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 ABSTRACT 
 

Forests play an important role in mitigating climate change because they act as both a carbon sink and a 

carbon source. Climate change is putting increasing pressure on the forest ecosystems of European forests. 

Most of the carbon is stored in the forest Aboveground biomass (AGB), which is used in carbon inventory 

and mitigation and as an essential climate variable and a critical input to the United Nations' Reducing 

Emissions from Deforestation and Degradation-plus (REDD+) program. 50% of dry forest AGB 

represents carbon; therefore, accurate estimation of forest AGB is a vital step in monitoring carbon stocks 

and changes in the forest. The effective and accurate estimation of forest AGB is one of the most 

challenging tasks; finding a reliable and accurate method to estimate forest AGB is critical. 

Remote sensing is well-placed to provide accurate, realistic, and cost-effective AGB estimates with large 

spatial and multi-temporal observation. Unmanned Aerial Vehicle (UAV) is less expensive, provides reliable 

data quality, and multitemporal capturing of forest parameters at a very high spatial resolution. The satellite 

data (Pleiades) is readily available with huge datasets archived, large spatial coverage, provide consistent 

spatial data, repetitive with high revisit time (daily), as well as a relatively cost-effective way of biomass 

estimation at a large scale. 

This research aimed to extract the crown projection area (CPA) of individual trees in a coniferous forest 

through Object-Based Image Analysis (OBIA) of UAV and Pleiades satellite images with different spatial 

resolutions (10 cm, 20 cm, 30 cm, 40 cm, and 50 cm) and band combinations (1,1,1,4 –UAV_MS, 1,4,1,0 

–UAV_RGB and 1,1,1,4 – Pleiades); investigate if variations in the extracted CPA leads to significant 

differences in AGB estimates. The fieldwork was carried out between August 2020, and October 2020. 

Pleiades satellite image was acquired on  August 22, 2019.  The UAV_MS and UAV_RGB images were 

acquired in August 2020 and September 2020 using the Phantom 4 drone. 

The t-test results showed that means of the UAV_MS and UAV_RGB modelled AGB (AGB-est) per tree 

at 10 cm spatial resolution were not significantly different from means of the field estimated AGB (AGB-

f) per tree. At 20 cm and 30 cm spatial resolutions, the means of the field estimated AGB-f per tree were 

also not significantly different from the means of the AGB-est per tree estimated with UAV_MS, but 

significantly different from the means of AGB-est per tree estimated with UAV_RGB. The means of field 

estimated AGB-f per tree were significantly different from the means of AGB-est per tree from both 

UAV_MS and UAV_RGB at 40 cm and 50 cm resolutions as well as Pleiades at 50 cm spatial resolution.  

 

The t-test results for AGB per plot (500 m2), showed that there were no significant differences between the 

means of the AGB-f per plot and the means of AGB-est per plot estimated from UAV_RGB and UAV_MS 

at 10 cm, 20 cm, 30 cm, 40 cm, and 50 cm as well as Pleiades at 50 cm spatial resolution.  

It was concluded that the AGB per tree could be accurately estimated at 10 cm spatial resolution with 

UAV_MS and UAV_RGB, as well as at 20 cm and 30 cm spatial resolution with UAV_MS. The AGB per 

plot could be estimated with reasonable accuracy using UAV_RGB and UAV_MS at 10 cm, 20 cm, 30 cm, 

40 cm, and 50 cm spatial resolutions as well as Pleiades at 50 cm spatial resolution. 

 

 

Key words: Aboveground biomass, Crown Projection Area, Object-Based Image Analysis, Unmanned  

                    Ariel Vehicle, Pleiades, Near infrared band, green band, spatial resolution, and band  

                   combinations.  
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 ACRONYMS 
 

3D  3 - Dimension  

3x3 LPF 3 x 3 low pass filter   

AGB  Aboveground Biomass   

CDM  Clean Development Mechanism   

COP 15  Conference of parties 15   

CPA  Crown Projection Area  

DBH  Diameter at Breast Height   

DGPS  Differential Global Positioning System   

ESA  European Space Agency   

EU  European Union   

GCOS  The Global Climate Observing System   

GCPs  Ground Control Points  

ha  Hectare  

 kg  Kilogram  

LiDAR  Light Detecting and Ranging   

m2                      Meter squared. 

MRV  Measurement, Reporting and Verification   

NIR  Near Infrared band  

OBIA  Object-Based Image Analysis   

RADAR Radio Detecting and Ranging   

REDD+ Reducing Emissions from Deforestation and Degradation-plus   

RGB                   Red-Green-Blue bands 

RMSE  Root Mean Square Error  

MS                    Multispectral sensor    

rRMSE  Relative Root Mean Square Error  

SEEA EEA System of Environmental-Economic Accounting-Experimental Ecosystem Accounting 

UAV  Unmanned Ariel Vehicle  

UNFCCC United Nations Framework Convention on Climate Change   

VHR  Very High Resolution  
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1. INTRODUCTION 
 

1.1 Background 

The earth's forests cover approximately 30 percent of the land (Food and Agriculture Organization, 

2015). Forests play a crucial role in mitigating the earth's climate change because it acts as both a 

carbon sink and source. On the one hand, the forest acts as a sink by absorbing carbon dioxide from 

the atmosphere and converting it into living biomass stored in terrestrial carbon sinks. These carbon 

sinks include tree trunks, roots, branches, and leaves. Geographically, 54 percent of global forest 

carbon is stored in a tropical forest, 32 percent in the boreal forest, and 14 percent in temperate 

forests (Brack, 2019). On the other hand, the chopping or burning of trees for cropland, pasture, 

infrastructure, among others, will release the stored carbon into the atmosphere (Watson et al., 2000; 

Ciais et al., 2013). 

  

There are five carbon pools of terrestrial biomass ecosystem, namely, the Aboveground biomass 

(AGB), Belowground biomass, the dead mass litter, wood debris, and soil organic matter. The carbon 

dioxide that is fixed in the trees during photosynthesis is transported across the five different carbon 

pools. The majority of carbon dioxide is stored in the AGB carbon pool. Therefore, AGB is the most 

important carbon pool of the terrestrial forest ecosystem, and it has since been given the highest 

importance in carbon inventory and mitigation projects such as afforestation and reforestation Clean 

Development Mechanism (CDM) under Kyoto Protocol (Gytarsky, Kurz, Ogle, Richards, & 

Somogyi, 2006; Ravindranath.N.H. & Ostwald, 2008). The Global Climate Observing System 

(GCOS) has acknowledged the fact that forest AGB is an essential climate variable and a critical input 

to the United Nations' Reducing Emissions from Deforestation and Degradation-plus (REDD+) 

program; however, one of the greatest challenges of REDD+ is the effective and accurate estimation 

of forest biomass (Kankare et al., 2013). 

 

The European Union (EU) member states' forest ecosystem is under increasing pressure because of 

climate change; therefore, the European Commission has set up a set of policy initiatives (European 

Green Deal) for the EU and its citizens. The European Green Deal aims to tackle climate change 

and make Europe climate-neutral and a healthy environment in 2050 by promoting innovative 

technologies such as carbon capture, storage, and utilization. The policy encourages forest managers 

to preserve, grow and manage the forest sustainably, as well as emphasizes the role that European 

forest sustainable management has in the fight against climate change (The European Green Deal, 

2020; European Commission, 2019).  

 

In 2013, the United Nations Statistical Commission endorsed the System of Environmental-

Economic Accounting-Experimental Ecosystem Accounting (SEEA EEA) as a basis for testing and 

development of national carbon accounting. In line with the guidelines provided by SEEA-EEA, in 

2016, the Netherlands embarked on the natural capital accounting project to allow for the consistent 

and quantitative comparison of carbon stocks and flows in reservoirs such as organic carbon stored 

in forest biomass (SEEA Experimental Ecosystem Accounting Revision | System of Environmental-

Economic Accounting, 2020; Lof et al., 2017). 

 

It should be noted that the total forest AGB is linked to the amount of carbon stored in the forest 

vegetation as research shows that about fifty percent (50 %) of dry forest biomass is carbon; thus, 

accurate estimation of forest AGB is a very critical step in measuring carbon stocks as well as its 

fluctuations in the forest (Penman et al., 2003; Saatchi et al., 2011).  Therefore, finding a reliable and 

accurate method that can be used to estimate the forest AGB accurately is important for sustainable 
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forest management, climate change mitigation, greenhouse gas inventories, and global and national 

carbon accounting, as well as the implementation of both the European Green Deal policy and Kyoto 

Protocol of the United Nations Framework Convention on Climate Change (UNFCCC) (Duncanson 

et al., 2019; Herold et al., 2019; The European Green Deal, 2020 and Nichol & Sarker, 2011).  

 

The review paper on the methods to estimate AGB and carbon stock in natural forests by (Vashum, 

2012) stated that remote sensing could be able to overcome the numerous challenges faced by 

conventional methods as well as the only realistic and cost-effective method of acquiring forest data 

with large spatial and temporal coverage. Also,  remote sensing technologies are vital methods that 

could be used for regular forest monitoring with large spatial coverage and multi-temporal 

observation, thereby providing a synoptic view over large areas and significantly increase the 

efficiency of conventional methods of AGB estimation (Calders, Jonckheere, Nightingale, & 

Vastaranta, 2020; Romijn, Herold, Kooistra, Murdiyarso, & Verchot, 2012 and Patenaude, Milne, & 

Dawson, 2005). In addition, Hirata, Takao, Sato, & Toriyama (2012) explained that in the 

implementation of REDD+, accurate measurement, reporting, and verification (MRV) of forest 

carbon stocks is essential to ensure transparency in issuing economic incentives; a guidance for the 

methodology determined by the conference of parties 15 (COP 15) under UNFCCC recommended 

a monitoring system that can combine remote sensing with ground-based inventory to estimate the 

balance of forest carbon storks.  

 

There has been an increase in the availability of remote sensing imagery with different spectral, 

radiometric, temporal, and spatial resolution details, which has been used of late to non-destructively 

estimate forest parameters such as crown projection area (CPA), tree height, diameter at breast height 

(DBH); these parameters are used in regression models to estimate AGB with the help of allometric 

equations  (Gibbs, Brown, Niles, & Foley, 2007). The allometric equation is the mathematical relation 

between AGB and its DBH or both DBH and tree height; it is a standard equation used for non-

destructive estimation of AGB. The tree CPA can be directly estimated by remote sensing while DBH 

can not be directly estimated; thus, the CPA is used as a proxy for the DBH. This is because the 

DBH can be estimated from CPA using statistical models to establish the correlation between field 

measured DBH and remotely sensed estimated CPA (Chave et al., 2014; Kumar & Mutanga, 2017 

and Pizaña, Hernández, & Romero, 2016). 

 

The status of forest biomass can be managed and monitored by using two methods, namely, in-situ 

forest inventories and remote sensing methods. In-situ forest inventory is the most conventional and 

accurate method for estimating AGB; however, it is very strenuous, expensive, destructive, unable to 

assess abrupt short-term forest change and has very limited temporal and spatial coverage; in some 

cases where the area is too remote to be accessed, it is not applicable (Lausch et al., 2017; Vashum 

2012). A review of approaches and data models on understanding forest health with remote sensing 

by Lausch et al. (2017) concluded that remote sensing methods are more suitable and sustainable in 

monitoring forest conditions compared to the in-situ inventory. Boyd & Danson (2005) also 

mentioned that remote sensing is well-placed to provide accurate and detailed information about the 

spatial extent of the forest cover, forest type, and condition leading to improved monitoring of forest 

biomass.  

 

 

 



 

ASSESSMENT OF THE EFFECT OF UAV AND PLEIADES SPATIAL RESOLUTION AND BAND COMBINATION ON BIOMASS ESTIMATION IN HAAGSE BOS, THE NETHERLANDS. 

 

3 | P a g e  
 

1.2. Remote sensing sensors 

There are two types of remote sensing sensors used for forest parameter estimation, namely, active, 

and passive sensors, each with different characteristics of spectral, radiometric, temporal, and spatial 

resolution details as well as different strengths and weaknesses. Active sensors include Radio 

Detecting and Ranging (RADAR) and Light Detecting and Ranging (LiDAR), passive sensors include 

optical sensors (Mitchard, 2016; Sinha, Jeganathan, Sharma, & Nathawat, 2015). 

 Active Sensors  

RADAR has been used to estimate forest AGB as well as the mapping of forest degradation. RADAR 

sensors can operate in all weather conditions and without obstruction from clouds and smoke 

(Rignot, Salas, & Skole, 1997). However, RADAR sensors are less precise in thick tree canopies of 

the older forests as they experience signal saturation (Joshi et al.,2017).  Also, using RADAR to 

estimate AGB in mountainous or hilly terrain increases errors. Furthermore, RADAR data is usually 

expensive and technically demanding (Gibbs et al., 2007).  

LiDAR has also been used to estimate the forest aboveground biomass and degradation (Mutwiri, 

Odera, & Kinyanjui, 2017). However, most LiDAR data commercially available is very expensive and 

technically demanding and requires extensive field data for calibration (Mitchard, 2016; Gibbs et al., 

2007). 

Passive Sensors  

Optical remote sensing has been operational for more than three decades. Optical satellite data is 

collected routinely, very consistent, and available at both local and global scales, and the data has 

been used for AGB estimation  (Gibbs et al., 2007; Asner, 2001). Satellite optical spatial resolution is 

divided into low (above 100 m), medium (between 10 m to 100 m), and high (less than 10 m). High 

resolution is further subdivided into high (5 m to less than 10  m) and very high (less than 5 m) 

(Fernández-Manso, Fernández-Manso, & Quintano, 2014; Lu, 2006). However, Navulur (2006) 

defined different spatial resolution as follows; low resolution above 30 m, medium resolution as a 

range of 2 m to 30 m, high resolution as above 0.5 m to 2 m, and very high resolution as 0.5 m and 

below. Sousa, Gonçalves, & da Silva (2017), in their review on the recent methods to estimate forest 

aboveground biomass using remote sensing data, stated that estimating forest parameters using low 

(above 100 m) and medium (between 10 m to 100 m) spatial resolution images is not possible because 

the pixel size does not allow the separation of the individual trees thereby making it difficult to 

identify and delineate individual tree crowns. The author concluded that high spatial resolution 

images overcome this challenge and can estimate aboveground biomass using forest parameters at 

both local and regional scales. Furthermore, Noorian et al. (2016) added that even though medium 

spatial resolution imagery has been the most used data for forest parameters estimation so far, high 

spatial resolution imagery leads to more accurate estimation of forest parameters as they can detect 

and recognize the spectral reflectance of the canopy crown and usually have fewer mixed pixels.  

 

The literature review on the use of very high-resolution images shows that four sensors have mostly 

been used for forest AGB estimation; these sensors include IKONOS, Quickbird, Worldview and 

Pleiades.  Recently, very high-resolution sensors contribute up to 20% of the studies on forest AGB 

estimation (Issa, Dahy, Ksiksi, & Saleous, 2020; Sousa et al., 2017 and Maack et al., 2015). The 

Pleiades provides very high-resolution imagery (50cm) and  information in record time with daily 

revisit time to any point on earth, making it ideal for large scale area mapping of forest biomass 

(Pleiades-Satellite Sensor | Satellite Imaging Corp, 2021). Maack et al. (2015) examined if the 

combination of photogrammetric, textural, and spectral information derived from very high 

resolution (the Pleiades and worldview-2 sensors) could improve the accuracy of forest biomass 

estimation across two tests sites in Chile and Germany. It was observed that for both sensors, the 
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combination of photogrammetric information with either spectral or texture information with more 

field plots improves the accuracy of forest biomass estimation. Song et al. (2010) used Quickbird and 

IKONOS images to investigate the potential of using a different spatial resolution to estimate forest 

parameters in Ohio, USA, and Duke Forest in North Carolina Piedmont, USA. The paper concluded 

that the use of models to estimate tree crowns using image variance at different spatial resolutions 

can be generalized and applied across sensors and study sites.  

 

The Unmanned Ariel Vehicle (UAV) spatial resolution is affected by the flight altitude; the lower the 

flight altitude, the higher the spatial resolution, but the lower the spatial coverage and vice versa 

(Borra-Serrano, Peña, Torres-Sánchez, Mesas-Carrascosa, & López-Granados, 2015; Whitehead & 

Hugenholtz, 2014). Research by Okojie (2017) was conducted in Ahaus, Germany, on forest tree 

parameter extractability from the UAV-RGB data set. In his research, the Object-Based Image 

Analysis (OBIA) technique was used to evaluate the extractability of tree CPA at six different spatial 

(resampled) resolutions (4.8 cm, 10 cm, 15 cm, 20 cm, 25 cm, and 30 cm) to determine the optimal 

resolution for tree CPA extraction.  

 

1.3. Remote sensing platforms 

Sensors can be mounted on three commonly used remote sensing platforms: Aircraft, Unmanned 

Aerial Vehicle (UAV), and satellite. Aircraft mounted with Optical, LiDAR, and RADAR sensors 

have been used for biomass estimation. However, high-cost maintenance, complex data acquisition, 

lack of free manoeuvre, inability to fly at low altitudes, and close to the object limit the application 

of Aircraft in biomass estimation (Mitchard, 2016; Yang et al., 2017 and Lu et al., 2019).  

UAV has been used at the local scale estimation of forest biomass. The rise in the use of cheap UAV 

since 2011 in forest monitoring and research has made it possible to successfully capture data 

frequently at high resolution over the area of interest, and With UAV, a survey can be repeated as 

often as required using the same sensor at reduced data collection costs compared to Aircraft based 

data (Mitchard, 2016). Lausch et al. (2017) also added that UAVs could carry various forms of sensor 

types, thus contributing to a more complete, quick, less expensive, reliable data quality, and 

multitemporal capturing of forest parameters a very high resolution. The satellite platform 

(spaceborne system) is the most used in AGB estimation because it is readily available with huge 

datasets archived, large spatial coverage, provide consistent spatial data, repetitive with high revisit 

time, as well as a relatively cost-effective way of biomass estimation at large scale (Kumar, Sinha, 

Taylor, & Alqurashi, 2015; Issa, Dahy, Ksiksi, & Saleous, 2020).  

 

1.3. Band combinations  

Sensors have a different number of bands and band widths, and each band is narrowly focused on a 

just particular range of the electromagnetic spectrum which is sensitive to a specific feature on the 

ground; this makes forest parameters and spectral signatures respond differently to different band 

combinations (Xue & Su, 2017). In this research, the following sensor bands were used: Pleiades with 

four bands (Blue = 430 – 550 nm, Green = 490 – 610 nm, Red = 600 – 720 nm, and Near-Infrared 

= 750 nm – 950 nm), and UAV: parrot sequoia which is a multispectral sensor (MS) with four bands 

(Green= 530 – 570 nm, Red 640 – 680 nm, Red Edge = 730 – 740 nm, Near infrared (NIR) = 770 

– 810 nm) and Phantom 4 camera (RGB) with 3 bands ( Blue = 455 to 492 nm, Green = 492 – 577 

nm, Red = 622 – 780 nm)  (Holman, Riche, Castle, Wooster, & Hawkesford, 2019; Wang et al., 2018 

and Carrasco-Escobar et al., 2019). 

 

The Red band is one of the most important bands for vegetation discrimination as it focuses on the 

absorption of red light by chlorophyll in plants. The Green band is strongly correlated with 

chlorophyll and focuses specifically on the peak reflectance of plants. The green is ideal for 
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discriminating between types of plant materials.  Plant’s chlorophyll and carotenoid absorption are  

associated with the blue band. Therefore, the band is useful in discriminating within the groups of 

conifers and between conifers and broadleaf species based on their leaf's senescence. (Elhabiby, 

Elsharkawy, & El-Sheimy, 2012; Alonzo, Bookhagen, & Roberts, 2014). The Near-infrared band is 

very effective in estimating plant biomass and helps to separate other objects from vegetation 

effectively and identify types of vegetation. Combining these individual bands improves image 

segmentation and plant classification (Elhabiby, Elsharkawy, & El-Sheimy, 2012; Hennessy, Clarke, 

& Lewis, 2020). 

 

1.4. Conceptual diagram  

Figure 1 shows the conceptual diagram of this research showing the relevant key system concepts 

and data requirements and application. The system boundary is Haagse Bos, the Netherlands. Remote 

sensing (UAV and Pleiades) which is outside the system was used to estimate the systems’ elements 

(trees) parameters which were validated by field measurements.  Various stakeholders such as private 

owners and non-governmental organisations (NGOs) and the government manage the forest.  

 

 
Figure 1: Conceptual diagram 
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1.5. Research problem  

Forests are of great importance, as earlier alluded to in section 1.1. The total forest AGB is linked to 

the amount of carbon stored in the forest vegetation. The estimation of AGB can be done using 

different sensors with different spatial resolutions and spectral bands (Lu & Batistella, 2005; Noorian 

et al., 2016 and Sousa et al., 2017).  Forest parameters and spectral signatures respond differently at 

different spatial resolutions and band combinations, which could significantly affect forest parameter 

and AGB estimation accuracy. However, there is scanty information, and little study has been done 

to systematically analyse how changing spatial resolution (resampling) and spectral band 

combinations would affect the accuracy of temperate coniferous forest parameters estimation and 

the subsequent effect on biomass estimation. Therefore, this research aims to extract the CPA of 

individual trees in a forest through image segmentation of UAV and Pleiades satellite images at 

different spatial resolutions and band combination; it will investigate if variations in the extracted 

CPA leads to lead to significant differences in AGB estimates. This will contribute to scientifically 

validated remote sensing-based methods for assessing and monitoring forest biomass and carbon 

sequestration. 

 

1.6. Research objectives 

1.6.1. Main objective 

The main objective of this thesis is to determine if the effect of different spatial resolutions and 

spectral band combinations of the Unmanned Aerial Vehicle and Pleiades satellite imagery on the 

accuracy of forest parameter estimation leads to significant differences in Above Ground Biomass 

estimation. 

 

1.6.2. Specific objectives 

1. To establish the relationship between field measured Diameter at Breast Height (DBH-f) 

and reference Crown Projection Area (CPA-r) from UAV-RGB.  

 

Research question (a): What is the relationship between DBH and CPA?  

 

2. To assess the accuracy of the automatic segmented Crown Projection Area (CPA-rs) from 

UAV (RGB and multispectral) and Pleiades at different spatial resolution and band 

combinations. 

 

Research question (a): What is the accuracy of the CPA-rs compared with  CPA-r. 

               

3. To estimate and assess the accuracy of the DBH using automatic segmented Crown 

Projection Area from UAV (RGB and multispectral), and Pleiades.  

 

Research question (a): What is the accuracy of the modelled Diameter at Breast Height (DBH-est) at  

                                   different spatial resolutions and band combinations compared to field       

                                   measured DBH. 

 

4. To determine if the differences in DBH derived from UAV (RGB and multispectral) and 

Pleiades will lead to significant differences in biomass estimations.  

 

 

Research question (a): Does the estimated Aboveground Biomass from UAV (RGB and  

                                  multispectral) and Pleiades differ significantly from the field estimated  

                                  Aboveground Biomass?                         
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1.6.3. Hypothesis 

1. Ho: The two reference CPA (manually digitized from orthophoto and plot Nadir images) have  

            the same relationship (R2 and RMSE) with field measured DBH. 

      H1: The manually digitized CPA from orthophoto has a better relationship (R2 and RMSE) with  

               field measured DBH than manually digitized CPA from Nadir plot images. 

 

2. Ho: Automatic segmented CPA from UAV (RGB and multispectral) and Pleiades have the same 

relationships (R2 and RMSE) with reference CPA. 

    H1: Automatic segmented CPA from UAV (RGB and multispectral) and Pleiades have different 

relationships (R2 and RMSE) with reference CPA. 

 

3.  Ho: Modelled DBH from UAV (RGB and multispectral) and Pleiades have the same     

             relationship (R2 and RMSE) with field measured DBH. 

     H1: Modelled DBH from UAV_ multispectral are more accurate (R2 and RMSE) than  

              UAV_RGB and Pleiades. 

 

4.  Ho: There is no significant difference between estimated AGB and field measured AGB.  

     H1: There is a significant difference between estimated AGB and field measured AGB. 
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2.0. MATERIALS AND METHODS 

2.1.  Study area 
The Haagse Bos is a semi-natural forest and has landscape and flora conditions which are 

characterized by different tree species (Oak, Beech, Birch, Larch, Douglas Fir, Scot’s pine, Spruce), 

different forest types (broadleaf deciduous trees, coniferous trees, and mixed trees) with different 

canopy density (open, medium, and high forest canopy densities). These different unique 

characteristics make it a suitable study area for this research. The forest is located in Enschede near 

Losser in the province of Overijssel, the Netherlands, and lies between latitude 52o16’39.21” N and 

52o14’55.22” N and longitude 6o56’26.80” E and 6o58’24.90” E (Haagse Bos (Overijssel) - Wikipedia, 

2018; Mohren & Vodde, 2006). The study area map is shown in figure 2. 

 

 
    Figure 2: Study area location 
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2.2. Sampling Design used 

The following criteria were considered in the sampling design; The flight areas were selected based 

on the availability of the open space for ground control points and as well as incorporation of the 

following required different forest structure variations; medium coniferous canopy density, high 

coniferous canopy density. High canopy density refers to forest type where tree crowns are 

interlocking, whereas medium canopy density refers to forest type where individual tree crowns are 

barely touching each other (López García, Prado Molina, Manzo Delgado, & Peralta Higuera, 2016). 

Considering all these parameters needs a non-probability method where the sample plot choice is 

based on the researcher’s judgment. Such kind of non-probability method was defined by Etikan 

(2016) as purposive sampling. The paper further stated that in this kind of method, a researcher 

selects elements to be included in the sample based on what is needed in the topic of study. Therefore, 

after an initial stratification on forest type, a purposive sampling design was used for this research for 

data collection in the field. 

 

2.3. Plot size 
A research which was conducted to study the combined effect of field plot size and LiDAR density 

on the estimation of forest parameters observed that plot size has a huge effect on the estimation of 

forest parameters; the paper concluded that minimum circular plots of 500 – 600 m2 are sufficient 

for estimation of AGB as larger plot sizes do not significantly improve the accuracy, but increase 

fieldwork cost (Ruiz, Hermosilla, Mauro, & Godino, 2014). Circular plots are better than square or 

rectangular plots because they only require a single control point compared with the four points 

needed for square and rectangular plots. Furthermore, it is very easy to decide on trees close to the 

plot boundary regarding which trees to include or exclude as circular plots have the shortest plot 

perimeter (Mcroberts, Tomppo, & Czaplewski, 2015; Paul, Kimberley, & Beets, 2019). Mauya et al. 

(2015) also added that circular plots are easy to outline and usually less prone to errors. Therefore, in 

this research, 500 m2 (radius 12.62 m) circular plots were used in flat terrain for field data collection. 

 

2.4. Field equipment 
Different field instruments and equipment were used in the field to measure forest parameters for 

the estimation of forest AGB. The fieldwork was carried out between September 5, 2020, and 

October 10, 2020. The field instruments used are listed in table 1. 

 

Table 1: Field instruments used. 

S/N Instruments/equipment Application 

1 Diameter tape (5 meters) Diameter at Breast height (1.3 m) measurement 

2 Measuring tape (30 meters) Tree distance from the plot centre  

3 Differential Global Positioning 

System (DGPS) 

GCPs coordinate acquisition. 

4 Garmin GPS Navigation and positioning 

5 Forest Range finder Tree distance from the plot centre 

6 Chalk Marking trees 

7 GLAMA Canopy closure/openness estimation 
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2.5. Field data collection and processing 
Various field data which were collected are listed in table 2 and 3. Field measured DBH (DBH-f) is 

a diameter of a tree stem mostly measured at 1.3 m height from the ground (Brokaw & Thompson, 

2000). Trees with DBH less than 10 cm were not considered because their biomass contribution is 

relatively small (Cummings, Boone Kauffman, Perry, & Flint Hughes, 2002; Hughes, Kauffman, & 

Jaramillo, 2000). DBH-f  ( greater than/equal to 10cm) was used to estimate field above ground 

biomass (reference biomass-AGB-f). Plot centre coordinates, tree distance from the plot centre and 

bearing of each tree were used to locate all the trees within the plots. Appendix 4 shows the data 

sheet used for tree parameters data collection. 

 
Table 2: Collected field data. 

S/N Data Source 

1 UAV RGB Images Phantom 4 (RGB camera) 

2 UAV multispectral Images Phantom 4 (Sequoia MSS camera) 

3 Tree DBH Field measured 

4 Tree Location Field measured 

5 Plot centre coordinates Field measured 

6 Distance and bearing of each tree from the plot centre Field measured 

7 Canopy density (Medium and Dense – 31 plots) Field measured 

8 Tree species (coniferous) Field identification 

 

Table 3: Types and number of coniferous tree species collected. 

Family  Species Count (Trees) Percentage 

Pinaceae Douglas fir  224 66.27 

European spruce  74 21.89 

Larch 29 8.58 

Scotch Pine 11 3.25 

Total  338 100 

 

2.6. UAV flight planning 
The images were collected using Phantom 4 (1/2.3" CMOS camera (RGB) and Sequoia MSS camera). 

The mission planning was done using the pix4D capture app, where flight parameters such as speed, 

angle, front and side overlap, and flight height were appropriately set.  

Various research shows that side and front overlaps are important for overall forest canopy sampling. 

A clear sky, 80% side photographic overlap, and 80 m of flying height result in a very high correlation 

of accurate forest parameters estimation (Dandois, Olano, & Ellis, 2015). It was also noted that the 

higher the front overlaps, the higher the possible views and view angle, leading to higher canopy 

penetration to the forest floor with high accuracy of forest parameter estimation. It was further noted 

that point cloud density is affected by view angle as point matching stability begins to decrease rapidly 

when the view angle exceeds 20 degrees off Nadir, which leads to a reduced sampling of the forest 

canopy, thereby increasing the errors in the estimation of forest canopy parameters (Hirschmugl, 

Ofner, Raggam, & Schardt, 2007; Ofner, Hirschmugl, Raggam, & Schardt, 2006 and Dandois et al., 

2015). Flight height is also a very important parameter of the UAV flight plan because it affects the 

spatial resolution of the UAV, as discussed earlier in section 1.2. above. Therefore, all these issues 

discussed above were taken into consideration to come up with an appropriate flight plan parameter 

combination in table 4 and figure 3. 
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Table 4: Flight plan parameters 
S/N Parameters  Value 

1 Speed Slow 

2 Angle Nadir (90o) 

3 Front overlap 90% 

4 Side overlap 80% 

5 Flight height 100-110 meters  

6 Flight pattern Double grid 

 

 
Figure 3: UAV flight plan. 

 

2.7. UAV data acquisition and processing 

The images were acquired in August and September 2020 using Phantom 4 drone carrying two 

sensors (RGB and MS). The acquired images were processed to generate a 3D point cloud and 

orthophoto using Pix4D mapper software. This software uses the principle of photogrammetry to 

process the UAV images in three steps: image orientation, 3D point cloud generation, and 

orthophoto generation. The software uses the ground control points (GCP) and checkpoints for 

image registration; GCPs are used for absolute orientation of the UAV images, whereas checkpoints 

are used for accuracy assessment as shown in figure 4 and appendix 2 (to be added) (Westoby, 

Brasington, Glasser, Hambrey, & Reynolds, 2012).  

 

  
Figure 4: Summary of Pix4D photogrammetry initial report. 
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The final product of the photogrammetry process was the RGB – orthophoto with a spatial 

resolution of 4.5 cm from phantom 4 camera and individual bands (Red, Green, red edge and Near-

infrared) orthophotos from sequoia camera with a spatial resolution of 11cm. Near-infrared band 

orthophoto and RGB - orthophoto were resampled to 10 cm spatial resolution and composited to 

produce a multispectral orthophoto with RGB-NIR bands with 10 cm spatial resolution, which was 

later resampled to 20 cm, 30 cm, 40 cm and 50 cm spatial resolutions. Resampling refers to changing 

the pixel dimensions of an image, as shown in figure 5.  

 

 

 
 

Baboo & Devi (2010) in the Coimbatore district, India, evaluated three resampling methods (Nearest 

Neighbour, Bilinear interpolation, and Cubic Convolution) to find out the effect of the three methods 

on the image pixel values. The paper concluded that: (a) Nearest neighbour methods preserve the 

original values, but the results can be blocky; therefore, this method can be best used for categorical 

data like classification of land use or slope. (b) Bilinear interpolation takes a 2x2 window with a 

weighted average, leading to producing an output with values that are slightly different from the 

nearest input but always within the range; because of this, it should not be used for categorical values 

but continuous data. (c) The Cubic convolution method takes a 4x4 window with a weighted average, 

leading to producing an output with values outside the input values; this method does well for 

smoothing continuous data. This research dealt with continuous data such as tree CPA and AGB 

values and needed values within the range even after resampling was performed on the images; 

therefore, the Bilinear interpolation method was used. The sample plots of interest were clipped from 

the resampled orthophotos in ArcMap using a 12.6m buffer (500 m2 plot size) from the plot centre 

coordinate; the clipped plots were loaded in eCognition for Object-Based Image Analysis (OBIA) to 

generate individual tree CPA (CPA-UAV) at different spatial resolution and band combinations. 

Clipped individual plots were used in the segmentation processing to reduce computational time.  

 
 

10cm 20cm 30cm 

40cm 50cm 

 

 Figure 5: Resampled images in true colour composite (1,2,3-RGB) 
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2.8. Very High-Resolution (VHR) imagery data 

A proposal was submitted to European Space Agency (ESA) on August 24, 2020, requesting for 

Pleiades satellite imagery (50 cm spatial resolution). Two suitable Pleiades images of August 22, 2019, 

and October 14, 2018, were available in the ESA archive. An orthorectified Pleiades satellite imagery 

of August 22, 2019, with four spectral bands (R, G, B, and NIR)) was acquired from Airbus through 

ESA and used in this research. Pleiades image was acquired a year earlier than UAV images; therefore, 

13.2 mg/hectare (ha) of AGB was added to the mean AGB-est per hectare (ha) of Pleiades because  

maximum temperate forest annual carbon sequestration is 6.6 mg/ha (2 * Carbon = AGB) (Valentini 

et al., 2000).  

 

2.8.1 Pre-processing of satellite image 

Before image segmentation, noise (spatial image variations) reduction through image smoothing was 

applied to the image to avoid over-segmentation.  A mean filter with 3 x 3 window sizes i.e., low pass 

filter (3x3 LPF) was applied to the image in Erdas Imagine 2020. This filter was used because it 

produces more homogenous image segments by smoothing the image data to eliminate noise, thereby 

avoiding over-segmentation  (Gougeon & Leckie, 2006; Platt & Schoennagel, 2009).  

 

2.9. Object-Based Image Analysis (OBIA) 

Object-based image analysis (OBIA) is an image analysis technique used to identify and classify 

objects through a process of pattern recognition. Once an image raster is segmented, the object can 

be classified using analyst defined rules. Features such as shape, size, and texture and not just spectral 

features are used to drive the classification (Halabisky, Babcock, & Moskal, 2018; Veljanovski, Kanjir, 

& Oštir, 2011). OBIA comprises of two main parts, which include image segmentation: where an 

image is divided into adjacent and homogenous groups of pixels to form image objects based on 

homogeneity criteria, and Image objects classification based on spectral, textural as well as shape 

information (Baral, 2016). 

 

Image segmentation 

During the segmentation procedure, the region-based segmentation (multi-resolution segmentation) 

technique was applied. This algorithm was used because it creates homogeneous objects such as tree 

crowns; during the process of segmentation it obtains both an initial over-segmentation and under-

segmentation of the image; after that, it merges or splits the neighbouring segments which are similar 

or different; this process continues until there are no more segments that should be merged or split 

thereby improving the accuracy of image segmentation (Bins, Fonseca, Erthal, & Ii, 1996). 

Furthermore, multi-resolution segmentation algorithm can generate segments at different spatial 

resolutions. It ensures that any object smaller than the set spatial resolution is not identified during 

the segmentation process, while items larger than the provided spatial resolution are fragmented into 

pixel (Hossain & Chen, 2019; Wang, Jensen, & Im, 2010).  

 

Segmentation combinations: Image Band weights (Band combinations) 

Image band weights indicates the level to which the bands in the image influence the segmentation 

process, and it ranges between 0 (lowest/no effect on segmentation) to 4 (highest/maximum effect 

on segmentation). The higher the value assigned to an image band; the more weight was assigned to 

that bands’ pixel information during the image segmentation process (Definiens Developer XD 2.0.4 

User Guide, 2012).  Green and NIR bands were given the highest weight in the combination weights 

used. Green and NIR were given maximum weights because Xu et al. (2020) observed a significant 

difference in the reflectivity and high separability of different forest tree species in green and near-

infrared bands of the UAV-based data. The weights were assigned to different bands as shown in 

table 5. 
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Table 5: Band combinations 
Bands Sensor Image band 

weights 

Comment 

R, G, 

B, NIR 

UAV_RGB 1,4,1,0 This means that the green band influenced the 

segmentation process.  

UAV_MS 1,1,1,4  A near-infrared band influenced the segmentation 

process. 

Pleiades R, G, B, 

NIR 

1,1,1,4 The near-infrared band influenced the segmentation 

process. 

 

Scale parameter  

The scale parameter is spatial resolution dependent (Hay, Castilla, Wulder, & Ruiz, 2005). This meant 

that different image spatial resolutions and band combinations used in this research required different 

scale parameter value to produce meaningful segments. The different rule set segmentation scale 

parameter values that were determined by trial and error and used in this research are shown in the 

appendix 1.  

 

Composition of homogeneity criterion 

Composition of homogeneity measures the homogeneity or heterogeneity of an image object. It is 

calculated as a combination of the spectral colour and shape properties of an image.  The 

homogeneity criteria can be adapted by weighing shape and compactness criteria. The shape criterion 

has a value between 0 to 0.9; it determines to what extent the image resolution influences the 

segmentation compared to colour. Compactness criterion also has a value of 0 to 0.9; it determines 

to what extent the spectral colour (band combination) influences the segmentation compared to 

shape (Definiens Developer XD 2.0.4 User Guide, 2012). Therefore, in this research, both shape and 

compactness were set at 0.5 so that both spatial resolution and spectral colour had an equal effect on 

the image segmentation.  

 

Watershed transformation. 

After multi-resolution segmentation, the watershed transformation was performed to split the 

overlapping tree crowns into individual tree crowns based on the suitable splitting threshold that was 

set at different resolution and band combinations.  The watershed transformation algorithm 

calculates an inverted distance map based on the inverted distances for each pixel to the image border. 

After that, the minima are flooded by increasing the level; where the individual catchment basins 

touch each other, the image objects split (Definiens Developer XD 2.0.4 User Guide, 2012; Baral, 2016).  

 

Morphology 

Morphology operation was undertaken to smoothen the borders of the image objects through two 

pixel-based operations, namely, opening image object which removes the pixel that is isolated from 

an image object and closing image objects which adds surrounding isolated pixel to an image object. 

Closing image object operation was performed in this research, and it helped in defining the shape 

and size of the mask (structuring element on which the morphology is based), like a circular mask 

that defines the tree's circular crown. To finally get an individual tree crown (CPA-rs), the undesired 

objects were removed. The undesired objects include very tiny objects (usually with less than 16 

pixels), whose reflectance might not be detected in a dense or medium forest (Definiens Developer XD 

2.0.4 User Guide, 2012; Baral, 2016).  

 



 

ASSESSMENT OF THE EFFECT OF UAV AND PLEIADES SPATIAL RESOLUTION AND BAND COMBINATION ON BIOMASS ESTIMATION IN HAAGSE BOS, THE NETHERLANDS. 

 

15 | P a g e  
 

Export 

Segmented tree polygons were exported, and the areas of the individual segmented polygons were 

calculated in ArcMap 10.7.1.  

 

2.10. Descriptive Statistics and Normality Tests 
To reach a meaningful statistical conclusion, descriptive statistics, and normality tests for diameter at 

breast height (DBH) were performed. Assumption of the normality is supposed to be followed 

regardless of the sample size; otherwise, the statistical prediction of the intervals is inaccurate; the 

fundamental element of the normality assumption states that before running certain statistical tests 

or regression, the data to be used should roughly fit a bell curve shape (Mishra et al., 2019). 

 

2.11. Reference Crown Projection Area (CPA) 

Firstly, the plot Nadir UAV images were selected and georeferenced, 165 tree crowns were 

digitized, and the area of individual tree crowns was calculated in ArcMap. secondly, 173 tree 

crowns from the original Orthophoto resolution (4.5 cm) were as well digitized, and the areas of 

individual tree crowns were calculated in ArcMap. In total 109 (same trees) digitized Nadir image tree 

crowns, and digitized orthophoto tree crowns were matched with their respective field measured 

DBH for regression analysis. 

 

Regression analysis was performed to determine the relationship between the two reference CPA and 

the field measured DBH to answer research question 1a. The resulting R2 values were used to 

determine the better reference CPA. R2 is the percentage of response variable variation explained by 

a model. It is a statistical measure of how close the data is to the fitted regression line, and it is always 

between zero and hundred percent. The higher the R2 value, in general, the better the model fits the 

data (Waterman, 2014). The operation described above is summarised in figure 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 6: Procedure for selecting the reference CPA: (RQ 1a) research question 1a. 
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2.12. Segmentation accuracy assessment  

The multiresolution segmentation process partitioned the image objects that resulted in a one-to-one 

mapping between each segment in the image and each object in the study area as described by Troya-

Galvis, Gancarski, Passat, & Berti-Equille (2015). Segmentation errors are classified into two: over 

segmentation and under segmentation. Over segmentation is where corresponding segments are too 

small compared to the reference objects while under segmentation is where corresponding segments 

are larger than the reference objects as shown in figure 7. Over segmentation is preferred instead of 

under segmentation as it is easier to join small segments to form a large segment than splitting a 

region into smaller segments.  Segmentation errors range from 0 to 1; Zero (0) error indicates a 

perfect match of the image segment and reference object (Clinton, Holt, Scarborough, Yan, & Gong, 

2010; Troya-Galvis et al., 2015).  

 

 

 

The three-step approach was used for segmentation accuracy assessment as proposed by (Clinton et 

al., 2010).  

 

Step 1: Over segmentation = 𝟏 −
𝑨𝒓𝒆𝒂(𝒙𝒊 Ո 𝒚𝒋)

𝑨𝒓𝒆𝒂 (𝒙𝒊)
   ………………………………...… equation 1 

 

Step 2: Under segmentation = 𝟏 −
𝑨𝒓𝒆𝒂(𝒙𝒊 Ո 𝒚𝒋)

𝑨𝒓𝒆𝒂 (𝒚𝒋)
      …….……………….…….…… equation 2 

 

Step 3: total error detection (Di) = √
(𝑶𝒗𝒆𝒓 𝒔𝒆𝒈𝒎𝒆𝒏𝒕𝒂𝒕𝒊𝒐𝒏𝟐 + 𝐔𝐧𝐝𝐞𝐫 𝒔𝒆𝒈𝒎𝒆𝒏𝒕𝒂𝒕𝒊𝒐𝒏𝟐).

𝟐

.

…… equation 3 

 

Where: 

Ո = Intersect, 

xi = Automatic segmented polygon, 

yj = Reference polygon. 
 

 

To find the relationship between the automatic segmented CPA-rs and reference CPA-r, which is 

research question 2a, linear regression analysis was executed.  

The resulting R2 and RMSE were used to determine the best correlation between automatic 

segmented CPA-rs at different spatial resolution and band combinations, and reference CPA-r as 

shown in figure 8.  

Figure 7: Segmentation accuracy assessment 



 

ASSESSMENT OF THE EFFECT OF UAV AND PLEIADES SPATIAL RESOLUTION AND BAND COMBINATION ON BIOMASS ESTIMATION IN HAAGSE BOS, THE NETHERLANDS. 

 

17 | P a g e  
 

 

 

Figure 8: Procedure for CPA segmentation accuracy assessment: (RQ 2a) research question 2a. 

 

Root mean square error (RMSE) measures the discrepancy between the values predicted by a model 

and the actual values. The lower the RMSE, the more accurate the estimates are. The RMSE was 

calculated using equation 4 (Gopinathan, 1988). 

 

 

RMSE = √∑
(�̂�𝑖−𝑦𝑖)2

𝑛

𝑛

�̇�=1
     …………………………………………………….equation 4 

 

 

Where: 

   �̂�𝑖  = Modelled values. 

 𝑦𝑖   = Observed values. 

 N   = Number of observations 

  i   = Variables. 

 

The RMSE was normalised (relative RMSE) by dividing it with the average value of the observed 

data (Li, Tang, Wu, & Liu, 2013). 

 

Furthermore, the established relationship between reference CPA-r and field measured DBH-f in 

section 2.11, was used to model the DBH (DBH-est) using automatically segmented CPA-rs at 

different resolution and band combination. To answer research question 3a, DBH-est were matched 

with their respective DBH-f, and linear regression analysis was performed as shown in figure 9; the 

resulting R2 and RMSE were used to determine the most accurate modelled DBH-est.  
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Figure 9: Procedure for DBH modelling: (RQ 3a) research questions 3a. 

 

2.13. Biomass Calculation 

Commonly used mathematical model for biomass calculation that takes the form of a power equation 

as described by Zianis & Mencuccini (2004) was adopted as shown in equation 5. 

 

 Y = b0 * DBHb1 ……………………………….……………. equation 5 

 

Where: 

Y = Aboveground Biomass (kg),  

DBH = Diameter at Breast Height (cm),  

b0 and b1 = Scaling coefficients.  

 

Muukkonen (2007) analysed various allometric equations to provide a new generalized allometric 

equation's scaling coefficient that should provide a consistent and unbiased basis for evaluating forest 

biomass for the most common coniferous tree species across regional boundaries in Europe. The 

paper established that for the most common temperate coniferous species, bo and b1 is equal to 

0.255 and 2.174 for European spruce and 0.158 and 2.237 for scots pines. The DBH was used as the 

only AGB predictive variable because it is the most common, easiest, and accurate variable to measure 

in the field (Pastor, Aber, & Melillo, 1984). This research applied the European spruce allometric 

equation for all the coniferous species under study as shown in equation 5. This is because the 

equation provides reliable and impartial results at both local and region scale across European 

coniferous forest (Muukkonen, 2007), and all the species (table 3) under study belong to the same 

family (Pinaceae). No suitable local coniferous allometric equation that uses DBH as the only AGB 

predictive variable was found. However, the implication of applying a generalized allometric equation 

of one species to all species under study is discussed in section 4.5.  
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2.14. Field measured and Modelled AGB. 

Field measured AGB-f, which is the reference AGB, was calculated by using the individual tree DBH 

measured from the field whereas modelled AGB (AGB-est) was calculated by using the modelled 

DBH (DBH-est) and the allometric equation as described in equation 5. Figure 10 describes the 

procedure taken in AGB calculation. 

2.15. Comparing field measured and modelled AGB and significance test. 

Comparing of field measured and modelled AGB, and the subsequent significance test analysis was 

done to find out the differences between the estimated AGB-est from UAV and Pleiades at different 

resolutions and band combinations, and the field measured AGB-f. The resulting biomass differences 

indicated how much carbon is lost or gained by changing the imagery’s spatial resolution from higher 

to lower.  To establish if the AGB-est differs significantly from AGB-f, the means of the two data 

sets were compared using a two-sample t-test. The results with a t-statistic value greater than the t-

critical value meant that the two data sets were significantly different and vice-versa. The analysis was 

undertaken as shown in figure 10. 

 

 

Figure 10: Procedure for AGB estimation: (RQ 4a) research questions 4a 
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2.16. Summary of research methods 
The research method is summarised in the following four parts: 

1. Field data collection and processing (section 2.5) 

2. UAV data acquisition and processing (sections 2.7) 

3. VHR satellite imagery acquisition and processing (sections 2.8) 

4. Biomass calculation, comparing results and significance test (sections 2.13 to 2.15) 

The analysis of the four components described in figures 6, 8, 9 and 10 are integrated in figure 11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Workflow summary of the research methods. 
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3. RESULTS 
 

3.1. Descriptive Statistics and Normality Tests for Diameter at Breast Height data.  

In total, 338 DBH samples from 20 plots of coniferous forest (10 dense and 10 medium forests) were 

tested for normality, as shown in figure 12. The data showed a DBH of 10.8 cm and 59.6 cm as lower 

and upper limits of the Box-Whisker-plot, respectively. In order to make accurate conclusions in the 

subsequent analysis, all the DBH samples (12 samples) with values above the whisker’s plot upper 

limit (59.6 cm) were treated as potential outliers, and were not considered in the model development 

(Li, Feng, Li, & Liu, 2016). The data further showed a non-normal distribution of samples with a 

positive skewness as shown in the histogram in figure 12a. The skewness observed was due to the 

DBH values falling outside the Box-Whisker-plot’s upper limit (59.6) and no values falling below the 

lower limit (10.8 cm) as no DBH below 10 cm was measured from the field (section 2.5).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Relationship between reference CPA-r and field measured DBH-f 

The digitized CPA from Nadir plot images and the orthophoto (UAV_RGB) with the original 

resolution (5 cm) were considered as reference CPA (CPA-r). An exponential relationship was 

observed between the field measured DBH-f and the two reference CPA-r.  A total of 109 manually 

digitized CPAs from Nadir plot images and the orthophoto (same trees) were selected and matched 

with their respective 109 filed measured DBH samples. 57 samples (same trees of digitized Nadir 

photo and orthophoto CPAs) were used for model development, whereas 52 samples were used for 

model validation. The R2 for the relationship between field measured DBH and manually digitized 

Orthophoto_UAV_RGB CPA was 0.731 with RMSE of 6.906 m2; whereas, for manually digitized 

Nadir image CPA the relationship with field measured DBH had a R2 of 0.584 with RMSE of 9.797 

m2 as shown in figures 13 and 14.  Therefore, orthophoto digitized CPA was selected as a reference 

CPA, the regression equation in figure 14a was used in the subsequent analysis for DBH-est 

modelling. 

Figure 12: a) Histogram and b) Box-Whisker-plot of the field measured DBH samples 

 

a 

12 outliers 

b 



 

ASSESSMENT OF THE EFFECT OF UAV AND PLEIADES SPATIAL RESOLUTION AND BAND COMBINATION ON BIOMASS ESTIMATION IN HAAGSE BOS, THE NETHERLANDS. 

 

22 | P a g e  
 

Figure 13: Relationship between field measured DBH and UAV_RGB Nadir image digitized CPA:       
                  a) model  development b) model validation. 

 
 

 

 

 

 
 

 

 

 

 

 

 

 

3.3. Relationship between manually Orthophoto segmented CPA-r and automatic  

              segmented CPA-rs 

 

3.3.1. Segmentation accuracy assessment  

The orthophoto (UAV_MS) at 10 cm spatial resolution had the highest segmentation accuracy of 

84.63% (total error = 0.154); the lowest accuracy of 75.16% (total error = 0.248) was observed in 

UAV_RGB at 50 cm. The rest of the segmentation accuracy results (for both UAV_MS and 

UAV_RGB and the Pleiades) at different spatial resolution,  are shown in tables 6 and 7.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Relationship between field measured DBH and UAV_RGB Orthophoto digitized CPA: a)  
                  model development b) model validation. 
 

 

a b 

p-value = < 0.05 

 

RMSE = 9.797 m2 

 

RMSE = 9.691 m2 

 

a b 
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In addition, it was observed that segmentation accuracy depended on UAV image resolution, as 

shown in figure 15, the lower the resolution, the lower the segmentation accuracy, and vice versa. 

The trend was similar in both UAV_MS, and UAV_RGB influenced segmentation process. 

 

 

Figure 15: Effect of 
UAV image 
resolution on 
segmentation 
accuracy. 

 

 

 

 

 

 

 

 

 

 

 

Table 6: Summary of UAV orthophoto segmentation accuracy assessment results 

Table 7: Pleiades segmentation accuracy assessment results 

 

UAV_MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by 

near infrared band. 

UAV_RGB-Band weight 1,4,1,0 (R,G,B,NIR): segmentation process was influenced by 

green band. 
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3.3.2 Linear regression  

The relationship between automatic segmented CPA-rs and manually digitized CPA-r at different 

spatial resolution and band combinations was analysed for UAV orthophoto and Pleiades satellite 

imagery. 109 CPA-rs from the same locations (same trees) were selected from all resolutions and 

band combinations. The selected CPA-rs were then matched with their respective orthophoto 

manually digitized CPA-r. For UAV, it was observed that the highest R2 of 0.822 was obtained at 30 

cm resolution with segmentation band weights of 1,1,1,4 (UAV_MS), while the lowest R2 of 0.4 was 

observed at 50 cm resolution with segmentation band weights of 1,4,1,0 (UAV_RGB) as shown in 

figure 16 and table 8.  

 

 

 

For Pleiades (50 cm resolution), the R2 of 0.405 was observed with segmentation band weights of 

1,1,1,4 as shown in figure 17 and table 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Relationship between UAV orthophoto automatic segmented CPA and manually  
                   digitized CPA: a)UAV highest R2 , b) UAV lowest  R2 
 

UAV_MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared band. 

UAV_RGB-Band weight 1,4,1,0 (R,G,B,NIR): segmentation process was influenced by green band. 

a b 

Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced 

by near infrared band. 

Figure 17: Relationship between  

                  Pleiades image  

                  automatic segmented  

                  CPA and orthophoto  

                  manually digitized CPA 
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The observed relationships between Orthophoto manually digitized CPA-r and UAV automatic 

segmented CPA-rs at 10 cm, 20 cm, 30 cm, 40 cm, and 50 cm spatial resolutions with two different 

band combinations (1,4,1,0_UAV_RGB and 1,1,1,4_UAV_MS ), and Orthophoto digitized CPA-r 

and Pleiades automatic segmented CPA-rs at 50 cm with one band combination (1,1,1,4) are 

summarised in table 8 and 9. 
 

 

 

 

3.4. Relationship between field estimated DBH-f and modelled DBH-est  

 

3.4.1. Tree detection assessment  

A total of 338 trees observed from the field in 20 plots were considered for DBH modelling. The 

DBH for trees whose tree CPAs were detected from the automatic segmented CPA-rs were modelled 

using regression equation in figure 14a. A different number of trees were detected at different spatial 

resolutions and band combinations, as shown in figures 18 and 19. 

Table 8: Summary of the relationship between UAV automatic segmented CPA-rs and  

               orthophoto manually digitized CPA-r 

Table 9: Summary of the relationship between Pleiades automatic segmented CPA and     
               Orthophoto manually digitized CPA-r 

UAV_MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared 

band. 

UAV_RGB-Band weight 1,4,1,0 (R,G,B,NIR): segmentation process was influenced by green band. 

 

Pleiades-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared band. 
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Figure 18: UAV and Pleiades tree detection at different resolutions compared to field observed    

                  trees. 

 

In addition, it was observed that trees detection accuracy (just like segmentation accuracy) depended 

on UAV spatial resolution: the lower the resolution, the lower the tree detection accuracy and vice 

versa. The trend was similar in both UAV_MS and UAV_RGB influenced segmentation process as 

shown in figure 19. 

 

Figure 19: Relationship between tree detection accuracy and UAV spatial resolution  

 

 

UAV_MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared band. 

UAV_RGB-Band weight 1,4,1,0 (R,G,B,NIR): segmentation process was influenced by green band. 

Pleiades- Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared band. 

 

UAV_MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared band. 

UAV_RGB-Band weight 1,4,1,0 (R,G,B,NIR): segmentation process was influenced by green band. 

Pleiades- Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared band. 
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3.4.2 Linear regression of DBH-f and modelled DBH-est. 

DBH was modelled (DBH-est) for all automatically segmented crowns. From the modelled DBH-

est, 140 DBH-est values from the same locations (same trees) from all different spatial resolutions 

and band combinations were selected and used for linear regression of field-measured DBH-f and 

modelled DBH-est.  The selected DBH-est were then matched with their respective field measured 

DBH-f. For UAV, it was observed that the highest R2 = 0.672 was obtained at 30 cm resolution with 

segmentation band weights of 1,1,1,4 (UAV_MS). In comparison, the lowest R2 = 0.267 was 

observed at 50 cm resolution with segmentation band weights of 1,4,1,0 (UAV_RGB) as shown in 

figure 20 and table 10. 

 

Figure 20: Relationship between field measured DBH-f and UAV modelled DBH-est: a)  
                  UAV’s highest R2 , b) UAV’s lowest  R2 

 

For Pleiades (50 cm resolution), the R2 of 0.323 was observed with segmentation band weights of 

1,1,1,4 as shown in figure 21 and table 11. 
 

 

 

 

 

 

 

 

 

 

The rest of the observed relationships between field-measured DBH-f and UAV modelled DBH-est 

at 10 cm, 20 cm, 30 cm, 40 cm, and 50 cm spatial resolutions with two different band combinations 

and field measured DBH-f and Pleiades modelled DBH-est at 50 cm with one band combination  are 

summarised in tables 10 and 11. 

 

Figure 21: Relationship between field   
                  measured DBH-f and  
                  Pleiades modelled DBH-est  
                 at 50cm. 

MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was 

influenced by near infrared band. 

UAV_MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared band. 

UAV_RGB-Band weight 1,4,1,0 (R,G,B,NIR): segmentation process was influenced by green band. 

 

a b 
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Table 10: Summary of the relationship between Field measured DBH-f and UAV modelled DBH. 

 

Table 11: Summary of the relationship between Field measured DBH-f and Pleiades modelled  
                 DBH-est. 
 

 

 

 

 

 

 

 

3.5. Biomass calculations and comparison  

 

3.5.1. Biomass per tree : Descriptive statistics for estimated AGB 

A total of 338 trees observed from the field in 20 plots were used to calculate field estimated AGB-

f.  Table 12 summarises the descriptive statistics of the field estimated biomass (AGB-f) per tree of 

338 coniferous trees from 20 plots. The modelled DBH-est from automatically segmented CPA at 

different spatial resolution and band combinations were used to calculate modelled biomass per tree 

(AGB-est); table 13 and 14 show the summary of the descriptive statistics of the modelled AGB-est 

per tree for both UAV and Pleiades.  

 

 

 

AGB-f (kg) per tree 

  

Mean 666.65 

Standard Error 30.819 

Standard Deviation 566.601 

Minimum 44.999 

Maximum 4052.641 

Sum 225329.129 

Count 338 

Table 12: Descriptive statistics summary of field  measured AGB-f per tree (kg) 

UAV_MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared band. 

UAV_RGB-Band weight 1,4,1,0 (R,G,B,NIR): segmentation process was influenced by green band. 

 

Pleiades _ MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared band. 
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Linear regression: AGB accuracy assessment per tree 

From the modelled AGB-est, 140 AGB-est values per tree of the same trees from all different spatial 

resolutions and band combinations were selected and used for linear regression of field-measured 

AGB-f and modelled AGB-est.  The 140 selected points of the AGB-est were then matched with 

their respective field measured AGB-f. For UAV, it was observed that the highest R2 = 0.709 was 

obtained at 30 cm spatial resolution with segmentation band weights of 1,1,1,4 (UAV_MS). In 

contrast, the lowest R2 = 0.386 was observed at 50 cm resolution with segmentation band weights of 

1,4,1,0 (UAV_RGB) as shown in figure 22 and table 15. 

 

 

 

Figure 22: Relationship between UAV modelled AGB-est and field estimated AGB-f:  
                   a)UAV’s highest R2 , b) UAV’s lowest  R2 
                    

 

        Table 13: Descriptive statistics summary of UAV modelled AGB-est per tree. 

UAV_MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared band. 

UAV_RGB-Band weight 1,4,1,0 (R,G,B,NIR): segmentation process was influenced by green band. 

a b 

Pleiades MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared 
band. 

Table 14: Descriptive statistics summary of Pleiades modelled AGB-est per tree. 

 

UAV_MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared band. 

UAV_RGB-Band weight 1,4,1,0 (R,G,B,NIR): segmentation process was influenced by green band. 
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For Pleiades (50 cm resolution), the R2 = 0.433 was observed with segmentation band weights of 

1,1,1,4 (Pleiades) as shown in figure 23 and table 16.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

The other observed relationships between field estimated AGB-f and UAV modelled AGB-est at 10 

cm, 20 cm, 30 cm, 40 cm, and 50 cm spatial resolutions with two different band combinations 

(1,4,1,0-UAV_RGB and 1,1,1,4-UAV_MS ); and field measured AGB-f and Pleiades modelled AGB-

est at 50 cm with one band combination (1,1,1,4) are summarised in tables 15 and 16.  

 

 

Table 15: Summary of the Relationship between field estimated AGB-f and UAV modelled AGB-est 
                 per tree. 

UAV_MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared band. 

UAV_RGB-Band weight 1,4,1,0 (R,G,B,NIR): segmentation process was influenced by green band. 

 

Table 16: Summary of the Relationship between field estimated AGB-f and Pleiades modelled AGB-est   
                  per tree 

Pleiades _MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared 
band. 

MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process 

was influenced by near infrared band. 

Figure 23: Relationship between field     
                   estimated AGB-f and  
                   Pleiades modelled AGB-est. 
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F-test and t-test of field measured biomass and modelled biomass per tree 

F-test was done with 140 samples of individual tree AGB for all resolutions and band combinations 

to determine if the variances of the field estimated AGB-f were equal or unequal to the modelled 

AGB-est. The F-test results showed that at 10 cm spatial resolution, the variances of AGB-f were 

equal to the AGB-est modelled from UAV_RGB influenced segmentation. At 20 cm and 30 cm 

spatial resolutions,  the variances of AGB-f were also equal to the AGB-est modelled from UAV_MS 

influenced segmentation. The rest of the results are summarised in table 17. 

 

 

Subsequently, a t-test was then performed on 140 values of AGB-f per tree and AGB-est per 

tree assuming equal or unequal variance depending on the F-test results at different resolution 

and band combinations to determine if the means between the data sets were significantly 

different or not. The results of the t-test results are summarised in table 18. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Table 17: Summary of the F-test results for field AGB-f and modelled AGB-est per tree 

                                                                         Key:  

 Unequal variance – No difference between the variance of AGB-f per tree and AGB-est per tree. 

     Equal variance – There is a difference between the variance of AGB-f per tree and AGB-est per tree. 

MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared band. 

RGB-Band weight 1,4,1,0 (R,G,B,NIR): segmentation process was influenced by green band. 
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3.5.2. Biomass per plot and hectare 

Table 19 summarises the descriptive statistics of the field estimated AGB-f per plot of 338 coniferous 

trees from 20 plots. The modelled DBH-est of the automatically segmented CPA-rs at different 

resolution and band combinations were used to calculate modelled biomass per plot (AGB-est). 

Tables 20 and 21 show the summary of the descriptive statistics of the modelled AGB-est per plot 

for both UAV and Pleiades. 

  

Table 19: Descriptive statistics summary of field estimated AGB per plot 

 
 

 

Mean 11.266

Standard Error 1.215

Standard Deviation 5.433

Minimum 7.103

Maximum 29.678

Sum 225.329

Count 20

Descriptive statistics summary of 

AGB-f (mg) per plot

                                                                         Key:  

Not significant – no difference between the means of AGB-f per tree and AGB-est per tree. 

       Significant  There is a difference between the means of AGB-f per tree and AGB-est per tree. 

MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared band. 

RGB-Band weight 1,4,1,0 (R,G,B,NIR): segmentation process was influenced by green band. 

 

Table 18: Summary of the t-test results for field AGB-f and modelled AGB-est per tree 



 

ASSESSMENT OF THE EFFECT OF UAV AND PLEIADES SPATIAL RESOLUTION AND BAND COMBINATION ON BIOMASS ESTIMATION IN HAAGSE BOS, THE NETHERLANDS. 

 

33 | P a g e  
 

 

 

      Table 21: Descriptive statistics summary of Pleiades modelled AGB-est per plot. 

 

The graphical comparison of the AGB per plot (mg) between field estimated AGB-f and modelled 

AGB-est per plot for all different spatial resolutions, and band combinations under study are 

presented in appendix 3. Figure 24 shows the graphical comparison of mean AGB per plot at 

different resolutions and band combinations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 20: Descriptive statistics summary of UAV modelled AGB-est per plot. 

Pleiades _MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared band. 
 

 

Figure 24: Mean AGB per plot (mg) 

 

UAV_MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared band. 

UAV_RGB-Band weight 1,4,1,0 (R,G,B,NIR): segmentation process was influenced by green band. 

 

Resolution Band weight Observation Minimun (mg)
Maximum 

(mg)
Mean  (mg) Sum  (mg)

St.Deviation 

(mg)

1,1,1,0,4 (R,G,B,NIR) 20 5.812 25.592 11.26 225.202 4.207

1,4,1,0,0 (R,G,B,NIR) 20 5.425 22.281 11.008 220.158 3.339

1,1,1,0,4 (R,G,B,NIR) 20 5.694 21.077 11.559 231.179 3.358

1,4,1,0,0 (R,G,B,NIR) 20 5.389 24.28 11.785 235.7 4.325

1,1,1,0,4 (R,G,B,NIR) 20 6.011 21.209 11.846 236.92 3.564

1,4,1,0,0 (R,G,B,NIR) 20 5.415 20.063 11.185 223.678 3.064

1,1,1,0,4 (R,G,B,NIR) 20 5.866 27.816 11.981 239.62 4.328

1,4,1,0,0 (R,G,B,NIR) 20 5.453 20.623 11.159 223.178 3.257

1,1,1,0,4 (R,G,B,NIR) 20 6.049 24.581 12.704 254.087 3.968

1,4,1,0,0 (R,G,B,NIR) 20 5.747 19.404 11.237 224.748 2.957

40cm

50cm

UAV Orthophoto estimated AGB (mg/plot)

10cm

20cm

30cm

AGB-field: AGB estimated from the field. 

MS-Band weight 1,1,1,4 (R,G,B,NIR): AGB estimated from segmentation process influenced by near-infrared band.  

RGB-Band weight 1,4,1,0,0 (R,G,B,NIR): AGB estimated from segmentation process influenced by green band.  
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Linear regression: AGB accuracy assessment per plot 

Figure 25 and table 22 show the results of the relationship between field estimated AGB-f per plot 

and modelled AGB-est per plot at different resolution and band combinations.  It was observed that 

the highest R2 of 0.758 was obtained at 30 cm resolution with segmentation band weights of 1,1,1,4 

(UAV_MS), while the lowest R2 = 0.197 was observed at 50 cm resolution with segmentation band 

weights of 1,4,1,0 (UAV_RGB). 

 

 

For Pleiades (50 cm resolution), the R2 = 0.5277 was observed with segmentation band weights of 

1,1,1,4 (Pleiades) as shown in figure 26 and table 23. 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

The other observed relationships between field estimated AGB-f and UAV modelled AGB-est per 

plot at 10 cm, 20 cm, 30 cm, 40 cm, and 50 cm spatial resolutions with two different band 

combinations (1,4,1,0 and 1,1,1,4 ); and field measured AGB-f and Pleiades modelled AGB-est per 

plot at 50 cm with one band combination (1,1,1,4) are summarised in table 22 and 23.  
 

Figure 25: Relationship between field estimated AGB-f and UAV modelled AGB-est per plot:  
                   a)UAV’s highest R2 , b) UAV’s lowest  R2 
 

UAV_MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared band. 

UAV_RGB-Band weight 1,4,1,0 (R,G,B,NIR): segmentation process was influenced by green band. 

 

a b 

MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process 

was influenced by near infrared band. 

Figure 26: Relationship between field estimated  
                  AGB-f and Pleiades modelled AGB-est per     
                  plot. 
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Table 22: Summary of the Relationship between field estimated AGB-f and UAV modelled AGB-   
                 est per plot. 

 
 
 

Table 23: Summary of the Relationship between field estimated AGB-f and Pleiades modelled 
               AGB-est per plot 
 
 
 
 
 
 
 
 
 
 
AGB was extrapolated from AGB per plot to AGB per hectare. Figure 27 shows the mean AGB per 
hectare after extrapolation. Pleiades image was acquired a year earlier than UAV images as alluded to 
in section 2.8; therefore, 13.2 mg/hectare (ha) of AGB was added to the mean AGB-est of Pleiades. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UAV_MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared band. 

UAV_RGB-Band weight 1,4,1,0 (R,G,B,NIR): segmentation process was influenced by green band. 

 

Pleiades _MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared band. 
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The differences between modelled AGB-est and field estimated AGB-f (AGB-est – AGB-f) at 
different spatial resolution and band combinations are presented in figure 28.  
 
 

Figure 28: Effects of 
spatial resolution on 
AGB estimation. 

Note: Negative: Under-
estimated AGB, 
Positive: Over-
estimated AGB 
 

 

 

 

 

 

 

 

 

 

 

UAV_MS-Band weight 1,1,1,4 (R,G,B,NIR): AGB estimated from segmentation 

process influenced by near-infrared band.  

UAV_RGB-Band weight 1,4,1,0,0 (R,G,B,NIR): AGB estimated from segmentation 

process influenced by green band.  

Pleiades-Band weight 1,1,1,4 (R,G,B,NIR): AGB estimated from segmentation 

process influenced by near-infrared band.         

 

AGB-field: AGB estimated from the field. 

MS-Band weight 1,1,1,4 (R,G,B,NIR): AGB estimated from segmentation process influenced by near-infrared band.  

RGB-Band weight 1,4,1,0,0 (R,G,B,NIR): AGB estimated from segmentation process influenced by green band.  

            
Figure 27: Comparison of mean AGB (mg/ha) 
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F-test and t-test for field estimated biomass and modelled biomass per plot 

F-test was done with 20 plots at different spatial resolutions and band combinations to determine if 

the variances of the field estimated AGB-f per plot were equal or unequal to the modelled AGB-est 

per plot. The results are shown in table 24. It should be noted that 20 plots as samples are too few 

to make a proper statistical conclusion; however, the results might be a true indication of the reality.  
 

Table 24: Summary of the F-test results for AGB-f and AGB-est per plot 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Afterwards, t-test was performed assuming equal or unequal variance depending on the F-test 

results at different resolution and band combinations to determine if the means between the data 

sets were significantly different or not. The results of the t-test findings are summarised in table 

25. 

 
 

                                                                         Key:  

 Unequal variance – no difference between the variance of AGB-f per tree and AGB-est per tree. 

     Equal variance – There is a difference between the variance of AGB-f per tree and AGB-est per tree. 

 

MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared band. 

RGB-Band weight 1,4,1,0 (R,G,B,NIR): segmentation process was influenced by green band. 
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Table 25: Summary of the t-test results for AGB-f and AGB-est per plot 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                         Key:  

 Not significant – no difference between the means of AGB-f per tree and AGB-est per tree. 

        Significant – There is a difference between the means of AGB-f per tree and AGB-est per tree. 

 

MS-Band weight: 1,1,1,4 (R,G,B,NIR): segmentation process was influenced by near infrared band. 

RGB-Band weight 1,4,1,0 (R,G,B,NIR): segmentation process was influenced by green band. 
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4.     DISCUSSION  
 

 4.1. Relationship between reference CPA-r and field measured DBH-f 

An exponential relationship was observed (figures 13 and 14, section 3.2) between the field measured 

DBH-f and the reference CPA-r, namely, Nadir image plot photos manually digitized CPA and 

orthophoto manually digitized CPA. Generally, there is a logistic function kind of relationship 

between tree DBH and CPA. This is because, in a young forest, CPA expands as DBH grows, the 

rate of increase of CPA slows as the forest matures due to competition with neighbouring trees. The 

logistic function is exponential in its early stage, and so is the relationship between CPA and DBH 

before the forest is fully matured (CPA interlocks) (Shimano, 1997). This research developed a model 

for the relationship between field-measured DBH-f and CPA-r using DBH values in the range of 

10.8 cm and 59.6 cm. The majority of the DBH values fall between 27.1 cm and 40.2 cm, as explained 

in figure 12, section 3.1. Therefore, the exponential function was the best fit for the model, as 

illustrated in Figure 29. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The manually digitized orthophoto CPA showed a better relationship with field measured DBH-f 

than manually digitized Nadir plot image  CPA, therefore, the first (1. Ho)  null hypothesis (section 

1.6.3.) was rejected. The lower R2 of the manually digitized Nadir image CPA could have been due 

to image geometry distortion caused during georeferencing of individual UAV raster plot images as 

it was difficult to find proper control points. The other reason could be because some plots did not 

have raster images with proper Nadir view, thereby having tree CPA with a distorted shape. The 

regression equation with R2 of 0.731 (figure 14a) from the relationship between manually digitized 

orthophoto CPA with field measured DBH-f was the best model developed for this research and was 

used for DBH modelling. The best model of this research was however, lower than the R2 of 0.876 

which Shimano (1997) had found when he used power sigmoid (logistic function) to establish the 

relationship between DBH and CPA of coniferous trees.   

 

 

 

 

 

 

CPA 

y 

x DBH 

Figure 29: Illustration of a Logistic function   (Lechman, 2014). 
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4.2. Relationship between reference CPA-r and automatic segmented CPA-rs 

 

4.2.1. Segmentation and Tree detection accuracy assessment  

Generally, as shown in tables 6 and 7, and figure 15, it was observed that higher UAV resolution 

showed lower segmentation total error than lower resolution (the higher the spatial resolution, the 

higher the segmentation accuracy). The pattern was observed in both UAV_RGB, and UAV_MS 

influenced segmentation process; UAV_MS showed a better individual tree separation rate than 

UAV_RGB.  A similar trend was also observed in tree detection accuracy assessment, as shown in 

figures 18 and 19. At higher resolution, more trees were detected than at lower resolution. The higher 

accuracy of tree detection and segmentation at higher spatial resolution than at lower resolution was 

as a result of higher spectral heterogeneity and a lot of details in the image, thereby making it possible 

to discriminate even smaller trees which were not possible to be recognized at a lower resolution 

(Huang, Li, & Chen, 2018; Pouliot, King, Bell, & Pitt, 2002). This implies that UAV in general is 

more suitable in separating individual trees at higher spatial resolution (10 cm being the best in this 

case) than at lower spatial resolution (50 cm being the worst in this case), and that UAV_MS is more 

suitable in separating individual trees than UAV_RGB.     

 

 The results of my research are similar to other publications like Huiping, Wu, & Fan (2003) who 

used object-based classification of different land cover classes to analyse the relationships among 

classification accuracy, segmentation scale, and image resolution, and observed that for tree species, 

the optimal resolution for image segmentation was at 10 cm. In addition, the research, which was 

done by Pouliot et al. (2002) where four different spatial resolutions (5 cm, 10 cm, 15 cm, and 30 cm) 

were used for automatic tree crown detection and delineation in high-resolution digital camera 

imagery of coniferous forest, a similar and stable higher tree detection accuracy was observed at 5 

cm, 10 cm and 15 cm (88.9%, 88.9% and 90.9%) spatial resolutions, and a lower tree detection 

accuracy was observed at 30 cm (80.3%) spatial resolution. However, while my results showed a 

strong relationship between image segmentation accuracy and spatial resolution, Okojie (2017) who 

used six resampled UAV spatial resolutions (5 cm, 10 cm, 15 cm, 20 cm, 25 cm and 30 cm) to assess 

the forest tree structural parameter extractability did not find any relationship between spatial 

resolution of the image and segmentation accuracies. The contradiction in the findings could be 

alluded to the different forest types used in the analysis; my research used coniferous forest only 

whereas  Okojie (2017) used both coniferous and deciduous ( both separate and mixed forest).   

 

4.2.2  Linear regression of  reference CPA and automatic segmented CPA-rs 

As observed from tables 8 and 9, for UAV_MS influenced segmentation process at different spatial 

resolutions (10 cm, 20 cm, 30 cm, 40 cm, and 50 cm), the best CPA segments compared to the 

reference segments were from 30cm spatial resolution which was not so different from 20 cm spatial 

resolution with R2 of 0.822 and 0.801, respectively. The worst CPA segments were from 50 cm spatial 

resolution with R2 = 0.471 compared to reference CPA.    

 

The R2 of the relationship between reference CPA-r and automatic CPA-rs segments of UAV_MS 

influenced segmentation process was lower at 10 cm than at 20 cm and 30 cm because at high spatial 

resolution, the spectral intra-crown variability is so high that it becomes a source of problem for the 

watershed transformation algorithm to detect the actual hedge of the tree crowns. The within tree 

crown spectral variability makes the algorithm to detect branches as tree crowns, thereby leading to 

over segmentation (Huang et al., 2018; Pouliot et al., 2002). This implies that better tree separation 

at higher resolution (10 cm) than at lower resolution (30 cm), does not certainly mean better detection 

of the actual hedges of tree crowns.  
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The original resolution of the NIR band was 11cm, as discussed in section 2.7, when the image was 

resampled to lower resolution (30cm), the R2  was higher than at higher resolution (10 cm), because 

the resampling (bilinear interpolation) takes a 2 x 2 window with a weighted average, the averaging 

of pixel information reduces the image within tree crown spectral variations thereby the actual  tree 

crown hedge is better defined during watershed transformation. However, at a very low image 

resolutions (40 cm, 50 cm), the tree crowns become too homogeneous such that their boundaries 

become less distinct, making them harder to identify by the watershed transformation algorithm 

(Gougeon & Leckie, 2006; Huang et al., 2018; Pouliot et al., 2002). 

 

Generally, at all five different resolutions, the CPA-rs segments from the segmentation process which 

was influenced by UAV_MS performed better than CPA-rs segments from UAV_RGB because the 

NIR band in UAV_MS enhances segmentation accuracy: therefore, the second null hypothesis (2. 

Ho) was also rejected. The enhancement of segmentation accuracy occurs because the NIR band 

increases spectral variations between trees, which helps to clearly show tree actual hedges, thereby 

resulting in better tree CPA segments than UAV_RGB (Effiom, van Leeuwen, Nyktas, Okojie, & 

Erdbrügger, 2019; Pu & Landry, 2012).  

  

The R2 of the relationship between reference CPA-r and automatic CPA-rs segments of Pleiades (50 

cm resolution) was very low, and so was the R2 for both UAV_MS and UAV_RGB at 50cm 

resolution because at a very low resolution (50 cm), smaller size trees could not be clearly identified; 

therefore, difficult to separate them from the neighbouring bigger trees, which distorted the 

individual tree boundaries during segmentation (Huang et al., 2018; Pouliot et al., 2002).  

 

4.3. Relationship between field measured DBH-f and estimated DBH-est. 

As observed from tables 10 and 11, for UAV_MS influenced segmentation process at different spatial 

resolutions (10 cm, 20 cm, 30 cm, 40 cm, and 50 cm), the best-modelled DBH-est (R2 = 0.672,  RMSE 

= 5.843) compared to field measured DBH-f was at 30 cm spatial resolution.  For UAV_RGB 

influenced segmentation process the best-modelled DBH-est (R2 = 0.543, RMSE = 6.902) was at 

10cm spatial resolution. This implies that UAV_SM is more accurate in DBH modelling than UAV_ 

RGB. Moreover, these results reflected the trend observed in section 4.2.2 because the modelled 

DBH-est at different spatial resolution were from the CPA-rs obtained at different spatial resolution 

and band combination; therefore, the most accurate UAV_segmeted CPA-rs (30cm _UAV_MS: R2 

= 0.822), modelled the most accurate DBH-est (R2 = 0.672) and vice versa. Therefore, the third null 

hypothesis (3. Ho) was rejected. In comparison with other similar work on DBH modelling, Guerra-

Hernández et al. (2017) used a multi-temporal UAV imagery to model DBH of Italian stone pine 

(Pinus pinea) from UAV derived tree height and CPA, and found a better R2 of 0.79 with RMSE of 

2.36 cm compared to my research. The better R2   of Guerra-Hernández et al. (2017) could be because 

they used only one tree species (Pinus pinea) to model the DBH, thereby avoiding errors from 

variations of DBH of different tree species.  

 

4.4. Biomass calculations and comparison per tree and plot. 

 

Descriptive statistics of field AGB per tree 

The descriptive statistics of field AGB per tree as presented in table 12 showed that the field measured 

AGB-f had a minimum AGB-f of 44.999 kg, maximum AGB-f of 4052.641 kg and mean AGB-f of 

666.650 kg (DBH ranging from 10.8 cm to 85.6 cm with a sample size of 338 coniferous trees). The 

results of descriptive statistics per tree are similar to Popescu (2007) who estimated AGB of individual 

pine trees using airborne Lidar; a minimum AGB of 13.02 kg, maximum AGB of 3254.11 kg and 

mean of 486.55 kg (DBH ranged from 8.13 cm to 78.49 cm with a sample size of 43 coniferous trees) 

were observed. The differences in the descriptive statistic of AGB values between my research and 
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that of Popescu (2007) could be attributed to differences in the DBH range and sample size.  The 

modelled AGB-est showed differences in the minimum, maximum, and mean AGB-est per tree as 

shown in tables 13 and 14; the differences were attributed to differences in different spatial resolution 

and band combinations used to model the AGB-est. 

 

Linear regression of AGB per tree 

The linear regression of UAV modelled AGB-est per tree (140 trees) showed that the UAV_MS at 

30 cm resolution had the highest accuracy (R2 = 0.708, RMSE = 263.088 kg) followed by UAV_RGB 

influenced segmentation process at 10 cm (R2 = 0.637, RMSE = 318 kg) and the least accurate was 

UAV_RGB at 50 cm resolution as elaborated in table 15. This means that UAV_MS at 30 cm 

resolution was  the most accurate in modelling the DBH than any other resolutions. The results of 

this research were lower than that of Lin, Wang, Ma, & Lin (2018) who found the R2 of 0.96 with 

RMSE of 54.90 kg from the accuracy assessment of the estimated individual tree AGB using UAV 

orthophoto of oblique photographs at 5 cm spatial resolution. Again, it was observed that the 

individual tree AGB accuracy assessment results reflected what was discussed in section 4.2.2, where 

UAV_MS at 30 cm resolution had the most accurate CPA-rs (R2 = 0.822), which modelled the most 

accurate DBH (R2 = 0.672), and subsequently modelled the most accurate AGB-est per tree (R2 = 

0.708). In contrast, UAV_RGB at 50 cm resolution had the least accurate CPA-rs (R2 =  0.398), 

which modelled the least accurate DBH-est (R2 = 0.267) and subsequently modelled the least accurate 

AGB-est per tree ( R2 = 0.386). This  implies that accurate modelling of individual tree CPA leads to 

accurate estimation of AGB per tree. 

Accuracy assessment of UAV modelled AGB-est per plot (20 plots) showed that UAV_MS at 30 cm 

resolution had the highest accuracy (R2 = 0.758, RMSE = 1.507 mg _ AGB/plot, rRMSE = 

13.381%), and the least accurate was UAV_RGB at 50 cm resolution as shown in table 22 and 23. 

The accuracy of the AGB-est per plot modelled by this research at all different spatial resolutions (10 

cm, 20 cm, 30 cm, 40 cm and 50 cm) had relative RMSE (rRMSE) of less than 24% which were 

comparable to Jayathunga, Owari, & Tsuyuki (2018) who used UAV orthophoto at 5 cm spatial 

resolution to estimate AGB over mixed conifer-broadleaf forest, and found RMSE of 14.3 mg C/ha 

(1.43 mg _ AGB/plot) and rRMSE = 17.4%. 

Comparison of mean AGB per hectare: Effects of spatial resolution on AGB estimation. 

It was observed in figure 28 that for UAV_MS, the AGB estimation per hectare steadily increased 

with reducing spatial resolution. This was because the NIR band in UAV_MS, as earlier alluded to in 

section 4.2.2, enhances segmentation accuracy as it (NIR) increases spectral variations between trees. 

However, at a lower resolution, smaller trees can not be separated from the bigger trees; therefore, 

they are identified as one tree crown (generalization), which leads to an overestimation of biomass. 

This could mean that the methods presented in this research might not be ideal for estimating 

biomass with UAV_MS at a lower resolution (50cm).  For UAV_RGB, the AGB estimation per 

hectare increased with reducing resolution from 10 cm to 20 cm, and then it dropped drastically from 

20 cm to 30 cm; from 30 cm to 50 cm, the AGB estimation per hectare was stable and uniform. This 

could mean that UAV_RGB has a spatial resolution threshold beyond which it can not exceed in 

estimating AGB per hectare. Generally, the observed trend in figure 28 needs further investigation.   

 

F-Test and t-test of field estimated AGB-f and modelled AGB-est 

The F-test results on AGB per tree reviewed that the AGB-est per tree modelled from UAV_RGB 

at 10 cm resolution, and UAV_MS at 20 cm and 30 cm resolution were more accurate than the rest 

of the AGB-est per tree estimated from other resolutions as their AGB-est per tree variances were 

equal to the variance of field estimated AGB-f per tree (table 17).  Furthermore, the t-test results on 

the 140 AGB per tree values from the same trees observed from the field and images at different 

spatial resolution and band combinations as shown in table 18, showed that the means of the 
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UAV_RGB and UAV_MS estimated AGB-est per tree at 10 cm spatial resolution were not 

significantly different from means of the field estimated AGB-f per tree. At 20 cm and 30 cm spatial 

resolution, the means of the field estimated AGB-f per tree were also not significantly different from 

the means of AGB-est per tree estimated with UAV_MS but significantly different from the means 

of AGB-est per tree estimated with UAV_RGB. The means of  field estimated AGB-f per tree were 

significantly different from the means of AGB-est per tree from both UAV_MS and UAV_RGB at 

40 cm and 50 cm resolutions as well as Pleiades at 50 cm spatial resolution. This implied that AGB 

per tree could be estimated at 10 cm spatial resolution with UAV_MS and UAV_RGB as well as at 

20 cm and 30 cm spatial resolution with UAV_MS.  

A similar observation was also made by Lin et al. (2018) who used a 5 cm spatial resolution UAV 

orthophoto to model the AGB of individual trees of coniferous forest and concluded that UAV is 

effective in estimating individual tree AGB at very high spatial resolution. 

 

The t-test results on the AGB per plot from the 20 plots showed no significant differences between 

the means of the AGB-f estimated from the field and AGB-est means estimated from UAV_RGB 

and UAV_MS, and Pleiades at different spatial resolution and band combinations as shown in table 

25. Therefore, the fourth Null hypothesis (4. Ho) was accepted; this could mean that the losses of 

estimated biomass per tree at different resolutions (10 cm, 20 cm, 30 cm 40 cm and 50 cm) and band 

combinations because of occlusion by bigger trees and image under-segmentation were compensated 

in the overall estimated AGB-est per plot. The results of the t-test of AGB per plot also implied that 

AGB per plot could be estimated using UAV_RGB and UAV_MS at 10 cm, 20 cm, 30 cm, 40 cm, 

and 50 cm spatial resolution as well as Pleiades at 50 cm spatial resolution with reasonable accuracy. 

 

The results of the t-test per plot for this research were comparable to other studies like: (1) 

Jayathunga, Owari, & Tsuyuki (2018) who used UAV orthophoto at 5 cm spatial resolution to 

estimate AGB over the mixed conifer-broadleaf forest and concluded that UAV could accurately 

assess forest biomass as the means of the reference AGB were not significantly different from UAV 

estimated AGB. (2) Wahyuni, Jaya, & Puspaningsih (2016) who used a UAV orthophoto with 10 cm 

spatial resolution to develop a mathematical model for AGB estimation; the modelled AGB did not 

differ significantly from the reference AGB. The paper also concluded that UAV imagery could be 

used to estimate AGB accurately.  

 

4.5. Uncertainties 

Firstly, the two models used in this research to estimate the DBH-est (regression equation in figure 

14a) and AGB allometric equation ( equation 5) might have been the source of errors as models are 

a simplification of reality, and built from a sample population (selected trees) and not from the entire 

population (forest); therefore, when sample population is changed, the adjustment of the model also 

slightly changes (Chave et al., 2004; Chen, Laurin, & Valentini, 2015). For allometric equation 

uncertainties, Vorster et al. (2020) analysed the variability and uncertainty involved in forest AGB 

estimates from individual trees to large scale and found out that depending on the allometric equation 

and evaluation method used in AGB estimation, the allometric uncertainty contributes 30% – 75% 

of the total uncertainty, while remote sensing fitting model uncertainty contributes 25% – 70% of 

the total uncertainty. Clough et al. (2016) also used a data-driven, hierarchical modelling approach to 

quantify allometric model uncertainty for plot-level tree biomass and concluded that allometric 

models have a huge contribution to the overall uncertainty of AGB estimates.  My research applied 

generalized European spruce allometric equation to all the coniferous species under study (table 3), 

which might also be a source of errors as allometric equations are species and site-specific (Abich, 
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Mucheye, Tebikew, Gebremariam, & Alemu, 2019; Basuki, van Laake, Skidmore, & Hussin, 2009 

and Mahmood et al., 2020). 

 

Secondly, as mentioned (section 2.9), the image segmentation rule set is resolution and band 

combination dependent. The different rule sets (appendix 1) used in this research for image 

segmentation at different resolution and band combinations were developed based on trial and error 

and were assured to be optimal rule sets. 

 

4.6 Limitations  

Firstly, the DBH value range was too narrow, with the majority falling between 23 cm to 42 cm 

(figure 12) because the data was collected from the semi-natural forest for timber production. This 

meant that the model developed in figure 14a was less accurate in predicting DBH values falling 

below 23 cm and above 42 cm. This was also elaborated more in Section 4.1; figure 29 where it was 

explained that the complete relationship between forest trees DBH and CPA should have a logistic 

function; however, this research just extracted a part of this function (exponential) to develop a DBH-

CPA relationship. This meant that the developed model (figure 14a) could only be used to predict 

DBH in a youthful to old coniferous forest, but not in young and mature coniferous forest.  

 

Secondly, small data set of field plots (20 plots) was used in the analysis. The number of plots used 

were too few to make a proper statistical conclusion. To make an appropriate statical conclusion 

minimum sample plots should have been at least 30  (Louangrath, 2017). 

  

Lastly, unable to find a site-specific allometric equation as discussed in section 4.5 site specific 

allometric equations are more accurate than generalised equation. 
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5.0. CONCLUSION AND RECOMMENDATIONS 
 

5.1. Conclusion 

In this research, UAV at different resampled spatial resolutions and band combinations, and Pleiades  

were used to study the effect of spatial resolution and band combination on coniferous forest AGB 

estimation. It was established that the AGB per tree could be accurately estimated at 10 cm spatial 

resolution with UAV_MS and UAV_RGB, as well as at 20 cm and 30 cm spatial resolution with 

UAV_MS. The AGB per plot could be estimated with reasonable accuracy using UAV_RGB and 

UAV_MS at 10 cm, 20 cm, 30 cm, 40 cm, and 50 cm spatial resolutions as well as Pleiades at 50 cm 

spatial resolution.  The specific conclusions of this study based on the four research questions are 

highlighted below. 

 

Research question 1:   

a. What is the relationship between field measured DBH-f and reference CPA-r?  

The manually digitized orthophoto CPA showed a better relationship (R2 of 0.731; RMSE of 6.906 

m2) with field measured DBH than manually digitized Nadir image CPA (R2 of 0.584; RMSE of 9.797 

m2) .  

 

Research question 2: 

a. What is the accuracy of the automatic segmented CPA-rs from UAV and Pleiades at    

different spatial resolutions and band combinations compared with the reference CPA-r? 

The UAV_MS at 30cm resolution produced the most accurate automatic CPA segments (R2 of 0.822 

and RMSE of 6.567 m2 ) than any other resolutions and band combination. 

 

Research question 3: 

a. What is the accuracy of the estimated DBH-est compared to field measured DBH-f? 

The UAV_MS at 30cm modelled the most accurate DBH-est (R2 = 0.672 and RMSE of 5.843 cm) 

than any other resolutions and band combination. 

 

Research question 4: 

a. Does the estimated AGB-est differ significantly from field measured AGB-f?  

There were no significant differences between the means of the AGB-f per plot estimated from the 

field and the means of the AGB-est per plot estimated from UAV_RGB and UAV_MS at 10 cm, 20 

cm, 30 cm, 40 cm, and 50 cm spatial resolutions as well as Pleiades at 50 cm spatial resolutions. 

 

 

5.2.  Recommendations 

Firstly, further studies are needed where the methods presented in this study can be used in a natural 

forest with large data set of field plots ( more than 30). The natural forest has a wide range of DBH 

distribution, unlike the semi-natural (Haagse Bos) forest where majoring of the trees had the DBH 

ranging from 23 cm to 42 cm. The wide range of DBH might be vital for developing a stable model 

(DBH-CPA relationship).  

 

 Secondly, further studies are needed where higher spatial resolution satellite (30 cm like worldview-

3 or 4) than the Pleiades 1A/B where tree crowns can be clearly seen. If tree crowns can be clearly 

seen from the satellite image, manually digitising of tree crowns can be done and develop a satellite-

based DBH-CPA relationship model directly. 
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Appendices 
 

Appendix 1. Different rulesets  and algorithm descriptions used for multiresolution segmentation process at different spatial resolution. 
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Different rule sets used at different resolutions for UAV_MS: a) Rule set for 10 cm and 20 cm, b) Rule set for 50 cm, c) Rule set for 30cm 

and 40 cm. 
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Different rule sets used at different resolutions for UAV_RGB: a) Rule set for 10 cm and 20 cm, b) Rule set for 40 cm and 50 cm and c) Rule set for 30cm. 
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UAV_RGB Multiresolution algorithm description at 10cm and 20cm resolution 

UAV_RGB Multiresolution algorithm description at 30cm 

UAV_RGB Multiresolution algorithm description at 40cm and 50cm 

resolution 
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Rule sets and algorithm descriptions used for Pleiades at 50 cm. 
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Appendix 2. Summary of Pix4D photogrammetry initial report 
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Appendix 3. AGB per plot (mg) at different spatial resolutions  

 

 

 
 

 

 

 

AGB-field: AGB estimated from the field. 

MS-Band weight 1,1,1,4 (R,G,B,NIR): AGB estimated from segmentation process influenced by near-infrared band.  

RGB-Band weight 1,4,1,0,0 (R,G,B,NIR): AGB estimated from segmentation process influenced by green band.  
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AGB-field: AGB estimated from the field. 

MS-Band weight 1,1,1,4 (R,G,B,NIR): AGB estimated from segmentation process influenced by near-infrared band.  

RGB-Band weight 1,4,1,0,0 (R,G,B,NIR): AGB estimated from segmentation process influenced by green band.  

            

 

AGB-field: AGB estimated from the field. 

MS-Band weight 1,1,1,4 (R,G,B,NIR): AGB estimated from segmentation process influenced by near-infrared band.  

RGB-Band weight 1,4,1,0,0 (R,G,B,NIR): AGB estimated from segmentation process influenced by green band.  

Pleiades-Band weight 1,1,1,4 (R,G,B,NIR): AGB estimated from segmentation process influenced by near-infrared 

band.     
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Appendix 4. Data sheet for forest tree parameters in Haagse Bos     

 
 

 

Date: Plot #:

X Y

Low

N-S W-E Distance from 

centre point (m)

Compass bearing 

(degrees)

Data sheet for forest tree parameters in Haagse bos

Observer name:

Central point

Plot radius:

Tree position

Comment

Dense Medium

General comment:

Tree # Species DBH 

(cm)

Crown 

diameter (m)

Forest density:


