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Abstract 
 

 Over 90% of peatland can be found in boreal and subarctic regions. Unfortunately, these 

peatland areas might be more vulnerable to burning than previously assumed. Eventually northern 

peatlands could turn from carbon sinks to sources. New tools are necessary to respond to fire 

danger in peatland areas prone to burn. Remote sensing can view remote locations such as the 

Arctic regions of North-East Siberia. For peat fire prediction the combination of Sentinel-2 

satellite imagery and the usage of a convolutional neural network (CNN) is applied. As labelled data 

in the field of remote sensing is not easily found and is costly, transfer learning will be applied. 

This leads to the main objective to explore the viability of peat fire prediction for the remote Arctic 

area of North-East Siberia, using Sentinel-2 imagery and transfer learning of a CNN network. The 

EuroSAT dataset is used to create a pretrained network closer to the target task of peat fire 

prediction and ResNet50 is chosen as the network architecture. The results show that predicting 

peat fire in the region of North-East Siberia with the help of transfer learning is a novel approach 

that is still far from being able to be used as an early warning in the form of, for example, a 

susceptibility map. Transfer learning cannot be applied with the approach and data in this thesis; 

however, it is not excluded as an option for peat fire prediction and needs further investigation 

towards which features are important and which approaches are best applicable per region and 

timespan.  
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1   Introduction 
 

Last year in 2020 a Nature Magazine article had an alarming message: the Arctic is burning 

like never before (Witze, 2020). In Siberia, the article stated, fires started as early as in May and 

burned much longer than normally. In the two most eastern districts of Russia the individual fires 

even counted 18,591. Two reasons for the large number of fires that are presented in the article 

are the warmer temperatures in spring and winter, and that peat fires, so called Zombie Fires have 

been smouldering beneath the snow and ice. Unfortunately, as the climate warms further, fire risk 

in Siberia is predicted to increase (Sherstyukov & Sherstyukov, 2014) and very likely increases the 

vulnerability of peat fires which in return can cause long-term environmental changes such as 

permafrost thawing (Turetsky et al., 2015) in the higher located peatlands. 

 

Peatlands are a type of wetland where dead plant remains do not fully decay but are stored 

and build up a layer of peat as wetland area provides flooded or saturated soil to make this possible 

(Parish et al., 2008). Peatlands can vary highly, from blanket bogs to swamp forests and climate 

conditions play a role in this. As it varies highly, distinctions between peat characteristics are made 

between: 

• Bogs, which is peatland that is raised above the ground and consist of mire (an area that is 

currently accumulating and forming peat). It can only be wetted through precipitation 

such as rainfall. 

• Fens, peatland area that gathers water and nutrients from the mineral soil. 

Peat can be formed from mosses, sedges, grasses, trees, shrubs, or reeds. For peat layers to grow 

the water level needs to be either just under, at, or a bit above the surface. Most carbon is stored 

in moss, litter and peat layers that could be consumed during fires (Turetsky et al., 2011). 

 

Peat fires are mainly dominated by smouldering fires (Turetsky et al., 2015). Smouldering 

fires happen when oxygen comes into contact with the surface of a solid fuel (Ohlemiller, 1985). 

While both flaming and smouldering fires are through heat release and transfer, smouldering 

resolves into lower temperatures and slower spread. Smouldering fires can spread over large areas 

and can go deep into the soil (Rein et al., 2008). These fires can burn for long periods of time, even 

weeks or months, and are difficult to stop (Rein, 2016). Even fire-fighting efforts, rainfall or other 

weather changes cannot always stop the fires. Smouldering fires can have a great impact on the 

soil system (Rein et al., 2008). Eventually northern peatlands could turn from carbon sinks into 

sources (Hugelius et al., 2020). Even though peatlands in general account for just around 3% of the 

terrestrial surface, it stores around 21% of the total global carbon (C) stock (Leifeld & Menichetti, 

2018) and therefore represents one of the largest carbon pools (Yu, 2012). Over 90% (4 million km2) 
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of peatland can be found in boreal and subarctic regions (Yu et al., 2010). Unfortunately, Turetsky 

et al. (2004) presents that these boreal peatland areas might be more vulnerable to burning than 

previously assumed. New tools are necessary to be able to respond to fire danger in peatland areas 

that are likely to burn (Turetsky et al., 2015). 

 

 In countries where peatlands are widespread, satellite data that can identify hotspots in 

combination with spectral data, is relevant for early action tools considering peatland areas (FAO, 

2020). Remote sensing has the ability to view remote locations (Lees et al., 2018), like the Arctic 

regions of North-East Siberia. Remote sensing also offers methods to study large wetland areas 

for different points in time in a cost-effective way (Rani et al., 2011). One of the newest multi-

spectral satellite available for open access is the Sentinel-2. With the high-spatial resolution, wide 

field of view and the offering of 13 spectral bands, the Sentinel-2 is a big step forward compared 

to other current multi-spectral satellite options (Drusch et al., 2012). Before the Sentinel-2, open 

access multi-spectral imaging in high spatial and temporal resolution was difficult to come by 

(Sirin et al., 2020). With the topic of peatland, the use of satellites like the Sentinel-2, has mainly 

been focusing on mapping peatland according to an overview by the Food and Agriculture 

Organisation of the United Nations (FAO, 2020). The use of Sentinel-2 and the information 

provided from all 13 bands for peat fire prediction, however, seems to be lacking. 

 

Deep learning is becoming more and more the preferred choice in many application fields 

(Zhu et al., 2017) and has been introduced in the remote sensing field for big data analysis (L. Zhang 

et al., 2016). From these deep learning models a Convolutional Neural Network (CNN) is arguably 

the most exciting in its potential to find complex non-linear feature representations from image 

pixels (Ban et al., 2020). CNNs are very effective in the areas such as image recognition, object 

detection and semantic segmentation (Zhu et al., 2017). CNNs can find complex hidden spatial 

patterns in image patches (C. Zhang et al., 2018). As in the case of fire, spatial characteristics are 

present, and applying a CNN is helpful as it can find multiple levels of representations and 

contextual (neighbouring) information from the input data (G. Zhang et al., 2019). According to G. 

Zhang et al. (2019) the CNN will be of important value for forest fire prevention. 

 

Three deep learning methods can be described (Zhu et al., 2017). One is the use of 

pretrained networks such as a CNN trained on a natural image dataset (Zhu et al., 2017) for example 

ImageNet (Deng et al., 2009). Secondly, a pretrained model can be adapted by fine-tuning to the 

smaller satellite dataset (Zhu et al., 2017). Lastly, a network can be learned from scratch using 

satellite images. However, as these large-scale networks have a vast amount of parameters, 

training them on a small dataset will cause overfitting. Zhu et al. (2017) mention that some papers 
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therefore use a small-scale network, but this shows drawbacks as the network tends to fit to the 

training data, which reduces the generalization. For peat fire prediction in this thesis, where the 

dataset will not be big enough to reach the millions of images that ImageNet consists of, one of 

the other two deep learning categories is needed. Both categories are approaches commonly 

known as transfer learning. 

 

In the field of remote sensing, transfer learning could be important, as labelled data is not 

easily found, is costly and involves much effort (Marmanis et al., 2016). Transfer learning can make 

use of previously learned features on a specific task and transfer these to another task that is 

similar or even unrelated (Pires de Lima & Marfurt, 2020). Yosinski et al. (2014) found that even 

though the transferability gap grows when the tasks are more distant from each other, it still offers 

better results than initialisation with random weights. Several studies have been conducted 

applying transfer learning with remote sensing imagery (Marmanis et al., 2016; Petrovska et al., 

2020; Pires de Lima & Marfurt, 2020) and focused on satellite imagery containing RGB valued 

images. 

 

Until now, as far as is known, no studies have been conducted towards peat fire prediction 

using Sentinel-2 data. To explore transfer learning on the Sentinel-2 data, two larger datasets are 

available to create a pretrained CNN model with all thirteen available bands. These datasets are 

EuroSAT (Helber et al., 2019), and BigEarthNet (Sumbul et al., 2019). Both datasets contain 

Sentinel-2 images of all thirteen bands. EuroSAT contains 27,000 images of 64x64 pixels divided 

over 10 different classes. BigEarthNet (Sumbul et al., 2019) consists of 590.326 multi-labeled image 

patches (120 x 120 pixels for 10 m bands, 60 x 60 pixels for 20 m bands, and 20 x 20 pixels for 60 m 

bands). Both datasets perform well on the ResNet50 network model. This thesis focused on the 

use of EuroSAT. 

  

Soil moisture can provide unique information for the susceptibility to peatland fire (Dadap 

et al., 2019) as reduction in soil moisture will lead to peatland being more ignitable, cause deeper 

burns, and longer burning durations, according to a review study by Nelson et al. (2021). Water 

indices are useful for moisture and can be used to detect changes in water content, or when 

combined with other indices, more complex information of peatland conditions (Lees et al., 2020). 

Therefore, not only the thirteen bands but water indices in combination with a vegetation index 

will be explored as well. 

 

The main objective of this thesis is to explore the viability of peat fire prediction for the 

remote Arctic area of North-East Siberia, using Sentinel-2 imagery and transfer learning of a CNN 
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network pretrained on the EuroSAT dataset. The next main research question and sub-questions 

follows from this objective: 

 

RQ1. To what extent is transfer learning using a CNN network pretrained on the 

EuroSAT dataset, suitable to predict peat fire at the Arctic area of North-East 

Siberia using Sentinel-2 data? 

 

 

RQ1.1. To what extent can peat fire in the region be predicted using the spring 

months median values for the fires in the summer months? 

 

RQ1.2. Which Sentinel-2 features are the most discriminative for predicting peat 

fire in the region? 

 

RQ1.2.1. Which bands are most discriminative as features for peat fire 

prediction? 

 

RQ1.2.2. Which vegetation and water indices are most discriminative as 

features for peat fire prediction? 

 

This thesis is hoping to contribute to the field of peat fire prediction in the Arctic area by 

offering the first steps towards early action tools using remote sensing and transfer learning to 

predict peat fires in the remote Arctic area. 

 

The structure of this thesis is as follows, the first section hereafter contains background 

information about the topics such as CNNs, Sentinel-2 bands, ResNet50, etc. It is followed by the 

next section, the Literature Review. Then the methodology is explained and afterwards in another 

section the results are given. These are discussed in the Discussion section with the limitations 

and the section Conclusion afterwards. Lastly, the Future Work section. 
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2   Background 
 

In this section the Sentinel-2 satellite bands are explained in further detail as well as the 

convolutional neural network (CNN), transfer learning and the evaluation metrics including the 

feature importance method. 

 

2.1 Sentinel-2 

The Sentinel-2 is a joint initiative of the European Commission (EC) and the European 

Space Agency (ESA) and is a multi-spectral imaging instrument (MSI) offering high resolution 

optical images (Drusch et al., 2012). It has a resolution ranging from 10-60 m with a 5-day revisit 

time depending on the location. It consists of thirteen different bands with each a different target 

wavelength. Bands B1, B9, and B10 are mainly for applying atmospheric correction and the 

screening for clouds (Drusch et al., 2012). B5-B7 are vegetation red-edge bands which for wetland 

classification add significant influence to the classification of intensive vegetated wetland classes 

(Kaplan & Avdan, 2019). Other bands can be found in Table 1, which shows an overview of the band 

names and central wavelength information combined from the ESA’s User Guide resolution pages 

(ESA, n.d.-a, n.d.-c). 

 

Table 1. The 13 bands from the Sentinel-2 and their names with the central wavelengths (µm). Adapted from 
ESA (n.d.-a) and (ESA, n.d.-c). 

 

Band NR. Name Central wavelength (nm) 

B1 Aerosols 443 

B2 Blue 490 

B3 Green 560 

B4 Red 665 

B5 Vegetation Red Edge (VNIR) 705 

B6 Vegetation Red Edge (VNIR) 740 

B7 Vegetation Red Edge (VNIR) 783 

B8 NIR 842 

B8A Vegetation Red Edge (VNIR) 865 

B9 Water Vapour 940 

B10 Cirrus 1375 

B11 SWIR1 1610 

B12 SWIR2 2190 
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From these 13 bands, the three indices that will be used in this thesis can be calculated. 

The NDVI (Equation 2.1) by Rouse et al. (1973) is able to separate green vegetation from other 

surfaces and does this using the absorption of the red wavelengths by the chlorophyll of the 

vegetation in comparison with the reflection of the near infrared (NIR) wavelength caused by the 

internal leaf structure (Lozano et al., 2007; Tucker, 1979).  

 

 𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
=  

𝐵8 − 𝐵4

𝐵8 + 𝐵4
 (2.1) 

 

The NDWI (Equation 2.2) is proposed by McFeeters (1996) and uses the NIR and visible green light 

to enhance the presence of open water features and eliminating the presence of soil and terrestrial 

vegetation features. 

 

 𝑁𝐷𝑊𝐼 =  
𝐺𝑟𝑒𝑒𝑛 − 𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑁𝐼𝑅
=  

𝐵3 − 𝐵8

𝐵3 + 𝐵8
 (2.2) 

 

The NDWI (Equation 2.3) proposed by Gao (1996), is a measure of water in vegetation canopy, 

interacting with the incoming solar radiation. In some papers this equation is revered to as the 

NDMI, such as with a study by Maulana et al. (2019) which is mentioned in detail in Section 3.3. To 

prevent confusion with both the water indices this NDWI proposed by Gao (1996) will be called 

NDMI hereafter. The NDMI uses shortwave-infrared (SWIR) and NIR as the absorption of water in 

tissues is related to the reduction of reflectance of the SWIR in comparison with the NIR and can 

therefore be used as an estimation of water content in vegetation (Lozano et al., 2007). 

 

 𝑁𝐷𝑀𝐼 =  
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
=  

𝐵8𝐴 − 𝐵11

𝐵8𝐴 + 𝐵11
 (2.3) 

 

2.1.1 EuroSAT dataset 

EuroSAT (Helber et al., 2019) is made of Sentinel-2A images from across Europe and created 

with the aim of providing a dataset for Earth observation applications. Additionally, because most 

other datasets are not suitable for applications with the Sentinel-2 imagery. The dataset consists 

of 10 different classes: industrial, residential, annual crop, permanent crop, river, sea and lake, 

herbaceous vegetation, highway, and pasture. EuroSAT has a total of 27,000 images with a patch 

size of 64x64 pixels. All 13 bands of the Sentinel-2 are included in the dataset. ResNet50 pretrained 

on ImageNet, was used as one of the network models to evaluate the performance, scoring an 

accuracy of 98.57% on the EuroSAT dataset. 
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2.2 Deep Neural Networks 

Taking the information from the Deep Learning Book (Goodfellow et al., 2016) deep neural 

networks (DNNs), also called feedforward neural networks or multilayer perceptrons (MLPs), are 

very important in the machine learning area. DNNs try to get close to a certain function f that 

describes the input x. This is done by evaluating x by passing it through the network that computes 

f to eventually an output y. 

A DNN is called a network because in most cases they consist of several different functions 

that are added together into one network (Goodfellow et al., 2016). These different functions are 

called layers and it can have a multitude of it, having a certain depth, which is where the term deep 

learning came from. The first layer is the input layer, the last layer is called the output layer and 

the other layers in the network are called hidden layers. DNNs consist of units which represent a 

vector-valued layer. Each vector value can be seen as a unit or a neuron when looking at the 

neuroscience inspired way. For each layer these units act parallel from each other and calculates 

an activation function from the input of previous other units. 

 

In the next couple of subsections, important aspects of DNNs will be explained. This 

includes optimization, output activation functions, regularization, and the learning rate. 

 

2.2.1 Optimization 

Most deep learning algorithms try to minimize or maximize some function f(x) by changing 

x, which is called optimization (Goodfellow et al., 2016). This function that you want to optimize is 

called the loss function, or cost function. It is the criterion or objective function. This is done 

calculating the derivative of the function f for a certain point x to get the slope. It can show how 

to change x to make a small improvement for the output y. This can be done by moving x in small 

steps with the opposite sign of the derivative until it finds a slope with a value of 0, meaning it 

found a stationary point. This is called gradient descent. Through back-propagation, the weights 

are updated. Backpropagation starts at calculating the loss at the output layers and then goes 

backwards along the hidden layers to compute the gradient. Using this gradient, an optimizer such 

as Stochastic Gradient Descent (SGD) performs the learning part. 

 

Stochastic Gradient Descent (SGD) is used in many deep networks, as datasets can become 

very large (Goodfellow et al., 2016). Instead of using the sum over each calculated loss value for an 

input datapoint, SGD uses minibatches. Instead of calculating the loss over all the input datapoints, 

a fixed amount of datapoints is uniformly chosen from the dataset and used to calculate the loss 

for each. This means that the loss function is no longer dependent on the amount of data in the 

dataset and is therefore computationally less expensive. 
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Momentum is a term that describes the method designed to speed up learning and help 

moving the gradients in the right direction by using moving average (Goodfellow et al., 2016). This 

means that the step size no longer depends solely on the learning rate but also on how large and 

aligned a batch of gradients are. When many gradient batches point into the same direction, the 

step size becomes large. Common values for momentum are 0.5, 0.9 and 0.99. 

 

More recently other optimization algorithms have emerged making use of adaptive 

learning rates (Goodfellow et al., 2016). This idea of adaptive learning rates means that for each 

parameter there is a learning rate that adapts itself through learning. So, instead of having one 

learning rate, each model parameter has one and will automatically adapt while learning. Three of 

these algorithms mentioned by Goodfellow et. al. (2016) are AdaGrad, RMSProp and Adam. 

AdaGrad works well for some deep learning models, however, it can lead to too early excessive 

decrease of the learning rates at others. RMSProp is an adaptation to the AdaGrad algorithm and 

solves the problem that arises of too early decrease of the learning rates. It is one of the popular 

choices as an optimization method. Adam can best be seen as RMSProp in combination with 

momentum and is being seen as quite robust to the choice of parameters even though sometimes 

it needs to be adjusted from the suggested default. 

 

Another optimization strategy is batch normalization. What batch normalization does is it 

normalizes the output from the activation function of layers (Goodfellow et al., 2016). It 

reparametrizes the model, solving the problem of passing on updates across many layers. It does 

this by batches and computing the mean and standard deviation from the activation values of that 

layer. Through backpropagation the mean and standard deviation are learned and normalize the 

activation values. Batch normalization can be applied for each input and hidden layer in a neural 

network. 

 

2.2.2 Learning rate 

A learning rate is a positive number that can be small and constant and determines the size 

of the step in which to move towards a minimal loss function value (Goodfellow et al., 2016). For 

SGD the learning rate is crucial and practically it is best to gradually decrease this over time as 

SGD creates noise that will not be gone even after arriving at a minimum. It is common to decay 

the learning rate linearly until a certain specified iteration (epoch). 

It is important to set the learning rate to a good value, however, there are many ways to do 

so and it is as Goodfellow et. al. (2016) describes more of an art than it is a science way of doing it. 

When a learning rate is set too large, many oscillations of the loss function may occur and 
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increases significantly. Gentle oscillations are perfectly fine. A too low of a learning rate can cause 

learning to proceed slowly or become stuck with a high loss value. 

 

2.2.3 Output activation functions 

The output layer is the last layer that applies transformation to the set of features that the 

DNN provides, to complete the task (Goodfellow et al., 2016). This can be a linear output layer, that 

often is used to produce the mean of a conditional Gaussian distribution. For binary classification 

the sigmoid function can be applied. This is a Bernoulli distribution that only needs to find the 

probability of class 1 given the input. The probability of the other class follows from subtracting 

the class 1 probability from 1. This does mean that the probability value needs to be within the [0,1] 

interval. Using a linear function would not suffice and lead to gradients of 0 when the value falls 

outside the interval. Gradients that are 0 means the learning algorithm is not able to know how to 

improve the parameters matching the unit. The sigmoid function maps the linear unit value to the 

interval (0,1). Then there is the softmax function. This function is used when there is a discrete 

variable that has several different states (or classes). The softmax function is in fact a 

generalization of the sigmoid function and is most often used as the output activation function for 

classification. 

 

2.2.4 Regularization 

Regularization is used for the purpose of regulating the model’s parameters (Goodfellow 

et al., 2016). Most regularization methods use a parameter norm penalty which mostly consists of 

a hyperparameter and adding this to the loss function. When the hyperparameter has a value of 0, 

no regularization is done while large values correspond to more. For neural networks biases are 

left unregularized and penalizes only the weights. L2 regularization, commonly known as weight 

decay, is one of these methods that use a parameter norm penalty as it adds a certain 

regularization term to the loss function (Equation 2.4). L1 regularization is another option to 

penalize the weights (Equation 2.5). 

 

 𝐿2 =  
1

2
 ‖𝑤‖2 (2.4) 

 

 𝐿1 =  ‖𝑤‖ =  ∑  |𝑤𝑖|

𝑖

 (2.5) 

 

Another technique to regularize a DNN is through data augmentation. The more data the 

better a model can generalize (Goodfellow et al., 2016). However, often data is limited. Data 

augmentation can add fake data to a dataset to create a larger amount of data. With a classification 
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model this is mostly straightforward as the model needs to be invariant to a variety of 

transformations anyways. This means that applying transformations such as rotation, flipping, etc. 

can be easily added to the dataset. 

 

Dropout is a technique that makes use of the idea of the ensemble of different subnetworks 

(Goodfellow et al., 2016). Dropout creates different subnetworks by turning units on and off and 

therefore creating subnetworks with different units being present in each subnetwork. This can 

be done by multiplying a certain unit’s activation value with zero to have no impact. If a unit will 

be present in a subnetwork, is decided by a hyperparameter for each unit, which is normally set 

to 0.5 for hidden layers and 0.8 for input layers. This means the chance of a unit being ‘on’ is 50%. 

Dropout is computationally very cheap and does not limit the type of model or the training 

procedure used. 

 

2.3 Convolutional Neural Network 

According to Goodfellow et al. (2016) convolutional neural networks (CNNs) are neural 

networks that use convolution in one or multiple of the layers. CNNs are basically a specialized 

sort of feedforward network. CNNs can be used with data that correspond to a certain grid-like 

idea. For example, images that contain m x n pixels and c channels. A convolutional layer consists 

of three different types of stages: the convolutional, detector, and pooling stage.  

 

 
 

Figure 1. A kernel (top) of size 3 x 3 moving over the input of 6 x 6 using a stride of 1 outputting a 4 x 4 
feature map (bottom). 

 

2.3.1 Convolutional stage 

Convolutions are linear operations using kernels to compute a weighted average over a 

certain area of the image (Goodfellow et al., 2016). The output is sometimes called the feature map. 
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With more traditional neural networks each input unit is connected to each output unit because 

these networks make use of matrix multiplication. This is the case for example, with fully 

connected layers. In the case of a CNN, the connection between input and output units are sparse 

(also called sparse interactions, sparse connectivity, or sparse weights). Meaning, that when the 

kernel is smaller than the input image, fewer parameters (weights) need to be stored as kernels 

can detect small, meaningful features (i.e., edges) using significantly less pixels. 

 

 Additionally, CNNs make use of weight sharing (Goodfellow et al., 2016). A neural network 

normally has one weight in the matrix for computing one output of the layer for only once. For a 

CNN, each value in the kernel, for example the 9 values in Figure 1, is normally used for every 

position of the input. Therefore, only one set of values need to be learned. This parameter sharing 

causes a CNN to not be affected by translation. If the input changes regarding translation, the 

output will also change in that way. Moving an object in the image will result in an output with a 

representation that moved the same amount. Eventually the convolutional stage outputs a set of 

linear activations that is passed on to the detector stage. 

 

2.3.2 Detector stage 

The detector stage is a non-linear function that the linear activations from the 

convolutional stage are passed through (Goodfellow et al., 2016). ReLU, rectified linear unit 

function, is an example of such a non-linear function. Deep networks can train faster and more 

easily with the use of ReLU in comparison with the tanh function (Krizhevsky et al., 2017). With 

ReLU all values under 0 will be translated to 0 and all above, will keep the same value. This can be 

written as Equation 2.6. 

 

 𝑓(𝑥) = max(0, 𝑥) (2.6) 

  

After the activation function is applied, the output is sent to the pooling stage. 

 

2.3.3 Pooling stage 

The pooling stage creates a statistical summary of nearby values of the output from the 

detector stage (Goodfellow et al., 2016). This can be for example the max pooling, where the 

maximum value of neighbouring pixels is chosen as the representative value for that block. This 

block of neighbouring pixels consists of a rectangle. Other well-known pooling functions are 

average pooling where the average of the values is taken, the L2-norm, or a weighted average 

based on the distance from the central pixel. By using pooling functions, the representation 

becomes invariant to small translations of the input. Useful if it is more important to know if a 
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certain feature is present rather than the location of this feature. Another advantage is the 

possibility for downsampling, when taking a stride bigger than one. This will reduce the 

representation size and therefore also the computational costs for the next layer. 

 

2.3.4 ResNet50 

With deeper neural networks the problem arose that at a certain point the depth of a 

network reached a saturation and eventually decreased the accuracy and to solve this problem He 

et al. (2016) created a CNN called ResNet. The idea is that a deeper neural network should not 

perform worse than its shallower counterpart. Instead of learning a direct function to approximate 

the optimal function, the authors argued that the network could also learn an underlying mapping 

H(x). This leads to a residual function of F(x) = H(x) – x. Meaning, the original function becomes 

F(x) + x. The reasoning behind this is that if the added layers (the number of layers on top of the 

shallower network) are constructed as identity mappings, the deeper network should have no 

error greater than its shallower counterpart. This means that if the identity mappings are optimal, 

the residual value will be pushed to zero, since it should get as close as possible to the identity 

mapping. The identity mappings are mostly not the optimal function but the authors reason that 

if the optimal function is closer to an identity mapping rather than a zero mapping, it would be 

easier to find an approximate solution with use of the identity mapping instead of learning the 

function as a new one. 

 

 

Figure 2. Residual block. Adapted from He et al. (2016). 

 

To make this possible, He et al. (2016) introduced the concept of a residual block (Figure 

2). These residual blocks have several stacked layers that learn the residual function F(x). The input 

to these stacked layers is x. However, x is also the identity mapping that is brought over to the end 

of the residual block using a shortcut connection (the line matching ‘x (identity)’ in Figure 2). Then 
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element-wise addition is applied of F(x) + x. If these values are not of the same dimension, either 

the shortcut connection performs identity mapping with zero entries padded to increase 

dimensionality or a linear projection by a 1 x 1 convolution is used. Afterwards a nonlinear 

activation function is applied. 

 

 

Figure 3. ResNet50 architecture. Adapted from He et al. (2016, Table 1). 

 

The ResNet50 model, which can be seen at Figure 3, is named after the total number of 

weighted layers it consist of. In this case that is 50. Other options are 18, 34, 101, and 152. Taking 

ResNet50, it starts with a convolutional layer with a filter size of 7 x 7 and a stride of 2 for 

downsampling the output size to half. Then a pooling layer with a stride of 2 to again reduce the 

dimensions. In comparison to the residual block shown at Figure 2, these blocks consist of 3 layers 

instead of 2. The blocks have layers of 1 x 1, 3 x 3, and 1 x 1 convolutions. This design is called a 

bottleneck design (He et al., 2016). What happens is that the first 1 x 1 convolution decreases the 
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input dimensions, whereafter the 3 x 3 convolution has smaller input and output dimensions, 

meaning this is less computationally expensive. The last 1 x 1 convolution increases the dimensions 

again. As can be seen in Figure 3, the model can be divided into four stages each with a certain 

number of bottleneck blocks. After these four stages a global average pooling layer is applied, 

followed by a 1000-way FC layer using a softmax classifier. 

 

 The ResNet architecture managed to win first place in the ILSVRC (ImageNet Large Scale 

Visual Recognition Challenge) 2015 contest with a top-5 error of 3.57% using an ensemble of six 

models with different depths (He et al., 2016). 

 

2.4 Transfer Learning 

With deep neural networks the layers close to the input data learn more general features 

while the layers closer to the final layers have features that become less and less general (Yosinski 

et al., 2014). With transfer learning learned features of the CNN model on a primary (base) task are 

applied to an unrelated secondary (target) task (Pires de Lima & Marfurt, 2020). Features from a 

number of layers of the base model, are transferred to the layers of the target model (Yosinski et 

al., 2014). This primary CNN is often called a pretrained model which is a model that is already 

trained in the domain is was intended for and therefore can save time and computing power (Alom 

et al., 2019). 

Transfer learning consists of two common known approaches: feature extraction and fine-

tuning (Peters et al., 2019; Pires de Lima & Marfurt, 2020). With feature extraction the layers 

extracted from the model are ‘frozen’. This means that the weights stay the way they are and are 

not adjusted by training anymore. According to Pires de Lima and Marfurt (2020) fine-tuning starts 

of like feature extraction with frozen layers but afterwards unfreezes the layers and allows them 

to learn. Fine-tuning offers the benefit to create a general-purpose representation for many 

different tasks (Peters et al., 2019). Dependent on the amount of data from the target dataset and 

the amount of parameters (weights) in the first layers of the model, these first n layers can be fine-

tuned to the new task (Yosinski et al., 2014). If the dataset is small and the number of weights is 

large, overfitting might occur. When the dataset is large enough or the number of weights is small, 

then these first n layers might also be fine-tuned. As opposed to a model trained from scratch, 

fine-tuning is done with a smaller learning rate and less amount of epochs (Petrovska et al., 2020). 

 

2.5 Evaluation metrics 

Peat fire prediction in this work is a binary classification where the emphasis is on the 

positive (fire) class. The F-score is a harmonic average of precision and recall (Radke et al., 2019). 

The most important aspect is that the model can predict where a fire is prone to start and that it 
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does not overlook too many places where a fire might start (false negatives). Since the F2-score 

puts more weight on the recall and therefore the false negatives, this metric will be the leading 

factor. The AUC score from the ROC will be the second metric, which by examining the literature 

review (Section 3), is done by several studies (Maulana et al., 2019; G. Zhang et al., 2019) and gives 

a good idea of the performance of classification. For a more visual representation of the 

classification accuracy per dataset, a confusion matrix will be used as a third metric. A very 

common evaluation metric in classification tasks, according to Petrovska et al. (2020). 

 

2.5.1 Permutation Feature Importance 

Permutation Feature Importance (PFI) can be used to calculate the change in model error 

(model performance) when a certain feature’s values are permutated (Molnar, 2019). This is 

commonly done by shuffling a certain features’ values (in this case images). A feature is important 

if the shuffling of the images increases the error. The other way around, a feature is unimportant 

when it does not affect the error much. Molnar (2021) argues that using the test set to perform 

PFI, prevents importance on the wrong features because of possible overfitting on the training set 

when permutation would be applied to the training set. Therefore, the test set will be used for 

feature importance. For this thesis, the feature importance score 𝐹𝐼𝑖 for each feature i is calculated 

by subtracting the permutated feature model performance 𝑝𝑖
𝑝 from the original performance 𝑝𝑜 

(Equation 2.7). This is done for each feature i in the dataset. The model performance is defined by 

the F2-score. 

 

 𝐹𝐼𝑖 =  𝑝𝑜 −  𝑝𝑖
𝑝  (2.7) 

 

 Molnar (2021) mentions that if features are strongly correlated the interpretation of the 

importance of the features should be carefully made.  
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3   Literature Review 
 

This section outlines the studies done towards peat fire prediction. At the time of writing, 

few studies are published on the topic of predicting peat fires using machine learning. Therefore, 

in the first subsection several general transfer learning methods using a CNN and satellite imagery 

are discussed. The next subsection contains several general wildfire prediction classification 

approaches using CNNs. Afterwards, the few known studies that are more specific to peat fires 

are discussed. These studies do not focus solely on the usage of a CNN but fall into the more 

general category of machine learning. Table 2 shows an overview of all the papers mentioned 

below. 

 

3.1 Transfer learning in the remote sensing domain 

The following studies research the effectiveness of transfer learning and the different 

approaches (fine-tuning and feature extraction) on remote sensing images with RGB values. 

 

Marmanis et al. (2016) used feature extraction as a transfer learning approach. The network 

is Overfeat (Sermanet et al., 2014) and pretrained on ImageNet (Russakovsky et al., 2015). Marmanis 

et al. (2016) used ImageNet to gain information from the preactivations at the seventh and eighth 

layer (the two last FC layers as can be seen in Figure 4). These value matrixes of 1 x 1 x 4096 (8281 

values) are concatenated and transformed to a 2D-array of sizes 91 x 91 pixels and passed on to 

the trainable network as input. This trainable network consists of two convolutional blocks and 

two fully connected layers, using a softmax function.  SGD is applied with batch sizes of 10. Other 

optimizations and regularizations applied can be found in Table 2. The model is evaluated using 

the UC Merced Land dataset (Yang & Newsam, 2010) and with an accuracy of 92.4% the trainable 

CNN outperforms the Random Forest (RF) classifier in combination with the Overfeat pretrained 

network (86.9%) and both the CNN and RF without the pretrained network (44,5% and 44% 

respectively). The authors also observed that when no pretrained model is used beforehand, both 

classifiers are not able to learn appropriately and differs significantly in accuracy. 

The results of this research show the potential of feature extraction as one approach to 

applying transfer learning, using the two last fully connected layer information from the 

pretrained network, and converting them to a two-dimensional input to the trainable network. 
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Table 2. Overview of mentioned papers. 

 

STUDY FEATURE 
EXTRACTION/
FINE-TUNING 

PRETRAINED 
MODEL(S) 

DATASETS (TOP) 
MODEL/CLASSIF

IER 

REGULARIZATI
ON 

OPTIMISATION PERFORMA
NCE 

IMAGE PATCH SIZES 

MARMANIS ET 
AL. (2016) 

Feature 
extraction 

(layer 7 and 8) 

Overfeat 
(ImageNet) 

UC Merced Land dataset CNN (2 Conv + 2 
FC using Softmax 

classifier) 

Dropout, weight 
decay and data 
augmentation 
(zoom, rotate, 

etc.) 

SGD with 
momentum (batch 

size 10) 

92.4% 
accuracy 

- 

PIRES DE LIMA 
AND MARFURT 

(2020) 

Feature 
extraction and 

fune-tuning 

VGG19 and 
InceptionV3 

(ImageNet and 
another version 
on PatternNet) 

UC Merced Land dataset, 
AID and PatternNet 

Classifier network 
(average pooling, 2 
FC using Softmax 

classifier) 

Dropout Several versions: 
SGD w/o 

momentum (0.9) 
and learning rate 

0.001/0.001, 
Adam (lr 0.01), 

Adamax (lr 0.002) 
 

Best 
accuracy 
(99.7%) 

InceptionV3 
(pretrained 
ImageNet) 
fine-tuned 

on 
PatternNet 

- 

PETROVSKA ET 
AL. (2020) 

Fine-tuning 
(first new layers 

then whole 
network), 

feature 
extraction from 

fine-tuned 
networks for 

SVM classifiers 

ResNet50, 
Xception, 

InceptionV3, 
and 

DenseNet121 all 
pretrained on 

ImageNet 

AID and NWPU-RESISC45 
(train/test splits: 50/50 
and 20/80, 20/80 and 

10/90 respectively) 

Three versions: 
Softmax classifier 
(1 FC and Dropout 
before classifier) 

and 2 SVM 
classifiers (feature 

extraction from 
learned features of 

softmax model 
version) 

Dropout, data 
augmentation, 

label smoothing 

SGD, Cyclical lr, 
linear decay lr 

scheduler 

Many 
different 

combinatio
ns, overall 
accuracy is 

used. 

- 

JIANG ET AL. 
(2019) 

Fine-tuning, 
‘fusion’ 

ResNet50 
(ImageNet) 

Arctic Wetland Dataset 
(AWD) 

Early, middle and 
late fusion 

Augmentation 
balancing, 

weight decay 
(0,00002) 

SGD with 
momentum (0.5), 
poly learning rate 

strategy 

93.12% 
averaged 
accuracy 

Patches of 30x30m (either 
10x10 pixels for 3m resolution, 

or 15x15 pixels for 2m 
resolution of full image). Each 

patch has a single label. 
RADKE ET AL. 

(2019) 
- - Own dataset (Red, Green, 

Blue and NIR from 
Landsat-8 satellite (to also 

create NDVI), DEM, 
athmospheric pressure, 
temperature, dew point, 

wind direction, wind 
speed, precipitation, and 

relative humidity) 

CNN (2 conv, 3 
dropout, 1 FC and 1 

output layer) 

- SGD Average 
accuracy 

87.7%, recall 
of 91.1% and 
F-score of 

6.4% 

Each pixel has a resolution of 
30x30m. Using sliding 

window of 30 pixels to create 
patches (30 x 30 pixels). 

G. ZHANG ET 
AL. (2019) 

- - Own dataset with 11 
features (elevation, slope, 

aspect, average 
temperature, average 
precipitation, surface 

roughness, average wind 
speed. Forest coverage 
ratio, NDVI, distance to 
roads, and distance to 

rivers) 

CNN (3 Conv, 2 
pooling, 3 FC) 

Dropout (0.5) Adam, ReLU Validation 
accuracy 
87.92%, 

AUC of 0.86 

25x25 pixel patches (pixel size 
of 5x5 km), sliding window for 
each pixel, each pixel will have 
a prediction between 0 and 1. 

Five different categories 
depending on probability: 

very low, low, moderate, high, 
and very high.  

JANIEC AND 
GADAL (2020) 

- - Fire data from FIRMS, 
Radiation, precipitations, 

temperature, max 
temperature, NDVI from 
MODIS, elevation, slope, 
slope direction, distance 

from settlements, 
distance from roads, 

distance from water lines 

Random Forest, 
Maximum Entropy 

- -  - 

LANGFORD ET 
AL. (2018) 

- - Own dataset (NDVI, EVI, 
SAVI, Bands 1-7 from the 

MODIS, Daytime LST, and 
wildfire extent) 

DNN (input layer, 
3 hidden layers 
with ReLU and 

output layer with 
softmax) 

Not mentioned Not mentioned 0.68 
precision, 
0.95 recall 
on dataset-

0, 0.61 
precision 
and 0.96 
recall on 
dataset-1 

- 

MAULANA ET 
AL. (2019) 

- - Monthly precipitation, 
NDMI, type of peatland 

use and cover, road 
network density, peat 

depth, peat 
decomposition type, river 

network density, canal 
network density 

Spatial Logistic 
Regression 

- - AUC of 
0.8309 and 

overall 
accuracy 
85.16% 

Cells of 100 x 100 m. 

ROSADI ET AL. 
(2020) 

  Time of data collection, 
district area, LST, wind 
speed, humidity, height, 

and NDVI 

AdaBoost, Random 
Forest, k-Nearest 

Neighbour, 
Decision Tree, 

Logistic 
Regression and 

more 

- - 95% overall 
accuracy for 

multiple 
models 

- 
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Figure 4. Workflow diagram of the feature extraction from the pretrained network and the trainable 
network. From Marmanis et al. (2016). 

 

A more recent study by Pires de Lima and Marfurt (2020) focused on the transfer learning 

process from natural images to remote sensing images using the feature extraction as well as the 

fine-tuning approach. They use VGG19 (Simonyan & Zisserman, 2015) and InceptionV3 (Szegedy 

et al., 2016) as pretrained networks (on ImageNet), adding a classifier network (top network) with 

an average pooling layer, two fully connected layers, dropout in between these layers and a 

softmax function. Three remote sensing datasets are included in the experiments: the UC Merced 

Land, AID (Aerial Image Dataset) by Xia et al. (2017) and PatternNet (Zhou et al., 2018). The authors 

compared the performance on each dataset with randomly initialized weights, fine-tuning and 

feature extraction. They also evaluated the performance of a CNN pretrained with PatternNet 

(instead of ImageNet) on the UC Merced Land and AID datasets. More detailed information about 

optimizers and regularization methods can be seen in Table 2. 

 Overall, the authors showed that fine-tuning as a transfer learning approach works well 

and performs better than randomly initialized weights. Feature extraction can be limited by the 

difference in the primary task (natural image classification) and the target task (remote sensing 

image classification) as the initial layers are frozen and causes the model to overfit. Unfreezing the 

layers reduces this. Training all layers and fine-tuning after initially only training the last layer 

showed the highest increase in accuracy. 

 In the case of the pretrained network on PatternNet, the authors found that the test set 

accuracy after training with UC Merced Land and AID in both cases is lower than in comparison 

with when the datasets were trained using the ImageNet pretrained network. The authors reason 

this has to do with ImageNet being a complex dataset with many different examples for the same 
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class, whereas PatternNet is meant to give clear examples of different remote sensing scenes, 

lacking the intra-class diversity that ImageNet does have. 

Interestingly, this research found that feature extraction did not work as the layers were 

still all frozen. The top model only consists of fully connected layers with no convolutional layers 

that can still learn features. With Marmanis et al. (2016) the necessity of a pretrained network 

becomes clear for smaller datasets. However, this might arguably only work with a classifier on 

top that can still learn to some extent, as with this study, the top network has no learnable layers. 

Concluding, that applying transfer learning to peat fire prediction, fine-tuning is a workable 

approach with remote sensing imagery and that feature extraction can be another approach if a 

trainable classifier is added as a top network. 

 

 

Figure 5. Flowchart of the pretrained CNN, fine-tuning and feature extraction. From Petrovska et al. (2020). 

 

 Another approach towards transfer learning is the combination of fine-tuning and feature 

extraction done by Petrovska et al. (2020) where the performance, measured in overall accuracy, 

was compared between a softmax output function and Support Vector Machine (SVM) classifier. 

Softmax has been used in the above two studies and the authors mention that SVM is common in 

other transfer learning research. Four CNN networks were tested: ResNet50 (He et al., 2016), 

Xception (Chollet, 2017), InceptionV3 (Szegedy et al., 2016), and DenseNet121 (Huang et al., 2017). 

All networks were pretrained on ImageNet. Two datasets are used: AID and NWPU-RESISC45 

(Cheng et al., 2017). As can be seen in Figure 5, there is a pretrained CNN and through ‘network 

surgery’ the final layers after the average pooling layer are replaced by a top network (new network 

head) consisting of a fully connected layer, dropout, and a softmax layer. Fine-tuning is then used 

to train the network on the dataset. This is done for each of the two datasets, resulting in two 

trained networks. After the fine-tuning, feature extraction from these trained networks is applied 

and the features are transferred to a SVM classifier. More specific details can be found in Table 2. 

The results show that in general the SVM outperformed the softmax function, however, this also 

depended on the dataset used. 
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 From the study can be concluded that transfer learning approaches can be combined using 

fine-tuning and feature extraction. The SVM classifier outperformed the softmax function, which 

agrees with previous conclusions that an additional top network that can still learn, seems to 

perform better than a top network that cannot. 

 

ArcticNet (Jiang et al., 2019) is a CNN that can classify six different wetland types: water, 

peat bog, channel fen, dense forest, sparse forest, and wetland. From the CNN predictions a label 

map is created. The model uses two CNNs with the pretrained network being ResNet50. One 

network (called RGB Branch) inputs the RGB patches created from the full image, and the other 

network (NIR/DEM/NDVI branch) the patches with the NIR, DEM (Digital Elevation Model), and 

NDVI features (NDN). Each network is trained separately on the data. The authors researched 

different methods to fuse the two networks together and what influence these fusion strategies 

would have on the performance. The three fusion strategies are: early fusion, middle and late 

fusion (see Figure 6). Early fusion concatenates the RGB and NDN directly at the input of the 

network. Middle fusion concatenates the feature maps produced at the second convolutional layer 

of the ResNet50 and another variant at the third convolutional layer. The layers before fusion 

inherit the learned weights from each separate network (RGB Branch and NIR/DEM/NDVI 

Branch) and retrains the network’s layers afterwards. For late fusion the activation vectors from 

each single network from the last convolutional layer are concatenated as an input for the fully 

connected layer afterwards. Only the last fully connected layer is retrained. Training was done 

using the SGD optimizer. For more details see Table 2. 

Even though the single networks performed well, all fusion strategies showed better 

results with the best average accuracy of 93.12% with late fusion. Even though the fusion method 

shows good options, it lacks the study towards the effectiveness of directly having all the features 

as input. Meaning, instead of creating two different networks with a standard input of three 

features, there could be one network with six features as input. This research focuses on wetlands, 

which as mentioned before, peatlands are a certain type of. Thus, it might indicate that R, G, B, 

NDVI, and NIR are able to find information specific for certain wetland types and that these multi-

spectral information layers might be useful for peat fire prediction as well. 
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Figure 6. The three fusion strategies applied. From Jiang et al. (2019). 

 

3.2 Wildfire prediction 

Research papers towards peat fire prediction is presumably scarce, as few were found (see 

Section 3.3), therefore a more general view on wildfire prediction will be assessed in this section. 

The focus is on papers that use a CNN, as previously mentioned in Section 1, CNNs are effective 

for image recognition and is an exciting tool to find complex non-linear feature representations 

from image pixels. The following papers for wildfire prediction are observed to find a proper 

approach that can be applied to peat fire prediction. 

 

FireCast (Radke et al., 2019) predicts future wildfire spread in the United States (test done 

at Beaver Creek, Colorado) by combining satellite imagery, a small number of location 

characteristics, and weather forecast. With the help of a CNN consisting of two convolutional 

layers, three dropout layers, one fully connected layer and an output layer. A sliding window of 30 

pixels creates patches of each point-of-interest (POI). SGD is the optimizer, and no regularization 

is used. Landsat-8 satellite imagery is used as the visual input to the model with a resolution of 

30m. FireCast uses the features shown in Table 2. This data includes atmospheric pressure, 

temperature, dew point, wind direction, wind speed, precipitation, and relative humidity for each 

fire location. For each fire that is in the dataset, an initial fire perimeter and the future 24h of 

weather data is given. With the ground truth being the fire perimeter of the next day. Using this 
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data, FireCast outputs an image of the area for each day, showing the POIs with a colour 

corresponding to a certain prediction value. Evaluation is done using total prediction accuracy, 

recall and the F-score. 

 Testing FireCast, results in a total average accuracy of 87.7%, a recall of 91.1% and an F-

score of 6.4%, although the authors mention that the model normally has a higher F-score on days 

with more fire growth. These F2-scores are however, still better than the scores found with a 

commonly used fire spread model. When taking a two-week period in between the pixel 

prediction, it shows the potential of FireCast to predict fire spread at least two weeks up ahead 

(F-score of 34.4%). The authors state that even though some pixels are wrongly predicted, these 

pixels could still provide useful information. In the end, FireCast is limited to the available data 

and relied on data augmentation to create enough training data. The method for data 

augmentation is not mentioned. Future work is aimed towards more data from different regions 

as FireCast is limited due to the available data. Different input resolutions are also considered. 

 FireCast is an example of how a small dataset can be applied in combination with a CNN. 

The creation of image patches is one of the approaches that can be taken from this paper, whereas 

the size of 30 x 30 pixels for the sliding window could also play a role for fire prediction and spatial 

information. Another important aspect is that it shows the potential to predict wildfires within a 

timespan of two weeks. 

 

G. Zhang et al. (2019) studied the forest fire susceptibility at the Yunnan Province, China 

using a CNN and 11 influential features that are described in Table 2. The authors managed to 

predict which areas of the Yunnan Province had a high susceptibility of fires breaking out, 

outputting a susceptibility map to visually show. Susceptibility in this study, is defined as the 

probability estimation of a fire occurrence in a region. 

To create the input data, each of the influential factors is converted to a raster map with 

a pixel size of 5 x 5 km, converted to WGS 1984 Web Mercator and min-max normalized. The NDVI 

feature was created using a mean image of the spring months (March, April, and May). Each feature 

map is split into 25 x 25 pixels patches (125 x 125 km in size). All the features are stacked onto each 

other, creating a 3-dimensional array of n x n x c to input into the CNN. Where n is the row and 

column of each input image and c the number of influential factors. A corresponding ground truth 

label was created with the corresponding XY central coordinates on an Ignition Raster Dataset 

(IRD). A raster where all the ignition points are stored on. To make the dataset more balanced, 

they added neighbouring pixels within a buffer zone of 5 km of an ignition point to the fire class. 

Argumentation is that following the spatial characteristics of forest fire events, areas near the fire 

pixel are prone to fire as well. The same amount of non-fire points as fire points were selected 

from the IRD. The dataset was split between 80% training data and 20% validation data for the 
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years 2002-2009. 2010 was used as the test set. The labels for the fire points have a value of 1 and 

value 0 for the non-fire points label. 

 

 

Figure 7. Architecture design of the CNN from G. Zhang et al. (2019). C1, C2, and C3 are convolutional layers. 
FC1, FC2, and FC3 are fully connected layers.  

 

The CNN (Figure 7) consists of three convolutional layers (64, 128 and 256 kernels) with kernel 

sizes of 3x3, two pooling layers, and three fully connected layers (128, 64 and 32 neurons). 

Activation function optimizer, etc. can be found in Table 2. Five statistical evaluation metrics 

including accuracy, specificity, sensitivity, positive predictive value, and negative predictive value 

are used. To evaluate the global performance the AUC value of the ROC is added as well. The 

results give a validation accuracy of 87.92% and on the test data the CNN model has an AUC of 

0.86. 

This research shows a useful approach to create a dataset consisting of image patches 

from the feature maps and the use of creating a single image from several images over a certain 

timespan. Different dataset balancing approaches, mentioned above, can be considered as well. 

Especially, that the authors went for the selection of the same amount of non-fire points. This also 

shows that not the entire area needs to be included in the training data for the network to predict 

for all test data patches that does include the entire area. The authors use an input layer that can 

input eleven features, showing the possibility of a CNN with over three channels. No transfer 

learning was applied in this research, nor the use of an existing CNN such as ResNet50. It would, 

therefore, be interesting to see how these approaches can be combined to create a multi-channel 

CNN from a pretrained network that initially only takes three features as an input. 
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Janiec and Gadal (2020) studied forest fire prediction in North-East Siberia. More specific 

in the Republic of Sakha. The authors used two machine learning methods: Maximum Entropy and 

Random Forest. The fire prediction maps created were on macro level (the Republic of Sakha 

region) and micro level (Nyurbinsky region). Two types of models were created: presence 

prediction and presence probability maps. Presence prediction has two classes; absence (there is 

no probability of a forest fire) and presence (there is a probability of a forest fire). For training, fire 

data from FIRMS was used over the years 2001-2015 and a validation set of 2015-2018. Features 

used for the prediction of forest fire can be found in Table 2.  

Despite the limitations of poor exploration of the area, the authors found that in general 

the random forest method showed better results on macro scale and the maximum entropy on 

micro scale. The NDVI used was highly correlated with fires in the boreal forest. The authors 

mainly found that fire risk in the region of Yakutia is not solved easily as boreal forests are largely 

different from other parts of the world. It is suggested that different types of datasets such as 

climatic and different remote sensing data from different sensors is used for fire risk assessment. 

As far as is known, no other articles can be found on this topic for the region, which would imply 

that there is still a lot of research that can be done towards this area and (peat) fire prediction. 

 

3.3 Peatland fires 

As noted in Section 3.2, as far as is known, no (peat) fire prediction research has been done 

in the North-East Siberia region. However, there have been some peat fire prediction/detection 

studies published in other areas of the world. These studies are assessed to see which features are 

used and which machine learning techniques are applied. 

 

The study of Rosadi et al. (2020) uses different machine learning techniques including an 

AdaBoost method, Random Forest, k-Nearest Neighbour, Decision Tree, Logistic Regression and 

more, to predict the occurrence of fires of a peatland area in Indonesia. The features as input can 

be found in Table 2. The dataset is created by gathering data from fire hotspots of peatlands and 

labelling these with the value 1. The same area is then used at a different time when no fire has 

occurred, labelling it as the value 0. 

On the test set the following accuracy with a certain train/test split ratio were obtained: 

SVM (95%, 90/10), kNN (95%, 80/20, k=3), Logistic Regression (90%, 90/10), Decision Tree (95%, 

90/10), Naïve Bayes (90%, 90/10), and AdaBoost (95%, 90/10). The Adaboost method described in 

the paper outperforms the other approaches slightly, but only because the training accuracy 

scored the highest (100%). Other machine learning approaches also performed very well.  
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The authors conclude that either classical or more advanced machine learning approaches 

can be used for fire occurrence detection in peatlands. This means it opens a door for further 

research towards the use of deep learning and CNNs for peat fire prediction. 

 

A research on wildfire detection and mapping in Alaska using only satellite data (Langford 

et al., 2018) includes an area that is shown on the peatland cover map by Hugelius et al. (2020) to 

have peatland coverage. Even though the authors main aim is in general wildfire mapping, since it 

involves peatland areas, it is interesting to see which features and techniques are applied involving 

machine learning and the use of satellite data. 

Langford et al. (2018) used a deep neural network (DNN) that consists of five layers. The 

first layer corresponds to the different features of NASA’s Moderate Resolution Imaging 

Spectroradiometer (MODIS) on board the Terra and Aqua satellites, as input (see Table 2). The 

second, third and fourth layers are hidden layers with a ReLu activation function. The last layer is 

the output layer for the fire/no-fire classes and consists of a softmax function. One of the authors’ 

focuses was the use of the validation-loss (VL) DNN strategy. A strategy, as explained by the 

authors, that splits the dataset in two (train and validation set) and uses the validation set for 

performance validation to select the weights. The weights that resulted in the best validation loss 

score, will be saved as the final network. The authors conclude that the VL strategy showed 

significant improvements over the standard training, especially when the training dataset is small, 

and the test set is large (recall of 0.00 to a score of 0.96 for the most imbalanced dataset). The 

results also showed that the VL strategy works well when the dataset is imbalanced. 

Even though this study’s focus was on the approach towards imbalanced datasets and the 

validation-loss strategy and consisted of fire detection and mapping with the use of pixels and not 

patches, it also showed that the use of solely remote sensing data (and which data is used) was 

able to detect fires and, therefore, might be able to apply to the prediction of peat fires as the 

study region did involve peatland areas. 

 

 One study that focusses on peat fire prediction in the southern hemisphere is by Maulana 

et al. (2019). They created spatial logistic regression models using remote sensing information (fire 

occurrences from MODIS burned area product images) in combination with sources of climate 

variables (monthly precipitation, NDMI), human activity (type of peatland use and cover, road 

network density), physical peat characteristics (peat depth, peat decomposition type), and 

physiographic variables (river network density, canal network density). The fires usually started in 

January. Precipitation and moisture index data were gathered from the six months prior of each 

of the years included. As an example, for January 2004 the months July-December of 2003 are 

taken. 
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The fire occurrence data is created using cells of 100 x 100 m, where each cell that has a 

burned area detected will be defined as 1. Cells with no burned area will acquire the value of 0. 

The created dataset is split into a training (80%) and test set (20%). Three models were created 

and all of them consisting of all the variables, with a difference in the approach for NDMI and 

precipitation. Model t-1 uses a moving average of the months December plus the three months 

prior for the NDMI and precipitation; t-2 uses the months November and the three months prior; 

and t-3 the months October and the three months prior. 

 The results show that NDMI and precipitation data from the months closest to the fire 

occurrence month January (t-1), have the highest AUC and overall accuracy, 0.8333 and 85.35% 

respectively. However, since climate data is mostly only available in later months (so data of 

December is available in January), the authors chose the t-3 model (AUC=0.8309, 

accuracy=85.16%) to create a peatland fire prediction map. The prediction map shows that an 

NDMI range of -0.06 – 0.30 is related to 96% of peatland fire. Precipitation ranges 230-

246mm/month related to 99% of peatland fire occurrence. Making climate variables strongly 

related to peatland fires. 90% of peatland fires are predicted to take place at peat depths above 

the 100cm. 

 Interestingly, this study shows how data dating months before the actual fire occurrence 

can contain information for peatland fire prediction. Mainly, the use of NDMI and precipitation, 

which both show to be high indicators for peatland fire. That peatland fires in that study area are 

mostly detected on peat depths above 100cm, might carefully imply that especially these peatland 

areas are of need for a prediction map and that this could also apply to peatland in North-East 

Siberia. 

 

Concluding, fine-tuning and feature extraction with a trainable network are both good 

transfer learning approaches. Studies assessed above, however, showed transfer learning only on 

RGB valued images. This means only three features are as input. For input of more than three 

features, a pretrained network on ImageNet will not suffice as it only allows three features to be 

inputted. One approach mentioned is to fuse two pretrained ResNet50 networks together. 

However, this needs several separate networks when even more features are added. Another 

approach is preferable. One of the approaches may be directly inputting a stacked image of all the 

features at the input layer (Langford et al., 2018; G. Zhang et al., 2019). The studies did not use this 

approach in combination with transfer learning on a CNN. A pretrained network would need to 

become available for peat fire prediction that allows for the input of thirteen features (all Sentinel-

2 bands). Two of the options to create a pretrained network on satellite images is to either use the 

EuroSAT (see Section 2.1.1) dataset or the BigEarthNet (Sumbul et al., 2019) dataset. For the 

EuroSAT dataset an approach is needed to create a pretrained network of ImageNet with thirteen 
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features allowed and then train on the EuroSAT, since the dataset is too small to train a network 

with random initialized weights. BigEarthNet is big enough to use random initialized weights, 

however since multiple models with different amount of input features are needed, this could be 

very time consuming. Simply because of time constraints, the EuroSAT dataset is used. ResNet50 

is chosen as the network architecture, since it worked well with network fusion described by Jiang 

et al. (2019) and an advantage of using ResNet50 is that EuroSAT has shown to perform very well 

(Helber et al., 2019). 

It shows that from the vegetation indices, the NDVI is used in many mentioned studies 

(see Table 2) and worth studying to see how this feature influences the performance of peat fire 

prediction of the CNN. Maulana et al. (2019) concluded that NDMI is a very high indicator for peat 

fires even from data months prior of the occurrence of the peat fire and is therefore a water index 

to be assessed in this thesis. Recall, that water indices could hold information about peatland 

conditions when combined. Another water index mentioned in Section 2.1 is the NDWI, which is 

similar to the NDMI, except that is uses the green band instead of the SWIR. The NDVI, NDMI and 

NDWI will be studied to see their influence on the performance for peat fire prediction. Prediction 

follows the definition of susceptibility from G. Zhang et al. (2019) as the probability estimation of 

a peat fire occurrence in a region. For this thesis the Sakha Republic in North-East Siberia will be 

used as the region of interest, as this region has little research towards (peat) fires (Janiec & Gadal, 

2020).  
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4   Methodology 
 

 This section describes the methodology to answer the main research question of the 

viability of peat fire prediction in the Arctic area of North-East Siberia using transfer learning with 

a CNN pretrained on the EuroSAT dataset. First up are the study areas within the region of 

interest. Then the creation of the datasets, of which the workflow can be seen in Figure 8. 

Afterwards the training of the networks with the created datasets is explained as well as the 

evaluation metrics used. The methods applied for further analysis on the datasets, are last. 

 

 
Figure 8. Workflow for creating the different datasets per year and area. 

 

4.1 Region of Interest 

The region of interest (ROI) with its two different areas A1 and A2 (Figure 9) lies in the Sakha 

Republic of Russia (Yakutia), which is located in North Eastern Siberia and covers around 20% of 

Russia (Janiec & Gadal, 2020). Yakutia is an area where it experiences for example extreme high 
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and low temperatures and a thick layer of permafrost. The ROI selected is located above the Arctic 

Circle. When assessing a map by Vompersky et al. (2011) this area should contain peatlands. A 

recent peatland cover map by Hugelius et al. (2020), also shows the ROI containing peatland 

coverage. Recall that in this region large and frequent fires have been present at the Northeast of 

Siberia, where the Sakha Republic can be found. Additionally, when observing the FIRMS thermal 

anomalies, it becomes apparent that especially in 2019 and 2020 many thermal anomalies 

(probable fires) can be found in the Sakha Republic region above the Arctic Circle. A1 and A2 are 

small areas taken from this region. 

 

 
Figure 9. A1 (red) and A2 (blue) areas in the Sakha Republic of North-East Siberia. 

 

4.2 Data gathering 

Copernicus Sentinel data are gathered (see Section 4.2.1) and processed (see Section 4.3.1) 

using the Google Earth Engine (https://earthengine.google.com). The anomaly points are 

collected from National Aeronautics and Space Administration’s (NASA) Fire Information for 

Resource Management System (FIRMS) website (https://firms.modaps.eosdis.nasa.gov/). In this 

thesis the anomaly points from the Visible Infrared Imaging Radiometer Suite (VIIRS) instruments 

aboard the Suomi National Polar-orbiting Partnership (S-NPP) are used, which was launched in 
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2011 and is a joint mission from the National Oceanic and Atmospheric Administration (NOAA) and 

NASA (Schroeder et al., 2014). The resolution of the thermal anomalies is 375 m. 

 

4.2.1 Gather images for certain year and area 

The dataset of the Sentinel-2 is from the Level-1C where Top of Atmosphere (TOA) 

calculations are applied. To create an image collection for March-May (MM), all images from 1st of 

March until the 31st of May are gathered. Using these spring months follows the approach applied 

by G. Zhang et al. (2019) for the NDVI feature. All 13 bands (Table 1) are included from each image 

and will function as the features. For May (MAY) the 1st of May until the 31st of May is taken. Next 

up, a cloud mask is applied to each image and all images with a cloud coverage above 20% are 

removed from the collection. Each image in the collection has a WGS 84 geospatial format and the 

resolution for each band is set to 30 m. This is done for the years 2019 and 2020 and study area A1 

and A2. 

 

4.2.2 Gather anomaly points for certain year and area 

The fire points include all thermal anomalies detected by VIIRS from 1st of June until 30st of 

September for the years 2019 and 2020 and are downloaded from the FIRMS website in a CSV 

format. For each year a separate CSV file is created with the corresponding thermal anomalies. 

 

4.3 Data Processing 

The processing of the data is done by creating a single raster image from an image collection 

and a raster image of all the anomaly points. 

 

4.3.1 Median image data 

The median of the collection of images is calculated, creating a single image with 13 

features (see Table 1), that represents the median for each pixel of the values of March until May 

of a certain year (MI) following G. Zhang et al. (2019). So, for each pixel location (i,j) the value of 

each image I in the collection M is collected and from these n values the median of that pixel 

location (i,j) is chosen. This is repeated for each pixel location, creating a single image MI. The MI 

of the whole area for each year (2019 and 2020) are exported in the GeoTiff format. Separately 

from this, the NDVI, NDWI and NDMI are calculated from the MI features. They are stacked 

together into one image being saved as a band, creating an image with 3 features. This image is 

also exported as a GeoTiff file. 
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4.3.2 Fire raster image 

The CSV files for each year are imported into GEE as a (fire) point. Each (fire) point 

corresponds to a certain coordinate value provided in the CSV in longitude and latitude. For each 

area, a raster image for each year (2019 and 2020) is created where every fire point is converted 

to a pixel with a value of 1 and other pixels get a value of 0. These raster images have a scale of 60 

m. Meaning each pixel represents a 60 x 60 m area. The fire raster image for each year is then 

downloaded as a GeoTiff file and has the same dimensions as the MI raster file. This means that 

some neighbouring pixels are also labelled as fire points, which as mentioned by G. Zhang et al. 

(2019) these neighbouring pixels might also be fire-prone. 

 

4.4 Dataset creation 

In this part of the workflow the actual datasets are created by using the raster files and 

converting them to image patches with fire or non-fire labels. All three steps within this part are 

combined in the next subsection. 

 

4.4.1 Create fire and non-fire image patches 

For each year and each area, image patches are created using a sliding window approach 

used in other studies (Radke et al., 2019; G. Zhang et al., 2019) from the GeoTiff files (images and 

fire points). Firstly, the x and y coordinates of all the fire pixels are stored in a list. Added to this 

list are the same number of non-fire pixels, roughly following the dataset balancing strategy 

described by (G. Zhang et al., 2019). The non-fire pixels are without any fire pixel in their patch, to 

make sure it completely represents a non-fire patch. 

 A window size n is decided on and for each of the stored coordinates in the list a patch of 

n x n is made. With the pixel corresponding to the xy coordinate as the centre pixel. This is done 

for all 13 bands, resulting into a patch of n x n x 13. In this thesis, a window size of n=21 was chosen 

and will result in a 21x21x13 image patch. The same xy coordinate as the centre pixel is used on the 

fire point raster image as the label for the matching patch. The image patch size of 21 is a rough 

average of the image patch sizes found in the reviewed literature, which the patch sizes can be 

found in Table 2. 

 

The output were the following datasets that were created: A1-MM-19, A1-MM-20, A1-MAY-

19, A1-MAY-20, A2-MAY-19, A2-MAY-20, A1-MM-ND-19, and A1-MM-ND-20. 
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Figure 10. Model structure with the input dimensions (left), the ResNet50 architecture (middle) and the 
prediction outcome classes (right). 

 

4.5 Model Structure 

As is shown in Figure 10, the structure of the model consists of an input layer that takes 

in the n x n x 13 pixels image patches (or n x n x 3 in case of the indices NDVI, NDWI, and NDMI). 

These image patches are fed into the CNN. The output is binary; either a patch belongs to the fire 

or non-fire class. Binary outputs are used to calculate the scores (F2-score, AUC and confusion 

matrix) to evaluate the performance. 

 

4.6 Training on EuroSAT 

According to the paper connected to the EuroSAT dataset (Helber et al., 2019) the best 

results obtained were 98.57% accuracy. This, however, is only with training on the red, green and 

blue bands. The authors mention that they used a ResNet50 trained on ImageNet and first trained 

the last layer using a learning rate of 0.001. Afterwards they fine-tuned all the layers using a 

learning rate between 0.001 and 0.0001. The authors do not mention which optimizer is used. In 

this work the Adam optimizer is used, which is used in the research of G. Zhang et al. (2019) as well 

and is explained in Section 2.2.1. After training, the model trained on all 13 layers of the EuroSAT 

dataset was found to have a 95% accuracy on the test set. 

The EuroSAT dataset was split in half. One half was used to train only the first and last 

layer and the other half to fine-tune all the layers. The first layer is included with the training as it 

was removed and replaced by a layer that can input 13 channels. The first initial layer had 

pretrained weights trained on ImageNet for the red, green, and blue channels. The weights are 

copied over to the other channels. This means that the fourth layer gets the weights from the red 

channel, the fifth from the green channel, etc. This goes on until all channels have pretrained 

weights. Training the first and last layer had 10 epochs, Adam optimizer, and a learning rate of 
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0.001. The fine-tuning used the other half of the dataset with 5 epochs, the Adam optimizer, and 

a learning rate of 0.0001. 

The accuracy of 95% is a very good score and gets close to the result in the paper, 

considering it includes all 13 layers. It is therefore the pretrained network that will be used for the 

further training on the datasets. 

 

4.7 Transfer learning 

To explore how the spring months (March, April, and May) image composition using median 

values performs on peat fire prediction for the summer months (RQ1.1), a train and test method 

for transfer learning was set up. For each dataset a network model is trained. Table 3 shows the 

number of train, validation, and test images for A1 and A2 over the years 2019 and 2020. As the goal 

is to predict for the coming years, two different test sets are available for each network. A network 

trained on the A1-MM-19 dataset, has a SY (same year) test set consisting of 2019 images from the 

same dataset as it is trained on, and an OY (other year) test set that consists of images from the 

2020 year (A1-MM-20). 

 

4.7.1 Training 

Training the network models followed the approach described in Section 4.6, except for 

using ten epochs (instead of five) for the fine-tuning when unfreezing all layers. 

 

Table 3. Number of train, validation, and test images for A1 and A2 over the years 2019 and 2020. 

 

 

The first step is to load the pretrained network on EuroSAT. This network already has the 

right amount of input channels (13 for the features and 3 for the indices). The dataset is split in 

half and the first half is used for training the first and last layer (T1), with the other layers frozen, 

and the other half for fine-tuning all layers when unfreezing them (T2). Both for T1 and T2 the 

Adam optimizer is chosen (see Section 2.2.1). A small learning rate and number of epochs is chosen, 

recalling that a smaller learning rate and number of epochs is common for transfer learning 

Area and year Train set Validation set SY test set OY test set 

A1, 2019 7,097 1,972 789 25,419 

A1, 2020 114,382 31,774 12,710 19,716 

A2, 2019 9,693 2,693 1,078 26,928 

A2, 2020 56,148 15,597 6,239 12,478 
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(Section 2.4). T1 has a learning rate of 0.001 and T2 a learning rate of 0.0001 with a learning rate 

step of 7 and gamma 0.1. Meaning that after epoch 6 the learning rate will be 0.00001 for the rest 

of the epochs. The total number of epochs is 10. 

 

4.7.2 Testing 

The testing was done after the fine-tuning (T2) to see how the network models would 

perform on data from the same year and another year. The evaluation metrics F2-score, AUC and 

confusion matrices described in Section 2.5 were used to measure the performance of each model 

on the different test sets. 

 

4.8 Feature Importance 

To answer research question RQ1.2 to find which features are discriminative for peat fire 

prediction with the two sub questions RQ1.2.1 and RQ1.2.2, the features (see Table 1) and indices 

(Section 2.1) are tested for their importance. This will be done using the Permutation Feature 

Importance approach explained in Section 2.5.1 and be applied to decide on the most 

discriminative features. A threshold of 0.5 was taken to find the most discriminative features over 

all the datasets. Additionally, for each dataset the difference between feature importance over the 

two years (2019 and 2020) and different areas are compared and explored. 

 

4.8.1 Evaluation 

A feature is important if the permutation leads to a decrease in the performance of the 

model which in this thesis is measured using the F2-score and AUC. The first step is to have a 

reference model. This is the network model trained on the test set without any permutations, test 

set X. The performance scores were derived by testing on the test set X. Each dataset is evaluated 

on the feature importance using the SY test set, so test set X refers to this test set. The test set 

was then be used for permutation on one of the features and create test set Xperm. The model was 

tested again, and the performance compared with the scores from the original set X. For each of 

the other features the same steps were taken until each feature has an importance score. The 

higher the outcome the more important the feature is assumed to be.  

 

4.9 Dataset analysis 

Analysis on the datasets, in particular the originally chosen dataset of area A1 and the 

months of March-May, is done applying several statistical and exploratory methods. The image 

patches are separately explored from the fire points. To assess the images, a correlation matrix 

was created, and Principal Component Analysis (PCA) applied. For the exploration of the fire points 
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the Copernicus Global Land Cover map by Buchhorn et al. (2020) was used to create graphical and 

tabular information of the fire points’ land coverage. 

 

4.9.1 Analysis image patches 

For the correlation matrix and PCA all image patches were converted to a single vector 

containing all pixels of all image patches included. As an example, a 10 x 10 x 13 image patch is 

converted to a 100 x 13 vector, if there are, for example, 10 image patches this results into a 1000 

x 13 vector. This large vector is used to create the correlation matrix using the Pearson correlation 

coefficient. For PCA, after applying the standardization of the vector, the vector was used to find 

the two most important principal components. The choice for two is made after analysing how 

many components would be necessary to explain over 95% of the data. 

For the 2020 datasets of A1, the same number of pixels are used as the 2019 datasets. The 

sole reason for this is the error it produces otherwise as it becomes a very large vector, needing a 

lot of computing power. The dataset is simply split where it matched this number. 

 

4.9.2 Analysis fire points 

Fire points were analysed looking at the number of fires per month for each year and for 

each year the land cover per month using the Copernicus Global Land Cover map (Buchhorn et 

al., 2020) adding the layer in GEE. The fire points from the CSV were imported in GEE. For each 

fire point GEE looked at the corresponding land cover type storing it as a collection. This collection 

was downloaded as a CSV file and processed. Each month was taken separately, and the total 

number of fires was calculated per month per year. Additionally, for each month every type of land 

cover was found with the corresponding amount of fire points matching the land cover type. A 

visual map with the location of each fire point per month for each area was also created. 
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5   Results 
 

This section will provide the results gathered from the experiments. Several figures are 

provided in the text for clarification, others can be found in the Appendices. 

 

5.1 Performance of (summer) peat fire prediction using the spring months 

The results for the performance of the models using different datasets are shown in Table 

4 with the F2 and AUC scores on the SY test set and OY test set (see Section 4.7). The best scores 

are marked in bold. See Figure 8 for the workflow of how these datasets differ and are created. 

The corresponding confusion matrices can be found in Appendix A. 

 

Table 4. Performance scores for each dataset for the test set of the same year (for 2019 that is 2019), test set 
of the other year (for 2019 that is 2020) and the validation accuracy of the model after training. 

 SY TEST SET OY TEST SET VAL. SET 

 F2-score AUC F2-score AUC Accuracy 

A1-MM-19 0.85 0.90 0.32 0.55 0.78 

A1-MM-20 0.74 0.67 0.32 0.70 0.65 

A1-MAY-19 0.87 0.89 0.11 0.59 0.82 

A1-MAY-20 0.78 0.71 0.50 0.55 0.65 

A1-MM-ND-19 0.76 0.84 0.14 0.50 0.75 

A1-MM-ND-20 0.76 0.69 0.58 0.65 0.64 

A2-MAY-19 0.86 0.88 0.0012 0.57 0.84 

A2-MAY-20 0.82 0.78 0.77 0.51 0.73 

 

Testing on the same year results with the best scores for the F2 and AUC found on SY test 

set of A1-MAY-19 (0.87 and 0.89 respectively). However, when tested on the OY test set (the A1-

MAY-20 dataset), the scores are significantly lower. The AUC score of 0.58 indicates it is close to 

a random classifier. A score of 0.11 for the F2, indicates that many fires were falsely identified as 

no-fire, which can be seen with the corresponding confusion matrix in Figure A-2 (bottom left). 

With the different region the A2-MAY-20 shows the highest performance on the OY test set with 

a F2-score of 0.77. However, as the AUC is 0.51, the classification is still random. Indicating that 

even though some models are better at classifying fire images, in general, as too many non-fire 

images are classified wrongly, it still does not properly show which areas are susceptible. This 

means that no model can predict peat fire from the other year. When the AUC is 0.70 in the case 

of A1-MM-20, the F2-score shows 0.32, showing that in this case non-fire classification was better 

than in other cases, but it still lacks the proper classification of fire images. Since it is desirable to 
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have a high F2-score, as overlooking susceptible areas is not wanted, no model shows potential. 

Interestingly, when observing the results in Table 4, it seems that the accuracy on the validation 

set might also play a role. The highest accuracy shows the lowest performance on the OY test set. 

The 2020 cases show the best result with the highest accuracy and are in general lower than the 

2019 cases to begin with but have higher OY test set scores than the 2019 cases. 

Observing the confusion matrices (Appendix A) makes it clear that A1-MM-19, A1-MAY-19, 

and A2-MAY-19 can distinguish non-fire (class 0) from fire (class 1) image patches well when tested 

on the SY test set. The F2 and AUC scores for the three cases are above 0.85, with A1-MAY-19 an 

F2-score of 0.87. The datasets of the year 2020 (A1-MM-20, A1-MAY-20, and A2-MAY-20) have 

more difficulty with classifying non-fire images when tested on the SY test set which can be seen 

from the confusion matrices (top right). For the fire class, there are clearly more true positives 

than false negatives. These differences in performance scores between the two years (2019 and 

2020) might be due to the amount of training examples. 2020 shows many more fires (see Table 

3), indicating that a bigger training set lowers the performance of the models on the SY test set or 

2020 shows less distinction between fire and non-fire image patches. However, as the same occurs 

in a different region (A2), it might suggest the first argument.  

Overall, it shows that using the spring months and creating a MI is not a suitable for peat fire 

prediction of the summer months. Even when only one month is taken for the median values 

(MAY), the models are still not able to predict well for the other year as MAY shows random 

classifiers. Same year prediction could show potential for peat fire prediction using transfer 

learning as the models were able to learn, however not with the approach taken in this thesis. 

 

5.2 Feature importance 

For feature importance on all features (Table 1) it becomes clear that overall, in most cases 

B4, B5, and B7 (red and two vegetation red edge bands) show the highest importance score (Figure 

11), indicating that vegetation red edge bands might positively influence peat fire prediction. For 

the A2-MAY-19 and A2-MAY-20 it shows importance at the SWIR and NIR/VNIR bands. Especially 

when considering the AUC scores. Band 12 (SWIR 2) is one of the most important feature for A2-

MAY-19 and Band 11 (SWIR 1) for A2-MAY-20. B10 is never of any importance, due to that it is mainly 

meant for cirrus cloud detection as mentioned in Section 2.1. When only looking at the importance 

of bands above the 0.5 threshold for the F2-score, the features include: B1, B2, B4, B5, B6, B7, B8, 

and B8A. The AUC shows similar results, with B5 being in three out of six cases the highest 

importance. In general, no significant discriminative features were found, and differences of the 

most important features are visible over the years and regions. The only clear result is that B10 is 

of no importance in all cases and that small importance was found for vegetation red edge bands. 
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As permutation feature importance depends on variables being independent, a correlation 

matrix is presented for each of the datasets (Appendix B) to see how much correlation is present. 

The method of creating the correlation matrices can be found in Section 4.9. The matrices show 

a high correlation between B1-B9, B10 on its own and B11 and B12 for the area A1. For area A2 B1-

Figure 11. Feature importance scores (AUC and F2-score) for each band of the A1-MM-19 (top left) and A1-
MM-20 (top right), A1-MAY-19 (middle left) and A1-MAY-20 (middle right), A2-MAY-19 (bottom left) and A2-

MAY-20 (bottom right) dataset. 
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B6, B6-B8A, and B11-B12 are very strongly correlated. B9 could be correlated to B8 and B8A, even 

though it shows less correlation in 2019. Evidently showing that most features are correlated to 

one another. By applying PCA (see Table C-1) on the datasets it shows that all datasets contain the 

bands B1-B8A in the first principal component (PC1) with the highest values. B9 is also common in 

most datasets for PC1 and is also sometimes used for PC2, although it is the lowest valued number. 

For PC2, the bands B11 and B12 show the highest values, being supported by B10 in three of the six 

cases. None of the bands separately or some combined show large variance to describe the 

dataset. Instead, it is a linear combination of a high number of bands in the case of PC1. No clear 

discriminative feature can be pointed out when applying PCA, however as the eigenvector values 

in the first component are similar for the bands (B1-B9) scoring highest in this first component 

and have a high correlation, it would indicate that only one band from these would suffice to use 

for peat fire prediction in combination with the SWIR bands. For this one feature it may be 

considered using one of the vegetation red edge bands. 

The feature importance over the normalized difference indices is found in Figure 12. With the 

feature importance on the indices NDVI, NDWI, and NDMI, only the A1-MM of both years has been 

assessed. The results show that for A1-MM-ND-19 the NDVI is the most important feature followed 

by both the NDMI and NDWI when looking at the F2-score. For the AUC the NDMI is highest in 

score. The A1-MM-ND-20 feature importance is highest with the NDWI, when assessing the F2-

score and highest for the AUC score with the NDMI. There are slight similarities between the two 

years in feature importance over the indices however differences are also visible. The NDMI has 

the most importance on the AUC scores, indicating that it might be of importance to separate 

non-fire images from fire images. When looking at the F2-score which favours the fire class and 

the correct classifications of this class, the NDWI shows a very high score. Indicating that the 

NDWI might be of importance for classifying fire images. However, both years show differences 

Figure 12. Feature importance scores (AUC and F2-score) for the NDVI, NDWI, and NDMI indices of the A1-
MM-ND-19 (left) and A1-MM-ND-20 (right) dataset. 
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in scores per feature, meaning that it stays unclear which indices are discriminative and can really 

describe the distinguishment between the fire and non-fire class. 

 

 

5.3 Dataset analysis 

To find out what is different between the two years, the fire points acquired from VIIRS are 

being assessed. In 2019 there are significantly less fire points in the A1 area then there are in 2020 

(see Figure 13). Only in September, the year 2019 had more fires. For 2019, August has the most 

fires. For 2020, July contains the most fire points in a month. June 2020 already starts off with a 

vast number of fires, indicating that the month May might also include some fires in the area that 

have not been considered. What mainly stands out from these observations is that within area A1, 

September 2019 shows many fire points, indicating many fires at the end of the summer. June 2020 

starts off with many fire points early in the summer. When observing Figure 14 it becomes visible 

how fires of 2020 do not happen in areas where fires have been burning in 2019. Arguing the 

possibility that burned areas of the last year seem to not consist of enough fuel for fires the next 

year as they are still recovering. 

The Global Copernicus Land Cover Map (Buchhorn et al., 2020) was applied to the fire point 

locations using GEE to calculate the land cover type per fire point. Table D-1 gives an overview 

per month and per year on the percentages of each land cover, using the same naming for land 

cover types as is used for the land cover map by Buchhorn et al. (2020). Only 12.8% for 2019 and 

14.2% for 2020, account for herbaceous wetland land cover. Recall that peatland is a type of 

Figure 13. Number of fire points per month for 2019 and 2020 in region A1 (left) and A2 (right). 



46 
 

wetland. For area A2 (Table D-2) this is even lower (2.7% and 6.0% for 2019 and 2020 respectively). 

This could mean that image patches created from the datasets are not always corresponding with 

peatland but also consist of other land cover types. Do consider that the class accuracy for 

herbaceous wetlands is under 65% as this class has high confidence errors with mainly herbaceous 

vegetation having spectral similarities (Buchhorn et al., 2020). Meaning that some fire points could 

have been identified as the wrong land cover type. A more detailed overview of each month (for 

each year and area) and the number of fire points belonging to a land cover type, can be found in 

Appendix E. 

After observation of the results, it shows that there is no clear indicator found from the results 

presented in this thesis that could explain the differences between the datasets of 2019 and 2020. 

 

 

 

  

Figure 14. Map with all fire points in area A1 of 2019 (red outlined circles) and 2020 (blue outlined diamonds) 
per month (yellow; June, orange; July, red; August, and green; September). 
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6   Discussion 
 

In this thesis the viability of peat fire prediction applying transfer learning on a CNN with the 

use of Sentinel-2 imagery was explored in the Arctic region of North-East Siberia (RQ1). The 

results show that peat fire prediction is a difficult task in the North-East Siberia, as Janiec and 

Gadal (2020) have also been pointing out for fire risk assessment. The results indicate that a model 

trained on one year cannot predict for the other year. This would suggest there is too much 

fluctuation between the datasets of 2019 and 2020. The same fluctuation is present when only the 

month May is used or with a different area (A2). Several reasons can cause these differences 

between the two years. In the first place, wetlands (which peatland is part of) are difficult to 

observe using remote sensing because of the diversity in vegetation content and the variability it 

brings at different timespans (Kaplan & Avdan, 2019). Secondly, climate change, as warmer 

climates cause drier soils and lowers the water table in peatland (Turetsky et al., 2015). Lower 

water tables may affect peatland vegetation (Breeuwer et al., 2009; Kettridge et al., 2015). This 

could mean that the differences observed at the datasets from 2019 and 2020 may show vegetation 

differences between the two years due to climate change effects. Lower water tables can also 

cause deeper burning which in return, also has consequences for vegetation succession and eco-

system function (Turetsky et al., 2015). This indicates the third reason why differences might occur 

between the datasets, namely that fires are associated with changes in the vegetation (Noble et 

al., 2018). Due to the large number of fires observed in the two years chosen (2019 and 2020), this 

might have affected the landscape of the region. Turetsky et al. (2015) mention that peat fires can 

cause long term environmental changes such as permafrost thawing, which might have been 

another cause of differences between the year 2019 and 2020. According to Gibson et al. (2018) 

the effects of wildfires in boreal peatland could last for 30 years and results in a warmer and a 

deeper active layer. Even low-severity fires in peat covered wetland areas can cause complex 

processes and feedbacks (Ackley et al., 2021) as they found that the burned area of the region of 

interest showed earlier snowmelt than the unburned area. The early start of the fires in 2020 in 

combination with the late fires in September 2019 could mean that these changes are indeed 

occurring as the late fires might have caused thawing and earlier snowmelt. When observing the 

GEE images, less snow cover in 2020 can be roughly observed. This assumption of thawing, 

however, is highly speculative and needs further research as this thesis does not provide enough 

data to support this. 

 

Transfer learning using the spring months for peat fire prediction (RQ1.1) shows a 

performance between 0.76-0.89 F2 and 0.84-0.90 AUC score for the 2019 datasets. The 2020 

datasets have a lower performance and shows in most cases from the confusion matrices that 
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non-fire image patches are difficult to classify correctly. The lower scores in 2020 may be due to 

the larger number of train data, causing fewer clear distinctions between fire and non-fire image 

patches and more examples for each class from different coordinates (and therefore small areas) 

are present. This suggests that if a good distinction between the two classes can be created with 

the data, what might be the case in 2019, peat fire prediction using transfer learning might have 

potential. Especially when taking a smaller timespan into account as with the day/two week 

timespan used in Radke et al. (2019). Since it is a single image (median of the values) taken from 

images over three months, information on certain areas might be averaged too much to still 

provide useful information, especially considering the variability peatlands bring over certain 

timespans. The MAY datasets showed the same problems, suggesting that taking an average over 

several images might not work well even if the timespan is one month. However, in the case of 

Maulana et al. (2019) where an average for the NDMI is taken, it showed good results. The 4-

monthly average of the NDMI was the top indicator for peat fire prediction in the southern 

hemisphere. In contrary to this thesis study, other data such as peat physical characteristics was 

used including peat depth which may act as a key indicator for the susceptibility to high peat burn 

severity as shallow peat is more susceptible to it (Wilkinson et al., 2020). This is in line with 

Maulana et al. (2019) concluding that 90% of the fires happened at a peat depth under 100 cm. 

Other data types were also included in other studies towards wildfires (Radke et al., 2019; G. Zhang 

et al., 2019). This might incline that for peat fire prediction, the inclusion of other data is necessary, 

which is also suggested for wildfire assessment in the region by Janiec and Gadal (2020) and 

Maulana et al. (2019) mention the importance of climate data, including precipitation, as a long 

period of low rainfall is a risk factor for peat fire (FAO, 2020). 

 

For the most discriminative features to apply for transfer learning on a CNN to predict peat 

fire (RQ1.2), the results show how the feature importance for the Sentinel-2 features (RQ1.2.1) 

which can be found at Table 1, differ from the areas (A1 and A2) and from the use of several spring 

months (MM) and just the month May (MAY). Difference in feature importance was also found by 

Räsänen et al. (2020) where they compared different remote sensing datasets (that also included 

NIR and NDWI) to map peatland vegetation and found that different features for different areas 

were most important for certain regressions and optimal performance depends on the peatland 

area and its structure. This could explain the difference of importance in the SWIR bands between 

the two areas. Räsänen et al. (2020) also conclude that a combination of multiple different remote 

sensing datasets should be used for peatland mapping. This might also be the case with peat fire 

prediction. However, as mentioned in the results there might be some similarities that can be 

carefully found with the bands in the infrared spectre (B5-B8A). These are slightly discriminative 

and could be of importance to predict peat fires. As previously mentioned by Kaplan and Avdan 
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(2019) the red-edge bands (B5-B7) can help identify the more intensely vegetated wetland classes. 

Even though the subject of mapping wetland and predicting peat fire might still be far off, it might 

be worth looking into further how the red edge bands of the Sentinel-2 could help with peat fire 

prediction. 

 

When answering the sub question of which vegetation and water indices as features are most 

discriminative for peat fire prediction (RQ1.2.2), the lower water table depth mentioned before 

might indicate why the NDMI and NDWI show importance. As well as the soil moisture as an 

indicator for the susceptibility of peatland fires (Dadap et al., 2019).  Even though Lees et al. (2020) 

could not find any significant relationship between the water indices (including the NDMI, 

mentioned as NDWI in the article) and the water table depth or soil moisture. However, in a dry 

month a decrease in the water table depth, soil moisture, and the NDMI was observed. The authors 

also found that relationships between water indices and water content is specific to certain 

species. The NDMI shows importance when looking at the AUC scores and being in line with 

Maulana et al. (2019) as an indicator for peat fire. The NDWI is the most discriminative feature in 

the year 2020 (A1-MM-20) and of strong importance in 2019, when considering the F2-score. 

Reminding that the NDWI is meant for enhancing open water features and eliminating soil and 

vegetation, this could indicate that the NDWI contains information on peatland areas before fire 

starts. However, when observing the FIRMS fire points, it becomes clear that several fire points 

are close to open water. Making it a possibility that the model associates open water with peat 

fire. This is therefore still a large unknown of why and if the NDWI is of importance and creates 

possibilities for further research towards water indices and peat fire prediction. The NDVI is a 

feature used in many of the mentioned related work and is the highest scoring in the year 2019 

(A1-MM-19). It is, however, difficult to say how much of an importance the NDVI has, as it is the 

least important feature when assessing the AUC scores. According to Janiec and Gadal (2020) the 

NDVI is strongly correlated with fire. This could explain why the F2-scores are higher than the 

AUC scores for the NDVI, indicating the NDVI is of help classifying the fire class but less for the 

non-fire class. The related work is in context of forest fire prediction and not peat fires. Further 

research could show if the NDVI is of importance for peat fire prediction. 

In the context of transfer learning, it seems that these differences in feature importance 

might influence the performance of the model when tested on a different year and suggests that 

for each region and year a model needs to be trained again when applying transfer learning using 

a CNN. Additionally, for each region and timespan, recalculations of feature importance scores are 

necessary, which can then be used to select the features most discriminant for that region and 

that time to be used with transfer learning. 
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From a technical view, one of the reasons why transfer learning might not seem to work with 

the approach taken in this work, is the use of the EuroSAT dataset to pretrain the models. Being 

in line with Marmanis et al. (2016) that found pretrained networks on ImageNet performed better 

than models pretrained on PatternNet. The same lack of complexity in the dataset mentioned by 

the authors, could be a reason for the models not being able to predict peat fire for the other year 

when depending on the EuroSAT pretrained network models. The performance found of ArcticNet 

by Jiang et al. (2019) shows the applicability of a model pretrained on ImageNet to use for remote 

sensing images. 

 

6.1 Limitations 

In this thesis the main limitation was the availability of precise data needed to investigate the 

differences in feature values found between the two years. Mainly to specify where exactly 

peatland in the ROI could be found and what types of vegetation. As far as is known these precise 

data are lacking in the northern remote peatlands of this study’s ROI and therefore makes it 

difficult to find out what the differences are caused by. 

 

Time constraints led to the exclusion of BigEarthNet as a dataset to pretrain the models on 

before training these on the peat fire datasets. This dataset contains many training samples that 

would suggest that the dataset is more complex and recall that the lack of complexity may have 

been of influence on the performance. BigEarthNet also includes wetland image patches, 

suggesting that the dataset is closer to the task at hand (peat fire prediction). The time constraint 

also led to the choice of using the NDVI, NDWI, and NDMI as water and vegetation indices. There 

are several other water indices, moisture indices and even other satellite types that can be applied. 

 

It needs to be mentioned that the correlation matrices show high correlation between several 

bands. As the Permutation Feature Importance method relies on features being independent, the 

results for feature importance should not be completely dependent on this method and other 

feature importance methods are suggested to explore. Another limitation to mention is the use of 

Equation 2.7 to calculate the feature importance score, as this score is not normalized. Meaning, 

that when one dataset has a higher performance score (e.g., F2-score) on the original test set than 

the other dataset but for both datasets the permutated test set creates the same importance score, 

the importance score seems the same, however when normalized the importance score might 

differ from each other. 

 

Computational power proposed a limitation mainly on the calculations of the PCA 

components and the eigenvalues and -vectors corresponding to it. Some datasets were too large 
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to compute and gave an error and therefore had to be made smaller, meaning that not the entire 

dataset is represented while calculating the values. 
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7   Conclusions 
 

In this thesis the viability of predicting peat fire in the region of North-East Siberia with the 

help of transfer learning on a CNN using Sentinel-2 imagery was investigated. Predicting peat fire 

in the region of North-East Siberia is a novel approach that is still far from being able to be used 

as an early warning in the form of, for example, a susceptibility map. The usage of the spring 

months and creating an image of the median values to predict the summer fires in the region, is 

not a suitable approach to apply in combination with transfer learning on a CNN. Even when using 

only the month May, the models tested on a different year are random classifiers and can therefore 

not distinguish between non-fire and fire image patches. This does not exclude transfer learning 

as an option when different approaches are applied. In the context of transfer learning, it needs 

further investigation per study area and per feature to see which features are truly of importance 

and can be used for deep learning purposes. In this thesis it can be very carefully said that the red 

edge bands (especially B5), SWIR bands and the NDWI and NDMI might be discriminative for peat 

fire prediction using transfer learning on a CNN. However, differences are visible between 

different years and areas and the acquired results can only be applied for the areas used in this 

thesis and cannot suggest any clear discriminative features. 

It has been tried in this thesis to give a first step on the viability of peat fire prediction with 

transfer learning on a CNN and mainly to indicate where to go further. Concluding that much 

research is still needed. Not only in the field of deep learning and peat fire prediction but including 

how vegetation changes due to peat fires and climate change and how this affects satellite data. 

More knowledge on what these differences between years include, is important for going into the 

direction of being able to know if deep learning is indeed an approach that could work for peat 

fire prediction. 
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8   Future work 
 

Peat fire prediction in the Arctic region is a novel approach that still needs much research. 

Part of this research can consist of three different main focuses: the region, approach, and model 

choice. 

 

Other Arctic regions such as Alaska, Canada, or North-Scandinavia where peatland coverage 

is present, can be considered as regions of interest. These regions might have more extended data 

resources available, including peat physical data, weather data or accurate data on vegetation 

coverage. The next step would be to explore how differences in data and feature importance can 

translate to vegetation coverage or other weather data that is constantly in change and how these 

extra data sources influence the performance of transfer learning models on peat fire prediction. 

With more accurate additional data available, a more precise reasoning for why differences are 

present can be constructed and might show how climate change and peat fires influence these 

changes on the data. It is interesting to see if models can be generalized and how features are of 

importance in other regions, to see if indeed feature importance differs over completely different 

areas or that certain similarities can be found. 

 

Applying transfer learning on datasets that have a timespan of a year in between, does not 

show potential. This, however, could still be the case for shorter timespans, which a small potential 

was shown for same year predictions. Experiments were done using MI that combined several 

images of the spring months. This potential could be investigated further by means of using data 

that is closer to the actual fire-starting date. The approach could entail to average over the values 

and create a single image from several images again or use a single cloud-free image days or weeks 

pre-fire. This way it becomes interesting to study how this might be able to be generalized if 

enough fire-starting data is gathered over a bigger region. 

In this thesis the image patches in the datasets did not entail the entire area. Interesting 

would be investigating how the performances are when a (smaller) area is divided into patches to 

make sure every part of the area is included into the training set. This way, changes for each 

smaller patch may be detected better as the patch will always include the same area. This also 

provides the opportunity to create a susceptibility map more easily as it needs a considered less 

amount of computing power as less image patches are used as when a sliding window includes an 

image patch for each pixel. Another approach by Rosadi et al. (2020) where each fire class image 

has a counterpart of a non-fire image taken from another time when no fire occurred, is also worth 

looking into. 
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The use of other data such as, weather data, field measurements or peat physical data, for 

example the peat layer depth used in Maulana et al. (2019) might need to be added to the dataset 

to make sure the differences and changes of vegetation, snow cover, and maybe even other 

factors, are also known to the network model that is trained. This also brings up another approach 

that might include the use of (satellite) data that is independent on vegetation changes or weather. 

The Sentinel-1, for example, is a Synthetic Aperture Radar (SAR) C-band satellite developed by ESA 

that is able to acquire images independently from what the weather is at that time (ESA, n.d.-b). 

Another option is the Soil Moisture Active Passive (SMAP) L-band satellite from NASA, that is able 

to penetrate clouds and forest cover offering the opportunity to measure soil moisture which 

therefore can be a useful resource for research towards peat fires (Dadap et al., 2019). 

The choice of features is important as well. Other water, vegetation, and moisture indices can 

be researched towards peat fire prediction and its importance to performance of the model. This 

also includes the further research towards the importance of the indices used in this thesis and 

the connection with differences of timespan, area, and vegetation. 

 

The model choice is another field of study. In the first place it is worth the further research 

towards different base and top models. In this thesis the focus was on ResNet50, but other studies 

mentioned in this work use other backbone structures. Several articles in the literature for 

transfer learning made use of a top model such as a SVM, which would give the option of a different 

learnable machine learning model on top of the CNN. Different base and top models with different 

backbones and configurations are all possible and might indicate the need for a review towards 

the best use cases for peat fire prediction in the Arctic region. Further on, investigating the 

potential of transfer learning using pretrained networks on more complex remote sensing 

datasets, such as BigEarthNet, could answer the necessity of pretraining on a dataset closer to the 

primary task of peat fire prediction or that pretrained networks on natural images (ImageNet) 

show similar results for transfer learning predicting peat fires. Additionally, completely other 

model choices can be investigated. In this thesis a CNN was chosen. However, other model options 

are available that can include, for example, the temporal dimension, think of a Long Short-Term 

Memory (LSTM) model (Hochreiter & Schmidhuber, 1997). A Convolutional LSTM (ConvLSTM) 

model such as the one by Shi et al. (2015) could offer the advantages of a CNN and LSTM for peat 

fire prediction. Further research towards how different models perform for peat fire prediction is 

appreciated.  
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Appendix A: Confusion Matrices 
 

 

 

 

 

 

 

 

 

 

 

Figure A-1. Confusion matrices of same year test set A1-MM-19 (top left), same year test A1-MM-20 (top right), 
other year test A1-MM-19 (bottom left), and other year test A1-MM-20 (bottom right). 
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Figure A-2. Confusion matrices of same year test set A1-MAY-19 (top left), same year test A1-MAY-20 (top right), 
other year test A1-MAY-19 (bottom left), and other year test A1-MAY-20 (bottom right). 
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Figure A-3. Confusion matrices of same year test set A2-MAY-19 (top left), same year test A2-MAY-20 (top right), 
other year test A2-MAY-19 (bottom left), and other year test A2-MAY-20 (bottom right). 
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Figure A-4. Confusion matrices of same year test set A1-MM-ND-19 (top left), same year test A1-MM-ND-20 (top 
right), other year test A1-MM-ND-19 (bottom left), and other year test A1-MM-ND-20 (bottom right). 
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Appendix B: Correlation Matrices 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-1. Correlation matrix of the dataset A1-MM-19 (top) and A1-MM-20 (bottom) 
for each band. 
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Figure B-2. Correlation matrix of the dataset A1-MAY-19 (top) and A1-MAY-20 
(bottom) for each band. 
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Figure B-3. Correlation matrix of the dataset A2-MAY-19 (top) and A2-MAY-20 
(bottom) for each band. 
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Appendix C: PCA 
 

Table C-1. Principal components 1 and 2 of the datasets with the eigenvector values for all bands. 

 BANDS 

 B1 B2 B3 B4 B5 B6 B7 B8 B8A B9 B10 B11 B12 

A1-MM-19 (PC1) -0.30 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.30 -0.18 0.15 0.11 

A1-MM-19 (PC2) 0.00 0.02 0.01 0.04 0.06 0.07 0.08 0.08 0.09 0.07 0.13 0.66 0.72 

A1-MM-20 (PC1) 0.30 0.31 0.31 0.31 0.31 0.31 0.32 0.32 0.32 0.31 0.10 0.02 0.10 

A1-MM-20 (PC2) -0.09 -0.07 -0.05 -0.04 -0.03 -0.03 -0.02 -0.01 -0.01 0.01 0.25 0.69 0.66 

A1-MAY-19 (PC1) 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.28 0.05 -0.23 -0.23 

A1-MAY-19 (PC2) 0.04 0.02 0.02 0.03 0.04 0.04 0.06 0.07 0.08 0.20 0.71 0.46 0.48 

A1-MAY-20 (PC1) 0.30 0.31 0.30 0.31 0.31 0.32 0.32 0.32 0.31 0.23 -0.09 -0.20 -0.19 

A1-MAY-20 (PC2) -0.06 -0.05 -0.05 -0.01 0.02 0.07 0.12 0.17 0.21 0.41 0.59 0.46 0.43 

A2-MAY-19 (PC1) 0.31 0.32 0.32 0.33 0.34 0.34 0.32 0.30 0.29 0.21 0.05 -0.13 -0.13 

A2-MAY-19 (PC2) -0.17 -0.16 -0.14 -0.06 -0.01 0.06 0.15 0.23 0.28 0.38 0.28 0.52 0.52 

A2-MAY-20 (PC1) 0.23 0.26 0.28 0.32 0.35 0.36 0.35 0.34 0.32 0.26 0.10 0.13 0.11 

A2-MAY-20 (PC2) 0.34 0.32 0.30 0.20 0.14 0.02 -0.09 -0.16 -0.20 -0.30 -0.36 -0.42 -0.41 
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Appendix D: Land Cover Type tables 
 

Table D-1. Number of fire points per month (June-September) and per land cover class with the total 
percentage for each class for the years 2019 and 2020 for region A1. 

 2019 2020 

 June July August September Total (%) June July August September Total (%) 

Shrubs (S) 0 0 0 0 0,0 5 9 5 0 0,0 

Herbaceous vegetation (HV) 89 5 131 63 11,6 1653 3582 895 4 15,5 

Permanent water bodies (PWB) 36 14 51 14 4,6 196 567 285 1 2,6 

Herbaceous wetland (HW) 120 22 116 60 12,8 1941 2900 798 3 14,2 

Closed forest, deciduous needle 

leaf (CF:NL) 

0 0 5 0 0,2 27 157 60 1 0,6 

Closed forest, not matching any 

of the other definitions 

(CF:Other) 

534 59 594 108 52,2 4354 11900 4264 15 51,8 

Open forest, deciduous needle 

leaf (OF:NL) 

0 0 1 0 0,0 0 1 2 0 0,0 

Open forest, not matching any 

of the other definitions 

(OF:Other) 

168 23 213 56 18,5 1383 3483 1173 11 15,2 

 

 

Table D-2. Number of fire points per month (June-September) and per land cover class with the total 
percentage for each class for the years 2019 and 2020 for region A2. 

 2019 2020 

 June July August September Total (%) June July August September Total (%) 

Shrubs (S) 2 1 0 0 0,1 2 32 2 0 0,2 

Herbaceous vegetation (HV) 171 7 0 0 5,3 115 2710 298 0 15,9 

Permanent water bodies (PWB) 141 1 0 0 4,2 6 252 28 0 1,5 

Herbaceous wetland (HW) 86 7 0 0 2,7 45 1057 72 0 6,0 

Closed forest, deciduous 

needle leaf (CF:NL) 

533 4 0 0 15,9 298 6580 460 0 37,4 

Closed forest, not matching 

any of the other definitions 

(CF:Other) 

2135 4 1 0 63,2 78 4687 477 0 26,7 

Open forest, deciduous needle 

leaf (OF:NL) 

6 0 0 0 0,2 7 99 6 0 0,6 

Open forest, not matching any 

of the other definitions 

(OF:Other) 

277 8 0 0 8,4 92 2086 156 0 11,9 
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Appendix E: Land Cover Type per Month 
 

 

 

 

 

 

  

Figure E-1. Number of fire points per land cover class in the month June for 2019 and 2020 in 
region A1. 
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Figure E-2. Number of fire points per land cover class in the month July for 2019 and 2020 in 
region A1. 
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Figure E-3. Number of fire points per land cover class in the month August for 2019 and 2020 in 
region A1. 
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Figure E-4. Number of fire points per land cover class in the month September for 2019 and 
2020 in region A1. 
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Figure E-5. Number of fire points per land cover class in the month June for 2019 and 2020 in 
region A2. 
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Figure E-6. Number of fire points per land cover class in the month July for 2019 and 2020 in 
region A2. 
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Figure E-7. Number of fire points per land cover class in the month August for 2019 and 2020 
in region A2. 


