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ABSTRACT 

There is a large gap between rice production and consumption in the Philippines. Therefore, ratoon rice is 

practised to produce more rice on the same land with less labour and fertiliser; and without land 

preparations.  Although mapping and detecting rice as the primary crop using remote sensing has received 

a deserved attention in the literature, mapping and detecting ratoon rice has been given less attention.  

 

This study aims to detect ratoon and non-ratoon rice and its distribution using Sentinel-1 time series data 

and random forest algorithm in the Leyte, Iloilo, and Agusan del Sur provinces in the Philippines. Field data 

was provided by the International Rice Research Institute (IRRI) and included field survey data of a total of 

317 fields, in which ratooning was practised in 47 fields. The pre-processed Sentinel-1 image data acquired 

during three growing seasons between 2017- 2019. Temporal backscatter behaviour of 60 rice fields in 

different polarisations and the Mann-Whitney U test were used to understand the differences between rice 

fields where ratooning was practised (n=30) and where it was not (n=30). Then, a random forest (RF) 

machine learning algorithm was used to discriminate between rice and ratoon rice. The predictive 

performance of the RF classification model was checked by overall accuracy and kappa values. The RF 

model was also performed to classify ratoon and non-ratoon rice crops using different ratoon growth stages. 

Finally, the distribution of ratoon and non-ratoon fields were mapped using a validated RF model. 

 

In this study, we demonstrated that there is a clear difference in temporal backscatter of ratoon and non -

ratoon rice crops. The results of the Mann-Whitney U test revealed that the backscatter of ratoon and non-

ratoon fields when ratoon crops are at the flowering and ripening stages are significantly different in VH, 

VH/VV polarisations. When the random forest (RF) classifier was performed to discriminate ratoon, and 

non-ratoon classes, an overall accuracy (69.39%) and kappa value (0.39) were obtained. The RF model was 

calculated at different ratoon growing stages, demonstrated an overall accuracy of 44.44% at vegetative, 

66.67% at flowering and 61.11% at ripening stages. The distribution of ratoon and non-ratoon rice fields 

showed that Iloilo province has the majority of fields with ratoon rice.   

 

We concluded that the sentinel-1 time series could detect ratoon and non-ratoon rice at different stages 

using the RF model. The difference in ratoon and non-ratoon could be studied using VH polarisation and 

VH/VV ratio at the ripening stage where mean values of temporal backscatter were dB>1. Also, the VH 

and VH/VV were statistically significant at the flowering stage. Hence more samples are required to study 

if ratoon and non-ratoon fields can be discriminated at this stage. 

Further study in provinces where ratoon and non-ratoon are practised should also be explored. 

 

Keywords: Sentinel-1 time series, ratoon and non -ratoon rice, random forest, Mann-Whitney U test  
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1. INTRODUCTION  

  Background  

Rice belongs to the Oryza genus; Oryza sativa is one species of rice, the other being Oryza glaberrima, and it is 

the second-most produced staple food crop in the world (Wang et al., 2020). The annual average global 

production was 782.00 million tons in 2018 (FAOSTAT, 2020). It is the oldest cultivated crop on Earth. 

Although rice is used as food in the whole world, it is mainly produced in developing countries where about 

95% of rice production comes from (Santos et al., 2003). The global demand for rice is on the rise as the 

world population continues to increase: it is expected that the world population will reach up to 8.79 billion 

by 2100 (Vollset et al., 2020). As food demand for people and animal feed may expect to increase by 3 billion 

tonnes by 2050 (Doering & Sorensen, 2018), it is essential to secure food stability for the increasing 

population. Food security remains a key challenge for farmers, distributors & suppliers, and nations 

(Chauhan et al., 2015; Fikriyah et al., 2019).  

 

Rice production in Asia and Southeast Asia  

According to Bandumula (2018), approximately 90% of rice is produced and consumed in Asia. Thus, rice 

production and consumption in Asia is important to Asian food security. China is a leading rice-producing 

country, followed by India, Indonesia, Bangladesh, Vietnam, Thailand, Myanmar, Philippines, Pakistan and 

Cambodia (FAOSTAT, 2020). The Philippines produces and consumes a variety of rice and still imports a 

large quantity of rice from Southeast Asian countries, especially Vietnam and Thailand, which are top 

exporters in the same region (Dawe, 2013). The Philippines imports rice because consumption is higher 

than production, and the gap between production and consumption is increasing (Tibao, 2009). Therefore, 

Filipino farmers practice ratoon rice –ratoon rice is the second rice crop, which has a shorter growing period 

than rice as the main crop. The ratoon rice is normally practised after harvesting the main rice crop in many 

country regions to increase rice production per unit area. Filipino farmers started to practice ratoon rice 

because the land is limited, consumption is higher than production, climate and weather are vulnerable, and 

traditional methods are insufficient to increase production (Benedict A. Exconde, 2016). The USA, China, 

and India also practice rice ratooning, but very few studies explain detecting ratoon rice from rice. 

 

Ratooning Rice  

The ratooning of rice allows to generate tillers from the main crop’s stubble and raise production per unit 

area over a shorter growing period compared to a second rice crop (Oad et al., 2002). The ratoon rice crop 

has shorter and thinner stems as compared to the primary rice crop due to less availability of nutrients; most 

of the nutrients already transported to the panicle of the main crops, this limits the growth of buds (Wang 
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et al., 2020). It is also suited to mono-cropped systems and lowland areas. Lowland area is also called flooded 

rice area, and it is developed as rainfed and irrigated in lowland regions. This rice ecosystem requires 

maximum flooded fields (60-80%) during the cropping period (Santos et al., 2003).  

According to Setiawan et al. (2014), ratoon rice is usually practised in regions where running water is 

continuously accessible after the harvest of the primary rice crop. Since water is an essential input for 

growing plants and producing better quality yields, ratooning rice requires 1300-1900 mm water after the 

land preparation till planting time and starts filling phase to spikelet filling. The ratoon rice may give the 

highest yield if the water is fully flooded and the cutting height is between 0-5 cm (Setiawan et al., 2014). 

Sometimes, it is recommended that water depth should be between 5 to 15 centimetres during the growing 

season (Santos et al., 2003).  

Faruq et al. (2014) reported in their research that at least 8% grain yield per plant can be produced from 

ratoon rice crop. The ratoon rice crop can increase rice production by more than 51% after harvesting rice 

as the main crop on the same field (Krishanamurthy, 1989). According to Shamiul Islam et al. (2008), ratoon 

(rice) crops are affected by fertiliser management. Fertilisers would increase crop leaf area index (LAI) and 

numbers of panicles per unit area, the number of grains per panicles, grain weight and reduced gain 

barrenness. Low yield from ratoon rice is because of improper land cultivation, low soil quality, difficulty in 

controlling weeds (Negalur et al., 2017). Therefore, proper maintenance should be carried out for getting 

high-quality yields from ratooning crops, like controlling pests, using fertiliser and irrigation (Setiawan et al., 

2014). Lodging and risk of plant diseases are higher in ratooning rice as compared to the main rice crop; as 

a result, the quality of grain may decrease (Chen et al., 2018). Nevertheless, ratoon rice saves seeds and 

labour and increases production (Faruq et al., 2014). 

 

Ratooning crop mapping with optical remote sensing  

In response to the growing demand for food, timely information on crop production is required for every 

single crop, including ratoon crops. Remote sensing techniques can be used for crop mapping, detection, 

and estimating crop production (Bégué et al., 2018). Both active and passive remote sensing can be used for 

crop mapping and detection (Karthikeyan et al., 2020). Some studies have suggested that ratooning crops 

(including rice) can be mapped and detected using remote sensing. For example, Misra et al. (2014) showed 

in their studies that combinations of multi-temporal LISS-3 and AWiFS remote sensing data could be used 

to detect sugarcane ratoon crops from other classes. They used fuzzy classification, possibilistic c-means 

(PCM), normalised difference vegetation index (NDVI), and spectral separability analysis to classify ratoon 

sugarcane crops accurately. NDVI was used to discriminate different multispectral responses of crops, and 

Euclidean distance based spectral separability analysis was performed to minimise the spectral noise from 

the crop response. 

Furthermore, fuzzy classification was used for detecting ratoon sugarcane accurately from other crops. Liu 

et al. (2015) showed that ratoon rice could be detected using canopy reflectance measurements obtained 

from GreenSeeker optical sensor (NTech industries, Ukiah, California, USA) and crop fields measurement. 
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According to Singla et al. (2018) study, it was possible to discriminate ratoon sugarcane from sugarcane and 

other crops using temporal vegetation indices like NDVI and RVI of Landsat 8 OLI sensors and 

phenological changes such as plantation, tillering, and crop growth stages. Additionally, a recent study by 

Liu et al. (2020) on mapping ratoon rice using a time series of Sentinel-2 images in central China showed 

that the ripening stage of ratoon rice fields could be detected using the yellowness index. The yellowness 

index is calculated using blue, green, and red reflectance bands of Sentinel-2 data and can detect crops 

maturity stages. Therefore, phenology-based algorithms can be used to discriminate between ratoon rice 

and other rice crops. Enhanced vegetation index (EVI) was then used to detect the greenness of the second 

season crop and remove the misclassification affected by stubbles left in the ground.  

Optical remote sensing is based on ‘top of canopy reflectance’, and cloudy weather limits the optical sensors. 

Optical sensors cannot detect vegetation (crops) or objects during rainy and cloudy conditions (Nelson et 

al., 2014). In contrast, radar remote sensing can operate in all light conditions, including day or night, and 

penetrate through haze, smoke and clouds (Alonso-González & Hajnsek, 2019). Radar sensors use short 

pulses of electromagnetic radiation (EMR) at long wavelengths, for instance, microwave or radio wave part 

of the electromagnetic spectrum. When EMR interacts with objects in its path, it will either transmitted, 

reflected or scattered by scatters such as rocks and vegetation (Joshi et al., 2016). The radar antenna receives 

information or signal of returning radiation or backscatter, namely the relative and intensity phases. The 

backscatter intensity is affected by the size, direction, height, and chemical composition. It helps to 

distinguish between different components of plants like leaves, stalks and fruits and cropping patterns like 

mono, mixing, and rotation crops (Baghdadi et al., 2009; Son et al., 2018). Radar remote sensing accounts 

for many factors such as crop growth stages, leaf-ground, double bounce, plant height, soil moisture, 

flooding frequency, and biomass development when used for crop mapping and monitoring (Inoue et al., 

2014; Nelson et al., 2014). Hence, it is suitable for rice monitoring and forecasting its production (Sharifi & 

Hosseingholizadeh, 2020).  

The literature review shows that the paddy rice mapping using radar remote sensing imagery originally 

started in the 1990s when ERS-1 launched (Aschbacher et al., 1995). ERS-1, ERS-2, PALSAR/ALOS, and 

RADARSAT satellites sensors have been used to estimate planted rice crop area and map different growing 

stages of rice (Panigrahy et al., 1999; Miyaoka et al., 2012). RADARSAT and ERS-1 multi-temporal data 

have provided better rice fields extraction than SPOT/HRV multispectral data (Suga et al., 2000). Lam-Dao 

et al. (2007) showed that Envisat ASAR data with dual-polarisation could be used for rice monitoring in 

complicated cropping systems.  

Among existing satellites, Sentinel-1 has dual-polarisation and high temporal and spatial resolution; hence 

can be used for rice mapping (Ozden et al., 2016).  
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Rice crop mapping with Sentinel-1 SAR  

With the advance of technology, the capabilities of SAR satellites are improving with high spatial-temporal 

resolution and dual polarimetry (Ishitsuka, 2018). Due to the high temporal coverage, Sentinel-1 has made 

possible to monitor rice crop more precisely over large areas than satellites like ERS-1&2, JERS-1SAR, 

RADARSAT-1&2, and ALOS/PALSAR (Ozden et al., 2016). In addition, it has made it possible to estimate 

different growing stages such as sowing, maturity, pre-harvest harvesting seasons of rice crops (Nelson et 

al., 2014). Studies have shown that the analysis of VV and VH polarisations of Sentinel-1 data for crop 

mapping does not provide the same results. As such, Raviz et al. (2016) used the rule-based rice detection 

method and Sentinel-1 time-series SAR data for mapping rice area in central Luzon, Philippines and found 

that the overall accuracy of rice maps was 80% using VV and 76% using VH polarisations. 

Moreover, Sentinel-1 cross-polarized (VH ) data has shown the capability to detect rice fields and 

phenological parameters. Nguyen & Wagner (2017) discriminated various rice growth stages using VH 

backscatter time-series Sentinel-1 data. According to Lasko et al. (2018). VH polarisation gave more accurate 

results in double and single rice mapping than VV polarisation. VV is more sensitive and affected by flooding 

water and plant canopy structure than VH polarisation (Son et al., 2018). Also, Yang et al. (2018) found in 

their study of field-based rice classification using multitemporal Sentinel-1 and Landsat 8 OLI data that VH 

backscatter is more sensitive to rice growth than VV polarisation backscatter response. In their study, C-

band VH polarisation obtained 91.38% and VV 90.20% accuracy for rice and non-rice areas classification.  

However, the backscatter responses from VV, VH and VV/VH polarisation may vary in different stages of 

plant growth, such as land preparation, early growing period, tilting and harvesting (Fikriyah et al., 2019). 

Additionally, backscatter responses of C-band VV and VH polarisations are low during the flooding time; 

and it increases until the plant height reaches a certain stage of growth (rice crop) (Sharifi & 

Hosseingholizadeh, 2020). During the growing stage, backscatter interacts with surface water and plant stem; 

this interaction causes direct scattering and double-bounce effect; as a result, VH increases and VV decreases 

(Yuzugullu et al., 2017). When moisture decreases in the near-surface area of the ripening and harvest time, 

the backscatter of the rice crop is starting to drop in both VV and VH (Torbick et al., 2017). Therefore, it 

can realise that VV and VH polarisation backscatter responses vary at different crop conditions and growth 

stages.  

 

Machine learning algorithms for remote sensing classification  

The supervised, semi-supervised and unsupervised classification methods are frequently used in remote 

sensing studies for landcover classification, crops mapping and monitoring. Image classification methods 

can be object and pixel-based. Supervised classification includes maximum likelihood, minimum mean 

distance, k-nearest neighbours, while unsupervised classification use k-mean, ISODATA, self-organising 

map (SOM) and hierarchical clustering methods (Li et al., 2014). Machine learning algorithms such as 

artificial neural network (Kavzoglu & Mather, 2003), random forest (Breiman, 2001), support vector 

machine (Vapnik & Cortes, 1995), and decision tree (Brodley & Friedl, 1997) are gaining more attention in 
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remote sensing and are also widely used for crop mapping and landcover classification (Ayele et al., 2018; 

Saini & Ghosh, 2018; Han et al., 2019). 

Among these methods, random forest (RF) is a powerful and flexible nonparametric supervised machine 

learning algorithm (Breiman, 2001; Aung & Min, 2017). The RF can handle high dimensional, noisy, and 

multisource data with no overfitting, and it has a powerful ability to deal with large datasets efficiently; and 

it has a high-level interaction with predictors.  

Several studies have used the RF machine learning algorithm for rice mapping. For example, Cai et al. (2019) 

have adopted RF for deriving phenological parameters (start of season & end of the season, length of season) 

for rice crop mapping classification using Sentinel-1 time-series backscatter and Sentinel-2 NDVI data. Also, 

Bazzi et al. (2019) presented a classification of rice crops and other crops using RF and Sentinel-1 time-

series data. A study by Singha et al. (2019) also showed that the RF algorithm could classify rice and non-

rice crops using Google Earth Engine and Sentinel-1 time-series data. Further, Sun et al. (2019) compared 

mapping crops (wheat and maise) in the agricultural region of Yangzi River, China, using RF, artificial neural 

networks (ANN), and support vector machine (SVM) algorithms with multisource satellites like Sentinel-1, 

Sentinel-2 and Landsat-8 data. They found that RF outperformed other methods for crop mapping and 

obtained higher accuracy than ANN and SVM methods supervised methods. The RF can manage large 

datasets with great flexibility and powerfulness and can be used to determine the importance of variables or 

features during the classification (Sun et al., 2019). As demonstrated by the above literature, the RF algorithm 

has great capability for rice mapping with high accuracy. Nevertheless, its performance for detecting ratoon 

rice and its distribution has not been examined yet.  

 Research problem  

Review of the literature reveals that remote sensing has been used to map and characterise main crops in 

many studies, while less attention has been given to detect or map ratoon crops, like rice and their 

distribution. Lack of knowledge about the distribution of ratoon rice causes uncertainty regarding the 

estimates of actual crop production and yield and the additional production or yield that comes from ratoon 

rice. Hence it is necessary to detect the areas of ratoon rice fields. Remote sensing data can be used to detect 

ratoon rice and map its distribution. Supervised machine learning algorithms such as random forest have 

gained popularity for mapping rice crop. However, its potential for detecting ratoon rice and its distribution 

using Sentinel-1 time series data needs further investigation. 

Therefore, in this study, Sentinel-1, time-series data, and RF machine learning algorithm will be utilised to 

address this knowledge gap.  

 

 



DETECTING RATOON RICE AND MAPPING ITS DISTRIBUTION USING MACHINE LEARNING ALGORITHM AND 

SENTINEL-1 TIME SERIES DATA  

6 

 Research aim and objectives  

This study aims to detect ratoon rice and map its distribution in Leyte, Iloilo and Agusan del Sur in the 

Philippines using Sentinel-1 time series data and RF machine learning algorithm.  

 Specific Objectives:  

 

1. To understand the differences between the temporal rice backscatter behaviour in different polarisations 

where ratooning is practised and where it is not.  

2. To discriminate between rice and ratoon rice using random forest (RF) machine learning algorithm and 

Sentinel-1 time-series data.  

3. To map the distribution of ratoon rice in  Leyte, Iloilo, and Agusan del Sur in the Philippines.  

 Research Questions  

 

1. What is the difference between the temporal backscatter behaviour of rice (as the main crop) and ratoon 

rice in different polarisations?  

2. How rice (as the main crop) and ratoon rice can be accurately discriminated using random forest (RF) 

algorithm and Sentinel-1 time-series data?  

 Research Hypothesis  

 

H0: There is no significant difference in temporal backscatter behaviour of rice and ratoon rice in different 

polarisations.  

H1: There is a significant difference in temporal backscatter behaviour of rice (as the main crop) ratoon rice 

in different polarisations.  

H0: Ratoon rice cannot be accurately discriminated using random forest (RF) algorithm and Sentinel-1 time-

series data.  

H1: Ratoon rice can be accurately discriminated using random forest (RF) algorithm and Sentinel-1 time-

series data. 

 

 

 

 

 

 

 



DETECTING RATOON RICE AND MAPPING ITS DISTRIBUTION USING MACHINE LEARNING ALGORITHM AND 

SENTINEL-1 TIME SERIES DATA  

7 

2. MATERIALS AND METHODS   

This chapter describes the study area, data and methods used in this study. First, the description of the study 

area, field survey data, and radar remote sensing data are presented. Next, the statistical data analysis of 

ratoon and non-ratoon samples are described. Finally, Random Forest classification, the procedures for 

classification of ratoon and non-ratoon fields and the accuracy assessment of this classification are described. 

 

 Study area 

The Philippines is a southeast Asian county with a tropical climate and intense monsoons and covers 300,000 

square km. It combines about 7641 islands, and it is classified broadly into three island groups of Luzon, 

Mindanao and Visayas. This study will focus on three provinces of Iloilo, Leyte, and Agusan del Sur (Figure 

2.1). The Iloilo province is situated on Panay island, and the total area is 4663.42 square km with five districts. 

The major portion of the land area is occupied by agricultural land, which is 3447.44 square km (73.93%). 

The province's season has been classified into two; January to May is dry, and June to December wet, and 

higher rainfall is recorded in the wet season compared to the dry season. The average temperature is around 

24-27 degrees Celsius. The soil of this province is very fertile, which is suitable for crops like rice.  

 

The province of Leyte covers a total area of 6313.33 square km. Coronas. (1920) has classified the 

Philippines climate into four types based on its rainfall distribution. The province of Leyte has Type IV 

climate, i.e., rainfall has an equal distribution all over the year in this province. However, the dry season 

considered from November to April and wet from May to October. The province has a great extent of crop 

cultivation, such as rice.  

 

The Agusan del Sur province is in the southern region of the Philippines and is one of its largest provinces. 

The Agusan del Sur is divided into 13 municipalities. It covers approximately 8966 square km, and forest 

and rivers cover a large portion of the province. Moreover, the climate of this province is categorised as 

Type II, which means that the province has only wet season and no dry season. Maximum precipitation in 

the Agusan del Sur province is recorded from December to January (Landicho et al., 2016). 
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 Field Data  

The field data is provided by the International Rice Research Institute (IRRI) and was collected during the 

Pest Risk Identification and Management (PRIME) project between 2017 and 2019. The field survey data 

contain farmer interviews during three growing seasons between 2017 to 2019. The collected data cover 317 

fields and include information about field geographical location, size, crop type, season, crop establishment 

date, harvesting date, irrigation system such as rainfed, irrigated and whether it is practised as ratoon filed 

(Table 2.1).  

 

 

 

 

 

 

 

Figure 2.1: Study Area. Map shows the location of three provinces of Iloilo, Leyte, and 

Agusan del Sur in the Philippines  
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In this study, ratoon and non-ratoon rice from Iloilo, Leyte, and Agusan del Sur provinces were extracted 

from the survey data collected during 2017- 2019. The number of field samples with ratoon rice in the three 

selected provinces was 42. To have an unbiased classification, a similar number of samples will be randomly 

selected from non-ratoon rice.   

Table 2.1: Example of field data provided by IRRI 

 

 
The field data of rice crops have been provided by IRRI and included rice cropping information of 317 

fields during three growing seasons from five provinces of the Philippines. Nevertheless, after exploring the 

provided dataset, it was revealed that there were only 47 fields in these provinces where ratoon rice has been 

practised as the second rice crop. In this research, the information of ratoon rice and rice as the main crop 

from Iloilo, Leyte, and Agusan del Sur- as main provinces where ratooning is practised studied (Figure 2.2). 

Table 2.2 shows the number of ratoon fields in these provinces. Hence, in total, 42 fields with ratoon crops 

from these three provinces were considered for further analysis. To have an unbiased classification, a similar 

number of samples will be randomly selected from non-ratoon rice. 

 

 

Table 2.2: Selected provinces and their number of fields with ratoon crop   

 

 

Region Number of Ratoon Fields 

Iloilo 12 

Leyte 15 

Agusan Del Sur  15 

Total 42 
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Figure 2.2: Study area and selected field samples 

 

 

Figure 2.2 shows the distribution of surveyed rice fields within the study (in three provinces in the 

Philippines: Iloilo, Leyte and Agusan del Sur). The red points show the field samples of ratooned and non- 

ratooned rice crops  
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 Sentinel -1 SAR  

Sentinel-1 is a synthetic aperture radar satellite (SAR); it carries a C-band sensor with 5.405 GHz frequency 

and dual-polarisation, which means it contains both vertical (V) and horizontal (H), like VV+VH or 

VH+HH polarisations. The Sentinel-1A satellite was launched on 3 April 2014, and Sentinel-1B was 

launched on 22 April 2016. Sentinel-1 offers 3 days revisit times with ascending and descending passes at 

the equator (Geudtner et al., 2012). It provides a ground resolution of 5m × 20m (Interferometric wide 

swath mode 250 km) and 20m × 40m (Extra wide swath mode of 400 km) (Geudtner et al., 2014). Sentinel-

1 has 175 days orbits/cycle for Sentinel-1A and Sentinel-1B satellites. It is located at 693 km altitude, and 

the inclination angle is 98.18 degrees. Sentinel-1 can collect data from all weather conditions, during the day 

or even at night or cloudy weather. The backscatter response by Sentinel-1 has been used for crop 

classification and discrimination from other crops. Table 2.3 provides detailed information about the 

Sentinel-1 (A& B) data. 

 

Table 2.3: Specification of Sentinel-1 SAR  

 

 

Table 2.4 shows the number of Sentinel-1 images taken for the study area in different seasons during 2017 

– 2019, and Table 2.5 presents the time interval of sentinel -1 images acquisition for the three studied 

provinces. Acquisition of Sentinel-1 images for 2018 season-1 and 2019 season-1 starts September and ends 

in March, while for 2018 season-2, it starts in March and ends in September of the same year for all three 

selected provinces 
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Table 2.4: Sentinel-1 time-series images in the study area from 2017-2019 

 

 

Table 2.5: Start and end of Sentinel-1 time-series images in the study area from 2017-2019 

 

 

 

 

 
  

2018 season-1 2018 season-2 2019 season-1

Iloilo 16 16 16

Leyte 16 17 16

Agusan del Sur 17 17 17

Provinces
2017-2019

Start End Start End Start End 

Iloilo 9/16/2017 3/27/2018 3/27/2018 9/23/2018 9/11/2018 3/22/2019

Leyte 9/23/2017 3/22/2018 3/22/2018 9/30/2018 9/6/2018 3/29/2019

Agusan del Sur 9/18/2017 3/29/2018 3/29/2018 9/25/2018 9/13/2018 3/24/2019

2017-2019

Provinces
2018 season-1 2018 season-2 2019 season-1
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 Method 

 
Figure 2.3 shows the methodological flow chart of the study. It presents the main steps such as pre-

processing of Sentinel-1 data, extraction of average values, discrimination of ratoon and non-ratoon rice 

using temporal VV, VH and VV/VH ratio, and statistical analysis. Together with surveyed field data, the 

temporal backscatter responses used to train the RF algorithm and discriminate between ratoon and non-

ratoon rice crops.  

 

Figure 2.3: Methodology Flowchart 
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 Pre-processed data 

Pre-processing steps of Sentinel-1 data like removing speckling, radiometric calibration, subset, and stacking 

has already been done by IRRI. The average backscatter values of pixels falling within each field for VV, 

VH and VH/VV polarisations were later calculated by ITC as part of their contribution to the PRIME 

project.  

 Temporal backscatter from VV and VH polarisations and statistical significance differences tests  

The temporal backscatter response of ratoon and non-ratoon fields from VV, VH & VH/VV polarisation 

were examined using the average backscatter values of each field. For this, the temporal backscatters of 

ratoon and no ratoon fields and their boxplots in VV, VH, and VH/VV ratio were plotted to understand 

the differences in backscatter behaviour between ratoon and ratoon non-ratoon fields.  

For the statistical significance test, the Mann-Whitney U test conducted to assess whether there is a 

significant difference between temporal backscatter behaviour of ratoon rice and non-ratoon rice in VV, 

VH, and HV/VV polarisations. The Mann -Whitney U test is a nonparametric test that compares the 

difference between two independent groups or classes when samples are not normally distributed (Yap & 

Sim, 2011; Fikriyah et al., 2019). The analysis of temporal backscatter from different polarisations and 

significance tests were performed using SPSS software. 

  Random forest  

Random forest (RF) is a nonparametric supervised machine learning algorithm (Breiman, 2001). RF is an 

improved version of tree classifiers, in which independent random vector sampling is used to generate 

classifiers from input vectors by casting a voting unit for popular classes (Breiman, 1999). RF has been used 

in remote sensing in various fields such as crop classification and mapping. It is easy to integrate multi-scale 

variables in RF; it has a powerful ability to deal with larger data sets efficiently and high-level interaction 

related predictors (Pal, 2005). 

RF has been developed by creating a series of classification and tree- regressions (CARTs) (Torbick et al., 

2017). The bootstrapping or resampling with replacement procedure applies to improve the varieties of 

classification trees, and it assigns every pixel to a class by following the highest voting number from a group 

of trees (Son et al., 2018). RF uses bootstrapping sampling (also called bagging in short) for random feature 

selection because bagging improves accuracy when random features are used. It can evaluate the strength 

of correlation and the generalisation error of the combined ensemble trees (Breiman, 2001). The RF uses 

the Gini index as an attribute selection metric, which estimates specific impurities related to classes (Breiman 

et al., 1984).RF classifies training samples data into two equal weights, and it uses randomisation processes 

to classify data. Randomisation processes include the random selection of a subset of training samples data 

for each tree and the selection of subset variables at every node of the trees (Im et al., 2016). Performance 

of the RF model can be checked by applying an internal cross-validation approach and using 70% samples 

data as used in bag samples for training tree, and 30 % samples data as out of the bag samples (Belgiu & 

Drăgu, 2016).  



DETECTING RATOON RICE AND MAPPING ITS DISTRIBUTION USING MACHINE LEARNING ALGORITHM AND 

SENTINEL-1 TIME SERIES DATA  
 

15 

Figure 2.4 demonstrates the random-forest procedures for classifying the data into ratoon and non-ratoon 

classes. Sentinel-1 data and the field samples of ratoon and non-ratoon fields were split into training and 

test samples in the R open-source programming language. For data splitting, a proportion of 70% was 

considered as training samples and 30% as for the test samples. The bootstrapping technique was applied 

to the training samples. The bootstrapping creates a training sample with N- decision trees, and each tree 

predicts the output class as shown in the red circle. A majority voting selects the final classes. 

 

 

Figure 2.4: Random forest procedure modified based on Feng, Sui, Tu, Huang, & Sun (2018) 

The confusion matrix describes the model's overall accuracy and kappa values. The producer and user 

accuracy can also calculate by a confusion matrix. The correctly classified classes determine the overall 

accuracy. Story & Congalton (1986) stated that producer and user accuracy evaluate the correctly classified 

individually category from samples. Kappa values all the time stay below or equal to 1. The kappa values 

below 0 show that the classifier model is useless for predicted classes, but the value is close to 1 indicate 

model fitness. Landis and Koch (1977) provided the scheme for interpreting the kappa values, such as the 

values between 0 to 0.2 with no agreement with the model and sample data. In addition, the fairness of the 

model determines values from 0.21 to 0.40, 0.41–0.60 (modest), 0.61–0.80 (considerable), and 0.81–1, 

roughly perfect with the model and sample data.  

The Out-of-bag error (OBB) is an error evaluation method, which is usually practised to estimate the 

precision of random forest and decide suitable values for appropriate parameters. For instance, the number 
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of class predictors randomly selected for splitting is called mtry (Janitza & Hornung, 2018). The training 

dataset provided the OOB errors rates, which explained the model fitness. The higher OBB error rates mean 

the model is not applicable, while the lower OBB describes the model’s usefulness. 

 Accuracy assessment/validation 

Bootstrapping in random forests protects against overfitting. The out-of-bag error estimates can be obtained 

using the mean prediction error of the trees that did not use training samples in their bootstrap. Therefore, 

validation to assess an unbiased evaluation of the results (as is the case for many other methods) may not 

be necessary. However, in this study, the cross-validation performed in the RF model using the training 

data, validation and the accuracy assessment were performed using randomly selected test (30%) data. The 

confusion matrix described the performance of the classifier model and showed the correctly classified 

features and overall accuracy. The accuracy measurement indicators such as overall accuracy and kappa 

value were selected for checking the RF algorithm’s performance. The R software applied to perform 

random forest classification and for accuracy assessment.  

 

 The validated RF model was used to map ratoon and non-ratoon samples in the study area of Iloilo, Leyte 

and Agusan del Sur. The predicted classified data divided into ratoon and non-ratoon rice crops. The 

comparison between field observations and predicted data also shown. The correctly classified ratoon and 

non-ratoon can easily compare through maps (See: appendix VIII, Sentinel-1 images used for validation RF 

model). 

 Software 

Table 2.6 shows the software to be employed for analysis of Sentinel-1 time series and field data to 

discriminate between ratoon rice and rice as the main crop. 

Table 2.6: Processing software 

Name of software Functions 

Microsoft excel • Field data analysis  

Microsoft words • MSC thesis writing, and  

• Other documentations  

MATLAB/R/SPSS • Analysis of sentinel-1 data, 

• Statistical tests to understand VV and VH temporal 

backscatter behaviour, and  

• R for RF classification  

ArcGIS • Map production 
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3. RESULTS 

This chapter has five subsections. First, the temporal backscatter signature of ratoon and rice as a primary 

crop (non-ratoon rice) are studied. Then the sub-selection of ratoon samples and non- ratoon data selection 

has been presented.  Further, backscatter values of ratoon and non-ratoon samples in different growth stages 

using VV, VH and VH/VV polarisations followed by the results of the Mann-Whitney U test are presented.   

Finally, the random forest classification results of ratoon and non-ratoon samples and their distribution in 

the study area are presented.  

 Temporal signature of ratoon and non-ratoon rice  

 
 It was essential to understand the temporal signature behaviour of ratoon as a second rice crop and non-

ratoon as a primary rice crop in different seasons and different study sites. As such temporal signatures of 

ratoon and non-ratoon samples have been used to examine the variation of backscatter from different 

polarisations such as VV, VH and VH/VV at different growing seasons. The temporal signature can use to 

study crop different growth stages like vegetative, flowering, ripening, and harvesting. To understand the 

difference between ratoon and non -ratoon temporal signatures, their signatures were mainly studied after 

harvesting the primary rice when the ratoon crop started. Two fields with ratoon (ID 650) and non-ratoon 

rice (ID 661) have been selected for graphical representation and comparison. Land crop establishment (26 

July 2018), crop ecosystem (rainfed), and harvesting dates are similar in both fields. Figure 4.1 shows the 

temporal signature of these two fields during wet season 2018 in Iloilo region using VV, VH and VH/VV 

polarisations. The temporal signatures allow understanding how the backscatter responses vary before and 

after harvesting ratoon and non-ratoon (primary) rice crops.  
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Figure 3.1: Temporal signature of ratoon (pink) and non-ratoon (black dotted) rice crop in VH polarisation in the 
study region of Iloilo during wet season 2018 

 
Figure 3.2: Temporal signature of ratoon (pink) and non-ratoon (black dotted) rice crop in VV polarisation in the 

study region of Iloilo during wet season 2018 

 

Figure 3.3: Temporal signature of ratoon (pink) and non-ratoon (black dotted) rice crop in VH/VV ratio 

polarisation in the study region of Iloilo during wet season 2018 
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Figures 3.1 to 3.3 show the temporal signature of ratoon (pink) and non-ratoon (black dotted) rice crops in 

VH, VV and VH/VV polarisation in the study region of Iloilo during wet season 2018. Vertical lines have 

been used for representing the harvesting dates of primary (HD) and ratoon (RCHD) rice crops. 

 Selection of ratoon and non-ratoon dataset for significance test  

 Sub-selection of ratoon dataset  

Although the total ratoon samples in the selected provinces were 42 (Table 2.2), only 30 samples 

have been selected for performing significance U test and random forest classification; the main 

reasons for choosing these samples are following: 

• Nine samples have been removed because of ratoon harvesting dates. The ratoon 

harvesting dates of these samples were predicted outside of the study period when no image 

data was available (April 2019). 

• Three samples from Leyte and Agusan del Sur were removed because ratoon rice crop 

duration was very short, and backscatter data were insufficient to cover growth stages such 

as flowering and ripening. 

Table 3.1 shows the criteria that have been used for selecting the growth stages in the ratoon crops. 

The growth stages of the ratoon crop are divided into three stages, including the short crop growth has 

12-15 days of flowering and 25-30 days for ripening stages. On the other hand, a long duration of the crop 

is in the case flowering growth stage 25-30 days and ripening for 60-65 days. 

Table 3.1: Selection of growth stages of ratoon rice crop  

Growth criteria Assumption of ratoon 

crop growth stages  

Growth duration days for RS data selection  

   

Immediately after 

harvest of primary 

crop 

vegetative  3 -5 days after harvest of the primary crop  

Based on ratoon crop 

duration* 

flowering Short- 12-15 days after the harvest of the primary 

crop in the ratoon field 

Longest - 25-30 days after the harvest of the 

primary crop in the ratoon field  

 

Based on ratoon crop 

duration* 

Ripening  Short - 25 -30 after the harvest of the primary 

crop in ratoon 

Longest -60-65 after the harvest 
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 Selection of non-ratoon dataset  

 
The selection of non-ratoon fields for testing and classification has been made based on the ratoon field. 

This means that the basic parameters such as harvested dates of the primary rice crop, method of harvesting 

and ecosystem of the crop had to be the same for selecting non-ratoon sample fields (see appendix 1). It 

has been highly balanced that the harvesting date of ratoon and non-ratoon with selected parameters (Table 

3.3) must have gaps of 15-20 days. This helped to distinguish the difference between temporal backscatter 

responses between the ratoon non-ratoon rice crop after harvesting. In total, 30 non-ratoon samples have 

been selected to perform the statistical testing and RF classification with ratoon fields.  

 

Table 3.2: Examples of parameters that were used for the selecting of non-ratoon fields 

Non-ratoon 

Non-ratoonFID Ecosystem HarMethod 

F0625_1 rainfed mechanical 

F0630_1 irrigated manual 

F0639_0 irrigated manual 

F0638_0 irrigated mechanical 

F0638_1 irrigated Mechanical 

 

  Mean backscatter values in different growth stages using VV, VH and VH/VV polarisations 

 
Table 3.3 shows the mean values of selected ratoon and non-ratoon samples at different growth stages in 

VV, VH and VH/VV polarisations. The mean values vary in each growing stage of the rice crop and 

different polarization. As such VV has a mean value of VV= -9.11, VH = -14.42. and VH/VV= -5.30 in 

ratoon rice crop while in the non- ratoon rice crop VV= -9.43, VH=-14.77 and VH/VV=-5.33 at the 

vegetative growth stages. Additionally, the flowering and ripening stages also show the different mean 

values. Ripening VH and ripening ratio are the only two groups where the mean difference is > 1db. 
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Table 3.3: Mean backscatter values of selected samples in VV, VH and VH/VV polarisations for ratoon and non-
ratoon rice crop 

Growth Stage   VV  VH   VH/VV 

 Ratoon Non-

ratoon 

 Ratoon   Non-Ratoon     Ratoon  Non- ratoon 

Vegetative 

        

-9.11 
 

-9.43 
 

-14.42 
 

-14.77 
 

-5.30 
 

-5.33 
 

Flowering -9.21 
 

-9.57 
 

-14.49 
 

-15.37 
 

-5.27 
 

-5.79 
 

Ripening -9.33 
 

-10.20 
 

-14.69 
 

-16.88 
 

-5.35 
 

-6.68 
 

       

 

 

Figures 3.4,3.5, and 3.6 show the boxplots of extracted mean values from Sentinel-1 time series data at 

different growth stages of ratoon and non-ratoon rice in VV, VH polarisations and VH/VV ratio. A total 

30 samples for ratoon rice and 30 samples for non-ratoon rice crop has been plotted for VH (Figure 3.4), 

VV (Figure 3.5) and VH/VV ratio (Figure 3.6). The boxplots represent median as the tick horizontal middle 

line in the box, 25 percentiles as the lower half of the box, 75 percentile upper half of the box. Maximum 

and minimum values are represented as extent of the boxplot, and the black dots are interpreted as outliers 

of the boxplot. 
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Figure 3.4: Box plot presenting the temporal backscatter variation in ratoon and- non-ratoon at different 

ratoon growth stages using VH (N= 60) 

 

 
Figure 3.5: Box plot presenting the temporal backscatter variation in ratoon and non-ratoon at different 

ratoon growth stages using VV (N= 60) 
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Figure 3.6: Box plot presenting the temporal backscatter variation in ratoon and non-ratoon at different 

ratoon growth stages using VH/VV (N= 60) 

 

 

  Mann-Whitney U test: Significance test 

 
The significant differences between ratoon and non-ratoon crop testing are essential; that is why a Mann- 

Whitney U test has been selected to test the significance of temporal backscatter responses between ratoon 

and non-ratoon crops. Through significance test, backscatter information of ratoon and the non-ratoon 

crop has been taken as the independent variable. In contrast, ratoon and non-ratoon have been considered 

as categorical dependent variables. Table 3.5 shows p -values in ratoon and non–ratoon using VV, VH, and 

VH/VV polarisation at different growing stages. The p-value has been used for determining the significant 

between ratoon and non-ratoon rice. The p- values in different polarisations such as VV=0.198, VH= 0.065 

and VH/VV= 0.976, which the vegetative stage is not significant. On the other hand, the ripening stage 

shows the significance between ratoon and non- ratoon rice crops in VV, VH and VH/VV polarisations. 

The p- values are 0.00 in VH and VH/VV, while 0.038 in VV polarisation. 
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Table 3.4: P -values from a Mann- Whitney U test in ratoon and non–ratoon rice crops using VV, VH, 

and VH/VV polarisations when ratoon crops are at growing stages (N= 60) 

 

Growth Stage   VV   VH VH/VV 

    

Vegetation 0.198 0.065 0.976 

Flowering 0.359 0.035 0.081 

Ripening 0.038 0.000 0.000 

    

 
 

 Classification: Random forest 

 

The R programming language has been for random forest classification using ratoon and non-ratoon classes. 

Various packages and libraries (raster, rgdal, and caret) were used for classification. The confusion matrices 

for the trained model and prediction dataset have been generated using these libraries. Classification has 

been performed using VV, VH and VH/VV polarisations of sentinel-1 backscatter data. The backscatter 

data has been prepared following the growth stages of the ratoon rice crop (vegetation and flowering, and 

ripening) (Table 3.1). Ratoon and non-ratoon classes have an equal number of samples (each 30 samples), 

resulting in a total of 60 samples. The selection of samples for training and prediction data has made 

automatically and randomly using the random forest model. The random forest model has been tunned for 

increasing the accuracy. The parameters such as ntree, mtry have used for tunning the random forest model. 

The 300 ntree and 2 mtry have been applied to achieving the best accuracy from the model.  

 

  Confusion matrix: trained data model 

 
 The RF trained using ratoon and non-ratoon features, and the RF produced a confusion matrix and OOB 

error estimates. Table 3.5 shows the confusion matrix of the training dataset using VV, VH and VH/VV 

polarisations and, it shows the 38.39 % OOB estimates rates of the random forest model. The class error 

shows the misclassification in the RF model in table 3.7. The extend of class error is from 0 to 1. The higher 

the class error means more misclassification and represents the unfit model for use. On the other hand, the 

lower-class error means a higher chance for the correct classification of features. The class error in ratoon 

and non- ratoon classes are 0.450 and 0.338, respectively. 
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Table 3.5: Confusion matrix and OOB error rate of RF classifier for ratoon and non-ratoon classes using 

VV, VH and VH/VV polarisations (N= 60) 

   Reference 

Prediction 

 

Ratoon Non-Ratoon Total Class Error  

Ratoon 33 27 60 0.45 

Non-Ratoon 24 47 71   0.33 

Total 57 74 131  

OOB estimate of error rate: 38.93% 

 Variable importance of the trained model  

 
Table 3.6 demonstrates the important variables for the development of the RF classifier. The Gini index value 

determines the variable importance, and the higher the value is representing, the higher the importance value.  

The variable ranking was based on the mean decrease Gini value. The variable importance shows the mean 

decrease in impurity among the datasets. It splits in each tree and improves the split -criterion in the 

importance measure attributed to the split variable—Table 3.6 shows the important variable in different 

growing stages of ratoon and non-ratoon rice crops. 

 
Table 3.6: Variable importance of the trained model 

Growth Stage   VV   VH VH/VV 

    

Vegetation 8.52 4.77 6.84 

Flowering 7.00 7.09 5.95 

Ripening 4.09 9.36 6.58 

Total 19.92 24.35 20.24 

 

The integrated data of different growth stages are shown in Table 3.6 that VH (24.35) is an important variable 

than VV (19.92) and VH/VV (20.24). In addition, VV is a more important variable in the vegetative stage 

than VH and VH/VV, While VH scores higher Gini values at the flowering stage and ripening in the 

development of the RF.  

 Confusion matrices: Prediction data 

 
The trained RF classifier was used with test data (1/3 or 30%) to assess non-ratoon and ratoon samples’ 

classification accuracy overall and at each growth stage. Table 3.7 shows the overall classification accuracy 
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has been obtained 69.39 %, and the kappa value is 0.39 from the testing dataset. However, the accuracy at 

different growth stages varies, which are showing in table 3.8 to 3.10. 

 

Table 3.7: Confusion matrix and obtained classification accuracies of ratoon and non-ratoon rice crops 

using prediction/test data  

OA: overall accuracy, PA: producer accuracy and UA: user accuracy 

   Reference 

Prediction 

 

Ratoon Non-Ratoon Total PA (%) UA (%)  

Ratoon 19 4 23 63.33 82.60 

Non-Ratoon 11 15 26 78.94 57.69 

Total 30 19 49   

OA (%) 69.39      

Kappa 0.39      

       

 Random forest classification with prediction dataset at different growing stages  

 
Tables 3.8 to 3.10 show the confusion matrices of ratoon and non-ratoon rice crops at different stages such 

as vegetation, flowering and ripening of prediction data using VV, VH and VH/VV polarisations.  

 

Table 3.8: Confusion matrix and obtained classification accuracies for non-ratoon and ratoon rice crops at 

vegetative stage using prediction data 

OA: overall accuracy, PA: producer accuracy and UA: user accuracy 

 

   Reference 

Prediction 

 

Ratoon Non-Ratoon Total PA (%) UA (%)  

Ratoon 2 0 2 16.66 100.00 

Non-Ratoon 10 6 16 100.00 37.50 

Total 12 6 18   

OA (%) 44.44       

Kappa   0.11       
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Table 3.8 shows the confusion matrix and obtained accuracy from the vegetative stage prediction dataset 

with ratoon and non-ratoon features in VV, VH, and VH/VV polarisation. The overall accuracy is obtained 

at 44.44% and kappa = 0.11.  

 

Table 3.9: Confusion matrix and obtained classification accuracies for non-ratoon and ratoon rice crops 

at flowering stage using prediction/test data  

OA: overall accuracy, PA: producer accuracy and UA: user accuracy 

   Reference 

Prediction 

 

Ratoon Non-Ratoon   Total PA (%) UA (%)  

Ratoon 7 1 8 58.33 87.50 

Non-Ratoon 5 5 10 83.33 50.00 

Total 12 6                 18   

OA (%) 66.67      

Kappa 0.35      

       

 

Table 3.9 shows the confusion matrix and obtained accuracy from the prediction dataset of the flowering 

stage with ratoon and non-ratoon features in VV, VH and, VH/VV polarisation. The overall accuracy is 

obtained at 66.67% and kappa = 0.35. 

Table 3.10: Confusion matrix and obtained classification accuracies for non-ratoon and ratoon rice crops 

at ripening stage using prediction/test data  

OA: overall accuracy, PA: producer accuracy and UA: user accuracy 

   Reference 

Prediction 

 

Ratoon Non-Ratoon Total PA (%) UA (%)  

Ratoon 8 3 11 66.66 72.72 

Non-Ratoon 4 3 7 50.00 42.85 

Total 12 6 18   

OA (%) 61.11      

Kappa 0.16       

       

 

Table 3.10 shows that confusion matrix and accuracy obtained using random forest classification at the 

ripening stage with VV, VH and VH/VV polarisations as ratoon and non-ratoon rice features. The overall 

accuracy is 61.00 %, and kappa = 0.16. 
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 Distribution of ratoon and non-ratoon rice crop  

 
The validated RF classification model was used to map ratoon and non-ratoon rice distribution based on 

field observation data. The Map showing the distribution of ratoon and non-ratoon of field observation 

during the study period 2017-2019 (Appendix IIIA, IIIB, and IIIC). Figures 3.7, 3.8 and 3.9 show the RF 

classification map of ratoon and non- ratoon rice crop for selected polygons from Leyte, Iloilo and 

Agusan del Sur province of the Philippines (See: Appendix IV for the province-based prediction map).  

 

Figure 3.7: Map showing the distribution of ratoon and non- ratoon rice based on field observation and 

predicted classification of selected polygons from Leyte province 

 

B A 
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Figure 3.7 shows the field observation (A), and predicted classification (B) of ratoon and non-ratoon rice 

are shown in the Leyte province. The prediction classification is based on acquired Sentinel-1 imagery from 

16-28 December 2018 using Google Earth Engine. The predicted and field observations of ratoon and non-

ratoon rice crops are represented as pink and blue. The map shows that predicted ratoon and non- ratoon 

rice are not correctly classified because the maximum field observation (polygons) is blue, which shows non-

ratoon rice.  

 

Figure 3.8: Map showing the distribution of ratoon and non- ratoon rice based on field observation and predicted 

classification of selected polygons from Iloilo province 

A 
B 
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Figure 3.8 shows the predicted (B) and field observation (A) ratoon and non-ratoon rice are presented in the Iloilo 

province. The prediction classification is based on acquired Sentinel-1 imagery from 16-28 December 2018 using 

Google Earth Engine. The predicted and field observations of ratoon and non-ratoon rice crops are represented as 

pink and blue. The map shows the misclassification of ratoon and non- ratoon rice in the predicted map. 

 

Figure 3.9: Map showing ratoon and non- ratoon rice distribution based on field observation and predicted 

classification of selected polygons from Agusan del Sur province.  

 

Figure 3.9 shows the predicted (B) and field observation (A) ratoon and non-ratoon rice are presented in 

the Agusan del Sur province. The prediction classification is based on acquired Sentinel-1 imagery from 16-

28 December 2018 using Google Earth Engine.  

A B 
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4.  DISCUSSION  

The estimation of rice production is essential because of continued high rates of consumption and increasing 

demand worldwide (Bandumula, 2018; Clauss et al., 2018). Thus, the distribution of rice as the primary crop 

has been mapped. Nevertheless, mapping ratoon rice has not gained much attention in the literature. There 

is a large research gap between the mapping and detection of ratoon and non-ratoon rice. In this study, 

ratoon and non-ratoon rice crop field samples were selected from the Leyte, Iloilo and Agusan del Sur 

province of the Philippines, collected during 2017-2019. This study evaluated that temporal backscatter 

signature from Sentinel-1 time-series data can differentiate between ratoon and non- ratoon rice fields by 

applying the Mann-Whitney U test. Finally, the RF model discriminated between the ratoon and non- ratoon 

rice at different growth stages and mapped its distribution. The important findings, limitations, and 

recommendations are discussed below. 

 Temporal backscattering behaviour  of ratoon and non- ratoon rice in VV, VH and VH / VV 
polarisations  

 
The temporal backscatter allows to explains crops phenological stages such as planting, flowering, ripening 

and harvesting (Harfenmeister et al., 2019). In our study, we used temporal backscatter data from Sentinel-

1 time series data. To understand the difference in temporal backscatter of ratoon and non-ratoon rice crop, 

two field samples of ratoon and non- ratoon were selected from the Iloilo province. Both samples were 

plotted using VV, VH and VH/VV polarisations (Figure 3.1, 3.2 and 3.3). The results revealed that there 

were differences in temporal backscatter of ratoon and non-ratoon samples. 

 

After harvesting the primary rice crop, the results showed differences in the temporal backscatter of ratoon 

and non-ratoon samples. This could be due to the harvesting methods determine the vegetation left on the 

field, height of the rice crop. Because when the ratoon is practised on the field, the crop was not entirely 

harvested from the surface, which meant the vegetation was left more than the non-ratoon field. In our 

analysis, we selected Sentinel-1 time series temporal backscatter data of 5 -10 days after harvesting the 

primary rice crop for the vegetation stage of ratoon rice. The ratio of mean backscatter value was smaller 

than 1dB (Table 3.4), even though that was counted as noise but no difference in ratoon and non-ratoon 

rice crop. There may be the closest difference in height and left vegetation on the field between the ratoon 

and non-ratoon rice crops. 

 

The ratoon field requires flooding for growing vegetation again on the same harvested rice field after 

harvesting the primary rice crop (Oad et al., 2002). The flooding increases the vegetation, the intensity of 

the canopy and the height of the crop. In contrast, non - ratoon rice field becomes fallow land or preparing 

for other crops after harvesting. Sharifi & Hosseingholizadeh (2020) explained that the double bounce 
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backscattering influenced the backscatter of rice plant due to interaction with stem and surface water before 

reaching the flowering stage. The boxplot also presented differences in median values of backscatter in both 

crops using the VV, VH and VH/VV polarisations (Figure 3.5 and 3.6). Also, the ratio of ratoon and non-

ratoon rice crops was close to one dB (0.94) at the flowering stage in VH, VH /VV polarisations. At the 

ripening stage, we found that VH polarisation and VH/VV ratio presented a large difference in median 

values of temporal backscatter (Figure 3.5 and 3.6). The difference between ratoon and non- ratoon was 

greater than 1dB (Table 3.3). The dB > 1 showed that there was a clear difference between ratoon and non-

ratoon rice crops. The previous study by Dineshkumar & Satishkumar (2019) also explained that the 

temporal backscatter varied in the different growth of rice crop such as transplanting, flowering and grain 

mature in polarisations such as VV, VH and VH/VV polarisations., we analysed the means backscatter 

values in different stages like vegetative, flowering and ripening ( Table 3.3 ). We found a clear difference in 

mean values of ratoon and non -ratoon rice crops in VH polarisation and VH/VV ratio at the ripening 

stage. 

 

We used the Mann -Whitney U test to assess the significant difference between temporal backscatter data 

in ratoon and non -ratoon classes using VV, VH and VH/VV polarisations. The test result showed that at 

the vegetative phase, the mean backscatter of VV and VH polarisations was not significant. For instance, 

the vegetative stages presented result in VH (p= 0.065), VV(p=0.198) and VH/VV (p=0.976) polarisation 

where P values >0.05. The results at the flowering stages showed that p values were only significant in VH 

(p =0.035) and VH/VV (p = 0.081) polarisations (Table 3.4). In the last ripening stage, the p- values were 

significant in all polarisations VV (p-value=0.038), VH (p value=0.000) and VH/VV (p-value=0.000) (Table 

3.4). We found that VH was significant when ratoon fields were at the flowering and ripening stages for 

differentiating ratoon and non-ratoon rice crops. 

  RF-based classification 

 
Random forest (RF) based classification was performed to differentiate the ratoon and non-ratoon rice. The 

RF classifier calculated overall accuracy and kappa value from predicting the results. We divided the dataset 

into a 70/30 ratio for training and prediction results following Belgiu & Drăgu (2016) because the training 

and validation data must be statistically independent, large enough and presentative to each class. The RF 

obtained 69.39% overall accuracy (OA) and 0.39 kappa value applying the prediction dataset (Table 3.7). 

Landis & Koch (1977) indicated that kappa values range from 0.21–0.40 is classified as fair, which meant 

that model performance was acceptable for classification. Apart from the kappa and overall accuracy of the 

model, we also calculated the user and producer accuracy to evaluate the model’s omission and commission 

errors. The user and producer accuracy of the RF model for ratoon rice was 82.60%, 63.33%, respectively, 

while the user and producer accuracy for non-ratoon was  57.69% and 78.94% (Table 3.7). Bazzi et al. (2019) 

also used the Sentinel-1 data-based RF model to map rice and other crops in the Camargue region, southern 
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France. They found a user, producer, overall accuracy, and kappa of 88.3%, 95.25, 96.6% and 87.5%, 

respectively. The user accuracy of this study was similar with Bazzi et al. (2019) finding ,whereas the other 

parameters showed a different results. 

The RF model was also used to classify ratoon and non- ratoon rice crops at different growth stages (Table 

3.8, 3.9 and 3.10). The lowest overall classification accuracy was found at the vegetative growth stage of 

ratoon rice compared to flowering and ripening stages. After harvesting, both ratoon and non- ratoon rice 

could have the same biomass (Table 3.3), it could have a similar backscatter. It could create confusion for 

the RF model to classify the classes correctly. On the other hand, at the flowering and ripening stages, the 

overall accuracy was 66.67% and 61.11%. Furthermore, the estimated OBB error rate at vegetative, 

flowering and ripening was 61.90%, 28.57% and 23.81%, respectively (Appendix IIA, IIB and IIC). The 

higher OBB error rate at the vegetative stage was due to the misclassification of ratoon rice class to non-

ratoon rice class and vice versa.   

 The distribution of predicted ratoon and non-ratoon rice crops was estimated by using the RF model. The 

field samples and selected polygons from the Iloilo, Leyte and Agusan del Sur provinces of the Philippines 

were applied to validate the RF model (Figure 3.7, 3.8 and 3.9). 

  

 Limitations  

In the following, we emphasised the study’s limitations that constrain the scope to which the outcomes 

can be generalised further than the study restrictions.  

 

• Limitation of field surveyed and remote sensing data: since we had missed many data of ratoon 

rice crop after its harvesting, i.e., April and May 2019 (dry season), we could only analyse the 

temporal backscatter behaviour of ratoon till March 2019; hence it makes the samples insufficient. 

 

• Limitation of sample size: the field samples were are few for ratoon rice crops. It would be much 

better if there were more samples, like 100 samples and because the small sample size may produce 

inaccurate accuracies of detecting ratoon and non- ratoon rice crops.  

• Information of ratoon samples: Ratoon rice samples did not observe thoroughly as primary rice 

crops had collected during the field survey. Furthermore, the Ratoon rice practice depends on 

farmers’ decisions; for instance, it was challenging to conclude that they will practice ratoon rice 

seasonally on the same field. This limited the analysis between ratoon and non- ratoon rice crops 

in the study area. 
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 Recommendations 

Based on the results of this study, we propose some recommendations that can be applied for future work 

regarding the SAR dataset for detecting ratoon rice and its distribution: 

 

1. The field survey can be performed separately for the ratoon rice crop because this crop is also 

essential and needs more information like primary rice crop. The sample size of the ratoon rice crop 

can be increased for more advanced study. 

 

2. Other SAR satellites, such as RADARSAT-2 (band -C), PALSAR (L-band) and TerraSAR -X (band 

-X with high spatial-temporal resolution can also use for detecting ratoon rice like Sentinel-1. 

 

3. The functional capability with a large dataset, proficiency in crop classification makes the RF model 

for selection in this study, while some other supervised machine learning classifiers such as SVM 

can be a different choice for detecting ratoon rice. 
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5. CONCLUSION  

The study has shown the possibility of using the Sentinel-1 time series data for detecting ratoon and non- 

ratoon rice crops using VV, VH and VH/ VV polarisations. The two research hypotheses proposed in this 

study were (1) There is a significant difference in the temporal backscatter behaviour of rice and ratoon rice 

in different polarisation. (2) Ratoon rice can be accurately discriminated using a random forest (RF) 

algorithm, and Sentinel-1 time-series data have been examined and confirmed to be true. This study was 

performed using field survey data collected in 2017-2019 in three provinces of the Philippines: Leyte, Iloilo 

and Agusan del Sur. We selected ratoon and non- ratoon samples from the field survey data and defined the 

parameters to consider the ratoon growth stages, for instance, vegetative, flowering and ripening. We utilised 

Sentinel-1 time-series data to differentiate temporal backscatter information of ratoon and non- ratoon rice 

crops. The study defined ratoon rice growth stages for detecting the discrimination between ratoon and 

non-ratoon rice crops. A Mann -Whitney U test found significant differences in temporal backscatter of 

ratoon and non- ratoon rice for some stages of ratoon and non- ratoon rice crops. It found that p- values 

at vegetative were not significant while flowering and ripening were significant. We also differentiated the 

temporal backscattering of ratoon and non- ratoon rice.  

 

Furthermore, we also performed a random forest classifier for ratoon and non- ratoon classification at 

different stages with predicting data set—the overall accuracy and kappa value utilized for comparing the 

result at various stages. The RF model obtained 69.39% overall accuracy from the prediction dataset, and 

the training dataset estimated 38.93% OBB error rate. In addition, the RF classification also applied to 

different growing stages of ratoon and on ratoon crop data. Furthermore, the RF model proved that ratoon 

and non- ratoon could be classified using time series Sentinel-1 data, and the RF model can achieve high 

accuracy. Finally, we applied a validated RF model for mapping ratoon rice in the Iloilo, Leyte, and Agusan 

del Sur provinces in the Philippines. 

Furthermore, the random forest classifier can detect ratoon and non -ratoon rice. Rice mapping using SAR 

data has been performing at a large scale since the 1990s, and ratoon rice mapping has been given less 

attention. This study can help the research community explore the potential values using more Sentinel-1 

SAR data to map the ratoon rice area and its distribution.  
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7. APPENDICES 

Appendix -I Ratoon and Non-ratoon crop samples  

 

Province 

Ratoon Non-ratoon 

FID_crop_no HarMethod Ecosystem 
Non-
ratoonFID Ecosystem HarMethod 

Iloilo F0621_1 mechanical rainfed F0625_1 rainfed mechanical 

Iloilo F0629_1 manual irrigated F0630_1 irrigated manual 

Iloilo F0640_1 mechanical irrigated F0639_0 irrigated manual 

Iloilo F0643_0 mechanical irrigated F0638_0 irrigated mechanical 

Iloilo F0643_1 mechanical irrigated F0638_1 irrigated mechanical 

Iloilo F0643_2 mechanical irrigated F0637_2 irrigated mechanical 

Iloilo F0649_1 manual rainfed F0647_1 rainfed Manual 

Iloilo F0650_1 mechanical rainfed F0641_1 irrigated mechanical 

Iloilo F0651_1 mechanical irrigated F0637_1 irrigated mechanical 

Iloilo F0660_1 manual rainfed F0658_1 rainfed Manual 

Iloilo F0666_1 manual rainfed F0672_0 rainfed Manual 

Iloilo F0678_0 manual rainfed F0674_1 rainfed Manual 

Leyte F0806_1 manual irrigated F0830_1 irrigated manual 

Leyte F0806_2 manual irrigated F0849_2 irrigated manual 

Leyte F0810_1 mechanical irrigated F0845_1 irrigated mechanical 

Leyte F0810_2 mechanical irrigated F0826_2 irrigated manual 

Leyte F0814_0 mechanical rainfed F0813_0 rainfed mechanical 

Leyte F0827_1 manual rainfed F0815_1 rainfed Manual 

Leyte F0830_2 manual irrigated F0825_2 irrigated manual 

Leyte F0842_2 mechanical rainfed F0853_2 rainfed mechanical 

Leyte F0846_1 manual irrigated F0829_1 irrigated manual 

Leyte F0850_1 manual rainfed F0834_1 rainfed Manual 
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Leyte F0850_2 manual rainfed F0841_3 rainfed Manual 

Leyte F0851_2 manual rainfed F0837_2 rainfed Manual 

Leyte F0855_1 manual irrigated F0852_1 irrigated manual 

Leyte F0857_0 manual irrigated F0852_0 irrigated manual 

Agusan 
del Sur F1304_1 mechanical irrigated F1308_1 irrigated mechanical 

Agusan 
del Sur F1304_2 mechanical irrigated F1305_1 irrigated mechanical 

Agusan 
del Sur F1308_2 mechanical irrigated F1309_2 irrigated mechanical 

Agusan 
del Sur F1312_2 mechanical rainfed F1346 rainfed mechanical 

Agusan 
del Sur F1313_2 mechanical   F1320_2 irrigated mechanical 

Agusan 
del Sur F1323_2 mechanical irrigated F1319_2 irrigated mechanical 

Agusan 
del Sur F1345_1 manual irrigated F1339_1 irrigated mechanical 

Agusan 
del Sur F1349_2 manual irrigated F1341_2 irrigated mechanical 

Agusan 
del Sur F1359_2 manual rainfed F1352_2 rainfed mechanical 

 

 

 

 

 

 

Appendix -IIA:  Confusion matrix, OOB estimated error rate and class error obtained from training 

dataset using random forest and VV, VH and VH/VV polarisations in the vegetative stage of ratoon 

and non-ratoon features. 

 

   Reference 

Features 

 

Ratoon Non-Ratoon Total Class Error  

Ratoon 3 15 18 0.833 

 Non-Ratoon 11 13 24 0.458 

Total 14 28 42  

OOB estimate of error rate: 61.90% 
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Appendix -IIB:  Confusion matrix, OOB estimated error rate and class error obtained from training 

dataset using random forest and VV, VH and VH/VV polarisations in the flowering stage of ratoon 

and non-ratoon features. 

 

   Reference 

Features 

 

Ratoon Non-Ratoon Total Class Error  

Ratoon 11 7 18 0.388 

 Non-Ratoon 5 19 24 0.208 

Total 16 26 42  

OOB estimate of error rate 28.57% 

 

 
Appendix -IIC:  Confusion matrix, OOB estimated error rate and class error obtained from training 

dataset using random forest and VV, VH and VH/VV polarisations in ripening stage of ratoon and 

non-ratoon features. 

 

   Reference 

Features 

 

Ratoon Non-Ratoon Total        Class Error  

Ratoon 14 4 18 0.222 

 Non-Ratoon 6 18 24 0.250 

Total 20 22 42  

OOB estimate of error rate: 23.81% 
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Appendix -IIIA:  Map showing the spatial distribution of field observation of ratoon and non- ratoon rice 

during the study period (2017-2019) in the Leyte province  

Appendix -IIIB:  Map showing the spatial distribution of field observation of ratoon and non- ratoon 

rice during the study period (2017-2019) in the Iloilo province 

 

 

 

 



DETECTING RATOON RICE AND MAPPING ITS DISTRIBUTION USING MACHINE LEARNING ALGORITHM AND 

SENTINEL-1 TIME SERIES DATA  

 

46 

Appendix -IIIA:  Map showing the spatial distribution of field observation of ratoon and non- ratoon 

rice during the study period (2017-2019) in the Agusan del Sur province 

 

 

Appendix -IVA:  Map showing the distribution of predicted ratoon and non- ratoon rice during the study 

period (2017-2019) in the Iloilo province 
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Appendix -IVB:  Map showing the distribution of predicted ratoon and non- ratoon rice during the study 

period (2017-2019) in the Leyte province 

Appendix -IVC:  Map showing the distribution of predicted ratoon and non- ratoon rice during the study 

period (2017-2019) in the Agusan del Sur province 
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Appendix V: Data used for classification and Statistically test 
 

Growth stages VV VH VH-VV category class 

Vegetative Phase -9.33430944 -15.53960038 -6.20529094 1 Ratoon 

Vegetative Phase -9.51818124 -14.98518023 -5.46699899 1 Ratoon 

Vegetative Phase -11.98507598 -16.26103456 -4.27595858 1 Ratoon 

Vegetative Phase -9.04858447 -14.03927692 -4.99069245 1 Ratoon 

Vegetative Phase -9.61158373 -14.27127823 -4.65969450 1 Ratoon 

Vegetative Phase -10.72394366 -15.12962748 -4.40568382 1 Ratoon 

Vegetative Phase -9.28112045 -13.84313140 -4.56201095 1 Ratoon 

Vegetative Phase -8.50858337 -14.83000196 -6.32141859 1 Ratoon 

Vegetative Phase -11.27489863 -14.92656294 -3.65166431 1 Ratoon 

Vegetative Phase -8.36022489 -14.50534334 -6.14511845 1 Ratoon 

Vegetative Phase -10.15073114 -14.27302238 -4.12229124 1 Ratoon 

Vegetative Phase -8.35665694 -14.18323271 -5.82657577 1 Ratoon 

Vegetative Phase -8.04888600 -13.41154609 -5.36266009 1 Ratoon 

Vegetative Phase -7.96865761 -13.95938396 -5.99072635 1 Ratoon 

Vegetative Phase -8.67393063 -14.67630661 -6.00237598 1 Ratoon 

Vegetative Phase -8.60652464 -14.01022864 -5.40370400 1 Ratoon 

Vegetative Phase -11.75063851 -16.45113925 -4.70050074 1 Ratoon 

Vegetative Phase -7.22928254 -14.35512865 -7.12584611 1 Ratoon 

Vegetative Phase -8.32880394 -14.04382810 -5.71502416 1 Ratoon 

Vegetative Phase -7.69660358 -13.59380543 -5.89720185 1 Ratoon 

Vegetative Phase -8.64897018 -14.67690006 -6.02792988 1 Ratoon 

Vegetative Phase -10.15176784 -13.34835307 -3.19658523 1 Ratoon 

Vegetative Phase -9.12773774 -14.38769581 -5.25995807 1 Ratoon 

Vegetative Phase -9.30721408 -13.98296836 -4.67575428 1 Ratoon 

Vegetative Phase -8.28113626 -13.05419807 -4.77306181 1 Ratoon 

Vegetative Phase -9.79316164 -14.04662846 -4.25346682 1 Ratoon 

Vegetative Phase -7.05280306 -13.61195831 -6.55915525 1 Ratoon 

Vegetative Phase -9.36532872 -13.22476389 -3.85943517 1 Ratoon 

Vegetative Phase -8.58055806 -15.32264659 -6.74208854 1 Ratoon 

Vegetative Phase -8.71436165 -15.70151834 -6.98715669 1 Ratoon 

Ripening Phase -10.48063142 -14.99742601 -4.51679459 1 Ratoon 

Ripening Phase -10.61827169 -15.65267668 -5.03440499 1 Ratoon 

Ripening Phase -9.94755634 -16.49194384 -6.54438750 1 Ratoon 

Ripening Phase -9.75556852 -15.51666287 -5.76109435 1 Ratoon 

Ripening Phase -10.07237570 -13.28327390 -3.21089820 1 Ratoon 

Ripening Phase -9.36850991 -13.77091095 -4.40240104 1 Ratoon 

Ripening Phase -9.88194101 -15.43002281 -5.54808180 1 Ratoon 

Ripening Phase -8.94327912 -13.62595841 -4.68267929 1 Ratoon 

Ripening Phase -10.89236405 -15.64933632 -4.75697227 1 Ratoon 

Ripening Phase -9.28180644 -15.52179063 -6.23998419 1 Ratoon 

Ripening Phase -9.79930544 -15.42883104 -5.62952560 1 Ratoon 
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Ripening Phase -8.03776996 -13.23709818 -5.19932822 1 Ratoon 

Ripening Phase -8.62605272 -13.93690311 -5.31085039 1 Ratoon 

Ripening Phase -8.00505093 -13.79484197 -5.78979104 1 Ratoon 

Ripening Phase -10.27066400 -15.39643292 -5.12576892 1 Ratoon 

Ripening Phase -9.16650957 -14.62237052 -5.45586095 1 Ratoon 

Ripening Phase -8.59456114 -14.58622623 -5.99166509 1 Ratoon 

Ripening Phase -6.58419295 -13.29299570 -6.70880275 1 Ratoon 

Ripening Phase -8.01749955 -13.80221430 -5.78471475 1 Ratoon 

Ripening Phase -8.59935073 -14.31020889 -5.71085816 1 Ratoon 

Ripening Phase -12.74321658 -18.82275145 -6.07953487 1 Ratoon 

Ripening Phase -8.63648720 -14.15058503 -5.51409783 1 Ratoon 

Ripening Phase -10.74272424 -15.06685809 -4.32413385 1 Ratoon 

Ripening Phase -9.10166678 -14.22723962 -5.12557284 1 Ratoon 

Ripening Phase -10.02483801 -15.42842854 -5.40359053 1 Ratoon 

Ripening Phase -8.94928310 -13.29422286 -4.34493976 1 Ratoon 

Ripening Phase -7.19574494 -13.66747211 -6.47172717 1 Ratoon 

Ripening Phase -11.09997811 -16.12986547 -5.02988735 1 Ratoon 

Ripening Phase -8.62605272 -14.00228848 -5.37623576 1 Ratoon 

Ripening Phase -8.03339177 -13.64804178 -5.61465002 1 Ratoon 

Flowering Phase -10.29806023 -15.52081621 -5.22275598 1 Ratoon 

Flowering Phase -9.11233901 -15.17510773 -6.06276872 1 Ratoon 

Flowering Phase -10.81310786 -15.83504408 -5.02193622 1 Ratoon 

Flowering Phase -9.53414304 -14.04515300 -4.51100996 1 Ratoon 

Flowering Phase -11.21429525 -15.95054321 -4.73624796 1 Ratoon 

Flowering Phase -10.63810177 -15.35525526 -4.71715349 1 Ratoon 

Flowering Phase -10.13984723 -15.06406875 -4.92422152 1 Ratoon 

Flowering Phase -8.90652858 -14.39773453 -5.49120595 1 Ratoon 

Flowering Phase -10.58470019 -15.50014227 -4.91544208 1 Ratoon 

Flowering Phase -9.08175357 -14.36092000 -5.27916643 1 Ratoon 

Flowering Phase -10.61735709 -15.57484805 -4.95749096 1 Ratoon 

Flowering Phase -8.54456494 -14.47315085 -5.92858591 1 Ratoon 

Flowering Phase -8.63001035 -14.27657172 -5.64656137 1 Ratoon 

Flowering Phase -8.24089847 -13.27574854 -5.03485007 1 Ratoon 

Flowering Phase -9.64035128 -15.03939826 -5.39904698 1 Ratoon 

Flowering Phase -8.01480751 -14.29630719 -6.28149968 1 Ratoon 

Flowering Phase -10.20436229 -14.84946324 -4.64510095 1 Ratoon 

Flowering Phase -7.22928254 -13.40842273 -6.17914019 1 Ratoon 

Flowering Phase -7.36371103 -13.52938671 -6.16567568 1 Ratoon 

Flowering Phase -8.36739717 -14.25803764 -5.89064047 1 Ratoon 

Flowering Phase -12.13918438 -18.53387550 -6.39469112 1 Ratoon 

Flowering Phase -8.17079675 -13.41917284 -5.24837609 1 Ratoon 

Flowering Phase -9.45738798 -13.98869970 -4.53131172 1 Ratoon 

Flowering Phase -9.40177395 -13.49748281 -4.09570886 1 Ratoon 

Flowering Phase -8.62048074 -13.71611902 -5.09563828 1 Ratoon 
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Flowering Phase -8.54441697 -12.80204896 -4.25763199 1 Ratoon 

Flowering Phase -7.05280306 -13.61195831 -6.55915525 1 Ratoon 

Flowering Phase -9.47011137 -14.33937835 -4.86926698 1 Ratoon 

Flowering Phase -8.63001035 -14.22680751 -5.59679716 1 Ratoon 

Flowering Phase -7.87733880 -12.57878227 -4.70144347 1 Ratoon 

Vegetative Phase -9.76705735 -17.02243125 -7.25537390 2 Non-Ratoon 

Vegetative Phase -10.47724426 -14.53105392 -4.05380966 2 Non-Ratoon 

Vegetative Phase -9.90690836 -14.95359808 -5.04668972 2 Non-Ratoon 

Vegetative Phase -8.53193463 -15.23914349 -6.70720886 2 Non-Ratoon 

Vegetative Phase -8.47073055 -14.93206243 -6.46133188 2 Non-Ratoon 

Vegetative Phase -11.08995251 -16.01022318 -4.92027067 2 Non-Ratoon 

Vegetative Phase -9.84551456 -15.11521201 -5.26969746 2 Non-Ratoon 

Vegetative Phase -11.47219917 -15.44491086 -3.97271169 2 Non-Ratoon 

Vegetative Phase -10.34066705 -15.73676854 -5.39610149 2 Non-Ratoon 

Vegetative Phase -10.55801801 -14.87373233 -4.31571432 2 Non-Ratoon 

Vegetative Phase -8.37294251 -14.50276028 -6.12981777 2 Non-Ratoon 

Vegetative Phase -8.34466754 -13.91610648 -5.57143894 2 Non-Ratoon 

Vegetative Phase -8.64811609 -14.12661352 -5.47849743 2 Non-Ratoon 

Vegetative Phase -10.94846202 -14.87876734 -3.93030532 2 Non-Ratoon 

Vegetative Phase -7.43856702 -14.20417430 -6.76560729 2 Non-Ratoon 

Vegetative Phase -8.92099250 -14.78934791 -5.86835541 2 Non-Ratoon 

Vegetative Phase -8.02174250 -14.29861328 -6.27687078 2 Non-Ratoon 

Vegetative Phase -8.99927348 -14.18963426 -5.19036078 2 Non-Ratoon 

Vegetative Phase -8.75997556 -14.52730592 -5.76733036 2 Non-Ratoon 

Vegetative Phase -10.25786197 -14.96177469 -4.70391272 2 Non-Ratoon 

Vegetative Phase -8.32725728 -13.46083195 -5.13357467 2 Non-Ratoon 

Vegetative Phase -8.92355925 -13.31356947 -4.39001022 2 Non-Ratoon 

Vegetative Phase -10.27692026 -16.25853213 -5.98161187 2 Non-Ratoon 

Vegetative Phase -8.79232272 -12.96004948 -4.16772676 2 Non-Ratoon 

Vegetative Phase -9.55406724 -14.47352336 -4.91945612 2 Non-Ratoon 

Vegetative Phase -9.20709137 -14.68040992 -5.47331855 2 Non-Ratoon 

Vegetative Phase -11.04170449 -15.68102021 -4.63931572 2 Non-Ratoon 

Vegetative Phase -9.69208528 -15.15637233 -5.46428705 2 Non-Ratoon 

Vegetative Phase -8.56595626 -14.86146172 -6.29550546 2 Non-Ratoon 

Vegetative Phase -9.46133094 -14.06179213 -4.60046119 2 Non-Ratoon 

Ripening Phase -9.56537382 -16.44777680 -6.88240298 2 Non-Ratoon 

Ripening Phase -9.54163997 -18.13585801 -8.59421805 2 Non-Ratoon 

Ripening Phase -12.15308420 -19.78266184 -7.62957764 2 Non-Ratoon 

Ripening Phase -10.47669431 -14.92028106 -4.44358675 2 Non-Ratoon 

Ripening Phase -9.75940848 -17.19968716 -7.44027868 2 Non-Ratoon 

Ripening Phase -11.02516383 -16.98360939 -5.95844556 2 Non-Ratoon 

Ripening Phase -7.89400565 -16.57543924 -8.68143359 2 Non-Ratoon 

Ripening Phase -10.41534374 -15.21491098 -4.79956724 2 Non-Ratoon 

Ripening Phase -9.60464379 -16.15570317 -6.55105938 2 Non-Ratoon 
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Ripening Phase -10.30155723 -17.40002021 -7.09846298 2 Non-Ratoon 

Ripening Phase -10.28192306 -16.78768213 -6.50575907 2 Non-Ratoon 

Ripening Phase -12.12839302 -18.34428625 -6.21589323 2 Non-Ratoon 

Ripening Phase -8.37756321 -12.67623529 -4.29867208 2 Non-Ratoon 

Ripening Phase -13.91192922 -20.55375733 -6.64182811 2 Non-Ratoon 

Ripening Phase -9.22685221 -15.54765133 -6.32079912 2 Non-Ratoon 

Ripening Phase -8.40862069 -14.18656331 -5.77794262 2 Non-Ratoon 

Ripening Phase -10.76597729 -17.47975175 -6.71377446 2 Non-Ratoon 

Ripening Phase -10.03506981 -17.27399556 -7.23892575 2 Non-Ratoon 

Ripening Phase -10.04012357 -16.00090011 -5.96077654 2 Non-Ratoon 

Ripening Phase -9.36834601 -14.51792140 -5.14957540 2 Non-Ratoon 

Ripening Phase -9.70441584 -20.45269265 -10.74827681 2 Non-Ratoon 

Ripening Phase -11.31859593 -20.48302749 -9.16443156 2 Non-Ratoon 

Ripening Phase -9.98135118 -16.52412931 -6.54277813 2 Non-Ratoon 

Ripening Phase -8.57919836 -18.77279256 -10.19359420 2 Non-Ratoon 

Ripening Phase -10.99047682 -18.30054833 -7.31007151 2 Non-Ratoon 

Ripening Phase -8.61051432 -14.18111540 -5.57060108 2 Non-Ratoon 

Ripening Phase -9.70292974 -16.36772945 -6.66479971 2 Non-Ratoon 

Ripening Phase -13.36666756 -15.22576541 -1.85909785 2 Non-Ratoon 

Ripening Phase -11.86921435 -13.52437128 -1.65515693 2 Non-Ratoon 

Ripening Phase -8.61051432 -20.42051912 -11.81000480 2 Non-Ratoon 

Flowering Phase -8.28146411 -16.37771623 -8.09625212 2 Non-Ratoon 

Flowering Phase -9.44707308 -17.39697333 -7.94990025 2 Non-Ratoon 

Flowering Phase -11.00562919 -17.55272774 -6.54709855 2 Non-Ratoon 

Flowering Phase -9.18017089 -16.28390474 -7.10373386 2 Non-Ratoon 

Flowering Phase -10.75176549 -15.50660852 -4.75484303 2 Non-Ratoon 

Flowering Phase -11.12599457 -16.45654651 -5.33055194 2 Non-Ratoon 

Flowering Phase -11.45806832 -17.65041219 -6.19234387 2 Non-Ratoon 

Flowering Phase -11.15816265 -15.20403799 -4.04587534 2 Non-Ratoon 

Flowering Phase -10.26581921 -16.33370308 -6.06788387 2 Non-Ratoon 

Flowering Phase -11.01874722 -16.58735880 -5.56861158 2 Non-Ratoon 

Flowering Phase -9.78911328 -14.92853543 -5.13942215 2 Non-Ratoon 

Flowering Phase -8.93370368 -13.78760126 -4.85389758 2 Non-Ratoon 

Flowering Phase -9.09992170 -14.20261968 -5.10269798 2 Non-Ratoon 

Flowering Phase -8.50831619 -14.41440085 -5.90608466 2 Non-Ratoon 

Flowering Phase -8.26585996 -14.38868718 -6.12282722 2 Non-Ratoon 

Flowering Phase -9.15847353 -14.16712090 -5.00864737 2 Non-Ratoon 

Flowering Phase -9.21684842 -13.04346891 -3.82662049 2 Non-Ratoon 

Flowering Phase -8.45808906 -13.26884966 -4.81076060 2 Non-Ratoon 

Flowering Phase -9.16941002 -14.83933021 -5.66992020 2 Non-Ratoon 

Flowering Phase -9.59499831 -15.38950139 -5.79450308 2 Non-Ratoon 

Flowering Phase -8.51708624 -14.77180003 -6.25471379 2 Non-Ratoon 

Flowering Phase -8.18224104 -18.77400333 -10.59176229 2 Non-Ratoon 

Flowering Phase -9.44043644 -14.19985700 -4.75942056 2 Non-Ratoon 
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Flowering Phase -10.94005944 -16.62055654 -5.68049710 2 Non-Ratoon 

Flowering Phase -8.86885211 -14.61336978 -5.74451767 2 Non-Ratoon 

Flowering Phase -9.34553754 -14.85965476 -5.51411723 2 Non-Ratoon 

Flowering Phase -8.40298452 -13.92815296 -5.52516844 2 Non-Ratoon 

Flowering Phase -12.95120917 -13.13628948 -0.18508031 2 Non-Ratoon 

Flowering Phase -8.41820826 -14.23571898 -5.81751072 2 Non-Ratoon 

Flowering Phase -8.20946283 -18.22630340 -10.01684057 2 Non-Ratoon 

 

Appendix VI: Code used for classification at different growth stages  

###Sentinel-1 backscatter data classification  

# only install libraries if needed, i.e. - only do this once 

if (!require("raster")) install.packages("raster") 

if (!require("sf")) install.packages("sf") 

if (!require("rgdal")) install.packages("rgdal") 

if (!require("randomForest")) install.packages("random Forest") 

if (!require("caret")) install. Packages("caret") 

# add packages 

library("spy") 

library("raster") 

library("map tools") 

library("rgdal") 

library("disco") 

stewed("C:/RF/new_dataset") 

# Read Data - I added a line here for my computer, you need to comment it out and replace with your 

path_to_file 

data <- read.csv("class_file_latest.csv", header = TRUE) 

#data <- read.csv("VH_R", header = TRUE) 

d<-within(data, rm("class")) 

d 

str(d) 

# change the category column to a factor 

d$category   <- as.factor(d$category) 

table(d$category) 

# Partition the data into train and test sets 

set.seed(123) 

ind <- sample(2, nrow(d), replace = TRUE, prob = c(0.7, 0.3)) 

train <- d[ind==1,] 

test <- d[ind==2,] 

# grid search approach to tune the RF model using caret () library functionality 

# we will do a 10 fold cross validation, repeated three times 

control <- trainControl( 

  method="repeatedcv",  

  number=10,  

  repeats=3,  

  search="grid" 
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  ) 

 

#set the accuracy metric for random forest classification 

metric <- "Accuracy" 

# tune the rf with a grid search (actually a vector search since we only search for best mtry) 

tunegrid <- expand.grid(.mtry=c(1:15)) 

rf_gridsearch <- train(category~.,  

  data      = train,  

  method    = "rf",  

  metric    = metric, 

  tuneGrid  = tunegrid,  

  trControl = control 

  ) 

print(rf_gridsearch) 

plot(rf_gridsearch) 

# train the random forest model on the best mtry 

rf_out <-randomForest(category~., 

  data     = train,  

  mtry     = rf_gridsearch$bestTune$mtry,  

  ntree    = 300 

)     

# view the confusion matrix for the trained model 

rf_out 

# plot the size of trees in an ensemble 

hist(treesize(rf_out), 

   main = "No. of Nodes for the Trees", 

     col = "green") 

#view the variable importance of the trained model 

importance(rf_out) 

# plot the variable importance of the trained model 

varImpPlot(rf_out, 

           sort = T, 

           n.var = 3, 

           main = "Variable Importance") 

# Use the trained model on the test dataset 

p_out <- predict( 

  object    = rf_out,  

  newdata   = test 

  ) 

# view the predicted values 

p_out 

# print the confusion matrix 

confusionMatrix(p_out, test$category) 

### To predict with Sentinel-1 image data 

files <- list.files(path = "C:/RF/new_dataset", pattern = ".tif", full.names=TRUE) 

files 



DETECTING RATOON RICE AND MAPPING ITS DISTRIBUTION USING MACHINE LEARNING ALGORITHM AND 

SENTINEL-1 TIME SERIES DATA  

 

54 

#predictors <- brick( "C:/RF/new_dataset/Sigma0_VV_db_CompositeBands1.tif.tif") 

predictors1 <- brick( "C:/RF/new_dataset/layerstcekd.tif.tif") 

predictors1                                                                 

names(predictors1)<-c('VV', 'VH', 'VH.VV') 

predictors1 

classifiedS1P<-predict(predictors1, rf_out, type='response', progress='window') 

classifiedS1P 

par(mfrow=c(1,2)) 

plot(classifiedS1P) 

writeRaster(classifiedS1P, "C:/RF/", format="GTiff", datatype='INT1U', overwrite=TRUE)                                           

#write out the predicted classification to a raster file 

 

 

 

Appendix VII: Matlab code for plotting line graph for ratoon and non-ratoon rice field in Iloilo province in wet 

season 2018  through VV,VH and VH/VV polrarisations  

%  ratoon and non-ratoon for VH  

IIS2_650= IlloiloVH(:,21:40) 

IIwetseason2018=IlloiloDates(21:40)' 

t =  datetime(IIwetseason2018,'InputFormat','dd-MM-yyyy') 

hold on 

%ratoon and non-ratoon for VH : plotting  

ratoonIIS2_650 = IIS2_650([15],:) 

non_ratoonS2_II661=IIS2_650([ 25],:); 

plot(t(1:20),ratoonIIS2_650(1:end),"LineStyle","--","Marker","d","Color",'m') 

plot(t(1:20),non_ratoonS2_II661(1:end),"LineStyle","--","Marker","d","Color",'k') 

% creatiing vertical lines  

Rat_l= datetime(2018,11,18). 

line([Rat_l Rat_l],ylim,'Color','r','LineStyle','-'). 

strr_text_harv={'     RHD  18/11/2018', ''} 

harves=text([Rat_l Rat_l], ylim,strr_text_harv); 

set(harves,'Rotation',90) 

NonRat_l= datetime(2018,10,04); 

line([NonRat_l NonRat_l],ylim,'Color','k','LineStyle','-'); 

str_harv_NonRat_l={'                       HD  04/10/2018' ,''}; 

harvest_date_l=text([NonRat_l NonRat_l], ylim,str_harv_NonRat_l); 

set(harvest_date_l,'Rotation',90) 

% Giving legend for VH in ratoon and non-ratoon  

xlabel('Dates') 

ylabel('Backscatter response')  

legend('Ratoon riceVH F0650','Non-ratoon riceVH F0661') 

title(' Ratoon and non ratoon rice backscatter responses: Iloilo wet season 2018 ') 

hold off 

% VV 

IIS2_650VV= IlloiloVV(:,21:40) 

IIwetseason2018VV=IlloiloDates(21:40)' 

ttimevv =  datetime(IIwetseason2018VV,'InputFormat','dd-MM-yyyy') 

hold on  

%Plotting of ratoon and non-ratoon in VV 

ratoonIIS2_650VV = IIS2_650VV([15],:) 
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non_ratoonS2_II661VV=IIS2_650VV([ 25],:); 

plot(t(1:20),ratoonIIS2_650VV(1:end),"LineStyle","-.","Marker","d","Color",'m') 

plot(t(1:20),non_ratoonS2_II661VV(1:end),"LineStyle","-.","Marker","d","Color",'k') 

% Creating vertival lines   

Rat_l= datetime(2018,11,18); 

line([Rat_l Rat_l],ylim,'Color','r','LineStyle','-'); 

strr_text_harv={'     RHD  18/11/2018', ''} 

harves=text([Rat_l Rat_l], ylim,strr_text_harv); 

set(harves,'Rotation',90) 

NonRat_l= datetime(2018,10,04); 

line([NonRat_l NonRat_l],ylim,'Color','k','LineStyle','-'); 

str_harv_NonRat_l={'                       HD  04/10/2018' ,''}; 

harvest_date_l=text([NonRat_l NonRat_l], ylim,str_harv_NonRat_l); 

set(harvest_date_l,'Rotation',90) 

% Legend in VV  

xlabel('Dates') 

ylabel('Backscatter response')  

legend('Ratoon riceVV F0650','Non-ratoon riceVV F0661') 

title(' Ratoon and non ratoon rice backscatter responses in VV: Iloilo wet season 2018 ') 

hold off 

% ratoon and non-ratoon VH/VV ratio 

ratioVHVV650Ratoon=minus(ratoonIIS2_650,ratoonIIS2_650VV) 

ratioVHVV661NonRatoon=minus(non_ratoonS2_II661,non_ratoonS2_II661VV) 

IIwetseason2018VV=IlloiloDates(21:40)' 

ttimevv =  datetime(IIwetseason2018VV,'InputFormat','dd-MM-yyyy') 

hold on  

plot(t(1:20),ratioVHVV650Ratoon(1:end),"LineStyle","-.","Marker","d","Color",'m') 

plot(t(1:20),ratioVHVV661NonRatoon(1:end),"LineStyle","-.","Marker","d","Color",'k') 

% creating vertical lines  

Rat_l= datetime(2018,11,18); 

line([Rat_l Rat_l],ylim,'Color','r','LineStyle','-'); 

strr_text_harv={'     RHD  18/11/2018', ''} 

harves=text([Rat_l Rat_l], ylim,strr_text_harv); 

set(harves,'Rotation',90) 

NonRat_l= datetime(2018,10,04); 

line([NonRat_l NonRat_l],ylim,'Color','k','LineStyle','-'); 

str_harv_NonRat_l={'                       HD  04/10/2018' ,''}; 

harvest_date_l=text([NonRat_l NonRat_l], ylim,str_harv_NonRat_l); 

set(harvest_date_l,'Rotation',90) 

% Legend of VH/VV in raoon and non-ratoon  

xlabel('Dates') 

ylabel('Backscatter response')  

legend('Ratoon rice VHVV F0650','Non-ratoon rice VHVV F0661') 

title(' Ratoon and non ratoon rice backscatter responses in VH/VV: Iloilo wet season 2018 ') 

hold off 

 

Appendix VIII:  The Google Earth Engine code used for downloading Sentinel-1 images  

 

// Load Sentinel-1 C-band SAR Ground Range collection (log scale, VV, descending) 

var collectionVV = ee.ImageCollection('COPERNICUS/S1_GRD') 

.filter(ee.Filter.eq('instrumentMode', 'IW')) 
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.filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VV')) 

.filter(ee.Filter.eq('orbitProperties_pass', 'DESCENDING')) 

.filterMetadata('resolution_meters', 'equals' , 10) 

.filterBounds(table3) 

.select('VV'); 

print(collectionVV, 'Collection VV'); 

// Load Sentinel-1 C-band SAR Ground Range collection (log scale, VH, descending) 

var collectionVH = ee.ImageCollection('COPERNICUS/S1_GRD') 

.filter(ee.Filter.eq('instrumentMode', 'IW')) 

.filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH')) 

.filter(ee.Filter.eq('orbitProperties_pass', 'DESCENDING')) 

.filterMetadata('resolution_meters', 'equals' , 10) 

.filterBounds(table3) 

.select('VH'); 

print(collectionVH, 'Collection VH'); 

//Filter by date 

var VV2 = collectionVV.filterDate('2018-12-16', '2018-12-28').mosaic(); 

var VH2 = collectionVH.filterDate('2018-12-16', '2018-12-28').mosaic(); 

print(VV2, 'VV2'); 

print(VH2, 'VH2'); 

//Filter by date 

var VV2 = collectionVV.filterDate('2018-12-16', '2018-12-28').mosaic(); 

var VH2 = collectionVH.filterDate('2018-12-16', '2018-12-28').mosaic(); 

// Display map 

Map.centerObject(table3, 7); 

Map.addLayer(VV2, {min:-15,max:0}, ' VV2', 0); 

Map.addLayer(VH2, {min:-15,max:0}, ' VH2', 0); 

//Apply filter to reduce speckle 

var SMOOTHING_RADIUS = 50; 

var VV2_filtered = VV2.focal_mean(SMOOTHING_RADIUS, 'circle', 'meters'); 

var VH2_filtered = VH2.focal_mean(SMOOTHING_RADIUS, 'circle', 'meters'); 

//Display filtered images 

Map.addLayer(VV2_filtered.clip(table3), {min:-15,max:0}, ' VV2_Filtered',0); 

Map.addLayer(VH2_filtered.clip(table3), {min:-15,max:0}, ' VH2_Filtered',0); 

Export.image.toDrive({ 

  image: VH2_filtered, 

  description: 'VH2_filtered', 

  scale: 20, 

  crs: 'EPSG:4326', 

  maxPixels: 1e9, 

  region: table3 

}); 

 

Export.image.toDrive({ 

  image: VV2_filtered, 

  description: 'VV2_filtered', 



DETECTING RATOON RICE AND MAPPING ITS DISTRIBUTION USING MACHINE LEARNING ALGORITHM AND 

SENTINEL-1 TIME SERIES DATA  

 

57 

  scale: 20, 

  crs: 'EPSG:4326', 

  maxPixels: 1e9, 

  region: table3 

}); 

 

 

 

 

 
 

 

 

 

 


