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ABSTRACT
When outsourcing data, Searchable Symmetric Encryption schemes

allow clients to query the server for their encrypted files without

compromising data confidentiality. Several attacks against search-

able encryption schemes have been proposed that leverage infor-

mation leakage the schemes emit when operating. Schemes should

achieve Forward and Backward Privacy to mitigate these types of at-

tacks. Despite the variance of query types across SSE schemes, most

forward and backward private schemes only support exact keyword

search. In this research, we extend backward privacy notions and

their underlying leakage functions to the Wildcard Search domain.

Additionally, we present Libertas: a construction that provides back-
ward privacy to any wildcard supporting scheme. If the scheme

is forward private, this property is inherited. We prove security

in the L-adaptive security model. We show that the performance

overhead scales linearly with the number of deletions.

CCS CONCEPTS
• Security and privacy → Security protocols; Management
and querying of encrypted data.

KEYWORDS
Searchable Encryption, Backward Privacy, Information Leakage,

Wildcard Search

1 INTRODUCTION
The demand for Cloud Service Providers (CSPs) has increased in

recent years. They offer convenient, scalable and on-demand data

storage and processing. Sharing data with a CSP can be inappropri-

ate, however, as the provider is not fully trusted. Encryption pre-

vents them from accessing the data but in doing so, obstructs their

ability to process it. Searchable Symmetric Encryption (SSE) allows

clients to first encrypt and later search their data once placed at the

CSP, allowing for selective data retrieval. SSE was first introduced

by Song et al. [26], allowing clients to search through a static data-

base of encrypted documents. Later, dynamic SSE (DSSE) schemes

have been proposed [21], allowing clients to add and delete data af-

ter the scheme’s initialization. Non-adaptive and adaptive security

definitions for SSE schemes have been defined by Curtmola et al.

[15]. Kamara et al. [21] define adaptive security for DSSE schemes.

Search queries and updates potentially leak information such as

the matching documents or the affected keywords, respectively. As

shown by previous lines of research, despite a scheme conform-

ing to the aforementioned security definitions, this information

leakage can allow for powerful attacks. Islam et al. [20] propose

a passive attack where knowledge of document contents is com-

bined with statistical techniques to recover the content of search

queries. Cash et al. [9] propose both passive and active attacks to

recover search query content and plaintext content. Zhang et al.

[32] describe an active attack where search queries are revealed

after injecting few files. To defend against adaptive file injection

attacks, new DSSE schemes featuring forward privacy have been

proposed by Stefanov et al. [27] and Bost et al. [5]. Forward privacy

ensures that newly added data cannot be linked to earlier search

queries. Forward privacy does not protect against non-adaptive file

injection attacks. Backward privacy is another security notion that

has been proposed by Bost et al. [6]. In backward private schemes,

search queries cannot be executed over deleted entries, limiting

the potential of (future) attacks. As full backward privacy cannot

yet be efficiently achieved, three levels of backward privacy are

introduced. The first level is the most secure and leaks the least

amount of information. Subsequent levels increase allowed leak-

age, reducing security. To allow for flexible searches, a variety of

query expressiveness extensions have been proposed. One of such

extensions is the support for wildcards, where search queries such

as ‘c_t’ can match data containing both ‘cat’ and ‘cut’ [8], [16], [33].

Despite the advancements in flexible search queries, most forward

and backward private schemes only consider exact keyword search.

This paper introduces Libertas: a construction for providing the

second level of backward privacy to any wildcard supporting DSSE

scheme. It is proven secure against adaptive adversaries. We provide

an open-source implementation and evaluate its performance. Our

results show that Libertas’ search performance overhead is hardly

effected by increases in index size, result set size or the number

of wildcards in a query. Libertas does experience noticeable over-
head during searches when the index contains entries of removed

document-keyword pairs. This overhead scales linearly with the

number of deletions.

2 RELATEDWORK
2.1 Searchable Encryption
SSE schemes were first explored by Song, Wagner and Perrig [26].

The actors of an SSE scheme are the client and server. The server

hosts data of the client in encrypted form. The client can search the

data for keywords and retrieve relevant data from the server, all

without revealing to the server the searched keyword or the content

of the data. The stored data is often referred to as documents. The

searchable content of documents are called keywords. Despite these

naming conventions, SSE schemes often apply to many other forms

of data such as emails or DNA genomes [31]. Goh et al. introduce

the concept of an index to speed up searches [17]. An index is a

data structure where keyword identifiers are stored per document

identifier. Searches use the index to find the matching document

identifiers instead of using the documents themselves. Therefore,

by using an index, schemes become indifferent to the cryptographic

cipher used for encrypting documents. Most SSE schemes make

use of an inverted index, first described by Curtmola et al. [15].

Rather than storing keyword identifiers per document identifier,

inverted indices store document identifiers per keyword identifier.

Standard SSE schemes index data upon initialization and do not

allow updates to the index afterwards.Dynamic SSE (DSSE) schemes

do allow documents to be added and removed. Depending on the

implementation, clients can add or remove entire documents, or

they perform updates per document-keyword pair. This second

approach allows for more fine-grained control over the data but

requires the client to send multiple updates if they want to add or
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remove an entire document. The first practical DSSE scheme has

been proposed by Kamara et al. [21].

2.2 SSE Security and Attacks
Non-adaptive and adaptive security definitions for SSE schemes

have been defined by Curtmola et al. [15]. Kamara et al. [21] define

adaptive security for DSSE schemes. In adaptive secure schemes,

as opposed to non-adaptive secure schemes, adversaries take into

account the results of previous interactions with the scheme. De-

spite adhering to these security definitions, (D)SSE schemes are at

risk of attacks. Leakage abuse attacks (LAAs) leverage the leakage

of search and update operations of schemes to mount, recovering

search query or document contents. Islam et al. describe the first

query recovery attack [20]. They show how an adversary with full

background knowledge regarding the stored content can determine

the keyword hidden in search queries. The passive attack works

on any SSE scheme that leaks the access pattern. By observing the

search queries sent by the client and the subsequent document

identifiers sent by the server, their model is able to infer the queried

keyword with high accuracy. Cash et al. extend this work by de-

scribing several LAAs, both passive and active [9]. They improve

the attack of Islam et al. by requiring only partial knowledge of

the stored content. Additionally, they describe plaintext recovery

attacks; attacks that aim to recover the content of the stored doc-

uments. For these attacks, the adversary requires knowledge of

some documents or the ability to inject documents. Zhang et al.

[32] describe efficient file-injection attacks aiming to recover key-

words from search queries, assuming little knowledge of stored

content. They provide an adaptive and non-adaptive version of the

attack. The adaptive attack requires less injected files and achieves

a higher query recovery rate compared to its non-adaptive coun-

terpart. File injection can be simple depending on the environment

of the scheme. For example, if a scheme is used to store email, files

can be injected by simply sending an email to the client. To defend

against query recovery attacks, the security notion forward privacy
has been informally defined by Stefanov et al. [27] and is defined

formally by Bost et al. [5]. Forward private schemes do not leak

which keywords are considered during updates, making it impossi-

ble to link newly added data to earlier search queries. This serves

as a countermeasure to file-injection attacks. Forward privacy does

not fully protect the scheme against these attacks, however, as

search queries can still be recovered if documents are injected prior

to the query. Bost et al. introduce backward privacy as another

security notion for DSSE schemes [6]. In backward private schemes,

search queries cannot be executed over deleted entries, limiting

the potential of (future) attacks. Full backward privacy requires

hiding the update pattern, which consists of the timestamps of all

updates. Currently, the only way to achieve this is by using ORAM,

leading to schemes that do not scale well [23]. Therefore, Bost et

al. introduce three weakened levels of backward privacy. The first

level is the most secure and leaks the least amount of informa-

tion. Subsequent levels increase allowed leakage, reducing security.

Bost et al. describe 𝐵(Σ) and 𝐵′(Σ): constructions for building a

two-round backward private scheme from a DSSE scheme Σ, both
achieving the second degree of backward privacy. They additionally

define Janus: a single-round backward private scheme achieving

the lowest degree of backward privacy.

2.3 Query Expressiveness
To allow for more query flexibility, several extensions to the basic

single keyword search have been proposed. Conjunctive queries
allow the client to search documents for multiple keywords. Con-

junctive queries can be considered boolean expressions of keywords

connected by conjunction operators. Boolean queries extend con-

junctive queries by allowing different kinds of boolean operators

such as negations and disjunctions. Cash et al. describe a scheme fea-

turing boolean queries [10]. Comparison queries and range queries
allow one to search numerical data. Bethencourt et al. propose a

scheme allowing for range queries [2]. Boneh and Waters intro-

duce a scheme supporting both comparison and range queries [4].

Substring queries match keywords that contain the query as a sub-

string. Prefix and suffix queries match keywords that either start

or end with the query. Chase and Shen describe a substring sup-

porting scheme [11]. Fuzzy queries allow for keywords to match

with queries if they are within a specific edit distance. Wildcard
queries allow the client to insert wildcard, or joker, characters in the

search query. The type of wildcard differs per scheme. For example,

a wildcard character can replace exactly one character or multiple

characters. The search query ‘com*’ matches keywords ‘computer’

and ‘company’, while the search query ‘c_t’ matches ‘cat’ and ‘cut’.

Several schemes using several constructions have been proposed

that allow for wildcard queries. One such construction is by storing

keywords in Bloom filters. Suga et al. consider Bloom filters in

the multi-client setting, allowing for substring, fuzzy and wildcard

queries [28]. Hu et al. introduce a scheme that is more efficient com-

pared to Suga et al. and allows clients to update the database [18],

[19]. The scheme by Bösch et al. operates in the dynamic single-user

environment. Here, wildcard support is implemented naively by

generating and inserting all wildcard variants of a keyword upon

database insertion [8]. This transforms the problem of wildcard

search into exact keyword search, but heavily burdens server stor-

age depending on the type and number of allowed wildcards in

queries. Zhao and Nishide describe a wildcard supporting scheme

capable of supporting two types of wildcards by cleverly storing

keyword characteristics in Bloom filters [33]. Saha and Koshiba [24]

and Yasuda et al. [31] propose packing methods for secure pattern

matching using Learning With Errors (LWE). Their methods can be

combined with the single-user and multi-user schemes defined in

Brakerski and Vaikuntanathan [7] to construct wildcard supporting

schemes. Faber et al. [16] propose a matching algorithm that can

operate in both a single and multi-user environment based on the

conjunctive search scheme by Cash et al. [10]. Their scheme sup-

ports substring, phrase, range and wildcard queries, and allows any

combination of these query types using boolean operators. Phrase
queries are the sentence equivalent of wildcard queries. Rather

than considering a word and allowing for joker characters, phrase

queries consider a sequence of words and allow one to leave out

one or multiple words, depending on the implementation. Other

multi-user wildcard supporting schemes are proposed by Wang

et al. [29], Yang et al. [30] and Sedghi et al. [25]. Wang et al. pro-

pose a scheme without an index based on bilinear pairings. Instead,



the scheme outputs searchable ciphertext. The scheme by Yang

et al. supports user authorization and revocation. Their scheme

features seven matching algorithms based on secure multi-party

computation (MPC), allowing for a maximum of two wildcards in a

query. The scheme by Sedghi et al. makes use of public-key hidden

vector encryption (HVE). Chung et al. use common-conditioned-

subsequence-preserving (CCSP) techniques to define the schemes

FETCH and uFETCH: database-ready schemes with a sub-linear

search complexity [13], [14]. Both papers lack security proofs for

the proposed schemes, however. Kim et al. present the first scheme

supporting three wildcard types [22]. The scheme makes use of

fully homomorphic encryption (FHE). In their evaluation, however,

they find the efficiency to be underwhelming for real-world appli-

cations. More recently, Chatterjee et al. constructed an SSE scheme

also supporting three wildcard types [12]. Their scheme comes with

a sub-linear search time in the three-party OSPIR setting.

3 PRELIMINARIES
3.1 SSE Schemes
Searchable symmetric encryption schemes allow clients to store

documents at a third party in encrypted form and later search for

them using queries. Search functionality is typically achieved by

the use of an index. The exact implementation of the index differs

per scheme, but it is typically a look-up table that links keyword

identifiers to the identifiers of matching documents. The client can

search these keyword identifiers to find the document identifiers of

matching documents. These document identifiers can then be used

to send the matching documents to the client. SSE schemes can be

static or dynamic. Dynamic SSE (DSSE) schemes differ from static

schemes as they additionally allow for updates to the index after

the initial setup phase. In this work, we only consider dynamic SSE

schemes. Encryption (decryption) and uploading (downloading) of

documents is often not relevant for the security analysis and thus

treated as an independent step in the process. Typically, documents

are encrypted using AES in CBC mode and stored on the server.

SSE schemes consist of eight algorithms.

𝐾 ← Setup(𝜆) is run one time by the client, at the start of the

scheme. It takes as input the security parameter 𝜆 and out-

puts the scheme’s key 𝐾 .

𝛾 ← BuildIndex(𝜆) is run one time by the server, at the start of

the scheme. It takes as input the security parameter 𝜆 and

outputs an (at that point empty) index 𝛾 .

𝜏srch ← SrchToken(𝐾,𝑤) is run by the client during search opera-

tions. It takes as input the scheme’s key 𝐾 and a keyword𝑤

that is to be searched for. The output is a search token 𝜏srch.

𝜏add ← AddToken(𝐾, ind,𝑤) is run by the client during add oper-

ations. It takes as input the scheme’s key 𝐾 and a document-

keyword pair, consisting of a document identifier ind and a

keyword𝑤 . The output is an add token 𝜏add.

𝜏del ← DelToken(𝐾, ind,𝑤) is run by the client during delete oper-
ations. It takes as input the scheme’s key 𝐾 and a document-

keyword pair, consisting of a document identifier ind and a

keyword𝑤 . The output is a delete token 𝜏del.

𝑅 ← Search(𝛾, 𝜏srch) is run by the server after receiving the search
token 𝜏srch from the client. Together with the index 𝛾 , this

results in a result set 𝑅, which is a list of document iden-

tifiers: 𝑅 : (ind1, . . . , ind𝑛). Usually, the server sends back
the encrypted documents corresponding to these document

identifiers.

𝛾 ′ ← Add(𝛾, 𝜏add) is run by the server after receiving the add

token 𝜏add from the client. This token is used to update

index 𝛾 to a new index 𝛾 ′.
𝛾 ′ ← Del(𝛾, 𝜏del) is run by the server after receiving the delete

token 𝜏del from the client. This token is used to update index

𝛾 to a new index 𝛾 ′.

SrchToken and Search together form the Search protocol of the

SSE scheme. In the same way, AddToken and Add, and DelToken
and Delete form the Add and Delete protocol of the SSE scheme,

respectively.

3.1.1 Result-hiding SSE Schemes. Result-hiding SSE schemes hide

the document identifiers, normally uncovered during the Search
algorithm, from the server. An example of such a scheme is the

Masked Index Scheme by Bösch et al. [8]. Results are hidden by

altering the Search protocol, adding new algorithms DecSearch
and FetchDocuments. In these schemes, Search outputs encrypted

document identifiers at the server that have to be sent to the client

for decryption. The client, therefore, has control over what happens

with the document identifiers and does not necessarily have to re-

veal them to the server. The server can, however, identify when the

same document identifier is sent multiple times, as its encryption

in the index does not change if no additional measures are taken.

The modified algorithm Search, and the new algorithms DecSearch
and FetchDocuments are formally defined as

𝑅∗ ← Search(𝛾, 𝜏srch) is run by the server, taking as input the

index 𝛾 and a search token 𝜏srch, resulting in an encrypted

result set 𝑅∗.
𝑅 ← DecSearch(𝐾,𝑤, 𝑅∗) is run by the client, taking as input the

scheme’s key 𝐾 , the keyword that is searched for𝑤 and the

encrypted result set 𝑅∗. The output of the algorithm is the list

of identifiers of matching documents 𝑅 : (ind1, . . . , ind𝑛).
𝐷 ← FetchDocuments(𝑅) is run by the server, taking as input the

document identifiers revealed by DecSearch. The server out-
puts documents𝐷 corresponding to the document identifiers

in 𝑅.

Note that, in this extended Search protocol, document identifiers

are first revealed to the client rather than the server. The sequence

diagram of the extended Search protocol is depicted in Figure 1.

3.2 Leakage Functions
A leakage function L describes what information is leaked by an

SSE scheme. Leakage can be abused to mount an attack. Schemes

should therefore aim to leak as little as possible. Typically, there

exists a trade-off between the security and the efficiency of the

scheme. By allowing some leakage, the scheme can achieve greater

efficiency, and to achieve higher security, one should restrict the

leakage, which incurs a penalty for efficiency. The total leakage of a

dynamic SSE scheme consists of LSrch
, LAdd

and LDel
, which are

the leakage functions corresponding to the Search protocol, Add
protocol and Delete protocol, respectively. Leakage functions keep
an internal state 𝑄 . The Search protocol inserts (𝑢,𝑤) tuples in 𝑄 ,
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𝐶𝑙𝑖𝑒𝑛𝑡 𝑆𝑒𝑟𝑣𝑒𝑟

𝜏srch ← SrchToken(𝐾,𝑤)
𝜏srch−−−−→

𝑅∗ ← Search(𝛾, 𝜏srch)
𝑅∗←−−

𝑅 ← DecSearch(𝐾,𝑤, 𝑅∗)
𝑅−→

𝐷 ← FetchDocuments(𝑅)
𝐷←−−

Figure 1: Sequence diagram of the Search protocol in a result-
hiding SSE scheme

where 𝑢 is the timestamp of the operation and 𝑤 is the searched

keyword. Update operations append (𝑢, op, (ind,𝑤)) tuples to 𝑄 ,
where op is an indicator of the nature of the operation (add or

delete) and (ind,𝑤) is the document-keyword pair to either add or

delete. The security of SSE schemes is typically measured by the

amount of information they leak during operations. To describe

this leakage, multiple leakage functions are often considered in the

literature. The most common functions are the search pattern and

access pattern, which both relate to search operations.

sp(𝑤) = {𝑢 | (𝑢,𝑤) ∈ 𝑄},

ap(𝑤) = {ind | (𝑢, add, (ind,𝑤)) ∈ 𝑄 ∧
� 𝑢 ′ > 𝑢, s.t. (𝑢 ′, del, (ind,𝑤)) ∈ 𝑄}.

The search pattern sp(𝑤) leaks the timestamps 𝑢 at which the

keyword 𝑤 has been searched for. If a scheme leaks the search

pattern, one is able to infer which search queries pertain to the same

keyword. The access pattern ap(𝑤) leaks the document identifiers

ind of documents that contain keyword𝑤 at the time of the search.

3.3 Security Model
The security model for SSE schemes often considered in the litera-

ture is called L-adaptive security [15]. An L-adaptively-secure SSE
scheme Σ leaks only explicitly defined leakage L. In this model,

an adversary A can adaptively trigger the different algorithms

that make up the scheme with inputs of choice and observe their

outputs. We define a real world game SSEReal
Σ
A (𝜆, 𝑛) and an ideal

world game SSEIdealA,S,L (𝜆, 𝑛), where 𝜆 is the security parameter

and 𝑛 is the number of queries that are executed. In SSEReal
Σ
A (𝜆, 𝑛),

Σ is executed honestly, while in SSEIdealA,S,L (𝜆, 𝑛), a simulator S
simulates Σ using L as input. The task of the adversary is to output

a bit 𝑏, distinguishing between a real transcript and a simulated

one. Σ is L-adaptively secure if the transcripts are indistinguish-

able. Algorithm 2 describes the security games SSEReal
Σ
A (𝜆, 𝑛) and

SSEIdealA,S,L (𝜆, 𝑛), adapted for result-hiding SSE schemes. We use

these games in the security proof of Libertas, which is a result-

hiding scheme, in section 5.3.

SSEReal
Σ
A (𝜆, 𝑛)

1: 𝐾 ← Setup(𝜆)
2: 𝛾 ← BuildIndex(𝜆)
3: for 𝑖 = 1 to 𝑛 do
4: (type𝑖 , params𝑖 , stA ) ← A𝑖 (stA , 𝛾,𝝉 , 𝑹∗, 𝑹), where 𝝉 , 𝑹∗

and 𝑹 consist of all tokens, encrypted result sets and result sets,

respectively, generated in previous iterations.

5: if type𝑖 = Search then
6: 𝑤𝑖 ← params𝑖
7: 𝜏srch

𝑖
← SrchToken(𝐾,𝑤𝑖 )

8: 𝑅∗
𝑖
← Search(𝛾, 𝜏srch

𝑖
)

9: 𝑅𝑖 ← DecSearch(𝐾,𝑤𝑖 , 𝑅∗𝑖 )
10: else if type𝑖 = Add then
11: (ind𝑖 ,𝑤𝑖 ) ← params𝑖
12: 𝜏add

𝑖
← AddToken(𝐾, ind𝑖 ,𝑤𝑖 )

13: 𝛾 ← Add(𝛾, 𝜏add
𝑖
)

14: else
15: (ind𝑖 ,𝑤𝑖 ) ← params𝑖
16: 𝜏del

𝑖
← DelToken(𝐾, ind𝑖 ,𝑤𝑖 )

17: 𝛾 ← Del(𝛾, 𝜏del
𝑖
)

18: end if
19: end for
20: 𝑏 ← A𝑛+1 (stA , 𝛾,𝝉 , 𝑹∗, 𝑹)
21: Return 𝑏

SSEIdealA,S,L (𝜆, 𝑛)
1: (𝛾, stS) ← S0 (𝜆)
2: for 𝑖 = 1 to 𝑛 do
3: (type𝑖 , params𝑖 , stA ) ← A𝑖 (stA , 𝛾,˜𝝉 , ˜𝑹∗, ˜𝑹)
4: if type𝑖 = Search then
5: 𝑤𝑖 ← params𝑖
6: (𝜏srch

𝑖
, 𝑅∗
𝑖
, 𝑅𝑖 , stS) ← S𝑖 (stS,LSrch (𝑤𝑖 ))

7: else if type𝑖 = Add then
8: (ind𝑖 ,𝑤𝑖 ) ← params𝑖
9: (𝜏add

𝑖
, 𝛾, stS) ← S𝑖 (stS,LAdd (ind𝑖 ,𝑤𝑖 ))

10: else
11: (ind𝑖 ,𝑤𝑖 ) ← params𝑖
12: (𝜏del

𝑖
, 𝛾, stS) ← S𝑖 (stS,LDel (ind𝑖 ,𝑤𝑖 ))

13: end if
14: end for
15: 𝑏 ← A𝑛+1 (stA , 𝛾,˜𝝉 , ˜𝑹∗, ˜𝑹)
16: Return 𝑏

Figure 2: Adaptive Semantic Security Games for Result-
Hiding DSSE Schemes

Definition 3.1 (L-Adaptive Security). An SSE scheme Σ is L-
adaptively-secure with respect to a leakage function L, if for
any polynomial-time adversary A issuing a polynomial number of

queries 𝑛(𝜆), there exists a probabilistic polynomial time simulator

S such that:���P[SSEReal

Σ
A (𝜆, 𝑛) = 1] − P[SSEIdealA,S,L (𝜆, 𝑛) = 1]

��� = negl(𝜆) .



3.4 Forward Privacy
Forward privacy has been introduced by Stefanov et al. [27] and

is further explored by Bost et al. [5]. Informally, a forward private

scheme’s update algorithm does not leak whether a newly inserted

element matches previous search queries. Formally, forward privacy

is defined as follows.

Definition 3.2 (Forward Privacy). An L-adaptively-secure SSE
scheme is forward-private iff the add leakage function LAdd

and

delete leakage function LDel
can be written as:

LAdd (ind,𝑤) = L′(ind),

LDel (ind,𝑤) = L′′(ind),

where ind is the document identifier,𝑤 is the updated keyword and

L′, L′′ are stateless.

3.5 Backward Privacy
In addition to forward privacy, Bost et al. specify backward pri-

vacy [6]. Backward privacy limits what one can learn regarding

updates on keyword𝑤 from a search query on that keyword. Infor-

mally, search queries in backward private schemes only reveal

document-keyword pairs that have been added, but not subse-

quently deleted. Limiting the leakage on search queries alone is

not sufficient, however, as observing the document-keyword pairs

during update queries would trivially grant the server the informa-

tion on whether a document has been deleted. Therefore, backward

private schemes limit the leakage of both search and update queries.

Obtaining a full backward private scheme requires hiding the up-

date pattern (see Updates(𝑤) hereafter), resulting in expensive SSE

schemes. Bost et al. have defined three notions of backward privacy

with decreasing strength, depending on the amount of information

that is leaked [6]. We consider the two strongest notions.

(1) Backward privacy with insertion pattern leakage
Upon a search query for keyword 𝑤 , leaks the document

identifiers currently matching𝑤 , the timestamps at which

they were inserted and the total number of updates on𝑤 .

(2) Backward privacy with update pattern leakage
Upon a search query for keyword 𝑤 , leaks the document

identifiers currently matching𝑤 , the timestamps at which

they were inserted and the timestamps of all the updates on

𝑤 (but not their content).

The differences between these notions become clearwhen consid-

ering an examplewith the following updates to the data: (add, ind1,𝑤1),
(add, ind1,𝑤2), (add, ind2,𝑤1), (del, ind1,𝑤1). Upon a search query
for keyword𝑤1, the first notion reveals ind2, that it was inserted at
time slot 2 and that there were three updates to𝑤1. The second no-

tion additionally reveals that updates regarding𝑤1 occurred at time

slot 1, 2 and 3. To formally define these notions, Bost et al. define

the leakage functions UpHist(𝑤), TimeDB(𝑤) and Updates(𝑤).
UpHist(𝑤) contains the timestamp, operation and document iden-

tifier of every update. TimeDB(𝑤) outputs all documents currently

matching𝑤 and the timestamp of insertion. Updates(𝑤) results in

a list of timestamps of updates on keyword𝑤 .

UpHist(𝑤) = {(𝑢, op, ind) | (𝑢, op, (ind,𝑤)) ∈ 𝑄},

TimeDB(𝑤) = {(𝑢, ind) | (𝑢, add, (ind,𝑤)) ∈ 𝑄 ∧
� 𝑢 ′ > 𝑢 s.t. (𝑢 ′, del, (ind,𝑤)) ∈ 𝑄},

Updates(𝑤) = {𝑢 | (𝑢, op, (ind,𝑤)) ∈ 𝑄}.
Note how the access pattern ap(𝑤) can be constructed from

TimeDB(𝑤) and how TimeDB(𝑤) and Updates(𝑤) can be derived

from UpHist(𝑤). This means that UpHist(𝑤) leaks strictly more

than those leakage functions and that TimeDB(𝑤) leaks strictly
more than ap(𝑤). A scheme leaking UpHist(𝑤) therefore inher-
ently also leaks TimeDB(𝑤), ap(𝑤) and Updates(𝑤).

ap(𝑤) = {ind | (𝑢, ind) ∈ TimeDB(𝑤)},

TimeDB(𝑤) = {(𝑢, ind) | (𝑢, add, ind) ∈ UpHist(𝑤) ∧
� 𝑢 ′ > 𝑢 s.t. (𝑢 ′, del, ind) ∈ UpHist(𝑤)},

Updates(𝑤) = {𝑢 | (𝑢, op, ind) ∈ UpHist(𝑤)}.
The different notions of backward privacy can be formally de-

scribed using these leakage functions.

Definition 3.3 (Backward Privacy). An L-adaptively-secure SSE
scheme is insertion pattern revealing backward-private iff the

search, add and delete leakage functions LSrch
, LAdd

and LDel
can

be written as:

LSrch (𝑤) = L′(TimeDB(𝑤), 𝑎𝑤),

LAdd (ind,𝑤) =⊥,

LDel (ind,𝑤) =⊥,

where 𝑎𝑤 denotes the number of updates on𝑤 and L′ is stateless.

An L-adaptively-secure SSE scheme is update pattern reveal-
ing backward-private iff the search and update leakage functions

LSrch
, LAdd

and LDel
can be written as:

LSrch (𝑤) = L′(TimeDB(𝑤),Updates(𝑤)),

LAdd (ind,𝑤) = L′′(𝑤),

LDel (ind,𝑤) = L′′′(𝑤),

where L′, L′′ and L′′′ are stateless.

3.6 Bloom Filters
A Bloom filter is an efficient data structure in which items can be

stored, but not retrieved [3]. It can only tell whether it contains an

element and does so with a probabilistic nature; it returns either

possibly contains or definitively does not contain. A Bloom filter is an

array of bits, which are initially all 0. There are multiple unique hash

functions that map an element to a position in the array, following

a uniform random distribution. To add an element, it is fed into

the hash functions. The resulting positions in the array are set to

1. To test whether an element is in the Bloom filter it is fed into
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the hash functions. Then, if any of the resulting positions in the

array are set to 0, the element is definitively not in the set. If all

positions are 1, the element is either in the set, or the bits are set

to 1 due to the insertion of other elements. This false positive rate

of the Bloom filter can be controlled by changing the number of

inserted elements, the number of hash functions and the length of

the array.

4 WILDCARDS
Different SSE schemes support different kinds of search queries. The

simplest search query consists of one keyword. This is called exact
keyword search: clients can search for one keyword and receive all

documents containing this keyword. In our research, we consider

DSSE schemes supporting single keyword wildcard search. This
setting extends exact keyword search by additionally allowing that

the searched keyword can contain wildcards.We consider two types

of wildcards: ‘_’ and ‘*’. The first wildcard type, ‘_’, is used to indicate

the presence of a single character. The second wildcard type, ‘*’, is

used to indicate the presence of zero or more characters. Suppose

we upload (ind1, ‘cat’) and (ind2, ‘cut’). The query 𝑞 = ‘c_t’ would

match both ind1 and ind2. Consider additionally uploading another
document-keyword pair (ind3, ‘catering’). The query 𝑞2 = ‘cat*’

matches with ind1 and ind3.

4.1 Wildcard security
As searches of wildcard supporting SSE schemes operate on queries

𝑞 rather than keywords 𝑤 , we first describe a natural extension

of the aforementioned leakage functions to the wildcard setting.

We introduce the following notation: let 𝑤 be a keyword and 𝑞

be a query that can contain wildcards. If keyword𝑤 is contained

in query 𝑞 we denote this as 𝑤 ¤⊆ 𝑞. ‘cat’ ¤⊆ ‘c_t’. We change the

definition of the internal state 𝑄 of leakage functions to the fol-

lowing: the list 𝑄 stores every search query as a (𝑢, 𝑞) pair, where
𝑢 is the timestamp and 𝑞 is the search string (a keyword, possi-

bly containing wildcard characters). Update queries remain the

same: a (𝑢, op, (ind,𝑤)) tuple, where op is the operation (add or

del) and (ind,𝑤) is the document-keyword pair. We define sp(𝑞),
ap(𝑞), UpHist(𝑞), TimeDB(𝑞) and Updates(𝑞) as wildcard adapta-

tions of sp(𝑤), ap(𝑤), UpHist(𝑤), TimeDB(𝑤) and Updates(𝑤),
respectively.

sp(𝑞) = {𝑢 | (𝑢, 𝑞) ∈ 𝑄},

ap(𝑞) = {ind | (𝑢, add, (ind,𝑤)) ∈ 𝑄 ∧
� 𝑢 ′ > 𝑢 s.t. (𝑢 ′, del, (ind,𝑤)) ∈ 𝑄 ∧ 𝑤 ¤⊆ 𝑞},

UpHist(𝑞) = {(𝑢, op, ind) | (𝑢, op, (ind,𝑤)) ∈ 𝑄 ∧ 𝑤 ¤⊆ 𝑞},

TimeDB(𝑞) = {(𝑢, ind) | (𝑢, add, (ind,𝑤)) ∈ 𝑄 ∧
� 𝑢 ′ > 𝑢 s.t. (𝑢 ′, del, (ind,𝑤)) ∈ 𝑄 ∧ 𝑤 ¤⊆ 𝑞},

Updates(𝑞) = {𝑢 | (𝑢, op, (ind,𝑤)) ∈ 𝑄 ∧ 𝑤 ¤⊆ 𝑞}.

Similarly to their non-wildcard counterparts, ap(𝑞), TimeDB(𝑞)
andUpdates(𝑞) can be constructed fromUpHist(𝑞). We can extend

the notions of backward privacy introduced earlier to the wildcard

setting by using the leakage functions we defined.

Definition 4.1 (Insertion Pattern Revealing Backward Privacy For
Wildcard Supporting SSE Schemes). Awildcard supporting,L-adaptively-
secure SSE scheme is insertion pattern revealing backward-
private iff the search, add and delete leakage functionsLSrch

,LAdd

and LDel
can be written as:

LSrch (𝑞) = L′(TimeDB(𝑞), 𝑎𝑞),

LAdd (ind,𝑤) =⊥,

LDel (ind,𝑤) =⊥,

where 𝑎𝑞 denotes the number of updates on 𝑞 and L′, L′′ and
L′′′ are stateless.

Definition 4.2 (Update Pattern Revealing Backward Privacy For
Wildcard Supporting SSE Schemes). Awildcard supporting,L-adaptively-
secure SSE scheme isupdate pattern revealing backward-private
iff the search, add and delete leakage functions LSrch

, LAdd
and

LDel
can be written as:

LSrch (𝑞) = L′(TimeDB(𝑞),Updates(𝑞)),

LAdd (ind,𝑤) = L′′(𝑤),

LDel (ind,𝑤) = L′′′(𝑤),

where L′, L′′ and L′′′ are stateless.

5 LIBERTAS: CONSTRUCTINGWILDCARD
SUPPORTING UPDATE PATTERN
REVEALING BACKWARD PRIVATE
SCHEMES

Libertas is a construction for creating the first backward private,

wildcard supporting DSSE schemes. Its idea is similar to that of the

scheme 𝐵(Σ) proposed by [6]. Rather than being an SSE scheme on

its own, Libertas encapsulates an existing SSE scheme Σ that sup-

ports wildcards and document-keyword additions, to provide back-

ward privacy. The idea is as follows: rather than storing document



identifiers, store encryptions of document-update pairs, regard-

less of whether the update was an insertion or a deletion. During

searches, send all encrypted document-update pairs to the client

for decryption. The client can select relevant document identi-

fiers (those that are added, but not subsequently deleted) and send

them to the server to retrieve the documents. This approach makes

Libertas result-hiding.

5.1 Construction
Libertas is built from an encryption scheme 𝐸 and an SSE scheme

Σ. 𝐸 is which-key concealing (sometimes referred to as key-private
encryption), meaning that two encryptions do not leak whether they

are encrypted using the same key [1]. Σ supports add operations

and wildcard queries, and is LΣ-adaptively secure, where LΣ =

(LSrch
Σ ,LAdd

Σ ) is defined as

LSrch
Σ (𝑞) = L′(spΣ (𝑞),UpHistΣ (𝑞)),

LAdd
Σ (ind,𝑤) = L′′(ind,𝑤),

where L′ and L′′ are stateless.

Libertas is described in Algorithm 1. Here, 𝐸𝐾Lib denotes an en-

cryption using 𝐸 under key 𝐾Lib. Returned values are sent over the

network.

5.2 Analysis
We analyze the theoretical cost of running Libertas in terms of

storage, operations and communication. We compare these com-

ponents with Σ, as most costs are identical to, or dependent on,

Σ.

5.2.1 Storage. The client stores one extra key 𝐾Lib and maintains

the counter 𝑐 . The server stores an encryption in its index for every

update (including deletions), rather than a document identifier for

document-keyword pairs that are currently in the database.

5.2.2 Operations. During the setup phase, the client generates an

extra key 𝐾Lib. For add and delete operations, the client performs

an additional encryption and addition. For searches, rather than

receiving the documents from the server, the client gets the en-

cryptions of all relevant updates. The client decrypts the fetched

updates and selects relevant document identifiers by going over

the updates linearly.

5.2.3 Communication. In Σ, searches result in communication be-

tween client and server regarding the search token and the result-

ing documents. During searches in Libertas, between sending the

search token and receiving the matching documents, client and

server exchange additional information. The server sends all up-

dates regarding keywords matching the searched query and the

document identifiers of the matching documents. The client, in

turn, sends the identifiers of matching documents to the server.

This requires an extra round of communications. This can be a

problem in specific settings where communication is slow, unsta-

ble, expensive, subject to time constraints or otherwise limited. In

some cases, round trips can be combined. Suppose that Σ itself is

result-hiding and its DecSearch algorithm only requires the client

to decrypt an AES encryption for every result. This process can be

Algorithm 1 Libertas
Setup(𝜆)

1: 𝐾Σ ← Σ.Setup(𝜆)
2: 𝐾Lib

$← {0, 1}𝜆
3: 𝐾 = (𝐾Σ, 𝐾Lib)
4: 𝑐 ← 0

BuildIndex(𝜆)
1: 𝛾 ← Σ.BuildIndex(𝜆)

SrchToken(𝐾,𝑞)
1: 𝜏srch ← Σ.SrchToken(𝐾Σ, 𝑞)
2: Return 𝜏srch

AddToken(𝐾, ind,𝑤)
1: 𝜏add ← Σ.AddToken(𝐾Σ, 𝐸𝐾Lib (𝑐, add, ind,𝑤),𝑤)
2: 𝑐 ← 𝑐 + 1
3: Return 𝜏add

DelToken(𝐾, ind,𝑤)
1: 𝜏del ← Σ.AddToken(𝐾Σ, 𝐸𝐾Lib (𝑐, del, ind,𝑤),𝑤)
2: 𝑐 ← 𝑐 + 1
3: Return 𝜏del

Search(𝛾, 𝜏srch)
1: 𝑅∗ ← Σ.Search(𝛾, 𝜏srch)
2: Return 𝑅∗

DecSearch(𝐾, 𝑅∗)
1: Decrypt 𝑅∗ using 𝐾Lib and sort the entries in as-

cending order based on the value of 𝑐 , resulting in

((𝑐1, op1, ind1,𝑤1), . . . , (𝑐𝑛, op𝑛, ind𝑛,𝑤𝑛)).
2: Let𝑊 be the set of distinct keywords in 𝑅∗.
3: For all 𝑤 ∈ 𝑊 , let 𝑅𝑤 = {ind | ∃ 𝑖 s.t. (op𝑖 , ind𝑖 ,𝑤𝑖 ) =

(add, ind,𝑤) ∧ � 𝑗 > 𝑖, (op𝑗 , ind𝑗 ,𝑤 𝑗 ) = (del, ind,𝑤)}.
4: 𝑅 =

⋃
𝑤∈𝑊 𝑅𝑤

5: Return 𝑅

FetchDocuments(𝑅)
1: Return all documents corresponding to the document identi-

fiers in 𝑅.

Add(𝛾, 𝜏add)
1: 𝛾 ← Σ.Add(𝛾, 𝜏add)

Delete(𝛾, 𝜏del)
1: 𝛾 ← Σ.Add(𝛾, 𝜏del)

done in the DecSearch algorithm of Libertas, therefore combining

the second rounds of Σ and Libertas, requiring a total of two round
trips rather than three.

5.3 Security
Theorem 5.1. Let 𝐸𝐾Σ be an IND-CPA secure, which-key con-

cealing encryption scheme and Σ be a wildcard supporting, LΣ-
adaptively secure scheme that supports add operations, with LΣ =

(LSrch
Σ ,LAdd

Σ ) defined as

LSrch
Σ (𝑞) = L′(spΣ (𝑞),UpHistΣ (𝑞)),

LAdd
Σ (ind,𝑤) = L′′(ind,𝑤),
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where L′ and L′′ are stateless. Then, Libertas is LLib-adaptively
secure, with LLib = (LSrch

Lib ,LAdd
Lib ,L

Del
Lib ) defined as

LSrch
Lib (𝑞) = (spLib (𝑞), TimeDBLib (𝑞),UpdatesLib (𝑞)),

LAdd
Lib (ind,𝑤) = 𝑤,

LDel
Lib (ind,𝑤) = 𝑤.

Libertas is therefore update pattern revealing backward-private.
If Σ is additionally forward private, meaning it is LΣ𝑓 𝑝

-adaptively
secure, where LΣ𝑓 𝑝

= (LSrch
Σ ,LAdd

Σ𝑓 𝑝
) , with LAdd

Σ𝑓 𝑝
defined as

LAdd
Σ𝑓 𝑝
(ind,𝑤) = L′′′(ind),

where L′′′ is stateless, Libertas is LLib𝑓 𝑝 -adaptively secure, where

LLib𝑓 𝑝 = (LSrch
Lib ,LAdd

Lib𝑓 𝑝
,LDel

Lib𝑓 𝑝
), with LAdd

Lib𝑓 𝑝
and LDel

Lib𝑓 𝑝
defined

as

LAdd
Lib𝑓 𝑝
(ind,𝑤) =⊥,

LDel
Lib𝑓 𝑝
(ind,𝑤) =⊥,

meaning Libertas is forward private as well.

Proof. We describe a polynomial-time simulator SLib such that

for all probabilistic polynomial-time adversaries A, the outputs of

SSEReal
Lib
A (𝜆, 𝑛) and SSEIdealA,SLib,LLib (𝜆, 𝑛) are equal.

Since Σ is LΣ-adaptively secure, there exists a polynomial-time

simulator SΣ that can simulate operations in Σ using LΣ. Consider

the simulator SLib that adaptively simulates a sequence of 𝑛 sim-

ulated tokens (𝜏1, . . . , 𝜏𝑛), a sequence of 𝑚 simulated encrypted

result sets (𝑅∗
1
, . . . , 𝑅∗𝑚) and a sequence of𝑚 simulated decrypted

result sets (𝑅1, . . . , 𝑅𝑚), where𝑚 ≤ 𝑛, as follows:
• (Setup) the simulator generates a random key 𝐾SLib .
• (Simulating 𝜏srch) given

LSrch
Lib (𝑞) = (spLib (𝑞), TimeDBLib (𝑞),UpdatesLib (𝑞)),

construct L̃Srch
Σ (𝑞) = L(s̃pΣ (𝑞),�UpHistΣ (𝑞)) as follows:

s̃pΣ (𝑞) = spLib (𝑞),�UpHistΣ (𝑞) = {(𝑢, add, 𝐸𝐾SLib (⊥𝑐 ,⊥op,⊥ind,⊥𝑤)) |
𝑢 ∈ UpdatesLib (𝑞)}.

Then, rather than running Σ.SrchToken(𝐾Σ, 𝑞), run
SΣ (stSΣ , L̃Srch

Σ (𝑞)). Since every search for query𝑞 in Libertas
results in a search for query 𝑞 in Σ, the search patterns for

Libertas and Σ are identical. UpHistΣ (𝑞) can be generated

as the timestamps are identical to those of UpdatesLib (𝑞),
the operation is always add and the encryption of meaning-

less data is indistinguishable from that of meaningful data,

since 𝐸 is IND-CPA secure. (⊥𝑐 ,⊥op,⊥ind,⊥𝑤) are gener-
ated based on 𝑢, maintaining consistency between simulated

search tokens of identical queries. By taking constructed

leakage L̃Srch
Σ as input, SΣ, and in turn SLib, can simulate

search tokens 𝜏srch that are indistinguishable from real to-

kens 𝜏srch.

• (Simulating 𝜏add) given

LAdd
Lib (ind,𝑤) = 𝑤,

construct L̃Add
Σ (ind,𝑤) = L( ĩnd,𝑤) as follows:

ĩnd = 𝐸𝐾SLib
(⊥𝑐 ,⊥op,⊥ind,⊥𝑤),

𝑤 = 𝑤.

Then, rather than running

Σ.AddToken(𝐾Σ, 𝐸𝐾Lib (𝑐, add, ind,𝑤)), run
SΣ (stSΣ , L̃Add

Σ (ind,𝑤)). To clarify, ĩnd is viewed as a doc-

ument identifier from Σ’s perspective, but as an encrypted

tuple from Libertas’s perspective. Since 𝐸𝐾SLib is CPA-secure,
⊥𝑐 , ⊥op, ⊥ind and ⊥𝑤 can be anything, as the resulting en-

cryption will be indistinguishable from an encryption where

an actual timestamp, update operation, document identi-

fier and keyword are considered. Therefore, SΣ, and in turn

Libertas, will be able to create add tokens 𝜏add that are in-

distinguishable from real tokens 𝜏add. We do not maintain

consistency for add tokens as we did for search tokens, as

add tokens are distinct by nature.

In case Σ is forward private, we are given

LAdd
Lib𝑓 𝑝
(ind,𝑤) =⊥ .

We construct L̃Add
Σ𝑓 𝑝
(ind,𝑤) = L( ĩnd) as follows:

ĩnd = 𝐸𝐾SLib
(⊥𝑐 ,⊥op,⊥ind,⊥𝑤),

• (Simulating 𝜏del)SLib can construct a delete token 𝜏del that is
indistinguishable from 𝜏del in the same way as it constructs

add tokens.

• (Simulating 𝑅∗) given

LSrch
Lib (𝑞) = (spLib (𝑞), TimeDBLib (𝑞),UpdatesLib (𝑞)),

construct 𝑅∗ as follows:

𝑅∗ = {𝐸𝐾SLib (⊥𝑐 ,⊥op,⊥ind,⊥𝑤) | 𝑢 ∈ UpdatesLib (𝑞)},

where⊥𝑐 is a fake timestamp,⊥op is a fake update operation,
⊥ind is a fake document identifier and ⊥𝑤 is a fake keyword.

Since 𝐸𝐾SLib
is IND-CPA secure, items in 𝑅∗ and 𝑅∗ are indis-

tinguishable. As both result sets have the same length as well,

𝑅∗ and 𝑅∗ are indistinguishable. To maintain consistency of

simulated sets between identical search queries, we generate

values (⊥𝑐 ,⊥op,⊥ind,⊥𝑤) based on 𝑢, akin to what we did

for simulating search tokens.

• (Simulating 𝑅) given

LSrch
Lib (𝑞) = (spLib (𝑞), TimeDBLib (𝑞),UpdatesLib (𝑞)),

construct 𝑅 as follows:

𝑅 = {ind | (𝑢, ind) ∈ TimeDBLib (𝑞)}.

□



6 EVALUATION
In order to empirically evaluate the cost of backward privacy in

our Libertas construction, we implemented Libertas and a wildcard
supporting scheme. We picked the scheme proposed by Zhao and

Nishide [33] as it is an exemplar wildcard scheme. It is forward

private and allows for updates on a document-keyword pair level

rather than considering complete documents, making integration

with Libertas easy. Additionally, it supports two wildcard types,

allowing for greater query flexibility.

6.1 Zhao and Nishide Recap
The scheme by Zhao and Nishide [33] makes use of Bloom filters [3]

to store keyword and query characteristics. For every document-

keyword pair, a Bloom filter is stored in the index. Queries are

translated into a Bloom filter that is subsequently checked against

stored Bloom filters to findmatching documents. Rather than check-

ing all bits, the search algorithm only requires that all bits set in

the query Bloom filter are also set in the Bloom filter generated for

the keyword. An overview of the scheme’s algorithms, including

the generation of the Bloom filters, can be found in Appendix A.

For the rest of the paper, we will refer to the scheme as Z&N.

6.2 Setup
6.2.1 Implementation details. A single-core implementation is writ-

ten and tested in Python 3.8. The code is available at https://github.

com/LibertasConstruction/Libertas.

6.2.2 Hardware. The experiments were carried out on a laptop

computer running Windows 10 with 8 GB of RAM and 4 Intel i7-

4700MQ cores, operating at 2.4 GHz each. The implementation

only used a single CPU core, however. Both the scheme’s client

and server ran in the same process, communicating directly via the

Python script.

6.2.3 Parameters. We set the false positive rate of the Bloom filters

to 0.01 and used keywords of length 5. The length of the keyword

determines the size of the keyword characteristic set and thus the

number of elements in the Bloom filter. With these settings, Bloom

filters consist of 240 bits and use 7 hash functions. We used 2048 bit

keys for all Z&N instances and 256 bit keys for AES encryptions in

Libertas.

6.2.4 Data set. For the experiments, we generated document-keyword

pairs of the form [(0, ‘00000’), (1, ‘00001’), . . . , (99999, ‘99999’)].

6.3 Experiments
We devised four experiments that measure the effect of changes

to the index size, the wildcard query, the result set and the num-

ber of deletions, respectively. We measured the execution time

of the search protocol of both schemes, averaged over 10 queries

and 10 instances of the schemes. We considered the Search op-

eration for Z&N and both the Search and DecSearch operations

for LibertasZ&N. We disregarded the SrchToken operation as it is

identical for both schemes.

6.3.1 Basic Search. To measure the basic search time, we inserted

the first 𝑛𝑖 pairs of the generated data set for different index sizes
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Figure 3: Average search time for exact keyword search per
index size (x-axis in logarithmic scale).

𝑛𝑖 . We measured the search time of a random keyword present in

the index.

6.3.2 Wildcard Query Search. To measure the effect of wildcards,

we considered a fixed index size of 10,000 but increasingly replaced

more query characters with ‘_’ wildcards, to increase the number of

matching keywords. We chose not to include ‘*’ wildcards, as the

construction of Z&N uses the same concept for both wildcard types.

While there is a measurable performance difference depending

on the wildcard type, this effect will be identical for Z&N and

LibertasZ&N. We are only interested in the number of matching

keywords as this influences the performance of the DecSearch
operation in Libertas.

6.3.3 Varying Result Set Size. We investigated the effect of match-

ing multiple documents. The generated data set is modified slightly

for this experiment. The last 𝑛𝑟 pairs that are inserted consider the

same keyword. This is the keyword we query for. We measured the

search time for increasing 𝑛𝑟 , with a fixed index size of 10,000.

6.3.4 Varying Number of Deletions. To evaluate the effect of dele-

tions growing the index of Libertas, we measured search times

for an increasing number of deletions. For this experiment, both

schemes started out with their index containing the first 10,000

pairs of the generated data set. Then, we deleted pairs from the

index using the delete protocol of the scheme.

6.4 Results
6.4.1 Basic Search. We can see from Figure 3 that LibertasZ&N
experiences virtually no overhead compared to Z&N when consid-

ering exact keyword searches, regardless of the index size.

6.4.2 WildcardQuery Search. Figure 4 shows us that the overhead
of LibertasZ&N barely increases when considering queries contain-

ing wildcards such that they match multiple keywords. Note that,

for the given data set, every additional wildcard increases the num-

ber ofmatching keywords ten-fold. LibertasZ&N appears to be faster

https://github.com/LibertasConstruction/Libertas
https://github.com/LibertasConstruction/Libertas
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Figure 4: Average search time for wildcard query search per
number of wildcards (index size 104).
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Figure 5: Average search time per result set size (x-axis in
logarithmic scale, index size 104).

than Z&N when the query contains no wildcards. This is merely a

result of measurement error.

6.4.3 Varying Result Set Size. Figure 5 indicates that LibertasZ&N
and Z&N have a comparable performance regardless of result set

size.

6.4.4 Varying Number of Deletions. Figure 6 clearly shows the

downside of an index that grows with deletions. Typically, search

times decrease as items are deleted, as can be seen for Z&N. Due
to Libertas’s nature, however, its index increases, slowing down

searches linearly with the number of deletions instead. LibertasZ&N
appears to be faster than Z&N when there are no deletions. This is

merely a result of measurement error.
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Figure 6: Average search timeper number of deletions (index
size 104).

7 DISCUSSION
7.1 Query similarity
The wildcard leakage functions we introduced in Section 4.1 allow

for query similarity leakage. We consider Definition 4.1. Here, infor-

mation on query similarity is leaked in the following way. We con-

sider queries𝑞1 and𝑞2. If𝑞2 ¤⊆ 𝑞1, then TimeDB(𝑞2) ⊆ TimeDB(𝑞1).
Note that the relation is not reversible; if an observer sees that

TimeDB(𝑞2) ⊆ TimeDB(𝑞1), it does not necessarily mean that

𝑞2 ¤⊆ 𝑞1. An adversary can try to link result sets that are subsets of

each other and assume that the corresponding queries are related;

the query corresponding to the larger result set is likely a more

general form of the query of the smaller set. This query similarity

leakage might be abusable and compromise wildcard security. We

leave it for future work to determine if this leakage undermines

wildcard security and if so, to develop an LAA.

7.2 Real World Application
LibertasZ&N is ready for deployment in systems that require a

backward private, wildcard supporting DSSE scheme today. The

implementation provided with this paper uses a single CPU core.

The implementation can easily be parallelized, however. During the

Search algorithm, the server goes through all updates in the index

(see line 2-3 in Search in Algorithm 2). This search can be split

up between cores. If we assume a computer with 8 CPU cores, we

can effectively cut search times by a factor of 8. Searches will take

less than a second even with a large index or many deletions. Only

when considering very large databases or environments where two

round trips are undesirable would Libertas not provide a proper
solution.

7.3 Clean-up Procedure
The major drawback of Libertas is that its index grows with every

update, as deletions in Libertas translate to insertions in Σ. This
increases search times for both the Search algorithm run at the

server and the DecSearch algorithm run at the client. We propose



a clean-up procedure similar to that of Bost et al. [6] to combat

this problem. During Search, the server removes all results from

the index. Then, when running the FetchDocuments algorithm, the

client additionally runs the AddToken algorithm for every relevant

document-keyword pair. That is, every pair that was added, but not

subsequently deleted. The server runs the Add algorithm to re-add

the relevant document-keyword pairs to the index. This procedure

cleanses the index during searches, removing updates that cancel

each other out. If Libertas is constructed from a forward private

scheme, we believe this procedure incurs no additional leakage, as

additions do not leak information. This clean-up procedure restricts

the choice of Σ, as the scheme should be able to remove individual

entries from the index. A common example of a valid index structure

is a list containing entries for every document-keyword pair, such

as in Z&N. An example of a DSSE scheme with an unsuitable index

structure is the scheme by Kamara et al. [21].

7.4 Insertion Pattern Revealing Backward
Privacy

Libertas can achieve insertion pattern revealing backward privacy if

Σ is forward private and does not leak UpHistΣ (𝑞) during search
operations, but only apΣ (𝑞). In our scenario, the difference be-

tween leakage functions UpHistΣ (𝑞) and apΣ (𝑞) consists of only
the timestamps of all updates, as update operations are always

additions. If Σ does not leak these timestamps, then Libertas does
neither. In the proof, rather than using UpdatesLib (𝑞) to construct

UpHistΣ (𝑞), we can use 𝑎𝑞Lib to construct apΣ (𝑞) by generating

𝑎𝑞Lib encryptions of (⊥𝑐 ,⊥op,⊥ind,⊥𝑤) tuples. Hiding UpHist(𝑞)
in SSE schemes remains a challenge, however. Current solutions

use ORAM but are not efficient [23].

8 CONCLUSION
In this research, we extended commonly used leakage functions

and, in turn, backward privacy definitions, to consider wildcard

queries as opposed to just exact keyword queries. We presented

Libertas: a construction providing update pattern revealing back-
ward privacy to any wildcard supporting scheme Σ. We proved the

security of Libertas in the L-adaptive security model and evaluated

its performance compared to its underlying scheme Σ. We found

that Libertas experiences an overhead that is linear in the number

of deletions. The resulting scheme requires an additional round of

communication during searches and its index grows with every

update. Nonetheless, searches are fast, making Libertas suitable for
real-world applications.

REFERENCES
[1] Martın Abadi and Phillip Rogaway. 2000. Reconciling two views of cryptography.

In Proceedings of the IFIP International Conference on Theoretical Computer Science.
Springer, 3–22.

[2] John Bethencourt, H Chan, Adrian Perrig, Elaine Shi, and Dawn Song. 2006.

Anonymous multi-attribute encryption with range query and conditional de-

cryption. In IEEE Symposium on Security & Privacy.
[3] Burton H Bloom. 1970. Space/time trade-offs in hash coding with allowable

errors. Commun. ACM 13, 7 (1970), 422–426.

[4] Dan Boneh and Brent Waters. 2007. Conjunctive, subset, and range queries on

encrypted data. In Theory of cryptography conference. Springer, 535–554.
[5] Raphael Bost. 2016.

∑
o𝜑o𝜍 : Forward secure searchable encryption. In Proceedings

of the 2016 ACM SIGSAC Conference on Computer and Communications Security.
1143–1154.

[6] Raphaël Bost, Brice Minaud, and Olga Ohrimenko. 2017. Forward and backward

private searchable encryption from constrained cryptographic primitives. In

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. 1465–1482.

[7] Zvika Brakerski and Vinod Vaikuntanathan. 2011. Fully homomorphic encryption

from ring-LWE and security for key dependent messages. In Annual cryptology
conference. Springer, 505–524.

[8] Christoph Bösch, Richard Brinkman, Pieter Hartel, and Willem Jonker. 2011.

Conjunctive Wildcard Search over Encrypted Data. https://link.springer.com/

chapter/10.1007/978-3-642-23556-6_8

[9] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. 2015. Leakage-

abuse attacks against searchable encryption. In Proceedings of the 22nd ACM
SIGSAC conference on computer and communications security. 668–679.

[10] David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel-Cătălin

Roşu, and Michael Steiner. 2013. Highly-scalable searchable symmetric encryp-

tion with support for boolean queries. In Annual cryptology conference. Springer,
353–373.

[11] Melissa Chase and Emily Shen. 2015. Substring-Searchable Symmetric Encryption.

Proc. Priv. Enhancing Technol. 2015, 2 (2015), 263–281.
[12] Sanjit Chatterjee, Manish Kesarwani, Jayam Modi, Sayantan Mukherjee, Shravan

Kumar Parshuram Puria, and Akash Shah. 2020. Secure and efficient wildcard

search over encrypted data. International Journal of Information Security (2020),

1–46.

[13] Shen-Ming Chung, Ming-Der Shieh, and Tzi-Cker Chiueh. 2019. FETCH: A

cloud-native searchable encryption scheme enabling efficient pattern search on

encrypted data within cloud services. International Journal of Communication
Systems (2019), e4141.

[14] Shen-Ming Chung, Ming-Der Shieh, Tzi-Cker Chiueh, Chia-Chia Liu, and Chia-

Heng Tu. 2020. uFETCH: A Unified Searchable Encryption Scheme and Its

Saas-Native to Make DBMS Privacy-Preserving. IEEE Access 8 (2020), 93894–
93906.

[15] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. 2011. Searchable

symmetric encryption: improved definitions and efficient constructions. Journal
of Computer Security 19, 5 (2011), 895–934.

[16] Sky Faber, Stanislaw Jarecki, Hugo Krawczyk, Quan Nguyen, Marcel Rosu, and

Michael Steiner. 2015. Rich queries on encrypted data: Beyond exact matches. In

European symposium on research in computer security. Springer, 123–145.
[17] Eu-Jin Goh et al. 2003. Secure indexes. IACR Cryptol. ePrint Arch. 2003 (2003),

216.

[18] Changhui Hu and Lidong Han. 2016. Efficient wildcard search over encrypted

data. International Journal of Information Security 15, 5 (2016), 539–547.

[19] Changhui Hu, Lidong Han, and Siu Ming Yiu. 2016. Efficient and secure multi-

functional searchable symmetric encryption schemes. Security and Communica-
tion Networks 9, 1 (2016), 34–42.

[20] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2012. Access

pattern disclosure on searchable encryption: ramification, attack and mitigation..

In Ndss, Vol. 20. Citeseer, 12.
[21] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. 2012. Dynamic

searchable symmetric encryption. In Proceedings of the 2012 ACM conference on
Computer and communications security. 965–976.

[22] Myungsun Kim, Hyung Tae Lee, San Ling, Benjamin Hong Meng Tan, and Huax-

iong Wang. 2017. Private compound wildcard queries using fully homomorphic

encryption. IEEE Transactions on Dependable and Secure Computing (2017).

[23] Muhammad Naveed. 2015. The Fallacy of Composition of Oblivious RAM and

Searchable Encryption. IACR Cryptol. ePrint Arch. 2015 (2015), 668.
[24] Tushar Kanti Saha and Takeshi Koshiba. 2016. An enhancement of privacy-

preserving wildcards pattern matching. In International Symposium on Founda-
tions and Practice of Security. Springer, 145–160.

[25] Saeed Sedghi, Peter Van Liesdonk, Svetla Nikova, Pieter Hartel, andWillem Jonker.

2010. Searching keywords with wildcards on encrypted data. In International
Conference on Security and Cryptography for Networks. Springer, 138–153.

[26] Dawn Xiaoding Song, David Wagner, and Adrian Perrig. 2000. Practical tech-

niques for searches on encrypted data. In Proceeding 2000 IEEE Symposium on
Security and Privacy. S&P 2000. IEEE, 44–55.

[27] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. 2014. Practical Dy-

namic Searchable Encryption with Small Leakage.. In NDSS, Vol. 71. 72–75.
[28] Takanori Suga, Takashi Nishide, and Kouichi Sakurai. 2012. Secure keyword

search using Bloom filter with specified character positions. In International
Conference on Provable Security. Springer, 235–252.

[29] Zhaoli Wang, Jinli Han, Meijuan Wang, Yaqing Shi, and Hui Dong. 2018. Public

Key Encryption with Wildcards Keyword Search. In 2018 Eighth International
Conference on Instrumentation & Measurement, Computer, Communication and
Control (IMCCC). IEEE, 538–541.

[30] Yang Yang, Ximeng Liu, Robert H Deng, and Jian Weng. 2017. Flexible wildcard

searchable encryption system. IEEE Transactions on Services Computing 13, 3

(2017), 464–477.

[31] Masaya Yasuda, Takeshi Shimoyama, Jun Kogure, Kazuhiro Yokoyama, and

Takeshi Koshiba. 2014. Privacy-preserving wildcards pattern matching using

https://link.springer.com/chapter/10.1007/978-3-642-23556-6_8
https://link.springer.com/chapter/10.1007/978-3-642-23556-6_8


Libertas: A Backward Private DSSE Scheme Supporting Wildcard Search

symmetric somewhat homomorphic encryption. In Australasian Conference on
Information Security and Privacy. Springer, 338–353.

[32] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. 2016. All your

queries are belong to us: The power of file-injection attacks on searchable encryp-

tion. In 25th {USENIX} Security Symposium ({USENIX} Security 16). 707–720.
[33] Fangming Zhao and Takashi Nishide. 2016. Searchable symmetric encryption

supporting queries with multiple-character wildcards. In International Conference
on Network and System Security. Springer, 266–282.



A Z&N: CONSTRUCTION
We provide the construction of Z&N: a DSSE scheme supporting

wildcard search. It is proposed by Zhao and Nishide in [33] and uses

Bloom filters [3] and a regular index. The algorithms are described

in Algorithm 2. An implementation of Z&N can be found at https://

github.com/LibertasConstruction/Libertas. The scheme uses a hash

function𝑔.𝑔 denotes the first bit of a hash using𝑔. The scheme uses𝑔

with 𝑟 different keys to effectively create 𝑟 different hash functions

to use for Bloom filters. BF[𝑝] denotes the bit in a Bloom filter

at position 𝑝 . ind ∥ 𝑤 indicates a concatenation of ind and𝑤 . The

scheme uses keyword characteristic and token (query) characteristic

sets, 𝑆𝐾 (𝑤) and 𝑆𝑇 (𝑞), to capture the structure of keywords and

queries to support both ‘*’ and ‘_’ wildcard symbols. Every keyword

characteristic set is stored in a Bloom filter.

A.1 Keyword Characteristic Set
𝑆𝐾 (𝑤) is made up of the two sets 𝑆

(𝑜)
𝐾
(𝑤) and 𝑆 (𝑝)

𝐾
(𝑤). The set

𝑆
(𝑜)
𝐾
(𝑤) contains characters of a keyword𝑤 together with their po-

sition. For example, 𝑆
(𝑜)
𝐾
(‘diana’) = {‘1:d’, ‘2:i’, ‘3:a’, ‘4:n’, ‘5:a’, ‘6:\0’}.

Note the terminator symbol indicating the end of the keyword. The

set 𝑆
(𝑝)
𝐾
(𝑤) consists of the sets 𝑆 (𝑝1)

𝐾
(𝑤) and 𝑆 (𝑝2)

𝐾
(𝑤). These sets

consider pairs of characters. Let us take a look at these sets when

using the keyword ‘diana’.

𝑆
(𝑝1)
𝐾
(‘diana’) = {‘1:1:d,i’, ‘2:1:d,a’, ‘3:1:d,n’, ‘4:1:d,a’, ‘5:1:d,\0’,

‘1:1:i,a’, ‘2:1:i,n’, ‘3:1:i,a’, ‘4:1:i,\0’,

‘1:1:a,n’, ‘2:1:a,a’, ‘3:1:a,\0’,

‘1:1:n,a’, ‘2:1:n,\0’,

‘1:1:a,\0’}

Here, the element ‘3:1:d,n’ comes from the character pair ‘diana’,

where 3 is the distance between the characters and 1 indicates that

it is the first occurrence of the pair with the given distance in this

set.

𝑆
(𝑝2)
𝐾
(‘diana’) = {‘-:1:d,i’, ‘-:1:d,a’, ‘-:1:d,n’, ‘-:2:d,a’, ‘-:1:d,\0’,

‘-:1:i,a’, ‘-:1:i,n’, ‘-:2:i,a’, ‘-:1:i,\0’,

‘-:1:a,n’, ‘-:1:a,a’, ‘-:1:a,\0’,

‘-:1:n,a’, ‘-:1:n,\0’,

‘-:2:a,\0’}

Here, the element ‘-:2:i,a’ comes from the character pair ‘diana’.

Distances are not considered in this set. The 2 indicates that this is

the second occurrence of the pair in the set.

A.2 Token Characteristic Set
Next, we will show how to construct the token characteristic set

𝑆𝑇 (𝑞) of a search query 𝑞. As this scheme does not support conjunc-

tive keyword queries, 𝑞 can be thought of as a keyword containing

wildcards. Similar to 𝑆𝐾 (𝑤), 𝑆𝑇 (𝑞) is made up of the sets 𝑆
(𝑜)
𝑇
(𝑞),

𝑆
(𝑝1)
𝑇
(𝑞) and 𝑆 (𝑝2)

𝑇
(𝑞). The construction of the sets is illustrated by

an example with the query ‘di*a_a*\0’.

The set 𝑆
(𝑜)
𝑇
(𝑞) is constructed by extracting characters from 𝑞

with a specified appearance order. 𝑆
(𝑜)
𝑇
(‘di*a_a*\0’) = {‘1:d’, ‘2:i}.

We define a character group as a group of subsequent characters

that do not contain wildcards. ‘di*a_a*\0’ consists of the character

groups ‘di’, ‘a’, ‘a’ and ‘\0’. For 𝑆
(𝑝1)
𝑇
(𝑞), we consider the character

group to the left and to the right of ‘_’ wildcards. We generate all

possible character pairs with their corresponding distance. Then,

we do mostly the same for ‘*’ wildcards: we consider the character

group left and right of the ‘*’ wildcard. This time, however, we con-
catenate the character groups before generating the character pairs,
thereby ignoring the wildcard itself in the distance computation.

The resulting pairs are added to 𝑆
(𝑝1)
𝑇

. The following example il-

lustrates what this means exactly. Consider 𝑆
(𝑝1)
𝑇
(‘di*a_a*\0’). The

‘_’ wildcard is surrounded by ‘a’ and ‘a’. 𝑆
(𝑝1)
𝑇

therefore contains

‘2:1:a,a’. The first ‘*’ wildcard is surrounded by character group ‘di’

and character ‘a’, adding ‘1:1:d,i’, ‘2:1:d,a’ and ‘1:1:i,a’ to the set. In

the same fashion, ‘1:1:a,\0’ is added.

To construct the set 𝑆
(𝑝2)
𝑇
(𝑞), consider the search string without

wildcard symbols. Then, follow the same procedure as with the

construction of 𝑆
(𝑝2)
𝐾
(𝑤).

https://github.com/LibertasConstruction/Libertas
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Algorithm 2 Z&N
Setup(𝜆)

1: 𝑘𝑡
$← {0, 1}𝜆 , for 𝑡 ∈ [1, 𝑟 ]

2: 𝐾𝐻 = {𝑘𝑡 }𝑡 ∈[1,𝑟 ]
3: 𝐾𝐺

$← {0, 1}𝜆
4: 𝐾 = (𝐾𝐻 , 𝐾𝐺 )

BuildIndex(𝜆)
1: 𝛾 ← empty list

SrchToken(𝐾,𝑞)
1: 𝑆𝑇𝑞 ← 𝑆𝑇 (𝑞)
2: For each element 𝑒 𝑗 of 𝑆𝑇𝑞 :

3: 𝑝𝑡 ← 𝑔(𝑘𝑡 , 𝑒 𝑗 ), for 𝑡 ∈ [1, 𝑟 ]
4: 𝜏srch

𝑒 𝑗 ,1
= (𝑝1, 𝑝2, . . . , 𝑝𝑟 )

5: 𝜏srch
𝑒 𝑗 ,2

= (𝑔(𝐾𝐺 , 𝑝1), 𝑔(𝐾𝐺 , 𝑝2), . . . , 𝑔(𝐾𝐺 , 𝑝𝑟 ))
6: 𝜏srch𝑒 𝑗

= (𝜏srch
𝑒 𝑗 ,1

, 𝜏srch
𝑒 𝑗 ,2
)

7: 𝜏srch = (𝜏srch𝑒1
, 𝜏srch𝑒2

, . . . , 𝜏srch𝑒ℓ
)

8: Return 𝜏srch

AddToken(𝐾, ind,𝑤)
1: 𝑏id ← 𝑔(𝐾𝐺 , ind ∥ 𝑤)
2: 𝑆𝐾𝑤

← 𝑆𝐾 (𝑤)
3: For each element 𝑒 𝑗 of 𝑆𝐾 (𝑤):
4: 𝑝𝑡 ← 𝑔(𝑘𝑡 , 𝑒 𝑗 ), for 𝑡 ∈ [1, 𝑟 ]
5: Initialize a Bloom filter BF of length 𝑏 and set the bits at

positions 𝑝𝑡 to 1

6: For 𝑝 ∈ [1, 𝑏]:
7: mb[𝑝] ← 𝑔(𝑏id, 𝑔(𝐾𝐺 , 𝑝))
8: BF[𝑝] ← BF[𝑝] ⊕ mb[𝑝]
9: 𝜏add = (ind,BF, 𝑏id)
10: Return 𝜏add

DelToken(𝐾, ind,𝑤)
1: 𝑏id ← 𝑔(𝐾𝐺 , ind ∥ 𝑤)
2: 𝜏del = 𝑏id
3: Return 𝜏del

Search(𝛾, 𝜏srch)
1: 𝜏srch consists of Bloom filter positions and hashes of these posi-

tions. We arrange these as ((𝑝1, 𝑔(𝐾𝐺 , 𝑝1)), . . . , (𝑝𝑖 , 𝑔(𝐾𝐺 , 𝑝𝑖 )))
2: For all (ind,BF, 𝑏id) in 𝛾 :
3: Add ind to 𝑅 if BF[𝑝𝑡 ] ⊕ 𝑔(𝑏id, 𝑔(𝐾𝐺 , 𝑝𝑡 )) = 1 for all

(𝑝𝑡 , 𝑔(𝐾𝐺 , 𝑝𝑡 )), where 𝑡 ∈ [1, 𝑖].
4: Return 𝑅

Add(𝛾, 𝜏add)
1: Add 𝜏add to 𝛾

Delete(𝛾, 𝜏del)
1: 𝜏del = 𝑏id
2: Remove from 𝛾 the entry with Bloom filter identifier 𝑏id
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