University of Twente

Department of Electrical Engineering, Mathematics and Computer Science (EEMCS)
Services, Cybersecurity & Safety (SCS)

Master Thesis

Cryptographic Implementation of Issuer Policy for Self
Sovereign Identity Systems

Naveenaa Anaigoundanpudur Karthikeyan

Committee Chair ~ Prof.Dr. Andreas Peter

Faculty of EEMCS and Services, Cybersecurity & Safety (SCS)
University of Twente

Supervisor ~ Dr.Ing.Florian Hahn

Faculty of EEMCS and Services, Cybersecurity & Safety (SCS)
University of Twente

Committee Member ~ Dr. Ralph Holz
(External) Faculty of EEMCS and Design and Analysis of Communication

Systems (DACS)
University of Twente

Supervisors at TNO Rieks Joosten and Sterre Breeijen

October 19, 2021

UNIVERSITY
oF Twente. TINO

Cryptographic Implementation of Issuer Policy for
Self Sovereign Identity Systems

Naveenaa Anaigoundanpudur Karthikeyan
Faculty of Electrical Engineering, Mathematics and Computer Science
University of Twente
Enschede, Netherlands
n.a.karthikeyan @student.utwente.nl

Abstract—In Self-Sovereign Identity (SSI) there are three
entities involved, namely issuer (issues the credentials), holder
(for whom the credentials are issued), and verifier (the one who
needs to view the credentials to provide a service or commodity
in exchange). The problem here is that the verifier might request
more than the required credentials from the holder. The holder
is put into a difficult situation where the holder must give all
the requested credentials in order to avail of the service offered
by the verifier. To stop this from happening policies must be
put into place and these policies must be cryptographically
enforced. Various potential solutions are suggested and from
those solutions, Ciphertext Policy Attribute-Based Encryption
(CPABE) is used to address this problem. Implementation is
provided in the form of a demo and the performance of the
implemented solution is measured.

Index Terms—Self-Sovereign Identity (SSI), Issuer Policy,
Cipher-text Attribute Based Encryption (CPABE)

I. INTRODUCTION

As the world is rapidly digitising, so are our online identi-
ties. Since there is no globally agreed standard identification
for identities on the internet, each digital entity has decided to
have its own way of recognising individuals and organisations
using their own custom services. The entities then started
providing their own username and password to identify indi-
viduals and organisation. This has led to the same individual
having multiple different online personas individual and organ-
isation. Maintaining and accounting for these multiple online
personas has become a problem for both service providers and
users alike. A new concept called Self-Sovereign Identity (SSI)
has emerged that can solve the problem of multiple digital
identities.

Before looking at what SSI is let us understand how SSI
came into being and the evolution of digital identity. As
described by Christopher Allen in his comprehensive article
”The Path to Self-Sovereign Identity[4]” there are four stages
in the evolution of digital identity namely, Centralised identity,
Federated/Multiple centralised identity, User-centric identity
and Self-Sovereign identity[4]. Initially in the internet both
the issuer and verifier of digital identities were the same
entity, thus creating a centralised architecture along with a
bit of hierarchy in identity management. This was followed
by authorities of multiple and federated identity management.

The two identity systems were not user centric, instead the
authority lied with the issuer and verifier thus leaving the user
vulnerable to the decisions made by the before party. This
is when user-centric identities came into the picture. User-
centric identities were created with the intention of the user
being in control of their own identity and for the system to
be more decentralised. This allowed people to provide their
information at their will for other services online, for example,
for services such as OpenlID[36], OpenID Connect[18|] and
OAuth[13]]. User-centric identity is once again centralised due
to the fact that the identities generated by certain authority is
not transportable as of when and where required. SSI aims
to provide this transportable identity along with other notable
features such as the user being in control of their own identity.

The internet has a wide range of stands on what SSI is
and how SSI should be created and used. The standard of SSI
that shall be considered in this research is as follows. There
will three entities namely issuer, holder, and verifier. These
three notations are roles that can be played interchangeably
by organisation and individuals depending on the situation,
meaning that the entity that acts as issuer for a given scenario
can act as the holder or verifier for a different scenario. The
issuer will present credentials to the holder. The holder will
present their credentials to the verifier. The verifier views the
credential of the holder in exchange for service or information
provided it provides when the verifier requests for the same.
Since the holder is required to provide it’s own credentials to
the verifier in exchange for service or information from the
verifier, the verifier might misuse their stand and request for
more than required information from the holder. In other cases
the holder might not want to disclose too much information
about themselves to the verifier or the issuer of credentials will
only want certain verifiers to view the credentials they have
issued for privacy reasons. To make sure such actions do not
take place policies have to be enforced. Till now within the
SSI systems issuing of policies over the SSI credentials have
not been thought of. This paper explores how the policies can
be cryptographically enforced for SSI systems. In this paper
the policies for SSI credentials will be issued by the issuer of
SSI credentials and henceforth be called as issuer policy. This
is so as to make the working of the research easy and straight

forward. The policy can be in the future be enforced by the
holder if required. With the issuer policies in place the requests
made by the verifier to view the holder’s SSI credentials will
be cross checked with set of issuer polices. If the verifier
satisfies the issuer policy then the holder’s SSI credentials
can be viewed by the verifier. If the verifier does not satisfy
the issuer policy then the holder’s SSI credentials can not be
viewed by the verifier. The issuer policy will be implemented
using Ciphertext-Attribute Based Encryption (CP-ABE).

This paper is structured as follows. Section [[I] describes
about the related work and Self Sovereign Identity(SSI) in
depth and states the research problem for this thesis. Section
gives a summary of the potential solutions proposed for
this problem. Section describes the issuer policy in detail
and explains which scenarios or attributes can or can not be
implemented. Section |V| describes how Ciphertext-Attribute
Based Encryption (CP-ABE) could be used in SSI and how
it can be implemented with a use case scenario. Section
explains the environmental setup in which the codes were
coded and the analysis was done. It also explains the results
that were observed based on the implementation of the code
depending on various parameters. Section describes the
future works and section is the conclusion.

II. BACKGROUND

There are different Self Sovereign Identity (SSI) systems
out there at the moment and some of them are discussed in
subsection related work. Most of the SSI systems follow the
W3C Verifiable claims[30] standard format and their identi-
fiers are of the Decentralised Identifiers (DIDs) [8]]. General
structure of Self Soverign Identity Systems are summarised in
subsection Self Sovereign Identity System.

A. Related Work

The digital identities have evolved over time as described by
Christopher Allen in "The Path to Self-Sovereign Identity[4]”.
He describes that any identity system should have the balance
of transparency, fairness, and support of the commons with
protection for the individual[4]. [4]] describes how SSI came
into being and what is SSI and the 10 principles of SSI.

There are various SSI systems namely Sovrin, IRMA, uPort,
ShoCard, Blockstack and many more. [20] elaborates on
Sovrin, IRMA, uPort, ShoCard, Blockstack and evaluates and
compares each of these systems one by one and mentions that
all these systems have not been able to truly achieve all the
parameters needed for in an SSI. In [17] IRMA and Sovrin
are compared in detail. Sovrin, uPort, ShoCard, Blockstack
work on blockchain technology. In Sovrin [29] anyone can be
the issue credentials and anyone can be verify the credentials.
It is built on Hyperledger Indy Project[14] and is an open
source. uPort is is also an open source and works entirely
dependent on Ethereum blockchain. ShoCard [25] works on
Bitcoin blockchain. The identities are stored in the blockchain
in the format of signed cryptographic hashes [20]. Blockstack
[31] is a decentralised internet secured with the technology
of blockchain, is not just used for identities but also for

other services such as discoveries and storage [3]. IRMA [35]]
implements the Idemix attribute-based credential scheme and
supports attribute-based signatures [33]. IRMA makes use of
the concept of Zero-Knowledge Proof(ZKP) [11] to prove that
a number satisfies a certain property without giving away what
the number actually is[39].

These systems have tried to address the core values of SSI
to an extent. The problem of the holder being vulnerable to
give away too much information about oneself to the verifier
have not been discussed or thought of so far in the current SSI
systems. This problem will be addressed in this paper in the
form of issuer policy over SSI credentials and implemented
cryptographically using CP-ABE.

B. Self Sovereign Identity System

SSI as a new emerging technology will help in solving
the modern-day digital identity problems faced due to the
advancement of internet and network infrastructure. For ex-
ample SSI will protect the privacy of the individual according
to the GDPR regulations, Web-shops will no longer have to
save critical personal information about its users. Other use
cases include the elimination of passwords and falling victim
to phishing attacks. SSI will be able to enforce trust on entities
and make digital life more convenient for all of its users[22].

The common structure present in the systems are the 3 major
roles namely the issuer, holder, and verifier. Entities participat-
ing in SSI could take up one of these roles at any given point
in time and work interchangeably for different scenarios. For
a particular scenario the roles are not interchangeable. The
entity playing the roles of the issuer is the one issuing the
credentials. Holder is the one for whom the credentials are
issued for. Verifier is the one who requires the credentials to
provide information/service. For example University of Twente
will be an issuer when issuing the degree certificate to it’s
students. In another scenario when a prospect student applies
to the university, the university now becomes the verifier for
the prospect student’s credentials. This way the entities take
up these 3 roles alternatively depending on the situation.

The model of SSI flow presented in Figure [I] is based
on the contents provided in Verifiable Credentials Flavors
explained[38].

Step 1: The process is done within the issuer side. The issuer
issues the verifiable credential (VC).

Step 2: The holder makes a connection with the issuer in
order for the issuer to share the credentials with the holder.
The connection will be made with the help of identifiers.

Step 3: The issuer now prepares the VC asked by the holder.

Step 4: The issuer and the holder connect with each other
via the help of identifiers to pass the VC from the issuer to
the holder. The VC will be now present in the holder’s digital
wallet.

Step 5: The verifier requests to the holder on what type of
credential is required. This is known as presentation exchange.
At the time of writing this paper this exchange method was
still in development stage.

Issuer Holder

Issue VC
Create identifier/sign VC

Holder shares identifier
with issuer

-
+

-

Prepare credentials

Issuer and holder connect to
pass credential

-
>

A

VC present in digital wallet

Fresentation Exchange:
Verifier requests the holder on
the type of credential it wants

Verifier

1
1
1
1
[
1
1
1
1
1
1
1
1
[

A

o

v

Create VP using VC

Monce from verifier to
prevent replay attack

9

3

\erifier and holder connect to
pass credential

[

F Y

Issuer Haolder

>

VP presented to the verifier

Verify VP using
verification check

o

Verifier

Fig. 1. System Flow

Step 6: Depending on what was asked by the verifier it will
be decided whether VP needs to be made from the VC and
made if needed to.

Step 7: The verifier produces number used only once
(nonce) and sends it to the holder. This is done in-order to
prevent any replay attack for the same credentials in the future.

Step 8: As done in step 4 the verifier and holder connect
with the help of identifiers and then transfer the required
VP/VC. The VP/VC is not present at the verifier side.

Step 9: The verifier verifies the VP/VC using verification
check. This process involves the issuer of the VC.

The current system of SSI mentioned above has a major
problem. The entity that plays the role of the verifier can
exploit it’s own power and demand for more than the required
credentials and claims from the holder in return for the services
offered by it. The digital entity holders may not want to
disclose too much information than required due to privacy
reason. There is a possibility of abuse of power in SSI: when
the holder wants to access the verifier’s services or information
then the verifier might push the holder to present more than

required credential/claims about themselves. This way the
verifier will have to pass the criterion present in the policy
if not the verifier will not get the desired credentials, thus
helping the holder not to be forced into providing more than
required information. The issuer policy is a set of instructions
in the form of attributes that must be satisfied by the verifier
in order for the verifier to view the credentials issued by the
issuer to the holder. The issuer policy will be generated by
the issuer to encrypt the SSI credentials of the holder. The
encrypted credentials of the holder will only be able to be
decrypted by the decryption key that satisfies the conditions
mentioned in the issuer policy. This decryption key will be
obtained by the verifier from the SSI key smith by presenting
the verifier’s attributes.

To solve the above mentioned problem about the verifier
misusing their power, a policy should be made to over look
which specific credentials or claims can be accessed by whom
and for what reasons. This policy will be created by the
issuer. This is so because the issuer will know to whom
the generated credentials will be of more value and whom

will want to exploit it. With such information the issuer
will be able to create policies accordingly to protect the
holder’s credentials/claims. To go about implementing this
policy the first option is to look into the possible cryptographic
techniques/schemes for the same. This policy enforcement can
in the future be extended to be done by the holder depending
on the scenario faced.

The attacker in this case will be an entity who wants
to access the holder’s credentials without passing the policy
issued by the issuer. Two entities, whom individually can not
pass the policy will try to collude together to satisfy the policy
and to get the credential. For example entity X, Y wants to
get H’s credential. H here is the holder. The policy states that
in order for an entity to see H’s credential, the entity must
have the attributes A and B. Entity X has attribute A and
entity has attribute B. Individually X and Y can not access H’s
credential. But combing both their attributes X and Y have the
required attributes A and B to access the H’s credential. This
collusion between entities is not possible and will be explained
in Security analysis and Attacker model for CP-ABE of section

III. POTENTIAL SOLUTION

To cryptographically implement the issuer policy for SSI
systems various techniques and solutions were considered.
Below are a short descriptions of the potential solutions
and a short description of why they were not used in the
implementation. A detailed explanation of each solution and
how they could be used for issuer policy in SSI is provided
in the appendix.

o Shamir Secret Sharing: In Shamir Secret Sharing the
credential issued will be taken as a secret and divided
into parts, in our case divided into exactly two parts. In
order to read the credential the two parts must be put
together, hence one part will be with the issuer and the
second with the holder. This way the issuer can verify
the verifier when the verifier requests for the credential.
This leaves the issuer with lots of power and enables the
issuer to know about the usage of the credentials by the
holder.

o Trusted Third party: The party will over look the whole
process from generating the credentials to distributing it.
This meant all the communications between the entities
including transfer of credentials will go through this
third party. This meant it is a single point of failure or
compromise.

o Smart Contract: Smart contract are digital contracts
present on top of the blockchain, that will get executed
when certain actions are fulfilled as stated by the code
written. The holders credential will be inside the smart
contract, the code will be written such that the verifier has
to match the conditions of the issuer policy. If the verifier
satisfies the issuer policy then they will be able to get
access to the credentials of the holder. The disadvantage
here is that once the contract is made it is permanent and

hence can not be changed. The electric power and cost
for running the blockchain is also high.

e Attribute Based Credentials: Attribute Based Credentials
(ABC) uses the principle of Zero-Knowledge proof which
aids in an entity to reveal information about oneself in
the form of attributes. An entity called the Semi Trusted
Third Party (STTP) generates the attributes for the verifier
if the verifier passes the issuer policy. These verifier
attributes will be checked by the holder’s wallet and if
the attributes are correct the requested credentials will be
passed to the verifier. The disadvantage of this system is
the communication overhead related to the generation of
attributes for verifier every time request for credential is
made.

o Attribute Based Encryption: In Attribute Based Encryp-
tion(ABE) the SSI credentials will be encrypted using a
set of attribute values. The decryption can be done by an
entity who posses the attribute values mentioned during
encryption.

o Two Layer Encryption: The credential will be encrypted
twice. The first encryption can be decrypted by the
verifier and the second layer can be decrypted by the
holder. The encryption and key generation will be done
by the issuer. In this case the issuer could collude with
the verifier or could be compromised.

e Hybrid Solution: A solution where two or more of the
above mentioned solutions are combined to overcome the
short comings each solution had.

The solution that was used for implementation is Attribute
Based Encryption which is described below.

A. Chosen Solution: Attribute Based Encryption

Traditionally encryption of a message was done either using
symmetric or asymmetric keys, where the message will be
encrypted using the receiver’s public key and the receiver
would be able to decrypt it using their own private key.
Through out this subsection reference to attributes means both
attribute field and attribute values unless stated specifically
as either attribute field or attribute values. With Attribute
Based Encryption (ABE) the encryption and decryption of the
message is done through the receiver’s attributes. The base line
of this development in encryption and decryption method was
called Identity Based Encryption (IBE)[24]]. The concept was
first introduced by Amit Sahai and Brent Waters in the paper
“Fuzzy Identity-Based Encryption[[19]]”. ABE allows messages
to be encrypted in such a way that entities with certain
attributes will only be able to decrypt the message[19]]. This
was achieved by using one public key for encryption and many
private keys for decryption. Creation of multiple private keys is
possible by splitting up the master private key using Shamir’s
secret sharing. This use of Shamir’s secret sharing makes ABE
error tolerant and is resistant against collision attacks [24].
Collision resistance means two different receiver’s with two
different private keys combine them to decrypt a message that
is not intended for them.

There are two types of ABE namely Key-Policy Attribute
Based Encryption (KP-ABE) [[12] and Ciphertext-Policy At-
tribute Based Encryption (CP-ABE) [6]. In CP-ABE the
ciphertext is associated with access structure/policy and the
private keys are linked with attribute values of the receiver. The
access structure/policy states which private keys can decrypt
the ciphertext.

Overall there are four different roles played on ABE specific
to SSI which are the encrypter, the decrypter, the user and the
key-issuer. The encrypter is the one that encrypts the plain-
text message into ciphertext using the public key and the
access structure/set of attributes in case of CP-ABE/KP-ABE
respectively. The decryptor takes the ciphertext and decrypts
it using the public key and private key. The user is the one for
whom the message is intended to be delivered. The key-issuer
is the one who issues the public key, master secret key and
the private keys.

For the purpose of implementing the issuer policy CP-ABE
seems to be a better option to implement than KP-ABE. The
reason being that in CP-ABE the the encrypter decides the
policy about who can decrypt the ciphertext generated. The
user’s attributes are used to generate the private keys and these
attributes are linked to their credentials. While in KP-ABE the
encrypted data were the ones about whom the attributes where
described and policies where built into the private keys. This
means the encrypter will have to trust the key-issuer to ensure
the correct execution of the issuer policy. In case of CP-ABE
the control of issuing policy and executing it stays with the
issuer and not an external party, thus making CP-ABE the apt
choice for implementing the issuer policy problem of SSI.

In CP-ABE there are four main algorithms namely the set-
up, encrypt, key-generation and decrypt based on [6]. In set-
up algorithm outputs the public key (PK) and master key
(MK) taking the security parameters as the input. The encrypt
algorithm takes the PK, message and access structure as input
and outputs the ciphertext encrypting the message. The key-
generation algorithm takes the MK and set of attributes that
describe the key and generate the SK and give it as the output.
The decrypt algorithm takes PK, SK and the ciphertext as
the input and outputs the message. The decryption happens
only if SK contains the required attributes stated in the access
structure of the ciphertext.

a) Security analysis and Attacker model for CP-ABE:

The security model for the cryptographic implementation of
issuer policy for SSI systems is similar to that described in
[6]. The adversary can query for any private key. This private
key queried by the adversary can not be used to decrypt the
ciphertext that will be used to challenge the adversary. The
adversary will be challenged on the encryption to the access
structure of its own choice and can ask for any decryption key
such that the decryption key does not satisfy the policy stated
in the encryption. The formal security game is as follows based
on [6[: (The SSI Key Smith is the challenger)

o Setup: The SSI Key Smith runs the setup algorithm. The
public parameters (PK) is given to the adversary.

o Phase 1:The adversary generated decryption key in cor-
respondence to the set of attributes S1,...,Sq1

o Challenge: The adversary given two equal length SSI
credentials to the SSI Key Smith namely SCj and SC;.
The adversary also gives an access structure A*. The A*
does not satisfy the Si,..., S, from Phase 1. The SSI
Key Smith now randomly flips a coin b and encrypts SC}
under A*. The corresponding ciphertext CT* is given to
the adversary.

o Phase 2: Phase 2 is the repetition of Phase 1, with a
restriction that the access structure corresponding to the
challenge must not be satisfied by the set of attributes
Sq1+1, ceey Sql.

o Guess: A guess, b® of b is outputted by the adversary.
The advantage of an adversary A in this game is defined as
Pr[b® = b] -1/2, as stated in [6] . The model can easily be
extended to handle chosen-ciphertext attacks by allowing for
decryption queries in Phase 1 and Phase 2, as stated in [6].

The implementation of the issuer policy is collusion resis-
tance, because the underlying cryptogrpahic technique CP-
ABE is collusion resistance. Meaning two different entities
can not combine their attributes to decrypt the holder’s cre-
dential. This is because CP-ABE is collusion resistance due to
randomisation of each key generated for decryption purpose
(6]

IV. ISSUER PoLICY

This section explains about what is an issuer policy and
about what can and can not be cryptographically implemented
as an issuer policy using ABE. Hence forth in this paper if the
word attributes are mentioned it is referred to the attributes that
are used to identify the verifier and not the attributes values the
SSI system issues via the issuer, unless specifically mentioned
otherwise.

As discussed in Section [[I] issuer policy is a set of instruc-
tions in the form of attributes that the verifier must satisfy
in order for the verifier to view the credentials issued by
the issuer to the holder. The attributes in the issuer policy
can be of two types. One type is where the attribute is of
string type where the whole string value will be compared
with the verifier’s attributes and it should be a exact match.
This type of attribute must be mentioned inside quotes for
example:” attribute Descrption — attributeV alue”. The sec-
ond type is of integer type where the arithmetic function
<, >, = can be used. This means the given attribute values can
be compared to a given integer value and can be in between
certain values mentioned according to the policy. This feature
enables the issuer to define parameters specific to certain age
group or management levels in an organisation or institution.
This type of attribute need should not be within quotes but
rather in the format for example: attributeDescription <
atributeV alue. All attribute values mentioned in the issuer
policy are connected to the next attributed mentioned in the
same policy with either the ”or” or "and” logical operator.
Below are a few examples of how the logical operators ” or”

or "and” can be used in accordance to how the issuer policy
needs to be formulated.

o (age>18) and (("nationality-netherlands’) or
(’nationality-german”))”. This issuer policy states
that the verifier must be above 18 years of age and
should be either a Netherlands citizen or a German
citizen.

o ”((department-hr) and (’designation-seniormanager’)) or
((designation-manager”) and (“department-it”))”. This
issuer policy states that the verifier must be either the
senior manager of the HR department or the IT manager.

In the case where a certain integer value alone should
be neglected from the policy then the attribute can be
written as (age < 17)and(age > 19). Here the the person
with the age as 18 will not be included. This is how one
can perform negation of a certain integer value. Negation
of string values is not straight forward. For example if
all the EU nationalities except Netherlands can view the
encrypted credential, the issuer policy must include all the
nationalities in the format as follows ”(”nationality —
austria”)or("nationality — belgium”)or("nationality —
bulgaria”)or("nationality — croatia”)or(” nationality —
republico f cyprus”)or (" nationality —
czechrepublic”)or (" nationality —
denmark”)or(” nationality — estonia”)or(”nationality —
finland”)or("nationality — france”)or("nationality —
germany”)or("nationality — greece”)or("nationality —
hungary”)or(”nationality — ireland”)or(”nationality —
italy”)or("nationality — latvia”)or("nationality —
lithuania”)or (" nationality -
luxembourg”)or (" nationality —malta”)or (" nationality —
poland”)or("nationality — portugal”)or(”nationality —
romania”)or("nationality — slovakia”)or(”nationality —
slovenia”)or("nationality — spain”)or("nationality —
sweden”)”, and not mentioning Netherlands.

The cases where issuing issuer policy over the SSI attributes
are not possible are when the same set of SSI attributed must
be dynamically changed depending on the situation. For now
SSI attributes that are static and will not change drastically can
be encrypted using the issuer policy. When the condition to
be stated in the issuer policy should be static and not dynamic
in nature. The attributes must be in the format as stated above
in paragraph 3.

V. IMPLEMENTATION

This section describes how CP-ABE can be used to imple-
ment the issuer policy in SSI systems.

Figure [2] describes how ABE can be used for the SSI
systems and the entities. The four algorithms of CP-ABE as
mentioned in Section [[II] are used by the entities mentioned
in figure [2| to implement the issuer policy. The entities are the
issuer, the holder, the verifier and the SSI Key Smith. The SSI
Key Smith here is a new additional entity to the SSI system
compared to that mentioned in Figure [T SSI Key Smith is
similar to that of Semi-Trusted Third Party in Attribute Based
Credentials, with the difference of name to match it’s main

role of the generation of the master and secret keys to be
used in the system. SSI key smith used the setup algorithm
to generate the keys needed for encryption and decryption
processes. The issuer used the encrypt algorithm to encrypt
the SSI credentials which is to be issued to the holder. The
verifier uses the decrypt algorithm to decrypt the encrypted
SSI credentials of the holder.

The description of the Figure [2| is as follows. In step 1
the SSI Key Smith generates the master key (MK) and the
public key (PK). The MK is transferred to the issuer in step
2. The issuer then prepares the issuer policy in step 3 and the
verifier will now ask for the secret key by presenting it’s own
attributes in step 4. In step 5 the SSI Key Smith generates the
SK using the MK that was generated in step 1 and is linked
with the attribute values of the verifier for whom the SK is
generated. Now the SK is transferred to the verifier in step 6.
In step 7 the holder requests for its credentials. The issuer now
prepares the credentials and encrypts it using PK provided by
the SSI Key Smith and with the access structure that states
which attributes need to be present in the SK for decryption
in step 8. These encrypted credentials is then transferred to
the holder in step 9. The verifier requests for the credentials
of the holder in step 10. The verifier transfers the encrypted
credentials to the verifier in step 11. In step 12 the verifier will
be able to decrypt the encrypted credentials if the SK of the
verifier matches with attributes present in the access structure
of the encrypted credentials.

Figure [3] describes a scenario where issuer policy can be
used in a office setting. All the entities namely the issuer,
holder, verifier, SSI Key Smith belong to the same organ-
isation. In step 1 the SSI Key Smith generates the master
key (MK) and the public key (PK). The PK is transferred
to the issuer in step 2. In step 3 the holder requests to the
SSI Key Smith for a decryption key by presenting it’s own
attribute values. In step 4 the SSI Key Smith generates the
SK using the attributes provided by the holder and transfers
the SK to the holder in step 5. The holder now requests for
SSI credentials to the issuer by providing it’s E_No (unique to
each individual in the organisation) as an identifier in step 6.
The holder sends the E_No as identifier to the issuer because
the holder wants to see their own encrypted credentials issued
to them. In step 7 the issuer will now prepare the issuer policy
for the SSI credential to be encrypted. The issuer policy will
also include the E_No at the end of the policy with an “or”
logical operator. This way the holder can also request for their
own decryption key (as done in step 3) and be able to decrypt
the encrypted credentials. In step 8 the issuer encrypts the
SSI credentials using the SSI credential, PK and an access
structure that contains the issuer policy. The encrypted SSI
credentials is transferred to the holder in step 9. In step 10
the verifier requests for its decryption key (sk) to the SSI Key
Smith by specifying it’s own attributes. The SSI Key Smith
generates the SK for the verifier in step 11 and transfers the
SK to the verifier in step 12. In step 13 the verifier requests the
holder for the holder’s SSI credential. The holder transfers the
encrypted SSI credential to the verifier in step 14. The verifier

Issuer Holder

ISSI Key Smith|
Generate master key

@ (MK) and public key
(PK)

Transfer the PK to the issuer

@ Prepare the Issuer Policy

Holder requests for Credentials

®

Issue Credentials, encrypt the
credentials using PK and the

D access structure stating the

attributes needed according to
the issuer policy for decryption

Transfer of encrypted credential
to the Holder

Verifier requests for Credentials

Verifier requests for Secret Key
(SK) by presenting its attributes

Generate SK using the MK
® with the atiribute values

D provided

Transfer of SK to the Verifier @

the verifier

Transfer of encrypted credential to

Issuer Holder

Verifier decrypts the encrypted
credential using the SK

<

ISSI Key Smith|

Fig. 2. System flow of ABE

decrypts the encrypted SSI credential of the holder using the
encrypted SSI credential, SK and PK.

Each PK will be associated with certain set of fixed attribute
list. This is way the issuer can decide to use all or some of
the attributes in the list. The verifier when requesting for the
decryption key (SK) from the SSI Key Smith, will present all
the attribute values in the list of that particular PK used by
the issuer. This is done so that if needed the issuer can keep
it confidential which attributes are required from the verifier.
The issuer policy stated in step 7 of figure [3] has two attributes
Designation and E_No having * as the value. This is because
the issuer in this case did not need the attributes Designation
and E_No to create the policy so * indicates that the verifier
can be of any Designation and E_No to be able to satisfy that
part of the issuer policy. Another use of the * for attribute
value in the policy can be when the policy wants to state the
encrypted SSI credential is for everyone in the organisation
then the department attribute value will be *. The attribute
having the * value denotes that particular attribute in the
issuer policy will be a wildcard and the verifier when trying to
satisfy the issuer policy can have any value for that particular
attribute. This feature has not yet been implemented due to
time constraints. The possible way to implement the wildcard
feature is explained in section

The roles of the issuer, holder, verifier will be played inter-
changeably by the organisation employees or the departments
in the organisation, this will depend on the credentials that
are shared. The role of the SSI Key Smith will be played by a
separate group of individuals from the organisation who will

over look the process of key generation and key distribution
within the organisation. In case the individual or department
in charge of the key distribution will be playing any of the
roles of issuer, holder, verifier then the key distribution for
that particular scenario will have to be taken care by another
individual or department. This is to ensure there is no colluding
between parties and to ensure fair play.

VI. EXPERIMENT AND RESULT

The implementation was done using Ubuntu in an Oracle
VM VirtualBox Manager. The base memory of the system was
5691 MB. The code for implementation was done in python
using builtin libraries. The charm library’s Pabe_bsw07,
HybridABEnc and PairingGroup functions were mainly
use for the key generation, encryption and decryption process.
All the generated credentials and variables were converted to
json and stored in a json file. This was done because most SSI
systems communicate within themselves by transferring data
in JSON format [38]. The web interface demo explaining the
sequence of actions that will take place in a real world setting
with issuer policy in place was developed using Flask.

In order to understand how including the issuer policy to
the systems of SSI will influence the speed of generation of
keys or encryption or decryption of messages, there were a
number of benchmarks made to the demo code. The number
of benchmarks were added to see what will happen if the
system is deployed in a real world scenario where more than
just a couple of attributes for the issuer policy or the verifier
were used. The benchmarks include:

ISSI Key Smith|

Generate master key
(MK) and public key (PK)
for work environment.

Transfer the PK to the issuer @ ?Xﬁﬁﬁ[‘ﬁ-m

REQUEST_SK
(E_No = 12005
Management_Level = 1,
“Department IT", "Designaticn
Intern”)

= E_No

» Management_Level
Designation

» Department

GENERATE_SK
MK, (E_No = 12005
Management_Level = *,
"Department: IT",

Transfer of SK to the Holder @
"Designation: Intern™))

Holder requests for Credentials
providing their E_No = 12005 as
identifier

Prepare ISSUER_POLICY
(Management_Level > 5 OR
(("Department: HR" OR "Department:
Finance") AND "Designation: ** AND
E_No = %)) OR E_No = 12005

Issue encryptes credentials
ENCRYPT_C (Credential, PK,
Access_Structure
[(Management_Level = 5 OR
(("Department: HR" OR
“Department: Finance")AND
"Designation: ** AND E_No = *))OR
OR E_No = 12005])

®

Transfer of encrypted Credentials
to the Holder

Verifier requests for Age Crsﬂennal@

REQUEST_SK
(E_No = 11050, Management_Level =
7, "Department: Management"
“"Designation: CEQ")

GENERATE_SK
(MK, (E_No = 11050,
Management_Level =7,
"Department:
Management"
“Designation: CEO™))

Transfer of SK to the Verifier @

to the verifier

Transfer of encrypted Age Credential

DECRYPT_ENCRYPTED_C
(Encrypted_Credential, SK, PK)

1SSI Key Smith)|

>

Fig. 3. CP-ABE Scenario

o generating up to 100000 number of attributes for the
verifier’s key generation.

o generating issuer policy with attributes up to 100000
numbers

The table [I] displays the result of running the demo code
with 1, 50, 100, 500, 1000, 5000, 10000 verifier’s attributes
and checking the time it took for the generation of verifier’s
key, encryption and decryption with the respective number of
verifier’s attributes. The table [below displays the time taken
for generating the verifier’s key, encryption and decryption but
with respect to the number of issuer policy attributes. Each
operation for the generation of verifier’s key, encryption and
decryption was run 100 times and each time it was run the
results were stored in a excel file. In order to report stable
values it was decided to present the results in the format of
the 25" percentile, 50*" percentile(the median) and the 75"
percentile. The 25", 50t", 75" percentile is the 25", 50",
75" value respectively in the sorted table containing all 100
values. Figures []] [f] are the graphical representation of the
data present in the table [I Figures [7} [B] [J are the graphical
representation of the data present in the table [[T}

The graphical representations are of logarithmic scale and

not liner in the x-axis. The increase in the attributes for issuer
policy and verifier are done in multiples of 10 alternatively
and the middle value in between is half that of the preceding
value. The size of Versifier's key and the encrypted SSI
credential size always remained the same. The size was of
248 Bytes unchanged even with the increase in the number
of verifier’s attributes or the issuer policy attributes. This is
because the generation of keys and the encryption because of
the underlying cryptogrpahic functions used and the output
from those functions should remain same for Confidentiality,
integrity and availability concept.

a) Increase in the number of Verifier’s attributes: As
seen in the table[l|and in the Figure [with the increase in the
number of verifier’s attributes used, the verifier’s key genera-
tion time will also increase. The encryption time remains the
same even if there is a big increase in the number of attributes.
This is because the attribute increase is for the verifier’s
attribute and this will not be used for the encryption process.
The graph in Figure [5] shows fluctuation in the encryption time
from when the number of attributes was from 1 to 100000.
It can also be noted that the time is between 0.01 to 0.02
seconds. The fluctuation is within this limit all the times the

No.of Verifier's attributes Verifier Key Generation Time (seconds) Encryption Time (seconds) Decryption Time (seconds)

)) " | 257" percentile | 507" percentile | 75" percentile | 257" percentile | 50" percentile | 75" percentile | 25" percentile | 50" percentile | 75" percentile

1 0.005882006 0.006526022 0.007219986 0.016898067 0.018134586 0.020474505 0.004602718 0.004848961 0.005098016

50 0.219068768 0.244886369 0.295062453 0.015087816 0.016456093 0.019169742 0.00460665 0.005014573 0.005497464

100 0.401992285 0.425789023 0.478297425 0.015568035 0.016125024 0.016948232 0.004434496 0.004572559 0.004747808

500 2.016466364 2.038748405 2.079696979 0.015163625 0.015594727 0.016162428 0.004996375 0.005190461 0.005541626

1000 4.066891448 4.130286042 4.329489236 0.016049709 0.016751673 0.01743158 0.005741721 0.006056564 0.006475072

5000 20.42549143 20.61074902 20.81979582 0.014899917 0.015330052 0.016132367 0.008755519 0.009035359 0.009362737

10000 31.62823555 32.69538592 37.74589325 0.011648187 0.011913117 0.012229255 0.00994278 0.010102258 0.010364182

TABLE
VARYING NUMBER OF VERIFIER’S ATTRIBUTES AND THE CORRESPONDING TIME TAKEN FOR VERIFIER’S KEY GENERATION, ENCRYPTION, AND
DECRYPTION

No.of Verifier's Attributes VS Verifier Key Generation Time

)

5«

@ 35

+ 30 /
E

E 2 4

c 20

o

= 15

E 0

W 3

o 0

= 1 50 100 500 1000 5000 10000
o

= No.of Verifier Attributes

o

>

== min (seconds) medium (seconds) max (seconds)

Fig. 4. No.of Verifier’s Attributes VS Key Generation Time

No.of Verifier's Attributes VS Encryption Time

0025
S
g 0.02
5
_g 0.015 \o———'§f’\\
E
§ oot
a
£ 0.005
"0
1 50 100 500 1000 5000 10000
No.of Verifier Attributes
g TN [SECONAS) medium (seconds) max [seconds)
Fig. 5. No.of Verifier’s Attributes VS Encryption Time
No.of Verifier's Attributes VS Decryption Time
__ 0012
E om
g
< 0.008
E
£ 0.006
c
2 0.004 - e
j=8
S o002
o
a
0
1 50 100 500 1000 5000 10000

No.of Verifier Attributes

g TN [SECONAS) medium (seconds) max [seconds)

Fig. 6. No.of Verifier’s Attributes VS Decryption Time

code was run. All the 100 time values were within the limit
of 0.01 to 0.02 seconds. Hence the encryption time remains
same and does not increase with the increase in the number of
attributes. In decryption the verifier attributes are used hence
with the increase in the number of attributes the decryption
time will also increase. The increase in decryption time can
be seen in the table [and the graph in Figure

No.of Issuer Policy Attributes VS Verifier Key
Generation Time
0.01
0.008
0.008
0.004

0.002

1 50 100 500 1000 5000 10000

Mo.of Issuer Policy Attributes

Verifier Key Generation Time{seconds)

min (seconds) medium [seconds) ege=max (seconds)

Fig. 7. No.of Issuer Policy Attributes VS Key Generation Time

No.of Issuer Policy Attributes VS Encryption Time

w
=

.
=

w
=

.

=
=

-
=]

Encryption Time(secnds)

=]

1 50 100 500 1000 5000 10000

No.of Issuer Policy Attributes

i 1N [SECONS) medium (seconds) max [seconds)

Fig. 8. No.of Issuer Policy Attributes VS Encryption Time

b) Increase in the number of issuer policy attributes: The
key generation time for verifier remains same even if there is
a big increase in the number of issuer policy attributes. This
is because the issuer policy attribute is not directly linked to
the production of verifier decryption key. The graph in Figure
[7l shows fluctuation in the time from when the number of
attributes was from 1 to 100000. It can also be noted that
the time is between 0.004 to 0.01 seconds. The fluctuation is
within this limit all the times the code was run. All the 100

B . .] Verifier Key Generation Time (seconds) Encryption Time (seconds) Decryption Time (seconds)
No-of Issuer Policy autributes |~z percentile | 50°" percentile | 75" percentile | 25?" percentile | 50" percentile | 75" percentile | 25" percentile | 50" percentile | 75%" percentile

1 0.005772739 0.006009826 0.00644919 0.006756932 0.007130283 0.008073292 0.004031721 0.004192069 0.004553541
50 0.005731352 0.005842947 0.006228989 0.209232538 0.220608331 0.279577014 0.014465203 0.016077292 0.019417157
100 0.005914765 0.006197408 0.006585778 0.406153804 0.416938659 0.44920792 0.02438119 0.02563117 0.030377412

500 0.005773694 0.006344997 0.008388364 2.059610863 2.088977897 2.131039651 0.105734926 0.11234979 0.11549398
1000 0.00631281 0.006648805 0.007189324 4.37616397 4.428854528 4.504344116 0.230829796 0.235023488 0.242491432

5000 0.005236771 0.00561015 0.006306851 22.07240124 22.48996826 22.78393184 0.793044545 0.813155369 1.059188805

10000 0.003714354 0.003767243 0.003936868 33.504725 38.41387986 44.17917548 1.668248514 1.949586747 2.5513674

TABLE 1T
VARYING NUMBER OF VERIFIER’S ATTRIBUTES AND THE CORRESPONDING TIME TAKEN FOR VERIFIER’S KEY GENERATION, ENCRYPTION, AND
DECRYPTION

No.of Issuer Policy Attributes VS Decryption Time
3

Decryption Time{secnds)
e

1 50 100 500 1000 5000

Mo.of Issuer Policy Attributes

10000

min (seconds) medium (seconds) max [seconds)

Fig. 9. No.of Issuer Policy Attributes VS Decryption Time

time values were within the limit of 0.004 to 0.01 seconds.
Hence the key generation time remains same and does not
increase with the increase in the number of issuer policy
attributes. With the increase in the number of issuer policy
attributes used, the encryption time also increases. This can
be clearly seen in the table and in the Figure The
reason being is that the issuer policy attributes are used during
the encryption process with the increase in number it should
result in higher generation time. In decryption process the
issuer policy attributes are used hence with the increase in
the number of issuer policy attributes the decryption time will
also increase. The increase in decryption time can be seen in
the table [[T and the graph in Figure [9}

It can be inferred from the tables [T} and [[] that the decryption
time increases linearly with respect to the increase in issuer
policy attributes and verifiers attributes. Given that there are 50
holders with 100 issuer policy attributes each who want to get
service/information from the verifier. The verifier will be able
to decrypt the encrypted SSI credentials of the holders less
that 1 seconds. The same action for decryption for 50 holders
with 100 verifier attributes will take about 0.01 seconds.
In the same way the time taken for encrypting 50 holder’s
SSI credentials with 100 issuer policy attributes is about 22
seconds. Compared to the decryption time the time taken for
encrypting the SSI credentials is higher. Given the scenario
that the encryption for a certain SSI credential will be done
once and stored with the holder whereas the decryption process
will take place many times with various verifiers it is needed
that the decryption time is as minimum as possible, which in
our case is so. From these observations it can be concluded
that the implementation can be used in real time.

VII. FUTURE WORKS

This section explores the future development that can be
added to the current model. These include the following
concepts:

o Certain scenarios might require the issued credential
to be revoked or to be considered invalid. For this to
happen a time constraint can be added to the policies
being issued. During the generation of SSI attributes
and encrypting them with the issuer policy the policy
should include a time bound parameter that specifies till
when the underlying attributes of SSI are valid. Another
way to have time constraint is to enact the policies via
blockchain. Executing SSI attributes in a blockchain with
the help of smart contracts. The smart contracts can state
that after the defined time period the underlying SSI
attributes should not be revealed to entity or made use
by any entity.

o The wildcard feature mentioned in section |V| has yet to
be implemented. The way to implement it is to include
an extra functionality in the built-in library of charm.
[] could be done using import re python function.
which displays all the values of after * for example
if words with like as the prefix then words such as
likeable, likeliness will all be considered this can be
used for attributes. Example for using re library for
issuer policy where all the departments in the institution
can view the encrypted credential, the issuer policy will
be written as ("department — . + 7). The .+ followed
after department— signifies the functionality of wild-
card *. Meaning all the attributes which begin with
department— can get access to the encrypted credential.

o The concept of using negation when describing a policy
was seen in Section with the example of age for
integer type and nationality for string type. The negation
for integer is simple to implement but where as the
string type is rather long and not so convenient in cases
where the values for certain attributes are rather large
in number. Having a straight forward approach to the
negation concept in issuer policy needs to be explored.

o The SSI credentials issued to the holder is in an encrypted
form that can be presented to the verifier whom upon
getting the verifier’s key can decrypt the credential given
that the verifier’s attribute satisfies the issuer’s policy.
After decryption the SSI credential will be in plain text
and readable by the verifier. In scenarios where the

verifier might be only required to verify that the holder
has the credentials and not see the credentials zero knowl-
edge proof(ZKP) [21] could be used. For example if the
verifier wants to know if the holder is above 18 years
old the verifier can get that information when CPABE
is combined with ZKP rather than knowing the holder’s
age or date of birth. This will ensure better privacy for
certain credentials. Combining ZKP with CPABE needs
to be explored.

VIII. CONCLUSION

This paper provides a solution to cryptographically imple-
menting issuer policy for SSI system. The implementation was
done using CP-ABE. CP-ABE is resistant against collusion
attacks and secure against chosen ciphertext attack [6]]. The
implementation is such that the SSI credentials will be en-
crypted with a policy. The policy is defined set of attributed
combined together with logical operators “or”” and “and”. The
verifier will be able to decrypt the encrypted SSI credentials if
the verifier’s attributes satisfy the issuer policy of the encrypted
credential. The policy enforcement for now is performed by
the issuer but depending on the scenario the holder can also
enforce policy on the SSI credentials provided to them. This
however is not explored in this paper and left for future scope
along with exploring the possibility of combining ZKP with
CP-ABE issuer policy implementation for SSI systems. This
research has shown that the solution provided is practical to
be implemented in the real-life situation with the help of the
demo and the performance analysis of the code.

REFERENCES

[1] Carlisle Adams. “Trusted Third Party”. In: Encyclope-
dia of Cryptography and Security. Ed. by Henk C. A.
van Tilborg and Sushil Jajodia. Boston, MA: Springer
US, 2011, pp. 1335-1335. 1SBN: 978-1-4419-5906-5.
DoI: 10.1007/978-1-4419-5906-5_98. URL: https:
//doi.org/10.1007/978-1-4419-5906-5_98,

[2] Maher Alharby and Aad van Moorsel. “Blockchain
Based Smart Contracts : A Systematic Mapping Study”.
In: Computer Science Information Technology (CS IT)
(Aug. 2017). por: 10.5121/csit.2017.71011. URL: https:
/larxiv.org/abs/1710.06372 (visited on 04/04/2021).

[3] Muneeb Ali et al. Blockstack Technical Whitepaper.
2017. URL: https://pdos.csail.mit.edu/6.824/papers/
blockstack-2017.pdf (visited on 09/30/2021).

[4] Christopher Allen. The Path to Self-Sovereign Identity.
Lifewithalacrity.com, Apr. 2016. URL: http://www.
lifewithalacrity . com / 2016 / 04 / the - path - to - self -
soverereign-identity.html (visited on 03/18/2021).

[S] Attribute Based Credentials - Privacy Patterns. privacy-
patterns.org. URL: https://privacypatterns.org/patterns/
Attribute - based - credentials#: ~ : text= Attribute % 5C %
20Based % SC % 20Credentials % 5C % 20(ABC) %5C %
20are/ (visited on 04/09/2021).

(6]

(7]

(8]

[9]

[12]

John Bethencourt, Amit Sahai, and Brent Waters.
“Ciphertext-Policy Attribute-Based Encryption”. In:
2007 IEEE Symposium on Security and Privacy (SP
'07). 2007, pp. 321-334. por: 10.1109/SP.2007.11.
Jan Camenisch and Els Van Herreweghen. “Design and
Implementation of the Idemix Anonymous Credential
System”. In: Proceedings of the 9th ACM Conference
on Computer and Communications Security. CCS *02.
Washington, DC, USA: Association for Computing
Machinery, 2002, pp. 21-30. ISBN: 1581136129. DOI:
10.1145/586110.586114, URL: https://doi.org/10.1145/
586110.586114.

Decentralized Identifiers (DIDs) vi.0. w3c.github.io.
URL: https ://w3c . github.10/did - core/ (visited on
03/12/2021).

eSSIF-Lab Glossary — — eSSIF-Lab. essif-
lab.pages.grnet.gr. URL: https : / / essif - lab . pages .
grnet. gr/framework/docs/essifLab- glossary| (visited on
03/25/2021).

J. M. de Fuentes et al. “Assessment of attribute-based
credentials for privacy-preserving road traffic services in
smart cities”. In: Personal and Ubiquitous Computing
21 (Oct. 2017), pp. 869-891. por: |10.1007/s00779 -
017-1057-6. URL: https://link.springer.com/article/
10.1007 % 5C % 2Fs00779 - 017 - 1057 - 6| (visited on
11/24/2020).

Shafi Goldwasser, Silvio Micali, and Charles Rack-
off. “The Knowledge Complexity of Interactive Proof
Systems”. In: SIAM Journal on Computing 18 (Feb.
1989), pp. 186-208. poI: 10.1137/0218012. (Visited
on 04/15/2021).

Vipul Goyal et al. “Attribute-Based Encryption for
Fine-Grained Access Control of Encrypted Data”. In:
Proceedings of the 13th ACM Conference on Computer
and Communications Security. CCS ’06. Alexandria,
Virginia, USA: Association for Computing Machinery,
2006, pp. 89-98. 1SBN: 1595935185. po1: 10.1145/
1180405 . 1180418. URL: https://doi.org/10.1145/
1180405.1180418.

Dick Hardt. The OAuth 2.0 Authorization Framework.
RFC 6749. Oct. 2012. poTt: [10.17487/RFC6749. URL:
https://rfc-editor.org/rfc/rtc6749.txt.

Hyperledger Indy. Hyperledger. URL: https://www.
hyperledger . org / use / hyperledger - indy (visited on
09/28/2021).

V. Morabito. “Business Innovation Through Blockchain
The B3 Perspective”. In: www.academia.edu (), pp. 106—
107. URL: https : / / www . academia . edu /
35863002 / Business_Innovation_Through_Blockchain_
The_B_Perspective (visited on 01/25/2021).

Multiple encryption. Wikipedia, Mar. 2021. URL: https:
/len.wikipedia.org/wiki/Multiple_encryption| (visited on
04/14/2021).

Jelle Nauta and Rieks Joosten. Self-Sovereign Identity:
A Comparison of IRMA and Sovrin. July 2019. DOTI:
10.13140/RG.2.2.19755.18721.

https://doi.org/10.1007/978-1-4419-5906-5_98
https://doi.org/10.1007/978-1-4419-5906-5_98
https://doi.org/10.1007/978-1-4419-5906-5_98
https://doi.org/10.5121/csit.2017.71011
https://arxiv.org/abs/1710.06372
https://arxiv.org/abs/1710.06372
https://pdos.csail.mit.edu/6.824/papers/blockstack-2017.pdf
https://pdos.csail.mit.edu/6.824/papers/blockstack-2017.pdf
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
https://privacypatterns.org/patterns/Attribute-based-credentials#:~:text=Attribute%5C%20Based%5C%20Credentials%5C%20(ABC)%5C%20are
https://privacypatterns.org/patterns/Attribute-based-credentials#:~:text=Attribute%5C%20Based%5C%20Credentials%5C%20(ABC)%5C%20are
https://privacypatterns.org/patterns/Attribute-based-credentials#:~:text=Attribute%5C%20Based%5C%20Credentials%5C%20(ABC)%5C%20are
https://privacypatterns.org/patterns/Attribute-based-credentials#:~:text=Attribute%5C%20Based%5C%20Credentials%5C%20(ABC)%5C%20are
https://doi.org/10.1109/SP.2007.11
https://doi.org/10.1145/586110.586114
https://doi.org/10.1145/586110.586114
https://doi.org/10.1145/586110.586114
https://w3c.github.io/did-core/
https://essif-lab.pages.grnet.gr/framework/docs/essifLab-glossary
https://essif-lab.pages.grnet.gr/framework/docs/essifLab-glossary
https://doi.org/10.1007/s00779-017-1057-6
https://doi.org/10.1007/s00779-017-1057-6
https://link.springer.com/article/10.1007%5C%2Fs00779-017-1057-6
https://link.springer.com/article/10.1007%5C%2Fs00779-017-1057-6
https://doi.org/10.1137/0218012
https://doi.org/10.1145/1180405.1180418
https://doi.org/10.1145/1180405.1180418
https://doi.org/10.1145/1180405.1180418
https://doi.org/10.1145/1180405.1180418
https://doi.org/10.17487/RFC6749
https://rfc-editor.org/rfc/rfc6749.txt
https://www.hyperledger.org/use/hyperledger-indy
https://www.hyperledger.org/use/hyperledger-indy
https://www.academia.edu/35863002/Business_Innovation_Through_Blockchain_The_B_Perspective
https://www.academia.edu/35863002/Business_Innovation_Through_Blockchain_The_B_Perspective
https://www.academia.edu/35863002/Business_Innovation_Through_Blockchain_The_B_Perspective
https://en.wikipedia.org/wiki/Multiple_encryption
https://en.wikipedia.org/wiki/Multiple_encryption
https://doi.org/10.13140/RG.2.2.19755.18721

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

OpenID Connect — OpenID. OpenlD Connect. URL:
https://openid.net/connect/ (visited on 09/25/2021).
Amit Sahai and Brent Waters. Fuzzy Identity Based En-
cryption. Cryptology ePrint Archive, Report 2004/086.
https://eprint.iacr.org/2004/086. 2004.

Abylay Satybaldy, Mariusz Nowostawski, and Jgrgen
Ellingsen. Self-Sovereign Identity Systems Evaluation
framework. URL: https ://ntnuopen . ntnu . no / ntnu -
xmlui/bitstream/handle/11250/2731400/SSI+systems+
evaluation + framework . pdf ? sequence =2 (visited on
09/27/2021).

Berry Schoenmakers. ‘“Zero-Knowledge”. In: Encyclo-
pedia of Cryptography and Security. Ed. by Henk C. A.
van Tilborg and Sushil Jajodia. Boston, MA: Springer
US, 2011, pp. 1401-1403. 1SBN: 978-1-4419-5906-5.
DOI: 10.1007/978-1-4419-5906-5_16. URL: https:
//doi.org/10.1007/978-1-4419-5906-5_16.
Self-Sovereign Identity. TNO. URL: |https : // www .
tno . nl/en/focus - areas / information - communication -
technology / roadmaps / data - sharing / ssi/| (visited on
03/31/2021).

Adi Shamir. “How to Share a Secret”. In: Commun.
ACM 22.11 (Nov. 1979), pp. 612-613. 1sSN: 0001-
0782. por: 10.1145/359168.359176. URL: https://doi.
org/10.1145/359168.359176.

Adi Shamir. “Identity-Based Cryptosystems and Signa-
ture Schemes”. In: Advances in Cryptology, Proceed-
ings of CRYPTO ’84, Santa Barbara, California, USA,
August 19-22, 1984, Proceedings. Vol. 196. Lecture
Notes in Computer Science. Springer, 1984, pp. 47-53.
DOI: 10.1007/3-540-39568-7_5.

ShoCard. www.shocard.com. URL: https : / / www .
shocard.com/en.html (visited on 09/29/2021).
Gustavus J. Simmons. “Symmetric and Asymmetric
Encryption”. In: ACM Comput. Surv. 11.4 (Dec. 1979),
pp- 305-330. 1sSN: 0360-0300. Do1: 10.1145/356789.
356793, URL: https://doi.org/10.1145/356789.356793.
Paul Snow et al. Factom Business Processes Secured by
Immutable Audit Trails on the Blockchain. Apr. 2018.
URL: https : //4454jm4boviblsabvrtiibew - wpengine .
netdna - ssl. com/assets/docs/Factom_Whitepaper_v1.
2.pdf| (visited on 05/07/2021).

Kevin Solorio, Randall Kanna, and David H. Hoover.
Hands-On Smart Contract Development with Solidity
and Ethereum: From Fundamentals to Deployment.
”O’Reilly Media, Inc.”’, Nov. 2019, pp. 70-76. URL:
https ://www. google . com/books/edition/Hands_On_
Smart_Contract_Development_with/thbADwAAQBAJ?
hl = en & gbpv = 1 & kptab = getbook (visited on
04/05/2021).

Sovrin ™ : A Protocol and Token for Self- Sovereign
Identity and Decentralized Trust A White Paper from the
Sovrin Foundation. 2018. URL: https://sovrin.org/wp-
content/uploads/2018/03/Sovrin- Protocol - and- Token-
White-Paper.pdf (visited on 04/15/2021).

[30] Manu Sporny, Dave Longley, and David Chadwick.
Verifiable Credentials Data Model 1.0. W3.org, Nov.
2019. URL: https://www.w3.org/TR/vc-data- model/
(visited on 04/28/2021).

Stacks. www.stacks.co. URL: https://www.stacks.co/
(visited on 09/30/2021).

Nick Szabo. “Formalizing and Securing Relationships
on Public Networks”. In: First Monday 2.9 (Sept. 1997).
DOI: |10.5210/fm.v2i9.548| URL: https://firstmonday.
org/ojs/index.php/fm/article/view/548.

Technical overview - IRMA docs. irma.app. URL: https:
//irma.app/docs/overview/#attribute - based - signatures
(visited on 09/28/2021).

U-Prove. Microsoft Research. URL: https : // www .
microsoft.com/en-us/research/project/u-prove/ (visited
on 04/13/2021).

What is IRMA? - IRMA docs. irma.app. URL: https:
/firma.app/docs/what-is-irma/ (visited on 09/28/2021).
What is OpenlD? — OpenID. Oct. 2007. URL: https:
/lopenid.net/what-is-openid/ (visited on 09/25/2021).
Jiani Wu and Nguyen Khoi Tran. “Application of
Blockchain Technology in Sustainable Energy Systems:
An Overview”. In: Sustainability 10.9 (2018). ISSN:
2071-1050. por: 10.3390/su10093067. URL: https://
www.mdpi.com/2071-1050/10/9/3067.

Kaliya Young. Verifiable Credentials Flavors Ex-
plained. URL: https://www.lfph.io/wp-content/uploads/
2021/02/Verifiable- Credentials- Flavors- Explained. pdf]
(visited on 03/19/2021).

Zero-knowledge proofs - IRMA docs. irma.app. URL:
https://irma.app/docs/zkp/| (visited on 09/28/2021).
Zibin Zheng et al. “An overview on smart contracts:
Challenges, advances and platforms”. In: Future Gener-
ation Computer Systems 105 (2020), pp. 475-491. 1SSN:
0167-739X. DOT: https://doi.org/10.1016/j.future.2019.
12.019. URL: https://www.sciencedirect.com/science/
article/pii/S0167739X19316280.

APPENDIX
A. Key Terms:

Most of the key terms used in this report will follow the
definition stated for them in the eSSIF-Lab Glossary[9].

B. Potential Solutions:

This section explains the concepts of some of the possible
solutions to the problem statement and the research questions.
How these concepts will be used to provide solution to the
problem and be implemented in the SSI systems will also be
explained.

1) Shamir Secret Sharing: The Shamir Secret Sharing
scheme was first introduced by Adi Shamir in his paper "How
to share a secret [23]]” in the year 1979. This scheme has
been popularly used for various use cases since then. A given
piece of data or information or secret will be divided into n
number of parts. If p number of pieces from the n number
of divided parts is brought together then the underlying data

https://openid.net/connect/
https://eprint.iacr.org/2004/086
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2731400/SSI+systems+evaluation+framework.pdf?sequence=2
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2731400/SSI+systems+evaluation+framework.pdf?sequence=2
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2731400/SSI+systems+evaluation+framework.pdf?sequence=2
https://doi.org/10.1007/978-1-4419-5906-5_16
https://doi.org/10.1007/978-1-4419-5906-5_16
https://doi.org/10.1007/978-1-4419-5906-5_16
https://www.tno.nl/en/focus-areas/information-communication-technology/roadmaps/data-sharing/ssi/
https://www.tno.nl/en/focus-areas/information-communication-technology/roadmaps/data-sharing/ssi/
https://www.tno.nl/en/focus-areas/information-communication-technology/roadmaps/data-sharing/ssi/
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1007/3-540-39568-7_5
https://www.shocard.com/en.html
https://www.shocard.com/en.html
https://doi.org/10.1145/356789.356793
https://doi.org/10.1145/356789.356793
https://doi.org/10.1145/356789.356793
https://4454jm4bovib1sa6vrtflbew-wpengine.netdna-ssl.com/assets/docs/Factom_Whitepaper_v1.2.pdf
https://4454jm4bovib1sa6vrtflbew-wpengine.netdna-ssl.com/assets/docs/Factom_Whitepaper_v1.2.pdf
https://4454jm4bovib1sa6vrtflbew-wpengine.netdna-ssl.com/assets/docs/Factom_Whitepaper_v1.2.pdf
https://www.google.com/books/edition/Hands_On_Smart_Contract_Development_with/thbADwAAQBAJ?hl=en&gbpv=1&kptab=getbook
https://www.google.com/books/edition/Hands_On_Smart_Contract_Development_with/thbADwAAQBAJ?hl=en&gbpv=1&kptab=getbook
https://www.google.com/books/edition/Hands_On_Smart_Contract_Development_with/thbADwAAQBAJ?hl=en&gbpv=1&kptab=getbook
https://sovrin.org/wp-content/uploads/2018/03/Sovrin-Protocol-and-Token-White-Paper.pdf
https://sovrin.org/wp-content/uploads/2018/03/Sovrin-Protocol-and-Token-White-Paper.pdf
https://sovrin.org/wp-content/uploads/2018/03/Sovrin-Protocol-and-Token-White-Paper.pdf
https://www.w3.org/TR/vc-data-model/
https://www.stacks.co/
https://doi.org/10.5210/fm.v2i9.548
https://firstmonday.org/ojs/index.php/fm/article/view/548
https://firstmonday.org/ojs/index.php/fm/article/view/548
https://irma.app/docs/overview/#attribute-based-signatures
https://irma.app/docs/overview/#attribute-based-signatures
https://www.microsoft.com/en-us/research/project/u-prove/
https://www.microsoft.com/en-us/research/project/u-prove/
https://irma.app/docs/what-is-irma/
https://irma.app/docs/what-is-irma/
https://openid.net/what-is-openid/
https://openid.net/what-is-openid/
https://doi.org/10.3390/su10093067
https://www.mdpi.com/2071-1050/10/9/3067
https://www.mdpi.com/2071-1050/10/9/3067
https://www.lfph.io/wp-content/uploads/2021/02/Verifiable-Credentials-Flavors-Explained.pdf
https://www.lfph.io/wp-content/uploads/2021/02/Verifiable-Credentials-Flavors-Explained.pdf
https://irma.app/docs/zkp/
https://doi.org/https://doi.org/10.1016/j.future.2019.12.019
https://doi.org/https://doi.org/10.1016/j.future.2019.12.019
https://www.sciencedirect.com/science/article/pii/S0167739X19316280
https://www.sciencedirect.com/science/article/pii/S0167739X19316280

TERMS

DEFINITION / EXPLANATION

ACTION* Something that is actually done/executed - by a single actor (on behalf of a given party), as a single operation in
a specific context.

ACTOR* Entity that can act (do things), e.g. people, machines, but not organizations.

BLOCKCHAIN Blockchain is like a chained data structure in which data blocks are connected in a time sequence, and cryptography
is used to guarantee the non-defective modification and unforgeability of the distributed ledger [37].

CLAIMS An assertion made about a subject[30].

CREDENTIAL* Data, representing a set of assertions (claims, statements), authored and signed by, or on behalf of, a specific
party.

ENTITY* Something that is known to exist.

HOLDER* The capability to handle presentation requests from a peer agent, produce the requested data (a presentation)
according to its principal’s holder-policy, and send that in response to the request.

ISSUER* The capability to construct credentials from data objects, according to the content of its principal’s issuer-Policy

(specifically regarding the way in which the credential is to be digitally signed), and pass it to the wallet-component
of its principal allowing it to be issued.

LINKED DATA (LD)

The information present on the internet is present in human readable form, not machine understandable. Linked
data is connecting the data present in the web to be machine readable in the form of property and value mechanism
(key:value). The web now becomes a Global Information Repository with different information linked to one
another.

ORGANIZATION* A group of people that work to realize one or more objectives.

OWNERSHIP* The rights and duties, as defined and enforced in that jurisdiction, of that entity to enjoy, dispose of, and control
the other entity.

PARTY* An entity that has objectives, knowledge about what exists, rules that (should) apply, and some capability that
allows it to reason, make decisions, generate and maintain knowledge etc. in a self-Sovereign fashion; humans
and organizations are the typical examples.

POLICY* A (set of) rules, working-instructions, preferences and other guidance for the execution of one or more kinds of

actions, that agents (a) have access to, (b) can interpret as intended by their principal (i.e. policy owner) and (c)
must use when executing such actions.

VERIFIABLE CREDEN-
TIAL (VO)*

Credential that comes with assurances regarding its provenance (the party that issued it) and its integrity (the
property that the credential data has not been tampered with in transit, i.e. is the same as when issued).

VERIFIABLE
PRESENTATION (VP)

The holder after receiving its VCs from the issuer will want to share some of the claims or information present in
the VCs to the verifier. These claims or information can be combined and cryptographically signed to be shared
with the verifier. VPs are signed by the holder and presented to the verifier.

VERIFIER* The capability to request peer agents to present (provide) data from credentials (of a specified kind, issued by
specified parties), and to verify such responses (check structure, signatures, dates), according to its principal’s
verifier policy.

WALLET#* Wallet (functional component): the capability to securely store data as requested by Colleague Agents, and to

provide stored data to Colleague Agents or Peer Agents, all in compliance with the rules of its Principal’s Wallet
Policy.

ZERO-KNOWLEDGE
PROOF (ZKP)

Zero-knowledge is a property attributed to interactive proofs, interactive arguments, and non interactive proofs.
The soundness property protects the interest of the verifier, the zero-knowledge property protects the interest of
the prover. By means of a zero-knowledge proof, the prover is able to convince the verifier of the validity of a
given statement, without releasing any knowledge beyond the validity of the statement [21]|11].

*: definition from [9]. Bold: definition rewritten on own-terms from other sources

or information or secret will be revealed. The number of p
should be less than or equal to the n number of divided parts.
The scheme works in such a way that even if n-/ number of
pieces are put together the underlying data or information or
secret would not be able to be reconstructed as well as no
information will be leaked at all [23]].

This scheme is designed based on polynomial interpolation.
The technical explanation of Shamir Secret Sharing as stated
in [23] is as follows:

1) Notations:

e Let D denote data.

e Let p denote the number of points in a 2-
dimensional plane (z1,¥1), -+, (Tp,Yp);

o Let us assume that there are unique x; such that g(x)
is a polynomial with degree p — 1, with ¢g(z;) = y;
for all i.

2) Setting up/Construction:

o Dividing D into D; parts: ¢(z) is a polynomial
of degree p — 1 where the co-efficients k; for
it > 0 is chosen randomly, such that g(z) =
ko + kiz + -+ kp_12P~! where kg = D and
D, ZQ(l)a"' 7Di:(I(i)7"' 7Dn:(Z(n)'

3) Reconstruction:

o Putting back D; parts to D: the co-efficient
ag, -+ ,ap—1 of the polynomial ¢(z) can be found
using interpolation given any subset of p of D;
values along with their identify indices and by the
evaluation of D = ¢(0).

Value of D can only be calculated with all the p values in
place, given p — 1 values will also not reveal any information
about what the value of D is.

In step 3 of Figure[T] when the issuer prepares the credentials
the issuer will have to apply Shamir secret sharing technique
on the credential. Here the data D will be the credential that

is to be issued to the holder. The p value will be 2, one for
the issuer and one for the holder. When the verifier asks for
the credentials to the holder in step 5 of Figure (1} the holder
presents its part of the secret value. The verifier now will have
to ask the issuer for the remaining part of the secret value. This
is so because for reconstruction both the values present in the
issuer and holder must be combined or brought together in-
order to obtain the underlying credential value. The issuer will
now verify if the verifier matches with the issuer policy. In-
case the verifier passes the criteria present in issuer policy the
issuer’s secret will be given allowing the verifier to combine it
with the holder’s secret to get the required credential. In-case
the verifier does not pass the criterion present in issuer policy
it will not be presented with any secret. The verifier will have
the secret parts from the holder but not that of the issuers,
since all the required are not present the credential needed by
the verifier can not be reconstructed.

2) Trusted Third party: Another solution for the problem
is to use a Trusted Third Party (TTP) to look over the whole
procedure of exchange of credentials and claims. A TTP works
in such a way that all the parties involved will trust the TTP
for interactions and exchange of information or goods. In some
architectures, the TTP is required to store and protect long-
term secrets, a compromise of the secret will result in reveal
of the future as well as past communications until the new
long-term secrets are established [1f]. Examples of TTP are
certificate authority (CA) in public key infrastructure (PKI),
key distribution centre (KDC) in Kerberos [1].

Trusted Third Party

-~

¥ h 4 h

Issuer Holder Verifier

Fig. 10. Trusted Third Party

In the SSI systems the entities playing the roles of the
issuer, holder and verifier are interconnected with one another
and communicate with themselves on their own. When a
trusted third party is involved in the SSI structure then the
communication between the issuer, holder and verifier happens
via the TTP rather then among themselves. The TTP acts as a
regulator for communication and transfer of data/information
such as VC/VP. The issuer will create the policies and send
it to the TTP. The TTP will now take the responsibility to
implement the policies and keep the verifier in check. When
the verifier requests for VC from the holder then the TTP
will ask for the holder to provide the information only if the
verifier abides by the issuer policies, else the request will be
disregarded. All the requests will be made to the TTP and the
TTP will implement the required actions. The TTP will hold
record of all the requests made and which were approved and
which were not, basically everything that happens within the
SSI infra-structure. The overhead is that TTP could act as the
single point of failure, and too much power and responsibility

lies with one entity. This structure is more or less like the
traditional set-up where a single authority acts as the major
power and other entities trust it to act just and right.

3) Smart Contract: Smart Contract was initially the idea
of Nick Szabo. He has mentioned about the concept of using
smart contracts in his paper "Formalising and Securing Rela-
tionships on Public Networks [32]]”, later sparked popularity
with blockchain. Contracts in the real world is an agreement
made between two or more entities to legally bind by the
actions stated in the contract. Smart contracts are the same
but are executed digitally. When the conditions predefined in
the smart contract are met then the conditional clauses set to
trigger further actions will be executed [40]. Smart contracts
also overcomes the shortcomings such as sophisticated, incen-
tive compatible (rational) breach [32]. The life cycle of a smart
contract are creation, deployment, execution, and completion
[40]. The issues with smart contracts such as codifying issues,
security issues, privacy issues and performance issues and their
solution are stated in [2]], which is obtained from various other
papers about smart contract.

Smart contract works on top of blockchain. Meaning that
when a block is being created the contract is embedded in
the block. Depending on the type of smart contract whether
it is deterministic or not [[15] the actions that trigger the
execution of the smart contract will change. Initial deployment
of smart contract happens like how a transfer of cryptocurrency
occurs in blockchain. Transactions from the wallet to the
blockchain marks the deployment of the smart contract [28]].
This transaction from the wallet to the blockchain includes
the details of the smart contract such as the compilation code
and the addresses of the receiver when the actions of the smart
contract are executed [28]. Like how a crypto transaction must
be included in the block of the blockchain to be considered
executed or done in the same way the transaction of the smart
contract must be included in the block of the blockchain. After
which the code present in the smart contract will be executed
to mark the initial state of the smart contract [28]]. Once the
deployment of smart contract goes to the block it can not be
updated since blockchains are immutable in nature. Commu-
nication to the smart contract now happens via transactions to
the blocks in the blockchain. Such communications can result
in the execution of the commands in the smart contract or
other transnational exchanges.

There are two possible ways to go about to implement
the issuer policy using smart contract. One is to use the
already existing blockchain networks like Ethereum and plant
the smart contracts on existing running networks. This will
come with a few draw backs like the whole system will works
under the security maintained by the blockchain community,
the additional cost to be paid to the miners of the blockchain
to have the smart contracts in block. Another way is to create
a blockchain specifically for SSI and set up a third party to
maintain the nodes and run the blockchain. This is similar
to how some blockchains are created for specific purposes
such as Factom, who have implemented blockchain to store
digital healthcare records securely[27]]. In both the cases the

issuer will issue the policy and then policy will be converted
from natural language to machine readable form by software
specialists. This conversion process is out of the scope of this
research and left for future development. Once the policy is
converted to code and deployed in the block further changes
that issuer policy can not be made since blockchains are
immutable in nature. The code will be written in such a way
that when the verifier requests for the holders credential the
contract will be invoked and the verifier will be checked for
authority over the requested credentials. In case the verifier
satisfies the issuer policy the smart contract will be executed
and the requested holder’s credential will be presented to the
verifier, if not then the smart contract will not be executed and
the verifier will not get the holder’s credentials.

4) Attribute Based Credentials: Attribute based credentials
(ABC) makes use of the cryptography policy zero-knowledge
proof. ABC enables an entity to reveal information about
oneself in the form of attributes without having to reveal
much further information about oneself with the help of zero
knowledge proof. It is a form of an authentication mechanism,
where the attributes can be used as an authentication method.
Simply put, credentials obtained from the attributes of an entity
are defined as attribute based credentials [5]]. Example of an
ABC implemented system is IRMA [35], Idemix [7], U-prove
[34]. ABC must provides three properties when implemented
properly namely confidentiality, security and unlikability of
the attributes/data used.

ABC systems have different entities playing the roles of
issuer, users, verifier, revocation authorities and inspector. A
trusted authority is used to generate the public and private
parameters used by the other entities in the system. The issuer
is the one issuing the credentials and ensuring the information
in the credential is accurate and correct. The credentials are
issued in an anonymous way. Users are the entities for whom
the credentials are created for.The verifier are the entities
that protect resources, information and services. Revocation
authority is the entity that revokes the issued credentials.
Inspector is another entity that de-anonymize the user under
specific situation [10]. Both the revocation authority and the
inspector are not mandatory part of the ABC system. The
phases of an ABC system is as follows as stated in [[10]:

o Set-up: The process which is performed only once by
each entity in the system. The trusted authority generates
all the public and private parameters that is to be used
by the entities of the system. After this phase the issuer
is ready to issue credentials and the verifier is ready to
validate the credentials.

o Issuance: The process in which the issuer can issue
credentials to the user without having any relevance to
the previously owned credentials by the user.

o Presentation: The process in which the user present the
credentials to the verifier upon request by the verifier.

« Revocation: The process in which the revocation authority
revokes the credentials given to the user and also makes
the updated revocation information available.

o Inspection: The process that is done to perform de-

anonymization of credentials from the user. This process
is usually carried out by multiple entities.

Semi-Trusted|
Third Party

0} lssue VC
» Create identiierisign VG
Holder shares identiier
with issuer
Prepare credentials
) ang ssuer poicy
(4) 1ssuer sends issuer policy

Issuer and holder connect to
pass credential

VC presentin digital wallet Semi.Trusted Third Party send the
verifier attributes for the credentials(6)
obtained from the issuer

Verifier requests for
attributes for the credential (7)

to be asked to the holder Check if Verifier

satisfies the issuer

policy

Issue Attributes according to
the credential asked

Verifier requests for
cradontas 3 e olcer

Verifier presents the aftnbuies
1o the holder's wallet while

king for the credential
Holder approves for (o asking for the credentials

sharing credentials \"4 5}
Cross-check the values

‘attributes for the credentials
asked

13) Avproval for passing
— credentials

Nonce from verifier to
prevent replay attack

Verfr and hoider connectto. (72)
pass credential

Credentials ate present at
the verifier

Semi-Trusted|
Third Party

Fig. 11. System Flow with Attribute based Credential solution in place

Figure [T1] describes the flow of SSI systems with the use of
attributes to enable the working of issuer policies. The steps in
bold in Figure |11]indicated that these steps are different from
the procedures/steps followed in Figure [T} Semi-trusted third
party(STTP) is an additional entity in the SSI system. Reason
for using STTP is that no single entity in the system will gain
more power over another and mutual trust is enabled. The
STTP entity is similar to the TTP but then this third entity
is not fully trusted by the other entities. STTP is used for
the purpose of keeping track of the issuer policy and issuing
attributes for the verifier. The STTP is also used in the system
to aid with checking if the verifier checks the issuer policy
stated. Since the check is done by the STTP the issuer will
not gain more than needed information on the activities of the
holder. The attributes are issued according to the issuer policy,
the credentials that need to be accessed and the functionalities
performed by the verifier with the credentials of the holder.
The purpose of holder wallet is to check if the attributes
presented to access the credentials of the holder are provided
by the verifier. The holder’s wallet acts as a barrier from which
the verifier can not forcefully ask the holder to handover the
credentials unless the required attributes are presented by the
verifier.

Like Figure [I] the procedure of issuing the credentials to
the holder is carried out by the issuer. Additionally in step 3
the issuer creates the issuer policy and sends it to the STTP,
before passing the credentials to the holder’s digital wallet in

Figure [T1] After receiving the issuer policy the STTP now
sends the verifier attributes to the holder for the credentials
received by the holder from the issuer in step 6. After this in
step 7 the verifier will now request the STTP for its attributes
for the credentials it will be asking from the holder. In step
8 the STTP checks if the verifier satisfies the issuer policy, if
yes then the attributes are sent to the verifier in step 9. With
these attributes the verifier now requested for credentials from
the holder in step 10. The verifier’s attributes are presented to
the holder’s wallet. In step 11 the holder will have to approve
sharing of the request credentials with the verifier then the
holder’s wallet will cross-check the attributes presented to it by
the verifier with the one provided to it by the STTP before in
step 12. If they match the holder’s wallet approves the transfer
of credentials in step 13. Else the transfer is discarded. In
step 14 the verifier sends nonce value to the holder to ensure
replay attacks do not happen. After which the holder and the
verifier connect to pass credentials in step 15. The requested
credentials are present with the verifier.

5) Two Layer Encryption: As the name suggested the data
is encrypted twice. The data referred here is the credentials
issued by the issuer to the holder. As stated in Figure [I] the
whole process will remain as it is but when the credentials are
prepared in step 3 it will be encrypted twice by the issuer. The
first layer of encryption will be decoded only by the verifier.
The second layer of encryption will be decoded by the holder.
In step 4 of Figure [I] the issuer will give the double encrypted
credential to the holder. The second layer of encryption is to
ensure that no one other than the intended holder can get the
credentials and be able to decrypt it and send it to the verifier.
When the verifier requests for the credentials in step 5 the
holder hands over the single layer encrypted credential in step
8. Now the verifier will have to request to the issuer to issue
the decryption key. The issuer will now be able to check if
the verifier matches with the issuer policy generated for the
credential to be viewed.

Second layer of Encryption
(for holder)

First layer of Encryption
(for verifier)

Credentials

Fig. 12. Two Layer Encryption

Asymmetric cryptography[26]] will be used for the encryp-
tion and decryption process. The generation of the keys will
be done by the issuer. In this solution we assume the issuer
to be a trusted entity. The idea of two layer encryption was
inspired from multiple encryption concept[16].

6) Hybrid Solution: Hybrid solution is where two or more
of the above mentioned solution will be combined together to

attain better results and output for implementing the issuer
policy. This is done so as to overcome the shortcomings
present in the possible solutions. For example combining
Shamir Secret Sharing with Smart Contract. When using
Shamir Secret Sharing as the solution the entity playing the
role of the issuer will be able to know a lot of information
about the activities of the holder. Since the verifier has to ask
every time to the issuer to view the requested credentials of
the holder, the actions of the holder can be easily known to
the issuer. There is also the possibility of the issuer to collude
with the verifier and give the issuers part of the secret even
though the verifier does not satisfy the issuer policy. To over
come these shortcoming smart contract could be used. When
creating the contract the issuer part of the secret can be put
inside the block. The verifier will get that part of the secret
when the condition if the issuer policy in the smart contract
is satisfied and the code gets executed.

	Titlepage
	d198195c-c34e-4fca-b502-983d0108803d.pdf
	Introduction
	Background
	Related Work
	Self Sovereign Identity System

	Potential Solution
	Chosen Solution: Attribute Based Encryption

	Issuer Policy
	Implementation
	Experiment and result
	Future Works
	Conclusion
	Appendix
	Key Terms:
	Potential Solutions:
	Shamir Secret Sharing
	Trusted Third party
	Smart Contract
	Attribute Based Credentials
	Two Layer Encryption
	Hybrid Solution

