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ABSTRACT 

Prediction of the spatial distribution of species is vital for conservation planning. For accurate predictions, an 

appropriate sampling design should be used. Most ecological data that originate from unscientific sources are 

often biased towards the areas that are most accessible such as roads and nature parks. Besides, most methods 

of species distribution modelling (SDM) assume random and uniformly distributed samples. Thereby, spatially 

biased samples may lead to over or underprediction, therefore, making distribution models unreliable. Mostly 

presence/absence data are preferred to presence only because they contain more information about species’ 

habitat. However, to collect presence/absence occurrence data, laborious field surveys and enormous resources 

are required, making it rare. However, plenty of presence-only (PO) observations exist in herbaria, museums, 

and online databanks, most of which are electronically accessible. In many instances, remedial treatment is 

required to make PO data reliable, for example, to correct sampling bias effects in data.  

Ordinarily, clustering of data may lead to model’s overprediction in areas that are intensively sampled. This 

effect can be mitigated by attempting to de-cluster the data, for example, rarefaction, or introducing randomly 

distributed background samples. The average nearest neighbour method was used to test two different wild 

boar observation datasets for spatial bias. Spatial rarefication was used to de-cluster presence-only data. Then 

a dataset with a similar number of observations (n) was selected from the original dataset. Five different 

methods of species distribution modelling (Boosted Regression Trees, Random Forests, Maximum Entropy, 

Support Vector Machine and Generalized Linear Models) were fitted with the two datasets and environmental 

predictors. The environmental predictors included 50m resolution Euclidean distance maps from the roads, 

nature reserves, heath &moor, farmlands, forest, and artificial surface. Randomization of models was 

undertaken by replicating the models twenty times for each method using bootstrapping. To check for 

consistency in the model predictions across methods was assessed by computing standard deviation in spatial 

prediction and comparing the zonal statistics for the various environmental variables.  

It was found that the FBE dataset was more clustered than volunteer observations which are consistent with 

the way different observers are distributed. For all methods, the models from rarefied datasets were significantly 

different from the clustered ones. The machine learning method (RF, SVM, MaxEnt) tends to be more tolerant 

of survey bias because of clustering compared to empirical models (BRT, GLM). This was demonstrated 

through t-test statistic whereby the machine learning models were less significant compared with the rest. 

However, all the models performed well for both datasets, with a mean AUC above 0.8. Regarding variable 

importance to model permutations, the distance to nature reserves contributed most while distance to water 

was the least. However, the variability was more evenly distributed for the rarefied dataset compared to the 

clustered one. More so, all models depicted high prediction uncertainty in water areas while cultivated areas had 

the least. Therefore, bias correction demonstrated significant improvement to species distribution models’ 

performance.  

Keywords: Wild boar, species distribution modelling, biased, Random forest, boosted regression tree, support 
vector machine, generalized linear model, Maximum entropy, rarefaction, presence/absence, presence only, 
area under the curve, average nearest neighbour, random, clustered 
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1 INTRODUCTION 

1.1 Background information 

1.1.1 Sampling bias is species distribution modelling 

Prediction of the spatial distribution of species is vital for conservation planning (Elith et al., 2006).  Moreover, 

a suitable sampling regime is essential for making accurate environmental predictions (Rocha et al., 2020).  

Phillips et al. (2009) defined sampling biased data as species occurrence localities that select ecological variables 

in a manner that is not proportional to the study area. Ecological samples are not primarily independent and 

identically distributed over study areas (Rocha et al., 2020).  The places that are most accessible and most 

frequented often get intensely surveyed since observation of species is based on the chance that it is present 

and the locality is visited by an observer (Fernández & Nakamura, 2015). 

Most species distribution modelling methods are designed to assume that the sampling effort was random in 

the study area (Komori et al., 2020). The accuracy of environmental models is dependent on the quality and 

quantity of data, for example, assessing the spatial distribution of species observations  (Rocha et al., 2020). 

While partial sampling may fail to cover the habitat variability for species with a wide range, biased sampling 

efforts may overpredict the model towards the areas of high survey intensity (Elith et al., 2006). Therefore, the 

risk of transmitting the bias from species observations to the spatial distribution predictions need to be avoided 

(Phillips et al., 2009).  

The performance of species distribution prediction can be improved through the effective remedy of survey 

bias in occurrence data and the critical selection of environmental predictors (Phillips et al., 2009). Elith et al. 

(2006) suggested that improving the quality of the training sample may enhance the model’s performance. 

Previous studies proposed methods to reduce sampling bias such as ‘mask layer’ (Fernández & Nakamura 2015) 

‘, quasi-linear Poisson point process’,  (Komori et al., 2020 ) and ‘background samples bias file’ (Phillips et al., 

2009). The rationale of the mask layer is to create a subset barrier by increasing the cost for the geographical 

areas that the target species does not occur. On the contrary, the bias layer is a kernel density map delineating 

the areas where the species is likely to occur, which is used to constrain the selection of background points to 

the areas with high habitat suitability. For the Quasi-linear-Poisson point process method, it is assumed that 

sampling bias is high in the locations where the species abundance is high. Thus, the effect of sampling bias 

and environmental gradients are empirically modelled for separability. Brown (2014) developed a spatial rarefy 

toolbox that removes multiple spatially autocorrelated observations within a defined grid cell. The method was 

selected for use in this study because it can be applied to different species distribution modelling methods.  
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1.1.2 Species distribution modelling 

Understanding the population distribution patterns of species is crucial for designing an ecological management 

program (Saunders & Kay, 1991). Species distribution modelling (SDM) constitute essential biodiversity 

variables (EBVs. These are measurements necessary for managing, assessing, and reporting variation in 

biodiversity (Pereira et al., 2013). The focus of EBV is to take repeated measures of the same species then 

analyse them to make simplified indicators of change (e.g., species distribution models). Species distribution 

models predict the spatial spread of suitable habitats by establishing the empirical relationship between the 

occurrence or density of biodiversity and the environmental gradients (Elith et al., 2006).  

Unlike the environmental variables, which have recently become more available due to advancements in remote 

data acquisition, reliable biodiversity observations are often expensive to acquire (Nakashima et al., 2018). 

However, a wealth of data, mainly presence only (PO), is archived in museums, herbaria, and online databases 

(Elith et al., 2006). Also, access to these data has been facilitated by online electronic transfers capabilities. Some 

methods of SDM (e.g. Generalized linear models and Boosted regression trees) use presence/absence (PA) 

data that’s often collected from systematically designed field surveys, which is costly (Moeller et al., 2018). 

However, many methods have been developed that utilize PO data, which is the most available species 

occurrence secondary data  (Philips et al., 2006, Cutler et al. 2007, Elith, Leathwick & Hastie 2008, Bruzzone & 

Persello 2009, Field 2011). Besides, the presence-only data do not follow systematic data collection protocols, 

and their acquisition intentions are unknown, making them prone to sampling biases (Komori et al., 2020). 

Moreover, it is challenging to infer absence from the PO data (Elith et al., 2006). Besides, Elith et al. (2006) 

indicated that different SDM methods are necessary to improve prediction accuracy in areas with limited data.  

1.1.3 Human-wild boar conflicts 

Human-wildlife conflicts have existed for many decades since the civilization of humankind (Messmer, 2000). 

The modification of natural environments by humans altered the ecological balance leading to competition for 

resources.  Furthermore, the ever-increasing human populations have further exerted pressure on natural 

ecosystems due to the demand for food and raw materials. As a result, there is competing demand for 

conservation and farmland land use. Therefore, the conflict between humans and wildlife is more pronounced 

in the interface between farmlands and the marginal animal reserves where animals roam searching for food 

and water (Franz, Markus, Peter, 2020). 

Consequently, there are losses, such as agriculture damage, diseases transmission, car-animal collisions, and 

animals attacks (Messmer, 2000). Unfortunately, many countries lack inventory of the magnitude and frequency 
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of damage caused by wildlife (Messmer, 2000). Understanding target species ecology is necessary for informing 

how to select and improve occurrence and environmental data and interpretation of model predictions (Elith 

et al., 2006). Wild boar are some of the most abundant mammalian species in terms of distribution within 

Europe (Franz, Markus, Peter, 2020). In the habitats that are close to agriculture fields, the species have various 

impacts on their natural ecosystem and agriculture (Hegel & Marini, 2013). They often move between the forest 

where they shelter and pasture land forage, often resulting in human-wildlife conflict (Saunders & Kay, 1991).  

Moreover, they are vectors of African Swine Fever (ASF) vectors, affecting them and domestic pigs (Blome et 

al., 2013). Similarly, Overijssel Province in the Netherlands hosts diverse ecosystems rich in biodiversity, 

including an unknown number of wild boars (Sus scrofa). The boars roam between a nature reserve and 

neighbouring farms and forests. As a result, some crop damage claims reported to the Overijssel Fauna 

Management Unit (FBE) (FBE Overijssel, 2019). Consequently, there are losses, such as agriculture damage, 

diseases transmission, car-animal collisions, and animals attacks (Messmer, 2000).  

Besides being ecological generalists, wild boars are often free-ranging beyond their natural habitats (Fernando 

et al., 2019). Saunders and Kay (1991) reported the respective home range of male and female wild boar as 10.7 

km2 and 4.9 km2. Besides, Saunders & Kay (1991) found that the distribution of wild boars varies between 

various habitats and seasons in response to the availability of resources (food & water). Moreover, sexually 

active males tend to have a more expansive home range than the breeding females (Saunders & Kay, 1991). 

Besides, response to hunting pressure and summer temperature also affect the daily activity pattern of wild 

boars since they lack sweat glands for thermoregulation (Dexter, 1999). Hence, wild boars are primarily 

nocturnal and spend hot days wallowing in mud/water or under shade (Fernando et al., 2019). The home range 

often increases in winter since the animals needed to travel widely, searching for scarce pasture and to raise 

body temperature, thus conserving energy required for thermoregulation (Dexter, 1999). High reproduction 

rates characterize wild boars if favourable conditions such as sufficient forage availability are present (Bieber & 

Ruf, 2005). According to Lowe et al. (2000) cited in (Fernando et al., 2019), the species lacks natural predators 

in the Netherlands. Consequently, in cases where wild boar population densities are high and predators are 

absent, hunting is the leading method to control their densities (Franz et al., 2020). Therefore, hunting is a 

pivotal factor in wild boars’ activity and distribution patterns outside protected areas.   

1.2 Problem statement 

Species distribution modelling (SDM) is an essential tool for inferring and predicting the habitat suitability for 

flora and fauna. The relationship between species observations and predictor environmental gradients is 

modelled to predict the spatial distribution of species. Due to advancements in remote sensing, the 
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environmental predictors have become readily available at high resolution. However, it is difficult and expensive 

to obtain field data especially using traditional survey methods, which used visual detections of wildlife through 

aerial or ground counts. Presence only (PO) biological data is easy to obtain from databases, atlases, and 

museums worldwide, leveraging the much-needed data. One limitation of the presence-only data is that it is 

prone to sampling errors since the sampling effort is not controlled, unlike the traditional sampling surveys. 

The severity of sampling bias may vary from one dataset to another depending on how the data was collected. 

In most cases, the PO data is corrected in the areas that are easily accessible such as settlements, roads, rivers, 

and parks, thereby defying randomness. It’s worth comparing the occurrence datasets of different origins to 

unravel the sources of sampling bias and test if it’s significant. Various methods, including rarefaction, bias file, 

and extrapolation, are used for sampling bias correction. 

Moreover, most methods of species distribution modelling assume a random distribution of samples in the 

study area. Besides, Elith et al. (2006) indicated that using multiple SDM can enhance prediction for regions 

with partial or limited data. This study aims to account for the sampling bias in species distribution modelling 

through rarefaction. 

1.3 Research objectives, Questions & Hypotheses 

 

1. Objective 1: To investigate the spatial distribution of wild boar observations and related bias from different 

data sources  

1.1. Question 1.1:  Are wild boar occurrence datasets from different origins, hunters (FBE) or citizen 

observers (NDFF), randomly distributed? 

 

1.1.1. Hypotheses 

It is suspected that the hunters’ data is more biased to the areas with high chances of encountering wild boars. 

Similarly, the citizen volunteered data may also be biased since more observations are logged from the areas 

that are most visited.  

1.2. Question 1.2: Does the distribution patterns of wild boar occurrence datasets vary based on origin?  

 

1.2.1. Hypotheses 

The distribution patterns of wild boar occurrence datasets from different origins are different 
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2. Objective 2: To investigate the effect of survey bias on the accuracy of species distribution modelling 

2.1. Question 2.1: Which methods of species distribution modelling are most responsive to sampling bias 

correction? 

2.1.1. Hypotheses 

The empirical modelling models such as BRT and GLM will be more responsive to bias correction than the 

machine learning methods that fit complex algorithms and are therefore less affected by bias. 

3. Objective 3: To determine which environmental variables are relevant to predict the distribution of wild 

boars in Overijssel Province 

3.1. Question 3.1: Which environmental variables are more important in predicting the distribution of wild 

boars? 

3.1.1. Hypotheses 

Table 1: Predictor variables significance and their respective hypotheses responses 

 Variable Significance Hypothesized response 

1.  Distance to 

Nature 

reserve 

A suitable area where various essential 

habitat requirement for wild boars is 

available. Hunting is not allowed in the 

reserves. Citizens visit nature reserves for 

recreation and are likely to capture more data 

than other areas 

The shorter the distance from the nature 

reserve, the higher the probability of wild 

boar occurrence 

2.  Distance to 

water 

Wild boars are water-dependent for 

metabolism and thermoregulation 

The closer it is to the water bodies, the 

higher the probability of occurrence 

3.  Distance to 

forest 

Suitable for shelter and food, especially fruits 

from oak 

The closer it is to the forest, the higher the 

probability of wild boar occurrence 

4.  Distance to 

artificial 

surfaces 

May act as a source of disturbance and 

barriers to migration 

The further away from artificial surfaces, 

you would expect higher chances to find 

wild boars 

5.  Distance to 

cultivated 

areas 

Cultivated crops are food for boars. Shooting 

by hunters frequent in cultivated areas 

The closer it is to the cultivated areas, the 

higher the probability of wild boar 

occurrence  

6.  Distance to 

heath and 

moorland 

Shelter and feeding habitat Areas closer to heath and moorland have a 

higher probability of being inhabited by 

wild boars 
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7.  Distance to 

roads 

Most volunteer data are collected from 

accessible areas and road kills which may lead 

to false presences 

The probability of wild boar occurrence 

may tend to be higher in the areas closer 

to the road when models are fitted with 

biased citizen observer’s data. However, if 

the data is randomized, the contrary will 

happen 

 

3.2. Question 3.2. Which environmental variables are most consistent in predicting the distribution of wild 

boars in Overijssel? 

3.2.1. Hypotheses 

The distance to the nature reserve is more important in predicting wild boar using clustered dataset. More so, 

rarefaction will reduce the variability in the importance of various predictors.  
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2 MATERIALS & METHODOLOGY 

2.1 Study area 

The study is undertaken in the province of Overijssel in the Netherlands (Figure 1). According to Malinowski 

et al. (2020), the landcover of Overijssel can be classified into 13 different categories (Table 3).  Moreover, 

Overijssel hosts many natural areas covering approximately 62500 acres (Albers & Hoekstra, 2019). Out of 145 

nature areas in the Netherlands, 11 are in Overijssel, which harbours diverse flora and fauna. The forests that 

constitute most nature reserves are categorized as follows: Coniferous forests, mixed forests, beach-oak forests, 

stream-conducting forests, river-conducting forests, and low moor forests (Albers & Hoekstra, 2019). Forest 

are essential habitats for wild boars. The study area has a variety of unique landscapes namely: peat bog and 

raised moor (e.g., Engbertsdijksvenen), unique water ways (e.g., Rivers Regge, Dinkel), Moraines (e.g., Lemeler 

& Oldenzal) and the blue grasslands. Among all flora and fauna in the Netherlands, 50% of some 12 unique 

species are found in Overijssel (Albers & Hoekstra, 2019).  In terms of surface geology:  the south-eastern 

region is dominated by sand and rivers such as Regge, to the northwest are sediments of clay, Vecht and 

Overijsselse, the northern part has remnants of veens (bog) such as Aamsveen, Engbertsdjiksvenen and 

Witteveen, while the north-western region is lakes which comprise depressions of peat mining (Overijssel, 2021).  

According to the Koppen classification, the area climate is the oceanic climate like the rest of the Netherlands, 

although the winters are more severe than the rest of the country since it is far from the sea (The Royal 

Netherlands Meteorological Institute (KNMI), 2020). The warmest month is July, with an average daily mean 

temperature of 17.6℃, while the coldest month is January with an average maximum temperature of 2.3℃ 

(The Royal Netherlands Meteorological Institute (KNMI), 2020). The wettest month is July, with an average 

precipitation of 74.5 mm, while the driest month is February, with an average rainfall of 51.6 mm (The Royal 

Netherlands Meteorological Institute (KNMI), 2020).  
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Figure 1: Study area 

 

2.2 Materials 

2.2.1 Data  

The data comprised a pre-processed 10m resolution landcover map and a land-use shapefile for Overijssel 

province. The landcover map was extracted from Sentinel 2 Global Land Cover (S2GLC), which was developed 

by classifying Sentinel 2 imagery (Malinowski et al., 2020). In addition, the land use map was downloaded from 

the Europe Geofabrik repository (geofrabrik, 2021). Additionally, the landcover and land use datasets were 

further processed to generate predictor variables. The wild boar’s occurrence data were obtained from two 

repositories: Nationale Databank Flora en Fauna (NDFF) and Fauna Management Unit Overijssel (FBE). The 

data are tabulated below ( 

Table 2). 
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Table 2: Data 

 Dataset Extent Type Source 

1.  10m resolution landcover map Europe raster Opens street map 

2.  Land use map   
Overijssel 

Shapefile (Polygon & 
Lines) 

(Malinowski et al., 2020) 

3.  432 wild boar occurrences 
(presence only) 

Overijssel Shapefile (points) Nationale Databank Flora en 
Fauna (NDFF) 

4.  281 wild boar occurrences 
(presence only) 

Overijssel Shapefile (points) Fauna Management Unit 
Overijssel (FBE) 

 

2.3 Methodology 

 

Figure 2: Overall flowchart 

The flow chart above (Figure 2) represent the overall methodology used to analyse the data. Sampling bias 

analysis was undertaken using: an average nearest neighbour method for normality testing, a random selection 

of uncorrected observations, and spatial rarefaction for sample de-clustering. On the other hand, the 

environmental variables were extracted from land cover and land use maps. The rarefied and randomly 

selected observations and the environmental variables were used as inputs to species distribution modelling.  
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2.3.1 Data pre-processing 

 

Figure 3: Flow chart demonstrating preparation of environmental variables 
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The preparation of predictor variables entailed projecting the individual layers to Dutch national triangulation 

system, clipping to the extent of Overijssel boundary and resampling the land cover map from 10m to 50m 

spatial resolution (Figure 4). Although a 10m resolution map would provide information necessary for creating 

environmental gradients, the computer processing capacity was highly diminished, therefore the necessity to 

resample to 50m. The original landcover map had 13 classes excluding the clouds and ‘no data’, although only 

ten types were represented in the study area as shown in the legend (Table 3). Further, the categories were 

reclassified into eight classes (Table 3). Then, the landcover map was vectorized for extracting the individual 

landcover/land use (LULC) classes. Ancillary predictor variables (Table 1) were created by undertaking 

Euclidean distance analysis at 50 meters intervals for the respective LULC classes.  

The FBE data was provided in a comma-separated values (CSV) format, while the NDFF data was in shapefile 

format.  Therefore, all the data were converted to shapefile and projected to the Dutch national triangulation 

system.  

Table 3: Landcover legend at the extent of Europe and Overijssel 

Class 
Code 

Europe Overijssel Overijssel 
_reclassified 

0 Clouds Clouds No data 
62 Artificial surfaces and 

constructions 
Artificial surfaces and 
constructions 

Artificial 

73 Cultivated areas Cultivated areas Cultivated 
75 Vineyards - - 
82 Broadleaf tree cover Broadleaf tree cover Forest 
83 Coniferous tree cover Coniferous tree cover 
102 Herbaceous vegetation Herbaceous vegetation Herbaceous 
103 Moors and Heathland Moors and Heathland Moors and Heathland 
104 Sclerophyllous vegetation - - 
105 Marshes Marshes Water 
162 Water bodies Water bodies 
106 Peatbogs Peatbogs Peatbogs 
121 Natural material surfaces Natural material surfaces Natural surfaces 
123 Permanent snow-covered 

surfaces 
- - 

255 No data No data No data 
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2.3.2 Sampling bias analysis 

 

Figure 4: Flowchart demonstrating sample bias analysis 

The wild boar occurrence data were analysed to investigate if it is affected by survey bias or not (Figure 3). 

Several treatments were performed in order attempt to satisfy the Poisson point process. Firstly, the FBE 

(hunters records) and NDFF (Citizen observations) were standardized to the same sample size to allow for 

unbiased comparison. Since the NDFF dataset had more samples (432) than FBE (281), an equal selection was 

randomly selected from the data. Then, the two standardized datasets (281 observations each for FBE & 

NDFF) were tested for randomness using the average nearest neighbour method. The average nearest 

neighbour method was used for testing whether the features in a defined area are because of a random process. 

The distribution pattern of point features was determined using the nearest neighbour ratio method.  

2.3.2.1 Average nearest neighbour method 

This method analyses the spatial distribution of two-dimensional point (coordinates) data such as species 

occurrences. According to Fortin and Dale (2009), the methods aim to test if the data conform to complete 
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spatial randomness (CSR) distribution. The average nearest neighbour method was selected for this study. This 

method calculates the distance between one feature and the other and tests if it differs significantly from the 

expected depending on the study plot scale. The nearest neighbour ratio (NNR) is used to distinguish three 

possible patterns on the scale of “1” (random), “>1” (dispersed) and “1>” clustered under the null hypothesis. 

The nearest neighbour ratio is computed using the equation below (Equation 1) developed by Pielou (1959) 

cited in (Fortin & Dale, 2009).  

𝑄 = 𝜋𝜆(∑𝒲𝒾1
2

𝑛

𝒾=1

)/𝓃 

Equation 1 

Where, Q=Nearest neighbour ratio, Wi1=distance between events (i) and λ=density of events and n=total 

number of occasions. 

The nearest neighbour ratio depicts random distribution at the value 1, whereas values below and above 1 mean 

that the features are clustered and dispersed, respectively (Fortin & Dale, 2009). The nearest neighbour ratio is 

computed by dividing the observed mean distance between values separated by the expected mean distance 

between neighbouring features (Fortin & Dale, 2009).  

2.3.2.2 Samples de-clustering 

If the samples are clustered after the average nearest neighbour analysis, de-clustering was done using the spatial 

rarefy method (Brown, 2014). This method removes multiple occurrence points within a specific user-defined 

Euclidean distance (Brown, 2014). Again, the average nearest neighbour analysis is repeated on the spatially 

rarefied samples to verify the distribution pattern. Since spatial rarefy reduces the number of occurrence points, 

it was prudent to use the entire dataset (FBE & NDFF) in modelling. Therefore, a similar treatment was 

performed on the combined dataset. In essence, the combined dataset was initially analysed for randomness. If 

spatial clustering was found, the data was rarefied appropriately. Finally, a random sample equal to the resultant 

rarefied dataset was randomly selected for comparison with the latter after fitting species distribution models.  

The average nearest neighbour ratios were compared for all the data treatments.  
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2.3.3 Species distribution modelling 
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The inputs for the species distribution modelling were as follows: 58 rarefied and clustered observations each, 

and environmental variables including 50m resolution Euclidean distances maps from roads, forests, nature 

reserves, heath & moorland, water, artificial surface, and cultivated areas. The species distribution modelling 

analysis was performed in R Studio software using the SDM package.  

The datasets (Occurrence & predictors) were loaded into the R studio. All the environmental variables were 

stacked a raster brick. Pre-processing included checking the occurrence datasets for duplicates and collinearity 

test for predictor variables. Variance Inflation Factor (VIF) at a threshold of 10 was performed using the 

stepwise elimination method. All the predictors were retained since the collinearity was below the threshold. 

The occurrence points were converted to a spatial data frame (sp) and projected to the same spatial reference 

system as the predictor variables. A data frame with corresponding values of predictor variables at the respective 

occurrence points was created. A unique database used by the SDM package was formed comprising of the 

training data (presence only), predictor variables (raster brick) and a set of randomly selected background points 

equivalent to training data. A couple of models were fitted using five different methods: Boosted Regression 

Trees (BRT), Random Forests (RF), Maximum Entropy (MaxEnt), Support Vector Machines (SVM) and 

Generalized Linear Models (GLM). For each method above, twenty (20) replications were done using the 

bootstrapping procedure. Model evaluation was also performed using bootstrapping; essentially, the method 

samples with replacement whereby the observations not drawn for training are used for validation. Finally, the 

models were extrapolated to the predictor maps to generate spatial predictions. Furthermore, the species 

distribution maps were fine-tuned by calculating weighted averages and standard deviations.  

2.3.3.1 Description of SDM methods 

1. Generalized Linear Model 

Ordinarily, generalized linear models (GLM) comprise a class of statistical analysis that fits exceptional cases of 

linear models (McCullagh & Nelder, 2019). However, these models are related in that a predictor variable is 

combined using a linear function. However, the method is insufficient in fitting smooth curves akin to statistical 

methods such as Generalized Linear Models. More so, the models use maximum likelihood to predict the 

response variable for binormal variables such as the presence/absence data for species occurrence, logit 

function (logistic regression) fits a logistic model’s parameters. By calculating the logarithm of odds ratio 

(probability of occurrence or not), the predictions are converted to linear probabilities (0-1).   
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2. Maximum Entropy 

Maximum Entropy (MaxEnt) is a method that infers the probability of species distribution by finding the most 

spread out (near-uniform) constraints (Philips et al., 2006). The method fits a model that presents the maximum 

information gain from a set of measured features. For each sample observation, the predicted value should be 

equal to its average taken from the normal distribution. In species distribution modelling, the target features 

for modelling are sampled observations, and constraints are environmental gradients of the locality. Moreover, 

the boundary for fitting the probability distribution is defined by the pixels of the study area. MaxEnt employs 

a generative prediction approach.  For unknown distribution probability in X (pixels of the study area), assigns 

a non-negative distribution to each observation (x) that sums to 1 (Equation2). Some salient features that make 

this method preferable are that it requires presence-only data. It has deterministic algorithms that meet optimal 

distribution and suitable for a limited amount of training data.  

Probability distribution= −∑ 𝑃𝑖𝑙𝑛(𝑃𝑖)k
i=1  

Equation 2 

Where, i=1-observations where species are present, Pi-probability of occurrence in pixel ‘i’, k-total observations 

and, ‘ln’ is the natural logarithm to base 2 

3. Boosted Regression Trees 

Boosted regression trees (BRT) techniques combine the individual modelling methods decision trees and 

regression trees, enhancing the outputs through clustering (Elith et al., 2008). For decision trees, a rule-based 

partitioning of the variables identifies the most dominant tree fitted as constant. Then, using regression trees, 

a mean response algorithm is fit to the samples on that partition, assuming a normal distribution of deviations. 

The structure of the trees is hierarchical, whereby the response to the lower variables depends on the one above 

them. This model is more suited for modelling interactions between variables.  

4. Support Vector Machines 

Support vector machines (SVM) is a binary machine-learning classification technique. It separates multi-

dimensional feature space data into two subclasses by fitting a geometric hyperplane to optimally split a binary 

dataset (Bruzzone & Persello, 2009). Assuming a hyperplane H: 𝑦 = (𝑤. 𝑥) + 𝑏 = 0, the binary data (e.g., 

presences/absences) is separated based on the distance (vector w), of predictors at sample (x), from the 

hyperplane (H), and fitted scalar origin (b). Fitting of the hyperplane and the origin entails finding an optimal 
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position for separating the training data. This method is effective for training models with minimal samples and 

for fitting simple linear functions which are rather non-linearly inseparable using statistical methods (Bruzzone 

& Persello, 2009). 

5. Random Forest 

Like the BRT, random forest (RF) fits several decision trees and later ensemble the predictions (Cutler et al., 

2007). In contrast, though, RF does not model regression function akin to BRT. Bootstrapping (sample with 

replacement) is used to sample several observations and then fit the classification algorithms.  For every 

bootstrap sample, the out-of-bag observations (the observations that do not participate in model training) are 

used for validation. The best class is selected based on the majority vote, whereby the ties are chosen randomly 

(Cutler et al., 2007).  

2.3.4 Assessing effects of sampling bias on species distribution models 

 

The effect of sampling bias was assessed by comparing model performance for the different methods based on 

the area under the receiver operating curve (AUC) statistics. The AUC metric ranges between 0 and 1 where a 

score of 1 depicts the best discrimination, 0.5 discriminates randomly, and <0.5 less than random. The variation 

in the performance of different methods was compared using boxplots. The paired t statistic was also used to 

test if there is significance in the performance of other methods based on AUC.   

2.3.5 Variable importance 

 

Variable importance was compared using the percentage contribution of each variable to models’ permutations. 

Another way of determining the contribution of variables was through the response curve. Indeed, the response 

curves can also indicate the sensitivity of variables by showing the standard deviation range. Normal deviation 

maps were also used to show the stability of various variables in predicting wild boar distribution. 
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3 RESULTS 

3.1 To investigate variation in the distribution pattern of wild boar observations with varied survey bias 

 

The different wild boars’ observation datasets showed variation in distribution due to how they were surveyed. 

Although both datasets are significantly clustered (p-0.001), the 281-occurrence data acquired from citizen 

observers (NDFF) was less clustered (NNR-0.32) compared to the similar data obtained from hunters’ records 

(FBE) (NNR-0.13). However, when rarefied, 44 NDFF randomly distributed observations are left at (NNR-

0.99), while the 21 FBE records remain clustered (NNR-0.58). The findings agree as hypothesized that hunters’ 

data is more clustered since the hunting sites are targeted mainly in areas where a higher probability of shooting 

an animal are preferred. On the contrary, the NDFF data is from volunteer observers distributed widely, and 

their observation is likely to be stochastic. Like, the NDFF data, the combined dataset showed clustering for 

the randomly selected sample (NNR-0.36). In comparison, the rarefied one was randomly distributed (NNR-

0.96). The summary statistics of data thinning and normality tests are shown in (Table 4) and (Figure 5). 

i) Summary statistics of data thinning and test sampling bias analysis 

Table 4: Summary statistics of data thinning and normality test (study area=3420840181 m2) 

 
NDFF 
uncorrecte
d 

NDFF 
rarefied 
(2km) 

FBE 
uncorrect
ed 

FBE 
rarefied 
(2km) 

NDFF&FBE 
uncorrected 

NDFF&FBE 
rarefied (2km) 

NDFF&FBE 
randomly selected 

N 281.00 44.00 281.00 21.00 713.00 58.00 58.00 
Observed 
mean d (m) 

550.09 4359.33 226.92 3678.50 243.06 3675.89 1383.31 

Expected 
mean d (m) 

1744.55 4408.70 1744.55 6381.56 1095.20 3839.92 3839.92 

NN-Ratio 0.32 0.99 0.13 0.58 0.22 0.96 0.36 

Z-score -21.96 -0.14 -27.90      -3.71 -39.75 -0.62 -9.32 

P-value 0.00 0.89 0.00 0.00 0.00 0.53 0.00 

Pattern clustered Random Clustered Clustered Clustered Random Clustered 
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ii) Comparison of distribution patterns of various datasets based on the average nearest 

neighbour ratio 

 

Figure 5: Comparative analysis of distribution patterns of datasets of different origins (Clustered-Blue, Random-Orange) 

3.2 The effect of survey bias on the accuracy of species distribution modelling methods 

Based on the area under the receiver operating curve (AUC), random forests (0.94) outperformed the other 

modelling methods, followed by boosted regression trees (0.92), support vector machines (0.91), maximum 

). The performance of all models registered high accuracies when fitted with the clustered datasets (BRT-0.92, 

RF-0.94, MaxEnt-0.89, SVM-0.91, GLM-0.89) compared to rarefied datasets (BRT-0.84, RF-0.9, MaxEnt-0.84, 

SVM-0.84, GLM-0.8). High accuracies were expected since the clustered datasets tend to overfit the model 

towards the bias. More so, as demonstrated in (Figure 7), apart from RF (0.91) and GLM (0.8), all the other 

models had a similar AUC (0.84), portraying a high level of unity among models.  

In terms of sensitivity to sampling bias, all methods show a significant difference in model performance for 

rarefied and randomly selected data (Figure 8 & Figure 9). These two methods are suitable for fitting complex 

models with limited training samples. Similarly, as shown in the box plot (Figure 8), RF and MaxEnt models 
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have fewer outliers for both datasets than the other methods. GLM and BRT show the most variability in 

predicted models (Figure 8). Both GLM and BRT share similarities in that they fit empirical models based on 

regression which are data intensive. In addition, the two methods utilize presence and absence data; thus, the 

background data used in this study may affect the model performance.   

i) Spatial prediction of wild boars’ niche distribution in Overijssel 

 

Figure 6: Comparison of model accuracy based on mean AUC 

ii) Variability in performance of various SDM methods based on AUC metric  
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MAXENT SVM GLM 

   
Figure 7: Wild boar distribution maps showing performance of various methods on clustered and rarefied datasets based on 
AUC metric 
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iii) Variability in performance of various SDM methods based on AUC metric 

 

Figure 8: Performance of various models fitted with randomized and rarefied datasets based on AUC metric 

iv) Comparison of model performance using clustered and randomized datasets 

 

Figure 9: Summary t statistic (two-sample assuming unequal variance) to test if there is a significant difference between SDMs’ 
accuracy based on AUC fitted with the same method using clustered and rarefied datasets 
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3.3 Which environmental variables are relevant to predict the distribution of wild boars in Overijssel 

Province? 

Based on the AUC metric, distance from nature reserves contributes most to models’ permutations in the 

clustered and the rarefied datasets (Figure 10). Similarly, the distance to nature reserves demonstrates high 

variability among different models for both rarefied and clustered datasets. On the other hand, the distance to 

the water contributes the least to model permutations and has the least variability in among models. Moreover, 

distance to roads ranks second in model importance for the clustered dataset, which depicts biased observations 

in the areas that are easily accessible as hypothesised. In addition, there is high variability amongst predictors in 

variable importance based on the clustered dataset (Figure 10). However, the variation in variable importance 

is relatively low in the rarefied datasets because the observations are clumped in some land covers (e.g., nature 

reserves and roads), which are the most visited. 

  

Figure 10: Box plot showing variability in relative variable importance in the prediction of suitable habitats for wild boars based 

on AUC metric of clustered and rarefied datasets 
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In terms of variable stability demonstrated in (Figure 11), the distance to forests, nature reserves and heath & 

moorland depict a direct relationship with the occurrence of wild boars. These are the known habitats of wild 

boars, therefore the direct correlation. On the other hand, distance to roads, artificial areas, cultivated land and 

water are inversely related to the occurrence of wild boar as depicted by the randomly selected and partly by 

the rarefied data. However, the distances to water and roads predict the opposite, although with high 

uncertainty. The direct relationship of wild boar to distance to roads is possible due to easy access to observers 

and that some observations may be recorded from accessible areas. 

Similarly, wild boars are water-dependent to aid in thermal regulation since they lack sweat glands. The distance 

to water, forest and roads showed high uncertainties in predicting wild boars (Figure 11). The respective zonal 

statistics per land use were retrieved from the standard deviation maps (Figure 12). However, roads as landcover 

were not used in zonal statistics analysis because they constituted the artificial areas, and their scale was below 

the resolution (50m) used.  For both datasets, the areas close to water bodies had consistently high standard 

deviation, unlike cultivated areas with the lowest. However, the variations in predictions between the datasets 

in the other classes (nature reserve, forest, heath & moor, and artificial areas) did not show a consistent trend. 

As shown in (Figure 12), the area northwest of the study area mainly covered by wetlands (water) had the 

smallest number of observations for both datasets. However, the clustered dataset variables’ response curves 

are more consistent than the rarefied ones (Figure 11). This disparity can be explained by the possibility of 

spatial autocorrelation amongst neighbouring observations in the clustered dataset, which is essential for 

establishing an empirical relationship between occurrence locations and environmental variables. The 

environmental gradient, a distance related dependence, is crucial for developing a model consistent with the 

first law of geography “All things are related to each other but near things are more related than the distant 

ones”. 
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i. Response curves 

 
a) randomly selected (clustered) 

 
b) Rarefied 
Figure 11: gg-plot illustrating how different landcover predict the occurrence of wild boars based on: (a) randomly selected, (b) 
rarefied dataset for various environmental gradients based on Euclidean distance from LU/LC: Eudist_artificial (artificial), 
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Eudist_cultivated (cultivated), Eudist_Heath_moor (Heath Moor), Eudist_reserve (reserve), Eudist_roads(roads), 
Eudist_water(water)  
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ii. Standard deviation maps based on combined model predictions 

Standard (SD) deviation map Zonal statistic per land cover/land use 

 
(a) 

 

 
(c) 

 
(b) 

 

 
(d) 

Figure 12: Wild boar’s distribution maps (a) clustered & (b) rarefied and the respective zonal statistics plots (c) &(d) showing 

areas of model uncertainties depicted by the standard deviation 
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4  DISCUSSION 

 

The distribution pattern of flora and fauna observations is dependent mainly on the means the data was 

acquired. Moreover, high variability is imminent where flora and fauna occurrence data is sourced from 

stochastic observations during recreation, nature walks, hunting and game drives. On the contrary, for research 

projects with a detailed field study, the distribution pattern of the observations conforms to a systematically 

structured data collection design. For this case study, the distribution patterns of two datasets of wild boar 

observations acquired from volunteer observers (NDFF) and hunters (FBE) were compared (Figure 5). For a 

densely inhabited country like the Netherlands, it would be expected that volunteer observers visit specific areas 

such as parks and reserves therefore the observations are also clustered to these areas.  Similarly, the hunters 

visit specific areas where they anticipate high chances of finding a wild boar in the permitted areas. Therefore, 

as expected, both datasets (281 samples) were significantly clustered although the NDFF data was sufficiently 

de-clustered after the first rarefication at 2km, unlike FBE, which remained clustered. 

Similarly, when the datasets (FBE & NDFF) were combined, the first rarefication at 2km was sufficient to 

randomize the data significantly.  While the NDFF data was expected to be randomly distributed akin to the 

observers, high sampling density in the more visited areas such as parks and roadsides was the reason for the 

initial clustering. A similar pattern was observed in a similar study of Passerine birds undertaken in sub-Saharan 

Africa, where clustering was observed in the areas close to the roads, cities and rivers (Reddy & Dávalos, 2003).  

Based on the AUC metric of accuracy, the comparison of individual species distribution modelling methods 

(BRT, RF, MaxEnt, SVM & RF) in predicting wild boar habitats within Overijssel for clustered and rarefied 

data depicted a significant difference.  Models based on the clustered dataset, demonstrated high discrimination 

for wild boars’ habitat suitability because of model overfitting due to the higher sampling effort in the area most 

visited and easily accessible areas. In agreement with the findings of Reddy & Dávalos (2003), high sampling 

intensity was found to increase the density probability of observing species in sub-Saharan Africa. More so, RF 

and MaxEnt demonstrated higher tolerance to sampling bias, consistent with the findings of Elith et al. (2006); 

the two modelling methods can fit complex models through regularization (MaxEnt) and ensemble boosting 

(RF). In terms of model performance based on AUC, the models utilizing machine learning algorithms (BRT, 

RF, SVM & MAXENT) outperform simpler methods such as regression models (GLM) (Elith et al., 2006). 

Also, the GLM method is designed to use presence-absence data; therefore, presence-background data may 

yield erroneous predictions. However, all the methods performed well with datasets by predicting the 
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distribution of wild boars with AUC above 0.8. Conversely,  Elith et al. (2006) remarked that species with a 

wide habitat range akin to wild boars tend to have low accuracy. The high accuracies realised are due to the 

limited areas for dispersal of wild boars outside protected areas hence the species are confined to nature reserves 

and the adjacent farmlands. More so, bootstrapping method of replication performs well for even with limited 

data, but the independent testing may be affected unlike sub-sampling.  

As demonstrated in section (3.3) the areas nearest to the nature reserves, forests, heath, and moorland 

consistently depicted a positive relationship with wild boar density. These variables form part of critical habitats 

where wild boar forage, shelter and are protected from hunting (Dexter 1999; Fernando et al. 2019, Franz, 

Markus & Peter 2020 ). Conversely, in clustered and partially rarefied datasets, the model demonstrated a 

negative relationship in wild boar habitats to cultivated areas and water & wetlands (water), otherwise known 

as essential habitats (Dexter 1999; Fernando et al. 2019, Franz, Markus & Peter 2020 ). The cultivated areas 

serve as foraging habitats, while wetlands provide shelter and thermal regulation since wild boars lack sweat 

glands. According to Fernando et al. (2019), wild boars tend to avoid areas with high human disturbance (e.g. 

farmlands) or change activity patterns to nocturnal, thus the negative relationship. The samples were very low 

or missing for the water areas, possibly because revellers do not prefer them for recreation. However, the 

distance to roads variable partially points to a positive relationship with wild boar occurrence. Like Reddy & 

Dávalos (2003) findings, areas that are more accessible and are already designated for conservation tend to be 

intensely sampled.  Especially for recreations, game watchers and targeted biodiversity studies, areas known to 

harbour target species are often visited (Reddy & Dávalos, 2003).  

Predominantly, distance to the nature reserves contributed to model permutations for either dataset. However, 

the inconsistency in the importance for all was lower and more even for the rarefied dataset. Higher sampling 

intensities in most visited areas lead to clustering, thus overpredicting species distribution (Reddy & Dávalos, 

2003). Therefore, bias correction through rarefaction solved reduced contribution of intensely surveyed and 

redistributed to the others.  

In terms of model consistency for various land cover or land use, water exhibited the highest standard deviation; 

the cultivated had the lowest while the others varied in-between. As stated earlier, areas covered by water and 

wetlands had low training samples, explaining the variability consistent with Stockwell and Peterson (2002) 

study that demonstrated an increase in accuracy of an SDM with the increase in sample size. On the other hand, 

observations in the cultivated areas may be more random since farming is a prevalent land use all over the study 

area.  
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5 CONCLUSIONS 

Below the main conclusions are summarised for each of the objectives set in the present study. 

5.1 To investigate variation in the distribution pattern of wild boar observations with varied survey bias 

This study demonstrated that location data of flora and fauna observations acquired through volunteer 

observers and hunters are affected by clustering. Moreover, hunters’ shooting and observation data are more 

clustered than volunteer sourced observations. Consequently, rarefaction coupled with an appropriate spatial 

statistical testing method such as the average nearest neighbour is satisfactory to correct the sampling bias 

introduced by uneven survey effort in ecological studies. 

5.2 The effect of survey bias on the accuracy of species distribution modelling 

It was demonstrated that most niche distribution modelling methods are affected by sampling bias, as in this 

study, five methods (BRT, RF, MaxEnt, SVM & RF) were investigated. Although all models fitted with 

clustered and rarefied datasets for the same method were significantly different, the machine learning-based 

techniques such as RF and MaxEnt were less significant than regression-based modelling, for example GLM & 

BRT. For all methods, rarefaction of species observations reduced the accuracy of the models based on the 

AUC metric  

5.3 Which environmental variables are relevant to predict the distribution of wild boars in Overijssel 

Province? 

In ecological niche modelling, areas that are more accessible are often intensely surveyed, thereby contributing 

more to model permutations. However, after bias correction through rarefaction, the contributions of the other 

environmental variables are more evenly shared. The environmental variables that characterize the ecology of 

wild boars (e.g., shelter, thermal regulation, stress) demonstrate consistent response, either positive or negative, 

in modelling their distribution. The biased survey causes variation in models’ predictions whereby the areas that 

have more samples predict species distribution more consistently than the otherwise. Likewise, the randomly 

distributed predictors in nature (e.g., farmlands) are equally consistent in the model’s permutations.  
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6 RECOMMENDATIONS 

When using secondary sourced occurrence data for niche distribution modelling, utmost care is required to 

avoid transferring the sampling errors in the observations to the final predictions. Sampling effort 

standardization will adduce more confidence in model interpretation and application to conservation decisions. 

It is prudent to generate multiple models either by replication or/ and using different methods for comparison 

and more reliable application of the outputs for decision making. Combining several datasets will enhance 

predictions to avoid over predictions in areas affected by samples gaps. Since more high spatial resolution 

environmental predictors are available due to remote sensing and open data science, it is advisable to use several 

variables and critically assess their contribution to model performance to uncover sources of model variabilities. 

Consequently, this will enable the selection of the optimal variables for species distribution modelling. 

Future studies may focus on: 

• comparing the efficacy of survey bias-corrected models with presence-absence data collected from 

structured surveys. 

• Replicate a similar study to test sampling bias sensitivity for the other existing and novel methods of 

niche distribution modelling (e.g., Convolution Neural Networks). 

• Testing the performance of the method using other methods of replication such as subsampling. 
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APPENDICES 
Appendix 1: Conditions of sharing NDFF data 

 


