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ABSTRACT

Forests play an important role in mitigating climate change because they act as both a carbon sink and a
carbon source. Climate change is putting increasing pressure on the forest ecosystems of European forests.
Most of the carbon is stored in the forest Aboveground biomass (AGB), which is used in carbon inventory
and mitigation and as an essential climate variable and a critical input to the United Nations' Reducing
Emissions from Deforestation and Degradation-plus (REDD+) program. 50% of dry forest AGB
represents carbon; therefore, accurate estimation of forest AGB is a vital step in monitoring carbon stocks
and changes in the forest. The effective and accurate estimation of forest AGB is one of the most
challenging tasks; finding a reliable and accurate method to estimate forest AGB is critical.

Remote sensing is well-placed to provide accurate, realistic, and cost-effective AGB estimates with large
spatial and multi-temporal observation. Unmanned Aerial Vehicle (UAV) is less expensive, provides reliable
data quality, and multitemporal capturing of forest parameters at a very high spatial resolution. The satellite
data (Pleiades) is readily available with huge datasets archived, large spatial coverage, provide consistent
spatial data, repetitive with high revisit time (daily), as well as a relatively cost-effective way of biomass

estimation at a large scale.

This research aimed to extract the crown projection area (CPA) of individual trees in a coniferous forest
through Object-Based Image Analysis (OBIA) of UAV and Pleiades satellite images with different spatial
resolutions (10 cm, 20 cm, 30 cm, 40 cm, and 50 cm) and band combinations (1,1,1,4 -UAV_MS, 1,4,1,0
—UAV_RGB and 1,1,1,4 — Pleiades); investigate if variations in the extracted CPA leads to significant
differences in AGB estimates. The fieldwork was carried out between August 2020, and October 2020.
Pleiades satellite image was acquired on August 22, 2019. The UAV_MS and UAV_RGB images were
acquired in August 2020 and September 2020 using the Phantom 4 drone.

The t-test results showed that means of the UAV_MS and UAV_RGB modelled AGB (AGB-est) per tree
at 10 cm spatial resolution were not significantly different from means of the field estimated AGB (AGB-
f) per tree. At 20 cm and 30 cm spatial resolutions, the means of the field estimated AGB-f per tree were
also not significantly different from the means of the AGB-est per tree estimated with UAV_MS, but
significantly different from the means of AGB-est per tree estimated with UAV_RGB. The means of field
estimated AGB-f per tree were significantly different from the means of AGB-est per tree from both
UAV_MS and UAV_RGB at 40 cm and 50 ¢m resolutions as well as Pleiades at 50 cm spatial resolution.

The t-test results for AGB per plot (500 m?), showed that there were no significant differences between the
means of the AGB-f per plot and the means of AGB-est per plot estimated from UAV_RGB and UAV_MS
at 10 cm, 20 cm, 30 cm, 40 cm, and 50 cm as well as Pleiades at 50 cm spatial resolution.

It was concluded that the AGB per tree could be accurately estimated at 10 cm spatial resolution with
UAV_MS and UAV_RGB, as well as at 20 cm and 30 cm spatial resolution with UAV_MS. The AGB per
plot could be estimated with reasonable accuracy using UAV_RGB and UAV_MS at 10 cm, 20 cm, 30 cm,
40 cm, and 50 cm spatial resolutions as well as Pleiades at 50 cm spatial resolution.

Key words: Aboveground biomass, Crown Projection Area, Object-Based Image Analysis, Unmanned
Ariel Vehicle, Pleiades, Near infrared band, green band, spatial resolution, and band
combinations.
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ASSESSMENT OF THE EFFECT OF UAV AND PLEIADES SPATIAL RESOLUTION AND BAND COMBINATION ON BIOMASS ESTIMATION IN HAAGSE BOS, THE NETHERLANDS.

1. INTRODUCTION

1.1 Background

The earth's forests cover approximately 30 percent of the land (Food and Agriculture Organization,
2015). Forests play a crucial role in mitigating the earth's climate change because it acts as both a
carbon sink and source. On the one hand, the forest acts as a sink by absorbing carbon dioxide from
the atmosphere and converting it into living biomass stored in terrestrial carbon sinks. These carbon
sinks include tree trunks, roots, branches, and leaves. Geographically, 54 percent of global forest
carbon is stored in a tropical forest, 32 percent in the boreal forest, and 14 percent in temperate
forests (Brack, 2019). On the other hand, the chopping or burning of trees for cropland, pasture,
infrastructure, among others, will release the stored carbon into the atmosphere (Watson et al., 2000;
Ciais et al., 2013).

There are five carbon pools of terrestrial biomass ecosystem, namely, the Aboveground biomass
(AGB), Belowground biomass, the dead mass litter, wood debris, and soil organic matter. The carbon
dioxide that is fixed in the trees during photosynthesis is transported across the five different carbon
pools. The majority of carbon dioxide is stored in the AGB carbon pool. Therefore, AGB is the most
important carbon pool of the terrestrial forest ecosystem, and it has since been given the highest
importance in carbon inventory and mitigation projects such as afforestation and reforestation Clean
Development Mechanism (CDM) under Kyoto Protocol (Gytarsky, Kurz, Ogle, Richards, &
Somogyi, 2006; Ravindranath.N.H. & Ostwald, 2008). The Global Climate Observing System
(GCOS) has acknowledged the fact that forest AGB is an essential climate variable and a critical input
to the United Nations' Reducing Emissions from Deforestation and Degradation-plus (REDD+)
program; however, one of the greatest challenges of REDD+ is the effective and accurate estimation
of forest biomass (Kankare et al., 2013).

The European Union (EU) member states' forest ecosystem is under increasing pressure because of
climate change; therefore, the European Commission has set up a set of policy initiatives (European
Green Deal) for the EU and its citizens. The European Green Deal aims to tackle climate change
and make Europe climate-neutral and a healthy environment in 2050 by promoting innovative
technologies such as carbon capture, storage, and utilization. The policy encourages forest managers
to preserve, grow and manage the forest sustainably, as well as emphasizes the role that European
forest sustainable management has in the fight against climate change (The European Green Deal,
2020; European Commission, 2019).

In 2013, the United Nations Statistical Commission endorsed the System of Environmental-
Economic Accounting-Experimental Ecosystem Accounting (SEEA EEA) as a basis for testing and
development of national carbon accounting. In line with the guidelines provided by SEEA-EEA, in
2016, the Netherlands embarked on the natural capital accounting project to allow for the consistent
and quantitative comparison of carbon stocks and flows in reservoirs such as organic carbon stored
in forest biomass (SEEA Experimental Ecosystem Accounting Revision | System of Environmental-
Economic Accounting, 2020; Lof et al., 2017).

It should be noted that the total forest AGB is linked to the amount of carbon stored in the forest
vegetation as research shows that about fifty percent (50 %) of dry forest biomass is carbon; thus,
accurate estimation of forest AGB is a very critical step in measuring carbon stocks as well as its
fluctuations in the forest (Penman et al., 2003; Saatchi et al., 2011). Therefore, finding a reliable and
accurate method that can be used to estimate the forest AGB accurately is important for sustainable
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forest management, climate change mitigation, greenhouse gas inventories, and global and national
carbon accounting, as well as the implementation of both the European Green Deal policy and Kyoto
Protocol of the United Nations Framework Convention on Climate Change (UNFCCC) (Duncanson
et al., 2019; Herold et al., 2019; The European Green Deal, 2020 and Nichol & Sarker, 2011).

The review paper on the methods to estimate AGB and carbon stock in natural forests by (Vashum,
2012) stated that remote sensing could be able to overcome the numerous challenges faced by
conventional methods as well as the only realistic and cost-effective method of acquiring forest data
with large spatial and temporal coverage. Also, remote sensing technologies are vital methods that
could be used for regular forest monitoring with large spatial coverage and multi-temporal
observation, thereby providing a synoptic view over large areas and significantly increase the
efficiency of conventional methods of AGB estimation (Calders, Jonckheere, Nightingale, &
Vastaranta, 2020; Romijn, Herold, Kooistra, Murdiyarso, & Verchot, 2012 and Patenaude, Milne, &
Dawson, 2005). In addition, Hirata, Takao, Sato, & Toriyama (2012) explained that in the
implementation of REDD+, accurate measurement, reporting, and verification (MRV) of forest
carbon stocks is essential to ensure transparency in issuing economic incentives; a guidance for the
methodology determined by the conference of parties 15 (COP 15) under UNFCCC recommended
a monitoring system that can combine remote sensing with ground-based inventory to estimate the

balance of forest carbon storks.

There has been an increase in the availability of remote sensing imagery with different spectral,
radiometric, temporal, and spatial resolution details, which has been used of late to non-destructively
estimate forest parameters such as crown projection area (CPA), tree height, diameter at breast height
(DBH); these parameters are used in regression models to estimate AGB with the help of allometric
equations (Gibbs, Brown, Niles, & Foley, 2007). The allometric equation is the mathematical relation
between AGB and its DBH or both DBH and tree height; it is a standard equation used for non-
destructive estimation of AGB. The tree CPA can be directly estimated by remote sensing while DBH
can not be directly estimated; thus, the CPA is used as a proxy for the DBH. This is because the
DBH can be estimated from CPA using statistical models to establish the correlation between field
measured DBH and remotely sensed estimated CPA (Chave et al., 2014; Kumar & Mutanga, 2017
and Pizafia, Hernandez, & Romero, 2010).

The status of forest biomass can be managed and monitored by using two methods, namely, in-situ
forest inventories and remote sensing methods. In-situ forest inventory is the most conventional and
accurate method for estimating AGB; however, it is very strenuous, expensive, destructive, unable to
assess abrupt short-term forest change and has very limited temporal and spatial coverage; in some
cases where the area is too remote to be accessed, it is not applicable (Lausch et al., 2017; Vashum
2012). A review of approaches and data models on understanding forest health with remote sensing
by Lausch et al. (2017) concluded that remote sensing methods are more suitable and sustainable in
monitoring forest conditions compared to the in-situ inventory. Boyd & Danson (2005) also
mentioned that remote sensing is well-placed to provide accurate and detailed information about the
spatial extent of the forest cover, forest type, and condition leading to improved monitoring of forest

biomass.
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1.2.  Remote sensing sensors

There are two types of remote sensing sensors used for forest parameter estimation, namely, active,
and passive sensors, each with different characteristics of spectral, radiometric, temporal, and spatial
resolution details as well as different strengths and weaknesses. Active sensors include Radio
Detecting and Ranging (RADAR) and Light Detecting and Ranging (LIDAR), passive sensors include
optical sensors (Mitchard, 2016; Sinha, Jeganathan, Sharma, & Nathawat, 2015).

Active Sensors

RADAR has been used to estimate forest AGB as well as the mapping of forest degradation. RADAR
sensors can operate in all weather conditions and without obstruction from clouds and smoke
(Rignot, Salas, & Skole, 1997). However, RADAR sensors are less precise in thick tree canopies of
the older forests as they expetience signal saturation (Joshi et al.,2017). Also, using RADAR to
estimate AGB in mountainous or hilly terrain increases errors. Furthermore, RADAR data is usually
expensive and technically demanding (Gibbs et al., 2007).

LiDAR has also been used to estimate the forest aboveground biomass and degradation (Mutwiti,
Odera, & Kinyanjui, 2017). However, most LiIDAR data commercially available is very expensive and
technically demanding and requires extensive field data for calibration (Mitchard, 2016; Gibbs et al.,
2007).

Passive Sensors

Optical remote sensing has been operational for more than three decades. Optical satellite data is
collected routinely, very consistent, and available at both local and global scales, and the data has
been used for AGB estimation (Gibbs et al., 2007; Asner, 2001). Satellite optical spatial resolution is
divided into low (above 100 m), medium (between 10 m to 100 m), and high (less than 10 m). High
resolution is further subdivided into high (5 m to less than 10 m) and very high (less than 5 m)
(Fernandez-Manso, Fernandez-Manso, & Quintano, 2014; Lu, 2006). However, Navulur (2000)
defined different spatial resolution as follows; low resolution above 30 m, medium resolution as a
range of 2 m to 30 m, high resolution as above 0.5 m to 2 m, and very high resolution as 0.5 m and
below. Sousa, Gongalves, & da Silva (2017), in their review on the recent methods to estimate forest
aboveground biomass using remote sensing data, stated that estimating forest parameters using low
(above 100 m) and medium (between 10 m to 100 m) spatial resolution images is not possible because
the pixel size does not allow the separation of the individual trees thereby making it difficult to
identify and delineate individual tree crowns. The author concluded that high spatial resolution
images overcome this challenge and can estimate aboveground biomass using forest parameters at
both local and regional scales. Furthermore, Noorian et al. (2016) added that even though medium
spatial resolution imagery has been the most used data for forest parameters estimation so far, high
spatial resolution imagery leads to more accurate estimation of forest parameters as they can detect

and recognize the spectral reflectance of the canopy crown and usually have fewer mixed pixels.

The literature review on the use of very high-resolution images shows that four sensors have mostly
been used for forest AGB estimation; these sensors include IKONOS, Quickbird, Worldview and
Pleiades. Recently, very high-resolution sensors contribute up to 20% of the studies on forest AGB
estimation (Issa, Dahy, Ksiksi, & Saleous, 2020; Sousa et al., 2017 and Maack et al., 2015). The
Pleiades provides very high-resolution imagery (50cm) and information in record time with daily
revisit time to any point on earth, making it ideal for large scale area mapping of forest biomass
(Pleiades-Satellite Sensor | Satellite Imaging Corp, 2021). Maack et al. (2015) examined if the
combination of photogrammetric, textural, and spectral information derived from very high
resolution (the Pleiades and worldview-2 sensors) could improve the accuracy of forest biomass
estimation across two tests sites in Chile and Germany. It was observed that for both sensors, the
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combination of photogrammetric information with either spectral or texture information with more
field plots improves the accuracy of forest biomass estimation. Song et al. (2010) used Quickbird and
IKONOS images to investigate the potential of using a different spatial resolution to estimate forest
parameters in Ohio, USA, and Duke Forest in North Carolina Piedmont, USA. The paper concluded
that the use of models to estimate tree crowns using image variance at different spatial resolutions
can be generalized and applied across sensors and study sites.

The Unmanned Ariel Vehicle (UAV) spatial resolution is affected by the flight altitude; the lower the
flight altitude, the higher the spatial resolution, but the lower the spatial coverage and vice versa
(Borra-Serrano, Pefia, Torres-Sanchez, Mesas-Carrascosa, & Lopez-Granados, 2015; Whitehead &
Hugenholtz, 2014). Research by Okojie (2017) was conducted in Ahaus, Germany, on forest tree
parameter extractability from the UAV-RGB data set. In his research, the Object-Based Image
Analysis (OBIA) technique was used to evaluate the extractability of tree CPA at six different spatial
(resampled) resolutions (4.8 cm, 10 cm, 15 cm, 20 cm, 25 cm, and 30 cm) to determine the optimal
resolution for tree CPA extraction.

1.3.  Remote sensing platforms

Sensors can be mounted on three commonly used remote sensing platforms: Aircraft, Unmanned
Aerial Vehicle (UAV), and satellite. Aircraft mounted with Optical, LIDAR, and RADAR sensors
have been used for biomass estimation. However, high-cost maintenance, complex data acquisition,
lack of free manoeuvre, inability to fly at low altitudes, and close to the object limit the application
of Aircraft in biomass estimation (Mitchard, 2016; Yang et al., 2017 and Lu et al,, 2019).

UAYV has been used at the local scale estimation of forest biomass. The rise in the use of cheap UAV
since 2011 in forest monitoring and research has made it possible to successfully capture data
frequently at high resolution over the area of interest, and With UAV, a survey can be repeated as
often as required using the same sensor at reduced data collection costs compared to Aircraft based
data (Mitchard, 2016). Lausch et al. (2017) also added that UAVs could carry various forms of sensor
types, thus contributing to a more complete, quick, less expensive, reliable data quality, and
multitemporal capturing of forest parameters a very high resolution. The satellite platform
(spaceborne system) is the most used in AGB estimation because it is readily available with huge
datasets archived, large spatial coverage, provide consistent spatial data, repetitive with high revisit
time, as well as a relatively cost-effective way of biomass estimation at large scale (Kumar, Sinha,
Taylor, & Alqurashi, 2015; Issa, Dahy, Ksiksi, & Saleous, 2020).

1.3.  Band combinations

Sensors have a different number of bands and band widths, and each band is narrowly focused on a
just particular range of the electromagnetic spectrum which is sensitive to a specific feature on the
ground; this makes forest parameters and spectral signatures respond differently to different band
combinations (Xue & Su, 2017). In this research, the following sensor bands were used: Pleiades with
four bands (Blue = 430 — 550 nm, Green = 490 — 610 nm, Red = 600 — 720 nm, and Near-Infrared
= 750 nm — 950 nm), and UAV: parrot sequoia which is a multispectral sensor (MS) with four bands
(Green= 530 — 570 nm, Red 640 — 680 nm, Red Edge = 730 — 740 nm, Near infrared (NIR) = 770
— 810 nm) and Phantom 4 camera (RGB) with 3 bands ( Blue = 455 to 492 nm, Green = 492 — 577
nm, Red = 622 — 780 nm) (Holman, Riche, Castle, Wooster, & Hawkesford, 2019; Wang et al., 2018
and Carrasco-Escobar et al., 2019).

The Red band is one of the most important bands for vegetation discrimination as it focuses on the
absorption of red light by chlorophyll in plants. The Green band is strongly correlated with
chlorophyll and focuses specifically on the peak reflectance of plants. The green is ideal for
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discriminating between types of plant materials. Plant’s chlorophyll and carotenoid absorption are
associated with the blue band. Therefore, the band is useful in discriminating within the groups of
conifers and between conifers and broadleaf species based on their leaf's senescence. (Elhabiby,
Elsharkawy, & El-Sheimy, 2012; Alonzo, Bookhagen, & Roberts, 2014). The Near-infrared band is
very effective in estimating plant biomass and helps to separate other objects from vegetation
effectively and identify types of vegetation. Combining these individual bands improves image
segmentation and plant classification (Elhabiby, Elsharkawy, & El-Sheimy, 2012; Hennessy, Clarke,
& Lewis, 2020).

1.4.  Conceptual diagram

Figure 1 shows the conceptual diagram of this research showing the relevant key system concepts
and data requirements and application. The system boundary is Haagse Bos, the Netherlands. Remote
sensing (UAV and Pleiades) which is outside the system was used to estimate the systems’ elements
(trees) parameters which were validated by field measurements. Various stakeholders such as private

owners and non-governmental organisations (NGOs) and the government manage the forest.

Estimation and Modelling

- Haagse Bos
Remote Sensing
* Airborne platform + Forest
+ Grass

* Satellite platform :
+ Agricultural land

UAv
« spectral Bands-Red/Green/Blue/NIR

+ Spatial resolution-GSD (5cm) -
Field data
Vali Physical data Biometric data
« Sample Plots « AGE

Pleiades satellite + GPS points + Species
- Pleiades « tree location « DBH

= Spectral bands-Red/Green/Blue/Red/NIR » Plot centre

» Spatial resolution-GSD (50cm)

- make policies

| - - manage the Directly measures
Imagery aquisition—— —

forest
conserve

Stakeholders Student

* Governemnt « forest carbon
* NGO's accounting

+ Private Owners + Forest health
+ Regional Community manitoring

Figure 1: Conceptual diagram
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1.5.  Research problem

Forests are of great importance, as earlier alluded to in section 1.1. The total forest AGB is linked to
the amount of carbon stored in the forest vegetation. The estimation of AGB can be done using
different sensors with different spatial resolutions and spectral bands (Lu & Batistella, 2005; Noorian
et al., 2016 and Sousa et al., 2017). Forest parameters and spectral signatures respond differently at
different spatial resolutions and band combinations, which could significantly affect forest parameter
and AGB estimation accuracy. However, there is scanty information, and little study has been done
to systematically analyse how changing spatial resolution (resampling) and spectral band
combinations would affect the accuracy of temperate coniferous forest parameters estimation and
the subsequent effect on biomass estimation. Therefore, this research aims to extract the CPA of
individual trees in a forest through image segmentation of UAV and Pleiades satellite images at
different spatial resolutions and band combination; it will investigate if variations in the extracted
CPA leads to lead to significant differences in AGB estimates. This will contribute to scientifically
validated remote sensing-based methods for assessing and monitoring forest biomass and carbon

sequestration.

1.6.  Research objectives

1.6.1.  Main objective

The main objective of this thesis is to determine if the effect of different spatial resolutions and
spectral band combinations of the Unmanned Aerial Vehicle and Pleiades satellite imagery on the
accuracy of forest parameter estimation leads to significant differences in Above Ground Biomass

estimation.

1.6.2.  Specific objectives
1. To establish the relationship between field measured Diameter at Breast Height (DBH-f)
and reference Crown Projection Area (CPA-r) from UAV-RGB.

Research question (a): What is the relationship between DBH and CPA?

2. To assess the accuracy of the automatic segmented Crown Projection Area (CPA-1s) from
UAV (RGB and multispectral) and Pleiades at different spatial resolution and band
combinations.

Research question (a): What is the accuracy of the CPA-rs compared with CPA-r.

3. To estimate and assess the accuracy of the DBH using automatic segmented Crown
Projection Area from UAV (RGB and multispectral), and Pleiades.

Research question (a): What is the accuracy of the modelled Diameter at Breast Height (DBH-est) at
different spatial resolutions and band combinations compared to field
measured DBH.

4. To determine if the differences in DBH derived from UAV (RGB and multispectral) and
Pleiades will lead to significant differences in biomass estimations.

Research question (a): Does the estimated Aboveground Biomass from UAV (RGB and
multispectral) and Pleiades differ significantly from the field estimated
Aboveground Biomass?
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1.6.3. Hypothesis
1. Ho: The two reference CPA (manually digitized from orthophoto and plot Nadir images) have
the same relationship (R? and RMSE) with field measured DBH.
H1: The manually digitized CPA from orthophoto has a better relationship (R? and RMSE) with
field measured DBH than manually digitized CPA from Nadir plot images.

2. Ho: Automatic segmented CPA from UAV (RGB and multispectral) and Pleiades have the same
relationships (R? and RMSE) with reference CPA.

H1: Automatic segmented CPA from UAV (RGB and multispectral) and Pleiades have different
relationships (R? and RMSE) with reference CPA.

3. Ho: Modelled DBH from UAV (RGB and multispectral) and Pleiades have the same
relationship (R? and RMSE) with field measured DBH.

H1: Modelled DBH from UAV_ multispectral ate more accurate (R and RMSE) than
UAV_RGB and Pleiades.

4. Ho: There is no significant difference between estimated AGB and field measured AGB.
H1: There is a significant difference between estimated AGB and field measured AGB.

7| Page



ASSESSMENT OF THE EFFECT OF UAV AND PLEIADES SPATIAL RESOLUTION AND BAND COMBINATION ON BIOMASS ESTIMATION IN HAAGSE BOS, THE NETHERLANDS.

2.0. MATERIALS AND METHODS

21.  Study area

The Haagse Bos is a semi-natural forest and has landscape and flora conditions which are
characterized by different tree species (Oak, Beech, Birch, Larch, Douglas Fir, Scot’s pine, Spruce),
different forest types (broadleaf deciduous trees, coniferous trees, and mixed trees) with different
canopy density (open, medium, and high forest canopy densities). These different unique
characteristics make it a suitable study area for this research. The forest is located in Enschede near
Losser in the province of Overijssel, the Netherlands, and lies between latitude 52016°39.21” N and
52014°55.22” N and longitude 6°56°26.80” E and 6°5824.90” E (Haagse Bos (Overijssel) - Wikipedia,
2018; Mohren & Vodde, 2006). The study area map is shown in figure 2.

1 1 L 1 1

N o Map of NetherlandsI- Study area-Block 4 and 5

- Enschede
[INetheriands

560000

[ Haagse Bos|
1 Enschede

I:] Coniferous trees sample points distribution

Figure 2: Study area location
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2.2.  Sampling Design used

The following criteria were considered in the sampling design; The flight areas were selected based
on the availability of the open space for ground control points and as well as incorporation of the
following required different forest structure variations; medium coniferous canopy density, high
coniferous canopy density. High canopy density refers to forest type where tree crowns are
interlocking, whereas medium canopy density refers to forest type where individual tree crowns are
barely touching each other (Lopez Garcia, Prado Molina, Manzo Delgado, & Peralta Higuera, 2010).
Considering all these parameters needs a non-probability method where the sample plot choice is
based on the researcher’s judgment. Such kind of non-probability method was defined by Etikan
(2016) as purposive sampling. The paper further stated that in this kind of method, a researcher
selects elements to be included in the sample based on what is needed in the topic of study. Therefore,
after an initial stratification on forest type, a purposive sampling design was used for this research for
data collection in the field.

2.3. Plot size

A research which was conducted to study the combined effect of field plot size and LIDAR density
on the estimation of forest parameters observed that plot size has a huge effect on the estimation of
forest parameters; the paper concluded that minimum circular plots of 500 — 600 m? are sufficient
for estimation of AGB as larger plot sizes do not significantly improve the accuracy, but increase
fieldwork cost (Ruiz, Hermosilla, Mauro, & Godino, 2014). Circular plots are better than square or
rectangular plots because they only require a single control point compared with the four points
needed for square and rectangular plots. Furthermore, it is very easy to decide on trees close to the
plot boundary regarding which trees to include or exclude as circular plots have the shortest plot
perimeter (Mcroberts, Tomppo, & Czaplewski, 2015; Paul, Kimberley, & Beets, 2019). Mauya et al.
(2015) also added that circular plots are easy to outline and usually less prone to errors. Therefore, in
this research, 500 m? (radius 12.62 m) circular plots were used in flat terrain for field data collection.

24. Field equipment

Different field instruments and equipment were used in the field to measure forest parameters for
the estimation of forest AGB. The fieldwork was carried out between September 5, 2020, and
October 10, 2020. The field instruments used are listed in table 1.

Table 1: Field instruments used.

S/N | Instrtuments/equipment Application
1 Diameter tape (5 meters) Diameter at Breast height (1.3 m) measurement
2 Measuring tape (30 meters) Tree distance from the plot centre
3 Differential Global Positioning | GCPs coordinate acquisition.
System (DGPS)
4 Garmin GPS Navigation and positioning
5 Forest Range finder Tree distance from the plot centre
6 Chalk Marking trees
7 GLAMA Canopy closure/openness estimation
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2.5.  Field data collection and processing

Various field data which were collected are listed in table 2 and 3. Field measured DBH (DBH-f) is
a diameter of a tree stem mostly measured at 1.3 m height from the ground (Brokaw & Thompson,
2000). Trees with DBH less than 10 cm were not considered because their biomass contribution is
relatively small (Cummings, Boone Kauffman, Perry, & Flint Hughes, 2002; Hughes, Kauffman, &
Jaramillo, 2000). DBH-f ( greater than/equal to 10cm) was used to estimate field above ground
biomass (reference biomass-AGB-f). Plot centre coordinates, tree distance from the plot centre and
bearing of each tree were used to locate all the trees within the plots. Appendix 4 shows the data
sheet used for tree parameters data collection.

Table 2: Collected field data.

S/N | Data Source

1 UAV RGB Images Phantom 4 (RGB camera)

2 UAYV multispectral Images Phantom 4 (Sequoia MSS camera)
3 Tree DBH Field measured

4 Tree Location Field measured

5 Plot centre coordinates Field measured

6 Distance and bearing of each tree from the plot centre | Field measured

7 Canopy density (Medium and Dense — 31 plots) Field measured

8 Tree species (coniferous) Field identification

Table 3: Types and number of coniferous tree species collected.

Family Species Count (Trees) | Percentage
Pinaceae Douglas fir 224 66.27
European spruce | 74 21.89
Larch 29 8.58
Scotch Pine 11 3.25
Total 338 100

2.6. UAVflight planning

The images were collected using Phantom 4 (1/2.3" CMOS camera (RGB) and Sequoia MSS camera).
The mission planning was done using the pix4D capture app, where flight parameters such as speed,
angle, front and side overlap, and flight height were appropriately set.

Various research shows that side and front overlaps are important for overall forest canopy sampling.
A clear sky, 80% side photographic overlap, and 80 m of flying height result in a very high correlation
of accurate forest parameters estimation (Dandois, Olano, & Ellis, 2015). It was also noted that the
higher the front overlaps, the higher the possible views and view angle, leading to higher canopy
penetration to the forest floor with high accuracy of forest parameter estimation. It was further noted
that point cloud density is affected by view angle as point matching stability begins to decrease rapidly
when the view angle exceeds 20 degrees off Nadir, which leads to a reduced sampling of the forest
canopy, thereby increasing the errors in the estimation of forest canopy parameters (Hirschmug],
Ofner, Raggam, & Schardt, 2007; Ofner, Hirschmugl, Raggam, & Schardt, 2006 and Dandois et al.,
2015). Flight height is also a very important parameter of the UAV flight plan because it affects the
spatial resolution of the UAV, as discussed earlier in section 1.2. above. Therefore, all these issues
discussed above were taken into consideration to come up with an appropriate flight plan parameter
combination in table 4 and figure 3.
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Table 4: Flight plan parameters

S/N | Parameters Value

1 Speed Slow

2 Angle Nadir (90°)

3 Front overlap 90%

4 Side overlap 80%

5 Flight height 100-110 meters
6 Flight pattern Double grid

Green lines - Double grid flipght plan pattern Red dots - points where images were taken from
Figure 3: UAV flight plan.

2.7.  UAV data acquisition and processing

The images were acquired in August and September 2020 using Phantom 4 drone carrying two
sensors (RGB and MS). The acquired images were processed to generate a 3D point cloud and
orthophoto using Pix4D mapper software. This software uses the principle of photogrammetry to
process the UAV images in three steps: image otientation, 3D point cloud generation, and
orthophoto generation. The software uses the ground control points (GCP) and checkpoints for
image registration; GCPs are used for absolute orientation of the UAV images, whereas checkpoints
are used for accuracy assessment as shown in figure 4 and appendix 2 (to be added) (Westoby,
Brasington, Glasser, Hambrey, & Reynolds, 2012).

Summary (i ]
Project B45
Processed 2020-09-29 10:58:03
Camera Model Name(s) FC330_3.6_4000x3000 (RGB)
Awerage Ground Sampling Distance (GSD) 449em/1.77in
Area Covered 0.575 km? / 57 5429 ha / 0.22 sq. mi. / 142.2651 acres
Time for Initial Processing (without report) 53m:49s

Quality Check (i ]
@ images median of 58179 keypoints per image o
@ Dataset 1470 out of 1470 images calibrated (100%), all images enabled (-]
® Camera Optimization 0% relative difference between initial and optimized internal camera parameters Q
@ Matching median of 5730.64 matches per calibrated image (]
@ Georeferencing yes, 9 GCPs (9 3D), mean RMS error =0.011 m (]

Figure 4: Summary of Pix4D photogrammetry initial report.
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The final product of the photogrammetry process was the RGB — orthophoto with a spatial
resolution of 4.5 cm from phantom 4 camera and individual bands (Red, Green, red edge and Near-
infrared) orthophotos from sequoia camera with a spatial resolution of 11cm. Near-infrared band
orthophoto and RGB - orthophoto were resampled to 10 cm spatial resolution and composited to
produce a multispectral orthophoto with RGB-NIR bands with 10 cm spatial resolution, which was
later resampled to 20 cm, 30 cm, 40 cm and 50 cm spatial resolutions. Resampling refers to changing

the pixel dimensions of an image, as shown in figure 5.

30cm

40cm 50cm

Figure 5: Resampled images in true colour composite (1,2,3-RGB)

Baboo & Devi (2010) in the Coimbatore district, India, evaluated three resampling methods (Neatest
Neighbour, Bilinear interpolation, and Cubic Convolution) to find out the effect of the three methods
on the image pixel values. The paper concluded that: (a) Nearest neighbour methods preserve the
original values, but the results can be blocky; therefore, this method can be best used for categorical
data like classification of land use or slope. (b) Bilinear interpolation takes a 2x2 window with a
weighted average, leading to producing an output with values that are slightly different from the
nearest input but always within the range; because of this, it should not be used for categorical values
but continuous data. (c) The Cubic convolution method takes a 4x4 window with a weighted average,
leading to producing an output with values outside the input values; this method does well for
smoothing continuous data. This research dealt with continuous data such as tree CPA and AGB
values and needed values within the range even after resampling was performed on the images;
therefore, the Bilinear interpolation method was used. The sample plots of interest were clipped from
the resampled orthophotos in ArcMap using a 12.6m buffer (500 m? plot size) from the plot centre
coordinate; the clipped plots were loaded in eCognition for Object-Based Image Analysis (OBIA) to
generate individual tree CPA (CPA-UAV) at different spatial resolution and band combinations.
Clipped individual plots were used in the segmentation processing to reduce computational time.

-
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2.8.  Very High-Resolution (VHR) imagery data

A proposal was submitted to European Space Agency (ESA) on August 24, 2020, requesting for
Pleiades satellite imagery (50 cm spatial resolution). Two suitable Pleiades images of August 22, 2019,
and October 14, 2018, were available in the ESA archive. An orthorectified Pleiades satellite imagery
of August 22, 2019, with four spectral bands (R, G, B, and NIR)) was acquired from Airbus through
ESA and used in this research. Pleiades image was acquired a year earlier than UAV images; therefore,
13.2 mg/hectare (ha) of AGB was added to the mean AGB-est per hectate (ha) of Pleiades because
maximum temperate forest annual carbon sequestration is 6.6 mg/ha (2 * Carbon = AGB) (Valentini
et al., 2000).

2.8.1  Pre-processing of satellite image

Before image segmentation, noise (spatial image variations) reduction through image smoothing was
applied to the image to avoid over-segmentation. A mean filter with 3 x 3 window sizes i.e., low pass
filter (3x3 LPF) was applied to the image in Erdas Imagine 2020. This filter was used because it
produces more homogenous image segments by smoothing the image data to eliminate noise, thereby
avoiding over-segmentation (Gougeon & Leckie, 2006; Platt & Schoennagel, 2009).

2.9. Object-Based Image Analysis (OBIA)

Object-based image analysis (OBIA) is an image analysis technique used to identify and classity
objects through a process of pattern recognition. Once an image raster is segmented, the object can
be classified using analyst defined rules. Features such as shape, size, and texture and not just spectral
features are used to drive the classification (Halabisky, Babcock, & Moskal, 2018; Veljanovski, Kanjir,
& Ostir, 2011). OBIA comprises of two main parts, which include image segmentation: where an
image is divided into adjacent and homogenous groups of pixels to form image objects based on
homogeneity criteria, and Image objects classification based on spectral, textural as well as shape
information (Baral, 2016).

Image segmentation

During the segmentation procedure, the region-based segmentation (multi-resolution segmentation)
technique was applied. This algorithm was used because it creates homogeneous objects such as tree
crowns; during the process of segmentation it obtains both an initial over-segmentation and under-
segmentation of the image; after that, it merges or splits the neighbouring segments which are similar
or different; this process continues until there are no more segments that should be merged or split
thereby improving the accuracy of image segmentation (Bins, Fonseca, Erthal, & Ii, 1996).
Furthermore, multi-resolution segmentation algorithm can generate segments at different spatial
resolutions. It ensures that any object smaller than the set spatial resolution is not identified during
the segmentation process, while items larger than the provided spatial resolution are fragmented into
pixel (Hossain & Chen, 2019; Wang, Jensen, & Im, 2010).

Segmentation combinations: Image Band weights (Band combinations)

Image band weights indicates the level to which the bands in the image influence the segmentation
process, and it ranges between 0 (lowest/no effect on segmentation) to 4 (highest/maximum effect
on segmentation). The higher the value assigned to an image band; the more weight was assigned to
that bands’ pixel information during the image segmentation process (Definiens Developer XD 2.0.4
User Guide, 2012). Green and NIR bands were given the highest weight in the combination weights
used. Green and NIR were given maximum weights because Xu et al. (2020) observed a significant
difference in the reflectivity and high separability of different forest tree species in green and neat-
infrared bands of the UAV-based data. The weights were assigned to different bands as shown in
table 5.
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Table 5: Band combinations

Bands | Sensor Image band | Comment
weights
R,G, | UAV_RGB | 1,4,1,0 This means that the green band influenced the

B, NIR segmentation process.

UAV_MS 1,1,1,4 A near-infrared band influenced the segmentation
process.

Pleiades | R, G, B, 1,1,1,4 The neat-infrared band influenced the segmentation

NIR process.

Scale parameter

The scale parameter is spatial resolution dependent (Hay, Castilla, Wulder, & Ruiz, 2005). This meant
that different image spatial resolutions and band combinations used in this research required different
scale parameter value to produce meaningful segments. The different rule set segmentation scale
parameter values that were determined by trial and error and used in this research are shown in the
appendix 1.

Composition of homogeneity criterion

Composition of homogeneity measures the homogeneity or heterogeneity of an image object. It is
calculated as a combination of the spectral colour and shape properties of an image. The
homogeneity criteria can be adapted by weighing shape and compactness criteria. The shape criterion
has a value between 0 to 0.9; it determines to what extent the image resolution influences the
segmentation compared to colour. Compactness criterion also has a value of 0 to 0.9; it determines
to what extent the spectral colour (band combination) influences the segmentation compared to
shape (Definiens Developer XD 2.0.4 User Guide, 2012). Therefore, in this research, both shape and
compactness were set at 0.5 so that both spatial resolution and spectral colour had an equal effect on

the image segmentation.

Watershed transformation.

After multi-resolution segmentation, the watershed transformation was performed to split the
overlapping tree crowns into individual tree crowns based on the suitable splitting threshold that was
set at different resolution and band combinations. The watershed transformation algorithm
calculates an inverted distance map based on the inverted distances for each pixel to the image border.

After that, the minima are flooded by increasing the level; where the individual catchment basins
touch each other, the image objects split (Definiens Developer XD 2.0.4 User Guide, 2012; Baral, 2016).

Morphology

Morphology operation was undertaken to smoothen the borders of the image objects through two
pixel-based operations, namely, opening image object which removes the pixel that is isolated from
an image object and closing image objects which adds surrounding isolated pixel to an image object.
Closing image object operation was performed in this research, and it helped in defining the shape
and size of the mask (structuring element on which the morphology is based), like a circular mask
that defines the tree's circular crown. To finally get an individual tree crown (CPA-1s), the undesired
objects were removed. The undesired objects include very tiny objects (usually with less than 16
pixels), whose reflectance might not be detected in a dense or medium forest (Definiens Developer XD
2.0.4 User Guide, 2012; Baral, 2010).
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Export
Segmented tree polygons were exported, and the areas of the individual segmented polygons were
calculated in ArcMap 10.7.1.

2.10. Descriptive Statistics and Normality Tests

To reach a meaningful statistical conclusion, descriptive statistics, and normality tests for diameter at
breast height (DBH) were performed. Assumption of the normality is supposed to be followed
regardless of the sample size; otherwise, the statistical prediction of the intervals is inaccurate; the
fundamental element of the normality assumption states that before running certain statistical tests
or regression, the data to be used should roughly fit a bell curve shape (Mishra et al., 2019).

2.11. Reference Crown Projection Area (CPA)

Firstly, the plot Nadir UAV images were selected and georeferenced, 165 tree crowns were
digitized, and the area of individual tree crowns was calculated in ArcMap. secondly, 173 tree
crowns from the original Orthophoto resolution (4.5 cm) were as well digitized, and the areas of
individual tree crowns were calculated in ArcMap. In total 109 (same trees) digitized Nadir image tree
crowns, and digitized orthophoto tree crowns were matched with their respective field measured

DBH for regression analysis.

Regression analysis was performed to determine the relationship between the two reference CPA and
the field measured DBH to answer research question la. The resulting R? values were used to
determine the better reference CPA. R2is the percentage of response variable variation explained by
a model. It is a statistical measure of how close the data is to the fitted regression line, and it is always
between zero and hundred percent. The higher the R? value, in general, the better the model fits the
data (Waterman, 2014). The operation described above is summarised in figure 6.

Nadir plot / / Orthophoto / / Field /
photos measured

DBH

Y
Digitizing Digitizing
CPAs ——»| Regression |e——

Regression
report (RQ1a)

Figure 6: Procedure for selecting the reference CPA: (RQ 1a) research question 1a.
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212. Segmentation accuracy assessment

The multiresolution segmentation process partitioned the image objects that resulted in a one-to-one
mapping between each segment in the image and each object in the study area as described by Troya-
Galvis, Gancarski, Passat, & Berti-Equille (2015). Segmentation errors are classified into two: over
segmentation and under segmentation. Over segmentation is where corresponding segments are too
small compared to the reference objects while under segmentation is where corresponding segments
are larger than the reference objects as shown in figure 7. Over segmentation is preferred instead of
under segmentation as it is easier to join small segments to form a large segment than splitting a
region into smaller segments. Segmentation etrors range from 0 to 1; Zero (0) error indicates a
perfect match of the image segment and reference object (Clinton, Holt, Scarborough, Yan, & Gong,
2010; Troya-Galvis et al., 2015).

a) Under-segmentation

b) Over-segmentation c) Almost perfect match

1) Red: Reference polygons. 2) Green: Automatic segmented polygon. 3) Black - Automatic segments’ border

Figure 7: Segmentation accuracy assessment

The three-step approach was used for segmentation accuracy assessment as proposed by (Clinton et
al., 2010).

. Area(xi N yj) .
tep 1: Over seementation = 1 — ————————00 equation 1
5 P verseg Area (xi) qu
. Area(xi N yj) .
Step 2: Under segmentation = 1 — ———————05 equation 2
P & Area (yj) qu
. . Over segmentation? + Under segmentation?): .
Step 3: total error detection (Di) = \/ ( g > g X equation 3

Where:

N = Intersect,

x;= Automatic segmented polygon,
9, = Reference polygon.

To find the relationship between the automatic segmented CPA-rs and reference CPA-r, which is
research question 2a, linear regression analysis was executed.

The resulting R? and RMSE were used to determine the best correlation between automatic
segmented CPA-rs at different spatial resolution and band combinations, and reference CPA-r as
shown in figure 8.
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3x3 LPF

_ UAV Orthophotos (10cm, Digitized orthophoto CPA
Pleiades

20cm, 30cm, 40cm and 50cm) l

segmentetaion accuracy

]
| Multi-resolution |

segmentation assesment/Regression
Y J 4’
automatically Accuracy/Regression report
segmented CPA-rs (RQ 2a)

Figure 8: Procedure for CPA segmentation accuracy assessment: (RQ 2a) research question 2a.

Root mean square error (RMSE) measures the discrepancy between the values predicted by a model
and the actual values. The lower the RMSE, the motre accurate the estimates are. The RMSE was
calculated using equation 4 (Gopinathan, 1988).

RMSE = equation 4

Where:
Vi = Modelled values.
y; = Observed values.
N = Number of obsetrvations

7 = Variables.

The RMSE was normalised (relative RMSE) by dividing it with the average value of the observed
data (Li, Tang, Wu, & Liu, 2013).

Furthermore, the established relationship between reference CPA-r and field measured DBH-f in
section 2.11, was used to model the DBH (DBH-est) using automatically segmented CPA-rs at
different resolution and band combination. To answer research question 3a, DBH-est were matched
with their respective DBH-f, and linear regression analysis was performed as shown in figure 9; the

resulting R? and RMSE were used to determine the most accurate modelled DBH-est.
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Reference CPA Regression 4—/Field measured DBH-f/

\J

Regression
equation

\J

Automatically segmented R . ‘ Regression report
CPAS egression . (RQ 3a)

\J

Modelled
DBH-est

Figure 9: Procedure for DBH modelling: (RQ 3a) research questions 3a.

213. Biomass Calculation
Commonly used mathematical model for biomass calculation that takes the form of a power equation
as described by Zianis & Mencuccini (2004) was adopted as shown in equation 5.

Y =b0* DBHPL .. equation 5

Where:

Y = Aboveground Biomass (kg),

DBH = Diameter at Breast Height (cm),
b0 and b1 = Scaling coefficients.

Muukkonen (2007) analysed various allometric equations to provide a new generalized allometric
equation's scaling coefficient that should provide a consistent and unbiased basis for evaluating forest
biomass for the most common coniferous tree species across regional boundaries in Europe. The
paper established that for the most common temperate coniferous species, bo and bl is equal to
0.255 and 2.174 for European spruce and 0.158 and 2.237 for scots pines. The DBH was used as the
only AGB predictive variable because it is the most common, easiest, and accurate variable to measure
in the field (Pastor, Aber, & Melillo, 1984). This research applied the European spruce allometric
equation for all the coniferous species under study as shown in equation 5. This is because the
equation provides reliable and impartial results at both local and region scale across European
coniferous forest (Muukkonen, 2007), and all the species (table 3) under study belong to the same
family (Pinaceae). No suitable local coniferous allometric equation that uses DBH as the only AGB
predictive variable was found. However, the implication of applying a generalized allometric equation

of one species to all species under study is discussed in section 4.5.

-

18 Pa

> e

o)

¢



ASSESSMENT OF THE EFFECT OF UAV AND PLEIADES SPATIAL RESOLUTION AND BAND COMBINATION ON BIOMASS ESTIMATION IN HAAGSE BOS, THE NETHERLANDS.

2.14. Field measured and Modelled AGB.

Field measured AGB-f, which is the reference AGB, was calculated by using the individual tree DBH
measured from the field whereas modelled AGB (AGB-est) was calculated by using the modelled
DBH (DBH-est) and the allometric equation as described in equation 5. Figure 10 describes the
procedure taken in AGB calculation.

2.15. Comparing field measured and modelled AGB and significance test.

Comparing of field measured and modelled AGB, and the subsequent significance test analysis was
done to find out the differences between the estimated AGB-est from UAV and Pleiades at different
resolutions and band combinations, and the field measured AGB-f. The resulting biomass differences
indicated how much carbon is lost or gained by changing the imagery’s spatial resolution from higher
to lower. To establish if the AGB-est differs significantly from AGB-f, the means of the two data
sets were compared using a two-sample t-test. The results with a t-statistic value greater than the t-
critical value meant that the two data sets were significantly different and vice-versa. The analysis was

undertaken as shown in figure 10.

/ Estimated / Allometric Field measured
DBH-est equation DBH-f
Calculation Calculation
\J Comparison ‘
Estimated and Field measured
AGB-est significance AGB-f
test

v

AGB differences and
significance report (RQ 4a )

Figure 10: Procedure for AGB estimation: (RQ 4a) research questions 4a
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2.16.

Summary of research methods

The research method is summarised in the following four parts:

1. Field data collection and processing (section 2.5)

2. UAV data acquisition and processing (sections 2.7)

3. VHR satellite imagery acquisition and processing (sections 2.8)

4. Biomass calculation, comparing results and significance test (sections 2.13 to 2.15)

The analysis of the four components described in figures 6, 8, 9 and 10 are integrated in figure 11.

UAV
data

aguisition

UAV images

Pleiades
satellite data
nr.quisiliun

DGPS
measurement

Field work
planning and

execution

mosaicki

Imaga

ing

OES

Geo- ref
orthophoto

ki
Filterd Pleiades

Image
segmetati

Image

ion segmetation

4—/ eCognition /—~

Plelades Dlgi[iled CPA DBH-field
/ GCPs / / |ma.qe / i ,;

AGB
™| calculation

Allometric
equation

Linear
regression and
accuracy
assessment

¥ ¢

f CPA-UAV L—-[ Accuracy |,
assessment

/CPA-PIeind ES/

Accuracy report
RQ.2a

Mote: RQ - Research Question

Estimated DBH
{Field/UAVIPleiades)
and accuracy report -
RQ.1a, RQ.3a

s
report RQ.4b

Abbreviations
AGE: Aboveground biomass
CPA: Crown projection area
DEH: Diamater at breast height
UAV: Unmanned aerial vehicle
VHR: Very high resolution
SFM:  Structure from motion
GCPs: Ground Contrel Points
RQ: Research Question
GNSS:Global navigation satellite system

Legend

Process

Data input

LTHI

R
Workflow

Details of data output

Accuracy report:
R-squared, residual plot,
RMSE and P-value.

Significance report: t-test
results

Figure 11: Workflow summary of the research methods.
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3. RESULTS

3.1.  Descriptive Statistics and Normality Tests for Diameter at Breast Height data.

In total, 338 DBH samples from 20 plots of coniferous forest (10 dense and 10 medium forests) were
tested for normality, as shown in figure 12. The data showed a DBH of 10.8 cm and 59.6 cm as lower
and upper limits of the Box-Whisker-plot, respectively. In order to make accurate conclusions in the
subsequent analysis, all the DBH samples (12 samples) with values above the whisker’s plot upper
limit (59.6 cm) were treated as potential outliers, and were not considered in the model development
(Li, Feng, Li, & Liu, 2016). The data further showed a non-normal distribution of samples with a
positive skewness as shown in the histogram in figure 12a. The skewness observed was due to the
DBH values falling outside the Box-Whisker-plot’s upper limit (59.6) and no values falling below the
lower limit (10.8 cm) as no DBH below 10 cm was measured from the field (section 2.5).

a : 85.6 \\b

822
80

70 9

40 .2
" Interquartile
Range
. 30
12 outliers 7.1
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g,."\n'\ 1-"3&\13.@*3“\ n-’b'&\ m."“}\ 5.’9}\ m.""b\ 5.&«1‘\ 1..@'&\ n.."ﬁ\ 53\}\ 1."\'6\
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DBH (cm) 0

Figure 12: a) Histogram and b) Box-Whisker-plot of the field measured DBH samples

3.2.  Relationship between reference CPA-r and field measured DBH-f

The digitized CPA from Nadir plot images and the orthophoto (UAV_RGB) with the original
resolution (5 cm) were considered as reference CPA (CPA-1r). An exponential relationship was
observed between the field measured DBH-f and the two reference CPA-r. A total of 109 manually
digitized CPAs from Nadir plot images and the orthophoto (same trees) were selected and matched
with their respective 109 filed measured DBH samples. 57 samples (same trees of digitized Nadir
photo and orthophoto CPAs) were used for model development, whereas 52 samples were used for
model validation. The R2 for the relationship between field measured DBH and manually digitized
Orthophoto_UAV_RGB CPA was 0.731 with RMSE of 6.906 m?; whereas, for manually digitized
Nadir image CPA the relationship with field measured DBH had a R? of 0.584 with RMSE of 9.797
m? as shown in figures 13 and 14. Therefore, orthophoto digitized CPA was selected as a reference
CPA, the regression equation in figure 14a was used in the subsequent analysis for DBH-est
modelling.
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Figure 13: Relationship between field measured DBH and UAV_RGB Nadir image digitized CPA:
a) model development b) model validation.
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Figure 14: Relationship between field measured DBH and UAV_RGB Orthophoto digitized CPA: a)
model development b) model validation.

3.3.  Relationship between manually Orthophoto segmented CPA-r and automatic
segmented CPA-rs

3.3.1. Segmentation accuracy assessment

The orthophoto (UAV_MS) at 10 cm spatial resolution had the highest segmentation accuracy of
84.63% (total error = 0.154); the lowest accuracy of 75.16% (total error = 0.248) was observed in
UAV_RGB at 50 cm. The rest of the segmentation accuracy results (for both UAV_MS and
UAV_RGB and the Pleiades) at different spatial resolution, are shown in tables 6 and 7.
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Table 6: Summary of UAV orthophoto segqmentation accuracy assessment results

Sensor Resolution | Band Over Under Total | Percent
weight segmentation | segmentation | error
UAV (RGB/MS) | 10cm 1,1,1,04 | 0.2 0.0837 0.15 | 84.63
1,4,1,0,0 | 0.235 0.107 0.18 | 81.77
20cm 1,1,1,0,4 | 0.256 0.0693 0.19 | 81.24
1,41,0,0 | 0.309 0.069 022 | 78.06
30cm 1,1,1,04 | 0272 0.055 02 80.36
1,4,1,0,0 | 0.291 0.082 0.21 78.61
40ecm 1,1,1,04 | 0.281 0.056 0.2 79.74
1,4,1,0,0 | 0.308 0.09 023 | 77.31
50cm 1,1,1,04 | 0.341 0.035 024 | 75.79
1,41,0,0 | 0.343 0.0774 025 | 75.157
UAV_MS-Band weight: 1,1,1,4 - segmentation process was influenced by near-infrared band.
UAV_RGB-Band weight: 1,4,1,0 - segmentation process was influenced by green band.

Table 7: Pleiades segmentation accuracy assessment results

Sensor Resolution | Band weight Over Under Total | Percent

segmentation | segmentation | error

Pleiades | 50cm 1,1,1,4 0.558 0.386 048 | 52.04

Band weight: 1,1,1,4 - segmentation process was influenced by near-infrared band.

In addition, it was observed that segmentation accuracy depended on UAV image resolution, as
shown in figure 15, the lower the resolution, the lower the segmentation accuracy, and vice versa.
The trend was similar in both UAV_MS, and UAV_RGB influenced segmentation process.

86
Figure 15: Effect o
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UAV_MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by
near infrared band.

UAV_RGB-Band weight 1,4,1,0 (R,G,B,NIR): segmentation process was influenced by
green band.
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3.3.2 Linear regression

The relationship between automatic segmented CPA-rs and manually digitized CPA-r at different
spatial resolution and band combinations was analysed for UAV orthophoto and Pleiades satellite
imagery. 109 CPA-rs from the same locations (same trees) were selected from all resolutions and
band combinations. The selected CPA-rs were then matched with their respective orthophoto
manually digitized CPA-r. For UAV, it was observed that the highest R? of 0.822 was obtained at 30
cm resolution with segmentation band weights of 1,1,1,4 (UAV_MS), while the lowest R? of 0.4 was
observed at 50 cm resolution with segmentation band weights of 1,4,1,0 (UAV_RGB) as shown in
tigure 16 and table 8.
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UAV_MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared band.
UAV_RGB-Band weight 1,4,1,0 (R,G,B,NIR): segmentation process was influenced by green band.

Figure 16: Relationship between UAV orthophoto automatic segmented CPA and manually
digitized CPA: a)UAV highest R?, b) UAV lowest R?

For Pleiades (50 cm resolution), the R? of 0.405 was observed with segmentation band weights of
1,1,1,4 as shown in figure 17 and table 9.
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Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced
by near infrared band.
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The observed relationships between Orthophoto manually digitized CPA-r and UAV automatic
segmented CPA-rs at 10 cm, 20 cm, 30 cm, 40 cm, and 50 cm spatial resolutions with two different
band combinations (1,4,1,0_UAV_RGB and 1,1,1,4 UAV_MS ), and Orthophoto digitized CPA-r
and Pleiades automatic segmented CPA-rs at 50 cm with one band combination (1,1,1,4) are
summatrised in table 8 and 9.

Table 8: Summary of the relationship between UAV automatic segmented CPA-rs and
orthophoto manually digitized CPA-r

UAYV Orthophoto
Resolution Reladonship Band weight R? RMSE (m?) | p-value
10em Relationship between UAV 10cm segmented 1.1.1.0.4 (R.G.B,NIR) 0.695 8.389 <0.05
CFPA and orthophoto digitized CPA 14100 RGBNIR) | 0.747 8.951 <0.05
e Relationship between UAV 20cm segmented | L1104 RGENIR) | 0.801 7.358 <0.05
CPA and orthophoto digitized CFA 14,100 B.GENIR) | 0.547 13.675 <0.05
30em Relationship between UAV 30cm segmented 1.1.1,0.4 [R.G.B.NIR) 0.822 6.567 <0.05
CPA and orthophoto digitized CPA 14100 RGBNIR) | 0.568 11.257 <0.05
soean Relationship between UAV 40cm segmented | L1104 RGBNIR) | 0.643 10.143 <0.05
CPA and orthophato digitized CPA 14100 RGENIR) | 0.46 15.928 <0.05
=0em Relationship between UAV 50cm segmented L1104 R.G.BNIR) 0.471 8.812 <0.05
CPA and orthophoto digitized CPA 14,100 R.GBNIR) | 0.398 18.3 <0.05

UAV_MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared
band.
UAV_RGB-Band weight 1,4,1,0 (R,G,B,NIR): segmentation process was influenced by green band.

Table 9: Summary of the relationship between Pleiades automatic segmented CPA and
Orthophoto manually digitized CPA-r

Upscaling: Pleiades

Resolution | Reladonship Band weight R RMSE (m 2 ) | pvalue
S0cm Relationship between Pleiades segmented CPA-1s | 1114 R.G.B.NIR) 0.405 19.09 < 0.05
and orthophoto digitized CPA ] ) -

Pleiades-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared band.

3.4.  Relationship between field estimated DBH-f and modelled DBH-est

3.4.1. Tree detection assessment

A total of 338 trees observed from the field in 20 plots were considered for DBH modelling. The
DBH for trees whose tree CPAs were detected from the automatic segmented CPA-rs were modelled
using regression equation in figure 14a. A different number of trees were detected at different spatial

resolutions and band combinations, as shown in figures 18 and 19.
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UAV_MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared band.
UAV_RGB-Band weight 1,4,1,0 (R,G,B,NIR): segmentation process was influenced by green band.
Pleiades- Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared band.

Figure 18: UAV and Pleiades tree detection at different resolutions compared to field observed

trees.

In addition, it was observed that trees detection accuracy (just like segmentation accuracy) depended
on UAV spatial resolution: the lower the resolution, the lower the tree detection accuracy and vice
versa. The trend was similar in both UAV_MS and UAV_RGB influenced segmentation process as
shown in figure 19.
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UAV_MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared band.
UAV_RGB-Band weight 1,4,1,0 (R,G,B,NIR): segmentation process was influenced by green band.
Pleiades- Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared band.

Figure 19: Relationship between tree detection accuracy and UAV spatial resolution
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3.4.2 Linear regression of DBH-f and modelled DBH-est.

DBH was modelled (DBH-est) for all automatically segmented crowns. From the modelled DBH-
est, 140 DBH-est values from the same locations (same trees) from all different spatial resolutions
and band combinations were selected and used for linear regression of field-measured DBH-f and
modelled DBH-est. The selected DBH-est were then matched with their respective field measured
DBH-f. For UAV, it was observed that the highest R? = 0.672 was obtained at 30 cm resolution with
segmentation band weights of 1,1,1,4 (UAV_MS). In comparison, the lowest R? = 0.267 was
observed at 50 cm resolution with segmentation band weights of 1,4,1,0 (UAV_RGB) as shown in
figure 20 and table 10.
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_. 90
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UAV_MS_30cm modeled DBH (em)

UAV_RGB_50cm modeled D
S
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) 0 10 20 30 40 50 60 70 80
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UAV_MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared band.
UAV_RGB-Band weight 1,4,1,0 (R,G,B,NIR): segmentation process was influenced by green band.

Figure 20: Relationship between field measured DBH-f and UAV modelled DBH-est: a)
UAV’s highest R?, b) UAV’s lowest R?

For Pleiades (50 cm resolution), the R? of 0.323 was observed with segmentation band weights of
1,1,1,4 as shown in figure 21 and table 11.
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o Linear (1:1 line) 'Y at 50cm.
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10

Pleiades_50cm_NIR modeled DBH

Field measured DBH (cm)

MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was

influenced by near infrared band.

The rest of the observed relationships between field-measured DBH-f and UAV modelled DBH-est
at 10 cm, 20 cm, 30 cm, 40 cm, and 50 cm spatial resolutions with two different band combinations
and field measured DBH-f and Pleiades modelled DBH-est at 50 cm with one band combination atre
summarised in tables 10 and 11.
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Table 10: Summary of the relationship between Field measured DBH-f and UAV modelled DBH.

UAYV Orthophoto
Resolution Relationship Band weight R RMSE (cm) | P-value
10em Relationship between field measured DEH 1,1,1,0.4 R,G,BNIR) 0.548 6.347 | <0.05
and DAV modelled DBH-est 1,41,00 RGBNIR) | 0543 6.502 | <0.05
em Relationship between field measured DEH 1,1.1,0.4 (R,G,B,NIR) 0.556 6.938 | <0.05
2nd UAV modelled DBH-est 1,4100 RGEBNIR) | 0.448 9.008 | <0.05
30cm Relationship between field measured DBH 1,1,1,0.4 R,G,BNIR) 0.672 5.843 | <0.05
and UaAV modelled DBH-est 1,4,1,0,0 (R,G,BNIR) 0.352 9307 | <0.05
40cm Relationship between field measured DBH 1,1.1,0.4 R,G,BNIR) 0.404 84351 <0.05
and UAV modelled DBH-est 1,41,00 RGBNIR) | 0455 9.359 | <0.05
S0em Relationship between field measured DEH 1,1,1,0.4 (R,G,B)NIR) 0.408 83431 <0.05
and UAV modelled DBH-est 141,00 RGBNIR) | 0.267 10.042 | < 0.05
UAV_MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared band.
UAV_RGB-Band weight 1,4,1,0 (R,G,B,NIR): segmentation process was influenced by green band.

Table 11: Summary of the relationship between Field measured DBH-f and Pleiades modelled

DBH-est.
Upscaling: Pleiades
Resolution | Relationship Band weight R2 RMSE (cm) | p-value
50em Relationship between field measured 1,1,1.4 R.GBJIR) | 0.323 12.723 | <0.05
DBH and Pleiades modelled DBH-est
Pleiades _ MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared band.

3.5. Biomass calculations and comparison

3.5.1. Biomass per tree : Descriptive statistics for estimated AGB

A total of 338 trees observed from the field in 20 plots were used to calculate field estimated AGB-
f. Table 12 summarises the descriptive statistics of the field estimated biomass (AGB-f) per tree of
338 coniferous trees from 20 plots. The modelled DBH-est from automatically segmented CPA at
different spatial resolution and band combinations were used to calculate modelled biomass per tree
(AGB-est); table 13 and 14 show the summary of the descriptive statistics of the modelled AGB-est
per tree for both UAV and Pleiades.

Table 12: Descriptive statistics summary of field measured AGB-f per tree (kg)

AGB-f (kg) per tree

Mean 666.65
Standard Error 30.819
Standard Deviation 566.601
Minimum 44,999
Maximum 4052.641
Sum 225329.129
Count 338
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Table 13: Descriptive statistics summary of UAV modelled AGB-est per tree.

UAYV Orthophoto
Minimum Maximum | Mean St. Deviation
Resolution | Band weight Observation Sum

g ) %) (kg) & | kg
10cm 1,1,1,0,4 (R,G,B,NIR) 258 8.477 3052.665 872.878 | 225202.484 564.737
1,4,1,0,0 (R,G,B,NIR) 241 4377 | 3497.350 913.52 | 220158.374 640.126
20em 1,1,1,0,4 (R,G,B,NIR) 234 15.63 | 3890.750 987.94 | 231178.942 655.100
1,4,1,0,0 (R,G,B,NIR) 212 103.572 4217.826 | 1059.918 | 235702.695 706.909
30 1,1,1,0,4 (R,G,B,NIR) 229 4.965 | 3898.491 989.661 | 236922.520 609.480

cm
1,4,1,0,0 (R,G,B,NIR) 204 28.874| 4626510 | 1096.48 | 223677.505 726.533
40em 1,1,1,0,4 (R,G,B,NIR) 219 78.828 | 3473.538 1077.29 | 239624.330 638.928
1,4,1,0,0 (R,G,B,NIR) 192 34.071| 4161.453 | 1162.387 | 223178.395 753.503
coem 1,1,1,0,4 (R,G,B,NIR) 202 22.69| 4681.792 | 1257.855 | 254086.639 765.161
1,4,1,0,0 (R,G,B,NIR) 173 0.01| 5031.565| 1299.123| 224748.270 823.717
UAV_MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared band.
UAV_RGB-Band weight 1,4,1,0 (R,G,B,NIR): segmentation process was influenced by green band.

Table 14: Descriptive statistics summary of Pleiades modelled AGB-est per tree.

Pleiades
Resolution Band weight Observation | Minimum (lkg) Maximum (kg) Mean (kg) Sum (kg) | St. Deviation (kg)
50em 1,1,1,4 (R,G,B,NIR) 203 12.09 4651.85 1096.99 | 222689.62 828.5

Pleiades MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared

Linear regression: AGB accuracy assessment per tree

From the modelled AGB-est, 140 AGB-est values per tree of the same trees from all different spatial
resolutions and band combinations were selected and used for linear regression of field-measured
AGB-f and modelled AGB-est. The 140 selected points of the AGB-est were then matched with
their respective field measured AGB-f. For UAV, it was observed that the highest R2 = 0.709 was
obtained at 30 cm spatial resolution with segmentation band weights of 1,1,1,4 (UAV_MS). In
contrast, the lowest R2 = 0.386 was observed at 50 cm resolution with segmentation band weights of
1,4,1,0 (UAV_RGB) as shown in figure 22 and table 15.
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UAV_MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared band.
UAV RGB-Band weiaht 1.4.1.0 (R.G.B.NIR): seamentation process was influenced bv areen band.

Figure 22: Relationship between UAV modelled AGB-est and field estimated AGB-f:
a)UAV’s highest R?, b) UAV’s lowest R?
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For Pleiades (50 cm resolution), the R? = 0.433 was observed with segmentation band weights of

1,1,1,4 (Pleiades) as shown in figure 23 and table 16.
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MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process
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Figure 23: Relationship between field

estimated AGB-f and

Pleiades modelled AGB-est.

The other observed relationships between field estimated AGB-f and UAV modelled AGB-est at 10
cm, 20 cm, 30 cm, 40 cm, and 50 cm spatial resolutions with two different band combinations
(1,4,1,0-UAV_RGB and 1,1,1,4-UAV_MS ); and field measured AGB-f and Pleiades modelled AGB-
est at 50 cm with one band combination (1,1,1,4) are summarised in tables 15 and 16.

Table 15: Summary of the Relationship between field estimated AGB-f and UAV modelled AGB-est

per tree.
UAYV Orthophoto
Resolution Relationship Band weight R2 RMSE (kg) p-value

10 Relationship between field estimated AGB-f and LL1,04 (R,G,B.NIR) 0.457 357.404 | <0.05

on 10cm modelled AGB-est
1,4,1,0,0 (R,G,B.NIR) 0.637 318.534 | <0.05
20em Relationship between field estimated AGB-f and 1,1,1,0.4 (R,G,B.NIR) 0.602 328.79 | <0.05
20cm modelled AGB-est 1,41,00 R,G.B.NIR) | 0.615 387.914 | <0.05
Relationship between field estimated AGB-f and 1,1,1,0.4 (R,G,B,NIR) 0.708 263.088 | <0.05

30cm 30 delled AGB-est
€M MOoGeled Alb-es 1,4,1,0,0 R,GBNIR) | 0.576 420.956 | < 0.05
Relationship between field estimated AGB-f and 1,1,1,0.4 (R,G.B.NIR) 0.6 368.295 | <0.05

#0cm 40 delled AGB

cm modelled £ -est 1,4,1,0,0 (R,G.B.NIR) 0.605 423.982 | <0.05
Relationship between field estimated AGB-f and 1,1,1,04 (R,G,B.NIR) 0.431 445.386 | <0.05

S0em 50 delled AGB-est
cm moceled Alrh-es 1,4,1,0,0 ®,G.B.NIR) | 0.386 600.693 | <0.05

UAV_RGB-Band weight 1,4,1,0 (R,G,B,NIR): segmentation process was influenced by green band.

UAV_MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared band.

Table 16: Summary of the Relationship between field estimated AGB-f and Pleiades modelled AGB-est

per tree
Pleiades
Resolution | Relationship Band weight R? RMSE (kg) p-value
Relationship between 30cm modelled AGB
50cm per plot and field estimated AGB per plot 1,1,1,4 (R,G,B.NIR) 0.433 594.234 | <0.05

Pleiades _MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared
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F-test and t-test of field measured biomass and modelled biomass per tree

F-test was done with 140 samples of individual tree AGB for all resolutions and band combinations
to determine if the variances of the field estimated AGB-f were equal or unequal to the modelled
AGB-est. The F-test results showed that at 10 cm spatial resolution, the variances of AGB-f were
equal to the AGB-est modelled from UAV_RGB influenced segmentation. At 20 cm and 30 cm
spatial resolutions, the variances of AGB-f were also equal to the AGB-est modelled from UAV_MS
influenced segmentation. The rest of the results ate summarised in table 17.

Table 17: Summary of the F-test results for field AGB-f and modelled AGB-est per tree

F-Test Two-Sample for Variances-field estimated AGB-f per tree and modelled AGB-est per tree
Variable | Variable
1 2
Observ 140 140 UAV Pleiades
ations
Spatial resolution
df 139 139
10cm 20cm 30cm 40cm 50cm 50cm
MS RGB MS RGB Ms RGE Ms RGE MsS RGB MS
F 0.911 1.087 1.259 1.546 1.02 1.908 1.569 211 1.501 2.837 2.601
<
P(F<=f) one-tail 0.292 0.313 0.088 = 0.05 0.454 | 0.05 < 0.05 < 0.05 = 0.05 <0.05 < 0.05
F Critical one-tail 0.756 1.323 1.323 1.323 1.323 1.323 1.323 1.323 |  1.323 1.323 1.323
c " Unequal | Equal Equal Unequal | Equal Unequal | Unequal | Unequal Unequal | Unequal Unecual
ommen variance variance variance variance varnance varnance varnance varnance variance variance variance
MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared band.
RGB-Band weight 1,4,1,0 (R,G,B,NIR): segmentation process was influenced by green band.

Key:
Unequal variance — No difference between the variance of AGB-f per tree and AGB-est per tree.
Equal variance — There is a difference between the variance of AGB-f per tree and AGB-est per tree.

Subsequently, a t-test was then performed on 140 values of AGB-f per tree and AGB-est per
tree assuming equal or unequal variance depending on the F-test results at different resolution
and band combinations to determine if the means between the data sets were significantly
different or not. The results of the t-test results are summarised in table 18.
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Table 18: Summary of the t-test results for field AGB-f and modelled AGB-est per tree

The t-test results: Two-Sample Assuming Equal/Unequal Variances (based on F-test) of field estmated AGB-f and
modelled AGB-est per tree

Hypothesi
zed Mean 0 .
Difference UAV Pleiades
Spatial resolution
Observati 140 10cm 20cm 30cm 40cm S0cm S0cm
ons
MS RGB Ms RGB MS RGEB MS RGEB Ms RGB MS
t Stat 0.361 1.414 1.765 2.453 1.682 3.276 3.303 3.605 4.882 5.565 2.82
P(T<=t} one-tail 0.359 0.079 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 < 0.05
t Critical one-tail 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.651 1.652 1.651
P(T<=t) two-tail 0.718 0.158 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
t Critical two-tail 1.969 1.969 1.969 1.969 1.969 1.969 1.969 1.97 1.969 1.971 1.97
Not Not Not . Not . - . . . .
Comment significant | significant | significant Significant significant Significant | Significant | Significant | Significant | Sigmificant | Significant

MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared band.

RGB-Band weight 1,4,1,0 (R,G,B,NIR): segmentation process was influenced by green band.

Key:

Not significant — no difference between the means of AGB-f per tree and AGB-est per tree.

Significant There is a difference between the means of AGB-f per tree and AGB-est per tree.

3.5.2. Biomass per plot and hectare

Table 19 summarises the descriptive statistics of the field estimated AGB-f per plot of 338 coniferous
trees from 20 plots. The modelled DBH-est of the automatically segmented CPA-rs at different

resolution and band combinations were used to calculate modelled biomass per plot (AGB-est).

Tables 20 and 21 show the summary of the descriptive statistics of the modelled AGB-est per plot

for both UAV and Pleiades.

Table 19: Descriptive statistics summary of field estimated AGB per plot

AGB-f (mg) per plot

Mean

Minimum
Maximum

Sum

Count

Standard Error

Standard Deviation

11.
1.
5.
7.

29.

225.

266
215
433
103
678
329

20
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Table 20: Descriptive statistics summary of UAV modelled AGB-est per plot.
UAV Orthophoto estimated AGB (mg/plot)

Resolution Band weight Observation [Minimun (mg) Maximum Mean (mg) |Sum (mg) St-Deviation
(mg) (mg)

10em 1,1,1,0,4 (R,G,B,NIR) 20 5.812 25.592 11.26 225.202 4.207
1,4,1,0,0 (R,G,B,NIR) 20 5.425 22.281 11.008 220.158 3.339

20em 1,1,1,0,4 (R,G,B,NIR) 20 5.694 21.077 11.559 231.179 3.358
1,4,1,0,0 (R,G,B,NIR) 20 5.389 24.28 11.785 235.7 4.325

30em 1,1,1,0,4 (R,G,B,NIR) 20 6.011 21.209 11.846 236.92 3.564
1,4,1,0,0 (R,G,B,NIR) 20 5.415 20.063 11.185 223.678 3.064

40em 1,1,1,0,4 (R,G,B,NIR) 20 5.866 27.816 11.981 239.62 4.328
1,4,1,0,0 (R,G,B,NIR) 20 5.453 20.623 11.159 223.178 3.257

50cm 1,1,1,0,4 (R,G,B,NIR) 20 6.049 24.581 12.704 254.087 3.968
1,4,1,0,0 (R,G,B,NIR) 20 5.747 19.404 11.237 224.748 2.957

UAV_MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared band.
UAV_RGB-Band weight 1,4,1,0 (R,G,B,NIR): segmentation process was influenced by green band.

Table 21: Descriptive statistics summary of Pleiades modelled AGB-est per plot.

Pleiades estimated AGB-est (mg/plot)

} ) : Minimum | Maximum | Mean Sum St. Deviation
Resolution | Band weight Observation
(mg) (mg) (mg) (mg) (mg)
50cm 1,1,1.4 (R,GBNIR) 20 6.459 21.388 11.134 222.69 3311

Pleiades _MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared band.

The graphical comparison of the AGB per plot (mg) between field estimated AGB-f and modelled
AGB-est per plot for all different spatial resolutions, and band combinations under study are
presented in appendix 3. Figure 24 shows the graphical comparison of mean AGB per plot at

different resolutions and band combinations.
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Spatial resolution (cm) 10cm 20cm 30cm 40cm 50 cm
= AGB-field 11.266 11.266 11.266 11.266 11.266
AGB-UAV_RGB 11.008 11.785 11.185 11.159 11.237
m AGB-UAV_MS 11.26 11.559 11.846 11.981 12.704
AGB-Pleiades_MS 11.134
AGB-field: AGB estimated from the field.
MS-Band weight 1,1,1,4 (R,G,B,NIR): AGB estimated from segmentation process influenced by near-infrared band.
RGB-Band weight 1,4,1,0,0 (R,G,B,NIR): AGB estimated from segmentation process influenced by green band.

Figure 24: Mean AGB per plot (mg)

33| Page




ASSESSMENT OF THE EFFECT OF UAV AND PLEIADES SPATIAL RESOLUTION AND BAND COMBINATION ON BIOMASS ESTIMATION IN HAAGSE BOS, THE NETHERLANDS.

Linear regression: AGB accuracy assessment per plot

Figure 25 and table 22 show the results of the relationship between field estimated AGB-f per plot
and modelled AGB-est per plot at different resolution and band combinations. It was observed that
the highest R? of 0.758 was obtained at 30 cm resolution with segmentation band weights of 1,1,1,4

(UAV_MS), while the lowest R2 = 0.197 was observed at 50 cm resolution with segmentation band
weights of 1,4,1,0 (UAV_RGB).
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UAV_MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared band.
UAV_RGB-Band weight 1,4,1,0 (R,G,B,NIR): segmentation process was influenced by green band.

Figure 25: Relationship between field estimated AGB-f and UAV modelled AGB-est per plot:
a)UAV’s highest R?, b) UAV’s lowest R?

For Pleiades (50 cm resolution), the R2 = 0.5277 was observed with segmentation band weights of
1,1,1,4 (Pleiades) as shown in figure 26 and table 23.
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MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process
was influenced by near infrared band.

The other observed relationships between field estimated AGB-f and UAV modelled AGB-est per
plot at 10 cm, 20 cm, 30 cm, 40 cm, and 50 cm spatial resolutions with two different band
combinations (1,4,1,0 and 1,1,1,4 ); and field measured AGB-f and Pleiades modelled AGB-est per
plot at 50 cm with one band combination (1,1,1,4) are summarised in table 22 and 23.
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Table 22: Summary of the Relationship between field estimated AGB-f and UAV modelled AGB-

est per plot.
UAYV Orthophoto
Reszclution Relationship Band weight R RMSE (mg) rRMSE % p-value
Relationshin between feld estimated AGBf | 1114 (R.G,BNIR) 0.722 2,217 19.677 | <0.05
10cm P Pty
and 10em modelled AGE-est per plot.
1,4,1,0 (R,G,B,NIR) 0.71 1.753 15.564 | <0.05
Relationship between field estimated AGB£ | 114 (R,G,B,NIR) 0.61 2.045 18.149 | <0.05
20cm .
and 20em modelled AGE-est pez plot. 1,4,1,0 (R,G,B,NIR) 0.629 1.504 16.902 | <0.05
Relationship between field estimated AGB-f 1,1,1,4 (R,G,B,NIR) 0.758 1.507 13.381| <0.05
30em -
and 30cm modelled AGB-est per plat. 1,4,1,0 (R,G,B,NIR) 0.464 2.188 19.422 | <0.05
Relationship between field estirmated AGB-£ 1,1,1,4 (R,G,B,NIR) 0.628 2.699 23.96| <0.05
40em )
and 40em modelled AGEB-est per plot.
1,4,1,0 (R,G,B,NIR) 0.545 2.132 18.928| <0.05
S0em Relationship between field estimated AGB-f | 1114 (R,G,B,NIR) 0.512 2.701 23.971| <0.05
J 5 - -
and 30cm modelled AGB-est per plot 1,4,1,0 (R,G,B,NIR) 0.197 2.582 22.917| <0.05

UAV_RGB-Band weight 1,4,1,0 (R,G,B,NIR): segmentation process was influenced by green band.

UAV_MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared band.

Table 23: Summary of the Relationship between field estimated AGB-f and Pleiades modelled
AGB-est per plot

Pleiades
Resolution Relationship Band weight R* RMSE (mg) RMSE % p-value
- Relationship between 50 cm modelled AGB
S0em and field estimated AGB-est per plot 1,1,1,4 (R,G,B,NIR) 0.528 2,218 15.69 | <0.05

Pleiades _MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared band.

AGB was extrapolated from AGB per plot to AGB per hectare. Figure 27 shows the mean AGB per
hectare after extrapolation. Pleiades image was acquired a year eatlier than UAV images as alluded to
in section 2.8; therefore, 13.2 mg/hectare (ha) of AGB was added to the mean AGB-est of Pleiades.
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AGB-UAV_RGB 220.158 235.702 223.678 223,178 224.748
B AGB-UAV_MS 225.202 231.179 236.922 239.624 254.087
AGB-Pleiades_MS 235.89
AGB-field: AGB estimated from the field.
MS-Band weight 1,1,1,4 (R,G,B,NIR): AGB estimated from segmentation process influenced by near-infrared band.
RGB-Band weight 1,4,1,0,0 (R,G,B,NIR): AGB estimated from segmentation process influenced by green band.

Figure 27: Comparison of mean AGB (mg/ha)

The differences between modelled AGB-est and field estimated AGB-f (AGB-est — AGB-f) at
different spatial resolution and band combinations are presented in figure 28.
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UAV_MS-Band weight 1,1,1,4 (R,G,B,NIR): AGB estimated from segmentation
process influenced by near-infrared band.

UAV_RGB-Band weight 1,4,1,0,0 (R,G,B,NIR): AGB estimated from segmentation
process influenced by green band.

Pleiades-Band weight 1,1,1,4 (R,G,B,NIR): AGB estimated from segmentation
process influenced by near-infrared band.
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F-test and t-test for field estimated biomass and modelled biomass per plot

F-test was done with 20 plots at different spatial resolutions and band combinations to determine if
the variances of the field estimated AGB-f per plot were equal or unequal to the modelled AGB-est
per plot. The results are shown in table 24. It should be noted that 20 plots as samples are too few
to make a proper statistical conclusion; however, the results might be a true indication of the reality.

Table 24: Summary of the F-test results for AGB-f and AGB-est per plot

F-Test Two-Sample for Variances-field estimated AGB-f and modelled AGB-est per plot

Varnable
1

Varnable
2

Observations 20 20 UAV Pleiades
Spatial resolution
df 19 19
10cm 20cm 30cm 40cm 50cm 50cm
MS RGB | M§ RGB [ MS RGB MS RGB MS RGB MS

F 0.63 0.378 | 0.382 0.349 ] 0.335 0.318 0.698 0.359 0.533 0.296 0.371
P(F<={) one-tail 0.162 <0.05 | <0.05 <0.05 | <0.05 <0.05 0.22 <0.05 0.09 <0.05 <0.05
F Catical one-tail 0.461 0.461 | 0.461 0.461 | 0.461 | 0.461 0.461 0.461 0.461 0.461 0.461
Comment Unequal | Equal Equal Equal Equal Equal Unequal | Equal Unequal Equal Equal

variance | variance | variance | variance | variance | variance | variance | varance | variance variance | variance

MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared band.
RGB-Band weight 1,4,1,0 (R,G,B,NIR): segmentation process was influenced by green band.

Key:

Unequal variance — no difference between the variance of AGB-f per tree and AGB-est per tree.

Equal variance — There is a difference between the variance of AGB-f per tree and AGB-est per tree.

Afterwards, t-test was performed assuming equal or unequal variance depending on the F-test
results at different resolution and band combinations to determine if the means between the data
sets were significantly different or not. The results of the t-test findings are summarised in table

25.
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Table 25: Summary of the t-test results for AGB-f and AGB-est per plot

modelled AGB-est per plot

The t-test results: Two-Sample Assuming Equal/Unequal Variances (based on F-test) of field estimated AGB-f and

H_\“PD&]ESiZEd O
Mean Dufference UAV Pleiades
Spatial resolution
Observations | 20 10cm 20cm 30cm 40cm 50cm S0cm
MS RGB Ms RGB Ms RGB Ms RGB M3 RGB M3
t Stat 0.004 0.181 0.205 -0.022 0.082 0.059 0.335 0.076 0.956 1.326 0.093
P(T<=t) one-tail 0.498 0.429 0.419 0.491 0.468 0.4765 0.37 0.47 0.173 0.0968 0463
t Coitical one-tail 1.688 1.686 1.686 1.686 1.686 1.686 1.687 1.696 1.69 1.69 1.69
P(T<=t) two-tail 0.997 0.857 0.839 0.982 0935 0933 0.74 0.94 0.346 0194 0927
t Critical two-tail 2028 2024 2.024 2024 2024 2024 2.026 204 203 2.03 2024
o Not Not Not Not Not Not Not Not Not Not Not
omment significant | significant | significant | significant | significant | significant | significant | significant | significant | significant | significant

MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared band.
RGB-Band weight 1,4,1,0 (R,G,B,NIR): segmentation process was influenced by green band.

Key:

Not significant — no difference between the means of AGB-f per tree and AGB-est per tree.

Significant — There is a difference between the means of AGB-f per tree and AGB-est per tree.
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4. DISCUSSION

41. Relationship between reference CPA-r and field measured DBH-f

An exponential relationship was observed (figures 13 and 14, section 3.2) between the field measured
DBH-f and the reference CPA-r, namely, Nadir image plot photos manually digitized CPA and
orthophoto manually digitized CPA. Generally, there is a logistic function kind of relationship
between tree DBH and CPA. This is because, in a young forest, CPA expands as DBH grows, the
rate of increase of CPA slows as the forest matures due to competition with neighbouring trees. The
logistic function is exponential in its early stage, and so is the relationship between CPA and DBH
before the forest is fully matured (CPA interlocks) (Shimano, 1997). This research developed a model
for the relationship between field-measured DBH-f and CPA-r using DBH values in the range of
10.8 cm and 59.6 cm. The majority of the DBH values fall between 27.1 cm and 40.2 cm, as explained
in figure 12, section 3.1. Therefore, the exponential function was the best fit for the model, as
illustrated in Figure 29.

CPA

Stabilization / upper asymptote

€ Midpoint/inflection point

Exponential growth

EZOoO—=-rpmCcH>wn

Slow growth

DBH X

The graph shows the behaviour of the relationship between tree DBH and CPA as the forest grows from young to old. a)
slow growth region represents young forest, b) midpoint region represents youthful to old forest, ) stabilization region
represents mature forest when tree crowns interlock.

Figure 29: lllustration of a Logistic function (Lechman, 2014).

The manually digitized orthophoto CPA showed a better relationship with field measured DBH-f
than manually digitized Nadir plot image CPA, therefore, the first (1. Ho) null hypothesis (section
1.6.3.) was rejected. The lower R? of the manually digitized Nadir image CPA could have been due
to image geometry distortion caused during georeferencing of individual UAV raster plot images as
it was difficult to find proper control points. The other reason could be because some plots did not
have raster images with proper Nadir view, thereby having tree CPA with a distorted shape. The
regression equation with R? of 0.731 (figure 14a) from the relationship between manually digitized
orthophoto CPA with field measured DBH-f was the best model developed for this research and was
used for DBH modelling. The best model of this research was however, lower than the R? of 0.876
which Shimano (1997) had found when he used power sigmoid (logistic function) to establish the
relationship between DBH and CPA of coniferous trees.
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4.2.  Relationship between reference CPA-r and automatic segmented CPA-rs

4.21. Segmentation and Tree detection accuracy assessment

Generally, as shown in tables 6 and 7, and figure 15, it was observed that higher UAV resolution
showed lower segmentation total error than lower resolution (the higher the spatial resolution, the
higher the segmentation accuracy). The pattern was observed in both UAV_RGB, and UAV_MS
influenced segmentation process; UAV_MS showed a better individual tree separation rate than
UAV_RGB. A similar trend was also observed in tree detection accuracy assessment, as shown in
figures 18 and 19. At higher resolution, more trees were detected than at lower resolution. The higher
accuracy of tree detection and segmentation at higher spatial resolution than at lower resolution was
as a result of higher spectral heterogeneity and a lot of details in the image, thereby making it possible
to discriminate even smaller trees which were not possible to be recognized at a lower resolution
(Huang, Li, & Chen, 2018; Pouliot, King, Bell, & Pitt, 2002). This implies that UAV in general is
more suitable in separating individual trees at higher spatial resolution (10 cm being the best in this
case) than at lower spatial resolution (50 cm being the worst in this case), and that UAV_MS is more
suitable in separating individual trees than UAV_RGB.

The results of my research are similar to other publications like Huiping, Wu, & Fan (2003) who
used object-based classification of different land cover classes to analyse the relationships among
classification accuracy, segmentation scale, and image resolution, and observed that for tree species,
the optimal resolution for image segmentation was at 10 cm. In addition, the research, which was
done by Pouliot et al. (2002) where four different spatial resolutions (5 cm, 10 cm, 15 cm, and 30 cm)
were used for automatic tree crown detection and delineation in high-resolution digital camera
imagery of coniferous forest, a similar and stable higher tree detection accuracy was observed at 5
cm, 10 cm and 15 cm (88.9%, 88.9% and 90.9%) spatial resolutions, and a lower tree detection
accuracy was observed at 30 cm (80.3%) spatial resolution. However, while my results showed a
strong relationship between image segmentation accuracy and spatial resolution, Okojie (2017) who
used six resampled UAV spatial resolutions (5 cm, 10 cm, 15 cm, 20 cm, 25 cm and 30 cm) to assess
the forest tree structural parameter extractability did not find any relationship between spatial
resolution of the image and segmentation accuracies. The contradiction in the findings could be
alluded to the different forest types used in the analysis; my research used coniferous forest only
whereas Okojie (2017) used both coniferous and deciduous ( both separate and mixed forest).

4.2.2  Linear regression of reference CPA and automatic segmented CPA-rs

As observed from tables 8 and 9, for UAV_MS influenced segmentation process at different spatial
resolutions (10 cm, 20 cm, 30 cm, 40 cm, and 50 cm), the best CPA segments compared to the
reference segments were from 30cm spatial resolution which was not so different from 20 cm spatial
resolution with R? of 0.822 and 0.801, respectively. The worst CPA segments were from 50 cm spatial
resolution with R? = 0.471 compared to reference CPA.

The R? of the relationship between reference CPA-r and automatic CPA-rs segments of UAV_MS
influenced segmentation process was lower at 10 cm than at 20 cm and 30 cm because at high spatial
resolution, the spectral intra-crown variability is so high that it becomes a source of problem for the
watershed transformation algorithm to detect the actual hedge of the tree crowns. The within tree
crown spectral variability makes the algorithm to detect branches as tree crowns, thereby leading to
over segmentation (Huang et al., 2018; Pouliot et al., 2002). This implies that better tree separation
at higher resolution (10 cm) than at lower resolution (30 cm), does not certainly mean better detection
of the actual hedges of tree crowns.
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The original resolution of the NIR band was 11cm, as discussed in section 2.7, when the image was
resampled to lower resolution (30cm), the R? was higher than at higher resolution (10 cm), because
the resampling (bilinear interpolation) takes a 2 x 2 window with a weighted average, the averaging
of pixel information reduces the image within tree crown spectral variations thereby the actual tree
crown hedge is better defined during watershed transformation. However, at a very low image
resolutions (40 cm, 50 cm), the tree crowns become too homogeneous such that their boundaries
become less distinct, making them harder to identify by the watershed transformation algorithm
(Gougeon & Leckie, 2006; Huang et al., 2018; Pouliot et al., 2002).

Generally, at all five different resolutions, the CPA-rs segments from the segmentation process which
was influenced by UAV_MS performed better than CPA-rs segments from UAV_RGB because the
NIR band in UAV_MS enhances segmentation accuracy: therefore, the second null hypothesis (2.
Ho) was also rejected. The enhancement of segmentation accuracy occurs because the NIR band
increases spectral variations between trees, which helps to clearly show tree actual hedges, thereby
resulting in better tree CPA segments than UAV_RGB (Effiom, van Leeuwen, Nyktas, Okojie, &
Erdbrigger, 2019; Pu & Landry, 2012).

The R? of the relationship between reference CPA-r and automatic CPA-rs segments of Pleiades (50
cm resolution) was very low, and so was the R? for both UAV_MS and UAV_RGB at 50cm
resolution because at a very low resolution (50 cm), smaller size trees could not be clearly identified;
therefore, difficult to separate them from the neighbouring bigger trees, which distorted the
individual tree boundaries during segmentation (Huang et al., 2018; Pouliot et al., 2002).

4.3.  Relationship between field measured DBH-f and estimated DBH-est.

As observed from tables 10 and 11, for UAV_MS influenced segmentation process at different spatial
resolutions (10 cm, 20 cm, 30 cm, 40 cm, and 50 cm), the best-modelled DBH-est (R2 = 0.672, RMSE
= 5.843) compared to field measured DBH-f was at 30 cm spatial resolution. For UAV_RGB
influenced segmentation process the best-modelled DBH-est (Rz = 0.543, RMSE = 6.902) was at
10cm spatial resolution. This implies that UAV_SM is more accurate in DBH modelling than UAV_
RGB. Moreover, these results reflected the trend observed in section 4.2.2 because the modelled
DBH-est at different spatial resolution were from the CPA-rs obtained at different spatial resolution
and band combination; therefore, the most accurate UAV_segmeted CPA-rs (30cm _UAV_MS: R?
= 0.822), modelled the most accurate DBH-est (R2= 0.672) and vice versa. Therefore, the third null
hypothesis (3. Ho) was rejected. In comparison with other similar work on DBH modelling, Guerra-
Hernandez et al. (2017) used a multi-temporal UAV imagery to model DBH of Italian stone pine
(Pinus pinea) from UAV derived tree height and CPA, and found a better R? of 0.79 with RMSE of
2.36 cm compared to my research. The better R? of Guerra-Hernandez et al. (2017) could be because
they used only one tree species (Pinus pined) to model the DBH, thereby avoiding errors from
variations of DBH of different tree species.

44. Biomass calculations and comparison per tree and plot.

Descriptive statistics of field AGB per tree

The descriptive statistics of field AGB per tree as presented in table 12 showed that the field measured
AGB-f had a minimum AGB-f of 44.999 kg, maximum AGB-f of 4052.641 kg and mean AGB-f of
666.650 kg (DBH ranging from 10.8 cm to 85.6 cm with a sample size of 338 coniferous trees). The
results of descriptive statistics per tree are similar to Popescu (2007) who estimated AGB of individual
pine trees using airborne Lidar; a minimum AGB of 13.02 kg, maximum AGB of 3254.11 kg and
mean of 486.55 kg (DBH ranged from 8.13 cm to 78.49 cm with a sample size of 43 coniferous trees)
were observed. The differences in the descriptive statistic of AGB values between my research and
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that of Popescu (2007) could be attributed to differences in the DBH range and sample size. The
modelled AGB-est showed differences in the minimum, maximum, and mean AGB-est per tree as
shown in tables 13 and 14; the differences were attributed to differences in different spatial resolution
and band combinations used to model the AGB-est.

Linear regression of AGB per tree

The linear regression of UAV modelled AGB-est per tree (140 trees) showed that the UAV_MS at
30 cm resolution had the highest accuracy (R? = 0.708, RMSE = 263.088 kg) followed by UAV_RGB
influenced segmentation process at 10 cm (R? = 0.637, RMSE = 318 kg) and the least accurate was
UAV_RGB at 50 cm resolution as elaborated in table 15. This means that UAV_MS at 30 cm
resolution was the most accurate in modelling the DBH than any other resolutions. The results of
this research were lower than that of Lin, Wang, Ma, & Lin (2018) who found the R? of 0.96 with
RMSE of 54.90 kg from the accuracy assessment of the estimated individual tree AGB using UAV
orthophoto of oblique photographs at 5 cm spatial resolution. Again, it was observed that the
individual tree AGB accuracy assessment results reflected what was discussed in section 4.2.2, whete
UAV_MS at 30 cm resolution had the most accurate CPA-rs (R2= 0.822), which modelled the most
accurate DBH (R? = 0.672), and subsequently modelled the most accurate AGB-est per tree (R? =
0.708). In contrast, UAV_RGB at 50 cm resolution had the least accurate CPA-rs (R2 = 0.398),
which modelled the least accurate DBH-est (R? = 0.267) and subsequently modelled the least accurate
AGB-est per tree (R2 = 0.386). This implies that accurate modelling of individual tree CPA leads to
accurate estimation of AGB per tree.

Accuracy assessment of UAV modelled AGB-est per plot (20 plots) showed that UAV_MS at 30 cm
resolution had the highest accuracy (R2 = 0.758, RMSE = 1.507 mg _ AGB/plot, tRMSE =
13.381%), and the least accurate was UAV_RGB at 50 cm resolution as shown in table 22 and 23.
The accuracy of the AGB-est per plot modelled by this research at all different spatial resolutions (10
cm, 20 cm, 30 cm, 40 cm and 50 c¢m) had relative RMSE (tRMSE) of less than 24% which were
comparable to Jayathunga, Owari, & Tsuyuki (2018) who used UAV orthophoto at 5 cm spatial
resolution to estimate AGB over mixed conifer-broadleaf forest, and found RMSE of 14.3 mg C/ha
(1.43 mg _ AGB/plot) and fRMSE = 17.4%.

Comparison of mean AGB per hectare: Effects of spatial resolution on AGB estimation.

It was observed in figure 28 that for UAV_MS, the AGB estimation per hectare steadily increased
with reducing spatial resolution. This was because the NIR band in UAV_MS, as ecatlier alluded to in
section 4.2.2, enhances segmentation accuracy as it (NIR) increases spectral variations between trees.
However, at a lower resolution, smaller trees can not be separated from the bigger trees; therefore,
they are identified as one tree crown (generalization), which leads to an overestimation of biomass.
This could mean that the methods presented in this research might not be ideal for estimating
biomass with UAV_MS at a lower resolution (50cm). For UAV_RGB, the AGB estimation per
hectare increased with reducing resolution from 10 cm to 20 cm, and then it dropped drastically from
20 cm to 30 cm; from 30 cm to 50 cm, the AGB estimation per hectare was stable and uniform. This
could mean that UAV_RGB has a spatial resolution threshold beyond which it can not exceed in
estimating AGB per hectare. Generally, the observed trend in figure 28 needs further investigation.

F-Test and t-test of field estimated AGB-f and modelled AGB-est

The P-test results on AGB per tree reviewed that the AGB-est per tree modelled from UAV_RGB
at 10 cm resolution, and UAV_MS at 20 cm and 30 cm resolution were more accurate than the rest
of the AGB-est per tree estimated from other resolutions as their AGB-est per tree variances were
equal to the variance of field estimated AGB-f per tree (table 17). Furthermore, the t-test results on
the 140 AGB per tree values from the same trees observed from the field and images at different

spatial resolution and band combinations as shown in table 18, showed that the means of the
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UAV_RGB and UAV_MS estimated AGB-est per tree at 10 cm spatial resolution were not
significantly different from means of the field estimated AGB-f per tree. At 20 cm and 30 cm spatial
resolution, the means of the field estimated AGB-f per tree were also not significantly different from
the means of AGB-est per tree estimated with UAV_MS but significantly different from the means
of AGB-est per tree estimated with UAV_RGB. The means of field estimated AGB-f per tree were
significantly different from the means of AGB-est per tree from both UAV_MS and UAV_RGB at
40 cm and 50 cm resolutions as well as Pleiades at 50 cm spatial resolution. This implied that AGB
per tree could be estimated at 10 cm spatial resolution with UAV_MS and UAV_RGB as well as at
20 cm and 30 cm spatial resolution with UAV_MS.

A similar observation was also made by Lin et al. (2018) who used a 5 cm spatial resolution UAV
orthophoto to model the AGB of individual trees of coniferous forest and concluded that UAV is
effective in estimating individual tree AGB at very high spatial resolution.

The t-test results on the AGB per plot from the 20 plots showed no significant differences between
the means of the AGB-f estimated from the field and AGB-est means estimated from UAV_RGB
and UAV_MS, and Pleiades at different spatial resolution and band combinations as shown in table
25. Therefore, the fourth Null hypothesis (4. Ho) was accepted; this could mean that the losses of
estimated biomass per tree at different resolutions (10 cm, 20 cm, 30 cm 40 cm and 50 cm) and band
combinations because of occlusion by bigger trees and image under-segmentation were compensated
in the overall estimated AGB-est per plot. The results of the t-test of AGB per plot also implied that
AGB per plot could be estimated using UAV_RGB and UAV_MS at 10 cm, 20 cm, 30 cm, 40 cm,

and 50 cm spatial resolution as well as Pleiades at 50 cm spatial resolution with reasonable accuracy.

The results of the t-test per plot for this research were comparable to other studies like: (1)
Jayathunga, Owari, & Tsuyuki (2018) who used UAV orthophoto at 5 cm spatial resolution to
estimate AGB over the mixed conifer-broadleaf forest and concluded that UAV could accurately
assess forest biomass as the means of the reference AGB were not significantly different from UAV
estimated AGB. (2) Wahyuni, Jaya, & Puspaningsih (2016) who used a UAV orthophoto with 10 cm
spatial resolution to develop a mathematical model for AGB estimation; the modelled AGB did not
differ significantly from the reference AGB. The paper also concluded that UAV imagery could be

used to estimate AGB accurately.

4.5. Uncertainties

Firstly, the two models used in this research to estimate the DBH-est (tegression equation in figure
14a) and AGB allometric equation ( equation 5) might have been the source of errors as models are
a simplification of reality, and built from a sample population (selected trees) and not from the entire
population (forest); therefore, when sample population is changed, the adjustment of the model also
slightly changes (Chave et al., 2004; Chen, Laurin, & Valentini, 2015). For allometric equation
uncertainties, Vorster et al. (2020) analysed the variability and uncertainty involved in forest AGB
estimates from individual trees to large scale and found out that depending on the allometric equation
and evaluation method used in AGB estimation, the allometric uncertainty contributes 30% — 75%
of the total uncertainty, while remote sensing fitting model uncertainty contributes 25% — 70% of
the total uncertainty. Clough et al. (2016) also used a data-driven, hierarchical modelling approach to
quantify allometric model uncertainty for plot-level tree biomass and concluded that allometric
models have a huge contribution to the overall uncertainty of AGB estimates. My research applied
generalized European spruce allometric equation to all the coniferous species under study (table 3),

which might also be a source of errors as allometric equations are species and site-specific (Abich,
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Mucheye, Tebikew, Gebremariam, & Alemu, 2019; Basuki, van Laake, Skidmore, & Hussin, 2009
and Mahmood et al., 2020).

Secondly, as mentioned (section 2.9), the image segmentation rule set is resolution and band
combination dependent. The different rule sets (appendix 1) used in this research for image
segmentation at different resolution and band combinations were developed based on trial and error

and were assured to be optimal rule sets.

46  Limitations

Firstly, the DBH value range was too narrow, with the majority falling between 23 cm to 42 cm
(tigure 12) because the data was collected from the semi-natural forest for timber production. This
meant that the model developed in figure 14a was less accurate in predicting DBH values falling
below 23 cm and above 42 cm. This was also elaborated more in Section 4.1; figure 29 where it was
explained that the complete relationship between forest trees DBH and CPA should have a logistic
function; however, this research just extracted a part of this function (exponential) to develop a DBH-
CPA relationship. This meant that the developed model (figure 14a) could only be used to predict

DBH in a youthful to old coniferous forest, but not in young and mature coniferous forest.

Secondly, small data set of field plots (20 plots) was used in the analysis. The number of plots used
were too few to make a proper statistical conclusion. To make an appropriate statical conclusion

minimum sample plots should have been at least 30 (Louangrath, 2017).

Lastly, unable to find a site-specific allometric equation as discussed in section 4.5 site specific

allometric equations are more accurate than generalised equation.
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5.0. CONCLUSION AND RECOMMENDATIONS

5.1.  Conclusion

In this research, UAV at different resampled spatial resolutions and band combinations, and Pleiades
were used to study the effect of spatial resolution and band combination on coniferous forest AGB
estimation. It was established that the AGB per tree could be accurately estimated at 10 cm spatial
resolution with UAV_MS and UAV_RGB, as well as at 20 cm and 30 cm spatial resolution with
UAV_MS. The AGB per plot could be estimated with reasonable accuracy using UAV_RGB and
UAV_MS at 10 cm, 20 cm, 30 cm, 40 cm, and 50 cm spatial resolutions as well as Pleiades at 50 cm

spatial resolution. The specific conclusions of this study based on the four research questions are
highlighted below.

Research question 1:

a. What is the relationship between field measured DBH-f and reference CPA-r?
The manually digitized orthophoto CPA showed a better relationship (R? of 0.731; RMSE of 6.906
m?) with field measured DBH than manually digitized Nadir image CPA (R? of 0.584; RMSE 0f 9.797
m?) .

Research question 2:
a. What is the accuracy of the automatic segmented CPA-rs from UAV and Pleiades at
different spatial resolutions and band combinations compared with the reference CPA-r?

The UAV_MS at 30cm resolution produced the most accurate automatic CPA segments (R? of 0.822
and RMSE of 6.567 m?) than any other resolutions and band combination.

Research question 3:

a. What is the accuracy of the estimated DBH-est compared to field measured DBH-f?
The UAV_MS at 30cm modelled the most accurate DBH-est (R2= 0.672 and RMSE of 5.843 cm)

than any other resolutions and band combination.

Research question 4:

a. Does the estimated AGB-est differ significantly from field measured AGB-f?
There were no significant differences between the means of the AGB-f per plot estimated from the
field and the means of the AGB-est per plot estimated from UAV_RGB and UAV_MS at 10 c¢m, 20

cm, 30 cm, 40 cm, and 50 c¢m spatial resolutions as well as Pleiades at 50 cm spatial resolutions.

5.2. Recommendations

Firstly, further studies are needed where the methods presented in this study can be used in a natural
forest with large data set of field plots ( more than 30). The natural forest has a wide range of DBH
distribution, unlike the semi-natural (Haagse Bos) forest where majoring of the trees had the DBH
ranging from 23 cm to 42 cm. The wide range of DBH might be vital for developing a stable model
(DBH-CPA relationship).

Secondly, further studies are needed where higher spatial resolution satellite (30 cm like worldview-
3 or 4) than the Pleiades 1A/B where tree crowns can be cleatly seen. If tree crowns can be cleatly
seen from the satellite image, manually digitising of tree crowns can be done and develop a satellite-
based DBH-CPA relationship model directly.
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Appendices

Appendix 1. Different rulesets and algorithm descriptions used for multiresolution segmentation process at different spatial resolution.

Process Tree -

(UAV_NIR_10cm_and_20m_Ruleset, v.0)

- = Segmentation

bL with Brightness < 3000 at New Level: shandow

=25 [shape:0.5 compct.0.5] creating ‘New Level a

v shandow at New Level: merge region

ML with Brightness >= 3000 and Brightness < 65000 at New Level: Trees
v Trees at New Level: merge region

% Trees at New Level: watershed transformation (9)

L3 Trees at New Level: closing: Trees

Trees at New Level: export object shapes to Trees

[0 Trees with Roundness >= 1.1 at New Level: remove objects (merge by shape)

Process Tree - (UAV_NIR_50cm_Ruleset, v.0)

=

--#L with Brightness < 2600 at New Level: shandow

-2 shandow at New Level: merge region

% with Brightness >= 2600 and Brightness < 65000 at New Level: Trees
-~ Trees at New Level: merge region

% Trees at New Level: watershed transformation (5)

L Trees at New Level: closing: Trees

EI Trees with Roundness >= 1.1 at New Level: remove objects (merge by shape)

- ® Segmentation
A= 25 [shape:0.5 compct..0.5] creating ‘New Level’ b

Trees at New Level: export object shapes to Trees.

Process Tree - (UAV_NIR_30cm_and_40m_Ruleset, v.0)

-}~ = Segmentation
i3 25 [shape:0.5 compct:0.5] creating ‘New Level C
-~ shandow at New Level: merge region

--#l with Brightness < 2850 at New Level: shandow

H. with Brightness >= 2850 and Brightness < 65000 at New Level: Trees
-7 Trees at New Level: merge region

- % Trees at New Level: watershed transformation (5)

L) Trees at New Level: closing: Trees

Trees at New Level: export object shapes to Trees

@ Trees with Roundness >= 1.1 at New Level: remove objects (merge by shape)

t Process

Na

~| Automatic B

25 [shape:0.5 compct 0.5] creating 'New Level'

Algorithm

mul

Domain

pixel level -

P Val
‘arameter e I Image Layer weights 1.1.1.04
Condition
I+ Thematic Layer usage
Map From Parent Scale parameter 25
4 Composition of homogeneity criterion
Shape 05 d
Compaciness 05

me Algonthm Description

Apply an optimization procedure which locally minimizes the average heterogeneity of
image objects for a given resolution.

Algornthm pafameters

Parameter Value
firesolution segmentation B Overwrite existing level Yes
4 Level Seftings

Level Name New Level
Compatibility mode

4 Segmentation Settings

latest version

and 40 cm.

Different rule sets used at different resolutions for UAV_MS: a) Rule set for 10 cm and 20 cm, b) Rule set for 50 cm, ¢) Rule set for 30cm
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Process Tree
-} = Segmentation =~ ® Segmentation
' =25 [shape:0.5 compct..0.5] creating ‘New Level’ =15 [shape:0.5 compct..0.5] creating ‘New Level' b
2L with Brightness < 3450 at New Level: shandow a 2L with Brightness < 3575 at New Level: shandow
“+ shandow at New Level: merge region ~ shandow at New Level: merge region
2L with Brightness >= 3450 and Brightness < 65000 at New Level: Trees %L with Brightness >= 3575 and Brightness < 65000 at New Level: Trees
= Trees at New Level: merge region = Trees at New Level: merge region
g Trees at New Level: watershed transformation (9) Trees at New Level: watershed transformation (7)
OO‘ Trees at New Level: closing: Trees E,:‘ Trees at New Level: closing: Trees
ﬁl Trees with Roundness >= 1.1 at New Level: remove objects (merge by shape) il Trees with Roundness >= 1.1 at New Level: remove objects (merge by shape
Trees at New Level: export object shapes to Trees Trees at New Level: export object shapes to Trees

*= 20 [shape:0.5 compct.0.5] creating ‘New Level'
2L with Brightness < 3575 at New Level: shandow ¢
v shandow at New Level: merge region
%L with Brightness >= 3575 and Brightness < 65000 at New Level: Trees
v Trees at New Level: merge region
= Trees at New Level: watershed transformation (7)

Cd Trees at New Level: closing: Trees
Gl Trees with Roundness >= 1.1 at New Level: remove objects (merge by shape)
Trees at New Level: export object shapes to Trees

Different rule sets used at different resolutions for UAV_RGB: a) Rule set for 10 cm and 20 cm, b) Rule set for 40 cm and 50 cm and ¢) Rule set for 30cm.
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Edit Process UAV_RGB Multiresolution algorithm description at 10cm and 20cm resolution
Name Algonthm Description
i+ Apply an opbmization procedure which locally minimizes the average heterogenerty of
| Automatic Ij image objects for a given resolution.
25 [shape:0.5 compct:0.5] creating ‘Mew Laval' Algorithm pafameters
Parameter Value
l Ovenwrite existing level Yes
4 Level Settings
Domain Level Name New Level
pixel level . Compatibility mode latest version
= + 4 Segmentation Setlings
ararlnle1er — Image Layer weights 1,.4.1.0.0
Concliion Thematic Layer usage
Map il i Scale parameter 25
4 Composition of homogeneity criterion
Shape 05
Compaciness 05
; 9 g q o0 ? x
Edit Process UAV_RGB Multiresolution algorithm description at 30cm

Mame

Algorithm Description

Apply an optimization procedure which locally minimizes the average heterogeneity of

¥| Automatic image objects for a given resolution.

E

20 [shape:0.5 compct 0.5] creating "New Lewvel'

Algorithm pafameters
Parameter Value
ution segmentation i Overwrite existing level Yes
4 Level Settings
Domain Level Name MNew Level
pixel level . Compatibility mode latest version
4 Segmentation Setlings
e L Image Layer weights 1.41.0.0
Concon Thematic Layer usage
Map From Parent Scale parameter 20
4 Composition of homogeneity criterion
Shape 05
Compaciness 05
Edit Process UAV_RGB Multiresolution algorithm description at 40cm and 50cm !
MName Algonthm Description
0 IE Apply an optimization procedure which locally minimizes the average heterogeneity of
image objects for a given resalution.

15 [shape:0.5 compct:0.5] creating 'New Leveal' Algorithm pafameters

&lgorithm Parametear Value
on segmenteation i Owverwrite existing level Yes
4 Level Sefttings
Domain Level Mame MNew Level
pixel level . Compatibility mode latest version
4 Segmentation Settings
Parameter Value Wiy Lisyer weights 14.1.0.0
Condiion Thematic Layer usage
Map From Parant Scale parameter 15
4 Compoesition of homogeneity criterion
Shape 05
Compactness 05
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Process Tree - (Pleiades-50cm_dcp, v.0)

- = Segmentation
3= 10 [shape:0.5 compct:0.5] creating ‘New Level'
PL with Brightness < 333 at New Level: shandow
 shandow at New Level: merge region
ML with Brightness >= 333 at New Level: Trees
= Trees at New Level: merge region
&= Trees at New Level: watershed transformation (5)
Cd Trees at New Level: closing: Trees
i] Trees with Roundness >= 1.1 at New Level: remove objects (merge by shape)
Trees at New Level: export object shapes to Trees_plot41

5 ki
Edit Process E
Name Algonthm Description
2 Apply an optimization procedure which locally the g g y of
~| Automatic B image objects for a given resolution
10 [shape:0.5 compct 0.5] creating ‘New Level' Algorithm parameters
Algorithm Parameter Value
multiresolution segmentatior - Overwrite existing level Yes
4 Level Settings
Domain Level Name New Level
pixel level - Compatibility mode latest version
4 Segmentation Settings
Parameter Ul I Image Layer weights 1.1.1.4.0
Condition — ' Thematic Layer usage
Map From Parent Scale parameter 10
4 Composition of homogeneity criteri
Shape 05
Compactness 05

Loops & Cycles
v Loop while something changes only

Number of cycles 1 .

Rule sets and algorithm descriptions used for Pleiades at 50 cm.
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Appendix 2. Summary of Pix4D photogrammetry initial report

Project B45
Processed 2020-09-29 10:58:03
Camera Model Name(s) FC330_3.6_4000x3000 (RGB)
Awerage Ground Sampling Distance (GSD) 449em/1.77in
Area Covered 0.575km? /57 5429 ha/0.22 sq. mi. / 1422651 acres
Time for Initial Processing (without report) 53m:49s
Quality Check i )
@ Images median of 58179 keypoints perimage °
@ Dataset 1470 out of 1470 images calibrated (100%), all images enabled °
@ Camera Optimization 0% relative difference between initial and optimized internal camera parameters °
@) Matching median of 5730.64 matches per calibrated image (V)
@&aﬂemmhg yes, 9 GCPs (9 3D), mean RMS error =0.011m °
@ Preview 0
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Project Blockd MS2
Processed 2020-11-16 15:34:54
Sequoia_4.0_1280x960 (Green), Sequoia_4.0_1280x960 (Red), Sequoia_4.0_1280x960 (Red edge),

Camera Nodst Neme(s) Sequoia_4.0_1280x960 (NIR)
Rig name(s) «Sequoia»
Average Ground Sampling :
Distance (GSD) 11.20cm/441in
Area Covered 0.321km?2/32.1197 ha/0.12 sq. mi./ 79.4107 acres
Quality Check (i ]
@ Images median of 10000 keypoints perimage °
@ Dataset 4400 out of 4400 images calibrated (100%), all images enabled °
@ Camera Optimization 0.04% relative difference between initial and optimized internal camera parameters °
@ Matching median of 5089 .4 matches per calibrated image °
@Mmming yes, 10 GCPs (10 3D), mean RMS error =0.085 m °
@ Preview 0
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Project Block5_MS
Processed 2020-11-20 17:58:40
Sequoia_4.0_1280xX960 (Green), Sequoia_4.0_1280x960 (Red), Sequoia_4.0_1280x960 (Red edge),
Carmern Model Names) Sequoia_4.0_1280x960 (NIR)
Rig name(s) «Sequoia»
Awerage Ground Sampling :
Distance (GSD) 11.41cm/449in
Area Covered 0.356 km? /35.5594 ha/ 0.14 sq. mi./ 87.9146 acres
Quality Check i ]
@ Images median of 10000 keypoints per image °
@ Dataset 3468 out of 3496 images calibrated (99%), all images enabled °
@ Camera Optimization 0.03% relative difference between initial and optimized internal camera parameters °
@ Matching median of 4796.65 matches per calibrated image °
@&aﬁemm yes, 6 GCPs (6 3D), mean RMS error =0.07 m °
@ Preview 0
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Project mish
Processed 2021-05-30 02:27:27
Camera Model Name(s) FC330_3.6_4000x3000 (RGB)
Average Ground Sampling Distance (GSD) 441em/174in
Area Covered 0.274 km? /27 4437 ha/0.11 sq. mi./ 67.8500 acres
Time for Initial Processing (without report) 04m:55s
Quality Check i ]
® Images median of 57501 keypoints perimage (@)
@ Dataset 187 out of 198 images calibrated (94%), all images enabled, 4 blocks A
@ Camera Optimization 0.41% relative difference between initial and optimized internal camera parameters °
® Matching median of 4071.09 matches per calibrated image (V)
@Mnm yes, 4 GCPs (4 3D), mean RMS error =0.006 m °
@ Preview 0
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Project block9 MS
Processed 2021-01-01 00:52:11
Sequoia_4.0_ 1280860 (Green), Sequoia_4.0_1280x960 (Red), Sequoia_4.0_1280x960 (Red edge),

Camera Model Name(s) Sequoia_4.0_1280»960 (NIR)
Rig name(s) «Sequoia»
Awerage Ground Sampling S
Distance (GSD) 10.06cm/3.96in
Area Covered 0.411 km?/41.0921 ha/0.16 sq. mi./ 101.5934 acres
Time for Initial Processing 5
; 06h:30m:07:
(without report) 2
Ruality Check (5 )
@imgos median of 10000 keypoints per image °
@Muﬁ 5588 out of 5788 images calibrated (96%), 28 images disabled, 3 blocks A
@Cﬂmm%iuﬁm 0% relative difference between initial and optimized intemal camera parameters °
@ Matching median of 3844.34 matches per calibrated image Q
@ Georeferencing yes, 3 GCPs (3 3D), mean RMS emor =0.287 m A
® Preview 0o
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Appendix 3. AGB per plot (mg) at different spatial resolutions

10cm spatial resolution

30

AGB per plot (mg)
= =
o «

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m Field AGB_f 8.325 10.17 21.69 11.008 7.461 10.36312.065 9.772 8.628 7.103 29.678 8.655 7.393 14.901 7.642 8.814 9.615 10.209 9.78 12.062
@ UAV_RGB - AGB 8.94 8.822 13.376 9.296 9.736 11.12812.126 9.707 9.896 9.923 22.28112.181 5.426 13.50111.93510.791 7.151 9.973 10.84813.132

HUAV_RGB-AGB 7.873 9.192 14 9.999 10.12610.15810.262 9.516 10.52 10.91425.59211.554 5.812 17.181 9.686 10.991 5.819 10.19410.40515.416

20 cm spatial resolution

30
25
20
w
E
pw
o
2 15
o
@
(=3
]
2 10
0
1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20
WField -AGBf 8325 10.17 21.69 11.01 7.461 10.36 12.07 9.772 8.628 7.103 29.68 8.655 7.393 14.9 7.642 8.814 9.615 10.21 9.78 12.06

= UAV_RGB - AGB 8.257 9.113 12.28 10.33 10.58 11.3 14.3 9.807 8.772 10.55 25.08 12.11 5.389 17.51 12.17 12.37 7.325 11.02 13.39 14.07
mUAV_MS-AGB 9.115 8.79 14.78 9.944 13.14 11.13 13.19 9.892 9.907 9.99 21.08 13.12 5.695 15.82 12.35 11.61 6.704 10.34 11.32 13.28

30 cm spatial resolution

30

25

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

H Field -AGB-f 8.325 10.17 21.69 11.008 7.461 10.36312.065 9.772 8.628 7.103 29.678 8.655 7.393 14.9017.642 8.814 9.61510.209 9.78 12.062
W UAV_RGB - AGB 9.687 8.25 10.8099.992 10.90610.73311.07910.155 9.643 9.878 20.06411.166 5.415 15.57413.10712.141 7.519 10.683 12.9 13.985
mUAV_MS - AGB  8.595 9.813 16.324 9.705 10.84611.05211.36110.866 10.52 11.04324.06411.604 6.011 16.58410.62712.219 7.126 11.05912.09215.872

AGB per plot (mg)
=
(%]

=
(=]

AGB-field: AGB estimated from the field.
MS-Band weight 1,1,1,4 (R,G,B,NIR): AGB estimated from segmentation process influenced by near-infrared band.

RGB-Band weight 1,4,1,0,0 (R,G,B,NIR): AGB estimated from segmentation process influenced by green band.
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40 cm spatial resolution

30
25
@
oo
k]
s
5 15
o
[--]
2
10
0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
mField -AGB-f  8.325 10.17 21.69 11.008 7.461 10.36312.065 9.772 8.628 7.103 29.678 8.655 7.393 14.901 7.642 8.814 9.61510.209 9.78 12.062

UAV_RGB - AGB 7.508 8.709 12.76911.677 9.614 10.366 9.971 9.576 9.58 10.03720.62311.301 5.453 14.19912.57913.177 7.193 10.98613.73514.135
®mUAV_MS-AGB 9.936 10.68715.068 10.55 12.84911.147 7.247 10.97910.61510.02926.81712.132 5.867 13.02512.75712.461 7.085 10.71712.61217.043

AGB-field: AGB estimated from the field.
MS-Band weight 1,1,1,4 (R,G,B,NIR): AGB estimated from segmentation process influenced by near-infrared band.
RGB-Band weiaht 1.4.1.0.0 (R.G.B.NIR): AGB estimated from seamentation process influenced bv areen band.

50 cm spatial resolution
30

25
20

15

10
0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

H Field -AGB-f 8.325 10.17 21.69 11.01 7.461 10.36 12.07 9.772 8.628 7.103 29.68 8.655 7.393 14.9 7.642 8.814 9.615 10.21 9.78 12.06

UAV_RGB - AGB 8.962 9.546 8.756 11.04 14.17 10.62 8.271 10.22 11.16 11.04 19.41 12.58 5.748 11.16 13.14 12.53 7.186 11.94 13.12 14.17
®UAV_MS-AGB 10.07 10.32 15.57 10.95 17.4 11.84 8.85 13.47 11.22 11.12 24.58 13.12 6.05 15.83 13.19 12.11 7.12 12.72 13.96 14.61
6.593 9.775 12.22 9.533 10.28 10.37 11.61 9.305 9.457 10.66 21.39 11.52 6.459 12.75 14.32 11.6 6.902 11.01 11.86 15.09

AGB per plot (mg)

Pleiades

AGB-field: AGB estimated from the field.
MS-Band weight 1,1,1,4 (R,G,B,NIR): AGB estimated from segmentation process influenced by near-infrared band.

RGB-Band weight 1,4,1,0,0 (R,G,B,NIR): AGB estimated from segmentation process influenced by green band.
Pleiades-Band weight 1,1,1,4 (R,G,B,NIR): AGB estimated from segmentation process influenced by near-infrared

band.
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Appendix 4. Data sheet for forest tree parameters in Haagse Bos

Tree position

Observer name: Date: Plot #:
Central point X Y
Plot radius:
Forest density: Dense Medium Low
General comment:
Tree # Species DBH Crown Comment
(cm) | diameter (m)

N-S |W-E

Distance from
centre point (m)

Compass bearing
(degrees)
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