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Summary

In this study a contribution is made to the research on the use of Electrical Impedance myo-
graphy (EIM) as an alternative to EMG, with potential application in the control of a robotic
prosthetic hand.

Previous studies have found that bio-impedances change as a result of muscle contraction. In-
creasing amounts of delivered force resulted in increasing amounts of change in the measured
bio-impedance. Not only has it been found to be a result of contraction but also a result of
change in arm position. The usage of multi-frequency (mf) EIT and high-frequency (hf) EIT
has been researched in static cases as well, without contraction or movement.

During this study it is attempted to relate the muscle contraction and change in arm position
to the bio-impedance measurements. Multiple movement patterns have been introduced.
These included various contractions and movements to enforce bio-impedance change.

The optimal measurement parameters have been found and the measurements have been
conducted. A Neural Network is introduced to relate the EIM measurements to the contrac-
tions and movements, as well as to the various levels of contraction.

A Neural Network (NN) has been used to predict the muscle contraction and arm position.
Furthermore the different levels of these muscle contractions are predicted. Finally the time
delay of the change in the bio-impedance has been determined.
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1 Introduction

This work describes the research done by Ewout Baars for his final assignment of his mas-
ter. The goal is to examine the suitability of multi-frequency electrical impedance tomography
(mfEIT) and high-frequency electrical impedance tomography (hfEIT) to be used as an alterna-
tive to electromyography (EMG) for the control of a robotic prosthetic hand. This research is a
step towards this goal, where electrical impedance myography (EIM) is used to predict muscle
activation.

1.1 Context

At this moment multiple robotic prosthetic hands are already produced and used. Their prices
range from less then $ 10,000.- up to $ 50,000.- [1]. Most of these prosthetic hands make use of
myoelectric control systems in combination with pre-configured hand positions [1]. The use
of pre-configured hand positions makes it impossible for the prosthetic hand to make every
move a human hand can make. The solution towards a prosthetic hand without pre-configured
hand positions lays in the reconstruction of the real desired movement of the user. This can be
achieved if a relation can be found between muscle force, movement and a measurable signal
such as Electromyography or Electrical Impedance Tomography (EIT).

1.1.1 Electromyography

Relations have been found between EMG and the amount of muscle force exerted [2–4]. This
relation makes it possible to use EMG as an intuitive way of controlling a prosthetic hand. The
user would essentially control the prosthetic hand as if it where a real hand. Besides being intu-
itive EMG is faster than control executed via buttons. The electromechanical delay present in
EMG signals has been found to be around 30 ms to 100 ms with some measurements indicat-
ing even smaller delays around 8.5 ms while other found much larger delays around maximum
312 ms [5,6]. The measured signals lay in the frequency spectrum from 0 Hz up to 500 Hz. Most
of the robotic hands use surface electrodes attached to the skin to measure the EMG signals [1].
Most of the power of a surface EMG (sEMG) signal is present between 50 Hz and 200 Hz [7].
Generally these signals are processed as follows [8]. First a high pass filter with a cut off fre-
quency between 10 Hz and 20 Hz is applied. The goal of this filter is to remove any slow varia-
tions in the signal due to movement artifacts and instability of the electrode-skin interface [8].
The amplitude of the EMG signal is estimated by rectifying the signal after which a low-pass
filter is applied. This results in a moving average of the rectified EMG signal also called the Av-
erage Rectified Value (ARV). The ARV can also be calculated by applying an averaging filter over
a specified window with length N as formulated in Equation 1.1.

ARV = 1

N

N∑
i=1

|xi | (1.1)

The low pass filter or averaging window introduces a delay based on the cut-off frequency and
the type of filter [8]. A lower cut-off frequency corresponds to a bigger averaging window and
an increase in the time delay. An advantage of a low cut off frequency is a bigger reliability
of the estimated amplitude of a static activation [8]. Which cut off frequency is used is case
dependent. Therefore is it up to the researcher to decide what the cut off frequency will be
and why. An example is given in the SENIAM project [8] a motor task with a cyclic character is
performed at 1 Hz the used cut off frequency is 2 Hz.
When EMG is used as control signal the desired movement of the user is based on the pro-
cessed EMG signals. For most currently used robotic prosthetic hands these measurements are
mapped to one of the pre-configured hand movements [1]. If mapped correctly the user sees
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2 Multi-frequency electrical impedance myography as an alternative to electro-myography

the hand make the movement as he/she desires. However when the user tries to make a move-
ment which is not configured, the hand will move to one of the configured movements. Which
hand position it will be depends on the EMG signals and the map of the signals to the hand
positions. To overcome this problem more EMG measurements can be done simultaneously
such that more different hand positions can be distinguished and thus can be configured.
When every pool of motor units can be uniquely distinguished every unique hand position
which a human hand can make can be distinguished as well. Therefore the map between EMG
measurements and hand positions changes from a discrete map to a continuous map. The
cocktail party problem shows [9] that in order to uniquely distinguish a number of “x" sources
at least a number of “x" signal measurements are needed. Therefore to uniquely distinguish
the signals coming from all motor unit pools at least as many EMG measurements have to be
done. Research has been done on the estimation of the number of motor units in different
hand muscles. A research on the amount of motor units in the hypothenar and thenar muscle
is performed by R.E.P. SICA [10]. Two muscle groups at the base of the little finger and thumb
respectively. The research shows a mean of 380 hypothenar motor units and 340 thenar motor
units. Therefore many electrodes are required to identify the activity of all muscles such that
every desired hand movement can be made. This introduces multiple problems. One of the
problems involves the size and/or placement of the electrodes. The amount of measurement
space is limited to the size of the surface of the skin. This leads to the requirement to use
smaller electrodes. Smaller electrodes have a higher contact impedance compared to larger
electrodes. Smaller electrodes also have a lower signal to noise ratio (SNR), which is not bene-
ficial for the signal processing. A second problem is the amount of processing which has to be
done. When more EMG signals are measured simultaneously more signal processing has to be
done. This implies more or bigger processing units have to be used which both take up space
and consume power. The increase in power consumption results in the demand for a bigger
battery. Therefore more EMG processing may result in a bigger and/or heavier prosthetic.

1.1.2 Electrical impedance myography

Electrical impedance myography is a non-invasive measurement method focused on the elec-
trical impedance of a muscle or muscle group. A small alternating current is imposed between
two skin-surface electrodes. By measuring the voltage drop between two electrodes the bio-
impedance can be calculated using Equation 1.2, where Z is the complex impedance, V the
measured complex voltage, I the complex current and the asterisk (∗) denotes complex con-
jugation. The (bio-)impedance is denoted in the form given in Equation 1.3, where X is the
resistance, Y the reactance and i is defined by i 2 =−1.

Z = V

I
= VI∗

II∗
(1.2)

Z = X + i Y (1.3)

The electrodes used for imposing the current and the electrodes used for measuring the volt-
age drop can be the same. This way only two electrodes are needed. However using 2 pair of
electrodes, one pair for the voltage measurement and one pair for imposing the current, ben-
efits the precision of the measurement since this makes the measurement independent of the
electrode impedance [11].
Using multiple EIM measurements around a certain part of the body a cross-sectional image
can be created of the impedance distribution. This technique is called electrical impedance
tomography (EIT) and will be used in the following steps beyond this research. This technique
is further explained in Section 2.2.
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CHAPTER 1. INTRODUCTION 3

The low-pass filter as described in section 1.1.1 is a disadvantage of EMG since it introduces a
time delay. With the use of EIT it might be possible that the used low-pass filter has a much
higher cut off frequency making it more suitable as a control signal. This would be an advan-
tage of using EIT.
Instead of inducing a sinusoidal current at one frequency it is possible to induce a current con-
sisting of multiple frequencies. This way with only one measurement more information can
be deducted from the state of the muscle. This technique is called multi-frequency Electrical
Impedance Tomography (mfEIT). Besides making use of multiple frequencies with the avail-
able equipment it is possible to measure up to 3.125 MHz. Using High-frequency EIT (hfEIT)
the influence of muscle contraction and movement can be determined for a broader frequency
range.

1.2 Research questions

The goal of this project is to study the possibility of detecting muscle activity using mfEIT and
hf-EIT as an alternative to EMG for the control of a prosthetic arm. Four main research ques-
tions arise within this goal;

• To what extend is it possible to predict muscle activation in various arm positions using
mfEIT and/or hfEIT?

• How precise and accurate can different levels of muscle contraction be distinguished?

• What is the time delay between muscle activation and bio-impedance changes?

• To what extend is it possible to distinguish muscle contraction and arm movement?

1.3 Approach

The first challenge is to determine the desired bio-impedance measurement settings, such as
the frequency and amplitude of the induced current. These are found by performing multiple
measurements using different parameters. The measurement settings are optimized to de-
tect muscle activity and arm movement. Next, multiple movement patterns are created. Each
movement pattern is focused on a different aspects, such as time delay and level of contrac-
tion. The movement patterns will be performed and the bio-impedance and EMG signals will
be measured using the determined settings. Each movement pattern is processed in its own
way such that the research question can be answered.

1.4 Report structure

Chapter 2 describes research done on bio-impedance measurements and different applica-
tions of this technique. The used hardware and software are given in Chapter 3, besides are the
movement patterns described in this chapter. Chapter 4 discusses the different data processing
methods used for the measurements. The results of the measurements are given in Chapter 5.
The report is concluded in Chapter 6.
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4 Multi-frequency electrical impedance myography as an alternative to electro-myography

2 Literature review

In 1936 Dubuisson studied the behavior of bio-impedance changes during muscle contrac-
tion [12]. The study was performed on (Hungarian and Belgian) frog legs, that where stimu-
lated by a small stimulation current. The impedance was measured using a sinusoidal signal
with a frequency of 2 kHz and two circular silver chloride electrodes. Dubuisson concluded
that an increase in impedance is measured in a perfect isometric contraction. This impedance
increase suggests a relation between the bio-impedance and the chemical processes which oc-
cur in a muscle [12]. However in an imperfect isometric contraction the fibers shorten and the
impedance decreases [12]. These effects interfere in any muscle contraction. Since then similar
results where found in multiple different settings [13, 14].
The change in impedance is mostly assigned to two phenomena. When a bio-electrical
impedance measurement is done with surface electrodes the electrodes are attached to the
skin when the muscle is in a relaxed state. However when the muscle is contracted the mus-
cle shape differs from the relaxed state. This influences the bio-impedance directly. As stated
before it was found that shortening of the muscle fibers results in a lowering of the impedance
[12]. The change in muscle shape also results in displacement of e.g. fat, skin and veins within
the body, influencing the measured impedance [13]. In this work these influences are regarded
as morphological effects.
The second category which influences the measured bio-impedance consist of the physiolog-
ical changes when a muscle contracts. These include the change of blood flow and the de-
polarisation of axon’s within and around the muscle [15, 16]. How big the influence of both
effects is depends among other things on the type of muscle contraction. In general there are
two types of contractions, isometric and isotonic. Isotonic contraction means the subject is
actually moving and thus, since work is the product of force and displacement, work is done.
Isometric contraction on the other hand is a contraction without movement, such as trying to
push a bar which is fixed in position as is shown in Figure 2.1.

Figure 2.1: The difference between isotonic and isometric contraction. [17]

C.E.Baars University of Twente



CHAPTER 2. LITERATURE REVIEW 5

2.1 Bio-impedance

In 1940 K.S. Cole proposed a model to represent bio-impedances. The model consist of two
electrical resistors and a constant phase element, and is given in Figure 2.2 [18]. The Cole model
is better known as the Cole-Cole model, as it was used again in 1941 by K.S. Cole and R.H.
Cole [19]. The constant phase element (CPE) introduces a phase shift which is constant over
all frequencies. A constant phase element can have any arbitrary phase shift between 0◦ and
90◦ based on the value of n, with 0 ≤ n ≤ 1. The impedance of the CPE is given in Equation 2.1,
the corresponding plot of the impedance at different frequencies is given in Figure 2.3. This
plot shows that, indeed, the phase is constant over all frequencies even tough the impedance
amplitude is not.

ZCPE = 1

Q(iω)n (2.1)

Figure 2.2: The Cole-Cole model represented by electrical components. The electrical resistance at high
frequencies is given by R∞ and the resistance at lower frequencies is given by R∞+R0.

Figure 2.3: The impedance of a constant phase element for different frequencies, Q = 1µF/s(1−n) [20]

The model is widely used to analyze bio-impedance within the body and in many cases the
model fits measured data rather well [15, 21, 22]. The Cole-Cole model is based on the knowl-
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6 Multi-frequency electrical impedance myography as an alternative to electro-myography

edge that the intra- and extracellular space works as a resistor when it comes to electrical cur-
rent. Adjacent cells on the other hand act as a trans-membrane capacitor [23]. The electrical
characteristics of cells is depicted in Figure 2.4. When the circuit of Figure 2.4 is placed in series
and parallel to itself many times, it represents a small segment of the human body. The Cole-
Cole model simplifies this network of circuits into three components. The resistance coming
from the extracellular space, represented by Re in Figure 2.4 is represented in the Cole-Cole
model by the combination of R0 and R∞ as in Figure 2.2. The intracellular resistance and trans-
membrane capacitance represented by Rm, Cm and Ri in Figure 2.4 are represented by R∞ and
the CPE of the Cole-Cole model, Figure 2.2. The Cole-Cole model has four unknown parame-
ters. The values of these parameters, R∞, R0, Q and n, depend on the substance (cell) structure.
The total impedance of this circuit is equal to:

ZCC(ω) = R∞+ R0

1+ ( jω)nQR0
(2.2)

For low frequencies this impedance is equal to:

lim
ω→0

ZCC(ω) = R∞+R0 (2.3)

Since R0 is of great influence at the lower frequencies down to 0 Hz the resistor has the subscript
0. For high frequencies this impedance is equal to:

lim
ω→∞ZCC(ω) = R∞ (2.4)

Since R∞ is of great influence at the higher frequencies, the resistor has the subscript ∞.

Figure 2.4: The electrical behaviour of a single cell v [23].

2.2 Tomography

With a single point measurement using four electrodes an impedance change can be recorded
when the muscle changes from a relaxed to a contracted state or the other way around. How-
ever when more electrodes are used and placed around a cross-section of the body multiple
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measurements can be combined to measure an impedance distribution of the cross section of
the body. An image can be created of this impedance distribution. This way of imaging is called
electrical impedance tomography (EIT). This way insight can be gained in the condition of a
patient, internal hemorrhage can be spotted or it can be used to recognize various positions of
a hand while the measurement is performed on the lower arm. [23–25]

EIT has already been proven useful for different applications. The company Dräger uses
EIT to regionally monitor the ventilation inside the lungs of patients [23]. A band including 16
electrodes is placed around the chest of a patient. Between two adjacent electrodes a current
is imposed. The other 14 electrodes each measure their voltage with respect to their neigh-
bor electrode, resulting in 13 voltage measurements, as is depicted in Figure 2.5. After one
measurement is done the current is imposed on the next two electrodes (2,3) and a new mea-
surement is done. Therefore this method can be used to do 16 measurements each consisting
of 13 voltage measurements. The image is created based on all measurements of a full circle.

Figure 2.5: The electrodes used to impose a current (1,16) and used to measure the resulting voltage
(2-15) for a lung EIT measurement [23].

Besides patient monitoring, is it possible to use EIT images to train a neural network to distin-
guish different hand positions. Both at the Carnegie Mellon University and University College
London a wearable EIT system was build. Their goals, almost identical, were to recognize
different hand positions based on the measurements from the wearable EIT system placed on
the lower arm, see Figure 2.6. Finally the systems were able to distinguish 11 to 15 different
hand signs with accuracies varying from 60 % to 98 %.

2.3 Single bio-impedance measurements

Where EIT always uses multiple measurements, in order to create the image, much knowledge
can be gained from a single or just a few measurements as well. Even with one or a few mea-
surement points the muscle activation can be detected [26, 27]. Liao reported the impedance
change of skeletal muscle during contraction as well as the latency of the impedance change
with respect to the time of contraction [27]. A high correlation was found between these
impedance changes and simultaneously recorded EMG signals by L.T.L. Fiuza [15]. This corre-
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8 Multi-frequency electrical impedance myography as an alternative to electro-myography

Figure 2.6: The wearable lower arm EIT system (Tomo), designed by Yang Zhang, Carnegie Mellon Uni-
versity, Human-Computer Interaction Institute. [25]

lation implies that bio-impedance measurements could be used for comparable applications
as EMG is used for nowadays, e.g. the control of a robotic arm. This suggests EIT as an alterna-
tive to EMG, although the two techniques could also complement each other, as is suggested
by R. Kusche and M. Ryschk [28]. Kusche and Ryschk performed a comparable research as
presented earlier in Section 2.2, where hand positions where recognized based on EIT images
of the lower arm. Now four bio-impedance measurements were combined with 4 EMG mea-
surements and again used to distinguish different hand positions.

The relation between levels of muscle contraction and bio-impedance changes is researched
in various ways. A comparison between the bio-impedance changes when a subject relaxes
its bicep, contracts it for 25 %, 50 % and 100 % is made by T.D. Orth [14]. By holding different
weights during the measurements the different levels of contraction are created. The highest
impedance measured corresponded to the relaxed state. A decrease in impedance is measured
for each next step in level of contraction (25 %, 50 % and 100 %) [14]. Comparable results were
found by Shiffman et al, where subjects pushed onto a dynamometer [13]. Each subject created
multiple ramp functions by slowly increasing the exerted muscle force and multiple pulses by
quickly increasing the exerted force to a certain level. Both studies discussed the influence
of morphological and physiological changes during contraction. However since both studies
used isometric contractions the comparison with an isotonic contraction is lacking. Besides
the change in bio-impedance as result of change in exerted force both study the influence of
fatigue as well [13, 14]. Both concluded a significant change in bio-impedance due to fatigue.
T. Orth reported an increase in the resistance and a decrease in the reactance during muscle
fatigue. However when the amount of delivered force increased an decrease in both the resis-
tance and reactance was found [14].

A.B.B. Coutinho measured the bicep bio-impedance while contracting under different elbow
angles [29]. It was found that under the different angles the bio-impedance differed. This was
assigned to not only physiological but also morphological changes which arose due to the
change in elbow angle. T. Zagar did a comparable study, where they contracted and relaxed the
muscle in many different positions [30]. The measured impedance’s where fed to a Prinicipal
Component Analysis (PCA) algorithm. Based on the first and second component a soft inde-
pendent modeling of class analogy (SIMCA) classifier could classify 80 % of the time correctly
if the muscle was relaxed or contracted. This means that even tough there are morphological
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CHAPTER 2. LITERATURE REVIEW 9

changes it is still possible to distinguish a contracted muscle from a relaxed muscle.

2.4 EMG and force

EMG has been studied broadly and as a result of this different researchers have found a relation
between EMG or surface EMG (sEMG) measurements and the force exerted by the muscles. In
1997 A.L. Hof published his work on the relation between EMG and produced muscle force [31].
A linear relation between the smoothed rectified EMG (SRE) signal and the extruded force by
the muscle was shown. Not only A.L. Hof came to this conclusion, G.C. Ray and S.K. Guha
strengthened it with a broader theoretical approach [32]. G.C. Ray and S.K. Guha stated that
most of the theoretical studies suggest an increase in the EMG amplitude which relates to the
square root of the muscle tension. Experiments show however a linear relationship [32]. G.C.
Ray and S.K. Guha show that the reason for the difference between the theoretical studies and
the experiments are a set of oversimplified assumptions. These assumptions include; the as-
sumption that all motor units are of the same size and the assumption that all action potentials
have the same magnitude and fire with the same frequency [32].
The linear relation is however influenced by the placement of the electrodes as is shown by N.U.
Ahamed [2]. When placed incorrectly the goodness of the linear fit on the relation between
EMG and extruded muscle force decreases [2]. Nevertheless in 2 of the 3 electrode placements
in this study [2] a linear relation is visible.

2.5 High and multi frequency

Typical EIT systems insert current at one frequency around 50 kHz [33]. Shiffman did research
on the effect of using higher frequencies, up to 2 MHz [34]. In this research a major rise in the
reactance was found for frequencies above 500 kHz as well as a gradual decrease in the resis-
tance [34]. This was reported for muscles in a relaxed state. The effect of movement and/or con-
traction might influence the impedance at higher frequencies differently compared to lower
frequencies.
Multi-frequency EIT has already been used in stroke patients to differentiate between an is-
chaemic and haemorrhagic stroke [35, 36]. The use of multiple frequencies opens up the pos-
sibility to distinguish different muscle states based on more data, which could make it more
reliable. Research showed that the difference in reactance between a contracted and relaxed
muscle differs at varying measurement frequencies [14].

2.6 Aplications

Currently EIT is already used in various applications. As mentioned in Section 2.5 mfEIT has
been used for patients with acute stroke. Using mfEIT it is possible to image changes in the
brain due to acute stroke. Using these images it can potentially distinguish between haemor-
rhagic and ischemic brain stroke. Something that was not possible using conventional tech-
niques such as CT and MRI. It permits the use of thrombolytic drugs more rapidly benefiting
the patient [35, 36].
For lung ventilation monitoring Dräger makes use of an EIT band around the chest [23]. Sec-
tion 2.2 showed their image, Figure 2.5, used to explain how the creation of such an EIT image
works. The advantage of using EIT in this case is that it can be performed while the patient lays
in its own bed. There is no need to move the patient to a different room, which is the case with
the usually used CT scan. An other advantage of EIT over CT in this case is that EIT can be used
for continuous monitoring without harming the patient. Something which is not the case with
CT.
Research has been done on the monitoring of slow internal hemorrhaging [24]. Patients with
delayed traumatic intracranial hemorrhage often get a negative result from a CT brain scan
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which is done shortly after a trauma. Often the condition of these patients falls back in the
time laps of 24 to 72 hours after the traumatic event [24]. Continuous monitoring could be key
for these patients. Software is developed which can detect internal hemorrhage by using EIT
measurements. Again,continuously monitoring is possible with EIT while it is not with CT, fit-
ting the requirements for the treatment of these patients.
The detection of various obesity and heart diseases using EIT is also researched [37]. Cardio-
vascular atherosclerosis is the buildup of fats, cholesterol and other substances in and on artery
walls [38] and is still the leading cause of mortality [37]. Using EIT a fatty liver can be detected
in an early stage.
Some research has been done on the detection of breast cancer using Electrical Impedance
Spectroscopy (EIS). The electrical properties of cancerous tissue differ from healthy tissue. This
difference is utilized to detect cancerous tissue. The same advantages as for the other applica-
tions apply. EIS is noninvasive and comfortable for the patient. Other advantages are that a
scan can be made in about 15 minutes and the equipment is cheaper than the equipment cur-
rently in use, such as ultrasound machines [39]. Therefore, EIS would be a promising candidate
for the future to detect breast cancer.

2.7 Conclusion

It can be concluded that the measured bio-impedance does change when a muscle contracts
both in an isometric as and isotonic situation. The measured reactance difference between
contracted and relaxed state differs per frequency. The measured reactance above 2 MHz
showed a major rise compared to the lower frequencies for a relaxed muscle state. The re-
sistance and reactance can be and are used to detect and/or distinguish different body tissues.
EIT has already several applications and it is expected more will come.
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3 Measurement method

3.1 Introduction

This chapter consist of three parts, each with a different aspect related to the performed mea-
surements. First the technical setup, used to measure the bio-impedance, is described in Sec-
tion 3.2. This includes the different parts of the hardware and software. Secondly two exper-
iments are discussed in Section 3.3. Both give insight in the optimal choice for the settings
of the induced alternating current. When the desired measurement parameters are found the
focus shifts towards the characteristics of the bio-impedance signals. Three different measure-
ments are done, each focused on a different aspect of the bio-impedance, such as time delay,
contraction level and distinguishing contraction from movement.

3.2 Measurement system

The used measurement system consist of a hardware and a software part. The hardware is
used to induce the current, measure the voltages and measure the current. The purpose of the
software is to control the different hardware settings, collect the measurement data through
the hardware and subsequently perform the processing of the data.

3.2.1 Hardware

The used measurement hardware consist of three pieces, a TiePie Handyscope HS5 USB oscil-
loscope (TiePie), a custom PCB [40] and a computer. The TiePie, the custom PCB, the connec-
tion wires and the electrodes are shown in Figure 3.1. The computer is connected to the TiePie
via a USB connection. A powerful GPU is required since the FFT calculations employed in the
algorithm are handled by the GPU. The software makes use of NVIDIA CUDA [41] which means
the GPU is required to be an NVIDIA GPU. The TiePie can be powered over the USB as well as
by using a separate power adapter. Most computer USB ports have a maximum current supply
of 0.5 A for USB 2.0 or up to 0.9 A for USB 3.0 [42]. The TiePie current demand can go up to 2 A.
Therefore the external power supply might be needed.

TiePie oscilloscope

The TiePie Handyscope HS5 is an oscilloscope including two measurement channels and an
arbitrary waveform generator. The TiePie has an input impedance of 1 MΩ, an input capci-
tance of 25 pF, a programmable resolution of 8, 12, 14 or 16 bits and at 16 bits it still has a
streaming speed of 6.25 MSas−1 [43]. The integrated waveform generator will be used in com-
bination with a guarded and improved Howland current source to create the injected current.
The waveform generator has a frequency reach from 1µHz up to 40 MHz [43] for sinusoidal sig-
nals. The integrated sample memory of 64 MSa makes it possible to create a multi-sine signal
with a broad band of different frequencies.

Electrodes

Electrodes are used to connect the skin with the custom PCB. Two types of electrodes have been
used.
The first used electrode consist of conductive and adhesive hydro-gel such that it sticks to the
skin well and let current pass through it [44]. The used electrode is a silver/silver chloride elec-
trode (AgAgCl). It is commonly used because it is easy to manufacture and provides a low skin-
electrode impedance [45]. It has a round shape with a diameter of 24 mm, the conductive inner
part has a diameter of 16 mm [44].
The second electrode type is a Unipolar Micro electrode (microcoax) made by TMSI [46]. These
are applied together with double sided adhesives and Electrode gel [47]. The electrodes are a

Robotics and Mechatronics C.E.Baars
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Figure 3.1: The TiePie oscilloscope, top black box, connected with three coax connections to the custom
PCB (bottom black box). Two measurement connections and one connects to the waveform generator.
The used coax cables connect the electrodes with the four PCB outputs, Hcur,I, Hpot, Lpot and Lcur.

lot smaller with a diameter of 1.5 mm. The contact resistance increases as the electrode size de-
creases [48]. The bio-impedance measurement will not be influenced by the increase in contact
resistance because a four point measurement is performed. The EMG signal is amplified by a
differential amplifier, this means the impedance of the skin electrode interface is not of great
importance as long as the different electrodes have similar impedance and the impedance of
the electrodes is small compared to the input impedance of the amplifier [49]. The smaller
electrodes make it possible to measure with a higher spatial resolution [46]. The electrodes are
placed as indicated in Figure 3.2. From top to bottom are the electrodes connected to; Hcur,I,
Hpot, Lpot and Lcur as given in Figure 3.3.

Custom PCB

The custom PCB (TiePieLCR) makes an LCR measurement system from the oscilloscope and
makes it possible to simultaneously measure the bio-impedance and the EMG signals [40]. In
Figure 3.3 an overview of the schematic of the TiePieLCR is given. The TiePieLCR is powered by
batteries in order to prevent introduction of 50 Hz noise coming from the power grid. Besides it
is safer for the subject since the battery can only drain that much power in a specified amount
of time.

The TiePieLCR is directly connected to the TiePie at three points, all given in Figure 3.3. The
first input, Vin, is used as input for all sources. The TiePieLCR offers 4 different sources; 2 volt-
age controlled current sources and 2 voltage sources. One of the voltage sources equals Vin

while the other has as output −Vin. The current sources have a comparable relation. As can
be deduced from Figure 3.3 the lower current source (Hcur,I) generates the reverse current of
the top one. Only the first current source is used in these measurements, indicated by Hcur,I

in Figure 3.3. The current sources are based on a improved Howland current pump [50]. An
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Figure 3.2: The electrodes as they are placed on the arm. The smaller electrodes are used in this picture
The electrodes are connected to the PCB as follows, from high to low: Hcur,I, Hpot, Lpot and Lcur.

Howland current pump is a voltage controlled current source. It is especially use full in the
bio-impedance measurement since it can have a high output impedance as well as an high fre-
quency bandwidth [51]. The gain of the current source is set to 370µAV−1. In order to protect
the circuitry from electrostatic discharge TVS diode’s are placed between the guards and the
ground and between the guards and the signal input. Between both the shield and the output
a 2.7 kΩ resistor is placed to prevent high currents flowing through the user.
The voltage measurement is performed using an instrumentation amplifier. This makes it pos-
sible to measure the voltage differential. It is created using LTC6268 opamps which have an
input impedance higher than 1 TΩ with a bias current of 3 fA. This input impedance will in
practice be lower because of the current leakage of the PCB. The cables between the skin con-
tact and the TiePieLCR are 1.5 m long. The capacitance of these cables is typically about 100 pF
which is a lot higher than the PCB capacitance (1 pF up to 20 pF) and the input capacitance
of the opamps of 450 fF. The cable capacitance is decreased by applying the buffered input to
the shield of the cables. The voltage difference between the shield and the core of the cable
decreases and thus the current in the cable decrease as well. The instrumentation amplifier
can be used with two different gains, 1x and 50x. A relay is used to connect and disconnect a
resistor to make the gain switch happen. Between the output of the instrumentation amplifier
and the input of the TiePie a first order anti-aliasing filter is placed with a cut-off at 9.6 MHz.
The output of this filter is fed to the TiePie and is indicated by Vout in Figure 3.3. The input
capacitance of the TiePie is parallel to the capacitor of this low-pass filter. Therefore will the
real cut-off frequency be around 9 MHz instead of 9.6 MHz.
The current measurement is required because of the undesired current flow from the core of
the electrode wires into the shielding of the wires. However the TiePie is only able to mea-
sure voltages. To measure the current a trans-impedance amplifier (TIA) is used to convert the
current to a voltage. Multiple trans impedance amplifiers are used each with their own gain
and thus operating range. The inputs and outputs of all TIA’s can be connected and discon-
nected using relays. Between the output of every TIA and the input of the TiePie a 50Ω resistor
is placed to prevent the opamps from overheating in the case multiple relays are accidentally
enabled. Capacitors are placed in parallel to all resistors from Rsens,1 to Rsens,2 in Figure 3.3 in
order to keep the circuit stable. Again a 2.7 kΩ resistor is placed in series to limit the currents
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going into the trans-impedance amplifier to 1 mA when the load is below 2.7 kΩ. The output
indicated by Iout Figure 3.3 is thus a voltage representing the current.

−

+
1x/50x

Hpot

Lpot

Vout

1x

1x

1xHcur,V

-1xHcur,V

Vin

Lcur −

+

Rsens,1

−

+

Rsens,4

Iout

...

Hcur,I

1x

Hcur,I

1x

Figure 3.3: Simplified circuit of the TiePieLCR. [40]. The TiePie is connected on the right side of this
circuit, the subject on the left. Only the first current source is used indicated by Hcur,I.

3.2.2 Software

The software is a custom python program created by M.Schouten [40]. The TiePie driver as
well as the NVIDIA CUDA driver are required to be installed on the used computer [41, 52].
A GUI is created to let the user change various measurement parameters and to display the
real time measurement results. In Figure 3.4 a picture of the GUI is given, different pieces are
indicated with colored boxes. In the orange box on the top left all parameters with respect to
the current and voltage measurements are given. All input frequencies and the amplitude of
the induced current can be set in the red box. Notice that each frequency gets a weight factor
which should all add up to one. This weight factor is a percentage of the maximum current
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to be used at this frequency. The blue box on the top right includes some parameters used
for the generated plots. The green box includes all demodulation and measurement settings.
The measurement settings apply to the TiePie settings while the demodulation applies to the
filtering. The purple box shows two plots including the measured current and voltage against
the time and frequency. The two plots below show the output in a desired format which will in
this research be the resistance and reactance.

Figure 3.4: The software GUI including different hardware and software settings. Top two graphs show
the measured current and voltage versus the time and frequency respectively. The bottom two graphs
show the resistance and reactance versus time. [40]

Filtering

The measurements of the TiePie are digitally filtered before the data is saved, all filtering steps
described in the following section are shown in Figure 3.5 [40]. The filtering is done in the fre-
quency domain, since it is computational faster than filtering in the time domain. The inverse
FFT (iFFT) will be performed as one of the final steps. The envelope returned by the iFFT has a
sample frequency which is way higher than the update frequency of the computer. The update
frequency of the computer is in the range of 1 Hz to 20 Hz while the sample frequency of the
envelope is about 7 to 140 times higher depending on the settings of the amount of sub-blocks.
Therefore even though the iFFT takes up more computational power it’s usage is justified by
the fact it does increase the sample frequency of the bio-impedance.
The bin size in the frequency domain ∆ f depends on the length of the signal in the time do-
main. Since the processing is done real time it depends on the update frequency fu of the
TiePie data and the number of sub-blocks nb per TiePie update. Every FFT is calculated using
two data packages, this halves the bin size of the FFT as given in Equation 3.1.

∆ f = funb

2
(3.1)
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The current and previous data package are used to calculate the real sided Fast Fourier Trans-
form (rFFT). An rFFT only computes the positive frequencies. For a real signal, such as the
voltage and the current in this case, the FFT of the positive frequencies equals the complex
conjugate of the negative frequencies. The Blackman-Harris window is applied before the rFFT.
The Blackman-Harris window has more than 120 dB rejection for frequencies that are more
than 20 bins away from the center frequency. [40]. When an NVIDIA GPU including cupy [41]
is available the rFFTs are calculated on the GPU. By doing so the rFFTs are calculated faster and
the CPU has time for other tasks increasing the overall speed even further.

Figure 3.5: Data flow of the digital filtering used for the bio-impedance calculations. [40]

The desired bandwidth Bw used to calculate the impedance is determined by the user. The
number of bins L which represent this bandwidth is calculated using Equation 3.2. If this cal-
culation is lower than 7 it is discarded and L = 7 will be used. The used window spreads out the
power of the desired harmonic, which will be lost if the used bandwidth is too small.

L = int

(
2

Bw

∆ f

)
(3.2)

The numbers of the bins used for the impedance calculation nuse depends on the desired
impedance measurement frequency f the number of bins representing the bandwidth L and
the frequency resolution∆ f . The range of numbers of used bins nuse is determined using Equa-
tion 3.3.

nuse = floor

(
f

∆ f

)
−L . . .ceil

(
f

∆ f

)
+L (3.3)

In the impedance calculation as given in Equation 1.2 both the voltage and the current are
multiplied by the complex conjugate of the current. A multiplication in the time domain equals
a convolution in the frequency domain [53]. This relation is described as:

F {g ·h} =F {g }∗F {h} (3.4)

where F {x} indicates the Fourier transform of x. The discrete time domain convolution is
calculated by:

F{g ·h}[n] =
M∑

m=−M
F{g [n −m]h[m]} (3.5)
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where F indicates the discrete time Fourier transform.
In the previous step the bins corresponding to the frequencies of interest and the surrounding
bandwidths were found. These bins are the only ones used for the impedance calculations,
leaving the FFTs zero for all bins which are not indicated by nuse. The interval of −M ≤ m ≤ M
reduces effectively to m = ±nuse. The resulting convolution is performed over the real fre-
quency bins of g and h indicated by G and H in equation Equation 3.6.

F{g ·h}[n] = ∑
m=nuse

G[n −m]H [m]

+ ∑
m=nuse

G[n −m]H∗[−m]

+ ∑
m=nuse

G∗[n +m]H [m]

+ ∑
m=nuse

G∗[n +m]H∗[−m]

(3.6)

The first and fourth term have a non-zero result for frequencies around n = 0. The second and
third therm are non-zero when n is around two times the frequency of interest n = 2 f

∆ f . The
impedance is calculated using the envelope of the current and voltage signals convoluted with
the complex conjugate of the current. The envelope can be obtained by removing the high
frequency signals, which is accomplished by removing the second and third therm of Equa-
tion 3.6. An inverse FFT (iFFT) is applied which results in the envelope of the current and
voltage signals both multiplied with the complex conjugate of the current. As described ear-
lier (Equation 1.2) the impedance can be calculated by a division of these signals. Since both
represent the envelope of respectively the voltage multiplied by the complex current and the
current multiplied by he complex current the result is not the instantaneous impedance but an
averaged impedance.

3.2.3 System validation

The measurement system will be validated on three main points, the precision and accuracy,
the drift and the time delay. The precision and accuracy can be determined by measuring resis-
tors and capacitors with known values. Therefore the measurement circuit consist of a resistor
placed in parallel with a capacitor, Figure 3.6.

Figure 3.6: The circuit used for system validation of the precision, accuracy and drift.

This choice was made because the software is able to directly calculate the resistance and ca-
pacitance of this circuit and it matches the cole-cole model at a specific frequency, Section 2.1.
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For both the resistor and the capacitor multiple measurements shall be done, each time using
different resistance and capacitance values. All of these shall be in the range of the expected
impedance of the human arm. T.J. Freeborn and S. Critcher reported a range of values for all
three Cole-circuit elements for the right arm [54]. The first resistor, R∞ in Figure 2.4, can be
expected to have a value of 100Ω up to 300Ω. The second resistor, R0, lays between 60Ω and
125Ω. The capacitance is between 1µF and 6µF. Since the used circuit matches the Cole-Cole
model at a specific frequency it gives confidence that these ranges are applicable. The mea-
surement will be done using multiple frequencies simultaneously, spread over the spectrum
from 0 Hz to 3 MHz. Each measurement will take 60 s, the mean and standard deviation over
these 60 s are calculated.
In order to measure the drift of the system one measurement per combination of capacitance
and resistance value will be done for a longer period of time, 10 min. The resistance and capac-
itance as measured by the system are plotted against the time. Any drift should show up as a
slow but consistent increase or decrease in the impedance. The drift is determined for only ten
minutes since no measurement is expected to be longer.
The last validation measurement is done to gain insight in the time delay between the mea-
sured EMG and bio-impedance signals. The circuit is given in Figure 3.7 and consists of one
resistor more than the previously described validation circuit given in Figure 3.6. The connec-
tion to this extra resistor will be disconnected and reconnected from time to time at the point
indicated with the letter “A” in Figure 3.7. This way the EMG and bio-impedance values will
likely almost instantly change their values. These rapid changes can be used to correlate the
two signals such that the time delay between them can be determined.

Figure 3.7: The circuit used for system validation of the time delay. The connection is disconnected and
reconnected from time to time at point “A”.

3.3 Parameter analysis

As described in section 3.2.1 multiple frequencies can be used simultaneously to measure the
bio-impedance. Besides it is possible to vary the amplitude of the induced current. All mea-
surements will be done on the biceps brachii, however no research was found on the bio-
impedance of the biceps brachii under different circumstances (e.g. contracting and relaxing)
at various frequencies or current amplitudes. Therefore two movement patterns are described
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in Section 3.3.1. These patterns will be used in the amplitude analysis, Section 3.3.2, and the
frequency analyis, Section 3.3.3.

3.3.1 Isotonic and isometric patterns

The two movement patterns have one important difference. The isotonic movement is a move-
ment with minimum effort, while the isometric movement is maximum effort with minimum
movement. The importance of this is that in the end it should be possible to distinguish arm
movement from arm contraction as stated in the last research question in Section 1.2.
The first pattern is performed to examine the impedance difference between a muscle con-
traction and relaxation. It starts with a subject sitting in a chair with the lower arm, from elbow
to wrist, on an arm rest. The chair is placed such that the hand is beneath a table top, see
Figure 3.8. The biceps brachii is in a relaxed state. The subject switches between relaxing its
bicep and contracting it and the other way around, situation A and B of Figure 3.8. When
contracted the hand pushes against the table top, creating an isometric contraction.

Figure 3.8: The two different arm positions of movement pattern 1. A: arm resting on armrest, bicep is
relaxed. B: Arm still on armrest, bicep is contracted such that hand pushes against downside of table
top.

The second movement pattern is performed to examine the impedance difference between
two different arm positions. For this movement pattern the user is standing. This time the sub-
ject starts with a horizontally stretched arm (elbow 180°), with the hand palm facing upwards.
When contracting the subject changes the angle of the elbow from about 180° to 90°, position
A and B of Figure 3.9. When relaxing the elbow angle changes back from 90° to 180°. The bi-
cep contracts when the switch from state “A” to “B” is made. However once in state “B” the
bicep is almost fully relaxed. It is expected that most of the measured bio-impedance change
is therefore due to the change in arm position instead of muscle contraction.

3.3.2 Amplitude analysis

Multiple measurements at frequencies spread over the frequency band from 125 Hz to 3 MHz
are done. Since it is a broad bandwidth it is split into two. The lower part of the bandwidth
reaches from 125 Hz up to and including 100 kHz, the higher part of the bandwidth includes
frequencies from 100 kHz to 3 MHz. The used frequencies are given in Table 3.1.

The voltage output of the TiePie is set at 0.1 V and is increased with 0.1 V with every new mea-
surement up to 0.8 V. As described in Section 3.2.1 the gain of the current pump is equal to
370µAV−1. This means that the alternating current amplitude is set to 37µA and each step it
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Figure 3.9: The two different arm positions of movement pattern 2. A: arm stretched, elbow about 180°.
B: hand upwards, elbow about 90°.

Low frequencies High frequencies
125 Hz 100 kHz
250 Hz 250 kHz
500 Hz 500 kHz
1 kHz 1 MHz

2.5 kHz 1.25 MHz
5 kHz 1.5 MHz

10 kHz 2 MHz
25 kHz 2.25 MHz
50 kHz 2.5 MHz

100 kHz 3 MHz

Table 3.1: The measurement frequencies are divided into two groups, the low frequencies group and the
high frequencies group.

is increased by 37µA up to 296µA, which is still way below the maximum allowed current of
500µA. The measurements are done using the isometric movement pattern. Each measure-
ments starts in the relaxed state. Each 5 seconds the user switches between the relaxed and
contracted state. From state A to B or from state B to A as depicted in Figure 3.8. This is done
for 60 seconds. The amplitude selection is based on the difference between the contracted and
relaxed state for the resistance and for the reactance. The resistance and reactance difference
can both be calculated for each frequency by subtracting the mean of the contracted state from
the mean of the relaxed state and taking the absolute value of it, |R̄relax( f )− R̄contract( f )|. Sum-
ming all these differences gives the total resistance/reactance difference over all frequencies
for a certain current amplitude. This idea is described in Equation 3.7. This difference should
be as high as possible for both the resistance and the reactance in order to make the distinction
between these states as clear as possible.

∆R =
3 MHz∑

f = 125 Hz
|R̄relax( f )− R̄contract( f )| (3.7)
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3.3.3 Frequency analysis

For the frequency analysis the same frequencies are used as for the amplitude analysis (Sec-
tion 3.3.2) given in Table 3.1. Two movement patterns are used, one with an isometric and one
with an isotonic contraction, both described in Section 3.3.1 given in Figure 3.8 and Figure 3.9.
Again each measurements starts in the relaxed state. Each 5 seconds the user switches between
the relaxed and contracted state, from state A to B or from state B to A as depicted in Figure 3.8
for the isometric and in Figure 3.9 for the isotonic movement pattern. Each measurement takes
in total 60 seconds.
The impedance’s for both contracted and relaxed states will be plotted against the frequency.
From these data the frequencies which will be used later on will be deducted, based on the
criteria below. There is no specific order in these criteria, each one is equally important. This
means it is most likely that a compromise shall be necessary between the criteria.

• The standard deviation over multiple measurements is low.

• The difference in impedance between the two states of Figure 3.8, contracted and relaxed
muscle, is high.

• The difference in impedance between the two states of Figure 3.9, elbow 90° and 180°, is
high.

• A distinction can be made between the (difference in impedance) of the isometric and
the isotonic movement pattern.

3.4 Measurements

Three measurements are discussed each focuses on a different aspect, these are movement/
contraction, time delay and contraction level. The first section, Section 3.4.1, is focused on
bio-impedance changes between different arm positions and impedance changes due to con-
traction in different situations. Section 3.4.2 focuses on bio-impedance during various levels of
contraction. The last measurement is dedicated to the time delay of the bio-impedance mea-
surement, Section 3.4.3.

3.4.1 Movement measurements

In order to get insight in contraction in different situations and the influence of movement on
the measurements two different movement patterns are introduced. These movement patterns
include both isotonic and isometric contractions. Both movement patterns are performed
while sitting in a chair, such that other movements of the body can be limited as much as pos-
sible. The numbering of the movement patterns is consecutive to prevent confusion.
The first new movement pattern includes three different arm configurations. During each con-
figuration the muscle is kept in both a relaxed and a contracted state. All states are given in
Figure 3.10, where the white arrows indicate the direction of delivered force. This means for
state “A” the arm is relaxing on the arm rest while state “B” indicates that the hand is pushing
upwards against the table top. In situation “C” the hand is resting on the table top while hold-
ing a bottle and in “D” the hand is squeezing the bottle. Finally situation “E” and “F” represent
resting against the shoulder using a bottle and pushing the bottle towards the shoulder respec-
tively. One measurement starts at “A” and ends at “F”, the movements are not repeated within
one measurement.

The fourth movement pattern is similar to the third one, however state “C” and “D” of the third
movement pattern are left out. This is done since the least amount of bicep contraction is
expected in state “D” and thus adding the least new information to the measurement. This way
four states remain starting again with state “A” where the arm is resting on the arm rest, as given
in Figure 3.11. Next in state “B” the hand is pushed upwards against the downside of the table
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Figure 3.10: The six different arm positions for the third movement pattern, including three different
arm configurations. The white arrows indicate the direction of the force of the hand. A: Arm resting on
armrest. B: Arm on armrest, contracting the bicep by pushing upwards against downside of table top. C:
Hand resting on table holding a bottle. D: squeezing the bottle E: Hand upwards. F: pushing bottle onto
shoulder.

top, creating an isometric contraction. Then the hand is brought towards the shoulder holding
a bottle. This creates an isotonic contraction from state “B” to state “C” in Figure 3.11. Finally
the bottle is strongly pressed against the shoulder again creating an isometric contraction. One
measurement starts at “A” and ends at “D”, again there is no repetition of the movement.

3.4.2 Force measurement

The relation between chang in bio-impedance and the amount of delivered force can be anal-
ysed if the delivered muscle force is simultaneously measured with the bio-impedance signals.
This is done using a weighting scale. The Subject sits in a chair with the upper arm resting on
the arm rest. A scale is placed between the hand of the subject and the bottom of the table top,
as shown in Figure 3.13. By contracting the biceps the hand is pushed upwards such that the
scale is pressed. The amount of delivered force can be varied which will result in the weighting
scale indicating different weights.

Weighting scale

The weighting scale used is an OHAUS Scout Pro 6001 (SP6001). It can measure up to a maxi-
mum of 6 kg with a resolution of 0.1 g [55]. The whole scale is 19.2 cm x 5.4 cm x 21.0 cm while
the surface of the weighting platform is 16.5 cm x 14.2 cm. This means the scale is compact
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Figure 3.11: The four different arm positions of the fourth movement pattern. The white arrows indi-
cate the direction of the force of the hand, delivered by the biceps brachii. A: Arm resting on armrest.
B: Arm on armrest, contracting the bicep by pushing upwards against downside of the table top. C:
Hand upwards holding a bottle, relaxing as much as possible. D: Hand upwards, pushing bottle onto the
shoulder.

enough to place it between the hand and the table while the contact surface of the scale is still
larger than the hand. Which makes it easier to press on it. The scale weighs about 1.8 kg and is
therefore not to heavy to lift. A screen shows the current weight which will be used as feedback
to the subject. The scale has an optional USB connection which makes it possible to transfer
the weight information to the computer. A python program timestamps and logs the data from
the scale. The timestamps can be used to relate the weighting data to the bio-impedance data.

Force movement

The subject starts in a relaxed state such that the scale is at about 0 kg. In each next state the
subject is asked to push harder at the weighting scale such that the indicated weight is in-
creased by 1 kg. The maximum desired weight is 5 kg. The weighting scale can go higher, with
a maximum of 6 kg, however the subject will never reach the desired value perfectly. If the de-
sired value is 6 kg and the subject pushes a little too hard an error is returned by the weighting
scale, deeming the measurement useless. The subject is asked to try to maintain the delivered
force for a period of time such that the weighting scale indicates the same weight for a short
period of time. It is expected that the subject will never perfectly reach and maintain the steps
of 1 kg. The current value as measured by the weighting scale is directly shown to the subject.
This visual feedback should help the subject to maintain the desired weight value as good as
possible. Since the bio-impedance should fluctuate in the same manner as the weight fluctu-
ates around the desired value they can still be correlated to each other as long as there is no
time delay introduced between these signals.

Robotics and Mechatronics C.E.Baars



24 Multi-frequency electrical impedance myography as an alternative to electro-myography

Figure 3.12: The used weighting scale, Ohaus Scout Pro 6001. The maximum weight is 6 kg with a reso-
lution of 0.1 g.

Figure 3.13: Movement pattern 5. The weighting scale is placed on top of the hand beneath a table top.

3.4.3 Time delay measurement

The time delay of the bio-impedance will be based on the EMG signal. The real time delay
of the bio-impedance compared to delivered muscle force remains unknown. The measure-
ments done regarding the time delay of the bio-impedance include many switching moments
from muscle contraction to relaxation and the other way around. This is done since the time
delay is based on a cross correlation between the bio-impedance signal and the EMG signal.
Multiple switching moments in one measurement will average out any fluctuating time delay.
Measurement pattern 1 of Section 3.3.1, as depicted in Figure 3.8, is used. The user is sitting in
a chair with a hand under a table relaxing and switches to contraction by trying to push the ta-
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ble top upwards. To further increase the reliability of the measurement the contraction should
be a maximum contraction. This might result in fatigue of the muscle. Therefore short mea-
surements should be done. Each measurement should thus be short but also include many
transitions. This automatically means the switching should be done rather fast, e.g. switching
every second. The switching moments will be indicated using a metronome set at 60 beats per
minute. [56].

3.5 Conclusion

By using a combination of a current source, instrumentation amplifier and transimpedance
amplifier it is expected that it will be possible to do an accurate 4 points measurement of the
bio-impedance. Besides is it expected that the FFT filtering and impedance calculation can be
done real time using the GPU. The first and second movement pattern are used to determine
the desired combination of settings. These are optimized to distinguish muscle contraction
and arm movement. The other movement patterns are created to support the various research
questions. Pattern 3 and 4 both include a contraction in different arm positions. It should
be possible to answer research question 1, about predicting the contraction, and question 4,
about distinguishing movement from contraction. When performing movement pattern 1 with
many switching moments it is possible to determine the time delay corresponding to research
question 2. Using movement pattern 5 it is possible to relate the bio-impedance measurement
to the amount of delivered force. This can aid in distinguishing contraction levels based on the
bio-impedance measurements. Therefore it is expected that this set of movements is sufficient
to answer all research questions.
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4 Data processing

4.1 Introduction

Various data processing methods are required and introduced. In order to compare different
states of one movement pattern with each other the data of a measurement has to be cut into
pieces. This is especially needed for the data of movement pattern 1 and 2 which will be used for
the frequency and amplitude selection. These are the isometric movement pattern, Figure 3.8
and the isotonic movement pattern Figure 3.9. The data is grouped per state as is described
in Section 4.2. The grouped data is not only useful for the selection of the parameters but can
also be used to extract the Cole parameters of different states. Section 4.3 describes how the
bio-impedance of Cole’s model is plotted and a fit is made to extract the Cole parameters.
The measurements regarding the separation of movement and contraction as well as for dif-
ferent levels of delivered force of Section 3.4.1 and Section 3.4.2 are processed using a Neural
network. By using a neural network it might be possible to find relate the contraction and the
bio-impedance measurements as described in Section 4.5.

All signal processing is done in Mathworks MATLAB R2020a [57].

4.2 Data Grouping

Movement pattern 1 and 2 are performed and measured multiple times. The data of all mea-
surement is grouped based on the state. Such that each group includes all data belonging to
one state. This is needed to compare the bio-impedance of different states with each other.
The separation of the data within these states has to be done for both the resistance and the
reactance. The first and last 0.29 s of data of each measurement are thrown away. The subject
had some undesired movements at the beginning and at the end of each measurement since
the start and stop button had to be pressed.
The switching moments between two states of each movement pattern are found by the MAT-
LAB function findchangepts [58]. The index of the sample in the middle of the switching
moment is returned. Since every switch is not instantaneously a short period of time (0.14 s) be-
fore and after the switching moment is added which indicate the cut points. The data between
these cut points is thrown away, since it only includes data of a switching moment between two
states. In Figure 4.1 and Figure 4.2 one of the low frequency and one of the high frequency mea-
surements are given, both having movement pattern 2 of Section 3.3.1. The red shaded area is
data which is thrown away since it is either the start or end of the measurement or around a
switching point. The switching points are clearly visible in the red areas, the bio-impedance
values increase or decrease rapidly in those segments compared to the blue and yellow area’s.
The yellow area indicates the time when the bicep was in state A of the movement pattern.
In the blue area the user was performing state B of the movement pattern. The data in these
segments is grouped. One group includes all data of state A and the other all data of state B.
Within those groups are the resistance and reactance kept separated such that four different
data groups can be assigned, resistance of A, reactance of A, resistance of B and reactance of
B. The mean and standard deviation per data group are calculated. These can be plotted per
frequency to give insight in the frequency response of the bio-impedance.
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Figure 4.1: The resistance and reactance measured at low frequencies during an isotonic movement ,
the second pattern as described in section 3.3.3. Red shaded area: this part of the signal is thrown away
since it is either start/stop of the signal or around a switching point. Yellow shaded area: the bicep was
in a relaxed state. Blue shaded area: the bicep was in a contracted state.

Figure 4.2: The resistance and reactance measured at high frequencies during an isotonic movement,
the second pattern as described in section 3.3.3. Red shaded area: this part of the signal is thrown away
since it is either start/stop of the signal or around a switching point. Yellow shaded area: the biceps was
in a relaxed state. Blue shaded area: the biceps was in a contracted state.
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4.3 Cole’s model

In Section 2.1 Cole’s model is introduced to represent bio-impedance. The model consists of
two resistors and a constant phase element and has four parameters, R0, R∞, n and Q as is
given in Figure 4.3. By varying the parameters it is possible to represent the bio-impedance
of different materials. Therefore it could be possible to distinguish contracted muscle from
relaxed muscle based on these parameters.

Figure 4.3: The Cole model represented by electrical components. The electrical resistance at high fre-
quencies is given by R∞ and the resistance at lower frequencies is given by R∞+R0.

4.3.1 Cole’s impedance representation

When the Cole-Cole model is mentioned its typical way of plotting should be mentioned as
well. The impedance of the Cole-Cole model is commonly plotted on an adapted version of a
nyquist diagram. It has the resistance on the x-axis and the negative reactance on the y-axis.
When the impedance of the Cole model at all real positive frequencies is plotted on these axis
it looks like a semicircle.
The typical nyquist plot can be insight full since it shows both the resistance and reactance in
one plot. On the other hand is it difficult to see which impedance to expect at which frequency.
The frequency information is important when the measurement frequencies shall be chosen. A
method which does include the frequency aspect is introduced in Figure 4.4. The x-axis shows
the frequency on a logarithmic scale while the y-axis of the first plot shows the resistance and
of the second plot shows the reactance. This representation will be used when the frequencies
are selected as well as to represent the fitting of the Cole-Cole model to the measured data.

4.3.2 Fitting Cole’s model

Fitting the Cole-Cole model to the measured data includes multiple steps. First the data is sep-
arated such as is described in Section 4.2. This way a resistance and reactance graph such as
Figure 4.4 can be created for all states, e.g. contracted and relaxed. A digital matlab model is
made of the Cole model including the estimate, upper bound and lower bound of the parame-
ters. This way it is known “n” is always between 0 and 1 and the resistors and capacitance do not
result in a negative value. The impedance and the error of the estimated model is calculated
for all measurement frequencies. The parameters are altered based on the fitting algorithm and
afterwards the impedance and the error of the model using the new parameters are calculated
again. Three different fitting algorithms will be used and compared. These are described in
Matlab as, lsqnonlin, fmincon and patternsearch.

• The lsqnonlin fitting algorithm solves a nonlinear least squares function by finding
the minimum of the sum of squares of a user defined function as is given in Equa-

C.E.Baars University of Twente



CHAPTER 4. DATA PROCESSING 29

Figure 4.4: The impedance of the Cole model between 0 Hz and 1 GHz for different values of n. R∞ =
10Ω, R0 = 10Ω and Q = 1µF.

tion 4.1 [59]. The fitting algorithm is a gradient-based solver which directly means the
function to be minimized should be continuous [60]. This function should return the er-
ror between the model and the measurement for both the resistance and the reactance
for all measurement frequencies. The function f (Zmodel(ω), Zmeas(ω)) in Equation 4.1
takes the impedance of the model Zmodel(ω) and the impedance of the measurement
Zmeas(ω) at all measurement frequencies ω1 . . .ωp and returns a vector including all val-
ues of f (Zmodel(ω1), Zmeas(ω1)) up to f (Zmodel(ωp ), Zmeas(ωp )) where ωa indicates mea-
surement frequency a and p is the index of the last measurement frequency.

min
Zmodel(ω)

|| f (Zmodel(ω), Zmeas(ω))||22 =

min
Zmodel(ω)

( f (Zmodel(ω1), Zmeas(ω1))2 +·· ·+ f (Zmodel(ωp ), Zmeas(ωp ))2)
(4.1)

• The fmincon fitting algorithm has some similarity with the nonlinear least-squares al-
gorithm. The fitting algorithm is again gradient-based [61]. However the error function
should in this case return one value instead of a vector. The error is directly used instead
of squaring and summing the error of all frequencies. This makes it possible to use a cus-
tom error function. The used error function is the sum over all frequencies of the sum of
the absolute error of the resistance and the absolute value of the reactance, as denoted by
Equation 4.2. Here Xmeas(ωa) and Xmodel(ωa) denote the resistance of the measurement
and the model at measurement frequency ωa . The reactances are denoted by Ymeas(ωa)
and Ymodel(ωa) and the index of the last measurement frequency is again given by p.

Efmincon =
p∑

a = 1
|Xmeas(ωa)−Xmodel(ωa)|+ |Ymeas(ωa)−Ymodel(ωa)| (4.2)

• The patternsearch algorithm finds a local minimum of the user defined function
using pattern search [62, 63]. The algorithm is not gradient-based like the first two men-
tioned algorithms. A mesh is made with in the center the estimated parameters. The
mesh size is set to 1 for all values. The error of the current and all surrounding mesh
parameters is calculated. If a parameter combination is found with a lower error these
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parameters are used for the next iteration and the mesh size is doubled. If no parameter
combination is found with a lower error than the current one, the same combination is
used and the mesh size is halved [63]. This is repeated until one of the end criteria is
reached such as, the addition/subtraction value is lower than a given value, the previous
error and new error difference becomes lower than a specified value or the maximum
number of iterations is reached [62].

All parameters have a completely different order of magnitude. As described in Section 3.2.3
lays R∞ probably between 100Ω and 300Ω while Q is expected to be somewhere between
1µF and 6µF. To make sure the difference in order of magnitude does not influence the fitting
algorithms all estimates are set to one and the upper and lower bound are divided by the esti-
mated parameter value. This ensures all parameters are weighted equally in the error function.
Otherwise the parameter with the lowest order of magnitude will add little to the error function
simple because its magnitude is the lowest. After the fit is performed the result is multiplied by
the estimated value again to come to the real fitted parameters.
All fitting algorithms shall be evaluated based on the mean squared error between the mea-
sured data and the fitted model on all frequencies. Using the fitting algorithm the Cole
parameters for both different states can be compared. It should become clear if and based on
which parameters it is possible to distinguish different states from each other.

4.4 Filtering

General muscle movements are expected to be slower than 10 Hz [64]. The measurements are
done even slower, the maximum movement state switching frequency used in the measure-
ments is 1 Hz. Therefore is it possible to filter every signal directly at 10 Hz or for these mea-
surements even at 1 Hz. On the other hand there is no need to introduce filters if they are not
required. Less filtering would be beneficial for the implementation of EIT, since fewer compo-
nents, computations and phase shifts are introduced. A filter will only be implemented for the
measurements which require it, based on the power of the signal in the frequency range out-
side the expected movement frequencies. The cut-off frequency will also be determined per
case and the reason for a specific cut off frequency will be elaborated on. None of the signal
processing is done in real time. This means the processing time is not a problem and the filters
can be used such that no extra time delay is introduced.

4.5 Neural network

The used measurement frequencies are chosen such that different states should be distinguish-
able based on the measured impedance’s. If it is indeed possible to distinguish different states
based on the measured impedance there should be a function which uses all data of one mo-
ment and is able to output the amount of muscle contraction at this moment. Finding a func-
tion like this can be cumbersome and time consuming. A neural network should be able to do
the job as well.
A neural network (NN) is in general represented as is given in Figure 4.5. Each colored circle
in this figure represents a node. A neural network has one or multiple input nodes. These x
input nodes represent data points which are used to calculate an output. All nodes of the input
layer are connected to all nodes of the first hidden layer. These nodes multiply each input with
a specific weight and add the results, a bias is added as well. This calculation is described by:

Oi , j =
m∑

j=1
(Ni−1, j Wi−1, j )+bi−1 (4.3)

where Oi , j represents the sum of node j in layer i , Ni−1, j the result of node j of the previous
layer and Wi−1, j its corresponding weight. Lastly the bias is represented by bi−1. An activation
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Figure 4.5: A general representation of a neural network. This network has x inputs, m hidden neurons,
s hidden layers and y outputs.

function f scales this sum to a certain range, mostly between 0 and 1 or between -1 and 1. In
this case Maltab’s tansig function is used which has a minimum of -1 and a maximum of
1 [65]. It is preferred since in most cases it converges faster than the sigmoid function which
scales between 0 and 1 [66].

Ni , j ,out = f (Oi , j ) (4.4)

This calculation is graphically represented for one of the nodes in Figure 4.6, where the high-
lighted nodes and weights are used to calculate the output of the first node j = 1 of the second
hidden layer i = 2. The output of any node of any layer is the input of any node of the next layer.
Again these nodes weight and sum the input of all nodes and apply the activation function on
the result. The output layer consist of y different outputs. These work the same as all hidden
layer nodes, however this time the activation function scales not between 0 and 1 or -1 and 1
but to the “correct” output of the neural network.

The neural network has to adapt all weights and biases in every node in order to come (as close
as possible) to the desired output every time. The adaption of these weights and biases is called
training. A neural network adapts its weights by calculating the difference between the current
output and the desired output of a certain input. This difference is back propagated to every
weight of every node such that next time it hopefully functions better. In order to do this the
desired output of the training data should be known. This is called labeled data, the desired
output is called the target [67].
All labeled data which is present is split in three groups [68], one training data, one validation
data and one testing data group. The training data group is used to adapt the weights to come
to the best neural network possible for this situation. The validation data is used to test if the
network performs well on this data too. If the error of the validation data is higher than last
training iteration a counter is increased. If this counter reaches a specified value the training is
stopped. The reason for this is that the NN for each new iteration keeps performing worse on
the validation data which is data outside of the training data. This indicates that the NN will
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Figure 4.6: A graphical representation of the calculation done for one node. All inputs to the first node
of the second layer N2,1 are weighted and summed. The activation function is applied to the sum which
scales the output to 0 and 1 or -1 and 1.

probably also perform worse in the future if it keeps on training. In order to give an indication of
how well the network performs in the future the test data is used. With the test data no training
is performed only the error is calculated. The error shows how well the network performs on
new data and thus indicates how well the network will perform in the future.

4.5.1 Time delay neural network

A neural network is able to match one input sample to one output sample. In the case of bio-
impedance signals there is no certainty that muscle contraction and bio-impedance changes
happen at the exact same time. This means it could be the case that the desired output of
one sample is muscle contraction while the input sample still matches to muscle relaxation or
the other way around. In order to make the neural network resistant against these cases a small
range of input data is used. Instead of using only the current data sample to calculate the output
the current and the previous z −1 data samples are used. The input which can be represented
by a vector with size x becomes a matrix of x rows by z columns. Each row representing either
the resistance or reactance on a certain measurement frequency and each column represents
one data sample back in time.
The z − 1 number of data samples are always data points from the past relative to the time
instance of the target. There is only one input sample taken at the same time instance as the
target. If the muscle contraction in the target happens before the bio-impedance changes there
is no way to predict the muscle is contracted using the previous samples. A work around is to
make sure the input of the NN is not only from the past and present but also from the future
time instances compared to the target time instance. This is achieved by shifting the target in
time. This is made clear using Figure 4.7. The red signal of the top figure shows the target state
while the green one shows the input state. At t1 the target is switched to the contracted state
while the input is not. All z samples between t0 and t1 are in the relaxed state. Intuitively it
seems there is no way the neural network could get to the correct output based on the current
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and previous z −1 samples of the input. In the bottom graph of Figure 4.7 a (blue) time shifted
target signal is shown. At t1 shifted the target is again in a contracted state, now some of the data
points of the previous z samples between t0 shifted and t1 shifted of the input are in the contracted
state as well. It is up to the NN to find out which samples to be used and to what extend.
Shifting the target is possible since the training of the NN is done offline. Whenever the bio-
impedance is processed real time this shift is not possible. This will result in a delay between
the moment of contraction and the moment the NN indicates the muscle is contracted. This
delay can not be altered since it’s origin is from within the body.

Figure 4.7: If the target switches before the input switches the neural network has not the correct input
to match the target. A shifted version of the target should be used.

4.5.2 Implementation

The neural network is implemented using Matlab’s Deep Learning Toolbox. Four steps can be
distinguished when using a NN in Matlab. The first step is sorting the data, the second is build-
ing the network, the third step is training the network and finally testing it and showing the
results.
All data should be labeled and each target should match the right input. In which manner
the data is presented to the network depends on three parameters these are, the amount of
performed measurements l , the amount of samples per measurement k and the amount of
measured values per sample x. Two things must be noted, first the amount of measured val-
ues per sample equals the amount of inputs to the NN, therefore both indicated by x. In fact
the amount of NN inputs is determined by the amount of measured values per sample. If this
where not the case there exist a measured value which is not presented to the NN input and
is thus not used. In this case if four measurement frequencies are used to measure a resis-
tance an reactance this means that the amount of measured values per sample and thus the
amount of inputs for the NN is x = 4 ·2 = 8. Secondly the amount of samples per measurement
k should be equal for all measurements. The amount of samples per measurement depends
on the length of the measurement in seconds Tmeas and the sampling frequency fs,meas and is
given by k = Tmeas · fs,meas . Since the sampling frequency will be constant some measurements
have to be cropped such that they take the same amount of time as others.
Matlab requires a specific structure for data which will be used in the NN. A set of input data is
build up as in Figure 4.8. The orange box indicates one data set. The data set consist of k = 20
samples, each sample is taken at a certain time instance indicated by t1 for the first and in this
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example up to t20 for the 20th time instance.
Each of the samples, indicated in blue in Figure 4.8, consist of an l by x 2D array. Here l rep-
resents the amount of performed measurements for this data set. Each new measurement is
indicated with a different shade of green in Figure 4.8. As explained is x the amount of NN in-
puts. In Figure 4.8 the inputs are four resistance values indicated by X1 . . . X4 and four reactance
values indicated by Y1 . . .Y4, measured at four frequencies.

Figure 4.8: The data structure required by Matlab for a NN. The orange box represents one data set. The
blue box represents a time instance. All input data belonging to one time instance of one measurement
is indicated by X1 . . . X4 and Y1 . . .Y4. Each measurement is a different shade of green. This data set
consist of l = 5 separate measurements consisting of k = 20 data samples where x = 8 data points are
collected.

Since a time delay net is used, the first z out of k samples of each measurement are used to
come to target number z. The first z-1 targets are thus thrown away. The first z samples sepa-
rated from the other samples. Every measurement has its own unique z first samples, therefore
every time the NN is used these need to be pre-loaded into the NN and thus need to be handled
separately. After the first z samples are loaded and used to generate an output an new sample
is shifted in and the last one is shifted out to generate a new output. This shifting in and out
continuous until the last sample is reached..
Finally the training, validation and test ratio is set. This ratio indicates which percentage of
all measurements should be used to train the NN, to validate and to test it. Which measure-
ments are used for training, which are used for validation and which for testing is determined
randomly. This to prevent any influence of factors outside of the measurements to influence
the training, such as muscle fatigue or sweat. Creating the network can be done with one com-
mand, the functiontimedelaynet returns a network type variable. The function needs three
inputs which are the number of input delays, z, the number of neurons per layer as array, [m1,
m2,..., mn], and the trainings function. Many different trainings functions exist and each
has its advantages and disadvantages. The most important thing to keep in mind is that train
scaled conjugate gradient (trainscg) uses less memory. This is an important advantage since
during training the computer can run out of free memory making it impossible to train further.
Besides that, when less memory is used, less read and write actions are performed which ben-
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efits the training speed. By default every network is created with one input and one output. In
order to set the number of inputs and outputs the function configure can be used. The net-
work, the input data and targets are given and the network is returned where the number of in
and outputs matches the data. This is the reason why the first step is to store the data correctly.
A visual representation of the network created by Matlab is given in Figure 4.9

Figure 4.9: A visual representation of a NN created in matlab. This network has x = 8 inputs, y = 1
output, z = 100 time delays, n = 1 hidden layer and m = 40 neurons in this hidden layer.

Training the network can be done by asserting the train function and providing the network,
input data and the targets. However before training many parameters can and should be ad-
justed. The training goal, performance function, minimum gradient and maximum number of
epochs are four important settings.

• The training goal specifies at which point the error is low enough and the training can
stop. This is just one of the many stopping conditions.

• The performance function is the function used to calculate the performance and thus
the error. Most of the cases a mean squared error function is used.

• The minimum gradient again specifies a stop condition. If the learning gradient is lower
than the specified value the training stops.

• The maximum number of epochs is also a stop condition. This stop condition differs
from the others since the others are based on the performance of the NN whereas this one
only specifies how many times it has to be trained. If the maximum number of epochs
is reached it is likely that the NN is not yet properly trained. However it can function as
a hard stop when training takes up to long or might even go on forever without this stop
condition.

After the network has been trained it can be tested. By supplying all data and the targets to
the net all NN outputs can be calculated. Using the masks made to distinguish the training,
validation and test data the data groups can be tested separately. Using the function perform
the performance of the network on the data group is calculated. The performance can also be
studied visually by plotting the target and NN output in one graph.

4.6 Down sampling

To train a neural network every input needs a target, as mentioned in Section 4.5. However
the sampling frequency of the EMG signal is 3 kHz while the sampling frequency of the bio-
impedance measurements is 350 Hz. To get one target for every bio-impedance measurement
the EMG signal is down sampled. When down sampling an anti-alliasing filter is required. Since
the down sampled signal should have a sample frequency of 350 Hz the Nyquist frequency is
175 Hz which is thus the maximum cutoff frequency of the low pass filter. Since the processing
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of the EMG ends with a low pass filter which is much lower, around 4 Hz, the anti aliasing filter
becomes obsolete.
The down-sampling factor is not a round integer, N = 8.57. Therefore it is not possible to take
all bio-impedance time instances and only use the EMG samples at these time instances. A
neat method is to take the weighted average of the EMG samples just before and after the bio-
impedance time instance. The weights should depend on how close the EMG sample is to the
bio-impedance time instance. However this takes up a lot of computational time. Therefore
instead of using the weighted average the EMG time instances which are closest to the bio-
impedance time instances are used for the down sampled signal. This does introduce a small
error. However when a maximum EMG frequency of 4 Hz is assumed, the error is less than
0.21 %. Since every periodic movement or contraction will be much slower than 4 Hz it is ex-
pected that this error will be even much lower.

4.7 Conclusion

It is expected that using these data processing methods the research questions can be an-
swered. The data grouping will be used for the frequency and amplitude selection. The other
movement patterns will all be used in combination with a Neural network. It is expected that
the contraction and movement information is present in the bio-impedance signal. Therefore
should the Neural Network be able to distill this information from the bio-impedance signals.
This expectation is based on the fact that the bio-impedance does change when the muscle
contracts or moves.
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5 Results

5.1 Introduction

All movement patterns given in Chapter 3 are performed and the bio-impedance is measured.
The data processing methods as described in Chapter 4 are used on these measurements. The
results and the settings of the data processing are given in this section. Section 5.2 shows the
results for the amplitude selection. In Section 5.3 the measurements for the frequency selection
are given. The Cole-Cole model is fitted onto the measurements, Section 5.4.2 shows the fitted
Cole parameters. Section 5.5 describes the performance of a NN with the EMG and movement
as targets. Various levels of force are used as target in Section 5.6. The time delay between a
EMG measurement and a bio-impedance measurement is discussed in Section 5.7.

5.2 Amplitude selection

The measurements as described in Section 3.3.2 are conducted. Each measurement is done
three times. This means for every amplitude 6 measurements are done, 3 using the low fre-
quencies and 3 using the high frequencies as given in Table 3.1. For the lowest amplitude
first the three low frequency measurements are conducted, the second amplitude starts with
the three high frequency measurements, the third again with low frequencies etcetera. The
contracted and relaxed data is separated using the algorithm of Section 4.2. The data of all 3
measurements is used to generate the mean and standard deviation per frequency. A typical
graph of the mean and standard deviation of the contracted and relaxed bio-impedance data
is given in Figure 5.1. Measurements with different amplitudes have comparable figures, those
are given in Appendix A. There is a clear difference between the resistance of the contracted
and relaxed state. This is less the case for the reactance. For the low frequencies the values of
the reactance in the contracted and relaxed state are almost equal. On the other hand at the
higher frequencies, above 100 kHz, the difference is larger however for those frequencies the
standard deviation is much larger as well. Therefore only the resistance is used in the following
calculations and the reactance is excluded.
The criterion for the amplitude selection is the total amount of difference in the resistance
between the contracted and relaxed state as described in Section 3.3.2, calculated using Equa-
tion 3.7. The resistance sum is calculated over all frequencies as well of all low and all high
frequencies separately. The results of these calculations are given in Figure 5.2.
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Figure 5.1: The mean and standard deviation of the bio-impedance of the relaxed and contracted state
per frequency. The top figure shows the resistance and the bottom the reactance. Three measurements
are conducted as described in Section 3.3.2 the data is processed as described in Section 4.2.

Figure 5.2: The summed difference in mean of the resistance of the contracted and relaxed bio-
impedance, Equation 3.7. Movement pattern 1 is used, Figure 3.8, three measurements are done for
the low and high frequencies as described in Section 3.3.2.
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5.3 Frequency selection

The isometric movement pattern is performed 15 times while the isotonic movement pattern
is performed 12 times. The measurements are done for both the high and low frequencies
which gives in total 2× 15+ 2× 12 = 54 measurements. The electrodes where removed and
replaced between the isometric and isotonic movement measurements. All measurements
including the switching moments as determined by the data grouping processing are given in
Appendix B and Appendix C. The data grouping process of 4.2 groups the data in 4 different
groups, isometric relaxing, isometric contraction, isotonic elbow 90° and isotonic elbow 180°.
For both movement patterns the mean value and standard deviation of the resistance and
reactance of both states are plotted against the frequency.
Figure 5.3 shows the mean and standard deviation of the isometric contraction and relaxation.
The resistance is for all frequencies around 2Ω lower when the muscle is contracted compared
to relaxed. The reactance can be separated into two parts. One where the relaxed reactance
is higher than the contracted, just as with the real impedance is the case, and one where it is
the other way around. The switching point seems to be at 50 kHz. At higher frequencies the
standard deviations of both the contracted and relaxed state increase for the resistance and the
reactance.
Figure 5.4 shows the mean and standard deviation of the isotonic contraction and relaxation
states. Just as with the isometric movement pattern there is an difference in the resistance at
all frequencies between the two states. For the isotonic movement this difference is about 4Ω.
The reactance again has a switching point, however this lays around 25 kHz instead of 50 kHz.
Again the standard deviation of the reactance increases for higher measurement frequencies.

Figure 5.3: The mean and standard deviation of the bio-impedance at different frequencies, using move-
ment pattern 1, shown in Section 3.3.1. Mean and standard deviation are calculated over all data gath-
ered as described in section 3.3.3.
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Figure 5.4: The mean and standard deviation of the bio-impedance at different frequencies, using move-
ment pattern 2, shown in Section 3.3.1. Mean and standard deviation are calculated over all data gath-
ered as described in section 3.3.3.

5.4 Cole Model

The Cole model as described in Section 2.1 consist of four unknown parameters. As described
in Section 4.3 the parameters can be deduced using a fitting algorithm. The results of the dif-
ferent fitting algorithms are given in Section 5.4.1.
The mean of the bio-impedance for all measured frequencies per state, given in Section 5.3,
are used to fit the Cole-Cole model. Each fit starts with an estimated value for each parameter,
based on the research done by T. J. Freeborn these are chosen to be R∞ = 200Ω, Q = 3µF, n =
0.65 and R0 = 100Ω [54]. A typical figure of the measured frequency spectrum and a Cole model
fitted to the measurement is given in Figure 5.5. Note that for low frequencies the fit almost ex-
actly equals the measured data, especially for the resistance. However for 10 kHz and higher
the error increases. The model does not include the increase in resistance after 1 MHz at all.

5.4.1 Fitting Cole’s model

Each fitting algorithm is used for every measurement. The frequency spectrum of one mea-
surement and the Cole model fitted to the measurement is given for all fitting algorithms and
all states in Appendix D. The mean and standard deviation of all parameters for all fitting algo-
rithms over all measurements are calculated. The resulting parameters are given in Figure 5.6.
There is little difference in the impedance of R∞ for all different fitting algorithms, the same
holds for R0. Bigger differences arise when looking at Q and n. This indicates that the param-
eters of the CPE element vary more depending on the fitting algorithm. The error between the
measured and the fitted spectrum for every frequency is calculated. The error is squared and
per measurement the mean is calculated. The mean squared error of each measurement is
summed. The result of this sum is shown in 5.7. The error of “fmincon” is the lowest of the
three. This shows that using “fmincon” the most optimal Cole parameters can be found.

5.4.2 Cole parameters

The Cole parameters of all 15 isometric and all 12 isotonic measurements are calculated using
the “fmincon” algorithm. The mean and standard deviation over all measurements are calcu-
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Figure 5.5: The resistance and reactance of the bio-impedance, the measured data and the Cole fit of the
measured data is given. The measurement data is that of a contracted state of an isometric movement
pattern, pattern 1 of Figure 3.8. The fitting algorithm used is “fmincon” [69].

Figure 5.6: The mean and standard deviation of the parameters for each fitting algorithm. The mean and
standard deviation are calculated over 15 isometric movement measurements and 12 isotonic move-
ment measurements.

lated of all parameters and shown in Figure 5.8. The standard deviation of Q is high compared
to the mean value and the difference in mean between the different states. Therefore it is diffi-
cult to distinguish the different states based on Q. The standard deviations of the n parameters
are lower compared to the mean value. However in this case the mean values of the n parame-
ter of the different states are almost equal to each other. The different states and arm position
can be distinguished based on the both resistances. There is a clear difference in the mean val-
ues of R0 between the isometric and isotonic movement patterns. In the standard deviations
there is almost no overlap, therefore these different arm positions can be distinguished based
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Figure 5.7: The sum of the mean squared error of all measurements for each fitting algorithm.

on R0. Distinguishing the contracted from the relaxed state can be done based on the value of
R∞ as can be seen in the top right graph of Figure 5.8. The contracted state has for both the
isometric as the isotonic a lower value of R∞ than the relaxed state. However for the isometric
states the difference is lower and the standard deviation higher than for the isotonic states. This
would make distinguishing a relaxed from a contracted muscle more difficult in an isometric
situation.

Figure 5.8: The mean and standard deviation of the Cole parameters for the fmincon fitting algorithm.
The mean and standard deviation are calculated over 15 isometric movement measurements and 12
isotonic movement measurements.

5.5 Movement

The measurements of Section 3.4.1 are performed, which include movement pattern 3 and 4
given in Figure 3.10 and Figure 3.11. The data is structured according to the matlab neural
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network implementation requirements as described in Section 4.5.2 and a Neural network is
created. In Chapter 6 four measurement frequencies are chosen this means the Neural Net-
work has 8 inputs, 4 of the resistance and 4 of the reactance. The neural network is shown in
Figure 5.9 it has a time delay of 100 samples, one hidden layer of 40 nodes and one output layer
of one node. The neural network is trained and tested for both movemen patterns.

Figure 5.9: A visual representation of the used Neural network created in matlab. This network has x = 8
inputs, y = 1 output, z = 100 time delays, n = 1 hidden layer and m = 40 neurons in this hidden layer.

5.5.1 Muscle contraction in movement pattern 3

Movement pattern 3 depicted in Figure 3.10 is performed 54 times. The movement pattern has
6 different states and each is performed for ten seconds, the two transitions between the arm
positions also take 10 s each, this means one measurements takes 80 s. The movement pattern
is performed each time in the same manner, starting at “A” an ending with state “F”. It is impor-
tant to note that the smaller electrodes where used and a frequency of 1 MHz instead of 75 kHz
One of the measurements is given in Figure 5.10, all measurements are given in Appendix E. A
few things can be noticed about the resistance, the reactance and the output of the neural net-
work. The resistance at 50 kHz, 100 kHz and 1 MHz decreases from “A” to “B” as well as from “C”
to “D”, in both situations the muscle goes from a relaxed state to a contracted state. However
from “E” to “F” the muscle also goes from a relaxed to a contracted state but nevertheless the
resistance increases on all frequencies. Besides this increase is more significant than the two
decreases.
The reactance at 1 MHz behaves at some moments opposite to the reactance at 50 kHz and
100 kHz. When the switch from “D” to “E” is made the reactance at 1 MHz strongly decreases
while the other two strongly increase. The same happens when the muscle is contracted in
state “F”.
The output of the neural network follows the target in some way . The same shape can be rec-
ognized at multiple points such as just after 20 s, from 40 s to 60 s and after 70 s. However there
are also some clear differences. Multiple fluctuations are visible in the target of state “B” and
“F” while the output of the NN doesn’t have these fluctuations. In these states the output looks
more like a flat line compared to the target.
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Figure 5.10: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.

5.5.2 Muscle contraction in movement pattern 4

Movement pattern 4 depicted in Figure 3.11 is performed 20 times, 10 times from state “A” to
“D” and ten times the other way around. Each state is performed for 10 seconds. The move-
ment pattern has 4 states, relaxing on arm rest, pushing against table top, resting against shoul-
der and pushing bottle towards shoulder. One measurement takes therefore 40 seconds. The
NN as given in Figure 5.9 is trained using the resistance and reactance signals.
All measurements are given in Appendix F. Figure 5.11 shows one measurement. The top fig-

ure of Figure 5.11 shows the target of the neural network and the output of the neural network.
The target of the neural network is a down-sampled version of the EMG signal as described in
Section 4.6. The figure in the middle is the resistance of the measured bio-impedance and the
bottom figure is the reactance of the measured bio-impedance. Note that in this figure (Fig-
ure 5.11) the movement pattern is performed in reverse, meaning it is starting at state “D” and
finishing with state “A”.
State “D” and “B” of Figure 5.11 both include a muscle contraction. When the muscle changes
from contraction to relaxation from “D” to “C” the resistance decreases for all frequencies.
However in the other case where the muscle goes from contraction to relaxation from “B” to
“A” the resistance increases. The reactance shows different behaviour for all measurement fre-
quencies. From “D” to “A” the amplitude of the reactance of the measurement at 1 kHz de-
creases every step, while at 50 kHz and 75 kHz the amplitude increases every step. At 10 kHz
the reactance amplitude decreases when the muscle goes from contracted to a relaxed state
and increases when it goes from the state “C” where the hand is near the shoulder to state
“B” where the hand is near the table. This can be seen when comparing the reactance in Fig-
ure 5.11 of state “D” with “B” and “C” with “A” at 10 kHz. A similar observation can be made
about the reactance at 50 kHz and 75 kHz, as mentioned increases the reactance amplitude
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Figure 5.11: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 4
(Figure 3.11) is performed from state “D” to “A”.

when the muscle is relaxed, logically it can be expected that it thus decreases again when the
muscle contracts. However even though the muscle goes from a relaxed to a contracted state
from “C” to “B” the reactance amplitude still increases, at 50 kHz and 75 kHz. The amplitude
change is even bigger than the changes when the muscle is contracted. This means the reac-
tance at 50 kHz and 75 kHz is greatly influenced by the arm position. The measured reactance
increases and decreases differently at different measurement frequencies. This is the result of
the frequency selection of Chapter 6 and is expected to be beneficial for the results of the neural
network.
Figure 5.11 shows, besides the resistance and the reactance, also the neural network target and
output. In general it can be seen that the output of the NN somewhat looks like the target.
When the muscle is contracted in state “D” and “B” the output is relatively higher than when
the muscle is relaxed, state “C” and “A”. This means the neural network is in some sense able to
detect muscle contraction based on the measured bio-impedance signals. Even though the bio-
impedances differ for both relaxed and both contracted states, the output of the NN is about
the same in both states. During the first 6 seconds the NN doesn’t follow the target properly.
Again is the output of the NN smoother than the EMG signal, especially when comparing the
target and the output in the first 6 seconds. Besides it seems the output of the NN is strongly
influenced by the movement which happens around 20 s.

5.5.3 Muscle contraction and arm movement

In the previous two sections, Section 5.5.1 and Section 5.5.2, it is shown that the bio-impedance
does change when the muscle contracts as well when the arm is moved. This change in bio-
impedance can be used to detect arm movement. The same measurements as in Section 5.5.2
are used. This means movement pattern 4, Figure 3.11, is used. There is only one movement in
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this movement pattern. Since the measurements are done in both directions, the arm is moved
ten times from the arm rest towards the shoulder and ten times from the shoulder to the arm
rest. The position where the arm is on the arm rest is given the value “0” and the position where
the hand is near the shoulder equals “1”. The transition between these states is made using a
scaled sinusoidal function. The switching point is determined by the change in reactance at
75 kHz around 20 s. This because the reactance at 75 kHz shows the highest difference in value
between both arm positions, as can be seen in Figure 5.11 and Appendix F. The EMG signal is
filtered at 4 Hz and down-sampled to match the bio-impedance sampling frequency of 350 Hz.
The EMG signal is scaled between 0 and 1 such that both the EMG and movement signal lay in
the same range.
A neural network is created with 50 time delays, one hidden layer of 40 neurons, 8 inputs and
2 outputs. The eight inputs are the resistance and reactance at the four measurement frequen-
cies. The two outputs are the EMG signal and the movement signal. The neural network is
depicted in Figure 5.12. As can be expected from Section 5.5.2 is the neural network able to

Figure 5.12: The neural network used for the EMG and movement signals. The NN has 50 delays, 40
neurons, 8 inputs and 2 outputs.

come close to the EMG target signal as can be seen in Figure 5.13. More in dept analysis of
the NN with the EMG signal as target is given in Section 5.5.2. The output of the NN with the
movement signal as target seems even better than with the EMG as target, as can be deducted
from the top and bottom figure of Figure 5.13. The targets and outputs of the NN for all mea-
surements are given in Appendix G. The NN is able to find a combination of inputs which seem
to reflect the difference in the two arm positions rather well. Since the movement signal is ar-
tificially created no statements can be made about the real performance of a NN with as target
e.g. the elbow angle or distance between hand and shoulder.

5.6 Force

The force measurement described in Section 3.4.2 is performed 20 times. The weighting scale
is placed between the hand and the bottom of the table leaf. In ten of the measurements the
arm starts in a relaxed state and each ten seconds the user tries to increase the weight indicated
on the weighting scale by 1 kg. The measurement is ended after the subject has reached and
held he weighting scale around 5 kg for 10 s. In the other ten measurements the pattern is
performed in reverse, the subject starts pushing at 5 kg and each 10 s the desired weight is
reduced by 1 kg. The last state where the subject doesn’t push against the scale is again held for
ten seconds before the measurement is ended.
The measured bio-impedance and the EMG signals are used as input for two neural networks
with as target the weighting scale value. This is done to compare the results of the bio-
impedance with those of the EMG. The sampling frequency of the weighting scale is around
5.8 Hz. The bio-impedance and EMG signals are both sampled at a much higher frequency,
350 Hz and 3 kHz respectively. Therefore both the bio-impedance and the EMG signals have to
be down-sampled. Before down-sampling a fourth order Butter-worth anti-aliasing filter is ap-
plied at 2 kHz to both signals after which both signals are down sampled. The EMG processing
would normally end with an envelope detection filter at 4 Hz however since the anti-aliasing
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Figure 5.13: Top figure: the first target and output of the NN. The target is the measured EMG which
is down sampled and normalized between 0 and 1. Bottom figure: the second target and output of the
NN. The target represents the arm position which is either 0 or 1. The switching point is based on the
switching point in the reactance at 75 kHz around 20 s.

filter comes right after it with an even lower cut-off the envelope detection filter becomes ob-
solete and is therefore removed. The reactance measured at 50 kHz showed a strong increase
in power present around 13.3 Hz. Therefore another fourth order butter-worth stop-band filter
was applied to the bio-impedance between 12 Hz and 14 Hz.
The data is structured as required described in Section 4.5.2 and two neural networks are
created one for the EMG and one for the bio-impedance. The bio-impedance NN is given in
Figure 5.14, the NN for the EMG is identical except for the input which is of size 1 instead of
8. The neural network used has no time delays and fewer neurons compared to the previously
used neural networks. When the muscle exerts force the EMG signal as well as the change
in bio-impedance have already happened. The actual exertion of force is the last step of the
three. At every moment when the weighting scale takes a sample the muscle and EMG signals
are likely to be in the same state as indicated by the weighting scale. This means that the
neural network doesn’t need any time delay and no signal has to be shifted as well. In these
measurements the only performed contraction is isometric. This means there is only one arm
position. The different arm positions resulted in different bio-impedance changes between
relaxed and contracted muscle as described in Section 5.5. With only one arm position this
problem disappears which would make the learning a lot easier for the neural network. This is
the reason why the network has only 10 instead of 40 nodes.

The target, the bio-impedance NN output and EMG NN output of one of the measurements is
given in Figure 5.15. The weighting scale signal is the most smooth of all three whilst the output
of the EMG NN has the most fluctuations. The fact that the weighting scale is the smoothest
seems logical since the subject tries to keep the weight indicated by the scale as stable as pos-
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Figure 5.14: The used neural network for the bio-impedance input signals. The EMG NN is exactly the
same except that it has only one input instead of 8. No time delay is used because all signals are in the
same state at the time of measurement. Only ten neurons are used because there is no movement within
the contraction.

sible. The fluctuations within the EMG signal do introduce a lot of error and another low-pass
filter should be implemented to filter it out. However when done real time this again introduces
an undesired delay.

Figure 5.15: The target, output of the bio-impedance NN and the output of the EMG NN of measure-
ment number 14 of the force measurement as described in Section 3.4.2. The desired force is increased
with 1 kg every 10 s.

The output of the neural networks and the target for all measurements are given in Appendix H.
The calculated output of both networks for all inputs of both the EMG and the bio-impedance
is plotted against the target in Figure 5.16. Multiple clusters can be indicated which are present
around all desired weight values. This comes from the fact that the subject was asked to hold
the weight at a certain level for 10 s. If the NN worked perfectly the clusters would transform in a
straight line, since for a perfect NN the output always matches the target. Every deviation from
this line is an error. It seems that the EMG NN has a bigger error for 0 kg than the bio-impedance
NN. The output of the EMG lays around 1 kg while the target is 0 kg. The EMG has again a higher
error for the targets around 4 kg most of the EMG NN outputs are around 3 kg instead of 4 kg.
However, besides these observations, it is hard to conclude which method is better, based on
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this graph. Therefore to get an indication of the expected error per measurement the mean of
the absolute error of all measurements is calculated by:

E = 1

N

N∑
n=1

|TNN(n)−YNN(n)| (5.1)

Here E is the calculated error, N the number of sample points, TNN(n) the target of the NN
for sample n and YNN(n) the output of the NN for sample n. This calculation is performed for
both the EMG NN and the bio-impedance NN. The expected error for an EMG sample equals
475.05 g for this trained network. The expected error for the bio-impedance is equal to 385.70 g.

Figure 5.16: The output of the bio-impedance and the EMG NN plotted against the NN target. The goal
is indicated by green, which represents the exact correct NN output for every NN target.

5.7 Time delay

Movement pattern 1 of Section 3.3.1 depicted by Figure 3.8 is performed 7 times. The subject
is sitting in a chair with its hand beneath a table resting on an arm rest. When contracting the
subject tries to push the table top up. When relaxing the arm is resting on the arm rest. Each
second a switch is made between the relaxing and contracting state, the subject is assisted by a
metronome set at 60 beats per minute as described in Section 3.4.3.
The EMG signal low pass filter is set at 5 Hz. All signals are normalized between 0 and 1. In
Section 5.3 it is shown in Figure 5.3 that the resistance at all and reactance at some frequencies
decreases when the muscle is contracted using movement pattern 1. However the EMG signal
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always increases when the muscle contracts. Therefore all of the resistance and some of the
reactance signals are inverted around the middle which is at 0.5 since all signals are normalized
between 0 and 1. It is expected that no time delay is bigger than 0.5 s. Every cross correlation
for which the maximum value has a time delay of 0.5 s or bigger is discarded. Next the signal is
inverted and the cross-correlation is done again. This takes more computational time however
it automates the process of selecting the signals which need to be inverted. To decrease the
computational time the cross-correlation is performed for a range of −1.5 s to 1.5 s. The time
delay corresponding to the maximum value of every cross-correlation is assumed to be the
delay of that signal with respect to the EMG signal.
Seven measurements are performed with each 4 resistance and 4 reactance signals this gives
in total 7 · 8 = 56 time delay calculations. One of the measurements is given in Figure 5.17,
the signals are already inverted if needed. The same shape can be recognized in the EMG as
in the bio-impedance signals which gives confidence that the cross-correlation indeed finds
the delay between these two signals. This is also the case for all other measurements given
in Appendix I. The mean and standard deviation of the calculated time delays are −0.2009 s
and 0.0882 s respectively. On average the bio-impedance signal is 0.2009 s slower than the EMG
signal. The mean of the time delay of the measurement system and signal processing is equal
to 0.0569 s with a standard deviation of 9.818×10−4 s, determined over 20 measurements as
explained in Appendix J. This leaves a time delay of about 0.144 s.

Figure 5.17: The measured bio-impedance and EMG signal while movement pattern 1 (Figure 3.8) is
performed. Each second the subject switches between relaxing and contracting for 30 seconds assisted
by a metronome beating at 60 beats per minute. All signals are normalized between 0 and 1. All of the
resistance and some of the reactance signals are inverted around y = 0.5 such that the shape of these
signals is the same as the EMG signal.

5.8 Conclusion

Multiple neural networks have been trained with each its own purpose. The first two used the
4 resistance and 4 reactance inputs to get to the EMG signal. It was shown that the NN was in
some sense able to recreate the EMG signal from the bio-impedance signal.
Next a NN was not only used to recreate the EMG signal but also an artificial movement signal.
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The movement signal represented the arm position which was held in two different states dur-
ing the measurements. The neural network was able to recreate the signal and distinguish in
which position the arm was at the time of the measurements.
The last two NNs where trained using the EMG and bio-impedance as input and the weight of
the wheighting scale as output. Some relation was found between the EMG and the weight and
the bio-impedance and the weight however the expected error is 475.05 g and 385.70 g.
The time delay of the bio-impedance changes with respect to the EMG signal was found to be
0.144 s .
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6 Conclusion and Discussion

The goal of this project was to study the possibility of predicting muscle activity using mfEIT
and hfEIT as an alternative to EMG for the control of a prosthetic arm. A choice had to be made
for the right measurement parameters, regarding the measurements frequencies and current
amplitude. Four main research questions arose within the goal of the project. Below the choice
for the measurement parameters is elaborated. All research questions are repeated after which
the corresponding results and conclusions are given.

The first movement pattern is used for the amplitude selection, as described in Section 3.3.2.
The difference in the resistance of a contracted muscle and relaxed muscle is summed over all
frequencies as described in Section 5.2. The resistance difference is the lowest for a current
amplitude of 37µA and 296µA, which are the largest and the smallest used current amplitudes.
The total resistance difference is the highest for an AC amplitude of 222µA. There is a low
standard deviation for all amplitudes. Therefore has the standard deviation no influence on
the amplitude choice. It could be argued that there is an amplitude which is not used in these
measurement for which the difference in resistance is even higher. However it is expected that
this sum of resistance is about equal to the sum of resistance measured using an amplitude of
222µA. This expectation is based on the small differences between the three highest measured
sum of resistances. These are 40.32Ω for an amplitude of 148µA, 40.24Ω for an amplitude
of 185µA and 40.71Ω for an amplitude of 222µA. Therefore it is likely that any amplitude in
between of these measured amplitudes will have an sum of resistance which is almost equal
to the total resistance of 222µΩ and will therefore not significantly benefit the measurements.
Therefor for all measurements the amplitude will be set to 222µA.

The isometric and isotonic movement pattern, movement pattern 1 and 2, are used for the
frequency selection as described in Section 3.3.3. The choice for which frequencies will be
used is based on the criteria mentioned in Section 3.3.3 and are repeated below.

• The standard deviation over multiple measurements is low.

• The difference in impedance between the two states of Figure 3.8, contracted and relaxed
muscle, is high.

• The difference in impedance between the two states of Figure 3.9, elbow 90° and 180°, is
high.

• A distinction can be made between the (difference in impedance) of the isometric and
the isotonic movement pattern.

As given in Section 5.3 the standard deviation starts to increase after 100 kHz. Therefore to
meet the first criterion the used frequencies should not be higher than 100 kHz. For the sec-
ond and third criterion it is easy to find a solution. The resistance is in both cases a good
measure to distinguish the two states. The last criterion can be met using the difference in
the switching points of the reactance. The reactance of the relaxed state and the elbow in 90°
state where lower than the contracted state and the elbow in 180° state for the low frequencies.
However for the higher frequencies this was the other way around. The switching points where
around 25 kHz and 50 kHz respectively. Using one measurement frequency between the two
switching points is not an option since the standard deviations for both the isometric and
isotonic movement are to high to make a clear distinction between the different states. A more
robust solution is using multiple measurement frequencies, a few at a lower and a few at a
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higher frequency than both switching points. The mean of the contracted and the relaxed
state differ more from each other outside this switching region, especially for the isotonic
movement. Therefore four measurement frequencies are chosen. Two in the low region 10 kHz
and 25 kHz, both have low standard deviation compared to the impedance difference and are
at frequencies below the switching region. For the other two in the higher region 75 kHz and
100 kHz are used, both also still have a low standard deviation and are on the high side of the
switching region. With the impedance measurements of those four frequencies it is possible to
distinguish contraction from relaxation and isometric movement from isotonic movement.

• To what extend is it possible to predict muscle activation in various arm positions using
mf-EIT and/or hf-EIT?

In order to predict muscle activation it is required that there is a measurable difference between
the reactance and/or resistance of a muscle in a relaxed state and a muscle in a contracted state.
Detecting muscle activation can be done if this difference is significant and repeatable. Besides
should it be distinguishable from other factors which influence the bio-impedance such as
movement. A resistance difference of 2Ω over all measurement frequencies was shown in Sec-
tion 5.2. However this difference was for one arm position only, the arm resting on the arm rest
and contracting against the down side of the table top. The resistance and reactance changes
between a relaxed and a contracted muscle are different in various arm positions as shown in
Section 5.5.1.
A neural network (NN) was trained to handle this increase in complexity. The neural networks
input consisted of multiple measurements with in each measurements at least two muscle con-
tractions and relaxations in different arm positions. The target of the neural network was the
simultaneously recorded EMG signal. Section 5.5.1 and Section 5.5.2 showed one measure-
ment including the NN training result of this approach. It was shown that the NN is able to
recreate the EMG in some sense however many fluctuations present in the EMG where missing
in the NN output. The NN is able to predict the EMG signal with a mean R2 of 0.75 for the third
movement pattern and a mean R2 of 0.57 for the fourth movement pattern. Therefore can it be
concluded that based on the bio-impedance signal the NN is able to predict the muscle activa-
tion in different arm positions with an currently maximum mean R2 of 0.75. It must it be noted
that for the fourth movement pattern only 20 measurements where available while for the third
movement pattern 54 measurements where performed. Since a NN in general performs better
when more training data is available it can be expected that the NN for the fourth movement
pattern can be improved when more measurements are performed.

• How precise and accurate can different levels of muscle contraction be distinguished?

For the second research question different levels of contraction were created using a weight-
ing scale. The bio-impedance was measured while the isometric contraction was performed
pushing onto the scale. The weight indicates the amount of force delivered by the hand which
is mostly a result of the contraction of the bicep. Again a NN was used with as target the weight
as indicated by the weighting scale. The mean of the error between the target and the output
of the NN is 385.7 g when the bio-impedance is used as input and 475.1 g when the EMG is
used as input. This is also called the accuracy. The standard deviation of the error for the
bio-impedance and EMG signals are 282.3 g and 397.7 g respectively, also called the precision.
Besides is it shown that the bio-impedance resulted in a smoother output signal compared
to the EMG output. The mean and standard deviation of the error are smaller when the bio-
impedance is used as input to the NN. However the mean error is still almost 40 % of the used
resolution of 1 kg. Besides is the standard deviation almost 30 % of the used resolution. In order
to use the bio-impedance as measure for the level of contraction the accuracy and the preci-
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sion should both increase especially when a higher resolution than 1 kg is required. A solution
for this can be by increasing the sampling frequency of the weighting scale and measuring
the time delay between the bio-impedance change and the extruded force. In Section 5.6 it is
assumed that the bio-impedance is in the same state as the extruded force. However when the
extruded force lags the bio-impedance signal part of the error can be explained by this time
delay.

• What is the time delay between muscle activation and bio-impedance changes?

The delay between the EMG signal and the bio-impedance was found based on the cross cor-
relation of these signals. The delay was calculated to be 0.20 s with a standard deviation of
0.0882 s. The delay between the EMG signal and the bio-impedance introduced by the system
and the signal processing was found using two resistors and a capacitor. This delay turned out
to have a mean of 0.0569 s and a standard deviation of 9.818×10−4 s. The remaining delay is
expected to be the delay between the EMG signal and the change in bio-impedance due to the
same contraction and equals 0.14 s with a standard deviation of 0.0882 s. The time delay has a
standard deviation of 63 % of the mean value. This is mainly caused by the reactance measured
at 75 kHz. Removing these measurements gives a time delay mean and standard deviation of
0.1322 and 0.0173 between the bio-impedance and EMG signal. In order to conclude if this is
only the case for the currently performed measurements or that the reactance at higher fre-
quencies always has a more variable time delay more research has to be done.

• To what extend is it possible to distinguish muscle contraction and arm movement?

The last research question is based on the observation that the bio-impedance changes when
the arm is moved to a new position as shown in Section 5.5.1. The actual movement is not
captured by a separate measurement. Therefore it is implemented based on the knowledge
that there are only two arm positions in movement pattern 4, and the fact that there is a rapid
change in reactance around 20 s which is the switching moment between the two arm posi-
tions. The NN is given two targets, both the EMG and the created movement signal. The NN
is able to distinguish the arm movement from the contraction and the other way around. It
seems that the contraction has little to no influence on the movement signal and the other way
around. It must be noted that the movement signal is 0, 1 or is switching from one to another.
When measuring the real arm position small deviations from the current state can be expected
due to the imperfect nature of the measurement and the ability to hold the arm steady in one
position. To what extent the neural network is able to recognize these small changes in the arm
position remains a question for further research.
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A Amplitude selection data

The mean and standard deviation of all measurements per amplitude are given in the following
figures.

Figure A.1: The mean and standard deviation of the bio-impedance of the relaxed and contracted state
per frequency. The top figure shows the resistance and the bottom the reactance. Three measurements
are conducted as described in Section 3.3.2 the data is processed as described in Section 4.2.

Figure A.2: The mean and standard deviation of the bio-impedance of the relaxed and contracted state
per frequency. The top figure shows the resistance and the bottom the reactance. Three measurements
are conducted as described in Section 3.3.2 the data is processed as described in Section 4.2.
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Figure A.3: The mean and standard deviation of the bio-impedance of the relaxed and contracted state
per frequency. The top figure shows the resistance and the bottom the reactance. Three measurements
are conducted as described in Section 3.3.2 the data is processed as described in Section 4.2.

Figure A.4: The mean and standard deviation of the bio-impedance of the relaxed and contracted state
per frequency. The top figure shows the resistance and the bottom the reactance. Three measurements
are conducted as described in Section 3.3.2 the data is processed as described in Section 4.2.
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Figure A.5: The mean and standard deviation of the bio-impedance of the relaxed and contracted state
per frequency. The top figure shows the resistance and the bottom the reactance. Three measurements
are conducted as described in Section 3.3.2 the data is processed as described in Section 4.2.

Figure A.6: The mean and standard deviation of the bio-impedance of the relaxed and contracted state
per frequency. The top figure shows the resistance and the bottom the reactance. Three measurements
are conducted as described in Section 3.3.2 the data is processed as described in Section 4.2.
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Figure A.7: The mean and standard deviation of the bio-impedance of the relaxed and contracted state
per frequency. The top figure shows the resistance and the bottom the reactance. Three measurements
are conducted as described in Section 3.3.2 the data is processed as described in Section 4.2.

Figure A.8: The mean and standard deviation of the bio-impedance of the relaxed and contracted state
per frequency. The top figure shows the resistance and the bottom the reactance. Three measurements
are conducted as described in Section 3.3.2 the data is processed as described in Section 4.2.
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B Isometric data

This chapter shows all figures of the data collected using movement pattern 1 of Section 3.3.1,
Figure 3.8. The low and high frequencies are shown.

Figure B.1: Measurement number 1 of the resistance and the reactance measured during an isometric
movement at low frequencies. The first pattern as described in Section 3.3.1 is used.

Figure B.2: Measurement number 2 of the resistance and the reactance measured during an isometric
movement at low frequencies. The first pattern as described in Section 3.3.1 is used.
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Figure B.3: Measurement number 3 of the resistance and the reactance measured during an isometric
movement at low frequencies. The first pattern as described in Section 3.3.1 is used.

Figure B.4: Measurement number 4 of the resistance and the reactance measured during an isometric
movement at low frequencies. The first pattern as described in Section 3.3.1 is used.
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Figure B.5: Measurement number 5 of the resistance and the reactance measured during an isometric
movement at low frequencies. The first pattern as described in Section 3.3.1 is used.

Figure B.6: Measurement number 6 of the resistance and the reactance measured during an isometric
movement at low frequencies. The first pattern as described in Section 3.3.1 is used.
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Figure B.7: Measurement number 7 of the resistance and the reactance measured during an isometric
movement at low frequencies. The first pattern as described in Section 3.3.1 is used.

Figure B.8: Measurement number 8 of the resistance and the reactance measured during an isometric
movement at low frequencies. The first pattern as described in Section 3.3.1 is used.
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Figure B.9: Measurement number 9 of the resistance and the reactance measured during an isometric
movement at low frequencies. The first pattern as described in Section 3.3.1 is used.

Figure B.10: Measurement number 10 of the resistance and the reactance measured during an isometric
movement at low frequencies. The first pattern as described in Section 3.3.1 is used.
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Figure B.11: Measurement number 11 of the resistance and the reactance measured during an isometric
movement at low frequencies. The first pattern as described in Section 3.3.1 is used.

Figure B.12: Measurement number 12 of the resistance and the reactance measured during an isometric
movement at low frequencies. The first pattern as described in Section 3.3.1 is used.
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Figure B.13: Measurement number 13 of the resistance and the reactance measured during an isometric
movement at low frequencies. The first pattern as described in Section 3.3.1 is used.

Figure B.14: Measurement number 14 of the resistance and the reactance measured during an isometric
movement at low frequencies. The first pattern as described in Section 3.3.1 is used.
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Figure B.15: Measurement number 15 of the resistance and the reactance measured during an isometric
movement at low frequencies. The first pattern as described in Section 3.3.1 is used.

Figure B.16: Measurement number 1 of the resistance and the reactance measured during an isometric
movement at high frequencies. The first pattern as described in Section 3.3.1 is used.
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Figure B.17: Measurement number 2 of the resistance and the reactance measured during an isometric
movement at high frequencies. The first pattern as described in Section 3.3.1 is used.

Figure B.18: Measurement number 3 of the resistance and the reactance measured during an isometric
movement at high frequencies. The first pattern as described in Section 3.3.1 is used.
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Figure B.19: Measurement number 4 of the resistance and the reactance measured during an isometric
movement at high frequencies. The first pattern as described in Section 3.3.1 is used.

Figure B.20: Measurement number 5 of the resistance and the reactance measured during an isometric
movement at high frequencies. The first pattern as described in Section 3.3.1 is used.
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Figure B.21: Measurement number 6 of the resistance and the reactance measured during an isometric
movement at high frequencies. The first pattern as described in Section 3.3.1 is used.

Figure B.22: Measurement number 7 of the resistance and the reactance measured during an isometric
movement at high frequencies. The first pattern as described in Section 3.3.1 is used.
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Figure B.23: Measurement number 8 of the resistance and the reactance measured during an isometric
movement at high frequencies. The first pattern as described in Section 3.3.1 is used.

Figure B.24: Measurement number 9 of the resistance and the reactance measured during an isometric
movement at high frequencies. The first pattern as described in Section 3.3.1 is used.
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Figure B.25: Measurement number 10 of the resistance and the reactance measured during an isometric
movement at high frequencies. The first pattern as described in Section 3.3.1 is used.

Figure B.26: Measurement number 11 of the resistance and the reactance measured during an isometric
movement at high frequencies. The first pattern as described in Section 3.3.1 is used.
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Figure B.27: Measurement number 12 of the resistance and the reactance measured during an isometric
movement at high frequencies. The first pattern as described in Section 3.3.1 is used.

Figure B.28: Measurement number 13 of the resistance and the reactance measured during an isometric
movement at high frequencies. The first pattern as described in Section 3.3.1 is used.
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Figure B.29: Measurement number 14 of the resistance and the reactance measured during an isometric
movement at high frequencies. The first pattern as described in Section 3.3.1 is used.

Figure B.30: Measurement number 15 of the resistance and the reactance measured during an isometric
movement at high frequencies. The first pattern as described in Section 3.3.1 is used.
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C Isotonic data

This chapter shows all figures of the data collected using movement pattern 2 of Section 3.3.1,
Figure 3.9. The low and high frequencies are shown.

Figure C.1: The resistance and reactance of the bio-impedance measured during an isotonic movement
at low frequencies. The second pattern as described in Section 3.3.1 is used.
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Figure C.2: The resistance and reactance of the bio-impedance measured during an isotonic movement
at low frequencies. The second pattern as described in Section 3.3.1 is used.

Figure C.3: The resistance and reactance of the bio-impedance measured during an isotonic movement
at low frequencies. The second pattern as described in Section 3.3.1 is used.
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Figure C.4: The resistance and reactance of the bio-impedance measured during an isotonic movement
at low frequencies. The second pattern as described in Section 3.3.1 is used.

Figure C.5: The resistance and reactance of the bio-impedance measured during an isotonic movement
at low frequencies. The second pattern as described in Section 3.3.1 is used.
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Figure C.6: The resistance and reactance of the bio-impedance measured during an isotonic movement
at low frequencies. The second pattern as described in Section 3.3.1 is used.

Figure C.7: The resistance and reactance of the bio-impedance measured during an isotonic movement
at low frequencies. The second pattern as described in Section 3.3.1 is used.
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Figure C.8: The resistance and reactance of the bio-impedance measured during an isotonic movement
at low frequencies. The second pattern as described in Section 3.3.1 is used.

Figure C.9: The resistance and reactance of the bio-impedance measured during an isotonic movement
at low frequencies. The second pattern as described in Section 3.3.1 is used.
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Figure C.10: The resistance and reactance of the bio-impedance measured during an isotonic move-
ment at low frequencies. The second pattern as described in Section 3.3.1 is used.

Figure C.11: The resistance and reactance of the bio-impedance measured during an isotonic move-
ment at low frequencies. The second pattern as described in Section 3.3.1 is used.
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Figure C.12: The resistance and reactance of the bio-impedance measured during an isotonic move-
ment at low frequencies. The second pattern as described in Section 3.3.1 is used.

Figure C.13: The resistance and reactance of the bio-impedance measured during an isotonic move-
ment at high frequencies. The second pattern as described in Section 3.3.1 is used.
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Figure C.14: The resistance and reactance of the bio-impedance measured during an isotonic move-
ment at high frequencies. The second pattern as described in Section 3.3.1 is used.

Figure C.15: The resistance and reactance of the bio-impedance measured during an isotonic move-
ment at high frequencies. The second pattern as described in Section 3.3.1 is used.
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Figure C.16: The resistance and reactance of the bio-impedance measured during an isotonic move-
ment at high frequencies. The second pattern as described in Section 3.3.1 is used.

Figure C.17: The resistance and reactance of the bio-impedance measured during an isotonic move-
ment at high frequencies. The second pattern as described in Section 3.3.1 is used.
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Figure C.18: The resistance and reactance of the bio-impedance measured during an isotonic move-
ment at high frequencies. The second pattern as described in Section 3.3.1 is used.

Figure C.19: The resistance and reactance of the bio-impedance measured during an isotonic move-
ment at high frequencies. The second pattern as described in Section 3.3.1 is used.
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Figure C.20: The resistance and reactance of the bio-impedance measured during an isotonic move-
ment at high frequencies. The second pattern as described in Section 3.3.1 is used.

Figure C.21: The resistance and reactance of the bio-impedance measured during an isotonic move-
ment at high frequencies. The second pattern as described in Section 3.3.1 is used.
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Figure C.22: The resistance and reactance of the bio-impedance measured during an isotonic move-
ment at high frequencies. The second pattern as described in Section 3.3.1 is used.

Figure C.23: The resistance and reactance of the bio-impedance measured during an isotonic move-
ment at high frequencies. The second pattern as described in Section 3.3.1 is used.
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Figure C.24: The resistance and reactance of the bio-impedance measured during an isotonic move-
ment at high frequencies. The second pattern as described in Section 3.3.1 is used.
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D Cole fit parameters

Three different fitting algorithms are used, fmincon, pattern search and lsqnonlin.
For each fitting algorithm one of the measured spectrum’s is given with the corresponding fit.

D.1 Fmincon

Figure D.1: The resistance and reactance of the bio-impedance. The measured data and the Cole fit of
the measured data is given. The fitting algorithm used is fmincon [69].

Figure D.2: The resistance and reactance of the bio-impedance. The measured data and the Cole fit of
the measured data is given. The fitting algorithm used is fmincon [69].
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Figure D.3: The resistance and reactance of the bio-impedance. The measured data and the Cole fit of
the measured data is given. The fitting algorithm used is fmincon [69].

Figure D.4: The resistance and reactance of the bio-impedance. The measured data and the Cole fit of
the measured data is given. The fitting algorithm used is fmincon [69].
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D.2 Lsqnonlin

Figure D.5: The resistance and reactance of the bio-impedance. The measured data and the Cole fit of
the measured data is given. The fitting algorithm used is lsqnonlin [59].

Figure D.6: The resistance and reactance of the bio-impedance. The measured data and the Cole fit of
the measured data is given. The fitting algorithm used is lsqnonlin [59].
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Figure D.7: The resistance and reactance of the bio-impedance. The measured data and the Cole fit of
the measured data is given. The fitting algorithm used is lsqnonlin [59].

Figure D.8: The resistance and reactance of the bio-impedance. The measured data and the Cole fit of
the measured data is given. The fitting algorithm used is lsqnonlin [59].
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D.3 Pattern search

Figure D.9: The resistance and reactance of the bio-impedance. The measured data and the Cole fit of
the measured data is given. The fitting algorithm used is pattern search [62].

Figure D.10: The resistance and reactance of the bio-impedance. The measured data and the Cole fit of
the measured data is given. The fitting algorithm used is pattern search [62].
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Figure D.11: The resistance and reactance of the bio-impedance. The measured data and the Cole fit of
the measured data is given. The fitting algorithm used is pattern search [62].

Figure D.12: The resistance and reactance of the bio-impedance. The measured data and the Cole fit of
the measured data is given. The fitting algorithm used is pattern search [62].
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E Movement pattern 3 data

Figure E.1: A visual representation of the used NN created in Matlab. This network has x = 8 inputs,
y = 1 output, z = 100 time delays, n = 1 hidden layer and m = 40 neurons in this hidden layer.
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Figure E.2: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.

Figure E.3: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.
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Figure E.4: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.

Figure E.5: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.
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Figure E.6: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.

Figure E.7: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.
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Figure E.8: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.

Figure E.9: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.
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Figure E.10: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.

Figure E.11: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.
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Figure E.12: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.

Figure E.13: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.
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Figure E.14: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.

Figure E.15: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.
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Figure E.16: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.

Figure E.17: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.
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Figure E.18: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.

Figure E.19: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.
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Figure E.20: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.

Figure E.21: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.
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Figure E.22: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.

Figure E.23: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.
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Figure E.24: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.

Figure E.25: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.
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Figure E.26: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.

Figure E.27: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.
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Figure E.28: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.

Figure E.29: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.
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Figure E.30: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.

Figure E.31: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.
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Figure E.32: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.

Figure E.33: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.
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Figure E.34: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.

Figure E.35: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.
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Figure E.36: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.

Figure E.37: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.
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Figure E.38: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.

Figure E.39: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.
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Figure E.40: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.

Figure E.41: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.
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Figure E.42: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.

Figure E.43: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.
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Figure E.44: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.

Figure E.45: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.
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Figure E.46: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.

Figure E.47: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.
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Figure E.48: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.

Figure E.49: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.
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Figure E.50: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.

Figure E.51: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.
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Figure E.52: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.

Figure E.53: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.
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Figure E.54: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.

Figure E.55: Top figure: the target and the output of the time delay Neural network. Middle figure: the 4
measured resistances, which are 4 of the 8 inputs for the NN. Bottom figure: the 4 measured reactances,
which form the other 4 of 8 inputs for the NN. The measurement is done while movement pattern 3
(Figure 3.10) is performed from state “A” to “F”.
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F Movement pattern 4 data

Figure F.1: A visual representation of the used NN created in Matlab. This network has x = 8 inputs,
y = 1 output, z = 100 time delays, n = 1 hidden layer, m = 40 neurons per hidden layer.

Figure F.2: Top figure: the target and the output of the time delay Neural network. The used Neural
Network is given in Figure F.1. Middle figure: the 4 measured resistances, which are 4 of the 8 inputs for
the NN. Bottom figure: the 4 measured reactances, which form the other 4 of 8 inputs for the NN.
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Figure F.3: Top figure: the target and the output of the time delay Neural network. The used Neural
Network is given in Figure F.1. Middle figure: the 4 measured resistances, which are 4 of the 8 inputs for
the NN. Bottom figure: the 4 measured reactances, which form the other 4 of 8 inputs for the NN.

Figure F.4: Top figure: the target and the output of the time delay Neural network. The used Neural
Network is given in Figure F.1. Middle figure: the 4 measured resistances, which are 4 of the 8 inputs for
the NN. Bottom figure: the 4 measured reactances, which form the other 4 of 8 inputs for the NN.
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Figure F.5: Top figure: the target and the output of the time delay Neural network. The used Neural
Network is given in Figure F.1. Middle figure: the 4 measured resistances, which are 4 of the 8 inputs for
the NN. Bottom figure: the 4 measured reactances, which form the other 4 of 8 inputs for the NN.

Figure F.6: Top figure: the target and the output of the time delay Neural network. The used Neural
Network is given in Figure F.1. Middle figure: the 4 measured resistances, which are 4 of the 8 inputs for
the NN. Bottom figure: the 4 measured reactances, which form the other 4 of 8 inputs for the NN.
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Figure F.7: Top figure: the target and the output of the time delay Neural network. The used Neural
Network is given in Figure F.1. Middle figure: the 4 measured resistances, which are 4 of the 8 inputs for
the NN. Bottom figure: the 4 measured reactances, which form the other 4 of 8 inputs for the NN.

Figure F.8: Top figure: the target and the output of the time delay Neural network. The used Neural
Network is given in Figure F.1. Middle figure: the 4 measured resistances, which are 4 of the 8 inputs for
the NN. Bottom figure: the 4 measured reactances, which form the other 4 of 8 inputs for the NN.
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Figure F.9: Top figure: the target and the output of the time delay Neural network. The used Neural
Network is given in Figure F.1. Middle figure: the 4 measured resistances, which are 4 of the 8 inputs for
the NN. Bottom figure: the 4 measured reactances, which form the other 4 of 8 inputs for the NN.

Figure F.10: Top figure: the target and the output of the time delay Neural network. The used Neural
Network is given in Figure F.1. Middle figure: the 4 measured resistances, which are 4 of the 8 inputs for
the NN. Bottom figure: the 4 measured reactances, which form the other 4 of 8 inputs for the NN.
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Figure F.11: Top figure: the target and the output of the time delay Neural network. The used Neural
Network is given in Figure F.1. Middle figure: the 4 measured resistances, which are 4 of the 8 inputs for
the NN. Bottom figure: the 4 measured reactances, which form the other 4 of 8 inputs for the NN.

Figure F.12: Top figure: the target and the output of the time delay Neural network. The used Neural
Network is given in Figure F.1. Middle figure: the 4 measured resistances, which are 4 of the 8 inputs for
the NN. Bottom figure: the 4 measured reactances, which form the other 4 of 8 inputs for the NN.
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Figure F.13: Top figure: the target and the output of the time delay Neural network. The used Neural
Network is given in Figure F.1. Middle figure: the 4 measured resistances, which are 4 of the 8 inputs for
the NN. Bottom figure: the 4 measured reactances, which form the other 4 of 8 inputs for the NN.

Figure F.14: Top figure: the target and the output of the time delay Neural network. The used Neural
Network is given in Figure F.1. Middle figure: the 4 measured resistances, which are 4 of the 8 inputs for
the NN. Bottom figure: the 4 measured reactances, which form the other 4 of 8 inputs for the NN.
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Figure F.15: Top figure: the target and the output of the time delay Neural network. The used Neural
Network is given in Figure F.1. Middle figure: the 4 measured resistances, which are 4 of the 8 inputs for
the NN. Bottom figure: the 4 measured reactances, which form the other 4 of 8 inputs for the NN.

Figure F.16: Top figure: the target and the output of the time delay Neural network. The used Neural
Network is given in Figure F.1. Middle figure: the 4 measured resistances, which are 4 of the 8 inputs for
the NN. Bottom figure: the 4 measured reactances, which form the other 4 of 8 inputs for the NN.
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Figure F.17: Top figure: the target and the output of the time delay Neural network. The used Neural
Network is given in Figure F.1. Middle figure: the 4 measured resistances, which are 4 of the 8 inputs for
the NN. Bottom figure: the 4 measured reactances, which form the other 4 of 8 inputs for the NN.

Figure F.18: Top figure: the target and the output of the time delay Neural network. The used Neural
Network is given in Figure F.1. Middle figure: the 4 measured resistances, which are 4 of the 8 inputs for
the NN. Bottom figure: the 4 measured reactances, which form the other 4 of 8 inputs for the NN.
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Figure F.19: Top figure: the target and the output of the time delay Neural network. The used Neural
Network is given in Figure F.1. Middle figure: the 4 measured resistances, which are 4 of the 8 inputs for
the NN. Bottom figure: the 4 measured reactances, which form the other 4 of 8 inputs for the NN.

Figure F.20: Top figure: the target and the output of the time delay Neural network. The used Neural
Network is given in Figure F.1. Middle figure: the 4 measured resistances, which are 4 of the 8 inputs for
the NN. Bottom figure: the 4 measured reactances, which form the other 4 of 8 inputs for the NN.
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Figure F.21: Top figure: the target and the output of the time delay Neural network. The used Neural
Network is given in Figure F.1. Middle figure: the 4 measured resistances, which are 4 of the 8 inputs for
the NN. Bottom figure: the 4 measured reactances, which form the other 4 of 8 inputs for the NN.
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G Muscle contraction and movement data

Figure G.1: The neural network used for the EMG and movement signals. The NN has 50 delays, 40
neurons, 8 inputs and 2 outputs.

Figure G.2: Top figure: the first target and output of the NN. The target is the measured EMG which is
down sampled and normalized between 0 and 1. Bottom figure: the second target and output of the
NN. The target represents the arm position which is either 0 or 1. The switching point is based on the
switching point in the reactance at 75 kHz around 20 s.
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Figure G.3: Top figure: the first target and output of the NN. The target is the measured EMG which is
down sampled and normalized between 0 and 1. Bottom figure: the second target and output of the
NN. The target represents the arm position which is either 0 or 1. The switching point is based on the
switching point in the reactance at 75 kHz around 20 s.

Figure G.4: Top figure: the first target and output of the NN. The target is the measured EMG which is
down sampled and normalized between 0 and 1. Bottom figure: the second target and output of the
NN. The target represents the arm position which is either 0 or 1. The switching point is based on the
switching point in the reactance at 75 kHz around 20 s.

C.E.Baars University of Twente



Bibliography 139

Figure G.5: Top figure: the first target and output of the NN. The target is the measured EMG which is
down sampled and normalized between 0 and 1. Bottom figure: the second target and output of the
NN. The target represents the arm position which is either 0 or 1. The switching point is based on the
switching point in the reactance at 75 kHz around 20 s.

Figure G.6: Top figure: the first target and output of the NN. The target is the measured EMG which is
down sampled and normalized between 0 and 1. Bottom figure: the second target and output of the
NN. The target represents the arm position which is either 0 or 1. The switching point is based on the
switching point in the reactance at 75 kHz around 20 s.
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Figure G.7: Top figure: the first target and output of the NN. The target is the measured EMG which is
down sampled and normalized between 0 and 1. Bottom figure: the second target and output of the
NN. The target represents the arm position which is either 0 or 1. The switching point is based on the
switching point in the reactance at 75 kHz around 20 s.

Figure G.8: Top figure: the first target and output of the NN. The target is the measured EMG which is
down sampled and normalized between 0 and 1. Bottom figure: the second target and output of the
NN. The target represents the arm position which is either 0 or 1. The switching point is based on the
switching point in the reactance at 75 kHz around 20 s.
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Figure G.9: Top figure: the first target and output of the NN. The target is the measured EMG which is
down sampled and normalized between 0 and 1. Bottom figure: the second target and output of the
NN. The target represents the arm position which is either 0 or 1. The switching point is based on the
switching point in the reactance at 75 kHz around 20 s.

Figure G.10: Top figure: the first target and output of the NN. The target is the measured EMG which
is down sampled and normalized between 0 and 1. Bottom figure: the second target and output of the
NN. The target represents the arm position which is either 0 or 1. The switching point is based on the
switching point in the reactance at 75 kHz around 20 s.
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Figure G.11: Top figure: the first target and output of the NN. The target is the measured EMG which
is down sampled and normalized between 0 and 1. Bottom figure: the second target and output of the
NN. The target represents the arm position which is either 0 or 1. The switching point is based on the
switching point in the reactance at 75 kHz around 20 s.

Figure G.12: Top figure: the first target and output of the NN. The target is the measured EMG which
is down sampled and normalized between 0 and 1. Bottom figure: the second target and output of the
NN. The target represents the arm position which is either 0 or 1. The switching point is based on the
switching point in the reactance at 75 kHz around 20 s.
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Figure G.13: Top figure: the first target and output of the NN. The target is the measured EMG which
is down sampled and normalized between 0 and 1. Bottom figure: the second target and output of the
NN. The target represents the arm position which is either 0 or 1. The switching point is based on the
switching point in the reactance at 75 kHz around 20 s.

Figure G.14: Top figure: the first target and output of the NN. The target is the measured EMG which
is down sampled and normalized between 0 and 1. Bottom figure: the second target and output of the
NN. The target represents the arm position which is either 0 or 1. The switching point is based on the
switching point in the reactance at 75 kHz around 20 s.
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Figure G.15: Top figure: the first target and output of the NN. The target is the measured EMG which
is down sampled and normalized between 0 and 1. Bottom figure: the second target and output of the
NN. The target represents the arm position which is either 0 or 1. The switching point is based on the
switching point in the reactance at 75 kHz around 20 s.

Figure G.16: Top figure: the first target and output of the NN. The target is the measured EMG which
is down sampled and normalized between 0 and 1. Bottom figure: the second target and output of the
NN. The target represents the arm position which is either 0 or 1. The switching point is based on the
switching point in the reactance at 75 kHz around 20 s.
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Figure G.17: Top figure: the first target and output of the NN. The target is the measured EMG which
is down sampled and normalized between 0 and 1. Bottom figure: the second target and output of the
NN. The target represents the arm position which is either 0 or 1. The switching point is based on the
switching point in the reactance at 75 kHz around 20 s.

Figure G.18: Top figure: the first target and output of the NN. The target is the measured EMG which
is down sampled and normalized between 0 and 1. Bottom figure: the second target and output of the
NN. The target represents the arm position which is either 0 or 1. The switching point is based on the
switching point in the reactance at 75 kHz around 20 s.
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Figure G.19: Top figure: the first target and output of the NN. The target is the measured EMG which
is down sampled and normalized between 0 and 1. Bottom figure: the second target and output of the
NN. The target represents the arm position which is either 0 or 1. The switching point is based on the
switching point in the reactance at 75 kHz around 20 s.

Figure G.20: Top figure: the first target and output of the NN. The target is the measured EMG which
is down sampled and normalized between 0 and 1. Bottom figure: the second target and output of the
NN. The target represents the arm position which is either 0 or 1. The switching point is based on the
switching point in the reactance at 75 kHz around 20 s.
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Figure G.21: Top figure: the first target and output of the NN. The target is the measured EMG which
is down sampled and normalized between 0 and 1. Bottom figure: the second target and output of the
NN. The target represents the arm position which is either 0 or 1. The switching point is based on the
switching point in the reactance at 75 kHz around 20 s.
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H Force measurements

Figure H.1: The used neural network for the bio-impedance input signals. The EMG NN is exactly the
same except that it has only one input instead of 8. No time delay is used because all signals are in the
same state at the time of measurement. Only ten neurons are used because there is no movement within
the contraction.

Figure H.2: The target, output of the bio-impedance NN and the output of the EMG NN of measurement
number 1of the force measurement as described in Section 3.4.2. The desired force is changed with 1 kg
every 10 s.
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Figure H.3: The target, output of the bio-impedance NN and the output of the EMG NN of measurement
number 2of the force measurement as described in Section 3.4.2. The desired force is changed with 1 kg
every 10 s.

Figure H.4: The target, output of the bio-impedance NN and the output of the EMG NN of measurement
number 3of the force measurement as described in Section 3.4.2. The desired force is changed with 1 kg
every 10 s.
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Figure H.5: The target, output of the bio-impedance NN and the output of the EMG NN of measurement
number 4of the force measurement as described in Section 3.4.2. The desired force is changed with 1 kg
every 10 s.

Figure H.6: The target, output of the bio-impedance NN and the output of the EMG NN of measurement
number 5of the force measurement as described in Section 3.4.2. The desired force is changed with 1 kg
every 10 s.
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Figure H.7: The target, output of the bio-impedance NN and the output of the EMG NN of measurement
number 6of the force measurement as described in Section 3.4.2. The desired force is changed with 1 kg
every 10 s.

Figure H.8: The target, output of the bio-impedance NN and the output of the EMG NN of measurement
number 7of the force measurement as described in Section 3.4.2. The desired force is changed with 1 kg
every 10 s.
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Figure H.9: The target, output of the bio-impedance NN and the output of the EMG NN of measurement
number 8of the force measurement as described in Section 3.4.2. The desired force is changed with 1 kg
every 10 s.

Figure H.10: The target, output of the bio-impedance NN and the output of the EMG NN of measure-
ment number 9of the force measurement as described in Section 3.4.2. The desired force is changed
with 1 kg every 10 s.
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Figure H.11: The target, output of the bio-impedance NN and the output of the EMG NN of measure-
ment number 10of the force measurement as described in Section 3.4.2. The desired force is changed
with 1 kg every 10 s.

Figure H.12: The target, output of the bio-impedance NN and the output of the EMG NN of measure-
ment number 11of the force measurement as described in Section 3.4.2. The desired force is changed
with 1 kg every 10 s.
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Figure H.13: The target, output of the bio-impedance NN and the output of the EMG NN of measure-
ment number 12of the force measurement as described in Section 3.4.2. The desired force is changed
with 1 kg every 10 s.

Figure H.14: The target, output of the bio-impedance NN and the output of the EMG NN of measure-
ment number 13of the force measurement as described in Section 3.4.2. The desired force is changed
with 1 kg every 10 s.
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Figure H.15: The target, output of the bio-impedance NN and the output of the EMG NN of measure-
ment number 14of the force measurement as described in Section 3.4.2. The desired force is changed
with 1 kg every 10 s.

Figure H.16: The target, output of the bio-impedance NN and the output of the EMG NN of measure-
ment number 15of the force measurement as described in Section 3.4.2. The desired force is changed
with 1 kg every 10 s.
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Figure H.17: The target, output of the bio-impedance NN and the output of the EMG NN of measure-
ment number 16of the force measurement as described in Section 3.4.2. The desired force is changed
with 1 kg every 10 s.

Figure H.18: The target, output of the bio-impedance NN and the output of the EMG NN of measure-
ment number 17of the force measurement as described in Section 3.4.2. The desired force is changed
with 1 kg every 10 s.
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Figure H.19: The target, output of the bio-impedance NN and the output of the EMG NN of measure-
ment number 18of the force measurement as described in Section 3.4.2. The desired force is changed
with 1 kg every 10 s.

Figure H.20: The target, output of the bio-impedance NN and the output of the EMG NN of measure-
ment number 19of the force measurement as described in Section 3.4.2. The desired force is changed
with 1 kg every 10 s.
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Figure H.21: The target, output of the bio-impedance NN and the output of the EMG NN of measure-
ment number 20of the force measurement as described in Section 3.4.2. The desired force is changed
with 1 kg every 10 s.
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I Time delay

The measurements as described in Section 5.7 are processed. The resulting figures of all 7 mea-
surements are given below. Movement pattern 1 of Figure 3.8 is performed. Each second the
subject switches between relaxing and contracting for 30 seconds assisted by a metronome
beating at 60 beats per minute. All signals are normalized between 0 and 1. All of the resistance
and some of the reactance signals are inverted such that the shape of these signals is the same
as the EMG signal.

Figure I.1: The measured bio-impedance and EMG signal while movement pattern 1 (Figure 3.8) is per-
formed. All of the resistance and some of the reactance signals are inverted such that the shape of these
signals is the same as the EMG signal.
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Figure I.2: The measured bio-impedance and EMG signal while movement pattern 1 (Figure 3.8) is per-
formed. All of the resistance and some of the reactance signals are inverted such that the shape of these
signals is the same as the EMG signal.

Figure I.3: The measured bio-impedance and EMG signal while movement pattern 1 (Figure 3.8) is per-
formed. All of the resistance and some of the reactance signals are inverted such that the shape of these
signals is the same as the EMG signal.
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Figure I.4: The measured bio-impedance and EMG signal while movement pattern 1 (Figure 3.8) is per-
formed. All of the resistance and some of the reactance signals are inverted such that the shape of these
signals is the same as the EMG signal.

Figure I.5: The measured bio-impedance and EMG signal while movement pattern 1 (Figure 3.8) is per-
formed. All of the resistance and some of the reactance signals are inverted such that the shape of these
signals is the same as the EMG signal.
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Figure I.6: The measured bio-impedance and EMG signal while movement pattern 1 (Figure 3.8) is per-
formed. All of the resistance and some of the reactance signals are inverted such that the shape of these
signals is the same as the EMG signal.

Figure I.7: The measured bio-impedance and EMG signal while movement pattern 1 (Figure 3.8) is per-
formed. All of the resistance and some of the reactance signals are inverted such that the shape of these
signals is the same as the EMG signal.
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J System validation

The measurement system is validated on three points as mentioned in Section 3.2.3, accuracy
and precision, the drift and the time delay. Three different resistor capacitor combinations are
used. The first one is a 10 kΩ resistor with no capacitor, the second one is a 1 kΩ resistor with
a 1 nF capacitor and the last one is a 100Ω resistor with a 4.7 nF capacitor. The impedance
is measured 6 times for each set. The first five measurements take 1 minute and the last ten
minutes. The mean and standard error is calculated over each measurement. Figure J.1 shows
the results of the measurement including the 10 kΩ resistor. At all frequencies the measured
resistance is around 10 kΩ. The highest frequency of 1 MHz shows a lower resistance compared
to the other measurement frequencies, therefor can it be expected that this measurement has a
higher error than the others. The capacitance is close to zero when looking at the bottom graph
of Figure J.1, this is as expected since no capacitor is placed. In Figure J.2 the second resistor
and capacitor measurements are shown. Again are for the resistance the measurements at the
lower frequencies the most precise. In this case it is logical for the higher frequencies to indicate
a lower resistance, since the capacitor is placed in parallel. The capacitance on the other hand
is the most precise for the high frequencies. The last combination is shown in Figure J.3. Again
the resistance is lower for the higher frequencies while the capacitance measurement is better
at high frequencies. Besides the precision is the accuracy of the 100 Hz measurement worse
than the higher frequencies when looking at the capacitance.

Figure J.1: The mean and standard error of 6 impedance measurements. A resistor of 10 kΩ is used and
no capacitor was used.
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Figure J.2: The mean and standard error of 6 impedance measurements. A resistor of 1 kΩ is used and a
capacitor of 1 nF is placed parallel to the resistor.

Figure J.3: The mean and standard error of 6 impedance measurements. The resistance of this mea-
surement was 100Ω and a capacitor of 4.7 nF is placed parallel to the resistor.
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The 10 minutes measurements are given in Figure J.4, Figure J.5 and Figure J.6. Just by looking
at the graphs no real drift can be discriminated. If drift is present in the system it is to low to
notice over the time period of 10 minutes. Since every measurement will be a lot shorter than
10 minutes it can be assumed that the drift will not influence the measurements significantly.

Figure J.4: A 10 minute measurement of a resistor of 10 kΩ.

Figure J.5: A 10 minute measurement of a resistor of 1 kΩ and a capacitor of 1 nF

The time delay is measured by connecting a resistor and capacitor in parallel to the measure-
ment setup. Every 5 s another resistor in parallel is connected or disconnected. This way the
bio-impedance as well the signal offset used for the EMG creation change on the exact same
time. If there is any delay present between the bio-impedance signal and the “EMG” signal this
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Figure J.6: A 10 minute measurement of a resistor of 100Ω and a capacitor of 4.7 nF

is due to the measurement system or processing. The EMG signals has to be down sampled,
which is done using a weighted interpolation algorithm. All signals are normalized between 0
and 1 before the cross-correlation is applied. The measured bio-impedance and “EMG” sig-
nals are given in the following figures. The cross-correlation is calculated between the EMG
signal and the resistance and between the EMG signal and the reactance for all measurement
frequencies and for all measurements. The measurement is performed 20 times each time us-
ing 4 measurement frequencies, this gives 20 ·4 ·2 = 160 cross correlations and thus 160 time
delay values. The mean and standard deviation of these values comes down to 0.0569 s and
9.818×10−4 s respectively. Which means there is a significant and constant time delay in the
measurement system.
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Figure J.7: Measurement number 1 of the impedance and “EMG” signals used for determining the time
delay of the measurement system and signal processing. All signals are normalized between 0 and 1.

Figure J.8: Measurement number 2 of the impedance and “EMG” signals used for determining the time
delay of the measurement system and signal processing. All signals are normalized between 0 and 1.
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Figure J.9: Measurement number 3 of the impedance and “EMG” signals used for determining the time
delay of the measurement system and signal processing. All signals are normalized between 0 and 1.

Figure J.10: Measurement number 4 of the impedance and “EMG” signals used for determining the time
delay of the measurement system and signal processing. All signals are normalized between 0 and 1.
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Figure J.11: Measurement number 5 of the impedance and “EMG” signals used for determining the time
delay of the measurement system and signal processing. All signals are normalized between 0 and 1.

Figure J.12: Measurement number 6 of the impedance and “EMG” signals used for determining the time
delay of the measurement system and signal processing. All signals are normalized between 0 and 1.
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Figure J.13: Measurement number 7 of the impedance and “EMG” signals used for determining the time
delay of the measurement system and signal processing. All signals are normalized between 0 and 1.

Figure J.14: Measurement number 8 of the impedance and “EMG” signals used for determining the time
delay of the measurement system and signal processing. All signals are normalized between 0 and 1.
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Figure J.15: Measurement number 9 of the impedance and “EMG” signals used for determining the time
delay of the measurement system and signal processing. All signals are normalized between 0 and 1.

Figure J.16: Measurement number 10 of the impedance and “EMG” signals used for determining the
time delay of the measurement system and signal processing. All signals are normalized between 0 and
1.
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Figure J.17: Measurement number 11 of the impedance and “EMG” signals used for determining the
time delay of the measurement system and signal processing. All signals are normalized between 0 and
1.

Figure J.18: Measurement number 12 of the impedance and “EMG” signals used for determining the
time delay of the measurement system and signal processing. All signals are normalized between 0 and
1.
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Figure J.19: Measurement number 13 of the impedance and “EMG” signals used for determining the
time delay of the measurement system and signal processing. All signals are normalized between 0 and
1.

Figure J.20: Measurement number 14 of the impedance and “EMG” signals used for determining the
time delay of the measurement system and signal processing. All signals are normalized between 0 and
1.
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Figure J.21: Measurement number 15 of the impedance and “EMG” signals used for determining the
time delay of the measurement system and signal processing. All signals are normalized between 0 and
1.

Figure J.22: Measurement number 16 of the impedance and “EMG” signals used for determining the
time delay of the measurement system and signal processing. All signals are normalized between 0 and
1.
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Figure J.23: Measurement number 17 of the impedance and “EMG” signals used for determining the
time delay of the measurement system and signal processing. All signals are normalized between 0 and
1.

Figure J.24: Measurement number 18 of the impedance and “EMG” signals used for determining the
time delay of the measurement system and signal processing. All signals are normalized between 0 and
1.
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Figure J.25: Measurement number 19 of the impedance and “EMG” signals used for determining the
time delay of the measurement system and signal processing. All signals are normalized between 0 and
1.

Figure J.26: Measurement number 20 of the impedance and “EMG” signals used for determining the
time delay of the measurement system and signal processing. All signals are normalized between 0 and
1.
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