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ABSTRACT 

Accurate, reliable, and up-to-date information on wildlife populations is crucial for species conservation 

planning in the face of unprecedented biodiversity loss worldwide. Deep learning techniques combined with 

high-resolution satellite images have proven successful in detecting medium- and large-sized animals. 

However, to date, no study has shown that this method can be used to detect and count animals with 

indistinct features (2-4 pixels in length) and low contrast to the background in satellite images across 

landscapes. In this study, I tested the ability of the U-Net deep convolutional neural network for detecting 

and counting the migrating wildebeest in the Mara Triangle in East Africa from GeoEye-1 satellite images. 

I also assessed the role of the near-infrared band in the accuracy of wildebeest detection. Moreover, I tested 

the model on a different area with varied landscapes and a temporally different satellite image to evaluate its 

transferability over space and time. The results showed that the U-Net model can be used to accurately 

detect and count a large number of wildebeest (more than 100,000 individuals) from the GeoEye-1 satellite 

image, with a high generalization accuracy (F1-score) of 0.87. Adding the near-infrared band to the RGB 

band combinations in the satellite image did not significantly improve the accuracy of wildebeest detection. 

In addition, the model was able to rapidly detect the animal clusters on the spatially and temporally different 

satellite images, suggesting that the U-Net wildebeest detection model has the potential to be applied to the 

entire Serengeti-Mara ecosystem. In conclusion, this study demonstrates an effective and efficient U-Net 

deep learning model for accurate and rapid wildebeest detection and counting from GeoEye-1 satellite 

imagery. 
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1. INTRODUCTION 

1.1. Background 

 

Global biodiversity is declining at an unprecedented rate in human history (IPBES, 2019). According to the 

latest World Wildlife Fund (WWF) Living Planet Report, the global populations of vertebrates (i.e., birds, 

fish, mammals, amphibians, and reptiles) have declined by an average of 68% between 1970 and 2016 

(WWF, 2020). To address the biodiversity crisis, the Aichi Biodiversity Targets were adopted by world 

leaders in 2010, however, none of the 20 Aichi Targets have been fully achieved by 2020 (Secretariat of the 

Convention on Biological Diversity, 2020). Although there could have been many reasons for this failure, 

the Aichi Biodiversity Targets are found to be comprehensive but not measurable, which jeopardizes the 

implementation and evaluation of these targets (“New biodiversity targets cannot afford to fail,” 2020). To 

quantify biodiversity consistently worldwide, scientists proposed a set of Essential Biodiversity Variables 

(EBVs) to identify what to monitor, including species population, species traits, and ecosystem structure 

and function (Pereira et al., 2013). Regarding how to monitor EBVs, Skidmore et al. (2015) identified ten 

variables that can be observed through satellite sensors to track biodiversity from space. Species population 

is one of the most fundamental EBVs (Jetz et al., 2019). 

 

Africa’s biodiversity is of global importance. Yet, Africa is not immune to the rapid global biodiversity loss. 

The well-known annual migration of over 1 million wildebeest in the 40000-km2 Serengeti-Mara ecosystem 

is one of the largest mammal migrations in the world (Serneels & Lambin, 2002). The great wildebeest 

migration is an important ecological phenomenon that shapes the terrestrial and aquatic ecosystems and 

also benefits the local communities (Holdo et al., 2013; Onyeanusi, 1989; Subalusky et al., 2017; Wishitemi 

et al., 2015). However, many wildebeest populations in East Africa are declining dramatically over the last 

several decades due to high human population densities, increasing urbanizations, and expanding agriculture 

and fences (Ogutu et al., 2011). This human-induced decline in the wildebeest population can alter the 

ecosystems and, in turn, exacerbate biodiversity loss and harm local tourism. Accurate, reliable, and up-to-

date wildebeest population data are crucial to monitor the fluctuations of the number of wildebeest and 

determine the cause of species abundance change as well as ecologically functional changes (Ogutu et al., 

2009; Subalusky et al., 2018).  

 

Counting wildlife can be very challenging because animals are mobile and some species migrate over large 

areas. The most traditional way of conducting wildlife population census is through the ground survey with 

vehicle teams and a large number of people involved, however, this can be very expensive, labour-intensive, 

and time-consuming (Reid et al., 2003). More importantly, it is hardly possible to produce spatially 

continuous data in a ground survey, leading to inevitable sampling error (Betts et al., 2007). The ground 

surveys also cause disturbance to the animals. These crucial disadvantages hinder convenient and accurate 

animal abundance counting. 

 

The rapid development of remote sensing technology enables us to reduce our dependence on traditional 

ground survey methods to a certain extent. Aerial surveys including manned aircraft surveys and Unmanned 

Aerial Vehicle (UAV) surveys are commonly used for wildlife population surveys. Benefiting from the high-

resolution imagery (up to 2 to 5 centimetres) collected by the aircraft, the features of animals can be clearly 

recognized, and thus automatic species discrimination and population counts become feasible. There is a 
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wide range of applications, such as elephant, giraffe, and zebra counting using aerial photographs 

(Eikelboom et al., 2019), cow detection on a farm using UAV thermal images (Longmore et al., 2017), 

blacktip reef sharks and pink whiprays counting in a coral lagoon with UAV video (Kiszka et al., 2016), 

leopard seals counting and frigatebirds detection using UAV images (Goebel et al., 2015; Hodgson et al., 

2016), and so on. However, aerial surveys still cannot avoid the sampling error caused by the movement of 

animals while taking aerial photographs, and the noise disturbance problem remains (H. Mduma et al., 2014). 

The coverage of aerial survey area is also limited as the flights can be expensive, laborious, and time-

consuming.  

 

Recent advances in satellite sensors offer great potential for detecting animals over large areas with lower 

labour costs. The availability of very high resolution (VHR) satellite imagery with submeter pixel size makes 

it possible to identify large animals from space (Wang, Shao, & Yue, 2019). Using WorldView, GeoEye-1, 

or Quickbird satellite imagery (with 31 to 65-centimetre resolution), researchers have detected polar bears 

in the Arctic, whales in the sea, wildebeest and elephants in the African savannahs, and so on (Duporge et 

al., 2020; Guirado et al., 2019; Larue et al., 2015; Stapleton et al., 2014; Yang et al., 2014). The acquisition of 

satellite remote sensing data costs much less than traditional aerial surveys in terms of labour and allows for 

large-scale wildlife censuses. Nevertheless, the limitation in spatial resolution compared with aerial 

photographs poses challenges for accurate and fast detection of animals from satellite imagery.  

 

Many approaches for detecting animals have been explored in previous studies to count populations from 

satellite imagery. Manual counting by an expert is reliable, but very time-consuming, particularly in large 

regions (LaRue et al., 2011). Traditional supervised classification methods, such as the maximum likelihood 

classifier, require highly distinct spectral signatures of animals, which leads to poor accuracy when spectral 

noises are present in a heterogeneous environment (Barber-Meyer et al., 2007; Larue et al., 2015). The same 

problem occurs with the threshold approach when image noise causes a high misclassification and the 

decision of threshold is subjective and situation-dependent (Hollings et al., 2018). The use of a reference 

image provides prior knowledge that can facilitate correct animal detection on the target image through the 

image differencing technique (Larue et al., 2015). However, it is difficult to obtain multi-temporal satellite 

images with similar spectral characteristics under changing data acquisition conditions. 

 

With the rapid development of computer vision technology, many machine learning algorithms have been 

developed that have proven to surpass traditional classification methods in remote sensing image processing, 

such as Support Vector Machine (SVM), Random Forest (RF), and Artificial Neural Networks (ANNs). 

Some algorithms have also been applied to animal detection tasks on satellite imagery. To classify large 

mammals from the GeoEye-1 satellite image, Yang et al. (2014) conducted a pixel-based ANNs approach 

on wildebeest detection and obtained more than 80% accuracy; Xue et al. (2017) utilized an Adaptive-

Network-based Fuzzy Inference System (ANFIS) and achieved 79% accuracy. However, these studies are 

confined to small pilot areas. When it comes to a larger spatial scale, spectral noises from surrounding 

objects can cause challenges and affect the performance. The accuracy of large-scale animal detection using 

traditional machine learning methods remains a bottleneck.  

 

Deep learning techniques have shown a fast-growing trend in remote sensing image analysis because of their 

remarkable performance over traditional machine learning approaches. Convolutional Neural Networks 

(CNNs) are a group of deep learning architectures that are designed for supervised image recognition tasks. 

Instead of classifying the pixels simply by spectral information, CNNs take the context information into 

account and detect the spatial features. CNNs consist of three basic types of layers, namely convolution 

layer, pooling layer, and fully connected layer. The convolution layer detects low-level features, such as edges 

at different directions across the image, and the following pooling layer extracts more complex local features. 
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The fully connected layer then connects the features to output neurons, which are eventually classified into 

the pre-defined classes. The combinations and concatenation of these three fundamental layers form 

different architectures, such as image segmentation classifier U-Net (Ronneberger et al., 2015a), SegNet 

(Badrinarayanan et al., 2017), and object detector Fast R-CNN (Girshick, 2015), You Only Look Once 

(YOLO) (Redmon et al., 2016). The pixel-based image segmentation architectures predict the class 

probability for every pixel in the whole image, while the object-based convolutional neural networks detect 

and classify individual objects in the image and generate the bounding box with a class label for each object. 

 

Previous research presented many successful applications of deep learning on animal detection from remote 

sensing images, but mostly from aerial imagery (Han et al., 2019; Kellenberger et al., 2018a; Sahu, 2019; 

Torney et al., 2019). There are only four studies that detect animals completely from satellite imagery (both 

training and testing) using deep learning: whale detection with 82% F1-score and elephant detection with 

78% F2-score, both using Faster R-CNN; seal detection with 30% accuracy using modified U-Net, and 

albatrosses counting with an F1-score of about 70% using U-Net (Bowler et al., 2020; Duporge et al., 2020; 

Gonçalves, Spitzbart, & Lynch, 2020; Guirado et al., 2019). These papers showed a promising direction 

towards automated animal detection using both pixel-based image segmentation and object detection deep 

learning methods from satellite imagery.  

 

However, the feasibility of different types of deep learning methods highly depends on the body size of the 

animal. In these two studies using object-based Faster-RCNN above, the mature whales have a body length 

of more than 20 meters, and the African elephants are about 3 to 4 meters long (Christiansen, 2004; Leslie 

et al., 2020). Both have more than 10 pixels along the body length axis on the satellite imagery, and the 

features of the animal on an individual basis are distinct on the satellite image. It has been pointed out that 

current object detectors have limited performance when detecting very small objects with less than 10 pixels 

in one dimension, and the size limit of the most recent small object detector is more than 6 pixels (Pham et 

al., 2020). Therefore, animal detection using object-based deep learning methods will suffer from the small 

body size of animals relative to the pixel size of the satellite imagery (less than 6 pixels in one dimension). 

 

In contrast, the albatross counting study showed that small objects, such as the 1.2m-long albatrosses can 

be successfully detected on WorldView-3 imagery by U-Net, the pixel-based image segmentation deep 

learning approach (Bowler et al., 2020). The albatross is around 4 to 5 pixels in length. Besides, the albatross 

detection was conducted in four islands with different types of environments, and the heterogeneity of the 

environment did not significantly affect the accuracy. However, the colour of the albatross is white, which 

can be easily distinguished from the greenish and black surroundings, thus the complexity of the background 

is not very problematic here. But this is not the case for animals with low contrast to the environment, such 

as brown, blackish wildebeests on open savannahs. Hence, U-Net has the potential to detect and count 

animals with a small size on satellite imagery, but no previous research has investigated its capability of 

detecting animals with indistinct features and low contrast to the heterogeneous background from satellite 

imagery. 

 

1.2. Research problem 

 

Deep learning methods have been successfully used to detect and count large and feature distinct animals 

at relatively small spatial scales from aerial photographs, UAV and satellite images. For example, deep 

learning object detectors are used to spot and count whales, elephants from satellite images (Duporge et al., 

2020; Guirado et al., 2019), cattle, kiang, from UAV images (Peng et al., 2020; Xu et al., 2020), as well as 

large mammals in African open savannahs from aerial images (Eikelboom et al., 2019; Kellenberger et al., 
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2018b; Torney et al., 2019). But most of the research only focuses on the large animal, typically more than 

10 pixels in length on the images. The only study that detects albatrosses with smaller sizes using pixel-based  

U-Net deep learning is constrained by the colour contrast of the animals in the background (Bowler et al., 

2020). Automated wildebeest detection from satellite imagery is crucial for rapid and cost-effective 

monitoring of wildlife populations and biodiversity conservation in the Serengeti-Mara ecosystem. 

However, the wildebeest only consists of 2 to 4 pixels in length on the very high-resolution satellite images 

such as GeoEye-1 and thus does not have distinct features. The similarity of the spectral characteristics 

between wildebeest and background objects results in low colour contrast, which may easily confuse the 

animal detection model. It is not yet clear whether U-Net deep learning can be used to detect and count 

wildebeest with high accuracy over a large area from very high-resolution satellite images.  

 

1.3. Research objectives 

The overall objective of this research is to test the ability of the U-Net deep convolutional neural networks 

for detecting and counting the number of migrating wildebeest in the Mara Triangle from GeoEye-1 satellite 

imagery. The specific objectives of this study are as follows: 

 

1) To build and test a U-Net deep convolutional neural network for detecting wildebeest from 

GeoEye-1 satellite imagery. 

2) To determine the role of the near-infrared band on the detection accuracy of wildebeest. 

3) To assess the spatial and temporal transferability of the U-Net model for detecting wildebeest across 

landscapes. 

1.4. Research questions 

1） What is the accuracy in detecting and counting wildebeest from GeoEye-1 imagery using the U-

Net model? 

2） Can adding a near-infrared band in the RGB combination significantly improve the detection 

accuracy of wildebeest? 

3） Does the U-Net model we are building in this study have the capacity for successful transfer in 

time and space? 

 

1.5. Research hypotheses 

Hypothesis 1: 

H0: There is no statistically significant difference in the wildebeest detection accuracy between the use and 

without the use of the near-infrared band of GeoEye-1 image. 

 

H1: Adding the near-infrared band to the RGB combination can significantly improve the wildebeest 

detection accuracy. 

1.6. Research workflow 

 

To answer these three research questions, this study is implemented in 5 steps. Firstly, the GeoEye-1 satellite 

images are processed to prepare the training and testing datasets required by the U-Net deep learning model. 

Then the datasets of the plain area are fed into U-Net deep learning model, and parameter tuning is 

conducted to achieve the optimal model with the highest accuracy, which is then used to classify the whole 

satellite image to count the wildebeest population. The first two steps are aiming to answer research question 
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1. To assess the influence of adding near-infrared band in the RGB combination on wildebeest detection 

accuracy (research question 2), the model training results of RGB data and RGB+NIR data are compared 

using a statistical test. Next, the model is transferred to the highland area with different landscapes to explore 

its performance in terms of spatial transferability. Lastly, the trained U-Net model is applied to the GeoEye-

1 satellite image acquired in a different year and the temporal transferability is evaluated. Figure 1 presents 

the general workflow of this research. 

 
 

 

 

Figure 1. Overall flowchart of the research
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2. MATERIALS AND METHODS 

2.1. Species and study area 

2.1.1. Species 

 

Wildebeest (Connochaetes taurinus) are the dominant grazers across grassland savannahs in East Africa. There 

are over one million wildebeest in the Serengeti-Mara ecosystem, and they migrate over 1500 kilometres on 

average every year, tracking the nutrient-rich food resources (Ben-Shahar & Coe, 1992; Hopcraft et al., 

2015). During June and August, the wildebeest migrate from the Serengeti plains in Tanzania into Maasai 

Mara National Reserve, and spread to the east and go across the Mara River in September, and then during 

November, they move south to Northern Serengeti (Thirgood et al., 2004) (Figure 2). 

 

The adult wildebeest has a body mass of around 220 kg, and it is approximately 1.5 m to 2.5 m in length 

from head to tail, which is 3 to 4 pixels long and 1 to 2 pixels wide on the GeoEye-1 satellite image (Owen-

Smith & Mills, 2008; Talbot & Talbot, 1963; Yang et al., 2014). The wildebeest has a black mane from the 

neck to the spin, a black beard, and a long black tail, and its pelage is mainly dark bluish or silver grey.  

2.1.2. Study area 

 

The study area locates in the Mara Triangle to the southwestern of Maasai Mara National Reserve, Kenya. 

The Mara Triangle is adjacent to the Serengeti national park of Tanzania to the southwest and Siria 

Escarpment to the northwest (Figure 2). The Mara River flows through Maasai Mara National Reserve and 

intersects with the Tanzania border and Escarpment, and forms the third border of the so-called Triangle, 

which covers an area of 520 km2 (Allen et al., 2019). There are mainly two rainy seasons across the year, 

including April to May and November to December. The main land cover type in Mara Triangle is open 

grassland, with some plains covered by dwarf shrubs and bushes. Along the Mara River, the riverine forest 

appears to be the main landscape. Moreover, a regulated fire management program is conducted to maintain 

the grassland, thus a burnt area is witnessed in the reserve periodically (Eva & Lambin, 2000).  
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Figure 2. Location of the Mara Triangle in the Maasai Mara National Reserve, Kenya. The wildebeest migration route 
shown in this figure is based on the study by Thirgood et al. (2004). 

2.2. Satellite images 

Two GeoEye-1 satellite images supplied by Maxar Technologies company (https://www.maxar.com/) 

cover the same area that locates in the Mara Triangle in the Maasai Mara National Reserve, but they were 

captured on different dates. The first satellite image was captured on August 11th in 2009, and the second 

satellite image was captured on August 10th in 2013. Both images are cloud-free and the multispectral bands 

have been pan-sharpened according to the associated panchromatic band.  

 

The total range of the satellite image is approximately 22 km × 13 km in the latitude and longitude directions. 

It covers around 280 km2 of the study area, where there are around 140 km2 of the lower plain land and 140 

km2 of the highland. More details about the satellite images are shown in Table 1. 

 
Table 1. GeoEye-1 satellite images 

Satellite Sensor Acquisition Date Spectral range Spatial resolution 

GeoEye-1 8/11/2009 Panchromatic: 450-800 nm 

Blue: 450-510 nm 

Green: 510-580 nm 

Red: 655-690 nm 

Near Infra-Red: 780-920 nm 

Pansharpened  

43 cm 

 

GeoEye-1 8/10/2013 Panchromatic: 450-800 nm 

Blue: 450-510 nm; 

Green: 510-580 nm 

Red: 655-690 nm 

Near Infra-Red: 780-920 nm 

Pansharpened  

43 cm 

 

https://www.maxar.com/
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2.3. Data preparation 

2.3.1. Training and testing dataset 

 

The wildebeest detection model uses the GeoEye-1 satellite image of 2009 where there are large numbers 

of wildebeest. On the satellite image, the lower plain land is where the wildebeest migrate across during the 

migration season. Thus, the focus of the wildebeest detection model is on the plain area. A 150 m by 150 m 

grid system was built for systematic sampling. Each grid represents one patch that consists of about 350 by 

350 pixels.  

 

For the training dataset, 191 image patches covering different types of landscapes and different wildebeest 

abundance were selected. The training dataset occupies nearly 3% of the plain area, and there are 

approximately 20,000 wildebeest individuals labelled in this dataset.  

 

To explore the spatial transferability of the wildebeest detection model on the highland area, additional 20 

patches on the highland were also selected as training data. The additional training dataset only covers the 

agricultural field, human settlements, and forest, and there are no wildebeests in it. The additional dataset 

was not used when training the model on the low-land plain area. 

 

For the testing dataset, 30 patches were first randomly selected in the plain area, where there are 3,171 

wildebeest individuals. To ensure its representativeness, the testing dataset was then updated using stratified 

proportionate sampling method according to the wildebeest density map produced based on the preliminary 

results. The details of the new testing data sampling method will be explained in Section 3.1.2. In the updated 

testing dataset, 100 patches that have different densities of wildebeest were selected (2,249 wildebeest 

individuals in total), occupying about 1.5% of the plain area. 

 
Figure 3. Overview of the training and testing dataset in the study area. The low-land plain area (to the lower right) 
and the highland area (to the upper left) on the whole satellite image are treated separately. The main wildebeest 
detection model is trained on the plain area using the training grids in red. The performance of the detection model is 
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tested on the testing grids in green. After this, to transfer the model to the highland, the additional 20 training grids in 
purple on the highland are introduced to train the model on the highland with different landscapes. 

 

The satellite images both have four bands: red (R), green (G), blue (B), and near-infrared (NIR). Only the 

RGB bands were used for wildebeest detection and counting. After that, to explore the role of the NIR 

band in wildebeest detection, the NIR band was also added and the four-band satellite images with the same 

training and testing image grids were processed to detect and count the wildebeest. 

 

To fit the input size requirement of the model, 336 × 336 pixels in each grid were cropped out of the 350 

× 350 pixels to be fed into the model. The detailed information of the training and testing dataset is shown 

in Table 2. 

 

 
Table 2. The size of the training and testing dataset 

Dataset Patch size Number of patches Area/km2 Number of wildebeest 

Train 336 × 336 191 3.99 19,816 

Test (updated) 336 × 336 100 2.09 2,249 

 

 

2.3.2. Labelling wildebeest on satellite images 

 

On the training and testing dataset, the individual wildebeest were labelled as points using the ESRI ArcGIS 

10.7.1 environment. The wildebeest labelling was based on the majority votes of the visual interpretation 

from three observers on the GeoEye-1 satellite image in the year 2009 using satellite image in the year 2013 

as the reference. Each wildebeest individual on the GeoEye-1 image is about 3 to 4 pixels in length and 1 

to 2 pixels in width. On the true colour composite image, a wildebeest is a group of grey-brownish pixels 

with usually a dark black pixel in the centre representing its neck and spine with a black mane. The wildebeest 

form different patterns, such as lines, sparse groups, and dense clusters.  

 

The second image acquired in 2013 was used to infer the correctness of labels on the first image acquired 

in 2009. By referring to the second image at the same location, the confusion caused by the surrounding 

objects like termite mounds and bushes can be cleared since the background objects are rather static between 

these two years. Examples of wildebeest point labels are shown in Figure 4. 
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Figure 4. Wildebeest labelling on GeoEye-1 satellite image acquired in 2009. These six images on the right are three 
different patches cropped from GeoEye-1 images in 2009 and 2013. Each red point represents a wildebeest sample, 
and the samples are selected on GeoEye-1 2009 image. Image (a), (b), and (c) show three different distribution patterns 
of wildebeest, including dense group, line, and sparse group. Image (a) and (b) show the relative homogeneous 
environment, and (c) shows the heterogeneous environment, where shrubs confuse with the wildebeest. But when we 
compare image (c) with image (f) on the reference image in 2013, the shrubs are easily identified, and they will not be 
chosen as wildebeest samples in the 2009 image. 

 

 

 

2.3.3. Wildebeest rasterization 

 

In total, 19,816 wildebeest individuals have been labelled within the training image patches, and 2,249 

wildebeest individuals have been labelled within the testing image patches, which were then rasterized into 

mask images consisting of wildebeest pixels and non-wildebeest pixels. Each wildebeest was represented by 

a segment containing 3 × 3 pixels that covered the full size of a wildebeest feature (Figure 5). Within the 

training dataset, the pixel percentage of wildebeest is less than 1 percent, and the non-wildebeest pixel 

percentage is more than 99 percent as seen in Table 3. 
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Figure 5. Satellite image with wildebeest and the rasterized labelled mask image 

 
Table 3. Percentage of wildebeest and non-wildebeest pixels in the training dataset 

 Number of wildebeest Percentage of pixels/% 

Wildebeest pixels 19,816 0.77 

Non-wildebeest pixels 0 99.22 

 

Figure 6 presents the workflow of data preparation. 
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Figure 6. Flowchart of data processing 

 

2.4. Deep learning model 

2.4.1. U-Net model 

 

The U-Net architecture was initially designed for biomedical image segmentation and then has been 

commonly used in other applications as well as remote sensing image segmentation (Ronneberger, Fischer, 

& Brox, 2015b). U-Net uses a U-shaped symmetrical encoder-decoder structure that consists of a 

contracting path on the left and an expansive path on the right (Figure 7). The contracting path encodes 

high-level contextual features step by step using successive layers, which generates lower and lower-

resolution feature maps. Then the expansive path decodes the information of these feature maps and up-

samples the image step by step to obtain the original resolution. 
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Figure 7. U-Net model architecture 

 

On the left, each level consists of two convolution layers, one batch normalization layer, and one max 

pooling layer. The 3 × 3 convolution layer captures local features using the “same” padding followed by a 

rectified linear unit (ReLU) activation function, such as edge features. The weights in the convolution layers 

are initialized by the He_normal kernel initializer (He et al., 2015). Then the batch normalization layer 

normalizes the distributions of each training mini-batch, which can accelerate the training process by 

reducing the amplified change of data distributions when the parameters of every layer in the deep model 

are updated (Ioffe & Szegedy, 2015). The following 2 × 2 max-pooling layer down-samples the feature map 

to get higher-level features. The width and height of the feature maps are halved after pooling, and then the 

lower-resolution feature map is fed into the next block level. The same procedure is repeated 4 times until 

reaching the bottom level of the U-Net. A dropout layer is added to the last two blocks to prevent overfitting 

by randomly dropping the units and simplifying the network (Srivastava et al., 2014). With an input size of 

336 × 336 × 4, the output size is now 21 × 21 × 512. 

 

In the expanding path on the right, every level consists of an up-sample block, which has a 2 × 2 up-

convolution layer that expands the size of the image by 2 times, a 2 × 2 convolution layer, and a batch 

normalization layer. The up-sampled output is then concatenated with the corresponding feature map with 

the same resolution in the contracting path on the left. This skip connection merges both low-resolution 

information that provides evidence for classification, and the high-resolution feature map, which supports 

precise localization. The following layers include one batch normalization layer and two 3 × 3 convolution 

layers. The process is repeated successively until it reaches the original image size. Finally, a 1× 1 convolution 

layer with a sigmoid activation function is used to map the feature vector of each pixel to a value ranging 

from 0 to 1 that represents the probability of wildebeest existence on this pixel. 
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The discrepancy between the output probability map and the ground truth labelled image is represented 

mathematically by a loss function. To minimize the discrepancy and approach the ground truth, U-Net 

implements backpropagation using a gradient descent algorithm to adjust the weights in all the layers 

iteratively to reduce the loss. 

  

2.4.2. Model setup 

 

Before being fed into the model, the dataset was first cropped into patches with a size of 336 × 336 pixels 

to fit the requirement of input size by the U-Net model. Then all the data patches were augmented using 

flipping horizontally, flipping vertically, and rotating 90 degrees techniques to gain more variations into the 

dataset. Since wildebeests appear in different directions on the landscape, these data augmenters can help 

prevent overfitting and improve the generalization capability of the model on unseen data with different 

patterns. 

 

A weighted loss function, Tversky loss, was used to measure the discrepancy between the predictions and 

ground truth labels (Salehi, Erdogmus, & Gholipour, 2017). Tversky loss function is calculated using this 

formula: 

𝑇(𝛼, 𝛽) = 1 −
∑ 𝑝𝑖𝑔𝑖
𝑁
𝑖=1 + 𝜖

∑ 𝑝𝑖𝑔𝑖
𝑁
𝑖=1 + 𝛼∑ (1 − 𝑝𝑖)𝑔𝑖 + 𝛽∑ 𝑝𝑖(1 − 𝑔𝑖) + 𝜖𝑁

𝑖=1
𝑁
𝑖=1

(1) 

where 𝑝𝑖 denotes the predicted probability of a pixel 𝑖 to be a wildebeest pixel and 𝑔𝑖 denotes the ground-

truth value, which is 1 for a wildebeest pixel and 0 for a non-wildebeest pixel. Thus ∑ 𝑝𝑖𝑔𝑖
𝑁
𝑖=1  summarizes 

the wildebeest true positives (TP),  ∑ (1 − 𝑝𝑖)𝑔𝑖
𝑁
𝑖=1  summarizes the false negatives (FN), and 

∑ 𝑝𝑖(1 − 𝑔𝑖)
𝑁
𝑖=1  summarizes the false positives (FP). 𝛼 and 𝛽 are the weights of penalties for FNs and FPs, 

respectively, and the sum of 𝛼 and 𝛽 is 1. For a highly imbalanced dataset, such as the wildebeest dataset 

(the percentage of wildebeest pixels is less than 1% in the training dataset as shown in Table 3), the model 

tends to predict all the pixels into non-wildebeest pixels to get high overall accuracy. Tversky loss function 

was used to address the issue of data imbalance. By using higher 𝛽, the emphasis is added on the wildebeest 

pixels to minimize the number of misclassified wildebeest pixels. The parameter 𝛽 was finely tuned over a 

range of values (0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99) to achieve the optimal trade-off between 

false positives and false negatives. 

 

The model was trained with the Adam optimizer with an initial learning rate of 0.0001 (Kingma & Ba, 2015). 

The learning rate was reduced by a factor of 0.33 every time when the loss on the validation set stops 

improving after 20 epochs. The rate of the dropout was set to be 0 as preliminary experiments showed that 

a higher dropout rate did not significantly increase the model performance. The batch size was 12, and the 

model was trained for 100 epochs. The model that generated the lowest loss on the validation dataset among 

all the epochs was selected as the final model. 

 
The direct output of the U-Net model was a probability map of wildebeest existence that varied from 0 to 

1. To obtain the binary classification results, the predictions of each sub-model were first normalized and 

then classified into wildebeest and non-wildebeest classes using a threshold. All pixels with probability higher 

or equal to the threshold were wildebeest pixels. The default threshold was set as 0.5.  
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2.4.3. U-Net-based ensemble model 

 

Ensemble model learning approach was employed to improve the generalization ability and robustness of 

the U-Net model. The advantage of the ensemble model of neural networks was first demonstrated in 

Hansen and Salamon’s research that showed the improvement of classification accuracy compared with the 

individual model (Hansen & Salamon, 1990). Building an ensemble model comprises three steps: selecting 

data for each model, training the individual model, and combining multiple models to obtain a composite 

model (Polikar, 2012). The first step requires diversity in data sampling, which generates diverse “errors” in 

the ensemble system (Brown et al., 2005). Every single model has its inevitable variance, but they generally 

agree on the correct classifications. By combining the results of the individual model with an appropriate 

strategy, such as averaging the predictions or majority voting, the variance can be reduced, and thus a lower 

generalization error is achieved. 

 

During the training process of this U-Net model, the training dataset is split into multiple batches in each 

epoch with a size of 12 sample images (in this research). The model is then trained on these batches one by 

one, and the weight parameters are updated accordingly. However, the wildebeest training dataset contains 

many variations such as heterogeneous landscapes and different characteristics of wildebeest. This splitting 

can result in imbalance and variation between the batches, and the randomness thus brings uncertainty to 

the model. The resulted model can be error-prone to certain landscapes. Besides, the weight initialization 

during model training can also introduce randomness and uncertainty. Ensemble learning approach can 

address this problem by the joint decision making of multiple similarly configured models that emphasize 

different variations of the dataset and thus reach a better final decision by averaging out the errors. 

 

In this study, the K-fold cross-validation splitting method was conducted to assign the dataset for the 

individual model. The training dataset was split into k folds (k = 10 in this research), among which k-1 folds 

were used for training the U-Net model, and the remaining one was used for validation. During the training 

process of each model, the model that generated the lowest loss on the validation dataset was selected as 

the best model. In total, there was k number of separate models trained and validated with varied datasets. 

Then the predictions of k sub-models were summarized and averaged to get the predictions of the final 

ensemble model. The architecture of this ensemble model is presented in Figure 8. Tversky loss weight 

parameter tuning was also evaluated using the ensemble model approach. 
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Figure 8. The architecture of the U-Net-based ensemble model 

2.5. Locating and counting 

2.5.1. Wildebeest locating 

 

After thresholding, the segmentation map (wildebeest/non-wildebeest) was generated. Since the goal is to 

detect and count the wildebeest at the level of a single animal, the pixel-level results are still not enough. 

Therefore, the wildebeest segments were converted into vector points to locate the wildebeest individuals. 

This was done by extracting the centroid of each wildebeest segment to represent the whole wildebeest.  

 

There are cases when the wildebeests are so close that one segment contains several of them together. For 

the aggregated wildebeest cluster that contains more than 9 pixels, K-means clustering was applied to 

partition the segment into k separate clusters, and the cluster centres were treated as wildebeests. The 

number of clusters, k, was calculated according to the ceiling division of the total number of pixels by the 
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size of one wildebeest (9 pixels). For instance, if there are 11 pixels in one segment, then the number of 

clusters is 2, and two wildebeest individuals will be extracted from this segment. 

 

2.5.2. Wildebeest counting 

 

The model trained on the training dataset with the optimal loss function weight parameter was run on the 

whole satellite image of 2009 to obtain the predictions. The predictions were normalized and then vectorized 

to count the total number of wildebeest points. To deal with the randomness and uncertainty of the deep 

learning model caused by the weight initialization and k-fold splitting, the U-Net-based ensemble model 

training process was repeated 10 times using the same set of parameters. The counting numbers generated 

by these ten separate composite ensemble models were averaged to get the estimation of the wildebeest 

population. 

2.6. Transfer learning 

2.6.1. Spatial transfer learning 

To test the spatial transferability of the wildebeest detection model, the U-Net model was applied to the 

highland area. As explained in section 2.3.1 and Figure 3, the training dataset with both plain and highland 

data was used for spatial transfer learning. No new testing dataset was selected because it is difficult to find 

wildebeest on the highland. There are animals in the field and forest, however, based on the expert 

knowledge of local people, they are more probable to be cattle instead of wildebeest. Thus, the performance 

evaluation of the transferred model was merely through visual interpretation of the final classification results 

of the whole area.  

2.6.2. Temporal transfer learning 

 

To test the temporal transferability, the GeoEye-1 satellite image in 2013 was utilized since it covers the 

same area with similar landscapes as the image in 2009, while the spectral characteristics are different due to 

the influence of the atmospheric conditions, sun elevation, and azimuth angle on different dates when the 

satellite images were acquired. Besides, the features of wildebeest pixels are also different. Figure 9 visualizes 

the spectral characteristics of both satellite images and how the wildebeest look on different images. 
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a 

b 
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Satellite image in 2009 Satellite image in 2013 
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Figure 9. The spectral characteristics of GeoEye-1 satellite image in 2009 and  2013. a, the pixel DN value range of 
red, green, blue, and near-infrared band on GeoEye-1 satellite image in 2009 and 2013. The range is defined by the 
mean and standard deviation: mean ± standard deviation. b, the histogram of DN values of the red, green, blue, and 
near-infrared band on GeoEye-1 satellite image in 2009 and 2013. c, an overview of the GeoEye-1 satellite image in 
2009 and 2013 with true colour composites (red, green, and blue). d, a patch area with wildebeest on the satellite image 
in 2009 and 2013. The wildebeest on image 2013 look vaguer than it on image 2009. 

 

Since the wildebeest population on the 2013 image is very limited, it is not possible to select enough training 

data to re-train the model, nor to select testing data to evaluate the performance. Therefore, the model 

trained on the 2009 image was directly applied to the 2013 image, and the transferability was assessed by 

visual interpretation. 

2.7. Accuracy assessment 

 

The accuracy of the wildebeest detection model was assessed at the individual level instead of pixel level. 

After vectorization, the ground truth mask images and the predicted images were both converted to 

wildebeest points. To determine whether the wildebeest point is predicted correctly, a searching distance 

was introduced to match the predicted point with the corresponding ground truth point. This is because the 

“ground truth” wildebeest segment (3 × 3) is not purely composed of wildebeest pixels. It also includes 

some background pixels, and the boundary between wildebeest and background is ambiguous. Therefore, 

the precise location of wildebeest should allow a slight shift within two pixels. The judgment of correctness 

followed this set of rules: 

• Search for the ground truth point near a predicted point within the searching distance.  

o If a ground truth point is found within the searching distance, then this predicted point is 

a true positive (TP).  

o If there is no ground truth point near the predicted point, then this predicted point is a 

false positive (FP).  

• All the remaining ground truth points that haven’t been matched after the searching process are 

false negatives (FN).  

 

Satellite image in 2013 Satellite image in 2009 

d 
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Sensitivity analysis was conducted to evaluate the influence of the searching distance setting on the detection 

accuracy. The distance range was 0 to 2 pixels (0 to 0.9 centimetres). The best searching distance chosen as 

the final parameter was the one that produces the highest accuracy. 

 

To quantitatively assess the overall performance of the model, the following accuracy metrics were utilized: 

precision (2), recall (3), and F1-score (4). Precision measures how accurate are the predictions. It is calculated 

as the ratio between the number of detected true positives and all detected positives. Recall measures how 

good the model is at finding the true positives. It is the ratio between the number of detected true positives 

and all existing ground truth positives. F1-score is a harmonic mean of precision and recall, which reflects 

the overall accuracy. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
=  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
(4) 

 

Precision-recall curve and Area Under the Curve (AUC) were adopted to compare the performance of the 

models trained with different U-Net model parameters. When applying different thresholds to the 

probability map, the binary classification results are different, and multiple pairs of precision and recall can 

be calculated. For threshold 0 and 1, the precision and recall were manually set to be (0, 1) and (1, 0), 

respectively. These precision-recall pairs were then plotted on the graph, and the area under the curve was 

calculated using the composite trapezoidal rule. The value of AUC is between 0 and 1. The higher the AUC 

is, the better the model performance is. 

2.8. Statistical analysis 

 

To explore the role of near-infrared (NIR) band of GeoEye-1 satellite image in wildebeest detection, another 

U-Net model was trained with 4-band (R, G, B, NIR) data, and the accuracy was compared with the model 

trained with 3-band (R, G, B) data. Due to the inevitable existence of randomness during deep learning 

model training, simply comparing the accuracy on the testing dataset is not sufficient. Statistical analysis is 

important to test the significance of the difference between the performance of two convolutional neural 

network models over the same testing dataset.  

 

The commonly used approach is the K-fold cross-validated paired t-test. The training dataset is split into k 

folds, and the model will be trained on the k-1 folds and tested on the remaining one fold. In total k trials 

are conducted, and two series of testing accuracy from two models are obtained and compared using paired 

t-test. The K-fold cross-validated paired t-test ensures the independence of the testing dataset because they 

are not overlapping among all the k trails. However, the independence assumption of the training dataset is 

seriously violated. Between the cross-validation iterations, there is a high proportion of overlapping (89% 

overlapping in 10-fold cross-validation), which can cause high type І error (rejection of a true null hypothesis 

when there is no significant difference) (Dietterich, 1998).  
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To overcome this limitation, Dietterich proposed the 5 × 2 cross-validated paired t-test which then gradually 

replaced the k-fold method (Demšar, 2006; Dietterich, 1998). Instead of k folds, the dataset is split into 2 

folds. In this way, the training sets are completely non-overlapping, as well as the testing sets. The cross-

validations are then replicated 5 times to achieve a more stable estimate. Experiments showed that this 

method has a lower type І error compared to K-fold cross-validation.  

 

The calculation of t statistic is as follows: 

 

𝑡̃ =
𝑝1

(1)

√1
5
∑ 𝑠𝑖

25
𝑖=1

(5)
 

In replication 𝑖, the dataset is split equally into datasets S1 and S2. Method A is trained on S1 and tested on 

S2 to get accuracy 𝑝𝐴
(1), and trained on S2 and tested on S1 to get accuracy 𝑝𝐴

(2). For method B, the resulting 

accuracy estimates are 𝑝𝐵
(1) and 𝑝𝐵

(2). By calculating the differences, we get: 𝑝𝑖
(1) = 𝑝𝐴

(1) − 𝑝𝐵
(1)

, and 

𝑝𝑖
(2) = 𝑝𝐴

(2) − 𝑝𝐵
(2). The average of the differences is 𝑝 𝑖 = (𝑝𝑖

(1) + 𝑝𝑖
(2))/2, and the estimated variance 

is 𝑠𝑖
2 = (𝑝𝑖

(1) − 𝑝 𝑖)
2 + (𝑝𝑖

(2) − 𝑝 𝑖)
2. The t statistic is calculated from these estimates.  

 

The application of paired t-test entails these three assumptions: (1) the samples are independent; (2) the 

differences follow a normal distribution unless the sample size is large enough; (3) the variances of two sets 

of samples are equal. For assumption 1, the estimates within 2-fold cross-validation are completely 

independent, but the 5 iterations do not fulfil the requirement of independence. However, research indicated 

that this issue is inevitable, and it gets less problematic after adjusting the formula (Dietterich, 1998). For 

assumption 2, the Shapiro-Wilk test was applied to test the normality of data distribution. For assumption 

3, Levene’s test was used to test the homogeneity of variances between the two groups of accuracy. Lastly, 

the two-tail t-test was implemented at a significance level of 0.05. The effect of the near-infrared band on 

wildebeest detection accuracy was evaluated statistically by the 5 × 2 cross-validated paired t-test. All the 

statistical tests were conducted using the SciPy library in python. 
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3. RESULTS 

3.1. Detecting the wildebeest 

3.1.1. U-Net model output and evaluation 

3.1.1.1. Model trained on the full dataset 

 

The U-Net model was trained on the Google Colaboratory platform 

(https://colab.research.google.com/notebooks/intro.ipynb). Using GPU P100, the training process of 100 

epochs with the full dataset took approximately 0.8 hours. The training loss and validation loss decreased 

significantly from 1 to about 0.2 to 0.4 after the first 20 epochs and reach the lowest validation loss at epoch 

10 to 40 usually. Then the training loss continued to decrease during training, while the validation loss kept 

relatively steady and slightly increasing.  

 

Figure 10 shows one example of the learning curve (Tversky loss weight β = 0.9) while using the full training 

dataset, including the change of precision, recall, and f1-score on the training and validation dataset. In this 

training process, validation loss reaches the lowest at epoch 13. Therefore, the model at epoch 13 is selected 

as the best model. 

 

 

a b 

c d 

https://colab.research.google.com/notebooks/intro.ipynb
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Figure 10. Learning curve during model training. a, Training and validation loss curves during model learning. b, the 
Precision curve on training and validation dataset during model learning. c, Recall curve on training and validation 
dataset during model learning. d, F1-score curve on training and validation dataset during model learning. 

The direct output of the U-Net model is a probability map for each patch as shown in Figure 11.b. The 

value of each pixel is the probability of the existence of wildebeest in the corresponding pixel in the input 

satellite image in Figure 11.a. The range of probability is (0, 1). After thresholding (the optimal threshold is 

0.5), the binary wildebeest segmentation map was obtained (Figure 11.c) and then was converted to a 

wildebeest point map (Figure 11.d). The wildebeest points were then compared with the ground truth 

labelled points, which produced true positives (green circles in Figure 11.d), false positives (red cross in 

Figure 11.d), and false negatives (yellow cross in Figure 11.d). 

 

 

 

Figure 11. The wildebeest detection output of the U-Net model and wildebeest locating product. a, Satellite image 
input of the U-Net model. b, Probability map product of U-Net model. c, Wildebeest binary segmentation map after 
thresholding. d, The wildebeest detection results on the satellite image, including true positives (in green), false positives 
(in red), and false negatives (in yellow). 

 

 

c 
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The pixel-level and object-level accuracy calculated based on the point output is presented in Table 4. 

Table 4. Pixel-level and object-level accuracy of wildebeest detection model trained using the full dataset and tested 
using the first testing dataset with 30 randomly selected patches 

 Precision Recall F1-score 

Pixel-level 0.84 0.49 0.62 

Object-level 0.83 0.69 0.75 

 

3.1.1.2. Model trained using the ensemble approach 

 

The U-Net-based ensemble model using the K-fold cross-validation splitting method was implemented 

(k=10). Using GPU P100, the training process of 100 epochs with 10 iterations for all the 10 combinations 

took approximately 10 hours. 

 

The accuracy of all the 10 fold combinations is shown in Table 5.  The predictions of all the 10 models were 

then averaged and the accuracy of the ensemble model was: precision 0.87, recall 0.84, f1-score 0.85, 

respectively. The ensemble model approach significantly improved the accuracy compared with using any 

single fold combination or using the full dataset. 

 
Table 5. Object-level accuracy of U-Net-based ensemble model on the first testing dataset with 30 randomly selected 
patches 

 Precision Recall F1-score 

Fold 1 0.85 0.64 0.73 

Fold 2 0.84 0.64 0.73 

Fold 3 0.78 0.74 0.76 

Fold 4 0.83 0.60 0.70 

Fold 5 0.81 0.71 0.76 

Fold 6 0.82 0.68 0.75 

Fold 7 0.86 0.63 0.73 

Fold 8 0.83 0.68 0.75 

Fold 9 0.84 0.59 0.69 

Fold 10 0.85 0.64 0.73 

10-fold ensemble 0.87 0.84 0.85 

 

 

3.1.2. Update the testing dataset 

 

The preliminary experiments on the first testing dataset (30 randomly selected patches on the study area 

with 3,171 wildebeests) showed that the model achieved good accuracy: precision 0.87, recall 0.84, and f1 

0.85 (Table 5). However, the wildebeest are not evenly distributed spatially, thus the accuracy generated 

based on random sampling is not reliable enough. To ensure that the testing dataset is well representing the 

whole study area, the testing dataset was updated using a stratified proportionate random sampling 

approach.  

 

The strata were built according to the wildebeest density across the study area. The wildebeest density data 

were obtained using the preliminary model. As mentioned before, the accuracy of the preliminary model on 
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the first testing dataset is not representative and reliable enough. But still, it reflects the detection 

performance on more than 3,000 wildebeests and their background. Thus the wildebeest detection results 

can be used to illustrate the general distribution pattern of wildebeest density. 

 

Firstly, the trained preliminary model was applied to the study area (lower land) to detect the wildebeest. 

Then the number of wildebeest within every grid was calculated, which resulted in the wildebeest density 

map (Figure 12). All the grids were classified into 4 classes using the standard deviation method according 

to the wildebeest count, and they were grouped into 4 density categories: low, medium, high density, and 

very high density. Table 6 shows the wildebeest count range and the proportion of grids in each category. 

Lastly, the testing samples were randomly selected among all the grids within each category separately 

according to the proportion. In total, 100 testing grids were selected (Figure 3) and the processes of 

wildebeest labelling and rasterization were implemented to get the new testing dataset. This new testing 

dataset was then used to evaluate the generalization performance of the deep learning model. 

 

Figure 12. Wildebeest density map generated by the preliminary model 

 

Table 6. Updated testing data sampling strata 

Wildebeest count Density group Proportion No. of sample grids 

0 - 42 Low density 86% 86 

43 - 89 Medium density 8% 8 

90 – 135 High density 3% 3 

136 - 526 Very high density 3% 3 

 

3.1.3. Sensitivity analysis of searching distance 

 

As discussed in section 2.8, a searching distance was introduced to match the predicted point with the 

corresponding ground truth point to evaluate the accuracy. Sensitivity analysis was conducted to evaluate 
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the influence of the searching distance setting on the detection accuracy and find the best searching distance. 

The distance range is 0 to 2 pixels (0 to 0.9 centimetres). 

 

From Figure 13, it’s observed that the detection accuracy increases when the searching distance increases. 

The accuracy increases from 0 to around 0.6 when the searching distance increases from 0 to 0.01 m. When 

the searching distance is between 0.01 to 0.42 m (which is about 1 pixel), the accuracy keeps stable. The 

accuracy rises again to around 0.8 at searching distance = 0.43 m and keeps stable after this until searching 

distance reaches 0.61 and the accuracy achieves above 0.85. When the searching distance is larger than 

0.61m, all the accuracy metrics remained stable (i.e., reached an asymptote). 

 
Figure 13. Sensitivity analysis of searching distance in accuracy assessment. a, Relation of Precision and searching 
distance. b, Relation of Recall and searching distance. c, Relation of F1-score and searching distance. d, An example 
of the application of searching distance in model evaluation. The cross point in blue is the ground truth centroid of 
the wildebeest segment, and the green cross point is the centroid of the predicted wildebeest segment. The transparent 
grey area in d.3 is the buffer area of the predicted centroid defined by searching distance. The point in green is a true 
positive when the distance to the blue ground truth point is smaller than the searching distance. 

 

3.1.4. Parameter tuning 

 

The parameter 𝛽 , weight of false positives in Tversky loss, was finely tuned to achieve the balance of 

precision and recall. As seen in Table 7, with the increase of weight for false positives, precision rises from 

b a 

d c 
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0.19 to 0.97, while recall declines from 1.00 to 0.53. F1-score, the metric that compromises both precision 

and recall, increases from 0.32 to 0.87 and then drops to 0.68 when the weight increases to 0.99. The AUC 

(Area Under the precision-recall Curve) shows a similar trend as the F1-score (Table 7, Figure 14). The 

optimal weight is 0.9 when both F1-score and AUC reach the highest value. 

 

 

 
Table 7. Accuracy of wildebeest detection trained with different weights in Tversky loss 

Weight 𝜷 Precision Recall F1-score AUC 

0.01 0.19 1.00 0.32 0.64 

0.1 0.32 0.99 0.48 0.74 

0.2 0.40 0.99 0.57 0.81 

0.3 0.42 0.98 0.59 0.84 

0.4 0.48 0.98 0.64 0.87 

0.5 0.54 0.98 0.69 0.89 

0.6 0.59 0.97 0.74 0.90 

0.7 0.72 0.95 0.82 0.92 

0.8 0.75 0.94 0.83 0.93 (0.926) 

0.9 0.88 0.87 0.87 0.93 (0.928) 

0.99 0.97 0.53 0.68 0.89 

 

 

 

 

Figure 14. Precision-Recall curve of the U-Net model trained with different weights in Tversky loss 
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3.1.5. Performance of the final model 

 

Using this weight that generates the highest AUC (β=0.9), the results of the U-Net-based ensemble model 

on the updated dataset are presented in Table 8. The individual models show a high variance: model Fold 8 

is more advantageous in getting a high recall but it obtains a low precision; model Fold 3 and Fold 7 achieve 

a high precision but a low recall. The final composite model reaches a good balance among all the 10 separate 

models and the final F1-score is higher than every single model.  

 

 

 
Table 8. The accuracy of the U-Net-based ensemble model on the updated testing dataset with the Tversky loss 
parameter β of 0.9 

 Precision Recall F1-score 

Fold 1 0.75 0.77 0.76 

Fold 2 0.83 0.79 0.81 

Fold 3 0.87 0.76 0.81 

Fold 4 0.78 0.83 0.81 

Fold 5 0.84 0.83 0.83 

Fold 6 0.76 0.85 0.80 

Fold 7 0.87 0.77 0.82 

Fold 8 0.72 0.91 0.80 

Fold 9 0.79 0.83 0.81 

Fold 10 0.80 0.82 0.81 

10-fold ensemble 0.88 0.87 0.87 
 

 

For the final composite model, the precision of wildebeest detection is 0.88, the recall is 0.87, and the F1-

score is 0.87. The model showed a high generalization accuracy on the testing dataset. Some examples of 

the predictions of wildebeest on the testing dataset are displayed in Figure 15 and Figure 16. 
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Figure 15. Predicting wildebeest on the GeoEye-1 satellite image. These example images of 336 × 336 pixels from the 
independent testing dataset show the capability of the U-Net convolutional neural network model to detect wildebeest 
from GeoEye-1 satellite imagery with 43-cm resolution. The left column shows the raw satellite images and the right 
column displays the wildebeest detection results on the image. a, The detection accuracy on patch a is: Precision 0.90, 

a 

b 

c 
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Recall 0.86, F1-score 0.88. b, The detection accuracy on patch b is: Precision 0.92, Recall 1.00, F1-score 0.96. c, The 
detection accuracy on patch c is: Precision 0.90, Recall 0.97, F1-score 0.94. 

 
Figure 16. Predicting wildebeest on the GeoEye-1 satellite image. The left column shows the raw satellite images and 
the right column displays the wildebeest detection results on the image. d, the detection accuracy on patch a is: 
Precision 0.94, Recall 0.97, F1-score 0.96. e, the detection accuracy on patch a is: Precision 1.00, Recall 1.00, F1-score 
1.00. f, the detection accuracy on patch a is: Precision 0.87, Recall 0.89, F1-score 0.88. 

 

d 

e 

f 
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The model was then applied to the whole satellite image to detect the wildebeest over the entire study area. 

The results are shown in Figure 17, 18, 19, and 20. 

 
Figure 17. Detecting wildebeest from GeoEye-1 satellite image using U-Net model (example of wildebeest on bare 
land). a, the GeoEye-1 satellite image. b, wildebeest detected on the GeoEye-1 satellite image.  

a 

b 
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Figure 18. Detecting wildebeest from GeoEye-1 satellite image using U-Net model (example of wildebeest on burnt 
area). a, the GeoEye-1 satellite image. b, wildebeest detected on the GeoEye-1 satellite image. 

 

a 

b 
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Figure 19. Detecting wildebeest from GeoEye-1 satellite image using U-Net model (example of wildebeest on 
grassland). a, the GeoEye-1 satellite image. b, wildebeest detected on the GeoEye-1 satellite image. 

a 

b 
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Figure 20. Detecting wildebeest from GeoEye-1 satellite image using U-Net model (example of wildebeest crossing 
the Mara River). a, the GeoEye-1 satellite image. b, wildebeest detected on the GeoEye-1 satellite image. 

a 

b 
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Using the weight parameter that generated the highest AUC (weight 𝛽 = 0.9), the U-Net-based ensemble 

model training process was implemented 10 times. The accuracy varies among these 10 iterations. Figure 21 

presents the F1-score of the ensemble model on the testing dataset using different threshold values. The 

results of all these 10 models are presented. The F1-score reaches the peak when the threshold is around 

0.5. This suggests that the default threshold setting is appropriate. Besides, at threshold = 0.5, the confidence 

interval of the F1-score (the grey area) is very narrow, indicating the stability of the model on wildebeest 

detection. 

  

 

 

Figure 21. F1-score of the U-Net model under different thresholds. The model was trained 10 times separately, and 
the line plot aggregates multiple F1-score values of 10 models at each threshold. The solid line represents the average 
values of all the 10 iterations. The grey area is the 95% confidence interval of the F1-score. 

3.2.  Counting the wildebeest 

 

The 10 models trained using 10 iterations were applied to the whole GeoEye-1 satellite image. After 

vectorization, the number of wildebeest in the entire study area were detected and then counted. The 

statistics of the wildebeest population count using the 10 different models are presented in Table 9. Since 

the sample size (n=10) is small, a Student’s t statistic is used to estimate the confidence interval. Therefore, 

the 95% confidence interval of the population count on the GeoEye-1 satellite image (low land covering 

around 140 km2) calculated from the mean, standard error, and t statistic is (126122, 132792). 

 
Table 9. Statistics of the wildebeest population count using the U-Net model from the GeoEye-1 satellite image. Df: 
degree of freedom; Std.: standard deviation; SE: standard error; CI: confidence interval. 

df Mean Std. SE t statistic  

(95% CI) 

9 129457 4422 1474 2.262 
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3.3. Contribution of the near-infrared band 

 

The previous analysis was built on the GeoEye-1 satellite image with only the first three bands: red, green, 

and blue. To explore the role of the near-infrared (NIR) band, the 4-band satellite image was processed. 

The U-Net model was trained again using the same strategy, including the same selection of training dataset 

and testing dataset, U-Net-based ensemble model with K-fold cross-validation, as well as the parameter 

tuning process. The parameter tuning results are shown in Figure 22. The optimal weight of the new model 

that generates the highest AUC is also 0.9, the same as the model only using RGB. The wildebeest detection 

accuracy is presented in Table 10. The F1-score reaches 0.87, which is the same as the accuracy using only 

the RGB combination. 

 

 
Figure 22. Precision-Recall curve of the U-Net model trained with different weights in Tversky loss using RGB+NIR 
bands. The AUC (Area Under precision-recall Curve) reached the highest when the weight is 0.9. 

 
Table 10. The accuracy of wildebeest detection U-Net model trained with RGB+NIR GeoEye-1 satellite image 

Weight 𝜷 Precision Recall F1-score AUC 

0.9 0.89 0.86 0.87 0.94 

 

 

The 5×2 cross-validated paired t-test is implemented to test whether there is a significant difference between 

the wildebeest detection accuracy trained with RGB only and RGB+NIR of GeoEye-1 satellite image. The 

score differences are presented in Table 11.  

 
Table 11. The accuracy differences between U-Net models trained with RGB+NIR and RGB band combinations of 
GeoEye-1 satellite image using 5×2 cross-validation 

Iteration Fold Accuracy difference 

1 
1 0.06 

2 -0.01 

2 
1 0.07 

2 0.03 

3 1 -0.03 
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2 -0.03 

4 
1 -0.05 

2 -0.01 

5 
1 -0.01 

2 -0.01 

 

With respect to the normality of the data distribution of the accuracy differences, the Shapiro-Wilk test 
generates the p-value of 0.17, which is larger than the α level of 0.05. Therefore, the null hypothesis cannot 
be rejected. Thus, the data follows a normal distribution. 

The results of the variance equality test of the accuracy samples show that the p-value is 0.75, which is larger 
than the α level of 0.05. This indicates that the variances of both accuracy samples are homogeneous. 

Regarding the results of paired t-test, the calculated t-statistic is less than the t-critical value at the significance 

level of 0.05 (2.17 < 2.571), therefore, the null hypothesis (there is no significant difference between the 

accuracy of these two models) cannot be rejected. There is no statistically significant difference in the 

wildebeest detection accuracy between the use and without the use of the near-infrared band of GeoEye-1 

image. 

3.4. Spatial transferability 

 

In the highland area with different landscapes, the model shows the capability of avoiding false positives. 

As Figure 23.e and f present, the model is able to correctly ignore the wildebeest-like objects on the ground, 

such as the shadow of soil on the fallow field, and very small bushes that can be easily confused with 

wildebeest.  

 

The model also detects some of the animals. For example, in Figure 23.a, b, and c, the distinct objects on 

the agricultural field and open forest are groups of animals, which are, according to the local expert, highly 

probable to be cattle or a mixture of cattle and wildebeest. The model can detect the black cattle that are 

very similar to wildebeest, while the cattle with white or light brown pixels are left out such as the example 

in Figure 23.a, b, and d. 
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Figure 23. Transferring the wildebeest detection model to the highland area on GeoEye-1 satellite image in 2009. The 
left column shows the raw satellite images and the right column displays the animal detection results on the image. a, 
example patch 1 of open grassland with animals. b, example patch 2 of open grassland with animals. c, example patch 
1 of the agricultural field with animals. d, example patch 2 of the agricultural field with animals. e, example patch of 
human settlements and agricultural fallow field without animals. f, example patch with bushes. 

 

f 

d 
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3.5. Temporal transferability 

 

Despite the difference of spectral characteristics on GeoEye-1 satellite image in 2013, the model trained 

only on the satellite image in 2009 is still capable to discriminate wildebeest from complicated background 

objects, especially small bushes (Figure 24.a and b). 

Figure 24. Detecting wildebeest on GeoEye-1 satellite image in 2013 (the plain area) using U-Net model trained with 
data in 2009. a, example patch with bushes. b, an example patch with linearly grouped wildebeest. c, an example 
patch with forest. 

a 

b 

c 

Wildebeest detected in 2009 Wildebeest detected in 2013 
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Figure 25. Detecting animals on GeoEye-1 satellite image in 2013 (the highland area) using U-Net model trained with 
data in 2009. d, e, f, example patches on the highland area. 

 

d 

e 
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4. DISCUSSION 

4.1. Wildebeest detection using U-Net deep learning model 

 

This research presents a successful model based on the U-Net deep learning architecture for detecting and 

counting wildebeest from GeoEye-1 satellite images. The most important breakthrough is the capability of 

detecting small animal targets with indistinct features across heterogeneous environment on sub-meter level 

resolution images at a large scale, a task that is empirically considered to be challenging (Hollings et al., 

2018). This U-Net model can detect wildebeest with less than 9 pixels on a 43cm-resolution image, while 

these 9 pixels also contains a mixture of animal and background pixels. On the contrary, other commonly 

used object detection deep learning models are restricted either by the resolution of images or the size of 

animals, such as animal detection on aerial photographs or elephant and whale detection on satellite images 

(Duporge et al., 2020; Guirado et al., 2019; Peng et al., 2020). The generalization accuracy F1-score of the 

U-Net model on the independent testing dataset distributed on a large scale (area of 140 km2) reaches 0.87, 

while similar research on wildebeest detection in pilot areas with a much smaller scale (area of 0.04 km2) 

only achieves an accuracy of 0.79 (Xue et al., 2017). In addition, the U-Net model training and detection 

can be implemented fully automated online. It does not require much manual intervention like traditional 

semi-automated algorithms or expert-knowledge dependent object-based classification approaches 

(Kellenberger, Marcos, & Tuia, 2018c; Xue et al., 2017; Yang et al., 2014). It is thus proved that this U-Net 

deep learning model is more advanced in accurate and rapid animal detection and counting from very-high-

resolution satellite imagery at larger scales. 

 

The advantage of this wildebeest detection model is also reflected in the precise prediction of the location 

of the wildebeest individuals. The vectorized wildebeest predictions extracted from the map allow 

straightforward population counting. This counting method is more accurate and simple compared to 

research that estimates animal populations by performing regression (Gonçalves et al., 2020). It also benefits 

the wildebeest-level accuracy assessment, which is more intuitive than pixel-level assessment and consistent 

to commonly used accuracy metrics (precision, recall, and f-score) in object detection tasks. Moreover, the 

pixel-by-pixel classification of the U-Net model enables localization of the animal on the image, which 

makes it possible to analyze the spatial distribution of wildebeest like understanding the animal migration 

pattern, and further explore the response of animal movement to other environmental or human factors 

such as food resources (S. A. R. Mduma, Sinclair, & Hilborn, 1999). The automated wildebeest detection 

method can efficiently provide animal location data for such ecological research, which previously required 

laborious manual labelling work (Hughey et al., 2021). Therefore, the approach in this research will 

constitute a robust basis for wildlife ecological research and wildlife location and population monitoring 

that entails fine-scale spatial distribution data. 

 

In this study, the performance of this wildebeest detection model is highly dependent on these following 

foundations: the quality and quantity of the training dataset, the weighted loss function, and the utilization 

of the ensemble model. First, in a heterogeneous environment like the savannahs, it is extremely important 

to select adequate non-target samples of background objects that cause misclassifications, such as termite 

mounds, riverbank shadows, dwarf shrub, the shadow of vehicles. The model needs to “see” the non-animal 

pixels so it can learn to avoid the possible large amounts of false positives. In short, the training dataset 

should include the variations of not only the detection targets but also the background landscape as 

completely as possible until the model achieves a good generalization ability. Another key issue is the 

imbalance of the target objects and background. The model tends to classify all the pixels into non-

wildebeest pixels to achieve high overall accuracy. But by using weighted loss functions, such as Tversky 
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loss and Focal loss, we are able to force the model to emphasize learning the targets when the target pixels 

occupy a very small proportion (Lin et al., 2017; Salehi et al., 2017). In this wildebeest detection study where 

the wildebeest pixels are less than 1%, adopting the Tversky loss function increased the accuracy (F1-score) 

from 0.69 to 0.87 after weight parameter tuning. Moreover, the animal detection model performance is 

sensitive to randomness during the process of model training.  The result slightly varies when running the 

model training procedure with exactly the same configurations. The utilization of the ensemble model can 

overcome this issue and improve the stability and robustness of the model. The ensemble model minimizes 

the chance of selecting one single model with poor performance on certain landscapes and achieves a better 

balance between false positives and false negatives. 

 

There are still several limitations to the wildebeest detection model. This study is restricted within the 140 

km2 Mara Triangle area and the wildebeest detection at a larger scale is not explored yet due to the lack of 

data. Besides, the uncertainty of the model still exists in several steps: batch splitting in model training, 

weight initialization, and k-fold cross-validation splitting. The uncertainty has been reduced by the U-Net-

based ensemble model approach; however, it is still inevitable to get slightly different results when running 

the model multiple times, especially the Precision and Recall. But the fluctuations of both metrics are within 

an acceptable range, and the F1-score hardly changes (Figure 21). The model is also sensitive to some 

parameters, including the searching distance, the threshold, and number k in the K-means clustering method 

for data vectorization. Sensitivity analysis is required to achieve optimal performance as presented in this 

research. 

4.2. Spatial and temporal transferability of the wildebeest detection model 

 

The transferability test results suggest the potential of the wildebeest detection model to transfer over space 

and time. Normally transfer learning needs more training data to adapt to the new variations of the new 

study image, however, this is not possible for this new temporal image due to the scarcity of potential 

wildebeest training samples. The spatial transferability cannot be quantitively evaluated either as there is a 

limited number of wildebeests on the highland. Despite these limitations, it is clear that the model can still 

locate the animal clusters even though not all the individual wildebeest are correctly detected. This indicates 

its potential to apply to more spatially and temporally different satellite images and achieve better 

generalization ability when more training data are available.  

 

Future study could upscale the model to a larger area (i.e., the whole 25000 km2 Serengeti-Mara ecosystem) 

to build a massive wildebeest detection dataset to count the full population of wildebeest, and monitor the 

population fluctuations by leveraging multi-temporal satellite images in this area (Thirgood et al., 2004). It 

would be revolutionary for large-scale wildlife monitoring and management practices, especially when 

comparing to traditional ground surveys, like the Mara wildlife count in Mara ecosystems that involved 22 

vehicle counting teams and 3 aircraft observing teams with 84 people (Reid et al., 2003). It is promising to 

establish a comprehensive wildlife spatial distribution database built on very high-resolution satellite images 

coupled with this advanced deep learning animal detection technique. 

 

The unexpected detection of cattle on the highland points out the possibility of detecting other small animal 

targets that have similar characteristics to the wildebeest. This also poses a challenge to the model toward 

discriminating cattle from wildebeest since the resolution of satellite imagery is very limited. Multiple species 

that have similar characteristics with indistinct features cannot be differentiated by this model, and it is 

beyond the scope of this animal detection model in the current stage.  
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Regarding this limitation, it could be argued that expert knowledge can assist in refining the spatial and 

temporal boundaries of the data. If the local people and ecologists know that the dominant animal species 

is wildebeest within this specific area at a specific time, we can confidently say that the detection and 

counting results are still close to reality. 

 

4.3. The role of the near-infrared band in the detection of wildebeest 

 

The results demonstrate that adding the near-infrared band to the RGB combination in the GeoEye-1 

satellite image does not significantly improve the wildebeest detection accuracy. This is the opposite of our 

hypothesis, where the NIR band is more sensitive to vegetation and thus should be useful to discriminate 

vegetation from the wildebeest (Knipling, 1970). In fact, in this research, the number of pixels for each 

wildebeest is very limited (less than 9). Among these 9 pixels, some are the shadow of the animal and 

background land, which makes it more complicated to distinguish animals from vegetation. According to 

our preliminary results where the problem of false positives was not yet solved, it was also observed that 

the confusion is mainly attributed to the shadow pixels of the vegetation rather than the “true” vegetation 

pixels. But, simply adding the NIR band may not add the presumed variations to the shadow pixels and thus 

does not contribute to distinguishing the wildebeests from the vegetation. Another reason could be 

associated with the classifier. The key to convolutional neural networks is the extraction of spatial features 

such as low-level edges and high-level shapes by computing the receptive field. This finding indicates that 

the RGB band combination provides good enough information on top of the spatial information for animal 

detection. Therefore, the wildebeest detection model can be applied to the commercial satellite imagery 

products of different levels, and the cost of data acquirement can be reduced since the NIR band is not 

necessary. 

 

However, for animal detection on higher-resolution images (such as wildebeest on aerial photographs), the 

vegetation and animals will show different characteristics from those on satellite images, and more details 

that can help separate them will be available. Hence, the distinguishment of vegetation and animals could 

benefit from adding an extra NIR band. It still needs further research to investigate the role of the near-

infrared band with various data and environment settings. 

 

4.4. Applicability of the wildebeest detection model to other animal species 

 

This study built a U-Net-based deep learning model for detecting and counting wildebeest from GeoEye-1 

satellite images and proved the feasibility of detecting small animals with high accuracy. Nevertheless, to 

deploy the model on detecting other small-size feature indistinct animal species, there are still some potential 

challenges. 

 

The first issue is data imbalance caused by the low proportion of animal samples. As discussed before, a 

large amount of training data representing all the data variations is required by the U-Net deep learning 

model. In this research, there is a large number of wildebeests migrating in this area, thereby allowing 

adequate dataset sampling for model training. But for other species or wildebeest itself with a small 

population on the image shot, the limited sample size may pose a challenge to the model. It can be expected 

that animal with a small population size also contains a lower level of variations of the characteristics across 

the background, so a smaller training dataset may not hinder the model performance. However, it is still not 

investigated that how the model will behave when the whole animal population on one satellite image is 
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limited. Besides, to deal with the data imbalance, the parameter in the weighted loss function also needs to 

be re-tuned to adapt to the new proportion of animal and non-animal pixels in the dataset. 

  

The second potential challenge is posed by the image resolution. This model has been only applied to the 

animal with a size of 4-9 pixels in total on the satellite image. Therefore, we recommend deploying the model 

to detect animals with a similar or even larger size on the remote sensing image, such as around 1-meter-

long animal on WorldView-3 satellite image (31-cm resolution), or at least 1.2-meter-long animal on 

GeoEye-1 satellite image (43-cm resolution). If the animal is smaller than this size, then a higher image 

resolution could be necessary to generate reasonable results. When the image resolution is restricted, then 

the small-size animal may not be able to be distinguished from the image. Future research could investigate 

the model performance on smaller-size (2×2 pixels) animal detection and counting using the U-Net-based 

ensemble model. 

 

The data resolution also affects the confidence of ground truth labelling. It is important to note that the 

wildebeest labelling in this study is conducted using a temporally different satellite image as a reference, and 

the final labels are the agreement of three observers, thus improving the confidence of the ground truth 

quality when the features of animals are not distinct on the image and the contrast to the background is low. 

Under the condition of small animal size with a low image resolution (less than 6 pixels in length), even 

visual interpretations by humans can be contradictory and bring uncertainty to the model (Bowler et al., 

2020b). Therefore, it would be crucial to use expert knowledge to refine the ground truth labels of the animal 

targets. 

 

Considering animal detection on images with higher resolution, such as aerial images, the U-Net model as 

the widely used image segmentation method in computer vision, can be expected to have good performance 

as well, especially when the higher resolution introduces more clear detailed features. But thus far, the more 

commonly used method in animal detection from high-resolution imagery is object-based deep learning 

architectures, such as YOLO, Mask R-CNN (Torney et al., 2019; Xu et al., 2020). There is one study using 

U-Net and Inception-v4 regression network for livestock detection on aerial images, but the background 

environment is rather homogeneous (Han et al., 2019). In future work, it would be useful to compare the 

U-Net model and other object-detection models in terms of the performance on aerial images with the 

heterogeneous environment, and thus build a solid work pipeline for animal detection. 
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5. CONCLUSIONS 

In this study, we tested the ability of the U-Net deep convolutional neural networks for detecting and 

counting the number of migrating wildebeest in the Mara Triangle from GeoEye-1 satellite imagery. To 

determine the role of the near-infrared band on the detection accuracy of wildebeest, the model performance 

using RGB and RGB+NIR band combination were compared using a 5×2 cross-validation paired t-test. 

The transferability of the U-Net model over space and time was evaluated by applying it to a spatially 

different area with varied landscapes and a temporally different GeoEye-1 satellite image, respectively. Based 

on the results, the following conclusions can be drawn: 

 

1) The U-Net model is capable of detecting small animal targets (2-4 pixels in length) with indistinct 

features on sub-meter level resolution images, and it achieves a high generalization accuracy (F1-

score) of 0.87 on the independent testing dataset distributed on a large-scale area (area of 140 km2). 

2) Adding the near-infrared band to the RGB combination in the GeoEye-1 satellite image does not 

significantly improve the wildebeest detection accuracy. 

3) The transferability test results suggest the potential of the wildebeest detection model to transfer 

over space and time. The wildebeest detection model can rapidly locate the animal clusters on the 

spatially and temporally different satellite images. 

 

In conclusion, this study built an effective and efficient U-Net deep convolutional neural network model 

for accurate and rapid wildebeest detection and counting from GeoEye-1 satellite imagery. The model also 

demonstrated its potential to be upscaled for monitoring and counting the whole wildebeest population on 

the Serengeti-Mara ecosystem when more high-resolution satellite images are available. It would be 

promising to establish a comprehensive wildlife spatial-temporal distribution database built on multi-

temporal very-high-resolution satellite images coupled with this deep learning animal detection technique, 

thereby allowing for efficient monitoring of wildebeest population dynamics in the whole Serengeti-Mara 

ecosystems. In addition, the wildebeest locating approach in this research enables straightforward and 

accurate animal population counting. The spatially precise wildebeest location dataset produced by this 

model will constitute a robust basis for a wide range of fine-scale spatial distribution-related research, such 

as animal migration pattern analysis. 
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