in parallel (there is a separate task that
calculates the addresses and a separate task that sends the memory accessing
requests). Another difference is that each memory accessing element does not
have a dedicated access unit. Instead they are combined to follow the program data
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flow.

Figure 6.1 shows that the row delimiters are transferred to most units with the
exception being the out access unit. Different streams are used for every unit that
needs row delimiters this is needed as a stream can only have a single producer and
consumer. This means that when col reads a row delimiter from the row delimiter
access unit it also needs to forward this into a different stream that is connected to
the next unit. The forwarding of the row delimiters and data accessing don’t actually
depend on each other allowing for parallelization. The automatically generated code
from the framework has these code changes manually applied.

The optimized implementation represents the implementation created by Chari-
topoulos et al. [2].

row_delimiter

row_delimiter_1

col
vec

val

out

Process

Memory

Figure 6.1: spmv benchmark schematic adapted from [2]

See Table 6.8 for an overview of achieved execution times as observed from the
profiler. The move towards the DAE architecture has a large improvement over the
baseline implementation (1.63x). But an even higher speedup is observed by the
optimized implementation (2.94x) when compared to the baseline implementation.
The speedup is gained by letting the row delimiters run in parallel with the data
accesses.

For this benchmark it is not possible to get the latency and the initiation interval
from the HLS tool (Vitis HLS) report as the loop iterations within this benchmark
depend on the data provided by the host application. The number of iterations are
not constant during the synthesis phase.

An overall increase in flip-flop and LUTs can also be seen in the Table 6.9.
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Type Execution time (ms)

Baseline 0.429

Framework 0.264

Optimized 0.146

Table 6.8: spmv: Kernel execution time

Type BRAM (%) DSP (%) FF (%) LUT (%)

Baseline 20 (0.93) 11 (0.16) 5774 (0.24) 7198 (0.61)

Framework 24 (1.11) 11 (0.16) 8330 (0.35) 10914 (0.92)

Optimized 16 (0.74) 11 (0.16) 10935 (0.46) 10959 (0.93)

Table 6.9: spmv: Kernel area usage

Type BRAM (%) DSP (%) FF (%) LUT (%)

Baseline 321 (14.9) 18 (0.26) 256458 (10.85) 179867 (15.21)

Framework 341 (15.8) 18 (0.26) 261850 (11.07) 183572 (15.53)

Optimized 320 (14.8) 18 (0.26) 260160 (11.00) 182610 (15.45)

Table 6.10: spmv: Total chip area usage

Table 6.10 shows the total chip area usage. It shows a relatively small increase in
BRAM usage when using the framework generated output, while it decreases in the
optimized version. The number of DSPs stays constant, which is also reflected by
the kernel area usage in Table 6.9. The number of flip-flops and Block RAM (BRAM)
also seems to follow the same figure as the number of BRAM.

It appears that the same is true for the power figure in Table 6.11. Overall the
power usage is increased with the framework, but then reduced again in the opti-
mized one due to the changes applied on top of the framework version. The mis-
cellaneous column represents a part of the power usage that stays mostly con-
stant. It consists of the URAM, PLL, MMCM, I/O and GTY power usage. The GTY
transceivers take up the majority of the power usage (4.360 Watts). The 0.003 Watts
difference comes from the I/O, all others stay constant.
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Total Hard IP Dynamic Static

Clocks Signals Logic BRAM DSP Misc

Baseline 15.093 0.391 1.915 1.508 1.091 1.729 0.025 5.708 2.726

Framework 15.362 0.391 1.984 1.521 1.119 1.881 0.027 5.708 2.732

Optimized 15.129 0.391 1.963 1.505 1.102 1.703 0.028 5.711 2.727

Table 6.11: spmv: Total power usage (Watts)

During synthesis of the baseline implementation the HLS tool reported issues
shown in Figure 6.2. These issues were not reported for the output code from the
framework and the manually optimized version of the code. The Could not analyze
pattern error shows up when the logic to access data from an m axi interface does
not allow for burst transfers is too complex. Xilinx does not specify the logic is too
complex [26].

Figure 6.2: High-level synthesis too complex to optimize baseline spmv

6.4 stencil2d benchmark

This benchmark consists of a two-dimensional stencil computation using a 9-point
square stencil. The 9-point square stencil is a fixed size filter that is applied on top
of the two-dimensional matrix.

The kernel execution times from hardware emulation profiling are shown in Ta-
ble 6.12, it shows a speedup of 1.23x. Table 6.13 shows the latency and initiation
interval of the kernel based on the report provided by the HLS tool (Vitis HLS). A
reduction in latency and initiation interval is visible.
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Type Execution time (ms)

Baseline 0.303

Framework 0.246

Table 6.12: stencil2d: Kernel execution times

Type Latency (cycles) Initiation Interval (cycles)

Baseline 88957 88958

Framework 70525 70382

Table 6.13: stencil2d: Delay and initiation interval

From the kernel area usage in Table 6.14 a reduction in the number DSPs is
visible while the number of FFs and LUTs is increased.

Type BRAM (%) DSP (%) FF (%) LUT (%)

Baseline 8 (0.37) 21 (0.31) 4428 (0.19) 4055 (0.34)

Framework 8 (0.37) 9 (0.13) 4888 (0.21) 4605 (0.39)

Table 6.14: stencil2d: Kernel area usage

The total chip usage shown in Table 6.15 reflects the same change when com-
pared to the kernel area usage albeit at a much smaller difference.

Type BRAM (%) DSP (%) FF (%) LUT (%)

Baseline 281 (13.0) 28 (0.41) 246734 (10.44) 173639 (14.69)

Framework 281 (13.0) 16 (0.23) 247953 (10.49) 174901 (14.79)

Table 6.15: stencil2d: Total chip area usage

Table 6.16 shows the power usage figure for the baseline and the framework. It
shows an increase in power usage for all elements with the exception of the DSPs
but the number of DSPs is also reduced in the framework version when looking at
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Table 6.15. The miscellaneous column in Table 6.16 represents a part of the power
usage that stays mostly constant. It consists of the URAM, PLL, MMCM, I/O and
GTY power usage. The GTY transceivers take up the majority of the power usage
(4.360 Watts).

Total Hard IP Dynamic Static

Clocks Signals Logic BRAM DSP Misc

Baseline 14.349 0.391 1.790 1.348 0.975 1.382 0.042 5.708 2.713

Framework 14.453 0.391 1.853 1.401 0.985 1.386 0.014 5.709 2.715

Table 6.16: stencil2d: Total power usage (Watts)

For this benchmark issues were also reported by the HLS tool shown in Fig-
ure 6.3. Here too was the Could not analyze pattern issue reported, indicating a too
complex logic failing to enable burst transfers on the m axi interface.

Figure 6.3: High-level synthesis too complex to optimize baseline stencil2d

6.5 Summary

Figure 6.4 summarizes the overall speedup achieved when comparing the output
of the framework against the baseline. Overall, a small increase in speedup is ob-
served, with the gemm benchmark having such a low speedup, at which point the
speedup could be just a profiling accuracy offset. Table 6.8 shows that due to the
human readable feature further improvements in speedup are still possible.



6.5. SUMMARY 61

gemm
spmv

stencil2d
0

0.5

1

1.5

2
S

pe
ed

up

Baseline Generated

Figure 6.4: Speedup comparison with all benchmarks
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Figure 6.5: Power usage comparison with all benchmarks

The power figure seems to be somewhat similar in Figure 6.5. The framework
seems to consume slightly less power for the gemm benchmark, but the speedup for
this benchmark is also non-existent. The spmv and stencil2d have a larger speedup,
this seems to result into a higher power usage. The power differences among the
benchmarks is relatively low: -0.98% (gemm), +1.78% (spmv), +0.72% (stencil2d).
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Figure 6.6: Total chip area usage with all benchmarks

The total chip area usage in Figure 6.6 shows a small increase in BRAM, FFs
and LUTs for all benchmarks. The number of DSPs appears to stay constant for
the gemm and spmv benchmarks while it decreases for the stencil2d benchmark.
Notice that the differences are small due to the kernel area usage also being small
in comparison to the size of the target FPGA.

The spmv and stencil2d benchmark showed an issue during high-level synthe-
sis where it could not enable burst transfers for some memory accessing elements
for the baseline version. After transformation to the DAE architecture this issue is
solved. This issue does not occur with the gemm benchmark.
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Conclusions and recommendations

7.1 Conclusion

This thesis presented a framework that automatically translates C/C++ code to the
DAE architecture while keeping the DAE architecture readable to the engineer.

One of the goals of this thesis is that the framework automatically generates
C/C++ code in the DAE architecture that is human readable. The implemented
method allows an engineer to apply further manual optimizations targeted for the
HLS tool for specific FPGAs.

The result of the framework is validated against the MachSuite benchmark [8].
Taking the baseline implementation provided by the benchmark and transforming
that automatically to the DAE architecture and inserting directives to optimize for
speed. This resulted in a maximum increase in the speedup of 1.63x, it is however
highly dependent on the structure of the algorithm.

Automatically transforming the baseline version to the DAE architecture results
in data accessing that is less complex as it only contains the logic for a memory
accessing element and stream logic. Other, computational, logic remains in the
execute unit. The reduces complexity for data accessing results in the HLS tool
being able to better optimize the memory data access which in turn improves the
speedup of an algorithm.

The next chapter will answer the research questions that were formulated for this
thesis.

7.1.1 Research questions

The first three research sub-questions directly relate to the DAE architecture. A
key challenge for generating the DAE architecture is the identification of memory
accessing elements in the source code. This immediately leads to the following
research sub-question:
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How can one extract memory and computational parts from the C/C++ code?
The source code is first parsed to the intermediate representation defined in the

Section 4. Further analysis and manipulation is using this IR. This intermediate
representation is considered to be the computational part. Memory accessing parts
are replaced by corresponding queues that connect to the dedicated memory access
units.

By analyzing the specific ways that memory is accessed in a programming lan-
guage, in this case C/C++, a pattern is observed where memory is accessed by
using the index of an array. Section 4.3 describes this accessing method in de-
tail while also describing other memory accessing patterns. The index of the array
is used for the address generation information of the memory access. The actual
value of the address generated can have dependencies elsewhere in the code. As
the memory accessing logic is moved to a dedicated accessing unit so does the
address generation logic. This results into the following research sub-question:

How can one solve dependencies (data access) within the different access and
execute units?

A memory access has an address associated to it, an address may be con-
structed from different places. Taking the dependencies from the memory access
address, the code is reverse traversed until it has found every data dependency. As
the code is in the intermediate representation, reverse traversing it is straightforward
due to the clear relation with the previous edges. Section 4.4 describes this in more
detail, also showing the algorithm used to find all dependencies.

Once the memory accessing dependencies are solved the separate accessing
and execute units can be constructed. The accessing units depend on the number of
memory accesses while there is only a single execute unit, that consist of the source
code with the memory accessing replaced with streams coming from the accessing
units. This leads into the research sub-question:

How can one establish correct communication between the different access and
execute units?

The communication between the different unit is achieved by using queues. The
specific type used by this thesis it the standard FIFO type. Section 4.5 describes the
possibility of having the ability to have different types of queues.

To validate the resulting framework, an experimental setup is to be created that
validates against other hardware implementations. The last research sub-question
becomes:

How does the execution time compare against other hardware implementations
(baseline benchmark, manually optimized)?

The evaluation of the framework shows that generally an improvement in speedup
is observed while also an increase in area and power usage is observed. While for
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some benchmarks the speedup was negligible (1.004x) for benchmarks where a
higher degree of memory accessing decoupling is possible a higher speedup was
observed (up to 1.63x). Chapter 6 describes in detail the exact speedup that is
achievable, as it depends on the type of implementation the results vary.

To improve the speedup of an algorithm prior to using a HLS tool this thesis
focused on the design and implementation of a framework that can automatically
translate C/C++ code to the DAE architecture so that it can be optimized for an
FPGA. This forms the main research question:

Which steps are required to automatically translate C/C++ code to efficient HLS
code for FPGAs using the DAE paradigm?

The starting point for the framework, initial step, is to get the C/C++ code in
an intermediate representation that is abstract enough for manipulation while not
losing information. This intermediate representation encompasses a selected code
block also adding structural information, so that an algorithm can traverse the source
code. The memory accessing elements are identified based on how they are written
in the C/C++ programming language. The framework specifically locates brackets
with an index in between. The address of memory accessing elements is generated
based on dependencies defined elsewhere in the code. These are solved for by re-
verse traversing the intermediate representation starting at the memory accessing
element. Next the different DAE units are created. It consists of a single execute
unit that contains the input source code in the IR form with its memory accessing
elements replaced by streams. Then multiple accessing units are created which are
only responsible for reading or writing data into memory. All these units run in par-
allel. Data is coming from or going to the execute unit via streams. Blocking FIFOs
are used for this. A unit is automatically blocked when the data isn’t available yet.
This allows for the units to fetch data from memory while the execute unit is still per-
forming computations. HLS tool specific directives are used to allow for parallelizing
the units and pipelining the loops within the different units. Finally, the results are
evaluated using well known benchmarks, an overall increase of speedup and chip
area used is observed. More details and complete design flow are described in
Chapter 4.

7.2 Recommendations

The framework implements the design as it was specified in Chapter 4. In that
chapter limitations of the approach are identified in Section 4.8. For instance one
assumption that it made is the use of read-only and write-only buffers, buffers are
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never read-write capable. A future extension to this thesis would be the support for
structures where a read after write to the same buffer location works as intended.
Section 4.8 describes a solution would be to move all accessing of the same memory
accessing element in a single unit, this could be implemented in the future, but
another solution was also described where the data access read unit should first
look into the address generation queue of the data access write unit for the same
variable stalling the read queue until the data is written.

Another limitation is occurs when a memory accessing element is accessed mul-
tiple times. This results in the framework generating multiple accessing units for the
same accessing element (at a different address). These access units run in parallel.
This cannot be synthesized by the HLS tool as it would result in the memory access
port connected to two units. A solution for future work could consist in moving the
logic into a single access unit, this is the same solution as it was described in the
previous paragraph. Another solution would be to increase the number of ports on
the memory accessing element, this can be achieved by using two unique names
for the memory accessing element. This results in two independent interfaces that
can be connected to a memory element with two ports.

The moment a memory access depends on another memory access is not sup-
ported. The framework currently does not support connecting streams from access
units to access units. Implementing this feature a future work fixes this limitation.

Section 5.1 introduced libclang and libTooling. LibTooling provides facilities for
code refactoring, essentially applying manipulations on top of the parsed input code.
Removing the burden of formatting when generating the output code, which reduces
the overall code size of the framework. If the goal of human readable code is relaxed
then the use of libTooling and its associated libraries might become a viable option
for future work though this is at the cost of having code that may not be as well
human readable as the code is parsed into the LLVM AST that removes some infor-
mation from the code.

Recently, Xilinx has open-sourced the front end to its HLS tool (Vitis HLS) [27].
This adds the ability for the framework to be expanded to better integrate with it.
Future work could consist of adding the architectural translation capabilities to the
Xilinx HLS tool and also automatically adding the appropriate HLS directives. This
approach doesn’t produce new source code in a human readable form. Instead,
it generates an intermediate representation specific for LLVM. An engineer could
experiment on the IR generated for LLVM but because its much more abstract, re-
member it resembles a platform independent assembly code, experimenting could
be much more time consuming. Another method would be to exclusively experiment
with HLS directives directly on the source code that was provided as the input. As
this is recent work, documentation on this is limited and further research is required.
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The framework enables array partitioning for local arrays. It uses the complete
method which turns the local array into local elements. This takes up the most area
while attempting to increase the speedup. This approach may not always work for
very large arrays, depending on the target FPGA the framework may be extended
to support variable array partitioning so that an engineer can balance the area vs
speedup depending on what is required for the engineer.
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Appendix A

Example DAE translation

This chapter will show an example of an C/C++ code that is translated to the DAE
architecture. The code sample shown in Section 4.3 will be used.

1 void fetch_unit0(int * m1, hls::stream<int> & m1_rs0) {

2 int i;

3 int i_row;

4 int j;

5 for(i = 0; i<col_size; i ++) {

6 #pragma HLS PIPELINE

7 i_row = i * row_size;

8 for(j = 0; j<row_size; j ++) {

9 #pragma HLS PIPELINE

10 m1_rs0.write(m1[i_row + j]);

11 }

12 }

13 }

14 void write_unit1(int * v1, hls::stream<int> & v1_ws1) {

15 int i;

16 for(i = 0; i<col_size; i ++) {

17 #pragma HLS PIPELINE

18 v1[i] = v1_ws1.read();

19 }

20 }

21 void process_unit(hls::stream<int> & m1_rs0, hls::stream<int> & v1_ws1) {

22 int i;

23 int sum;

24 int j;

25 for(i = 0; i<col_size; i ++) {

26 #pragma HLS PIPELINE

27 sum = 0;

28 for(j = 0; j<row_size; j ++) {

29 #pragma HLS PIPELINE

30 sum += m1_rs0.read();

31 }

73
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32 v1_ws1.write( sum);

33 }

34 }

35 void vector_adder(int * m1, int * v1) {

36 #pragma HLS INTERFACE m_axi max_widen_bitwidth=512 depth=100 bundle=gmem0 port=m1

37 #pragma HLS INTERFACE m_axi max_widen_bitwidth=512 depth=100 bundle=gmem1 port=v1

38 hls::stream<int> m1_rs0;

39 #pragma HLS STREAM variable=m1_rs0

40 hls::stream<int> v1_ws1;

41 #pragma HLS STREAM variable=v1_ws1

42 #pragma HLS DATAFLOW

43 fetch_unit0(m1, m1_rs0);

44 process_unit(m1_rs0, v1_ws1);

45 write_unit1(v1, v1_ws1);

46 }

Listing A.1: Matrix vector addition
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MachSuite benchmarks

This chapter will show the code of the MachSuite benchmarks that are translated in
the experimental chapter.

B.1 gemm

1 #include "gemm.h"

2

3 void gemm( TYPE *m1, TYPE *m2, TYPE *prod ){

4 #pragma HLS INTERFACE s_axilite port=m1

5 #pragma HLS INTERFACE s_axilite port=m2

6 #pragma HLS INTERFACE s_axilite port=prod

7 #pragma HLS INTERFACE s_axilite port=return

8 #pragma HLS INTERFACE m_axi max_widen_bitwidth=512 depth=100 bundle=gmem0 port=m1

9 #pragma HLS INTERFACE m_axi max_widen_bitwidth=512 depth=100 bundle=gmem1 port=m2

10 #pragma HLS INTERFACE m_axi max_widen_bitwidth=512 depth=100 bundle=gmem2 port=prod

11 int i, j, k;

12 int k_col, i_col;

13 TYPE mult;

14

15 outer:for(i=0;i<row_size;i++) {

16 //#pragma HLS PIPELINE

17 middle:for(j=0;j<col_size;j++) {

18 #pragma HLS PIPELINE

19 i_col = i * col_size;

20 TYPE sum = 0;

21 inner:for(k=0;k<row_size;k++) {

22 #pragma HLS PIPELINE

23 k_col = k * col_size;

24 mult = m1[i_col + k] * m2[k_col + j];

25 sum += mult;

26 }

27 prod[i_col + j] = sum;
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28 }

29 }

30 }

Listing B.1: gemm: Kernel original code

1 #include <stdlib.h>

2 #include <stdio.h>

3 #include <hls_stream.h>

4 #include "./gemm.h"

5 void fetch_unit0(double * m1, hls::stream<double> & m1_rs0) {

6 int i;

7 int j;

8 int i_col;

9 int k;

10 int k_col;

11 fetch_unit0_outer: for(i = 0; i<row_size; i ++) {

12 //#pragma HLS PIPELINE

13 fetch_unit0_middle: for(j = 0; j<col_size; j ++) {

14 #pragma HLS PIPELINE

15 i_col = i * col_size;

16 fetch_unit0_inner: for(k = 0; k<row_size; k ++) {

17 #pragma HLS PIPELINE

18 k_col = k * col_size;

19 m1_rs0.write(m1[i_col + k]);

20 }

21 }

22 }

23 }

24 void fetch_unit1(double * m2, hls::stream<double> & m2_rs1) {

25 int i;

26 int j;

27 int i_col;

28 int k;

29 int k_col;

30 fetch_unit1_outer: for(i = 0; i<row_size; i ++) {

31 //#pragma HLS PIPELINE

32 fetch_unit1_middle: for(j = 0; j<col_size; j ++) {

33 #pragma HLS PIPELINE

34 i_col = i * col_size;

35 fetch_unit1_inner: for(k = 0; k<row_size; k ++) {

36 #pragma HLS PIPELINE

37 k_col = k * col_size;

38 m2_rs1.write(m2[k_col + j]);

39 }

40 }

41 }
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42 }

43 void write_unit2(double * prod, hls::stream<double> & prod_ws2) {

44 int i;

45 int j;

46 int i_col;

47 write_unit2_outer: for(i = 0; i<row_size; i ++) {

48 #pragma HLS PIPELINE

49 write_unit2_middle: for(j = 0; j<col_size; j ++) {

50 #pragma HLS PIPELINE

51 i_col = i * col_size;

52 prod[i_col + j] = prod_ws2.read();

53 }

54 }

55 }

56 void process_unit(hls::stream<double> & m1_rs0, hls::stream<double> & m2_rs1,

hls::stream<double> & prod_ws2) {↪→

57 int i;

58 int j;

59 int i_col;

60 int k;

61 int k_col;

62 double mult;

63 outer: for(i = 0; i<row_size; i ++) {

64 //#pragma HLS PIPELINE

65 middle: for(j = 0; j<col_size; j ++) {

66 #pragma HLS PIPELINE

67 i_col = i * col_size;

68 TYPE sum = 0;

69 inner: for(k = 0; k<row_size; k ++) {

70 #pragma HLS PIPELINE

71 k_col = k * col_size;

72 mult = m1_rs0.read() * m2_rs1.read();

73 sum += mult;

74 }

75 prod_ws2.write( sum);

76 }

77 }

78 }

79 void gemm(double * m1, double * m2, double * prod) {

80 #pragma HLS INTERFACE s_axilite port=m1

81 #pragma HLS INTERFACE s_axilite port=m2

82 #pragma HLS INTERFACE s_axilite port=prod

83 #pragma HLS INTERFACE s_axilite port=return

84 #pragma HLS INTERFACE m_axi max_widen_bitwidth=512 depth=100 bundle=gmem0 port=m1

85 #pragma HLS INTERFACE m_axi max_widen_bitwidth=512 depth=100 bundle=gmem1 port=m2

86 #pragma HLS INTERFACE m_axi max_widen_bitwidth=512 depth=100 bundle=gmem2 port=prod

87 hls::stream<double> m1_rs0;
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88 #pragma HLS STREAM variable=m1_rs0

89 hls::stream<double> m2_rs1;

90 #pragma HLS STREAM variable=m2_rs1

91 hls::stream<double> prod_ws2;

92 #pragma HLS STREAM variable=prod_ws2

93 #pragma HLS DATAFLOW

94 fetch_unit0(m1, m1_rs0);

95 fetch_unit1(m2, m2_rs1);

96 process_unit(m1_rs0, m2_rs1, prod_ws2);

97 write_unit2(prod, prod_ws2);

98 }

Listing B.2: gemm: Kernel translated code

1 #include "gemm.h"

2 #include <string.h>

3 #include "xcl2.hpp"

4 #include <vector>

5

6 #include <string.h>

7 #include <unistd.h>

8 #include <fcntl.h>

9 #include <sys/stat.h>

10 #include <assert.h>

11

12 #include <chrono>

13 using namespace std::chrono;

14

15 int INPUT_SIZE = sizeof(struct bench_args_t);

16

17 #define EPSILON ((TYPE)1.0e-6)

18

19

20 std::string binaryFile;

21

22 const int N = row_size*col_size;

23

24 void run_benchmark( void *vargs ) {

25 struct bench_args_t *args = (struct bench_args_t *)vargs;

26 //gemm( args->m1, args->m2, args->prod );

27

28 printf("Preparing accelerator\n");

29 cl_int err;

30 cl::Kernel krnl_add;

31 cl::CommandQueue q;

32 cl::Context context;

33
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34 /*

35 TYPE m1[N];

36 TYPE m2[N];

37 TYPE prod[N];

38 */

39 std::vector<TYPE, aligned_allocator<TYPE> > m1(N);

40 std::vector<TYPE, aligned_allocator<TYPE> > m2(N);

41 std::vector<TYPE, aligned_allocator<TYPE> > prod(N);

42

43 for (int i=0; i <(N); i++) {

44 m1[i] = args->m1[i];

45 m2[i] = args->m2[i];

46 prod[i] = args->prod[i];

47 }

48

49

50

51 //gemm( args->m1, args->m2, args->prod );

52 // OPENCL HOST CODE AREA START

53 // get_xil_devices() is a utility API which will find the xilinx

54 // platforms and will return list of devices connected to Xilinx platform

55 auto devices = xcl::get_xil_devices();

56 // read_binary_file() is a utility API which will load the binaryFile

57 // and will return the pointer to file buffer.

58 auto fileBuf = xcl::read_binary_file(binaryFile);

59 cl::Program::Binaries bins{{fileBuf.data(), fileBuf.size()}};

60 bool valid_device = false;

61 for (unsigned int i = 0; i < devices.size(); i++) {

62 auto device = devices[i];

63 // Creating Context and Command Queue for selected Device

64 OCL_CHECK(err, context = cl::Context(device, nullptr, nullptr, nullptr,

&err));↪→

65 OCL_CHECK(err, q = cl::CommandQueue(context, device,

CL_QUEUE_PROFILING_ENABLE, &err));↪→

66 std::cout << "Trying to program device[" << i << "]: " <<

device.getInfo<CL_DEVICE_NAME>() << std::endl;↪→

67 cl::Program program(context, {device}, bins, nullptr, &err);

68 if (err != CL_SUCCESS) {

69 std::cout << "Failed to program device[" << i << "] with xclbin file!\n";

70 } else {

71 std::cout << "Device[" << i << "]: program successful!\n";

72 OCL_CHECK(err, krnl_add = cl::Kernel(program, "gemm", &err));

73 valid_device = true;

74 break; // we break because we found a valid device

75 }

76 }

77 if (!valid_device) {
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78 std::cout << "Failed to program any device found, exit!\n";

79 exit(EXIT_FAILURE);

80 }

81

82 // Allocate Buffer in Global Memory

83 // Buffers are allocated using CL_MEM_USE_HOST_PTR for efficient memory and

84 // Device-to-host communication

85

86 OCL_CHECK(err, cl::Buffer buffer_i1(context, CL_MEM_USE_HOST_PTR |

CL_MEM_READ_ONLY, sizeof(TYPE) * (N),↪→

87 m1.data(), &err));

88 OCL_CHECK(err, cl::Buffer buffer_i2(context, CL_MEM_USE_HOST_PTR |

CL_MEM_READ_ONLY, sizeof(TYPE) * (N),↪→

89 m2.data(), &err));

90

91 OCL_CHECK(err, cl::Buffer buffer_o3(context, CL_MEM_USE_HOST_PTR |

CL_MEM_WRITE_ONLY, sizeof(TYPE) * (N),↪→

92 prod.data(), &err));

93

94 // Default version

95 OCL_CHECK(err, err = krnl_add.setArg(0, buffer_i1));

96 OCL_CHECK(err, err = krnl_add.setArg(1, buffer_i2));

97 OCL_CHECK(err, err = krnl_add.setArg(2, buffer_o3));

98

99 // Copy input data to device global memory

100 OCL_CHECK(err, err = q.enqueueMigrateMemObjects({buffer_i1, buffer_i2}, 0 /* 0

means from host*/ ));↪→

101 OCL_CHECK(err, err = q.finish());

102

103 // Launch the Kernel

104 // For HLS kernels global and local size is always (1,1,1). So, it is

105 // recommended

106 // to always use enqueueTask() for invoking HLS kernel

107 std::cout << "Starting kernel\n";

108 auto start = high_resolution_clock::now();

109 OCL_CHECK(err, err = q.enqueueTask(krnl_add));

110 std::cout << "Waiting for accelerator to finish\n";

111 OCL_CHECK(err, err = q.finish());

112 std::cout << "Waiting for accelerator to finish2\n";

113 // Copy Result from Device Global Memory to Host Local Memory

114 //OCL_CHECK(err, err = q.enqueueMigrateMemObjects({buffer_aligna, buffer_alignb,

buffer_m, buffer_ptr}, CL_MIGRATE_MEM_OBJECT_HOST));↪→

115 OCL_CHECK(err, err = q.enqueueMigrateMemObjects({buffer_o3},

CL_MIGRATE_MEM_OBJECT_HOST));↪→

116 std::cout << "Waiting for accelerator to finish3\n";

117 OCL_CHECK(err, err = q.finish());

118 std::cout << "Waiting for accelerator to finish4\n";
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119 // OPENCL HOST CODE AREA END

120

121 auto stop = high_resolution_clock::now();

122 auto duration = duration_cast<microseconds>(stop - start);

123

124 std::cout << "Execution time: " << duration.count() << std::endl;

125

126 printf("Fetching data from accelerator\n");

127

128

129 //printf("Data fetched01\n");

130

131 for (int i=0; i <(N); i++) {

132 args->m1[i] = m1[i];

133 args->m2[i] = m2[i];

134 args->prod[i] = prod[i];

135 }

136

137 //printf("%f ?= %f\r\n", args->m1[0], args->prod[0]);

138 printf("Data fetched10\n");

139

140

141

142

143 // Parse command line.

144 const char *check_file = "data/check.data";

145

146 char *data = (char*)vargs;

147

148 // Load check data

149 printf("Checking output\n");

150 int check_fd;

151 char *ref;

152 ref = (char*) malloc(INPUT_SIZE);

153 assert( ref!=NULL && "Out of memory" );

154 check_fd = open( check_file, O_RDONLY );

155 assert( check_fd>0 && "Couldn't open check data file");

156 output_to_data(check_fd, ref);

157

158 // Validate benchmark results

159 printf("Validating output\n");

160 if( !check_data(data, ref) ) {

161 fprintf(stderr, "Benchmark results are incorrect\n");

162 //return -1;

163 } else {

164 fprintf(stderr, "BENCH SUCCESS!\n");

165 }
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166 printf("Free!\n");

167 //free(data);

168 free(ref);

169

170 printf("Success.\n");

171 exit(0);

172

173 }

174

175 /* Input format:

176 %% Section 1

177 TYPE[N]: matrix 1

178 %% Section 2

179 TYPE[N]: matrix 2

180 */

181

182 void input_to_data(int fd, void *vdata) {

183 struct bench_args_t *data = (struct bench_args_t *)vdata;

184 char *p, *s;

185 // Zero-out everything.

186 memset(vdata,0,sizeof(struct bench_args_t));

187 // Load input string

188 p = readfile(fd);

189

190 s = find_section_start(p,1);

191 STAC(parse_,TYPE,_array)(s, data->m1, N);

192

193 s = find_section_start(p,2);

194 STAC(parse_,TYPE,_array)(s, data->m2, N);

195 free(p);

196

197 }

198

199 void data_to_input(int fd, void *vdata) {

200 struct bench_args_t *data = (struct bench_args_t *)vdata;

201

202 write_section_header(fd);

203 STAC(write_,TYPE,_array)(fd, data->m1, N);

204

205 write_section_header(fd);

206 STAC(write_,TYPE,_array)(fd, data->m2, N);

207 }

208

209 /* Output format:

210 %% Section 1

211 TYPE[N]: output matrix

212 */
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213

214 void output_to_data(int fd, void *vdata) {

215 struct bench_args_t *data = (struct bench_args_t *)vdata;

216 char *p, *s;

217 // Load input string

218 p = readfile(fd);

219

220 s = find_section_start(p,1);

221 STAC(parse_,TYPE,_array)(s, data->prod, N);

222 free(p);

223 }

224

225 void data_to_output(int fd, void *vdata) {

226 struct bench_args_t *data = (struct bench_args_t *)vdata;

227

228 write_section_header(fd);

229 STAC(write_,TYPE,_array)(fd, data->prod, N);

230 }

231

232 int check_data( void *vdata, void *vref ) {

233 struct bench_args_t *data = (struct bench_args_t *)vdata;

234 struct bench_args_t *ref = (struct bench_args_t *)vref;

235 int has_errors = 0;

236 int r,c;

237 TYPE diff;

238

239 for( r=0; r<row_size; r++ ) {

240 for( c=0; c<col_size; c++ ) {

241 diff = data->prod[r*row_size + c] - ref->prod[r*row_size+c];

242 has_errors |= (diff<-EPSILON) || (EPSILON<diff);

243 }

244 }

245

246 // Return true if it's correct.

247 return !has_errors;

248 }

Listing B.3: gemm: Host code

B.2 spmv

1 /*

2 Based on algorithm described here:

3 http://www.cs.berkeley.edu/~mhoemmen/matrix-seminar/slides/UCB_sparse_tutorial_1.pdf

4 */
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5

6 #include "spmv.h"

7 #include <hls_stream.h>

8

9 void spmv(double * val, int32_t *cols, int32_t * rowDelimiters, double * vec,

double * out){↪→

10 #pragma HLS INTERFACE s_axilite port=val

11 #pragma HLS INTERFACE s_axilite port=cols

12 #pragma HLS INTERFACE s_axilite port=rowDelimiters

13 #pragma HLS INTERFACE s_axilite port=vec

14 #pragma HLS INTERFACE s_axilite port=out

15 #pragma HLS INTERFACE s_axilite port=return

16 #pragma HLS INTERFACE m_axi max_widen_bitwidth=512 depth=100 port=val bundle=gmem0

17 #pragma HLS INTERFACE m_axi max_widen_bitwidth=512 depth=100 port=cols bundle=gmem1

18 #pragma HLS INTERFACE m_axi max_widen_bitwidth=512 depth=100 port=rowDelimiters

bundle=gmem2↪→

19 #pragma HLS INTERFACE m_axi max_widen_bitwidth=512 depth=100 port=vec bundle=gmem3

20 #pragma HLS INTERFACE m_axi max_widen_bitwidth=512 depth=100 port=out bundle=gmem4

21 int i, j;

22 TYPE sum, Si;

23

24 spmv_1 : for(i = 0; i < N; i++){

25 #pragma HLS PIPELINE

26 sum = 0; Si = 0;

27 int tmp_begin = rowDelimiters[i];

28 int tmp_end = rowDelimiters[i+1];

29 spmv_2 : for (j = tmp_begin; j < tmp_end; j++){

30 #pragma HLS PIPELINE

31 Si = val[j] * vec[cols[j]];

32 sum = sum + Si;

33 }

34 out[i] = sum;

35 }

36 }

Listing B.4: spmv: Kernel original code

1 #include <stdlib.h>

2 #include <stdio.h>

3 #include <hls_stream.h>

4 #include "./spmv.h"

5

6 void fetch_unit1(int32_t * rowDelimiters, hls::stream<int32_t> & rowDelimiters_rs0,

hls::stream<int32_t> & rowDelimiters1_rs1) {↪→

7 int i;

8 fetch_unit1_spmv_1: for(i = 0; i<N; i ++) {

9 #pragma HLS PIPELINE
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10 rowDelimiters_rs0.write(rowDelimiters[i]);

11 rowDelimiters1_rs1.write(rowDelimiters[i + 1]);

12 }

13 }

14 void fetch_unit2(double * val, hls::stream<double> & val_rs2,

15 hls::stream<int32_t> & rowDelimiters_rs0, hls::stream<int32_t> &

rowDelimiters1_rs1,↪→

16 hls::stream<int32_t> & rowDelimiters_rs2, hls::stream<int32_t> &

rowDelimiters1_rs3) {↪→

17 int i;

18 int j;

19 fetch_unit2_spmv_1: for(i = 0; i<N; i ++) {

20 #pragma HLS PIPELINE

21 int tmp_begin = rowDelimiters_rs0.read();

22 int tmp_end = rowDelimiters1_rs1.read();

23 rowDelimiters_rs2 << tmp_begin;

24 rowDelimiters1_rs3 << tmp_end;

25 fetch_unit2_spmv_2: for(j = tmp_begin; j<tmp_end; j ++) {

26 #pragma HLS PIPELINE

27 val_rs2.write(val[j]);

28 }

29 }

30 }

31 void fetch_unit3_1(int32_t* cols, hls::stream<int32_t> & cols_rs3,

32 hls::stream<int32_t> & rowDelimiters_rs0, hls::stream<int32_t> &

rowDelimiters1_rs1,↪→

33 hls::stream<int32_t> & rowDelimiters_rs2, hls::stream<int32_t> &

rowDelimiters1_rs3) {↪→

34 int i;

35 int j;

36 fetch_unit3_spmv_1: for(i = 0; i<N; i ++) {

37 #pragma HLS PIPELINE

38 int tmp_begin = rowDelimiters_rs0.read();

39 int tmp_end = rowDelimiters1_rs1.read();

40 rowDelimiters_rs2 << tmp_begin;

41 rowDelimiters1_rs3 << tmp_end;

42 fetch_unit3_spmv_2: for(j = tmp_begin; j<tmp_end; j ++) {

43 #pragma HLS PIPELINE

44 cols_rs3.write(cols[j]);

45 }

46 }

47 }

48 void fetch_unit3(double * vec, hls::stream<int32_t> & cols_rs3, hls::stream<double>

& vec_rs3,↪→

49 hls::stream<int32_t> & rowDelimiters_rs0, hls::stream<int32_t> &

rowDelimiters1_rs1,↪→
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50 hls::stream<int32_t> & rowDelimiters_rs2, hls::stream<int32_t> &

rowDelimiters1_rs3) {↪→

51 int i;

52 int j;

53 fetch_unit3_spmv_1: for(i = 0; i<N; i ++) {

54 #pragma HLS PIPELINE

55 int tmp_begin = rowDelimiters_rs0.read();

56 int tmp_end = rowDelimiters1_rs1.read();

57 rowDelimiters_rs2 << tmp_begin;

58 rowDelimiters1_rs3 << tmp_end;

59 fetch_unit3_spmv_2: for(j = tmp_begin; j<tmp_end; j ++) {

60 #pragma HLS PIPELINE

61 vec_rs3.write(vec[cols_rs3.read()]);

62 }

63 }

64 }

65 void write_unit4(double * out, hls::stream<double> & out_ws4) {

66 int i;

67 int j;

68 write_unit4_spmv_1: for(i = 0; i<N; i ++) {

69 #pragma HLS PIPELINE

70 out[i] = out_ws4.read();

71 }

72 }

73 void process_unit(hls::stream<int32_t> & rowDelimiters_rs0, hls::stream<int32_t> &

rowDelimiters1_rs1, hls::stream<double> & val_rs2, hls::stream<double> &

vec_rs3, hls::stream<double> & out_ws4) {

↪→

↪→

74 int i;

75 double sum;

76 int j;

77 spmv_1: for(i = 0; i<N; i ++) {

78 #pragma HLS PIPELINE

79 sum = 0;

80 int tmp_begin = rowDelimiters_rs0.read();

81 int tmp_end = rowDelimiters1_rs1.read();

82 spmv_2: for(j = tmp_begin; j<tmp_end; j ++) {

83 #pragma HLS PIPELINE

84 sum += val_rs2.read() * vec_rs3.read();

85 }

86 out_ws4.write( sum);

87 }

88 }

89 void spmv1(int32_t * rowDelimiters, double * val, double * vec, double * out,

int32_t *cols) {↪→

90 #pragma HLS INTERFACE s_axilite port=rowDelimiters

91 #pragma HLS INTERFACE s_axilite port=val

92 #pragma HLS INTERFACE s_axilite port=vec
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93 #pragma HLS INTERFACE s_axilite port=out

94 #pragma HLS INTERFACE s_axilite port=cols

95 #pragma HLS INTERFACE s_axilite port=return

96 #pragma HLS INTERFACE m_axi max_widen_bitwidth=512 depth=100 bundle=gmem0

port=rowDelimiters↪→

97 #pragma HLS INTERFACE m_axi max_widen_bitwidth=512 depth=100 bundle=gmem1 port=val

98 #pragma HLS INTERFACE m_axi max_widen_bitwidth=512 depth=100 bundle=gmem2 port=vec

99 #pragma HLS INTERFACE m_axi max_widen_bitwidth=512 depth=100 bundle=gmem3 port=out

100 #pragma HLS INTERFACE m_axi max_widen_bitwidth=512 depth=100 bundle=gmem4 port=cols

101 hls::stream<int32_t> rowDelimiters_rs0;

102 #pragma HLS STREAM variable=rowDelimiters_rs0

103 hls::stream<int32_t> rowDelimiters1_rs1;

104 #pragma HLS STREAM variable=rowDelimiters1_rs1

105

106 hls::stream<int32_t> rowDelimiters_rs2;

107 #pragma HLS STREAM variable=rowDelimiters_rs2

108 hls::stream<int32_t> rowDelimiters1_rs3;

109 #pragma HLS STREAM variable=rowDelimiters1_rs3

110

111 hls::stream<int32_t> rowDelimiters_rs4;

112 #pragma HLS STREAM variable=rowDelimiters_rs4

113 hls::stream<int32_t> rowDelimiters1_rs5;

114 #pragma HLS STREAM variable=rowDelimiters1_rs5

115

116 hls::stream<int32_t> rowDelimiters_rs6;

117 #pragma HLS STREAM variable=rowDelimiters_rs6

118 hls::stream<int32_t> rowDelimiters1_rs7;

119 #pragma HLS STREAM variable=rowDelimiters1_rs7

120

121 hls::stream<double> val_rs2;

122 #pragma HLS STREAM variable=val_rs2

123 hls::stream<double> vec_rs3;

124 #pragma HLS STREAM variable=vec_rs3

125 hls::stream<int32_t> cols_rs3;

126 #pragma HLS STREAM variable=cols_rs3

127 hls::stream<double> out_ws4;

128 #pragma HLS STREAM variable=out_ws4

129 #pragma HLS DATAFLOW

130 fetch_unit1(rowDelimiters, rowDelimiters_rs0, rowDelimiters1_rs1);

131 fetch_unit2(val, val_rs2, rowDelimiters_rs0, rowDelimiters1_rs1,

rowDelimiters_rs2, rowDelimiters1_rs3);↪→

132 fetch_unit3_1(cols, cols_rs3, rowDelimiters_rs2, rowDelimiters1_rs3,

rowDelimiters_rs4, rowDelimiters1_rs5);↪→

133 fetch_unit3(vec, cols_rs3, vec_rs3, rowDelimiters_rs4, rowDelimiters1_rs5,

rowDelimiters_rs6, rowDelimiters1_rs7);↪→

134 process_unit(rowDelimiters_rs6, rowDelimiters1_rs7, val_rs2, vec_rs3, out_ws4);

135 write_unit4(out, out_ws4);
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136 }

Listing B.5: spmv: Kernel translated code

1 /*

2 Based on algorithm described here:

3 http://www.cs.berkeley.edu/~mhoemmen/matrix-seminar/slides/UCB_sparse_tutorial_1.pdf

4 */

5

6 #include "spmv.h"

7 #include <hls_stream.h>

8

9 void fetch_1(int32_t *rowDelimiters, hls::stream<int32_t> & rowDelimiters_rs0,

hls::stream<int32_t> & rowDelimiters1_rs1) {↪→

10 int i;

11 hls::stream<int> row_ptr_address;

12 hls::stream<int> row_ptr_next_address;

13 #pragma HLS DATAFLOW

14 fetch_1_1: for(i = 0; i < N; i++){

15 #pragma HLS PIPELINE

16 row_ptr_address << i;

17 }

18 fetch_1_2: for(i = 0; i < N; i++){

19 #pragma HLS PIPELINE

20 row_ptr_next_address << (i+1);

21 }

22 fetch_1_3: for(i = 0; i < N; i++){

23 #pragma HLS PIPELINE

24 rowDelimiters_rs0.write(rowDelimiters[row_ptr_address.read()]);

25 rowDelimiters1_rs1.write(rowDelimiters[row_ptr_next_address.read()]);

26 }

27 }

28

29 void fetch_2(int32_t *cols, hls::stream<int32_t> & row_ptr_data,

hls::stream<int32_t> & row_ptr_next_data, hls::stream<int32_t> &

row_ptr_data_out, hls::stream<int32_t> & row_ptr_next_data_out,

hls::stream<int32_t> & col_ind_data) {

↪→

↪→

↪→

30 int i, j;

31 hls::stream<int> col_ind_address;

32 for(i = 0; i < N; i++){

33 #pragma HLS DATAFLOW

34 int beg = row_ptr_data.read();

35 int end = row_ptr_next_data.read();

36 row_ptr_data_out << beg;

37 row_ptr_next_data_out << end;

38 for (j = beg; j < end; j++){

39 #pragma HLS PIPELINE
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40 col_ind_address << j;

41 }

42 for (j = beg; j < end; j++){

43 #pragma HLS PIPELINE

44 col_ind_data << cols[col_ind_address.read()];

45 }

46 }

47 }

48

49 void fetch_3(TYPE *val, TYPE *vec, hls::stream<int32_t> & row_ptr_data,

hls::stream<int32_t> & row_ptr_next_data,↪→

50 hls::stream<int32_t> & row_ptr_data_out, hls::stream<int32_t> &

row_ptr_next_data_out, hls::stream<int32_t> & col_ind_data,↪→

51 hls::stream<double> & vec_data, hls::stream<double> & val_data) {

52 int i, j;

53 hls::stream<int> val_address;

54 hls::stream<int> vec_address;

55 for(i = 0; i < N; i++){

56 #pragma HLS DATAFLOW

57 int beg = row_ptr_data.read();

58 int end = row_ptr_next_data.read();

59 row_ptr_data_out << beg;

60 row_ptr_next_data_out << end;

61 for (j = beg; j < end; j++){

62 #pragma HLS PIPELINE

63 val_address << j;

64 vec_address << col_ind_data.read();

65 }

66 for (j = beg; j < end; j++){

67 #pragma HLS PIPELINE

68 val_data << val[val_address.read()];

69 vec_data << vec[vec_address.read()];

70 }

71 }

72 }

73

74 void process(hls::stream<int32_t> & row_ptr_data, hls::stream<int32_t> &

row_ptr_next_data, hls::stream<double> & vec_data, hls::stream<double> &

val_data, hls::stream<double> & out_data) {

↪→

↪→

75 int i, j;

76 TYPE sum;

77 for(i = 0; i < N; i++){

78 #pragma HLS PIPELINE

79 int beg = row_ptr_data.read();

80 int end = row_ptr_next_data.read();

81 sum = 0;

82 for (j = beg; j < end; j++){
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83 #pragma HLS PIPELINE

84 sum += vec_data.read() * val_data.read();

85 }

86 out_data << sum;

87 }

88 }

89

90 void fetch_4(TYPE* out, hls::stream<double> & out_data) {

91 hls::stream<int> out_address;

92 #pragma HLS DATAFLOW

93 for(int i = 0; i < N; i++){

94 #pragma HLS PIPELINE

95 out_address << i;

96 }

97 for(int i = 0; i < N; i++){

98 #pragma HLS PIPELINE

99 out[out_address.read()] = out_data.read();

100 }

101 }

102

103 void spmv(double * val, int32_t *cols, int32_t * rowDelimiters, double * vec,

double * out) {↪→

104 #pragma HLS INTERFACE s_axilite port=val

105 #pragma HLS INTERFACE s_axilite port=cols

106 #pragma HLS INTERFACE s_axilite port=rowDelimiters

107 #pragma HLS INTERFACE s_axilite port=vec

108 #pragma HLS INTERFACE s_axilite port=out

109 #pragma HLS INTERFACE s_axilite port=return

110 #pragma HLS INTERFACE m_axi max_widen_bitwidth=512 depth=100 bundle=gmem0 port=val

111 #pragma HLS INTERFACE m_axi max_widen_bitwidth=512 depth=100 bundle=gmem1 port=cols

112 #pragma HLS INTERFACE m_axi max_widen_bitwidth=512 depth=100 bundle=gmem2

port=rowDelimiters↪→

113 #pragma HLS INTERFACE m_axi max_widen_bitwidth=512 depth=100 bundle=gmem3 port=vec

114 #pragma HLS INTERFACE m_axi max_widen_bitwidth=512 depth=100 bundle=gmem4 port=out

115 hls::stream<int32_t> row_ptr_data;

116 hls::stream<int32_t> row_ptr_next_data;

117 hls::stream<int32_t> row_ptr_data1;

118 hls::stream<int32_t> row_ptr_next_data1;

119 hls::stream<int32_t> row_ptr_data2;

120 hls::stream<int32_t> row_ptr_next_data2;

121 hls::stream<int32_t> col_ind_data;

122 hls::stream<double> val_data;

123 hls::stream<double> vec_data;

124 hls::stream<double> out_data;

125 #pragma HLS DATAFLOW

126 fetch_1(rowDelimiters, row_ptr_data, row_ptr_next_data);
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127 fetch_2(cols, row_ptr_data, row_ptr_next_data, row_ptr_data1,

row_ptr_next_data1, col_ind_data);↪→

128 fetch_3(val, vec, row_ptr_data1, row_ptr_next_data1, row_ptr_data2,

row_ptr_next_data2, col_ind_data, vec_data, val_data);↪→

129 process(row_ptr_data2, row_ptr_next_data2, vec_data, val_data, out_data);

130 fetch_4(out, out_data);

131 }

Listing B.6: spmv: Kernel translated optimized code

1 #include "spmv.h"

2 #include <string.h>

3 #include "xcl2.hpp"

4 #include <vector>

5

6 #include <string.h>

7 #include <unistd.h>

8 #include <fcntl.h>

9 #include <sys/stat.h>

10 #include <assert.h>

11

12 #include <chrono>

13 using namespace std::chrono;

14

15 int INPUT_SIZE = sizeof(struct bench_args_t);

16

17 std::string binaryFile;

18

19 #define EPSILON ((TYPE)1.0e-6)

20

21 void run_benchmark_daer( void *vargs, bool ex );

22

23 void run_benchmark_gen( void *vargs, bool ex) {

24 struct bench_args_t *args = (struct bench_args_t *)vargs;

25

26 printf("Preparing accelerator\r\n");

27

28 cl_int err;

29 cl::Kernel krnl_add;

30 cl::CommandQueue q;

31 cl::Context context;

32

33 std::vector<TYPE, aligned_allocator<TYPE> > source_val(NNZ);

34 std::vector<int32_t, aligned_allocator<int32_t> > source_cols(NNZ);

35 std::vector<int32_t, aligned_allocator<int32_t> > source_rowDelimiters(N+1);

36 //std::vector<int32_t, aligned_allocator<int32_t> > source_rowDelimiters1(N+1);

37 std::vector<TYPE, aligned_allocator<TYPE> > source_vec(N);
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38 std::vector<TYPE, aligned_allocator<TYPE> > target_out(N);

39

40

41 for (int i=0; i < NNZ; i++) {

42 source_val[i] = args->val[i];

43 source_cols[i] = args->cols[i];

44 }

45 for (int i=0; i < N+1; i++) {

46 source_rowDelimiters[i] = args->rowDelimiters[i];

47 //source_rowDelimiters1[i] = args->rowDelimiters[i];

48 }

49 for (int i=0; i < N; i++) {

50 source_vec[i] = args->vec[i];

51 target_out[i] = args->out[i];

52 }

53

54 auto start = high_resolution_clock::now();

55 //gemm( args->m1, args->m2, args->prod );

56 // OPENCL HOST CODE AREA START

57 // get_xil_devices() is a utility API which will find the xilinx

58 // platforms and will return list of devices connected to Xilinx platform

59 auto devices = xcl::get_xil_devices();

60 // read_binary_file() is a utility API which will load the binaryFile

61 // and will return the pointer to file buffer.

62 auto fileBuf = xcl::read_binary_file(binaryFile);

63 cl::Program::Binaries bins{{fileBuf.data(), fileBuf.size()}};

64 bool valid_device = false;

65 for (unsigned int i = 0; i < devices.size(); i++) {

66 auto device = devices[i];

67 // Creating Context and Command Queue for selected Device

68 OCL_CHECK(err, context = cl::Context(device, nullptr, nullptr, nullptr,

&err));↪→

69 OCL_CHECK(err, q = cl::CommandQueue(context, device,

CL_QUEUE_PROFILING_ENABLE, &err));↪→

70 std::cout << "Trying to program device[" << i << "]: " <<

device.getInfo<CL_DEVICE_NAME>() << std::endl;↪→

71 cl::Program program(context, {device}, bins, nullptr, &err);

72 if (err != CL_SUCCESS) {

73 std::cout << "Failed to program device[" << i << "] with xclbin file!\n";

74 } else {

75 std::cout << "Device[" << i << "]: program successful!\n";

76 OCL_CHECK(err, krnl_add = cl::Kernel(program, "spmv1", &err));

77 valid_device = true;

78 break; // we break because we found a valid device

79 }

80 }

81 if (!valid_device) {
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82 std::cout << "Failed to program any device found, exit!\n";

83 exit(EXIT_FAILURE);

84 }

85

86 // Allocate Buffer in Global Memory

87 // Buffers are allocated using CL_MEM_USE_HOST_PTR for efficient memory and

88 // Device-to-host communication

89

90 OCL_CHECK(err, cl::Buffer buffer_v1(context, CL_MEM_USE_HOST_PTR |

CL_MEM_READ_ONLY, sizeof(TYPE) * NNZ,↪→

91 source_val.data(), &err));

92 OCL_CHECK(err, cl::Buffer buffer_v2(context, CL_MEM_USE_HOST_PTR |

CL_MEM_READ_ONLY, sizeof(int32_t) * NNZ,↪→

93 source_cols.data(), &err));

94 OCL_CHECK(err, cl::Buffer buffer_v3(context, CL_MEM_USE_HOST_PTR |

CL_MEM_READ_ONLY, sizeof(int32_t) * (N+1),↪→

95 source_rowDelimiters.data(), &err));

96 /*OCL_CHECK(err, cl::Buffer buffer_v6(context, CL_MEM_USE_HOST_PTR |

CL_MEM_READ_ONLY, sizeof(int32_t) * (N+1),↪→

97 source_rowDelimiters1.data(), &err));*/

98 OCL_CHECK(err, cl::Buffer buffer_v4(context, CL_MEM_USE_HOST_PTR |

CL_MEM_READ_ONLY, sizeof(TYPE) * N,↪→

99 source_vec.data(), &err));

100

101 OCL_CHECK(err, cl::Buffer buffer_v5(context, CL_MEM_USE_HOST_PTR |

CL_MEM_WRITE_ONLY, sizeof(TYPE) * N,↪→

102 target_out.data(), &err));

103 /*OCL_CHECK(err, cl::Buffer buffer_m(context, CL_MEM_USE_HOST_PTR |

CL_MEM_READ_WRITE, sizeof(int) * (ALEN+1)*(BLEN+1),↪→

104 rw_m.data(), &err));

105 OCL_CHECK(err, cl::Buffer buffer_ptr(context, CL_MEM_USE_HOST_PTR |

CL_MEM_READ_WRITE, sizeof(char) * (ALEN+1)*(BLEN+1),↪→

106 rw_ptr.data(), &err));*/

107

108 //int size = DATA_SIZE;

109 //int32_t * rowDelimiters, int32_t * rowDelimiters1, double * val, double * vec,

double * out, cols↪→

110 /* Generated version */

111 OCL_CHECK(err, err = krnl_add.setArg(0, buffer_v3));

112 //OCL_CHECK(err, err = krnl_add.setArg(1, buffer_v6));

113 OCL_CHECK(err, err = krnl_add.setArg(1, buffer_v1));

114 OCL_CHECK(err, err = krnl_add.setArg(2, buffer_v4));

115 OCL_CHECK(err, err = krnl_add.setArg(3, buffer_v5));

116 OCL_CHECK(err, err = krnl_add.setArg(4, buffer_v2));

117 /**/

118

119 /* Default version
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120 OCL_CHECK(err, err = krnl_add.setArg(0, buffer_v1));

121 OCL_CHECK(err, err = krnl_add.setArg(1, buffer_v2));

122 OCL_CHECK(err, err = krnl_add.setArg(2, buffer_v3));

123 OCL_CHECK(err, err = krnl_add.setArg(3, buffer_v4));

124 OCL_CHECK(err, err = krnl_add.setArg(4, buffer_v5));

125 /**/

126

127 //OCL_CHECK(err, err = krnl_add.setArg(1, buffer_seqb));

128 //OCL_CHECK(err, err = krnl_add.setArg(2, buffer_aligna));

129 //OCL_CHECK(err, err = krnl_add.setArg(3, buffer_alignb));

130 /*OCL_CHECK(err, err = krnl_add.setArg(4, buffer_m));

131 OCL_CHECK(err, err = krnl_add.setArg(5, buffer_m));

132 OCL_CHECK(err, err = krnl_add.setArg(6, buffer_m));

133 OCL_CHECK(err, err = krnl_add.setArg(7, buffer_m));

134 OCL_CHECK(err, err = krnl_add.setArg(8, buffer_ptr));*/

135

136 // Copy input data to device global memory

137 OCL_CHECK(err, err = q.enqueueMigrateMemObjects({buffer_v1, buffer_v2, buffer_v3,

buffer_v4/*, buffer_v6*/ }, 0 /* 0 means from host*/ ));↪→

138 OCL_CHECK(err, err = q.finish());

139

140 // Launch the Kernel

141 // For HLS kernels global and local size is always (1,1,1). So, it is

142 // recommended

143 // to always use enqueueTask() for invoking HLS kernel

144 std::cout << "Starting kernel\n";

145 OCL_CHECK(err, err = q.enqueueTask(krnl_add));

146 std::cout << "Waiting for accelerator to finish\n";

147 OCL_CHECK(err, err = q.finish());

148 std::cout << "Waiting for accelerator to finish2\n";

149 // Copy Result from Device Global Memory to Host Local Memory

150 //OCL_CHECK(err, err = q.enqueueMigrateMemObjects({buffer_aligna, buffer_alignb,

buffer_m, buffer_ptr}, CL_MIGRATE_MEM_OBJECT_HOST));↪→

151 OCL_CHECK(err, err = q.enqueueMigrateMemObjects({buffer_v5},

CL_MIGRATE_MEM_OBJECT_HOST));↪→

152 std::cout << "Waiting for accelerator to finish3\n";

153 OCL_CHECK(err, err = q.finish());

154 std::cout << "Waiting for accelerator to finish4\n";

155 // OPENCL HOST CODE AREA END

156

157 auto stop = high_resolution_clock::now();

158 auto duration = duration_cast<microseconds>(stop - start);

159

160 std::cout << "Execution time: " << duration.count() << std::endl;

161

162 printf("Fetching data from accelerator %f\n", target_out[0]);

163
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164

165 //printf("Data fetched01\n");

166

167

168 for (int i=0; i < NNZ; i++) {

169 args->val[i] = source_val[i];

170 args->cols[i] = source_cols[i];

171 }

172 for (int i=0; i < (N+1); i++) {

173 args->rowDelimiters[i] = source_rowDelimiters[i];

174 }

175 for (int i=0; i < N; i++) {

176 args->vec[i] = source_vec[i];

177 args->out[i] = target_out[i];

178 }

179

180 /*for (int i=0; i < ALEN; i++) {

181 args->seqA[i] = source_seqa[i];

182 }

183 printf("Data fetched02\n");

184 for (int i=0; i < BLEN; i++) {

185 args->seqB[i] = source_seqb[i];

186 }

187 printf("Data fetched03\n");

188 for (int i=0; i < (ALEN+BLEN); i++) {

189 args->alignedA[i] = target_aligna[i];

190 args->alignedB[i] = target_alignb[i];

191 }*/

192 /*printf("Data fetched04\n");

193 for (int i=0; i < ((ALEN+1)*(BLEN+1)); i++) {

194 args->M[i] = rw_m[i];

195 args->ptr[i] = rw_ptr[i];

196 }*/

197

198 //printf("%f ?= %f\r\n", args->m1[0], args->prod[0]);

199 printf("Data fetched10\n");

200

201

202

203

204 // Parse command line.

205 const char *check_file = "data/check.data";

206

207 char *data = (char*)vargs;

208

209 // Load check data

210 printf("Checking output\n");
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211 int check_fd;

212 char *ref;

213 ref = (char*) malloc(INPUT_SIZE);

214 assert( ref!=NULL && "Out of memory" );

215 check_fd = open( check_file, O_RDONLY );

216 assert( check_fd>0 && "Couldn't open check data file");

217 output_to_data(check_fd, ref);

218

219 // Validate benchmark results

220 printf("Validating output\n");

221 if( !check_data(data, ref) ) {

222 fprintf(stderr, "Benchmark results are incorrect\n");

223 //return -1;

224 } else {

225 fprintf(stderr, "BENCH SUCCESS!\n");

226 }

227 printf("Free!\n");

228 //free(data);

229 free(ref);

230

231 printf("Success.\n");

232

233 if (ex) {

234 run_benchmark_daer(vargs, false);

235 }

236 exit(0);

237 }

238

239

240

241 void run_benchmark_daer( void *vargs, bool ex ) {

242 struct bench_args_t *args = (struct bench_args_t *)vargs;

243

244 printf("Preparing accelerator\r\n");

245

246 // std::string binaryFile = "gemm.xclbin";

247

248 //int size = row_size*col_size;

249 cl_int err;

250 cl::Kernel krnl_add;

251 cl::CommandQueue q;

252 cl::Context context;

253 // Allocate Memory in Host Memory

254 //size_t vector_size_bytes = sizeof(TYPE) * size;

255 //printf("Buffer sizes: %d\r\n", size);

256

257 /*
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258

259 TYPE val[NNZ];

260 int32_t cols[NNZ];

261 int32_t rowDelimiters[N+1];

262 TYPE vec[N];

263 TYPE out[N];

264 */

265

266

267 std::vector<TYPE, aligned_allocator<TYPE> > source_val(NNZ);

268 std::vector<int32_t, aligned_allocator<int32_t> > source_cols(NNZ);

269 std::vector<int32_t, aligned_allocator<int32_t> > source_rowDelimiters(N+1);

270 std::vector<TYPE, aligned_allocator<TYPE> > source_vec(N);

271 std::vector<TYPE, aligned_allocator<TYPE> > target_out(N);

272

273

274 for (int i=0; i < NNZ; i++) {

275 source_val[i] = args->val[i];

276 source_cols[i] = args->cols[i];

277 }

278 for (int i=0; i < N+1; i++) {

279 source_rowDelimiters[i] = args->rowDelimiters[i];

280 }

281 for (int i=0; i < N; i++) {

282 source_vec[i] = args->vec[i];

283 target_out[i] = args->out[i];

284 }

285

286 auto start = high_resolution_clock::now();

287 //gemm( args->m1, args->m2, args->prod );

288 // OPENCL HOST CODE AREA START

289 // get_xil_devices() is a utility API which will find the xilinx

290 // platforms and will return list of devices connected to Xilinx platform

291 auto devices = xcl::get_xil_devices();

292 // read_binary_file() is a utility API which will load the binaryFile

293 // and will return the pointer to file buffer.

294 auto fileBuf = xcl::read_binary_file(binaryFile);

295 cl::Program::Binaries bins{{fileBuf.data(), fileBuf.size()}};

296 bool valid_device = false;

297 for (unsigned int i = 0; i < devices.size(); i++) {

298 auto device = devices[i];

299 // Creating Context and Command Queue for selected Device

300 OCL_CHECK(err, context = cl::Context(device, nullptr, nullptr, nullptr,

&err));↪→

301 OCL_CHECK(err, q = cl::CommandQueue(context, device,

CL_QUEUE_PROFILING_ENABLE, &err));↪→



98 APPENDIX B. MACHSUITE BENCHMARKS

302 std::cout << "Trying to program device[" << i << "]: " <<

device.getInfo<CL_DEVICE_NAME>() << std::endl;↪→

303 cl::Program program(context, {device}, bins, nullptr, &err);

304 if (err != CL_SUCCESS) {

305 std::cout << "Failed to program device[" << i << "] with xclbin file!\n";

306 } else {

307 std::cout << "Device[" << i << "]: program successful!\n";

308 OCL_CHECK(err, krnl_add = cl::Kernel(program, "spmv", &err));

309 valid_device = true;

310 break; // we break because we found a valid device

311 }

312 }

313 if (!valid_device) {

314 std::cout << "Failed to program any device found, exit!\n";

315 exit(EXIT_FAILURE);

316 }

317

318 // Allocate Buffer in Global Memory

319 // Buffers are allocated using CL_MEM_USE_HOST_PTR for efficient memory and

320 // Device-to-host communication

321

322 OCL_CHECK(err, cl::Buffer buffer_v1(context, CL_MEM_USE_HOST_PTR |

CL_MEM_READ_ONLY, sizeof(TYPE) * NNZ,↪→

323 source_val.data(), &err));

324 OCL_CHECK(err, cl::Buffer buffer_v2(context, CL_MEM_USE_HOST_PTR |

CL_MEM_READ_ONLY, sizeof(int32_t) * NNZ,↪→

325 source_cols.data(), &err));

326 OCL_CHECK(err, cl::Buffer buffer_v3(context, CL_MEM_USE_HOST_PTR |

CL_MEM_READ_ONLY, sizeof(int32_t) * (N+1),↪→

327 source_rowDelimiters.data(), &err));

328 OCL_CHECK(err, cl::Buffer buffer_v4(context, CL_MEM_USE_HOST_PTR |

CL_MEM_READ_ONLY, sizeof(TYPE) * N,↪→

329 source_vec.data(), &err));

330

331 OCL_CHECK(err, cl::Buffer buffer_v5(context, CL_MEM_USE_HOST_PTR |

CL_MEM_WRITE_ONLY, sizeof(TYPE) * N,↪→

332 target_out.data(), &err));

333

334 /* Default version */

335 OCL_CHECK(err, err = krnl_add.setArg(0, buffer_v1));

336 OCL_CHECK(err, err = krnl_add.setArg(1, buffer_v2));

337 OCL_CHECK(err, err = krnl_add.setArg(2, buffer_v3));

338 OCL_CHECK(err, err = krnl_add.setArg(3, buffer_v4));

339 OCL_CHECK(err, err = krnl_add.setArg(4, buffer_v5));

340

341 // Copy input data to device global memory
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342 OCL_CHECK(err, err = q.enqueueMigrateMemObjects({buffer_v1, buffer_v2, buffer_v3,

buffer_v4}, 0 /* 0 means from host*/ ));↪→

343 OCL_CHECK(err, err = q.finish());

344

345 // Launch the Kernel

346 // For HLS kernels global and local size is always (1,1,1). So, it is recommended

347 // to always use enqueueTask() for invoking HLS kernel

348 std::cout << "Starting kernel\n";

349 OCL_CHECK(err, err = q.enqueueTask(krnl_add));

350 std::cout << "Waiting for accelerator to finish\n";

351 OCL_CHECK(err, err = q.finish());

352 std::cout << "Waiting for accelerator to finish2\n";

353 // Copy Result from Device Global Memory to Host Local Memory

354 //OCL_CHECK(err, err = q.enqueueMigrateMemObjects({buffer_aligna, buffer_alignb,

buffer_m, buffer_ptr}, CL_MIGRATE_MEM_OBJECT_HOST));↪→

355 OCL_CHECK(err, err = q.enqueueMigrateMemObjects({buffer_v5},

CL_MIGRATE_MEM_OBJECT_HOST));↪→

356 std::cout << "Waiting for accelerator to finish3\n";

357 OCL_CHECK(err, err = q.finish());

358 std::cout << "Waiting for accelerator to finish4\n";

359 // OPENCL HOST CODE AREA END

360

361 auto stop = high_resolution_clock::now();

362 auto duration = duration_cast<microseconds>(stop - start);

363

364 std::cout << "Execution time: " << duration.count() << std::endl;

365

366 printf("Fetching data from accelerator %f\n", target_out[0]);

367

368

369 for (int i=0; i < NNZ; i++) {

370 args->val[i] = source_val[i];

371 args->cols[i] = source_cols[i];

372 }

373 for (int i=0; i < (N+1); i++) {

374 args->rowDelimiters[i] = source_rowDelimiters[i];

375 }

376 for (int i=0; i < N; i++) {

377 args->vec[i] = source_vec[i];

378 args->out[i] = target_out[i];

379 }

380

381 /*for (int i=0; i < ALEN; i++) {

382 args->seqA[i] = source_seqa[i];

383 }

384 printf("Data fetched02\n");

385 for (int i=0; i < BLEN; i++) {
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386 args->seqB[i] = source_seqb[i];

387 }

388 printf("Data fetched03\n");

389 for (int i=0; i < (ALEN+BLEN); i++) {

390 args->alignedA[i] = target_aligna[i];

391 args->alignedB[i] = target_alignb[i];

392 }*/

393 /*printf("Data fetched04\n");

394 for (int i=0; i < ((ALEN+1)*(BLEN+1)); i++) {

395 args->M[i] = rw_m[i];

396 args->ptr[i] = rw_ptr[i];

397 }*/

398

399 //printf("%f ?= %f\r\n", args->m1[0], args->prod[0]);

400 printf("Data fetched10\n");

401

402

403

404

405 // Parse command line.

406 const char *check_file = "data/check.data";

407

408 char *data = (char*)vargs;

409

410 // Load check data

411 printf("Checking output\n");

412 int check_fd;

413 char *ref;

414 ref = (char*) malloc(INPUT_SIZE);

415 assert( ref!=NULL && "Out of memory" );

416 check_fd = open( check_file, O_RDONLY );

417 assert( check_fd>0 && "Couldn't open check data file");

418 output_to_data(check_fd, ref);

419

420 // Validate benchmark results

421 printf("Validating output\n");

422 if( !check_data(data, ref) ) {

423 fprintf(stderr, "Benchmark results are incorrect\n");

424 //return -1;

425 } else {

426 fprintf(stderr, "BENCH SUCCESS!\n");

427 }

428 printf("Free!\n");

429 //free(data);

430 free(ref);

431

432 printf("Success.\n");
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433 //exit(0);

434 //run_benchmark1(vargs);

435 if (ex) {

436 run_benchmark_gen(vargs, false);

437 }

438 exit(0);

439 }

440

441

442 void run_benchmark( void *vargs ) {

443 //run_benchmark_gen(vargs, false);

444 run_benchmark_daer(vargs, false);

445 }

446

447 /* Input format:

448 %% Section 1

449 TYPE[NNZ]: the nonzeros of the matrix

450 %% Section 2

451 int32_t[NNZ]: the column index of the nonzeros

452 %% Section 3

453 int32_t[N+1]: the start of each row of nonzeros

454 %% Section 4

455 TYPE[N]: the dense vector

456 */

457

458 void input_to_data(int fd, void *vdata) {

459 struct bench_args_t *data = (struct bench_args_t *)vdata;

460 char *p, *s;

461 // Zero-out everything.

462 memset(vdata,0,sizeof(struct bench_args_t));

463 // Load input string

464 p = readfile(fd);

465

466 s = find_section_start(p,1);

467 STAC(parse_,TYPE,_array)(s, data->val, NNZ);

468

469 s = find_section_start(p,2);

470 parse_int32_t_array(s, data->cols, NNZ);

471

472 s = find_section_start(p,3);

473 parse_int32_t_array(s, data->rowDelimiters, N+1);

474

475 s = find_section_start(p,4);

476 STAC(parse_,TYPE,_array)(s, data->vec, N);

477 free(p);

478 }

479
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480 void data_to_input(int fd, void *vdata) {

481 struct bench_args_t *data = (struct bench_args_t *)vdata;

482

483 write_section_header(fd);

484 STAC(write_,TYPE,_array)(fd, data->val, NNZ);

485

486 write_section_header(fd);

487 write_int32_t_array(fd, data->cols, NNZ);

488

489 write_section_header(fd);

490 write_int32_t_array(fd, data->rowDelimiters, N+1);

491

492 write_section_header(fd);

493 STAC(write_,TYPE,_array)(fd, data->vec, N);

494 }

495

496 /* Output format:

497 %% Section 1

498 TYPE[N]: The output vector

499 */

500

501 void output_to_data(int fd, void *vdata) {

502 struct bench_args_t *data = (struct bench_args_t *)vdata;

503 char *p, *s;

504 // Load input string

505 p = readfile(fd);

506

507 s = find_section_start(p,1);

508 STAC(parse_,TYPE,_array)(s, data->out, N);

509 free(p);

510 }

511

512 void data_to_output(int fd, void *vdata) {

513 struct bench_args_t *data = (struct bench_args_t *)vdata;

514

515 write_section_header(fd);

516 STAC(write_,TYPE,_array)(fd, data->out, N);

517 }

518

519 int check_data( void *vdata, void *vref ) {

520 struct bench_args_t *data = (struct bench_args_t *)vdata;

521 struct bench_args_t *ref = (struct bench_args_t *)vref;

522 int has_errors = 0;

523 int i;

524 TYPE diff;

525 //printf("%f ?= %f\n", data->out[0], ref->out[0]);

526
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527 for(i=0; i<N; i++) {

528 diff = data->out[i] - ref->out[i];

529 has_errors |= (diff<-EPSILON) || (EPSILON<diff);

530 //printf("%d, %d %f?=%f\n", i, has_errors, data->out[i], ref->out[i]);

531 }

532

533 // Return true if it's correct.

534 return !has_errors;

535 }

Listing B.7: spmv: Host code

B.3 stencil2d

1 #include "stencil.h"

2

3 void stencil(TYPE *orig, TYPE *sol, TYPE *filter){

4 #pragma HLS INTERFACE s_axilite port=orig

5 #pragma HLS INTERFACE s_axilite port=sol

6 #pragma HLS INTERFACE s_axilite port=filter

7 #pragma HLS INTERFACE s_axilite port=return

8 #pragma HLS INTERFACE m_axi max_widen_bitwidth=512 depth=100 port=orig bundle=gmem0

9 #pragma HLS INTERFACE m_axi max_widen_bitwidth=512 depth=100 port=sol bundle=gmem1

10 #pragma HLS INTERFACE m_axi max_widen_bitwidth=512 depth=100 port=filter

bundle=gmem2↪→

11 int r, c, k1, k2;

12 TYPE temp, mul;

13

14 stencil_label1:for (r=0; r<row_size-2; r++) {

15 //#pragma HLS PIPELINE

16 stencil_label2:for (c=0; c<col_size-2; c++) {

17 #pragma HLS PIPELINE

18 temp = (TYPE)0;

19 stencil_label3:for (k1=0;k1<3;k1++){

20 #pragma HLS PIPELINE

21 stencil_label4:for (k2=0;k2<3;k2++){

22 #pragma HLS PIPELINE

23 mul = filter[k1*3 + k2] * orig[(r+k1)*col_size + c+k2];

24 temp += mul;

25 }

26 }

27 sol[(r*col_size) + c] = temp;

28 }

29 }

30 }
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Listing B.8: stencil2d: Kernel original code

1 #include <stdlib.h>

2 #include <stdio.h>

3 #include <hls_stream.h>

4 #include "./stencil.h"

5 void fetch_unit0(int32_t * filter, hls::stream<int32_t> & filter_rs0) {

6 int r;

7 int c;

8 int k1;

9 int k2;

10 fetch_unit0_stencil_label1: for(r = 0; r<row_size - 2; r ++) {

11 //#pragma HLS PIPELINE

12 fetch_unit0_stencil_label2: for(c = 0; c<col_size - 2; c ++) {

13 #pragma HLS PIPELINE

14 fetch_unit0_stencil_label3: for(k1 = 0; k1<3; k1 ++) {

15 #pragma HLS PIPELINE

16 fetch_unit0_stencil_label4: for(k2 = 0; k2<3; k2 ++) {

17 #pragma HLS PIPELINE

18 filter_rs0.write(filter[k1 * 3 + k2]);

19 }

20 }

21 }

22 }

23 }

24 void fetch_unit1(int32_t * orig, hls::stream<int32_t> & orig_rs1) {

25 int r;

26 int c;

27 int k1;

28 int k2;

29 fetch_unit1_stencil_label1: for(r = 0; r<row_size - 2; r ++) {

30 //#pragma HLS PIPELINE

31 fetch_unit1_stencil_label2: for(c = 0; c<col_size - 2; c ++) {

32 #pragma HLS PIPELINE

33 fetch_unit1_stencil_label3: for(k1 = 0; k1<3; k1 ++) {

34 #pragma HLS PIPELINE

35 fetch_unit1_stencil_label4: for(k2 = 0; k2<3; k2 ++) {

36 #pragma HLS PIPELINE

37 orig_rs1.write(orig[(r + k1) * col_size + c + k2]);

38 }

39 }

40 }

41 }

42 }

43 void write_unit2(int32_t * sol, hls::stream<int32_t> & sol_ws2) {

44 int r;

45 int c;

46 int32_t temp;
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47 int k1;

48 int k2;

49 int32_t mul;

50 write_unit2_stencil_label1: for(r = 0; r<row_size - 2; r ++) {

51 #pragma HLS PIPELINE

52 write_unit2_stencil_label2: for(c = 0; c<col_size - 2; c ++) {

53 #pragma HLS PIPELINE

54 sol[(r * col_size) + c] = sol_ws2.read();

55 }

56 }

57 }

58 void process_unit(hls::stream<int32_t> & filter_rs0, hls::stream<int32_t> &

orig_rs1,↪→

59 hls::stream<int32_t> & sol_ws2) {

60 int r;

61 int c;

62 int32_t temp;

63 int k1;

64 int k2;

65 int32_t mul;

66 stencil_label1: for(r = 0; r<row_size - 2; r ++) {

67 //#pragma HLS PIPELINE

68 stencil_label2: for(c = 0; c<col_size - 2; c ++) {

69 #pragma HLS PIPELINE

70 temp =(TYPE) 0;

71 stencil_label3: for(k1 = 0; k1<3; k1 ++) {

72 #pragma HLS PIPELINE

73 stencil_label4: for(k2 = 0; k2<3; k2 ++) {

74 #pragma HLS PIPELINE

75 mul = filter_rs0.read() * orig_rs1.read();

76 temp += mul;

77 }

78 }

79 sol_ws2.write( temp);

80 }

81 }

82 }

83 void stencil(int32_t * orig, int32_t * sol, int32_t * filter) {

84 #pragma HLS INTERFACE m_axi max_widen_bitwidth=512 depth=100 bundle=gmem0

port=filter↪→

85 #pragma HLS INTERFACE m_axi max_widen_bitwidth=512 depth=100 bundle=gmem1 port=orig

86 #pragma HLS INTERFACE m_axi max_widen_bitwidth=512 depth=100 bundle=gmem2 port=sol

87 hls::stream<int32_t> filter_rs0;

88 #pragma HLS STREAM variable=filter_rs0

89 hls::stream<int32_t> orig_rs1;

90 #pragma HLS STREAM variable=orig_rs1

91 hls::stream<int32_t> sol_ws2;



106 APPENDIX B. MACHSUITE BENCHMARKS

92 #pragma HLS STREAM variable=sol_ws2

93 #pragma HLS DATAFLOW

94 fetch_unit0(filter, filter_rs0);

95 fetch_unit1(orig, orig_rs1);

96 process_unit(filter_rs0, orig_rs1, sol_ws2);

97 write_unit2(sol, sol_ws2);

98 }

Listing B.9: stencil2d: Kernel translated code

1 #include "stencil.h"

2 #include <string.h>

3 #include "xcl2.hpp"

4 #include <vector>

5

6 #include <string.h>

7 #include <unistd.h>

8 #include <fcntl.h>

9 #include <sys/stat.h>

10 #include <assert.h>

11

12 #include <chrono>

13 using namespace std::chrono;

14

15 int INPUT_SIZE = sizeof(struct bench_args_t);

16

17 std::string binaryFile;

18

19 #define EPSILON ((TYPE)1.0e-6)

20

21 void run_benchmark( void *vargs ) {

22 struct bench_args_t *args = (struct bench_args_t *)vargs;

23 //stencil( args->orig, args->sol, args->filter );

24 printf("Preparing accelerator\n");

25 cl_int err;

26 cl::Kernel krnl_add;

27 cl::CommandQueue q;

28 cl::Context context;

29

30 /*

31 TYPE orig[row_size*col_size];

32 TYPE sol[row_size*col_size];

33 TYPE filter[f_size];

34 */

35 std::vector<TYPE, aligned_allocator<TYPE> > orig(row_size*col_size);

36 std::vector<TYPE, aligned_allocator<TYPE> > sol(row_size*col_size);

37 std::vector<TYPE, aligned_allocator<TYPE> > filter(f_size);
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38

39 for (int i=0; i <(row_size*col_size); i++) {

40 orig[i] = args->orig[i];

41 sol[i] = args->sol[i];

42 }

43 for (int i=0; i < f_size; i++) {

44 filter[i] = args->filter[i];

45 }

46

47

48

49 //gemm( args->m1, args->m2, args->prod );

50 // OPENCL HOST CODE AREA START

51 // get_xil_devices() is a utility API which will find the xilinx

52 // platforms and will return list of devices connected to Xilinx platform

53 auto devices = xcl::get_xil_devices();

54 // read_binary_file() is a utility API which will load the binaryFile

55 // and will return the pointer to file buffer.

56 auto fileBuf = xcl::read_binary_file(binaryFile);

57 cl::Program::Binaries bins{{fileBuf.data(), fileBuf.size()}};

58 bool valid_device = false;

59 for (unsigned int i = 0; i < devices.size(); i++) {

60 auto device = devices[i];

61 // Creating Context and Command Queue for selected Device

62 OCL_CHECK(err, context = cl::Context(device, nullptr, nullptr, nullptr,

&err));↪→

63 OCL_CHECK(err, q = cl::CommandQueue(context, device,

CL_QUEUE_PROFILING_ENABLE, &err));↪→

64 std::cout << "Trying to program device[" << i << "]: " <<

device.getInfo<CL_DEVICE_NAME>() << std::endl;↪→

65 cl::Program program(context, {device}, bins, nullptr, &err);

66 if (err != CL_SUCCESS) {

67 std::cout << "Failed to program device[" << i << "] with xclbin file!\n";

68 } else {

69 std::cout << "Device[" << i << "]: program successful!\n";

70 OCL_CHECK(err, krnl_add = cl::Kernel(program, "stencil", &err));

71 valid_device = true;

72 break; // we break because we found a valid device

73 }

74 }

75 if (!valid_device) {

76 std::cout << "Failed to program any device found, exit!\n";

77 exit(EXIT_FAILURE);

78 }

79

80 // Allocate Buffer in Global Memory

81 // Buffers are allocated using CL_MEM_USE_HOST_PTR for efficient memory and
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82 // Device-to-host communication

83

84 OCL_CHECK(err, cl::Buffer buffer_i1(context, CL_MEM_USE_HOST_PTR |

CL_MEM_READ_ONLY, sizeof(TYPE) * (row_size*col_size),↪→

85 orig.data(), &err));

86 OCL_CHECK(err, cl::Buffer buffer_i2(context, CL_MEM_USE_HOST_PTR |

CL_MEM_READ_ONLY, sizeof(TYPE) * f_size,↪→

87 filter.data(), &err));

88

89 OCL_CHECK(err, cl::Buffer buffer_o3(context, CL_MEM_USE_HOST_PTR |

CL_MEM_WRITE_ONLY, sizeof(TYPE) * (row_size*col_size),↪→

90 sol.data(), &err));

91

92 /* Default version */

93 OCL_CHECK(err, err = krnl_add.setArg(0, buffer_i1));

94 OCL_CHECK(err, err = krnl_add.setArg(1, buffer_o3));

95 OCL_CHECK(err, err = krnl_add.setArg(2, buffer_i2));

96

97 // Copy input data to device global memory

98 OCL_CHECK(err, err = q.enqueueMigrateMemObjects({buffer_i1, buffer_i2}, 0 /* 0

means from host*/ ));↪→

99 OCL_CHECK(err, err = q.finish());

100

101 // Launch the Kernel

102 // For HLS kernels global and local size is always (1,1,1). So, it is

103 // recommended

104 // to always use enqueueTask() for invoking HLS kernel

105 std::cout << "Starting kernel\n";

106 auto start = high_resolution_clock::now();

107 OCL_CHECK(err, err = q.enqueueTask(krnl_add));

108 std::cout << "Waiting for accelerator to finish\n";

109 OCL_CHECK(err, err = q.finish());

110 std::cout << "Waiting for accelerator to finish2\n";

111 // Copy Result from Device Global Memory to Host Local Memory

112 //OCL_CHECK(err, err = q.enqueueMigrateMemObjects({buffer_aligna, buffer_alignb,

buffer_m, buffer_ptr}, CL_MIGRATE_MEM_OBJECT_HOST));↪→

113 OCL_CHECK(err, err = q.enqueueMigrateMemObjects({buffer_o3},

CL_MIGRATE_MEM_OBJECT_HOST));↪→

114 std::cout << "Waiting for accelerator to finish3\n";

115 OCL_CHECK(err, err = q.finish());

116 std::cout << "Waiting for accelerator to finish4\n";

117 // OPENCL HOST CODE AREA END

118

119 auto stop = high_resolution_clock::now();

120 auto duration = duration_cast<microseconds>(stop - start);

121

122 std::cout << "Execution time: " << duration.count() << std::endl;
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123

124 printf("Fetching data from accelerator\n");

125

126

127 //printf("Data fetched01\n");

128

129 for (int i=0; i <(row_size*col_size); i++) {

130 args->orig[i] = orig[i];

131 args->sol[i] = sol[i];

132 }

133 for (int i=0; i < f_size; i++) {

134 args->filter[i] = filter[i];

135 }

136

137 //printf("%f ?= %f\r\n", args->m1[0], args->prod[0]);

138 printf("Data fetched10\n");

139

140

141

142

143 // Parse command line.

144 const char *check_file = "data/check.data";

145

146 char *data = (char*)vargs;

147

148 // Load check data

149 printf("Checking output\n");

150 int check_fd;

151 char *ref;

152 ref = (char*) malloc(INPUT_SIZE);

153 assert( ref!=NULL && "Out of memory" );

154 check_fd = open( check_file, O_RDONLY );

155 assert( check_fd>0 && "Couldn't open check data file");

156 output_to_data(check_fd, ref);

157

158 // Validate benchmark results

159 printf("Validating output\n");

160 if( !check_data(data, ref) ) {

161 fprintf(stderr, "Benchmark results are incorrect\n");

162 //return -1;

163 } else {

164 fprintf(stderr, "BENCH SUCCESS!\n");

165 }

166 printf("Free!\n");

167 //free(data);

168 free(ref);

169
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170 printf("Success.\n");

171 exit(0);

172

173 }

174

175 /* Input format:

176 %% Section 1

177 TYPE[row_size*col_size]: input matrix

178 %% Section 2

179 TYPE[f_size]: filter coefficients

180 */

181

182 void input_to_data(int fd, void *vdata) {

183 struct bench_args_t *data = (struct bench_args_t *)vdata;

184 char *p, *s;

185 // Zero-out everything.

186 memset(vdata,0,sizeof(struct bench_args_t));

187 // Load input string

188 p = readfile(fd);

189

190 s = find_section_start(p,1);

191 STAC(parse_,TYPE,_array)(s, data->orig, row_size*col_size);

192

193 s = find_section_start(p,2);

194 STAC(parse_,TYPE,_array)(s, data->filter, f_size);

195 free(p);

196 }

197

198 void data_to_input(int fd, void *vdata) {

199 struct bench_args_t *data = (struct bench_args_t *)vdata;

200

201 write_section_header(fd);

202 STAC(write_,TYPE,_array)(fd, data->orig, row_size*col_size);

203

204 write_section_header(fd);

205 STAC(write_,TYPE,_array)(fd, data->filter, f_size);

206 }

207

208 /* Output format:

209 %% Section 1

210 TYPE[row_size*col_size]: solution matrix

211 */

212

213 void output_to_data(int fd, void *vdata) {

214 struct bench_args_t *data = (struct bench_args_t *)vdata;

215 char *p, *s;

216 // Zero-out everything.
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217 memset(vdata,0,sizeof(struct bench_args_t));

218 // Load input string

219 p = readfile(fd);

220

221 s = find_section_start(p,1);

222 STAC(parse_,TYPE,_array)(s, data->sol, row_size*col_size);

223 free(p);

224 }

225

226 void data_to_output(int fd, void *vdata) {

227 struct bench_args_t *data = (struct bench_args_t *)vdata;

228

229 write_section_header(fd);

230 STAC(write_,TYPE,_array)(fd, data->sol, row_size*col_size);

231 }

232

233 int check_data( void *vdata, void *vref ) {

234 struct bench_args_t *data = (struct bench_args_t *)vdata;

235 struct bench_args_t *ref = (struct bench_args_t *)vref;

236 int has_errors = 0;

237 int row, col;

238 TYPE diff;

239

240 for(row=0; row<row_size; row++) {

241 for(col=0; col<col_size; col++) {

242 diff = data->sol[row*col_size + col] - ref->sol[row*col_size + col];

243 has_errors |= (diff<-EPSILON) || (EPSILON<diff);

244 }

245 }

246

247 // Return true if it's correct.

248 return !has_errors;

249 }

Listing B.10: stencil2d: Host code
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