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ABSTRACT 

Lodging is the permanent dislocation of the crop stem and root from its original position, and it affects 

grain yield and quality. Lodging monitoring is essential for reducing yield loss, avoiding knock-on effects, 

and maintaining grain quality. Remote sensing (RS) based lodging monitoring would help to acquire precise 

and continuous spatiotemporal data; it could help farmers increase their productivity and ensure sustainable 

agricultural production. In this study, the capability of data from Sentinel-1, Sentinel-2 and their combination 

were explored for wheat lodging detection and classification using a Random Forest classifier. Backscatter 

(σ°) and spectral reflectance of individual bands were extracted from the Sentinel-1 and Sentinel-2 time 

series data, respectively. Then the temporal backsccatter and spectral behaviour of different wheat lodging 

score (LS) groups (healthy (He), moderately lodged (ML), and severely lodged (SL)) were explored at 

different wheat growth stages via statistical analysis. A Random Forest classifier was used to classify the 

Sentinel-1, Sentinel-2, and their combination data into different LS classes. The statistical analysis of the 

Sentinel-1 backscatter and Sentinel-2 spectral data identified relationships with the field based-LS. The 

combination of Sentinel-1 and Sentinel-2 data based Random Forest model provided a better (83%) 

classification accuracy than Sentinel-1 (79%) and Sentinel-2 (80%) alone. The result implies that both 

Sentinel-1 and Sentinel-2 datasets provide complementary information for the model. Cross-polarised 

backscatter (σVH°)  was the most important variable in the Random Forest classification of Sentinel-1 data. 

The red-edge-1 (RE-1) spectral band was the most important variable in the Random Forest classification 

using Sentinel-2 data. Furthermore, σVH°, short wave infrared-1 (SWIR-1), and RE-1 were the top three 

most important variables in the Random Forest classification when Sentinel-1 and Sentinel-2 were 

combined. Although the backscatter and spectral features of Sentinel-1 and Sentinel-2 could distinguish 

wheat lodging effectively, the combination of the two datasets would help to improve the classification 

accuracy. Therefore, applying the combinations of high spatiotemporal resolution SAR and optical remote 

sensing data in lodging monitoring can help reduce crop production loss and achieve higher crop yield 

quantity and quality.  
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1. INTRODUCTION 

1.1. Background  

Crop lodging refers to the permanent dislocation of the crop stem or root from its original position (Pinthus, 
1974), and it is one of the yield-limiting factors in cereal crops like wheat, barley, and corn (Berry & Spink, 
2012). It may occur at different growth stages of the crop (Berry et al., 2003); for example, in wheat crops, 
the event can occur at the end of the booting stage/beginning of the flowering stage (Chauhan, et al., 2020c). 
Lodging can be caused by three major factors, genetic factors, environmental factors, and poor crop 
management practices. As depicted in Figure 1, environmental factors include strong winds, heavy rain, very 
wet soil during late grain filling, and root or stem rots that weaken the plant base and cause severe yield loss 
(Rawson & Macpherson, 2000). On the other hand, genetic and poor management-related factors include 
planting tall thin stemmed varieties, excess nitrogen fertilizer application, dense planting, and sub-optimal 
planting time, which can increase the incidence of lodging (Pinthus, 1974). Although each factor has its 
impact, the combination of different factors increases the susceptibility of an area for an intense lodging 
event. For instance, the combination of strong winds, excess water content, high plant population density, 
excessive soil nitrogen content, and increased crop height can result in severe lodging events (Pinthus, 1974; 
Niu et al., 2016; Xiang et al., 2016). As a result, it would cause a reduction of profitability through reduced 
yield, delayed harvest, increased grain drying costs, and reduced grain quality (Berry & Spink, 2012; Yang et 
al., 2015). A study by Berry & Spink, (2012) indicated lodging induced yield loss in a wheat crop could reach 
60-80%, and the total loss has been estimated at $80M per year in the UK (Berry & Spink, 2012). To mitigate 
this problem, several conventional lodging detection techniques have been developed.   
 
Conventional lodging detection includes field-based visual inspection and laboratory analysis. Mostly, 
agronomists and plant physiologists practiced these field-based visual inspections and laboratory analysis to 
detect the root causes of the phenomenon. However, these field and lab-based techniques have several 
limitations; some limitations include limited spatial coverage, bias in visual rating, and poor accessibility in 
dangerous areas (Chauhan et al., 2019a). Therefore, to avoid these constraints and ensure sustainable 
agricultural production of the crop, selection, and application of suitable crop lodging assessment criteria 
are needed (Chauhan, et al., 2020c). According to a review by Chauhan et al., (2019a) one of the best 
complementary approaches is the application of remote sensing (RS) in lodging detection. The application 
of RS in wheat lodging detection can provide farmers with information about the crop status through the 
delivery of precise and continuous spatiotemporal data. As a result, it can help farmers to monitor and 
mitigate its knock-on effects such as destruction of plant morphology, physiological disruptions, and 
deterioration of grain quality. Henceforth, it would help increase the farmers’ productivity (Fang & Cao, 
2014). In addition, it can be used as proof for insurance claim adjustments and to reduce disagreements 
between farmers and insurance companies (Li et al., 2014; Vescovo et al., 2016). 
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Figure 1:Types of lodging and major lodging inducing factors 

Source: AHDB, (2005)  
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1.2. Literature review 

 
RS is an increasingly important component of agricultural monitoring (Atzberger, 2013), and it can be used 

for lodging detection (Bouman, 1991). According to a review by Chauhan et al., (2019a) the RS platforms 

involved in lodging detection can be classified into three broad categories. These categories consisted of 

ground-based, airborne, and spaceborne platforms. Some of the RS-based crop lodging studies that were 

done after Chauhan et al., (2019a) review i.e., from 2019 to 2020, are presented in Table 1. Besides, various 

methods that were used in the classification of the RS images are presented below.  

Ground-based RS platforms include hand-held sensors that can retrieve the target object information within 

a few centimetre distances. They are used to examine the effects of specific crop parameters by manipulating 

ground conditions, reducing the mixed-pixel effect, and by revisiting at any time (Moran, Inoue, and Barnes, 

1997). Several studies have used ground-based RS platforms to explore the effect of lodging. For example, 

Fitch et al., (1984) studied the linear polarization of reflected light from common wheat, barley, and durum 

wheat in response to crop structural change. The study was done at the experimental research field level by 

using Kodak Plus-X Panchromatic film. The result of this study showed a reduced linear polarization for 

barley and an increased polarization for both kinds of wheat crops due to lodging. In addition, Bouman & 

van Kasteren, (1990) studied the influence of lodging on wheat, barley, and oats backscatter responses by 

using different incidence angles of a ground-based X-band, VV (vertical, vertical), and HH (horizontal, 

horizontal) polarization radar dataset. The study was done at a local scale in three different sites, 

Wageningen, Randwijk, and Dronten. The result showed a decrease in σVV° and σHH° of wheat and barley 

until it fluctuated from grain filling to the canopy was dying. On the other hand, the σVV°of oats decreased 

initially at its vegetative growth stage and suddenly increased to a stable level with the panicles' appearance. 

Although a ground-based or proximal sensing system closely monitors specific features like lodging without 

a mixed pixel effect, it has a limitation in terms of broad spatial coverage. Therefore, a combination of 

ground sensors with sensors covering large areas can be beneficial (Constantinescu et al., 2017). 

Airborne RS includes airborne video imaging systems, light detection and ranging (LiDAR) 

/Radio Detection And Ranging (RADAR) that can be used for monitoring different natural and man-made 

phenomenon (Chauhan et al., 2019a). However, the recent development of Unmanned Aerial Vehicle 

(UAV) sensors in the airborne RS  sector provides new opportunities to monitor agricultural production 

constraints (Colomina et al., 2008). UAVs provide high spatial and temporal resolution data that can be used 

for monitoring of lodging. Several lodging studies have been performed using airborne UAV data. For 

example, Liu et al., (2014) studied the potential of combining the spectral and textural features of UAV 

images in the extraction of the lodged wheat area. They found that combining the two features can clearly 

differentiate lodged and non-lodged wheat with the highest classification accuracy. Besides, Chauhan et al., 

(2019b) demonstrated the potential of multispectral UAV data in wheat lodging detection by analysing 

different lodging severity grades by using the nearest neighbourhood classification algorithm. The result 

showed an increase in the magnitude of reflectance in red-edge and Near-infrared (NIR) bands due to 

lodging severity. UAVs provide numerous advantages, especially in precision farming; however, they are 

also associated with some problems. For instance, the instrument’s lightweight makes it very prone to harsh 

weather conditions like strong wind and rainfall; thus, a data gap may occur. Besides, UAVs can collect data 

over a few hectares. Therefore, to cover large areas and reduce the effect of harsh weather conditions, the 

combination of UAV data with other sensors may be required.  

Spaceborne platforms offer spatial coverage over larger areas and regular temporal coverage (Chauhan et 
al., 2019a). Different spaceborne sensors have been involved in land monitoring, including agriculture; 
however, the launch of the European Space Agency (ESA) Copernicus Sentinel-1 and Sentinel-2 missions 
offer a new opportunity to investigate agricultural production bottlenecks (Malenovský et al., 2012). 
Sentinel-1 is a Synthetic Aperture Radar (SAR) data. It has the advantage of operating day and night under 
all weather conditions to help in real-time monitoring of different phenomena, including lodging (Torres et 
al., 2012). Few lodging-related studies have been conducted by combinations of Sentinel-1 and other space-
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borne sensors data. For instance, Chauhan, et al., (2020a) used multisensor SAR data (Sentinel-1 and 
RADARSAT-2) with a support vector regression (SVR) to estimate wheat crop angle of inclination as an 
indicator of wheat lodging. The authors found Sentinel-1 has comparable accuracy with RADARSAT-2 
FQ21. Besides, Chauhan et al., (2020b) studied the potential of Sentinel-1 data and RADARSAT-2 data with 
partial least square discriminative analysis (PLS-DA) in wheat lodging severity classification. They found 
comparable overall accuracy between Sentinel-1 and RADARSAT-2 FQ21.  
 
Sentinel-2 is another European Space Agency (ESA) Copernicus mission, which provides high-resolution 

multispectral (13 spectral bands) optical imagery to detect different phenomena on earth. Besides, Sentinel-

2 has a high revisit time that can be used for real-time monitoring of various phenomena like lodging 

(Drusch et al., 2012). For example, Chauhan et al., (2020c) used Sentinel-2 and Sentinel-1 time-series data 

and statistical analysis to understand the influence of lodging on spectral reflectance and 

backscatter/coherence of Sentinel-2 and Sentinel-1, respectively (Table 1). Both Sentinel-1 and Sentinel-2 

data performed very well in the classification of the wheat lodging classes. However, no study investigated 

the potential Sentinel-1, Sentinel-2, and their combination data in wheat lodging detection and classification 

using the Random Forest classifier (Shu et al., 2020).  

Random Forest classifier is one of the most popular machine learning algorithms in classifying different RS 

images (Horning, 2010). It is a supervised classification algorithm that compiles/ensembles all decision tree 

outputs in the input vector classification (Figure 2). The decision trees are predictive models trained by 

drawing of random variables from the training samples. Each tree casts a unit vote for the most popular 

class to classify an input vector (Breiman, 2001).  

Random Forest provides various benefits compared to decision trees, maximum likelihood classifier, and 

other machine learning algorithms. Random Forest can: 1) give very high accuracy, 2) it is not sensitive to 

overfitting of data, 3) it can handle categorical data and missing values, 4) it does not need pre-processing, 

5) it is suitable with large datasets, 6) it can handle multicollinearity problems, and 7) it has high processing 

speed (Belgiu & Drăgu, 2016; Breiman, 2001; Gislason et al., 2006; Pal, 2005; Horning, 2010). Zhang et al. 

(2020) used UAV imagery and different machine learning algorithms (Random Forest, neural network, and 

support vector machine) to detect wheat lodging. The authors found comparable accuracy between Random 

Forest and neural network (GoogLeNet) machine learning algorithms. Besides, Phillips & Ward, (2020) 

compared Random Forest and Artificial Neural Networks (ANN) machine learning algorithms to detect 

maize crop lodging using UAV images. They found that the Random Forest model performed best as 

compared to ANN. Furthermore, Zhou et al., (2020) investigated the potential of multitemporal Gaofen-1 

(GF-1) optical satellite images with Random Forest and partial least square modelling techniques for 

regional-scale maize lodging modelling and monitoring. The result showed that the Random Forest model 

performed better than the partial least square model. 
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Figure 2: Random Forest ensemble process 

1.3. Problem statement 

Based on the above literature, Random Forest is a suitable algorithm in lodging detection and classification 

(Phillips & Ward, 2020; Zhou et al., 2020). However, its potential applications in the classification of 

spaceborne Sentinel-1, Sentinel-2, and their combination data into different wheat lodging classes based on 

LS were not studied. Therefore, the aim of the study was to evaluate the potential of Sentinel-1, Sentinel-2, 

and their combination data in wheat lodging detection and classification using a Random Forest classifier.  
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Table 1: RS based crop lodging studies in 2019 and 2020 

Platform Sensor  Pixel Size and 
No of Bands 

No of 
Observation 

Crop Study Area  Size Aim Result Author/s 

Airborne and 
Spaceborne 

Low Orbiting 
Satellite (LOS) 
and Small 
UAV-Based 
High-
Resolution 
Imagery Data 

UAS GSD= 
0.01 m and 
0.03 m and 
with 12.4 
mega-pixel 
resolution in 
the VIS 
spectral band 
 
LOS GSD= 
3.00 m with 
VIS and NIR 
spectral band 

Two Irrigated 
Spearmin
t 

Toppenish, 
Washingto
n, USA 

Small field To evaluate the 
performance of small UAV 
and LOS imagery in 
quantifying lodging in 
irrigated spearmint crop by 
using height and colour 
features from small UAS 
imagery and colour 
features from LOS, 
respectively 

CSM derived from small 
UAV-based imagery 
performed better than the 
image colour features for 
spearmint lodging 
assessments. LOS can also 
be used for large area crop 
lodging assessment 

Vargas et 
al., (2020) 

Spaceborne RADARSAT-2 
and Sentinel-1 

RADARSAT-
2= 7×7 m with 
C-band 
 
Sentinel-
1=10×10m 
with C- band 
 

Five 
RADARSAT-2 
images and 
Eleven 
Sentinel-1 
images were 
acquired over 
the study area 
between30 
May 2018 and 
30 Jun 2018 

-Durum 
wheat, 
-Soft 
wheat 

Ferrara, 
Italy 

3850 ha To compare the 
performance of Sentinel-1 
and multi-incidence 
angle RADARSAT-2 data 
for estimating CAI as an 
indicator of wheat lodging 
detection 

RADARSAT-2 FQ8 data 
perform a great prediction of 
CAI than RADARSAT-2 
FQ21 and Sentinel-1 data. 
However, Sentinel-1 and 
RADARSAT-2 FQ21 
showed a comparable result 

Chauhan, et 
al., (2020a) 

Spaceborne Sentinel-1 and 
Sentinel-2 

Sentinel-
1=15×15m 
with C-band 
 
Sentinel-
2=10×10m 
With Thirteen 
spectral bands 
in the VIS, red 
edge, NIR, and 
SWIR domains 

Nineteen (19) 
Sentinel-1 and 
Eight (8) 
Sentinel-2 
images were 
acquired over 
the study area 
between 14 
Mar 2018 and 
30 Jun 2018 

- Durum 
wheat, 
-Soft 
wheat 

Ferrara, 
Italy 

3850 ha To understand lodging 
induced changes on the 
backscatter and spectral 
reflectance of Sentinel-1 
and Sentinel-2, respectively 

Sentinel-1 can best 
discriminate lodged and non-
lodged classes as compared 
to Sentinel-2 

Chauhan et 
al., (2020c) 
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Spaceborne Gaofen-1 (GF-
1) 

16×16 m 
with four 
Spectral bands 
including Blue, 
Green, Red, 
and NIR 

Two images 
were acquired 
on 23 Aug 
2018 before 
lodging and 8 
Sept 2018 after 
lodging, 
respectively 

Maize Gaocheng, 
Shijiazhuan
g City, 
Hebei 
Province, 
China 
 

549 km2 To identify the potential of 
Gaofen-1 (GF-1) optical 
imagery with Random 
Forest and Partial Least 
Square models in maize 
lodging modelling and 
monitoring 

The Random Forest model 
performed better than the 
partial least square model in 
classification and modelling 
of the acquired image 

Zhou et al., 
(2020) 

Spaceborne Sentinel-1 10×10m 
With C-band 

Two Sentinel-1 
images were 
acquired on 31 
Aug 2018 
before lodging 
and 12 Sept 
2018, 
respectively 

Maize Goacheng 
District, 
Shijiazhuan
g City, 
Hebei 
Province in 
North 
China 

549 km2 To calculate maize lodging 
angle and monitor maize 
lodging event based on the 
inversion of plant height 
results before and after 
lodging from dual-
polarization S-1 data 

The ratio of VH and VV and 
also VV polarization of 
Sentinel-1 detect the change 
of maize height before and 
after maize lodging 

Shu et al., 
(2020) 
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1.4. Research objectives 

1.4.1. General objective: 

The general objective of this study was to evaluate the potential of Sentinel-1, Sentinel-2, and their 

combination data in wheat lodging detection and classification by using a Random Forest classifier.  

1.4.2. Specific objectives, research questions (RQ), and research hypothesis (Ho): 

Objective 1: To evaluate the performance of Sentinel-1 data in wheat lodging detection and classification 

using Random Forest classifier  

RQ 1: Which Sentinel-1 parameter (e.g., σVV°, σVH°, σVH/VV°) best distinguishes the lodged 

wheat area from the non-lodged wheat area using Random Forest classifier? 

Ho 1: There is no significant difference between parameters derived from Sentinel-1 data for 

distinguishing the lodged wheat area from the non-lodged wheat area using Random Forest 

classifier 

Objective 2: To evaluate the performance of Sentinel-2 data in wheat lodging detection and classification 

using Random Forest classifier 

RQ 2: Which Sentinel-2 parameter (e.g., the reflectance of spectral bands) best distinguishes the 

lodged wheat area from the non-lodged wheat area using Random Forest classifier? 

Ho 2: There is no significant difference between parameters derived from Sentinel-2 data for 

distinguishing the lodged wheat area from the non-lodged wheat area using Random Forest 

classifier 

Objective 3: To compare the performance of Sentinel-1 and Sentinel-2 data combination for wheat lodging 

detection and classification using Random Forest classifier versus Sentinel- and Sentinel-2 data alone 

RQ 3: How is the accuracy (e.g., overall accuracy, kappa coefficient) of Sentinel-2 data compared 

to Sentinel-1 data for wheat lodging detection and classification? 

Ho 3: There is no significant difference between the accuracy (e.g., overall accuracy, kappa 

coefficient) of Sentinel-2 and Sentinel-1 data for wheat lodging detection and classification 

RQ 4: Will the combination of Sentinel-1 and Sentinel-2 data improve the wheat lodging detection 

and classification accuracy (e.g., overall accuracy, kappa coefficient) as compared to Sentinel-1 and 

Sentinel-2 data only? 

Ho 4: There is no significant difference in the accuracy (e.g., overall accuracy, kappa coefficient) of 

wheat lodging detection and classification if we combine Sentinel-1 and Sentinel 2 data as compared 

to using Sentinel-1 or Sentinel-2 only 
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1.5. Conceptual diagram 

The system boundary is the Bonifiche Ferraresi farm, located in Jolanda di Savoia Ferrara, Italy. The system 

consists of two components: internal (farmers and arable land) and external (weather, RS platforms, RS 

scientists, insurance companies) components. Each component interacts with each other; for instance, as 

indicated in Figure 3, wheat lodging is a phenomenon caused by the influence of extreme weather events 

like a combination of strong wind and high rainfall. Therefore, for real-time detection of the event, the 

application of high spatial and temporal resolution RS data is vital. Besides, the active involvement of RS 

scientists in processing and analysing of these RS data is required for providing real-time information on the 

wheat lodging event. Moreover, farmers need to be active in using real-time RS information and taking 

accurate measures against lodging event. This study specifically investigated the potential of Sentinel-1, 

Sentinel-2, and their combination data in wheat lodging detection and classification by using the Random 

Forest classifier. 

 
Figure 3: Conceptual diagram 
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2. MATERIALS AND METHODS 

This chapter presents the data and methods used in this research. The first section presents the study area, 
field data, and remote sensing data. The second section presents the statistical data analysis and the 
procedures followed for Random Forest classification of lodged and healthy wheat samples using Sentinel-
1, Sentinel-2, and their combination data. 

2.1. Study area and research data 

The study area is the Bonifiche Ferraresi farm (Figure 4), located in Jolanda di Savoia Ferrara, Italy, with a 
central coordinate of 44°52′59″N, 11°58′48″E. The area is characterized by its warm and temperate climate. 
The mean annual temperature and precipitation of the area are 13.6 °C and 691mm, respectively. The size 
of the arable land is 3850 ha, and it consists of two major soil types: clayey and silty soils. The farm is 
cultivated with different crops, including wheat, corn, rice, barley, soybean, potatoes, legumes, and other 
horticultural crops, but this study focused on winter wheat varieties.  

2.1.1. Field data/in situ measurement 

The field data were collected by Dr. Sugandh Chauhan, a previous PhD student at ITC. Seventy-six (76) 

winter wheat plots with a size of 60×60m were selected through stratified random sampling in her study. 

The plots were planted with Altamira, Bologna, Claudio, Giorgione, Marco Aurelio, Massimo Meridio, 

Monastir, Odisseo, PR22D66, Rebelde, and Senatore Capelli winter wheat varieties. The field data 

acquisition was performed from 14 Mar 2018 to the end of June 2018, including five growing stages (i.e., 

stem elongation, booting, flowering, milking, and ripening) of winter wheat. The measured field data 

included crop angle of inclination (CAI) and lodged area (LA) in percentage. According to Chauhan et al., 

(2020a) “CAI is defined as the angle made by the crop stem with respect to the vertical”. These two field 

parameters were used to calculate lodging score (LS) (equation 1). The LS was used to define the lodging 

categories or groups and it was modified after Chauhan et al., (2020c) work. As such, healthy (He) wheat 

plots include plots that have an LS value equal to 0.0 (LS=0.0), moderately lodged (ML) wheat plots include 

plots that have an LS value of less than or equal to 0.30 (0.0 < LS ≤ 0.30), a severely lodged (SL) wheat 

plots include plots that have an LS value of between 0.30 and 1 (0.31 < LS ≤ 1).    

 
𝑳𝑺 =

𝑳𝑨

𝟏𝟎𝟎
×
𝑪𝑨𝑰

𝟗𝟎°
 

 

(1) 

 

2.1.2. Sentinel-1 and Sentinel-2 data acquisition and pre-processing  

Nineteen Sentinel-1 (A/B) and five Sentinel-2 (A/B) images were acquired between 14 Mar 2018 and 30 

Jun 2018 (Table 2) from the ESA Copernicus Open Access Hub by Dr. Sugandh Chauhan. The Sentinel-1 

images were acquired in ascending pass (ASC) and Interferometric Wide Swath (IW) mode with dual-

polarization (VV, VH) (Table 3). Ground Range Detected (GRD) format Sentinel-1 data were acquired to 

extract the backscatter coefficient. The procedures outlined in Nelson et al., (2014) were applied in 

SARscape 5.5 software to pre-process the acquired GRD format Sentinel-1 data. The Sentinel-2 

multispectral images were level 2A products (Bottom of atmosphere (BOA) reflectance data) (Table 3). 

Three spectral bands of Sentinel-2 data, namely band 1 (B1), band 9 (B9), and band 10 (B10), were removed 

since they were not important for this study.  



LODGING DETECTION IN WHEAT: A MULTI-SENSOR APPROACH USING SENTINEL-1 AND SENTINEL-2 

 

12 

The acquisition of Sentinel-1 and Sentinel-2 images were temporally aligned with field observation dates in 

two different ways: if the samples were lodged, Sentinel-1 and Sentinel-2 images acquired on the same date 

of field measurement or after the field measurement date was selected, if the samples were not lodged, 

Sentinel-1 and Sentinel-2 images acquired either on the same date of field measurement or before the field 

measurement date was selected. However, we only used five cloud-free Sentinel-2 images as compared to 

the 19 Sentinel-1 images.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Study area (Bonifiche Ferraresi farm) (a), and (b) boundaries of wheat sample plots (in yellow) 
overlaid on Sentinel-2 images acquired at different wheat-growing stages 

 

 
 

a 

b 
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Table 2: Sentinel-1 and Sentinel-2 image acquisition dates 

 Sentinel-1 Sentinel-2 

Date March April May June March April May June 

1  ✓  ✓       

6    ✓      

7  ✓  ✓       

12    ✓      

13  ✓  ✓      ✓  

14 ✓       ✓   

18    ✓      

19  ✓  ✓     ✓   

20 ✓         

24    ✓   ✓    

25  ✓  ✓       

26 ✓         

30    ✓  ✓     

31   ✓       

 

Table 3: Specifications of Sentinel-1 and Sentinel-2 images 

Sentinel-1 Sentinel-2 

Parameter  Specification Spectral band central 

wavelength 

(nm) 

Bandwidth 

(nm) 

Spatial 

resolution 

(m) 

Wavelength  C-band B1 Coastal aerosol  443  20  60 

Frequency  5.405 GHz B2 Blue  490  65 10 

Product type GRD, SLC B3 Green 560  35 10 

Acquisition mode  IW B4 Red 665 30 10 

Incidence angle  39.7–40.4° B5 Red edge1 (RE-1) 705  15 20 

Pass  ASC B6 Red edge2 (RE-2) 740  15 20 

Polarisation  VH, VV B7 Red edge3 (RE-3) 783  20  20 

Spatial resolution 

(resampled) 

15 m B8 NIR-1  842 115  10 

Repeat cycle  6 days B8a NIR-2  865  20 20 

  B9 Water vapor  940 20 60 

  B10 SWIR Cirrus  1375 30 60 

  B11 SWIR-1 1610 90 20 

  B12 SWIR-2 2190  180 20 

2.2. Methods 

The Random Forest machine learning algorithm was used to predict LS in wheat fields based on the 

relationship between RS data (Sentinel-1, Sentinel-2, and their combination) and observed lodging in wheat 

plots. The different steps performed to predict the LS include feature extraction, feature splitting, optimal 

input predictor variables selection, the Random Forest model training, and finally, Random Forest model 

validation (Figure 5).  
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Figure 5: Methodological flowchart 

2.2.1. Sentinel-1 and Sentinel-2 feature extraction and data analysis   

The mean backscatter signature or features (Table 4) of nineteen Sentinel-1 images were extracted from the 

locations where wheat field samples were taken with a 3×3 kernel (window) size. The kernel size was based 

on the size of the field sample plots (60m×60m). The spectral extraction tool developed at the NRS 

department in ENVI Classic version 5.5.3 software (Table 6) was used to extract the backscatter signature 

of healthy (He) and lodged (ML and SL) wheat. Then the Sentinel-1 ratio (σVH/VV°) was calculated by 

subtracting the σVV° backscatter from σVH° (σVH°- σVV°). Then, the backscatter signature of the healthy 

and lodged wheat samples was explored by using box plots in Microsoft Excel 2020 (Table 6). The 

backscatter exploration was performed for five wheat growth stages (stem elongation, booting, flowering, 

milking, and ripening). However, since the first instance of lodging occurred at the beginning of the 

flowering stage, the lodged classes in flowering, milking, and ripening stages grouped into ML and SL based 

on the field-based lodging score (LS). In total, 228 Sentinel-1 samples were used for further analysis (Table 

5).  

Table 4: Sentinel-1 and Sentinel-2 features 

Sentinel-1 Sentinel-2 

VV, VH, VH/VV Blue, Green, Red, RE-1, RE-2, RE-3, NIR-1, NIR-2, SWIR-1, SWIR-2, NDVI-1, 

NDVI-2, NDVIRE-1, NDVIRE-2, NDVIRE-3, NDWI, EVI, SAVI, DVI 
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Table 5: No of Sentinel-1 and Sentinel-2 samples 

Lodging Class Sentinel-1 Sentinel-2 

Sample No Sample No 

He 160 59 

ML 13 13 

SL 55 48 

Total 228 120 

 

The mean spectral reflectance or features (Table 4) of five Sentinel-2 images were extracted from the 

locations where wheat field samples were taken with a 5×5 kernel (window) size using the spectral extraction 

tool developed at the NRS department in the ENVI Classic version 5.5.3 software. The kernel size was 

based on the field sample plots size (60m×60m) and the Sentinel-2 spatial resolution (10m). Then the 

spectral analysis of wheat was performed for the same five growth stages using MATLAB 2019a and 

Microsoft Excel 2020 software (Table 6). Furthermore, several Sentinel-2 derived vegetation indices; NDVI-

1, NDVI-2, NDVIRE-1, NDVIRE-2, NDVIRE-3, NDWI, RVI, EVI, SAVI (Table 7) were calculated, to 

explore their relationship with wheat lodging. In total, 120 Sentinel-2 samples were used for further analysis 

(Table 5).  

Table 6: List of software used in this MSc research 

Software Function 

SNAP 5.0 Sentinel-2 data Pre-processing 

ENVI Classic 5.5.3  Sentinel-1 and Sentinel-2 features extraction 

Microsoft Excel 2020 Data Analysis 

MATLAB 2019a Data Analysis 

R version 4.0.3 Classification and Data Analysis 

IBM SPSS Statistics 27 Statistical data analysis 

Arc GIS 10.8 Visualization and Map Production 

 

Table 7: Vegetation indices 

Vegetation Index Purpose Equation References 

Normalized 

Difference Vegetation 

Index 1 

Measure vegetation greenness 

and health 

NDVI-1 = (NIR-1 - Red) / 

(NIR-1 + Red) 

Rouse, (1974) 

Normalized 

Difference Vegetation 

Index 2 

Measure vegetation greenness 

and health 

NDVI-2= (NIR-2 – Red) / 

(NIR-2 + Red)  

Rouse, (1974) 

Normalized 

Difference Vegetation 

Index red-edge 1 

narrow 

Measure vegetation 

healthiness 

and post fire assessment 

NDVIRE-1 = (NIR-2 – RE-1) / 

(NIR-2 + RE-1) 

Fernández-Manso et al., (2016) 

Normalized 

Difference Vegetation 

Index red-edge 2 

narrow 

Measure vegetation 

healthiness 

and post fire assessment  

NDVIRE-2 = (NIR-2 – RE-2) / 

(NIR-2 + RE-2) 

Fernández-Manso et al., (2016) 

Normalized 

Difference Vegetation 

Index red-edge 3 

narrow 

Measure vegetation 

healthiness 

and post fire assessment 

NDVIRE-3= (NIR-2 – RE-3) / 

(NIR-2 + RE-3) 

Fernández-Manso et al., (2016) 
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Normalized 

Difference Water 

Index 

To estimate the plant moisture 

content 

NDWI = (NIR-2 – SWIR-1) / 

(NIR-2 + SWIR-1) 

Gao, (1996) 

Ratio Vegetation 

Index 

Green biomass estimations 

and monitoring 

RVI= Red / NIR-2 Pearson & Miller, (1972) 

Enhanced Vegetation 

Index 

Great sensitivity to high 

biomass accumulations hence 

it is useful in areas where 

NDVI is saturated 

EVI = ((NIR-1 – Red) × 2.5) / 

((NIR-1 + 6 × Red – 7.5 × Blue) 

+1) 

Huete et al., (1999) 

Soil Adjusted 

vegetation Index 

Minimize the effects of soil 

background on the vegetation 

signal 

SAVI = ((NIR-1 - Red) × 1.5) / 

(NIR-1 + Red + 0.5) 

Huete, (1988) 

Difference Vegetation 

Index 

Measure vegetation 

development 

 

DVI = (NIR-1 – Red) × 2.4 Richardson & Wiegand, (1977) 

 

2.2.2. Statistical data analysis  

To explore the statistical relationship between the field-based LS and RS data (Sentinel-1 and Sentinel-2), a 

Kruskal Wallis and post hoc tests were performed in the IBM SPSS Statistics 27 (Table 6). The Kruskal 

Wallis test is a non-parametric statistical test that can be used for testing data that have a continuous 

distribution, but the data are ordinal and not interval (MacFarland & Yates, 2016). It can be used as a one-

way ANOVA for data that does not have a normal distribution. To run the Kruskal Wallis and post hoc test 

for Sentinel-1 data, firstly, the field-based LS was assigned as the grouping variable and the Sentinel-1 

backscatter data (σVV°, σVH°, and σVH°/ σVV°) as testing variables. Then a Kruskal-Wallis one-way 

ANOVA (k samples) with multiple pairwise comparisons (post hoc) was used. The same procedures were 

repeated to test the Sentinel-2 data.  

2.2.3. Random Forest classification of Sentinel-1, Sentinel-2, and their combination data 

The Random Forest classifier was used to classify the Sentinel-1, Sentinel-2, and their combination data into 

healthy and two lodging classes (ML and SL). Prior to implementing the Random Forest classifier, the 

backscatter and spectral data of Sentinel-1, Sentinel-2, and their combination data, respectively, were saved 

in a comma-delimited (CSV) format in Microsoft Excel version 2020. Then, different packages were installed 

and loaded in R version 4.0.3 to run the Random Forest model. The installed packages include raster version 

3.4-5 (Hijmans, 2020), randomForest version 4.6-14 (Wiener, 2002), sp version 1.4-5 (Pebesma & Bivand, 

2005), rgdal version 1.5-23 (Rowlingson, 2021), ggplot2 version 3.3.3 (Wickham, 2016), and caret version 

0.4-3 (Kuhn, 2020).   

 

The other preliminary steps of the Random Forest classifier include feature splitting, differentiation of the 

dependent and explanatory variables, and input predictor variables selections. 

 

First, the Sentinel-1, Sentinel-2, and their combination data were split into training and test samples in R. 

The splitting was done in a proportion of 70/ 30 i.e., 70% training samples and 30% test samples. Then 

“as.factor” function of R version 4.0.3 was used to convert the LS column or the explanatory variable of 

Sentinel-1, Sentinel-2, and their combination data, respectively, into a factor variable and to run a 

classification. 
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Then the optimal input predictor variables (mtry) were identified for the splitting of nodes in the Random 

Forest decision tree development by using Sentinel-1, Sentinel-2, and their combination data, respectively. 

A “tuneRF” function was used to find the optimal mtry by setting also other parameters (“stepFactor’, 

“improve”, “trace”, “plot”). The “stepFactor” were used to define the inflated and deflated value of mtry at 

each iteration. The “improve” was used to define the OOB error improvement in search of better (small) 

OOB error. The “plot” setting was used to plot the OOB error as a function of “mtry” whereas, the “trace” 

option used to print the progress of the search. Secondly, the default ntree value of the Random Forests 

package (randomForest) in R version 4.0.3 (ntree=500) was used as an optimal ntree. 

 

After the required parameters (mtry and ntree) were defined, the Random Forest model was trained by using 

Sentinel-1, Sentinel-2, and their combination data, respectively. Then the performance of the Random 

Forest model outputs of the three datasets separately was evaluated through their confusion matrix, out-of-

bag error rate (OOB), and other parameters like variable importance. The variable of importance function 

was used to examine the importance of each Sentinel-1, Sentinel-2, and their combination data variables, 

respectively, in the Random Forest model (Breiman, 2001). 

 

Lastly, the Random Forest models developed using Sentinel-1, Sentinel-2, and their combination data, 

respectively, were validated by using the 30% test samples of the three datasets separately. The predict 

function of R version 4.0.3 was used to run the Random Forest models prediction. The best performing 

validated model was used on 19 May 2018 Sentinel-1 and Sentinel-2 combination image of the study area to 

generate a wheat LS classification map. The main reason for selecting the 19 May 2018 Sentinel-1 and 

Sentinel-2 combination image was to have a common acquisition date and ease of interpretation.  
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3. RESULT 

We first present the Sentinel-1 backscatter, Sentinel-2 spectral properties, and Sentinel-2 derived vegetation 

indices of healthy and lodged wheat at different wheat growth stages followed by the Kruskal Wallis and 

post hoc test results. The final section presents the Random Forest classifier training and prediction outputs 

for Sentinel-1, Sentinel-2, and their combination data.  

3.1. Backscatter properties of healthy and lodged wheat at different growth stages  

At the stem elongation phase (Figure 6a), the mean σVV° and σVH° of He wheat samples were -10.90 and 

-18.26, but when the wheat turns its phase to booting (Figure 6b), the mean σVV° and σVH° decreased to 

-13.69 and -19.66, respectively (Table 8). However, the σVH/VV° showed an increasing pattern from stem 

elongation to booting.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Box plot presenting the variation of backscatter (σVH°, σVV°, σVH/VV°) for healthy (He) 
wheat at (a) stem elongation (n=76) and (b) booting (n=33) stages 

At the flowering stage (Figure 7a), the mean σVV° and σVH° of He wheat samples further decreased to -

15.02 and -20.04, respectively due to structural parameter (e.g., leaf area index (LAI), fresh biomass (FB)) 

changes of wheat. But the σVH/VV° further increased to -5.01 (Table 8). On the other hand, the mean 

σVV°, σVH°, and σVH/VV° of SL wheat samples were higher than the mean σVV°, σVH°, and σVH/VV° 

of ML and He samples. Besides, the mean σVV° of ML wheat sample was higher than the He samples; 

however, the mean σVH° and σVH/VV° of ML wheat showed a decreasing pattern compared to He 

samples. 

 

At the milking growth stage of wheat (Figure 7b), the mean σVV° and σVH° of He wheat samples increased 

to -13.00 and -18.44, respectively; however, the σVH/VV° decreased to -5.44. In addition, the mean σVV°, 

σVH°, and σVH/VV° of ML and SL samples increased to -10.83 and -9.86, -4.35, respectively. The rate of 

change of σVV°, σVH°, and σVH/VV° for ML and SL samples at milking wheat growth stage was higher 

than the flowering stage. The increment of the σVV°, σVH° was consistent with the lodging severity.  
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Figure 7: Box plot presenting the variation of backscatter (σVH°, σVV°, σVH/VV°) for healthy (He) and 
lodged (ML, SL) wheat at (a) flowering (He; n=17, ML; n=3, SL; n=5) and (b) milking (H; n=21, ML; 

n=5, SL; n=18) stages 

Table 8: Mean backscatter of wheat at different growth stage 

Mean backscatter 

Growth stage LS class 𝝈𝑽𝑽° 𝝈𝑽𝑯° 𝝈𝑽𝑯/𝑽𝑽° 

Stem elongation He -10.90 -18.26 -7.36 

Booting He -13.69 -19.66 -5.96 

 

Flowering 

 

He -15.02 -20.04 -5.01 

ML -14.11 -20.14 -6.03 

SL -11.84 -16.34 -4.50 

 

Milking 

 

He -13.00 -18.44 -5.44 

ML -10.83 -15.98 -5.15 

SL -9.86 -14.21 -4.35 

 

Ripening 

 

He -11.37 -18.85 -7.48 

ML -11.45 -19.81 -8.36 

SL -11.95 -19.71 -7.76 

 

The mean σVV° of He wheat samples further increased at the ripening stage than the milking, flowering, 

and booting stages (Figure 8). However, the σVH° and σVH/VV° of He wheat samples decreased at the 

ripening stage compared to the milking stage of wheat. The mean σVV°, σVH°, and σVH/VV° of ML and 

SL wheat samples decreased compared to the milking stage. 

 
Figure 8: Box plot showing the variation of backscatter (σVH°, σVV°, σVH/VV°) of healthy (He, n=13) 

and lodged (ML; n=5, SL; n=32) wheat at ripening growth stage 
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3.2. Spectral properties of healthy and lodged wheat at different growth stages 

The spectral reflectance of wheat can be affected by different factors such as the growth stages, pigment 

concentration, water content, and structural changes like lodging. The average spectral reflectance 

characteristics of He, ML, and SL wheat samples were analyzed at different growth stages to understand the 

effect of lodging on the Sentinel-2 spectral properties of wheat. 

 

Since there were no lodged samples in the first two growing stages (stem elongation and booting) of wheat, 

the spectral analysis for those stages was only performed for He wheat samples. The average spectral 

reflectance of He wheat at the booting stage was higher than the stem elongation stage in all spectral regions 

(visible, RE, NIR, and SWIR) (Figure 9a). However, the rate of change in the NIR region was higher.  

 

At the flowering (Figure 9b) and milking (Figure 10a) stages of wheat, the average spectral reflectance of 

the SL and ML wheat samples were higher than the He wheat samples in all spectral bands. However, the 

difference between the average spectral reflectance of He, ML, and SL wheat samples was easily 

differentiable at the milking stage of wheat compared to the flowering stage (Table 9). 

Table 9: Average spectral reflectances of wheat at different wheat growth stages 

 Sentinel-2 average spectral reflectance  

Growth- 
stage 

Class Blue Green Red RE-1 RE-2 RE-3 NIR-1 NIR-2 
SWIR
-1 

SWIR
-2 

Stem- 
elongation 

He 
0.05 0.07 0.05 0.11 0.25 0.30 0.31 0.31 0.14 0.08 

Booting  He 0.06 0.08 0.06 0.10 0.28 0.39 0.39 0.40 0.15 0.08 

Flowering 
 
 

He 0.02 0.04 0.02 0.07 0.30 0.44 0.46 0.46 0.14 0.06 

ML 0.05 0.07 0.04 0.11 0.37 0.52 0.54 0.54 0.18 0.09 

SL 0.04 0.08 0.04 0.12 0.40 0.54 0.57 0.57 0.17 0.08 

Milking 

He 0.01 0.04 0.03 0.07 0.26 0.37 0.38 0.39 0.13 0.06 

ML 0.02 0.05 0.03 0.08 0.29 0.39 0.41 0.42 0.14 0.07 

SL 0.04 0.08 0.05 0.12 0.38 0.50 0.51 0.53 0.17 0.08 

Ripening 

He 0.05 0.08 0.12 0.15 0.16 0.19 0.20 0.22 0.24 0.16 

ML 0.07 0.11 0.16 0.19 0.20 0.23 0.24 0.26 0.28 0.19 

SL 0.09 0.13 0.18 0.23 0.25 0.28 0.30 0.32 0.32 0.22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Average spectral reflectance of (a) healthy wheat at stem elongation and booting stages (He, 
n=15), (b) healthy (He, n=5), and lodged (ML; n=3, SL; n=5) wheat at flowering stage 
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Figure 10b shows the average spectral reflectance of He, ML, and SL wheat samples at the ripening growth 

stage. At this stage, the average spectral reflectance of wheat loses its normal spectral shape due to the loss 

of chlorophyll and water absorption peaks (Chauhan, et al., 2020c). Although the normal average spectral 

reflectance behaviour is changed, the average spectral reflectance difference between the He, ML, and SL 

wheat samples was noticeable in all spectral bands. 

 

 

 

 

 
 

 

 
 

 
 

 

 

 

Figure 10: Average spectral reflectance of healthy (He) and lodged (ML, SL) wheat at (a) milking (He; 
n=15, ML; n=5, SL; n=16) and (b) ripening (H; n=9, ML; n=5, SL; n=27) stages 

3.3. Effect of lodging on vegetation indices  

We also explored the relationship between selected Sentinel-2 derived vegetation indices and wheat lodging. 

Figure 11 shows the variation of different vegetation indices in different lodging classes. The mean values 

of some indices (NDVI-1, NDVI-2, NDVIRE-1, NDVIRE-2, NDWI, EVI, SAVI, and DVI) decreased 

when the severity of lodging increased. On the other hand, some other indices such as NDVIRE-3, RVI 

increased. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 11: Sentinel-2 derived vegetation indices of healthy (He, n=59) and lodged (ML; n=13, SL; n=48) 

wheat samples from stem elongation to ripening growth stages 

3.4. Kruskal Wallis and post hoc test results of Sentinel-1 and Sentinel-2 data  

Table 10 presents the Kruskal Wallis test results of Sentinel-1 data. The σVV° was the only significant 

Sentinel-1 band at p<0.05; hence it could differentiate the He, ML, and SL wheat classes. However, the 

remaining two Sentinel-1 bands (σVH° and σVH/VV°) were not significant at p<0.05; hence it could not 
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differentiate the three classes. On the other hand, the σVV°, σVH°, and σVH/σVV° showed different 

Kruskal Wallis test results in differentiating the He, ML, and SL wheat classes at different growth stages 

(flowering, milking, and ripening). For example, at the milking stage, all Sentinel-1 bands (σVV°, σVH°, and 

σVH/VV) were significant in differentiating the He, ML, and SL classes. However, at flowering and ripening 

stages, all Sentinel-1 bands (σVV°, σVH°, and σVH/VV°) were not significant. 

 

The post hoc pairwise comparison result of all three Sentinel-1 bands presented in Table 11 reveals that 

σVV° could significantly differentiate the He from SL classes. Furthermore, the post hoc result at the milking 

growth stage showed, both σVV° and σVH° could differentiate He from ML and SL classes. In contrast, 

σVH/VV° could differentiate only the He from SL classes (Appendix Table 2).  

Table 10: Kruskal Wallis test result for Sentinel-1 data 

Lodging classes P-value 𝝈𝑽𝑯° P-value 𝝈𝑽𝑽° P-value 𝝈𝑽𝑯/𝑽𝑽° 

H-ML-SL 

 
 

0.14 

 

0.00 

 

0.61 

 

 

Table 11: Post hoc test result of Sentinel-1 data 

Class Pairs P-value 𝝈𝑽𝑯° P-value 𝝈𝑽𝑽° P-value 𝝈𝑽𝑯/𝑽𝑽° 

H-ML Na .27 Na 

H-SL Na .00 Na 

ML-SL Na .46 Na 

 

Table 12 shows the Kruskal Wallis test results of Sentinel-2 data. Most of the Sentinel-2 spectral bands were 

significant in terms of differentiating the three classes (He, ML, and SL). However, RE-3 and NIR-1 were 

not significant in terms of differentiating the three classes. Furthermore, the Kruskal Wallis test result of 

Sentinel-2 data at different wheat growth stages (flowering, milking, and ripening) revealed different results. 

Only the NIR-2 spectral band of Sentinel-2 was significant at the flowering stage to differentiate He, ML, 

and SL classes, while the other Sentinel-2 bands were non-significant. However, all Sentinel-2 spectral bands 

were significant in differentiating the three classes (Appendix Table 3) at milking and ripening stages.  

 

The post hoc pairwise comparison result of the whole Sentinel-2 data revealed that most of the Sentinel-2 

spectral bands (Green, Red, RE-1, SWIR-1, SWIR-2) could distinguish the He from SL classes and ML 

from the SL classes (Table 13). However, Blue, RE-2, and NIR-2 could only differentiate the He classes 

from SL classes.  Since the two Sentinel-2 spectral bands were not significant in the Kruskal Wallis test, we 

could not find a post hoc pairwise comparison result; hence, we put “Na” meaning “missing values”. 

Furthermore, the post hoc pairwise comparison result of Sentinel-2 data at the flowering stage showed NIR-

2 could differentiate the He from SL classes, while the other spectral bands could not differentiate any class 

combination. However, all Sentinel-2 spectral bands could differentiate the He from SL classes at milking 

and ripening stages. Besides, most of the spectral bands could differentiate ML from SL classes at the milking 

stage, except the Green and RE-1 bands. In the ripening stage, RE-3, NIR-1, and NIR-2 could also 

distinguish ML from SL classes (Appendix Table 4). 

Table 12: Kruskal Wallis test result for Sentinel-2 data 

Lodging 
classes 

P-value 
Blue 

P-value 
Green 

P-value 
Red 

P-value 
RE-1 

P-value 
RE-2 

P-value 
RE-3 

P-value 
NIR-1 

P-value 
NIR-2 

P-value 
SWIR-1 

P-value 
SWIR-2 

H-ML-SL  0.00 0.00 0.00 0.00 0.00 0.19 0.11 0.04 0.00 0.00 
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Table 13: Post hoc test result of Sentinel-2 data 

Stem elongation to ripening 

Class 
Pairs 

P-value 
Blue 

P-value 
Green 

P-value 
Red 

P-value 
RE-1 

P-value 
RE-2 

P-value 
RE-3 

P-value 
NIR-1 

P-value 
NIR-2 

P-value 
SWIR-1 

P-value 
SWIR-2 

H-ML .37 .09 .37 .05 .31 Na Na .45 .04 .17 
H-SL .00 .00 .00 .00 .00 Na Na .01 .00 .00 
ML-SL  .10 .02 .04 .02 .19 Na Na .40 .03 .03 

3.5. Random Forest classification results 

The Random Forest classifier, which was trained by using three features and five hundred decision tree of 

Sentinel-1 data, ten features and five hundred decision trees of Sentinel-2 data, and thirteen features and 

five hundred decision trees of Sentinel-1 and Sentinel-2 data combination, respectively, produces a 

confusion matrix and OOB error estimates (Table 14). For instance, the Random Forest classifier of the 

Sentinel-1 data (σVV°, σVH°, and σVH/VV°) misclassified the ML class into the other classes (He and SL); 

hence, the class error rate of ML class was higher. On the other hand, the overall error rate of (OOB) of 

the Sentinel-1 based Random Forest classifier was 16.27.  

Table 14: Confusion matrix and OOB error rate of Random Forest classifier 

 Sentinel-1 Sentinel-2 Sentinel-1 and Sentinel-2 

Classes He ML SL Class error He ML SL Class error He ML SL Class error 

He 109       0        6              0.05 36 0   5    0.12 36       1          4              0.12 

ML 5          3        3              0.737 5 0   3    1.00 2        2          4              0.75 

SL 

 

12         

 

1       

 

27 

 

0.33 4 

 

1 

 

30    

 

0.14 2        

 

2         

 

31             

 

0.11 

OOB estimate of error rate = 16.27% OOB estimate of error rate = 

21.43% 

OOB estimate of error rate = 

17.86% 

 
The Sentinel-2 data-based Random Forest classifier confusion matrix shows the ML class completely 

misclassified; thus, the class error rate of the ML class was 100%. However, since most of the He and SL 

classes were classified properly, their class error rate was moderate. The OOB error rate of the Sentinel-2 

data-based Random Forest classifier was higher than the Sentinel-1 and combination of Sentinel-1 and 

Sentinel-2 data-based model because of the highest number of misclassified classes in the overall model. 

 

The confusion matrix of the Sentinel-1 and Sentinel-2 combination data-based Random Forest classifier 

shows the class error rate of He and SL classes was lower than the ML class. On the other hand, the OOB 

error rate of the overall model was lower than the Sentinel-2 based Random Forest classifier due to fewer 

misclassified classes in the Sentinel-1 and Sentinel-2 combination-based Random Forest model.  

 

Table 15 shows the most important features (variables) of Sentinel-1, Sentinel-2, and their combination data 

in the development of the Random Forest classifier. For example, σVH° and σVH/VV° were the first and 

the second most important variables in the development of Sentinel-1 data-based Random Forest classifier. 

In contrast, σVV° was the least important variable. The ranking was based on the mean decrease Gini 

impurity value for each variable. On the other hand, RE-1, SWIR-1, RE-2, Green, NIR-1 were the top five 

important Sentinel-2 variables in Sentinel-2 data-based Random Forest classifier development. Moreover, 

σVH°, SWIR-1, RE-1, Green, and RE-2 of Sentinel-1 and Sentinel-2 data, respectively, were the top five 

most important variables in the Random Forest classification of Sentinel-1 and Sentinel-2 combination data.  
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Table 15: Variable of importance for the Random Forest Classifier 

 Sentinel-1 Sentinel-2 Sentinel-1 and Sentinel-2 

 

Variable of 

importance 

Variable  MeanDec

reaseGini   

Rank Variable   MeanDec

reaseGini   

Rank Variabl

e   

MeanDec

reaseGini   

Rank 

VH                  38.85 1 RE1                6.77                    1 VH                5.38                  1 

 VH/VV            19.09                2 SWIR1            6.61                    2 SWIR1          5.12                 2 

 VV                  17.79               3 RE2                5.55                    3 RE1              4.77                  3 

    Green             5.02                    4 Green           4.73                  4 

    NIR1               4.40                    5 RE2              4.09                  5 

    NIR2               4.24                    6 Red              3.39                  6 

    SWIR2            3.90                    7 VH/VV          3.17                  7 

    RE3                3.78                    8 NIR2 3.17                  8 

    Red                 3.69                   9 NIR1             3.02                  9 

    Blue                3.37                 10 RE3              2.99                10 

       VV                2.93                 11 

       SWIR2         2.92                 12 

       Blue             2.28                13 

 

The overall accuracy and kappa coefficient of the Random Forest model developed by the combination of 

Sentinel-1 and Sentinel-2 data was higher than Sentinel-1 and Sentinel-2 data alone. This implies the 

combination of optical and active sensor data could improve the predictive power of the Random Forest 

model. Moreover, Sentinel-2 has better predictive power than Sentinel-1 (Table 16).  

Table 16: Random Forest classifier prediction outputs 

 Sentinel-1 Sentinel-2 Sentinel-1 and Sentnel-2 

Class He ML SL Total UA He ML SL Tot

al 

UA He ML SL Total UA 

He 38 1 3 42 91 15 1 0 16 94 16 1 0 17 94 

ML 4 0 1 5 0 0 1 0 1 100 0 1 0 1 100 

SL 3 1 11 15 73 3 3 13 19 68 2 3 13 18 72 

Total 45 2 15 62  18 5 13   18 5 13   

PA 

(%) 

84 0 73   83 20 100   83 20 10

0 

  

OA 

(%) 

79 80 83 

Kappa 0.53 0.67 0.71 
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3.5.1. Random Forest LS prediction map  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12: Bonifiche Ferraresi farm wheat LS map predicted from the combination of Sentinel-1 and 

Sentinel-2 data on 19 May 2018 

Figure 12 shows the Random Forest LS classification map of 19 May 2018 Sentinel-1 and Sentinel-2 

combination data. All the three wheat LS classes were appropriately represented.  

 



LODGING DETECTION IN WHEAT: A MULTI-SENSOR APPROACH USING SENTINEL-1 AND SENTINEL-2 

 

26 

4. DISCUSSION  

In this study, we assessed the potential of the backscatter and spectral data of Sentinel-1, Sentinel-2, and 

their combination, respectively, in wheat lodging detection and classification using Random Forest classifier. 

Assessing the potentials of the three datasets is important in replacing the conventional lodging detection 

techniques, which are constrained mainly by their inherent bias, limited spatial coverage, and costs. 

Consequently, it may help farmers in the real-time monitoring of the phenomenon and to reduce yield losses. 

Besides, it will help to reduce extra harvesting and grain drying costs. Furthermore, it may help to solve 

disagreements between farmers and insurance companies regarding crop losses.  

 

Firstly, we examined the performances of Sentinel-1 backscatter and Sentinel-2 spectral data in wheat 

lodging detection at different growth stages via backscatter and spectral analysis, respectively. Then we 

established the statistical relationship between the field-based LS and Sentinel-1 and Sentinel-2 data. Finally, 

we performed and compared Random Forest classification using Sentinel-1, Sentinel-2, and their 

combination, respectively. In the following sections, the most important findings of this research, 

limitations, and future works are discussed. 

4.1. Backscatter and spectral behaviour of wheat 

In the normal crop growth cycle, the backscattering properties of cereal crops are strongly affected by the 

crop phenology and associated plant and soil parameter changes (Larranaga et al., 2013). As mentioned in 

section 3.1, the σVV°, σVH°, and σVH/VV° of He wheat were higher at the stem elongation growth stage 

of wheat (Figure 6a). Wheat has a small plant canopy during its initial growth stages; therefore, the incoming 

wave interacts with the underlying soil surface and the σVV°, σVH°, and σVH/VV° are mostly driven by 

soil moisture and roughness of the soil (Chauhan, et al., 2020c; Dobson & Ulaby, 1981; Song & Wang, 

2019). However, when wheat changed its growth stages to booting, flowering, and milking stages, the σVV°, 

σVH°, and σVH/VV° were mostly affected by LAI, fresh/dry biomass (FB/DB), and other physical 

parameters of the wheat plant. For example, at the booting stage and flowering stages of wheat, the σVV° 

and σVH° of wheat decreased (Figure 6b and Figure 7a). It could be due to the wave attenuation of wheat 

through their vertical structure, leaf area index, fresh/dry biomass (Chauhan, et al., 2020c; Mattia et al., 2003; 

Yang et al., 2015). In contrast, the increased σVH/VV° of wheat could be due to a canopy thickness (Song 

& Wang, 2019). Chauhan et al., (2020c) reported that the σVV°, σVH° of wheat decreased due to the 

increase of wheat biophysical and biochemical parameters. At the ripening stage, the leaf area index, 

fresh/dry biomass, and moisture content of wheat gradually decreased; hence the σVV°, σVH°, and 

σVH/VV° of wheat increased due to reduction of wave attenuation and increasing of soil backscatter. 

 

When lodging occurred, the vertical structure of the wheat plant altered; hence the usual backscattering 

properties of wheat changed. As presented in Figure 7a and 7b, the mean σVV° and σVH°, and σVH/VV° 

of ML and SL wheat samples were higher than the He wheat samples at flowering and milking stages. The 

increment of the σVV° and σVH° of ML and SL wheat could be due to the loss of the vertical structure 

(the increasing of crop angle of inclination) of wheat subsequently the loss of wave attenuation and multiple 

scattering, respectively (Chauhan, et al., 2020a; Chauhan, et al., 2020c; Yang et al., 2015; Zhao et al., 2017). 

On the other hand, the σVH/VV° was sensitive to differentiate SL wheat from ML and He wheat at the 

milking growth stage it could be due to the strong sensitivity of σVH° and σVV° to crop structural changes 

at the milking stage (Chauhan, et al., 2020c). Yang et al., (2015) found that both σVV° and σHV° were 
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sensitive to wheat lodging. In addition, Chauhan, et al., (2020c) reported σVH° and σVV° as the first and 

second most sensitive and important parameter for wheat lodging detection, respectively. The result of this 

study presented on section 3.1 were consistent with those of  Yang et al., (2015), Chauhan, et al., (2020c), 

and Zhao et al., (2017).  

 

Lodging stress affect crop biophysical and biochemical properties and cause changes in the spectral 

reflectance of vegetation canopies (Chauhan et al., 2019b; Chauhan et al., 2020c). As shown in section 3.2, 

the spectral reflectance of ML and SL wheat samples was higher than He wheat samples in all spectral 

regions (Figure 9b, 10a, and 10b). The change in the crop structure (an increase of CAI and leaf surface 

area) and biochemical parameters (the reduction of chlorophyll and water concentration) could lead to the 

raising of ML and SL spectral reflectance in the visible (blue, green, red), RE (RE-1, RE-2, RE-3), NIR 

(NIR-1, NIR-2), and SWIR (SWIR-1, SWIR-2) regions of the spectrum (Chauhan et al., 2020c; Chauhan et 

al., 2019b; Setter et al., 1997; Wang et al., 2020). Chauhan et al., (2019b), Chauhan, et al., (2020c), Wang et 

al., (2020) also found that lodging increase the magnitude of wheat spectral reflectance in all spectral regions 

of Sentinel-2.  

 

The Kruskal Wallis and the post hoc test results of Sentinel-1 (σVV°) and Sentinel-2 data (Green, Red, RE-

1, SWIR-1, SWIR-2, Blue, RE-2, and NIR-2) showed a significant difference in terms of differentiating He 

and lodged groups (ML and SL). However, some Sentinel-1 (σVH° and σVH/VV°) and Sentinel-2 (RE-3 

and NIR-1) parameters showed a non-significant test value which was contradicting with Figure 7a, 7b, 8, 

9b, 10a, and 10b. We pooled the SL and very severely lodged (VSL) wheat LS groups of previous Chauhan, 

et al., (2020c) work (Appendix Table 5); hence the pooling of the two LS groups could make the σVH°, 

σVH/VV°, RE-3, NIR-1 bands non-significant (Table 12). In addition, the maximum NIR-1 spectral 

reflectance of He and SL wheat samples was almost similar at flowering and ripening stages of wheat (Figure 

9b and 10b); thus, it could create a problem for the Kruskal Wallis and post hoc tests to properly differentiate 

the three wheat LS groups. Furthermore, the Kruskal Wallis and post hoc tests use mean rank-sum to 

identify the significant difference between the three LS groups (He, ML, and SL), whereas visual 

interpretation was used to interpret the box plots of Sentinel-1 data, so the difference between the two 

criteria may create confusion in the interpretation. 

4.2. Random Forest classification  

The OOB error rate of the Random Forest classifier, which was trained by using Sentinel-1 data (σVV°, 

σVH°, and σVH/VV°) was moderate due to high error of one of the three classes. It could be due to the 

confusing plant orientation of the ML class. Since ML samples have slightly inclined stems, it could attenuate 

some of the VV polarized incoming waves through their inclined stems (Yang et al., 2015). Therefore, it 

could create confusion for the model to distinguish the ML class from the He and SL classes (Figure 7a and 

7b) and contribute higher for the overall OOB error rate of the model. σVH° was the most important 

Sentinel-1 variable in the LS classification using Random Forest classifier. Lodging changes the vertical 

structure of wheat; hence, it would result in multiple scattering of wheat. These backscatter changes could 

easily be detected through σVH° because of its inherent sensitivity for multiple backscattering of wheat 

during lodging (Chauhan, et al., 2020a; Chauhan, et al., 2020c; Yang et al., 2015; Wang et al., 2020). Wang 

et al., (2020) also found that σVH° was the most important variable in the Random Forest LS classification 

of Sentinel-1 data. However, the result of the Random Forest classifier variable of importance function and 

the Kruskal Wallis and post hoc test were not consistent. It could be due to the difference in the evaluation 

criteria between the Random Forest classifier variable of importance function and Kruskal Wallis and post 

hoc tests.  The Random Forest classifier variable of importance function uses the Mean Decrease Gini 
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(Mean Decrease Impurity) index as a criterion for ranking the variables in the classification. Mean Decrease 

Gini measures the importance of features in decreasing impurities in the Random Forest decision tree 

training. On the other hand, Kruskal Wallis and post hoc tests use mean rank-sum to identify the potential 

of Sentinel-1 variables in the differentiation of He, ML, and SL wheat LS groups.  

 

The Sentinel-2 data-based Random Forest model OOB error rate was higher than the Sentinel-1 and the 

combination data-based Random Forest models (Table 14). It could be due to the misclassification of the 

ML classes into SL and He classes because of the close average spectral reflectance value of ML classes with 

He class at flowering stage, and ML class with SL class at milking stage, respectively (Figure 9b and 10a). 

However, the class error rate of He and SL classes was low due to a clear difference in He and SL classes' 

spectral reflectance in most spectral bands (Figure 9b, Figure 10a, and 10b). Although the OOB error rate 

of the Sentinel-2 data-based Random Forest model was higher, the predictive power of the Sentinel-2 data-

based Random Forest model was still slightly higher than the Sentinel-1 data-based Random Forest model. 

It could be due to the difference in spectral and spatial resolution of Sentinel-1 and Sentinel-2 datasets. The 

top five most important variables of Sentinel-2 in the Random Forest model-based wheat LS classification 

were RE-1, SWIR1, RE-2, Green, and NIR1. The lodging stress causes a reduction of chlorophyll and water 

concentration of wheat; hence, it would increase reflectance in the visible and RE regions. Therefore, these 

spectral changes could easily be captured through Green, RE-1, and RE-2 bands of Sentinel-2 since they 

have inherent sensitivity to reflectance changes due to chlorophyll and water changes (Chauhan et al., 2019b; 

Chauhan et al., 2020c; Wang et al., 2020). Furthermore, the structural changes caused by lodging could also 

increase reflectance in the NIR region of the spectrum; thus, the NIR-1 band of Sentinel-2 could easily 

capture the spectral changes. The results were similar to Chauhan et al., (2019b), Chauhan, et al., (2020c), 

and Wang et al., (2020) findings, even though there were slight differences. 

 

The Kruskal Wallis and post hoc test results also confirmed that the RE-1, SWIR-1, RE-2, and Green bands 

could distinguish He and SL classes (Table 12 and 13). But some of the Random Forest variables of 

importance outputs were not consistent with the Kruskal Wallis and post hoc test results. The difference 

between the parameter used in the Random Forest classifier and Kruskal Wallis and post hoc tests could be 

a reason for the difference between the rank of the variables of importance for the Random Forest-based 

Sentinel-2 data classification.  

 

In the combination of Sentinel-1 and Sentinel-2 data-based Random Forest model, the class error rate of 

ML class and the OOB error rate of the model was slightly improved compared to the Sentinel-2 based 

Random Forest model (Table 14). This indicates the combination of SAR and optical features could play a 

role in the reduction of the class-specific and overall error rate of the model (Wang et al., 2020). Wang et 

al., (2020) also found an improved OOB error rate using the combination of Sentinel-1 and Sentinel-2 data. 

The σVH° of Sentinel-1 data was the most important variable in the combination data-based Random Forest 

model because of its sensitivity to lodging-induced structural changes. The other four important variables 

in the combination data-based Random Forest model were SWIR-1, RE-1, Green, and RE-2. These 

Sentinel-2 parameters were sensitive to crop structural and biochemical changes. Therefore, the combination 

of the Sentinel-1 data, which can acquire without any cloud effect with cloud-sensitive Sentinel-2 data, 

provides better accuracy. 

4.3. Did the combination of Sentinel-1 and Sentinel-2 data improve classification accuracy? 

The LS prediction output of the combination data-based Random Forest model was higher (83%) than the 

individual Sentinel-1 (79%) and Sentinel-2 (80%) data-based Random Forest model prediction outputs. The 
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Sentinel-1 backscatter features are highly sensitive to the structural changes of crops. On the other hand, 

Sentinel-2 features are sensitive to the crop biochemical and biophysical changes. Therefore, combining the 

features from the two datasets would led to a better LS classification of wheat. Wang et al., (2020) also 

reported a maximum prediction accuracy (91.29%) in rice crop lodging classification using a Random Forest 

model with Sentinel-1 and Sentinel-2 combination data.   

4.4. Limitations and future works 

The limitation of this study and areas for future improvement are presented as follows. In this study, there 

was a big sample size difference between He, ML, and SL wheat; unbalanced data could lead the Random 

Forest model to be biased to the class with maximum sample size (Bader-El-Den et al., 2019; Galar et al., 

2012). In addition, it also affects the results of Kruskal Wallis and post hoc tests. Therefore, future work 

should use balanced field and remote sensing data. The other major limitation of the study was the gap 

between the field and remote sensing data acquisition, especially for Sentinel-2 data which was greater than 

six days. Therefore, a smaller time interval between field data collection and remote sensing data acquisition 

would help when relating plants' biophysical and biochemical changes to remote sensing observations. 

Appropriately acquired data would also help to train the Random Forest model properly.  

 

The combination of the two spaceborne datasets (Sentinel-1 and Sentinel-2) provided an improved LS 

classification accuracy. However, further investigations on the integration of full polarimetric, high-

resolution short (X) or long (L) band SAR data with freely available Sentinel-2 data could provide better 

lodging detection and classification accuracy. The full polarimetric SAR data provides polarimetric 

decomposition information. In addition, the L-band SAR data can penetrate the plant canopy and acquire 

the data from the ground, whereas X-band SAR datasets acquire information from the top of the crop 

canopy, so the investigations of these two different bands SAR data by combining with optical data could 

provide another information’s in terms of lodging detections.  

 

The Random Forest model which was used to classify LS based on Sentinel-1, Sentinel-2, and their 

combinations datasets, performed very well. However, further investigations should be performed to check 

the performances of different machine learning algorithms, such as deep learning algorithms in the LS 

classification of the three datasets. 

 

The study demonstrated the performance of Sentinel-1, Sentinel-2, and the combination of Sentinel-1 and 

Sentinel-2 data in wheat lodging detection and classification in a specific area. It will be a good addition if 

future research focuses on investigating the potential of the three datasets in large areas with different agro-

ecologies.     

4.5. Implications of the study  

The main purpose of this research was to evaluate the potential of Sentinel-1, Sentinel-2, and their 

combination data in wheat lodging detection and classifications using Random Forest classifier. Our result 

demonstrated that the integration of the two datasets could improve the classification accuracy of the 

Random Forest model. Therefore, this study could be considered as a promising prospect in the gradual 

replacement of the conventional lodging monitoring techniques with effective and efficient remote sensing 

techniques. Remote sensing techniques in lodging monitoring provide accurate and precise information 

regarding the phenomenon; hence, it will help farmers and other respective stakeholders make appropriate 

decisions. For instance, farmers can monitor the health of their crops remotely, it will help them to maintain 
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the quality and quantity of their crop yield higher, and it would help them to reduce the cost incurred for 

harvesting, drying, and labour. Furthermore, remote sensing-based lodging monitoring would help insurance 

companies to get evidence about the phenomenon and give appropriate remedial actions. On the other 

hand, the Random Forest model used in this study would help the remote sensing communities to correctly 

classify the remote sensing data with a short period of time and energy; hence, it reduces the power and 

energy required for making manual classifications. 
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5.   CONCLUSION 

The study examined the performances of Sentinel-1, Sentinel-2, and their combination data in wheat lodging 

detection and classification with a Random Forest classifier. The following conclusions were drawn based 

on statistical analysis and a Random Forest classification using the three datasets. The statistical summary 

of Sentinel-1 backscatter data revealed that Sentinel-1 could effectively distinguish the lodged wheat classes 

(ML and SL) from the healthy (He) wheat class, and the Random Forest LS classification result showed an 

overall accuracy and kappa coefficient of 79% and 0.53, respectively. This indicates the usefulness of 

Sentinel-1 data in the operational wheat lodging detection and classification. Moreover, the Random Forest 

LS classification result of Sentinel-1 data showed that σVH° was the most important parameter for 

classifying healthy and lodged classes.  

 

The investigation of Sentinel-2 spectral data showed an encouraging result. Most of the Sentinel-2 spectral 

bands could differentiate the lodged classes from the healthy class. Furthermore, the overall classification 

accuracy and kappa coefficient of the Random Forest model using Sentinel-2 spectral bands was 80% and 

0.65, respectively. Moreover, from the Sentinel-2 spectral bands, RE-1 was the most important variable in 

terms of differentiating the three LS classes. The other top five most important variables of Sentinel-2 in 

the Random Forest LS classification were SWIR-1, RE-2, Green, and NIR-1.  

 

The overall accuracy and kappa coefficient of the combination of Sentinel-1 and Sentinel-2 data-based 

Random Forest model was 83% and 0.71, respectively, which is higher than the individual Sentinel-1 and 

Sentinel-2 overall accuracy and kappa coefficient, respectively. This implies the combination of the two 

datasets provides a good opportunity to improve the overall performance of the combination-based 

Random Forest model. Furthermore, the σVH°, SWIR-1, RE-1 bands of Sentinel-1 and Sentinel-2 were the 

top three important variables in the combination data random forest classification. 
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APPENDICES 

Table 1: Kruskal Wallis test results of Sentinel-1 data 

 

Growth stage  

Sentinel-1 

P-value 𝝈𝑽𝑯° P-value 𝝈𝑽𝑽° P-value 𝝈𝑽𝑯/𝑽𝑽° 

Flowering .07 .10 .09 

Milking .00 .00 .00 

Ripening .62 .14 .62 

 

Table 2: Post hoc test pairwise comparison results of Sentinel-1 data 

 

Class 

Pairs 

Flowering Milking Ripening 

P-value  

𝝈𝑽𝑯° 

P-value  

𝝈𝑽𝑽° 

P-value  

𝝈𝑽𝑯/𝑽𝑽° 

P-value  

𝝈𝑽𝑯° 

P-value  

𝝈𝑽𝑽° 

P-value  

𝝈𝑽𝑯/𝑽𝑽° 

P-value  

𝝈𝑽𝑯° 

P-value  

𝝈𝑽𝑽° 

P-value  

𝝈𝑽𝑯/𝑽𝑽° 

He-ML Na Na Na .04 .01 .40 Na Na Na 

He-SL Na Na Na .00 .00 .00 Na Na Na 

ML-SL Na Na Na .13 .40 .06 Na Na Na 

 

Table 3: Kruskal Wallis test results of Sentinel-2 data 

Growth stage 

Sentinel-2 Bands 

P-value 
Blue 

P-value 
Green 

P-value 
Red 

P-value 
RE1 

P-value 
RE2 

P-value 
RE3 

P-value 
NIR1 

P-value 
NIR2 

P-value 
SWIR1 

P-value 
SWIR2 

Flowering 0.11 0.10 0.12 0.12 0.10 0.12 0.08 0.05 0.12 0.14 
Milking 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ripening  
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

Table 4: Post hoc test pairwise comparison results of Sentinel-2 data 

 Sentinel-2 Bands 

Growth- 
stage 

Class-
Pairs 

P-
value 
Blue 

P-
value 
Green 

P-
value 
Red 

P-
value 
RE1 

P-
value 
RE2 

P-
value 
RE3 

P-
value 
NIR1 

P-
value 
NIR2 

P-
value 
SWIR1 

P-
value 
SWIR2 

Flowering 
  

He-ML Na Na Na Na Na Na Na .17 Na Na 

He-SL Na Na Na Na Na Na Na .02 Na Na 

ML-SL Na Na Na Na Na Na Na .45 Na Na 

Milking 

He-ML .11 .06 .18 .06 .21 .54 .41 .55 .26 .32 

He-SL .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

ML-SL .04 .06 .03 .06 .02 .00 .01 .00 .02 .01 

Ripening 

He-ML .12 .14 .10 .13 .25 .28 .37 .34 .19 .14 

He-SL .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

ML-SL .18 .13 .19 .16 .06 .05 .03 .04 .06 .09 

 

Table 5: Kruskal Wallis test results of Sentinel-2 data with four LS groups (stem elongation to 

ripening) 

Test Statistics 

 Blue Green Red RE1 RE2 RE3 NIR1 NIR2  SWIR1 SWIR2 

Kruskal-Wallis H 16.603 41.138 22.667 48.633 19.980 7.800 8.944 11.192 46.340 31.128 

df 3 3 3 3 3 3 3 3 3 3 

Asymp. Sig. .001 .000 .000 .000 .000 .050 .030 .011 .000 .000 
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%%% MATLAB codes used to plot the average spectral reflectance of 

wheat at different growth stages%%% 

 

%Average Spectral reflectance of healthy wheat at stem elongation 

and booting stages 

StemH_average=mean(StemHealth); 

BootingH_average=mean(BootHealth); 

  

% To draw average spectral reflectance  

hold on 

aa=plot(wl,StemH_average, 'g.-'); 

bb=plot(wl,BootingH_average, 'm.-'); 

legend([aa, bb], 'Stem elongation He', 'Booting He') 

hold off  

  

% Flowering average spectral reflectance of wheat 

FloweringH_average=mean(FlowerHealth); 

FloweringML_average=mean(FlowerML); 

FloweringSL_average=mean(FlowerSL); 

  

% To draw average spectral reflectance 

hold on 

aa=plot(wl,FloweringH_average, 'g.-'); 

bb=plot(wl,FloweringML_average, 'k.-'); 

cc=plot(wl,FloweringSL_average, 'r.-'); 

legend([aa, bb, cc], 'He', 'ML', 'SL'); 

hold off 

  

% Milking average spectral reflectance of wheat 

MilkingH_average=mean(MilkHealth); 

MilkinggML_average=mean(MilkML); 

MilkingSL_average=mean(MilkSL); 

  

% To plot the average spectral reflectance of wheat 

hold on 

aa=plot(wl,MilkingH_average, 'g.-'); 

bb=plot(wl,MilkinggML_average, 'k.-'); 

cc=plot(wl,MilkingSL_average, 'r.-'); 

legend([aa, bb, cc], 'He', 'ML', 'SL'); 

hold off 

  

% Ripening average spectral reflectance of wheat 

RipeningH_average=mean(RipeHealth); 

RipeningML_average=mean(RipeML); 

RipeningSL_average=mean(RipeningSL); 

  

% To plot the average spectral reflectance of wheat 

hold on 

aa=plot(wl,RipeningH_average, 'g.-'); 

bb=plot(wl,RipeningML_average, 'k.-'); 

cc=plot(wl,RipeningSL_average, 'r.-'); 

legend([aa, bb, cc], 'He', 'ML', 'SL'); 

hold off 
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### Codes used for the Random Forest classification of Sentinel-1 an

d Sentinel-2 data combination### 

 

# only install if needed 

if (!require("raster")) install.packages("raster") 

if (!require("sf")) install.packages("sf") 

if (!require("rgdal")) install.packages("rgdal") 

if (!require("randomForest")) install.packages("randomForest") 

if (!require("caret")) install.packages("caret") 

# call libraries/packages 

library(raster)      # to add raster pachage 

library(sf) 

library(rgdal) 

library(randomForest) 

library(caret) 

 

getwd() 

## To set working directory## 

setwd("D:/My MSc. Proposal and thesis Documents/RS&FD/Sentinel1&Sent

inel2/S1&2_to_be-submmited/CSV") 

 

## To add the CSV file of Sentinel-1 and Sentinel-2 data ombination#

# 

LodgingscoreS1and2first_SLL<-read.csv('RefandBackscatter_SLL.csv') 

 

## To remove the unnecessary columns from the data##        

d<-within(LodgingscoreS1and2first_SLL, rm("X","Y"))        

 

## To view the Sentinel-1 and Sentinel-2 combination data## 

View(d) 

 

# To split the data into He, ML and SL groups## 

LS1_S1and2 <- d[which(d$Lodging.score==1), ]     

LS2_S1and2 <- d[which(d$Lodging.score==2), ] 

LS3_S1and2 <- d[which(d$Lodging.score==3), ] 

 

 

## To split the He, ML, SL groups into 70/30 percent##   

sample 

set.seed(123)      

LS1id_S1and2<-sample(2, nrow(LS1_S1and2), prob = c(0.7,0.3),replace 

= TRUE) 

LodgingscoreS1and2_trainfirst_SLL_LS1<-LS1_S1and2[LS1id_S1and2==1,] 

LodgingscoreS1and2_testfirst_SLL_LS1<-LS1_S1and2[LS1id_S1and2==2,] 

 

LS2id_S1and2<-sample(2, nrow(LS2_S1and2), prob = c(0.7,0.3),replace 

= TRUE) 

LodgingscoreS1and2_trainfirst_SLL_LS2<-LS2_S1and2[LS2id_S1and2==1,] 
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LodgingscoreS1and2_testfirst_SLL_LS2<-LS2_S1and2[LS2id_S1and2==2,] 

 

LS3id_S1and2<-sample(2, nrow(LS3_S1and2), prob = c(0.7,0.3),replace 

= TRUE) 

LodgingscoreS1and2_trainfirst_SLL_LS3<-LS3_S1and2[LS3id_S1and2==1,] 

LodgingscoreS1and2_testfirst_SLL_LS3<-LS3_S1and2[LS3id_S1and2==2,] 

 

## To merge the training and test samples of He, ML, and SL classes 

and to get the data needed for random forest## 

LodgingscoreS1and2_trainfirst_SLVSL <- rbind (LodgingscoreS1and2_tra

infirst_SLL_LS1,LodgingscoreS1and2_trainfirst_SLL_LS2,LodgingscoreS1

and2_trainfirst_SLL_LS3) 

LodgingscoreS1and2_testfirst_SLVSL  <- rbind (LodgingscoreS1and2_tes

tfirst_SLL_LS1,LodgingscoreS1and2_testfirst_SLL_LS2,LodgingscoreS1an

d2_testfirst_SLL_LS3) 

 

## To save the Lodging score (LS) as a factor variable## 

LodgingscoreS1and2_trainfirst_SLVSL$Lodging.score<-as.factor(Lodging

scoreS1and2_trainfirst_SLVSL$Lodging.score) 

LodgingscoreS1and2_testfirst_SLVSL$Lodging.score<-as.factor(Lodgings

coreS1and2_testfirst_SLVSL$Lodging.score) 

 

## To select the optimal mtry from the training samples## 

bestmtrys1<-tuneRF(LodgingscoreS1and2_trainfirst_SLVSL,LodgingscoreS

1and2_trainfirst_SLVSL$Lodging.score,stepFactor = 1.2,improve = 0.0

1,trace = T,plot = T) 

## To run the Sentinel-1 and Sentinel-2 data combination Random Fore

st classification## 

LodgingscoreRFS1and2_SLL<-randomForest(Lodging.score~., data = Lodgi

ngscoreS1and2_trainfirst_SLVSL, mtry=3, ntree=500)    #The accuracy 

will  

## To view the Random Forest classification outputs##  

LodgingscoreRFS1and2_SLL 

## To see the most important variables for the Random Forest classif

ication of Sentinel-1 and Sentinel-2 data combinations## 

importance(LodgingscoreRFS1and2_SLL) 

## To plot the most important variables in descending order## 

varImpPlot(LodgingscoreRFS1and2_SLL) 

 

## To run the Random Forest prediction##   

predict_LodgingscoreS1and2_SLL<-predict(LodgingscoreRFS1and2_SLL, ne

wdata = LodgingscoreS1and2_testfirst_SLVSL, type = "class") 

 

## To view the Random Forest prediction outputs## 

predict_LodgingscoreS1and2_SLL 

## To compare the prediction results by using of caret library## 

confusionMatrix(table(predict_LodgingscoreS1and2_SLL,LodgingscoreS1a

nd2_testfirst_SLVSL$Lodging.score)) 
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### To predict with Sentinel-1 and Sentinel-2 image combination ## 

 

## To Read multi-band image data## 

S1and2_19may_image_SLL<-stack("Final_S1andS2_Composite.tif")    

 

## To check Sentinel-1 and Sentinel-2 combination image information#

# 

S1and2_19may_image_SLL     

## To change the band names## 

names(S1and2_19may_image_SLL)<-c('Blue', 'Green', 'Red', 'RE1', 'RE2

',  

                             'RE3', 'NIR1', 'NIR2 or 8A', 'SWIR1', '

SWIR2', 'VV', 'VH', 'VH.VV') 

 

## To make an image classification with the developed Random Forest 

model## 

classifiedS1andS2<-predict(S1and2_19may_image_SLL, LodgingscoreRFS1a

nd2_SLL, type='response', progress='window') 

## To view the classified image informations## 

classifiedS1andS2 

par(mfrow=c(1,2)) 

 

## To plot the classified Sentinel-1 image## 

plot(classifiedS1andS2) 

 

## To export the classified image##  

writeRaster(classifiedS1andS2, "D:/My MSc. Proposal and thesis 

Documents/RS&FD/Sentinel1&Sentinel2/S1&2_to_be-

submmited/CSV/RF_S1andS2_classified_final/S1and2_May19_2018_RF_SLL_c

lassified_image_using_S2R_120samples.tif", 

            format="GTiff", datatype='INT1U', overwrite=TRUE) 

 
 
 


