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Abstract This work combines optimal control and en-

ergy balancing, passivity based control (EB-PBC) on

the Lie group SE(3), which is the configuration space of

rigid bodies. Generally, EB-PBC achieves stable inter-

actions with unknown environments by explicitly keep-

ing the energy of a closed-loop system bounded. In the

case of rigid bodies on SE(3), this recently allowed

deriving impedance control based on a quadratic en-

ergy [1]. However, choosing such a quadratic control-

law is not connected to any principles from optimal

control, which makes it an arbitrary choice. The deriva-

tion is phrased as an optimal control problem to extend

such geometric impedance control beyond the quadratic

case. Neural Nets and the Lie Group structure of SE(3)

are used to conveniently solve the arising non-trivial

problem of optimization. The final algorithm is vali-

dated on a state-regulation task.

Keywords Nonlinear Control ·Differential Geometry ·
Deep Learning · Robotics

1 Introduction

Passivity-based control (PBC) gained popularity in robo-

tics, because passivity guarantees stable interactions

with unknown, passive environments [2]. The key-feature

is to treat entities as physical systems that exchange

a limited amount of energy [3,4]. When a controller
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is treated as such a physical system with a bounded

energy, this guarantees the stability of the closed-loop

system when in contact with any other physical system

[5,6].

The methodology of energy-balancing passivity-based

control (EB-PBC) [3] explicitly guarantees such a bounded

energy of a closed-loop system. Within the EB-PBC

framework, the use of a quadratic potential on the spe-

cial Euclidean group SE(3) allowed [1] to derive the

geometric impedance control presented by [7]. Yet, this

development of passive controllers for rigid bodies is not

based on any considerations of optimality.

Within the deep learning community, principles from

optimal control are already used to optimize dynamic

systems in the framework of neural ordinary differen-

tial equations (ODEs) [8,9]. Massaroli et al. also suc-

cessfully implemented such principles for passive con-
trol, using the methodology of optimal potential en-

ergy shaping [10]. This allowed the use of a richer class

than quadratic potentials, while guaranteeing asymp-

totic stability with a damping injection, thus effectively

learning an optimal Lyapunov function of the dynamic

system.

However, the optimization procedure presented by

[10] only applies to systems whose configuration is rep-

resented on the Euclidean space Rn. This is not the

case for configurations represented on the special Eu-

clidean Group SE(3), a matrix Lie Group which has

no trivial representation on a Euclidean space. Instead,

SE(3) can be split into four regions, each of which may

be mapped into R6.

This work extends the optimal energy shaping method-

ology of [10] to rigid bodies evolving on SE(3), thus

combining optimal control principles with the passive

control presented in [1]. The main objectives are to de-

fine a general class of EB-PBC controllers on SE(3) and

to optimize the rigid body dynamics with a controller
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from this class. Methods from neural ODEs are applied

for their proven effectiveness in this optimization con-

text [10].

As related work, [11] applies deep learning on com-

putation graphs involving Lie group transformations

SO(3), SE(3) and Sim(3), and show an effective work-

around for connected numerical difficulties of automatic

differentiation. Optimization of neural ODEs on man-

ifolds is treated by Falorsi et al. [12] and Lou et al.

[13], who do not specifically optimize their algorithms

for Lie groups. Further, both works merely consider

flows expressed on the tangent-bundle of a manifold,

whereas the cotangent-bundle is equally essential for

the Hamiltonian systems considered in this work. Nei-

ther approach is continued here, since specificity of al-

gorithms for the case of SE(3) was judged as more valu-

able: when a Lie Group is the manifold of interest, many

steps have more computationally efficient expressions

than for general manifolds.

This article heavily relies on the mathematical frame-

work of Lie groups, in particular SO(3) and SE(3).

That background is shown in Section 2. Here, the con-

cept of representing the elements of SO(3) and SE(3)

by means of vectors in Rn is also introduced, which is

related to the notion of charts collected in an atlas. A

minimal exponential atlas for SE(3) is derived in Sec-

tion 3, and it is shown how this atlas can be used to

efficiently represent functions on SE(3). Such a repre-

sentation is essential for the definition of a potential

energy on SE(3), which is required to construct a con-

trol wrench for the rigid body dynamics presented in

Section 4. Section 4 also sketches a proof of the stabil-

ity for the thus constructed dynamics. The optimal con-

trol problem is defined in Section 5, which also treats its

solution by means of iterative procedures from neural

ODEs. The code that was created to solve this prob-

lem is presented in Section 6, where examples high-

lighting its performance on a state-regulation task are

presented. Based on these results, Section 7 gives a dis-

cussion and Section 8 a conclusion.

2 Background

The special orthogonal group SO(3) and the special eu-

clidean group SE(3) are matrix Lie groups that collect

transformations of the Euclidean 3-space R3. SO(3) can

be described as the collection of rotations and SE(3)

as the collection of simultaneous rotations and trans-

lations. This enables SE(3) to fully describe the pose

of rigid bodies in R3. Define SO(3), and consequently

SE(3) as the matrix Lie groups

SO(3) := {R ∈ R3×3|RTR = I, det(R) = 1} , (1)

SE(3) := {
[
R p

0 1

]
∈ R4×4|R ∈ SO(3), p ∈ R3} , (2)

in both cases using matrix composition as the group

operation. HA
B ∈ SE(3) would represent the pose of a

reference frame ΨB as seen from ΨA, whileHB
A = HA

B
−1

.

The Lie algebras of SO(3) and SE(3) are the vector

spaces so(3) and se(3), respectively:

so(3) := {ω̃ ∈ R3×3| ω̃ = −ω̃T } , (3)

se(3) := {
[
ω̃ v

0 0

]
∈ R4×4| ω̃ ∈ so(3), v ∈ R3} . (4)

The vector space isomorphism ∼: R3 → so(3) is defined

as

∼ ω =∼

ω1

ω2

ω3

 := ω̃ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (5)

Here, ∼ is overloaded to also be used as ∼: R6 → se(3)

for T =

(
ω

v

)
∈ R6 with ω, v ∈ R3, via

∼ T := T̃ =

[
ω̃ v

0 0

]
. (6)

Twists T̃ ∈ se(3) appear as the left and right translated

change-rates of HA
B ∈ SE(3) by

T̃B,AB = HB
A Ḣ

A
B , T̃A,AB = ḢA

BH
B
A . (7)

Both T̃B,AB and T̃A,AB represent the change of pose of

frame ΨB with respect to ΨA, but T̃B,AB is expressed

in ΨB while T̃A,AB is expressed in ΨA. The algebra and

group adjoint are defined, respectively, as the 6 by 6

matrices:

adT =

[
ω̃ 0

ṽ ω̃

]
, AdH =

[
R 0

p̃R R

]
, (8)

with T =

(
ω

v

)
, H =

[
R p

0 1

]
∈ SE(3). The group ad-

joint is used to transform twists between frames of refer-

ence, e.g. TA,AB = AdHA
B
TB,AB , while the algebra adjoint

adT is the rate of change of the group adjoint AdH at

the identity, i.e. adT = ȦdH for H = I and Ḣ = T̃ .

Twists also appear in the exponential map, which

presents an essential, nearly-global diffeomorphism for

SO(3) & SE(3) that allows generating R ∈ SO(3) from
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ω̃ ∈ so(3) via (9) and H ∈ SE(3) from T̃ ∈ se(3) via

(10):

eω̃ =

∞∑
i=0

1

i!
ω̃i = I + sin(θ)˜̂ω + (1− cos(θ))˜̂ω2 , (9)

eT̃ =

∞∑
i=0

1

i!
T̃ i =

[
eω̃ 1

θ2 (I − eω̃)ω̃v + ωT vω

0 1

]
, (10)

with θ = ‖ω‖2 =
√
ωTω and ˜̂ω = ω̃/θ.

For θ < π their inverses are presented in equations

(11) and (12), respectively: the log map for SO(3) is{
log(R) = cos−1( 1

2 (Tr(R)− 1)) A
‖A‖ R 6= I

log(R) = log(I) = 03×3 otherwise ,
(11)

with A = 1
2 (R − RT ) the anti-symmetric part of R,

while ‖A‖ :=
√
− 1

2Tr(A2).

Denoting ω̃ = log(R), the log map for SE(3) is

log(

[
R p

0 1

]
) =

[
ω̃ Qp

0 0

]
, (12)

Q = I − 1

2
ω̃ +

2 sin(θ)− θ(1 + cos(θ))

2θ2 sin(θ)
ω̃2 . (13)

Since limθ→0Q = I, a well-defined Q is given by (13)

regardless of R, such that the logarithm on SE(3) (12)

has the range of validity of the logarithm on SO(3) (11),

bounded only by the rotational part.

Last, the concept of an atlas is essential in the re-

mainder of this article. An atlas A for an n-dimensional

manifoldM is a collection of charts (Ui, xi), where Ui ⊆
M is an open subset ofM that determines the range of

validity for the invertible chart-map xi :M→ Rn. The

chart map xi is said to chart Ui into coordinates on Rn.

Open means, for the level of abstraction needed in this

work, that the boundaries of the region Ui are not part

of Ui. It is also required that the chart regions collected

in the Atlas cover the manifold M, i.e.
⋃
Ui =M.

For example, with M = R2 the scenario in Figure

1 would feature open regions U1 ⊂ R2 and U2 ⊂ R2,

which are then charted into separate coordinates on R2

by maps x1 and x2. The power of this concept is that the

manifoldM could have any of a wide variety of topolo-

gies, not necessarily Euclidean, while an atlas would

still provide coordinates in a Euclidean space. Concepts

like differentiability are also defined in such coordinates,

where e.g. a smooth atlas would have smooth transition

functions x2 ◦ x1, ref. Figure 1.

Additionally, a particular type of Atlas called a min-

imal Atlas is used in this article, which is defined as us-

ing the minimum number of possible charts such that

the manifold M is still covered by the open sets Ui.

Fig. 1: Example of two charts (U1, x1), (U2, x2) ∈ A

3 Defining a Potential on SE(3)

Section 3.1 defines a minimal exponential atlas for SE(3).

Section 3.2 shows how transitions between charts work

and Section 3.3 shows how general functions can be de-

fined on SE(3) by using an atlas.

3.1 Minimal Atlas

Defining a smooth potential function V : SE(3) → R
in charts of the Lie-Group SE(3) is an alternative to

defining such a function on R4×4 and restricting its in-

puts to SE(3) ⊂ R4×4. It was noted by [11] that the

latter definition leads to numerical issues, since the em-

bedding of SE(3) in R4×4 is problematic. To keep the

definition in charts compact, charts be chosen from a

minimal atlas.

Such a minimal atlas Amin requires four charts in

the case of SO(3) and consequentially also in the case

of SE(3). Grafarend et al. [14] derive examples of such a

minimal atlas using Euler / Cardan angles. They draw

on the result that the Lusternik–Schnirelmann category

of SO(3), which gives the minimum number of open

contractible covers of a manifold, is 4.

Here, chart coordinates are constructed from log-

arithmic maps (11) and (12), which will prove to be

computationally desirable, especially since they feature

simple inverse functions and analytic derivatives. De-

fine Rω := eω̃, then a minimal atlas for SO(3) is given

by

ASO(3)
min := {(Uω, xω)|ω ∈ Ω} , (14)

Uω := {Rωeω̃
′ |ω′ ∈ R3, |ω′| < π} , (15)

xω(R) := ∼−1 log(RTωR) , (16)

x−1ω (ω′) = Rωe
ω̃′ . (17)



Optimal Potential Energy Shaping on SE(3) via Neural Approximators 5

Where the admissible ω are collected in the set Ω:

Ω =

{0

0

0

 ,

π0
0

 ,

0

π

0

 ,

0

0

π

} . (18)

For brevity, denote these four elements as ωi with i ∈
{0, 1, 2, 3}. The chart maps xωi are are chosen such that

the zero of each chart corresponds to the orientations

given by R0 = diag(1, 1, 1), R1 = diag(1,−1,−1), R2 =

diag(−1, 1,−1) and R3 = diag(−1,−1, 1). This is also

highlighted in Figure 2. The open set Uωi
contains all

orientations that are reachable from Ri by a rotation

through an angle less than π.

Fig. 2: Orientations corresponding to the zeros of the

four charts in ASO(3)
min

Define Hω :=

[
Rω 0

0 1

]
, then ASE(3)

min follows as

ASE(3)
min := {(Ua,Xa)|(Ua, xa) ∈ ASO(3)

min } , (19)

Uω := {
[
R p

0 1

]
|R ∈ Uω, p ∈ R3} , (20)

Xω(H) := ∼−1 log(H−1ω H) , (21)

X−1ω (T ) = Hωe
T̃ . (22)

The intuition for the open regions Ui of ASE(3)
min is the

same as for ASO(3)
min , and the chart-maps have the same

corresponding configurations for their respective zeros

as they had for ASO(3)
min , just that translations are also

represented in the chart-coordinates. A proof thatASO(3)
min

and ASE(3)
min indeed constitute atlases can be found in

the appendix 9.

Remark 1 The atlas (19) uses twists qj = Xj(H) as

coordinates for H ∈ SE(3). Thus, also expressions such

as adqj are well defined.

3.2 Chart Transitions

Due to strong similarity, chart-transitions are treated

for SE(3) only. To translate coordinates qj ∈ R6 for

X−1j (qj) ∈ Uj ∩Ui from a chart (Uj ,Xj) to (Ui,Xi), the

chart-transition functions are

Xij(qj) = Xi ◦ X−1j (qj) (23)

=∼−1 log(

[
RTωi

Rωj
0

0 1

]
eq̃j ) .

In order to find the transitions between the rates of

change q̇j , the Lie group structure of SE(3) together

with the exponential map provides a computationally

simple relation. Denote by H0
B the pose of a frame ΨB

seen from a reference Ψ0, and let qj = Xj(H0
B). Note

that this is exactly how the chart-coordinates qj are

usually constructed. Then any q̇j is related to a twist

TB,0B =∼−1 HB
0 Ḣ

0
B via the derivative of the exponential

map K(qj) ∈ R6×6 [15]:

TB,0B = K(qj)q̇j . (24)

Because (24) holds for all j, the transition between rates

of change then follows as:

q̇i = K(qi)
−1K(qj)q̇j . (25)

This also provides a transition between co-vectors pj
with the inverse transpose of that relation, as follows

from their defining property pTi q̇i = pTj q̇j :

pi = K(qi)
TK(qj)

−T pj . (26)

This fact that vectors are pushed forward (25) while

co-vectors are pulled back (26) is also highlighted in

Figure 3.

Fig. 3: The transformations of vectors and covectors,

with A = K(qi)
−1K(qj)

Generally, the derivative of the exponential map is

K(qi) =
1− e−adqi

adqi
:=

∞∑
k

(−1)k

(k + 1)!
adkqj , (27)

but the evaluation of this infinite sum can be avoided by

use of the Cayley-Hamilton theorem, which provides an

exact matrix function counter-part to any smooth real

function, in (n − 1) terms for an n-by-n matrix input

[16]. Eade E. [17] further simplified this expression for

SE(3) and also derived the closed form of the inverse of

K(qj), which strongly decreases the computation cost

of such chart-transitions.
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It later becomes important that K(

(
ω

v

)
) is singular for

‖ω‖2 = 2π, but not at the chart-boundaries ‖ω‖2 = π:

det(K(

(
ω

v

)
)) = 0 iff ‖ω‖2 = 2kπ, k ∈ N+ . (28)

A derivation of (28) is shown in the appendix 9.2.

3.3 Function Definition

Denote as C∞(M,R) the collection of all smooth func-

tions F : M → R. Given a finite atlas, any F ∈
C∞(SE(3),R) can be represented as the weighted sum

of chart-components Fi ∈ C∞(R6,R) using a smooth

partition of unity with partition functions σi ∈
C∞(SE(3),R):

F (H) =
∑
i

σi(H)Fi(Xi(H)) . (29)

The σi satisfy

{
σi(H) > 0 H ∈ Ui
σi(H) = 0 otherwise ,

(30)

∀H ∈ SE(3) :
∑
i

σi(H) = 1 , (31)

∀H ∈ SE(3) :
(
σi(H) = 0→ ∀n : Dnσi(H) = 0

)
(32)

As shown in [18], such a smooth partition of unity is

guaranteed to exist on any smooth manifold. Construct-

ing smooth functions on manifolds as in (29) is pre-

sented in much more detail in [19]. One option for the

charts in ASE(3)
min is given by

σi(H) = e−si(H)−1

/
∑
j

e−sj(H)−1

, (33)

si(H) = Tr(HT
ωi
H)/4 .

Here, the si also constitute a smooth partition of unity,

that however at most guarantees to reach all functions

V ∈ C2(SE(3)) via the construction in (29), since not

all derivatives of the si in the i-th chart approach 0 as

the chart-boundary is approached.

4 Dynamics & Control

Section 4.1 defines the closed-loop dynamics that are

to be optimized, Section 4.2 defines a general class of

EB-PBC controllers on SE(3) and Section 4.3 provides

an intuitive proof of stability for this class. Section 4.4

highlights the possible use of a potential on SE(3) for

the control of general manipulators.

4.1 Dynamics

The trajectory of a rigid body in Euclidean 3D space

is fully described by the function H0
b : R→ SE(3) that

gives the relative position and orientation of a frame

Ψb attached to the rigid body with respect to another

frame Ψ0, as a function of time. The twist of the body

with respect to Ψ0, expressed in the body frame Ψb is

T b,0b =∼−1 (Hb
0Ḣ

0
b ) . (34)

If the charts collected in (19) are used to describe Hb
0 =

X−1i (qi) in coordinates qi, then their change-rate fol-

lows directly from (24)

q̇i = K(qi)
−1T b,0b . (35)

The use of (35) already necessitates chart transi-

tions, since K(qi) inevitably has singularities as given

by (28), in general scenario. Without loss of generality,

let the body frame diagonalize the body’s inertia ten-

sor I ∈ R6×6. Then the momentum of that rigid body

is P b = IT b,0b and a derivation e.g. via Newton’s laws

shows that the dynamics of a rigid body follow as

Ṗ b = adT
T b,0
b

P b +W b , (36)

where W b is the external wrench exerted on the body,

likewise expressed in the body-frame. The combined

system of equations given by (35) and (36) is also pre-

sented in [15].

4.2 Control

The external wrench (37) is constructed as a sum of a

potential gradient term W b
V and a damping term W b

D.

That is why it is often referred to as energy shaping

with a damping injection.

W b = W b
V +W b

D . (37)

In this form, a potential gradient term of a function

V ∈ C∞(SE(3),R) with gradient calculated in the i-th

chart enters (36) as

W b
V = −K(qi)

−T ∂V

∂qi
= −dV . (38)

The reason for the previous expression (38) is that the

gradient ∂V
∂qi

transforms as a covector, hence transform-

ing to the body-frame via the inverse-transpose of the

derivative of the exponential map. This is the dual of

the transformation in equation (24). While this is a geo-

metrical fact, this transformation rule is also seen from

the coordinate invariant change-rate of V given in (39),
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which shows that if q̇i transforms as a vector, then ( ∂V∂qi )

must transform as a covector.

V̇ = (
∂V

∂qi
)T q̇i = dV TT b,0b . (39)

Thus, if the potential is expressed as a sum of chart

components Vi using equation (29)

V (H0
b ) =

∑
i

σi(H
0
b )Vi(Xi(H0

b )) , (40)

then gradients can be calculated component wise in

their respective charts and translated back to the body

frame, yielding

W b
V = −

∑
i

K(qi)
−T ∂

∂qi
(σiVi) = −dV . (41)

Viscous damping takes the form

W b
D = −B(H0

b , P
b)P b , (42)

with B(H0
b , P

b) ∈ R6×6 a symmetric and positive def-

inite matrix. The damping matrix can be defined di-

rectly in the body-frame, with chart-componentsBi(qi, P
b)

likewise summed using (29):

B(H0
b , P ) =

∑
i

σi(H
0
b )Bi(Xi(H0

b ), P b) (43)

Remark 2 In this context, Rashad et al. [1] make the

popular yet very particular choice of a constantB(H,P )

for the damping injection, while the potential V (H0
b )

was defined directly on SE(3) with a quadratic depen-

dence on translations and a nearly quadratic depen-

dence on rotations. The gradient of their potential was

derived via a variational approach.

4.3 Stability

From a geometric perspective, passivity of the system

(36) is trivially guaranteed for all sufficiently smooth

potential functions V with a finite lower bound, as was

proven in [10]. This also applies here, since SE(3) can

be embedded in R12 via Whitney’s embedding theorem

[20]. However, stability can also be seen from the power

continuity guaranteed by the energetic structure of the

system: the rate of change of the system’s kinetic energy

Ekin = 1
2P

bTI−1P b is equal to the negative rate of

change of potential energy V :

Ėkin = (Ṗ b)TI−1P b = (Ṗ b)TT b,0b (44)

= (adT
T b,0
b

P b − dV )TT b,0b

= (−dV )TT b,0b = −V̇ .

Here, the second equality uses that by definition P b =

IT b,0b . The third equality substitutes (36) with W b =

−dV and dV as in (41). The fourth equality uses the

fact that (adT
T b,0
b

P b)TT b,0b = P b
T

(adT b,0
b
T b,0b ) = 0 since

∀q ∈ R6 : adqq = 0.

To guarantee asymptotic stability of any strict min-

imum of V , a positive-definite, symmetric damping ma-

trix is added in the form of non-linear, viscous damping

by using W b as defined in (37):

Ėkin = −V̇ − (P b)TBT b,0b ≤ −V̇ (45)

Hence, the energy of the system E = Ekin + V al-

ways has a change-rate Ė ≤ 0, guaranteeing that an

equilibrium P b = 0, dV = 0 is approached as long as

V is smooth and lower-bounded, and B ≥ 0. These low

requirements to V and B mean that the optimization

power of neural nets can be used to find an optimal con-

troller with guaranteed stability, by directly learning a

potential function and positive definite damping.

4.4 Extension to general manipulators

Let the configuration manifold of a general manipulator

be the smooth, n-dimensional Riemannian manifoldM
equipped with metric Ip given by the inertia tensor

of the manipulator and p ∈ M corresponding to the

coordinate-free configuration of the manipulator. The

coordinate-free dynamics read [21]

∇γ′γ′ +∇V = 0 . (46)

In (46), the evolution of the trajectory γ : R → M
is determined by the coordinate-free acceleration ∇γ′γ′
along the tangent vector field γ′ ∈ Tγ(t)M. Here ∇.. is

the Levi-Civita connection induced by Ip, and ∇V is

the coordinate-free gradient of a potential V :M→ R.

Given the choice of a chart Φ : U ⊂ M → Rn,

dΦ : TpU → Rn, the dynamics (46) may be written into

coordinates q, q̇ as

M(q)q̈ + C(q, q̇)q̇ +
∂V

∂q
= 0 . (47)

To use the gradient of a potential on SE(3), define the

direct kinematics f : Rn → SE(3) relating joint-angles

q to a desired frame H0
D ∈ SE(3), for whose task-space

a potential should be defined:

f(q) = H0
D . (48)

Note that the geometric Jacobian J(q) is the push-

forward f∗ of this map from the joint-velocities q̇ to

the twist T 0,0
D ∈ se(3), where TD,0D = AdHD

0
T 0,0
D is dual
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to the previously constructed gradient dV of a smooth

potential V (H0
D).

Likewise, the transpose of the geometric Jacobian

JT (q) acts as the pull-back f∗ from the co-vectors in

se∗(3) to those dual to q̇. Given V : SE(3) → R and

gradient dV ∈ se∗(3), this gives a natural map of the

task-space gradient to joint-torques:

∂V

∂q
= J(q)TAdTH0

D
dV . (49)

Thus, task-space potentials can also be applied to gen-

eral manipulators in a well-defined manner. Since ∂V
∂q

in (49) follows from a bounded potential, stability is

guaranteed in the same manner as in Section 4.3, and

for the same conditions.

Further extensions find themselves in the use of more

involved potential functions V : SE(3)× ...×SE(3)→
R, or simpler sums of potential gradient terms pulled

back from different frames.

If multiple charts are required for the configuration

manifold M, then particular care has to be taken in

the optimization procedure, with the appropriate trans-

formations of the co-state at chart-transitions, as will

become clear in Section 5. The key-step would be to

define the direct kinematics (48) as f : M → SE(3),

to express a globally defined pull-back f∗ in the appro-

priate charts. While the detailed definition of such a

general scenario goes beyond the scope of this article,

it is briefly considered in the Discussion 8, with focus

on the numerical difficulties described in 5.1.

5 Optimization on SE(3)

This Section deals with optimization of a cost of the

type J(H0
b , P

b,W b
θ ) ∈ R, which represents a performance-

metric for a given task. The optimization is to be per-

formed with respect to the n parameters collected in θ,

where H0
b ∈ SE(3), P b,W b

θ ∈ se∗(3) are functions of

time and W b
θ additionally depends on θ:

J(H0
b , P

b,W b
θ ) =E(H0

b (T ), P b(T ),W b
θ (T )) (50)

+

∫ T

0

L(H0
b (t), P b(t),W b

θ (t))dt .

Here, E is a terminal cost at time t = T and L is a

running cost term. Minimization of (50) occurs over a

given distribution of initial values P(xi,0). In addition to

the usual dynamic constraint and a constrained forcing

term, the problem is also subject to a chart-transition

constraints determining the current chart i:

min
θ

Exi,0∼P(xi,0)[J(H0
b , P

b,W b
θ )] ,

s.t.

ẋi = fi(xi,W
b
θ ) , xi(0) = xi,0 ,

xi =

(
qi
P b

)
, H0

b = X−1i (qi) ,

Wθ = −Bθ(H,P )P −K(qi)
−T ∂Vθ

∂qi
, (51)

Bθ = BTθ ≥ 0 ,

i = arg max
i

(σi(X−1i (qi))) .

The chart i needs to be taken into account in order for

(59) to be well-defined for all, as ∂Hi

∂qi
requires kinemat-

ics (35), which are subject to chart-transitions. Then

transformations between charts occur as described in

Section 3.2, but note that the momentum P b is always

defined in the same reference frame, it is the dual quan-

tity to T b,0b = I−1P b. The function fi is given by

fi(xi,Wθ) =

(
K(qi)

−1T b,0b
adT
T b,0
b

P b +W b
θ

)
. (52)

In order to perform the optimization (51), stochastic

gradient descent is used [22], where the parameters θk+1

at the (k + 1)-th iteration follow from the optimal pa-

rameters at the k-th iteration by the update rule

θk+1 = θk −
ηk
N
η

N∑
i=0

∂

∂θk
J(H0

b,i, P
b
i ,W

b
θk

) . (53)

Here, N gives the batch-size and ηk is the positive scalar

learning rate.

To find the sensitivities ∂J
∂θ for this scenario, the

generalized adjoint sensitivity [9] may be derived via

optimal control theory applied [23] in charts. Specifi-

cally, Pontryiagin’s minimum principle is used [23]. To

apply it, define the cost evaluated in chart i as

Ji(xi,W
b
θ ) = J(X−1i (qi), P

b,W b
θ ) . (54)

Then define Lagrange multiplier functions λi(t) ∈ R12,

subsequently called co-states, to define the i-th aug-

mented running cost as

Li = λTi
(
fi(xi,W

b
θ )− ẋi

)
+ Li(xi,W

b
θ ) , (55)

where Li is given by

Li(xi,W
b
θ ) = L(X−1i (qi), P

b,W b
θ ) . (56)

Given this augmented running cost, the so-called Hamil-

tonian Hi follows as Hi = Li − ẏTi ∂Li

∂ẏi
, with yi = ( xi

θ ):

Hi = λTi fi(xi,W
b
θ ) + Li(qi, P

b,W b
θ ) . (57)
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Now, the minimum principle [23] states that the op-

timal input W b
θ minimizes the Hamiltonian (57) when

the state xi and co-state λi evolve according to (58) and

(59), which allows to find the gradient ∂J
∂θ with (60):

ẋi =
∂Hi
∂λ

= fi(xi,W
b
θ ) , (58)

λ̇i =− ∂Hi
∂xi

= −(
∂fi
∂xi

)Tλi −
∂Li
∂xi

, (59)

∂J

∂θ
=
∂E

∂θ
(60)

+

∫ T

0

∂

∂θ

(
λTi fi(xi,W

b
θ ) + Li(xi,W

b
θ )
)
dt .

Boundary conditions are xi(0) = xi,0, λi(T ) = ∂E
∂xi(T ) ,

so the dynamics of λi (59) need to be calculated back-

wards in time. For any required chart-transitions in

(58), switches also need to be taken into account in

(59) and (60). To find the chart transition rules for λi,

note that λi and ẋi are dual quantities (λTi ẋi = λTj ẋj)

and thus transform in a dual fashion from chart i to

chart j. The transformation rule for the ẋi is

ẋi = A(xj)ẋj , A(xj) =

[
K(qi)

−1K(qj) 0

0 I6×6

]
, (61)

such that the co-state λi transforms as

λi = A(xj)
−Tλj . (62)

Summarizing, the optimization (51) can be performed

with stochastic gradient descent (53), where the gra-

dient is calculated using (58) to (60), in which chart-

transitions occur by means of (61) and (62).

Remark 3 Since qj = Xji(qi), one has that Li(xi,Wθ) =

Lj(xj ,Wθ). Because λTi ẋi = λTj ẋj , one also has

λTi fi(xi,Wθ) = λTj fj(xj ,Wθ), giving Li = Lj and Hi =

Hj . Hence, a chart-switch is indeed well-defined and the

same cost (50) is optimized at any given point, irrespec-

tive of the current chart i.

Remark 4 The symmetric, positive-definite condition of

Bθ will be implicitly enforced in the optimization, by

choosing a diagonal Bθ with positive elements. This is

possible without loss of generality, since an optimal Bθ
depending on the full state xi could still cover all cross-

terms that would otherwise be present. [10]

5.1 Numerical Considerations

Teed et al. [11] point out that Pytorch’s automatic

differentiation Autograd is not suited for evaluating

derivatives of the exponential and logarithmic maps

on SE(3). Autograd likewise makes large numerical er-

rors when differentiating the derivative K(q) of the ex-

ponential map, which becomes necessary in (59). The

work-around was to manually construct this second deriva-

tive and parts of (59) where the exponential map is dif-

ferentiated (i.e. in evaluating ∂B
∂q . This is worthwhile,

since K(q) plays an essential role in the optimization of

ODE’s on SE(3) and since the manual differentiation

of other terms also always has the same structure.

Differentiating the B(H,P ) with respect to the qi
is strongly analogous to the method in (41), so this is

only shown in the appendix 9.3. To avoid clutter, the

expanded form of the adjoint dynamics (59) is likewise

only in the appendix 9.3. In the following, only the dif-

ferentiation of K(q) is shown.

Denoting q = (ω, v)T and ‖ωi‖2 = θ, the derivative

K(q) of the exponential map is found via the Caley-

Hamilton theorem [16]:

K(q) =

5∑
i=0

ai(θ)ad
i
q . (63)

This gives the derivative

K̇(q) =

5∑
i=0

ȧi(θ)(adq)
i + ai(θ)

d

dt
(adq)

i , (64)

and the derivative of the inverse is found as

K̇−1(q) = K−1(q)K̇(q)K−1(q). (65)

The functions ai(θ) and their derivatives are given in

the appendix 9.3. Note also, that the i-th partial deriva-

tive of K(q) is found by setting q̇i equal to the i−th unit

vector when computing K̇(q). Further, since the trans-

pose commutes with the time-derivative, the derivatives

of K(q)T are not treated separately.

6 Training

In Section 6.1 an overview of the code and its depen-

dencies is given and in Section 6.2 the training of a

quadratic controller alike that of [1] is set up to be opti-

mized in the presented framework, for a state-regulation

task. The results of this training are shown in Section

6.3.

6.1 Code Infrastructure

This code is available at github.com/ShapingSE3. It is

conceptually divided into higher and lower level func-

tionality.
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On a high level, the libraries pytorch,

pytorch-lightning and wandb are used for stream-

lined optimization and tracking of training progress. On

a lower level, the library torchdyn [24] adds function-

ality for training of neural ODEs, and custom changes

were made to the sensitivity, odeint hybrid and

ODE problem, which were readily included with torchdyn

to allow training of neural ODEs when chart-switches

occur. At the lowest level, all required functions for

charting, chart-switches and computation of gradients

and functions on SE(3), as well as the partition of unity

were written for single inputs in the custom library

potential shaping SE3 using exclusively pytorch func-

tions. Functions in potential shaping SE3 were writ-

ten to allow use of functorch/vmap to efficiently batch

inputs, which facilitates efficient training with arbitrary

batch-sizes.

6.2 Experimental Setup

The optimization performed is largely equivalent to that

given in Section 5. A different control law for the wrench

W b is used, namely the quadratic potential controller

of [1] in a setting of motion control.

Let the dynamics be given by (36), with the pose

H0
b of the body’s center-of-mass-frame Ψb as seen from

an inertial reference Ψ0, and the inertia tensor I =

diag(0.01, 0.01, 0.01, 1, 1, 1). Here, the body’s center of

mass is controlled to reach the inertial position H0
d = I.

The control law of [1] in this setting of motion control

is:

W b
θ = W b

V +W b
D , (66)

W b
V =

(
τ bV
f bV

)
, (67)

τ̃ bV = −2sk(G0R
d
b )− sk(GtR

b
dp̃
d
bR

d
b ) , (68)

f̃ bV = −Rbdsk(Gtp̃
d
b)R

d
b − sk(GtR

b
dp̃
d
bR

d
b ) , (69)

W b
D = −KDT

B,0
B . (70)

Here, sk(A) = 1/2(A−AT ) denotes the skew symmetric

part of a matrix A. The matrices G0, Gt ∈ R3×3 and

KD ∈ R6×6 are taken diagonal, where each diagonal

element is determined by eθi . The 12 parameters θi are

then learned during the optimization described by

min
θ

Exi,0∼P(xi,0)[J(H0
b , P

b,W b
θ )] ,

s.t.

ẋi = fi(xi,W
b
θ ) , xi(0) = xi,0 ,

xi =

(
qi
P b

)
, H0

b = X−1i (qi) ,

Kd = KT
d ≥ 0 , G0 = GT0 ≥ 0 , Gt = GTt ≥ 0 ,

i = arg max
i

(σi(X−1i (qi))) .

Here, the distribution P(xi,0) uniformly samples

θ ∼ [0, π] , (71)

d ∼ [0, 1] , (72)

θp ∼ [0, 0.03] , (73)

dp ∼ [0, 1] . (74)

Then, ω, v, ωp, vp are sampled from the normal distri-

bution N (µ, σ2) with standard deviation µ = (0, 0, 0)T

and variance σ2 = I3×3. The initial xi is constructed as

xi =

(
qi
P b

)
(75)

q =

(
θω/‖ω‖2
dv/‖v|2

)
, (76)

i = arg max
i

(σi(exp(q̃)) , (77)

qi = Xi(exp(q̃)) , (78)

P b =

(
θpωp/‖ωp‖2
dpvp/‖vp|2

)
, (79)

where σi are chosen as in (33) and the Xi are taken from

ASE(3)
min (19). The choice of i and the large initial distri-

bution for θ guarantees that training indeed occurs over

all four charts. The cost J(H0
b , P

b,W b
θ ) is constructed

as

J(H0
b , P

b,W b
θ ) =E(H0

b (T ), P b(T )) (80)

+

∫ T

0

‖(W b
θ (t)‖2dt .

Here, the final cost E(H0
b (T ), P b(T )) is given by the

negative log of the probability of a target density con-

structed as in (75), but with sampling of θ, d, θp, dp from

normal distributions:

θ ∼ N (0, 1e− 2) , (81)

d ∼ N (0, 1e− 2) , (82)

θp ∼ N (0, 1e− 5) , (83)

dp ∼ N (0, 1e− 3) . (84)
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Remark 5 The sampling of θ in the target distribution

glances over the fact that a distribution for θ should

have finite support, but this can be ignored for normal

distributions with sufficiently small variance σ2.

6.3 Results

A small horizon optimization is performed with final

time T = 0.1, batch-size of 2048 and learning rate 1e−3

using the ADAM optimizer. Training was performed on

a GTX-1080ti GPU over 40 hours. For the ODE solver,

DormandPrince45 was used with absolute and relative

tolerances of 1e−8. The results of this optimization are

shown in Figure 4.

Clear training progress can be seen by the decrease

of the total and running loss in Figures 4a and 4b. This

decreased loss is achieved by damping out motion as

quickly as possible, as becomes clear from Figures 4c

and 4d that show the initial and final momentum during

training, respectively for the angular and linear momen-

tum. Given the presented training specifications, reduc-

ing such excess momentum appears to be strongly pri-

oritized over reducing the deviation from the goal pose,

as becomes clear from Figures 4e and 4f. These figures

show the initial and final deviation from the goal pose

via the angle and distance from the goal pose, respec-

tively. Initial and final angle /distance show a strong

overlap because they barely change over the controlled

time. In fact, they change less as the controller training

progresses.

7 Discussion

The presented optimization strategy in multiple charts

of a minimal atlas clearly works. However, there is cur-

rently considerable numerical instability in the sensi-

tivity calculation. This prevented showing optimization

results for a longer time horizon, as well optimization of

the class of controllers derived in this work. It should,

however, be entirely possible to prevent such numeri-

cal instability given the time for an alternative imple-

mentation of the sensitivity calculation. Currently, the

forward pass only saves the final conditions. The back-

ward pass then uses these final conditions in the sensi-

tivity calculation to calculate backwards in time both

the dynamics of the state (58) and the dynamics of

the co-state (59). It is these backwards dynamics of the

state that are unstable, and this issue can be prevented

by saving a sufficient number of points from the for-

ward dynamics for multiple shooting in the backward

pass, which is much more robust than the current single

shooting.

The use of the Lie group structure of SE(3) in the

form of a minimal exponential atlas for the definition of

a general class of controllers lead to a natural definition

of a control structure via canonical mappings defined

for SE(3). By these canonical mappings, in particular

the derivative of the exponential map is meant. Imple-

mentation of this class of controllers in a state of the

art framework for deep learning was rather friction-less,

and allowed reusing large chunks of existing structure

regardless of the more involved topology of SE(3) com-

pared to usual spaces. However, numerical issues also

appear in computing partial derivatives and gradients

of the defined functions, which required extra care to

be taken in such steps. The analytic definition of some

derivatives lead to slow functions. While computation-

ally efficient implementations of these are entirely pos-

sible, they likewise demand extra time for implementa-

tion.

In the context of general manipulators such numer-

ical issues are not expected to become more involved

when differentiating the geometric Jacobian in the sen-

sitivity calculations. This is because the geometric Ja-

cobian should be problem-free when being differenti-

ated by autodifferentation, since the geometric Jaco-

bian largely consists of functions such as sines and cosines.

8 Conclusion

In this work the control paradigm of optimal energy

shaping was extended to rigid bodies with configuration

space on SE(3). The core principle of this approach was

to consider the structure of the Lie group SE(3) from

a design stage on, heavily using the structure provided

by SE(3) in the ensuing definition and optimization of

a general class of energy balancing, passivity based con-

trollers. As opposed to previously available controllers

of this type, optimization plays a crucial role and allows

the learning of tasks in a robot’s work-space, rather

than merely achieving stabilization or trajectory track-

ing. Future work prior to actually handing in this article

to a journal will aim at increasing the numerical side of

these algorithms and to alleviate stability issues in sim-

ulating the dynamics backward from a final condition,

as is done in the sensitivity update. The optimization

will also be performed for the presented general class of

potentials and damping injections on SE(3).
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9 Appendix

9.1 Completeness of Minimal Atlas

The completeness of ASE(3)
min follows from completeness

of ASO(3)
min , so only the latter is shown here. For the i-th

chart in ASO(3)
min , denote

Ωi := SO(3) \ Uωi
. (85)

This section will show that
⋃
iΩi = ∅. Let ω′i be the

coordinates of a matrix R = Rωi
Rω′i in chart i. For

‖ω′i‖2 = π, a matrix R is retrieved that is not part of

the chart-region corresponding to the i-th chart. Via

equations (11) and (16), ‖ω′i‖2 = π corresponds to

cos−1(
1

2
(Tr(RTωi

R)− 1)) = π , (86)

from which follows the condition for matrices unreach-

able for the chart associated with Rωi

Tr(RTωi
R) = −1 . (87)

So the setΩi of unreachable matrices for a chart (Ui, xi) ∈
ASO(3)

min are

Ωi = {R | Tr(RTωi
R) = −1} . (88)

Denoting cx := cos(‖x‖2), sx := sin(‖x‖2), ω̂ = ω
‖ω‖2 =

(ω̂1, ω̂2, ω̂3)T this condition means that the set
⋃
iΩi

is found by the solutions ω′ to equations (89) to (92),

using R = Rω′ .

Tr(RTω0
R) = Tr(R) = 1 + 2c′ω = −1 , (89)

Tr(RTω1
R) = −1 + 2(1− c′ω)ω̂2

1 = −1 , (90)

Tr(RTω2
R) = −1 + 2(1− cω)ω̂2

2 = −1 , (91)

Tr(RTω3
R) = −1 + 2(1− cω)ω̂2

3 = −1 . (92)

While it can be readily shown that this has no valid so-

lution andAmin must cover all SO(3), this is better seen

by recognizing that the functions pi(R) = (Tr(RTωi
R) +

1)/4 constitute a partition of unity: they always range

between 0 and 1, they are per definition only 0 outside

the i-th chart region, and their sum is always 1:∑
i

(Tr(RTωi
R) + 1)/4

= (1 + 2cω − 3 + 2(1− cω))/4 + 1 = 1 . (93)

Hence, there is always a valid chart given by pi(R) > 0

and Amin is indeed a minimal Atlas.

9.2 Invertibility of K

For q = (ω, v)T ∈ R6 The eigenvalues of K(q) can be

expressed as a function of ω by first writing adq in its

Jordan normal form

adφ = PJP−1 , (94)

where J is the block-diagonal Jordan normal form and

P is an invertible matrix. Note that with the scalar

function f(x) = 1−e−x

x , K(q) = f(adq) = Pf(J)P−1

has the determinant

detK(φ) = det(f(J)) . (95)

Here, J is given as

J =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 i‖ω‖2 sv 0 0

0 0 0 i‖ω‖2 0 0

0 0 0 0 −i‖ω‖2 sv
0 0 0 0 0 −i‖ω‖2

 , (96)

where sv = sign(‖v‖2) is 0 if |v| = 0 and 1 otherwise.

This results in

f(J) =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 f(i‖ω‖2) svf
′(i‖ω‖2) 0 0

0 0 0 f(i‖ω‖2) 0 0

0 0 0 0 f(−i‖ω‖2) svf
′(−i‖ω‖2)

0 0 0 0 0 f(−i‖ω‖2)

 .
(97)

Such that

det f(J) = f(i‖ω‖2)2f(−i‖ω‖2)2 . (98)

Note that

f(iαπ) = (sin(απ) + i(cos(απ)− 1))/(απ) , (99)

such that K(q) becomes singular for α = 2 but not

α = 1, i.e. ‖ω‖2 = 2π but not ‖ω‖2 = π. This also

shows that K(q) becomes singular whenever ‖ω‖2 is an

integer multiple of 2π.
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9.3 Differentiating K

Let sinc(θ) := sin(θ)/θ, then the ai(θ) are given by

a0 = 1 ,

a1 = −1

2
,

a2 =
1

4θ2
(8 + 2 cos(θ)− 10 sinc(θ)) ,

a3 =
1

4θ3
(−4θ +

12− 12 cos(θ)

θ
− 2 sin(θ)) ,

a4 =
1

4θ4
(4 + 2 cos(θ)− 6 sinc(θ)) ,

a5 =
1

4θ5
(−2θ +

8− 8 cos(θ)

θ
− 2 sin(θ)) .

Then the derivatives of the ai follow as d
dtai = θ̇ ddθai

with θ̇ = ωT ω̇
θ and d

dθai given by

d

dθ
a0 = 0 ,

d

dθ
a1 = 0 ,

d

dθ
a2 =

1

2θ3
(15 sinc(θ)− 8− 7 cos(θ)) ,

d

dθ
a3 =

1

2θ3
(
24 cos(θ)− 24

θ2
− cos(θ) + 9 sinc(θ) + 4) ,

d

dθ
a4 =

1

2θ5
(15 sinc(θ)− 8− 7 cos(θ)) ,

d

dθ
a5 =

1

2θ5
(
24 cos(θ)− 24

θ2
− cos(θ) + 9 sinc(θ) + 4) .

9.4 Full Adjoint Dynamics

Einstein notation is used for clarity in this Section, since

the derivatives in (59) involve the differentiation of ma-

trices with respect to vectors. The chart is denoted as

a preceding superscript, i.e. the j-th element of λi from

Section 5 would read iλj . For readability, this preced-

ing superscript is largely left out. The change-rate of

the i-th element of the co-state in any chart is then

λ̇i = − ∂

∂xi
(λkf

k + L) . (100)

Here, the first six elements of f i are given by

f i = (K−1)ij(I−1)j,kPk , (101)

and the final six are given by

fi = (adT(I−1)j,lPl
)ki Pk −Bki Pk − dVi . (102)

In this, the Bki and dV are constructed as described in

Section 4.1:

dV =
∑
n

(nK−T )ji
∂

∂qj
(nσV ) , (103)

Bki =
∑
n

n
σB

k
i . (104)

The partial derivatives of (101) are

∂

∂qi
(λkf

k) = λk(
∂

∂qi
K−1)kl (I−1)l,mPm , (105)

∂

∂Pi
(λkf

k) = λk(K−1)kl (I−1)l,mδm,i . (106)

The partial derivatives of (102) are

∂

∂qi
(λkfk) = λk

∂

∂qi
(Bki Pk + dVk) (107)

= λk
∑
n

nAji

(
∂ nσB

k
i

∂qj
Pk

+
∂(nK−T )lk
∂(nqj)

∂ nσV

∂(nql)

+ (nK−T )lk
∂2 nσV

∂(nqj)∂(nql)

)
.

∂

∂Pi
(λkfk) =λk

(
(adT(I−1)j,lδil

)lkPl (108)

+ (adT(I−1)j,lPl
)lkδ

i
l −

∂Blk
∂Pi

Pl −Blkδil
)
.

To compute derivatives of K refer to Section 5.1, the
nAji are given by

nAji = (K(mqi)
TK(nq)−T )ji , (109)

and m is the chart of λi.
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