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Abstract: 

This research investigated the performance of a surrogate modelling approach for the 

simulation of solar radiation potential on the vertical surfaces of tall buildings. Surrogate 

modelling was used to approximate the input-output behaviour of the existing simulation 

model. The Random Forest (RF) machine learning approach was used to investigate three 

different scenarios, namely (1) Random variation, (2) Grid variation, and (3) Uniform 

variation, and a Genetic Algorithm was used as the hyperparameter optimisation. A case study 

using a building in Sir George William (SGW) campus of Concordia University in downtown 

Montreal Canada was performed to investigate the performance of surrogate models. As a 

result, even by only using a small sample size of the dataset when developing the RF, surrogate 

modelling can give 94% accuracy to approximate the simulation of solar radiation. From the 

three scenarios, the best accuracy is obtained when using the Random variation method. In 

short, the solar radiation simulation is very complex and too sensitive to the location and 

shadow effect. Therefore, simplification of those factors cannot be made to approximate the 

solar radiation potential. Also, using RF, the computational time improved by 16 times faster 

than when using the existing simulation model. 

 

Keywords: Surrogate modelling, machine learning, genetic algorithm, solar radiation, vertical 
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1. Introduction 

The tall building sector has approximately 32% share of total energy demand throughout the 

world (Khatib, 2012). These buildings are responsible for the annual consumption of 40% of 

the total energy used across the developed countries (Yüksek & Karadayi, 2017). Not to 

mention, a large portion of these energy still uses fossil-based energy source, which is 

inevitably limited and depleting. However, the worldwide energy consumption records show 

that the electrical energy demand will continuously increase (IEA, 2018). This rise occurred 

due to the forecasted growth of the world population, leading to a vast number of new buildings. 

In the long term, it would not be possible to meet this consumption demand by supplying 

energy to various locations from a centralised source of energy. Therefore, in recent years, 

researchers and building planners have begun to focus on creating decentralised energy 

generation where each building can (partly) supply its own energy (Marszal, et al., 2011).  

Photovoltaic (PV) solar energy is one of the best sources of clean energy used in the building 

environment to substitute fossil-based energy partially and can be used to supply local energy 

demand (Kåberger, 2018). This energy is harvested by installing solar panels on the exterior of 

buildings. Solar panels, also known as PV panels, are commonly installed on the building’s 

rooftop or any horizontal or tilted surfaces. Nevertheless, the current market of PV panels 

allows the installation on various surfaces of building surfaces. For instance, building-

integrated photovoltaics (BIPV) enables solar energy harvesting from buildings’ façade, as 

shown in Figure 1. BIPVs can reduce the overall material cost because they serve multiple 

functionalities (Raugei & Frankl, 2009; Jelle et al., 2012). This means vertical surfaces, too, 

have the opportunity to produce a high amount of energy if panels are strategically installed on 

them (Catita et al., 2014). It is shown that PV panel installation on the vertical surfaces of tall 

buildings is promising (Liang et al., 2014; Salimzadeh, et al., 2020). The effective use of 

vertical surfaces for harvesting clean energy on a tall building is essential. After all, it is shown 
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that the average height of buildings in an area has a negative impact on energy consumption 

because it increases the population density (Resch, et al., 2016; Godoy-Shimizu, et al., 2018).  

   
Figure 1 Examples of using PV modules on Facades (Gibson, 2017; Smith & Gill, 2014) 

Despite the potentials, vertical surfaces of tall buildings are seldom leveraged for harvesting 

solar energy. A study conducted over an urban area in Madrid showed that despite the vast 

surface areas that can be used for PV installation, only 7.22% of the area’s façade is considered 

usable for the photovoltaic system. This number is based on the current practices and 

regulations on the minimum thresholds required for PV installation (Esclapés, et al., 2014). 

Numan et al. (2020) identified the barriers against the maximum use of PV panels. They 

concluded that one obstacle is that tall buildings are usually located in dense residential or 

commercial areas, where many other buildings surround them. Because of the shadow effect 

of buildings on one another, vertical surfaces receive considerably less solar radiation than 

horizontal surfaces. That is why the efficiency of vertical solar panels is heavily dependent on 

how their layout is designed (Numan, et al., 2020). In other words, the economically viable use 

of vertical surfaces of tall buildings requires strategic placing and spacing of panels on the 

vertical surfaces, i.e., the layout design (Salimzadeh, et al., 2020).  

To assess the potentials of different vertical surfaces for radiation harvesting and to find the 

most efficient PV’s layout design, a detailed solar simulation of the building surfaces 

considering the surroundings is required (Gurupira & Rix, 2017). The PV layout is typically 

determined by multiple factors such as the location, sizes, and orientation of panels 

(Middelhauve, et al., 2021).  
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There are many different approaches for the simulation and assessment of solar radiation 

potentials of urban surfaces (Hwang, et al., 2012; Kucuksari, et al., 2014; Freitas, et al., 2015; 

Koo, Hong, Lee, & Kim, 2016). Conventionally, physics-based numerical models, e.g., 

Atmospheric and Topographic Model (ATM), were used to assess the solar potential of 

surfaces in an urban environment  (Paulescu, et al., 2012). But these earlier methods were only 

applicable on large scales and could not support detailed surface-level analysis. Later, and with 

the rising popularity of Geographical Information Systems (GIS), solar radiation analysis could 

be done on a more granular level using 2D models developed based on Digital Elevation Model 

(DEM), Light Detection and Ranging (LiDAR), and photogrammetric approaches (Kumar, et 

al., 1997; Jochem, et al., 2009; Chow, Fung, & Li, 2014). However, GIS-based methods of 

solar radiation analysis were limited to horizontal surfaces or flat rooftops because they were 

only using 2D and 2.5D models, which lacked the sufficient level of 3D detail (Carneiro, et al., 

2010; Esclapés, et al., 2014).  

This situation has changed in recent years with the advent of 3D modelling methods (Brown, 

2016). Nowadays, software packages like RADIANCE can perform solar analysis on 

volumetric 3D models and curved geometries using accurate ray-tracing algorithms (Ward, 

1994). In fact, more sophisticated methods and tools such as Cumulative Sky and Daysim can 

perform by considering climate data, shading factors, and surrounding buildings (Mardaljevic, 

2000; Robinson & Stone, 2004). Although these tools and methods use 3D models as an input 

to consider the shading effect, they still take an indiscriminate approach towards different 

surfaces. They, therefore, are not amenable for the analysis of PV modules that can only be 

used on specific types of surfaces. For instance, BIPV modules or transparent PV modules that 

can be used on windows. This limitation is a significant factor, especially for installing PV 

modules on vertical surfaces, because the diversity of vertical surfaces (e.g., windows, walls, 

curtain walls, balconies) requires surface-specific simulation of surfaces. 
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With the improvement of PV modules technology and supporting simulation tools, researchers 

started to consider the vertical surfaces of the buildings in the urban area for solar radiation 

analysis (Gooding, et al., 2013; Esclapés, et al., 2014; Martín, et al., 2015). In recent years and 

with the rising popularity and availability of Building Information Models (BIM), it has 

become possible to leverage the semantic data embedded in the 3D model of buildings to 

perform surface-specific simulation of building surfaces. Several recent studies have 

demonstrated this possibility (Ning et al., 2018; Al-Janahi et al., 2020; Salimzadeh, et al., 

2020). For instance, the authors have developed a parametric model that can generate a wide 

range of PV layout alternatives considering the surface type and layout of the module 

(Salimzadeh, et al., 2020). In this model, the user can specify the value of pre-defined 

parameters (e.g., number and location of panels, the tilt angles, etc.) to generate and assess a 

specific design alternative. However, on their own, these parametric models are not sufficient 

to identify the best layout design. It is not enough because the design space of this optimisation 

problem can become so large that an exhaustive search of all possible alternatives becomes 

practically and computationally very challenging. Therefore, it is imperative to integrate these 

parametric models with an optimisation method to find the (near) optimum design using a more 

efficient search strategy. This framework of integrating a parametric model with an 

optimisation strategy for design problems is commonly referred to as simulation-based 

optimisation or generative design (Nguyen et al., 2014).   

Given the extended size of the design space in these simulation-based optimisation problems, 

meta-heuristic optimisation methods, e.g., Genetic Algorithm (GA), are often considered 

(Wang & Schafer, 2020; Thrampoulidis et al., 2021). Many randomly selected initial solutions 

are evaluated and transformed using evolutionary operations in these optimisation methods to 

find a near-optimal solution. While proven to be effective, the metaheuristic models are 

sensitive to several parameters. Most importantly, the optimality of the final result depends 
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heavily on the evaluated number of solutions, i.e., the higher the number of solutions, the 

greater the chance of optimality. The authors have previously presented a generative design 

framework for PV layout design by integrating a BIM-based parametric model and GA 

(Salimzadeh N. , 2021). 

Nevertheless, the main problem with the current generative design framework is that the 

parametric modelling platform is inherently physics-based. In other words, for each design 

alternative, the simulation needs to perform the ray-tracing approach for every single panel and 

for every day to assess the amount of annual solar radiation potential. This makes the 

simulation platform computationally expensive. When combined with a meta-heuristic 

optimisation method, where several generations of a large population of design alternatives 

need to be explored, the parametric platform can be inefficient because of the computation 

time. This is especially important because PV layout optimisation is only one of many criteria 

that need to be considered for the optimal design of building facades. Other criteria, such as 

insolation and aesthetics, also need to be considered. Therefore, in the general practice of 

building design, having a computationally very expensive pipeline for the PV layout design 

may push designers to forgo the use of the analytical approach for the façade design and restore 

to heuristic-based methods.  

One potential approach to address this problem is to use Machine Learning (ML) models that 

can substitute the computationally expensive simulation model. This substitute model is known 

as a meta-model or surrogate model (Arisha & Abo-Hamad, 2010). As shown in Figure 2, a 

machine-learning model can learn from a large volume of training data and identify 

relationships and patterns between a set of dependent and independent variables, i.e., inputs 

and outputs of the simulation model (Elfaki et al., 2014). Surrogate models are shown to be 

very useful for reducing the computational intensity of the simulation-based optimisation 

problem (Karnon, et al., 2012), because they can reduce the computational intensity of the 
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optimisation through an accurate mathematical approximation of the physics-based simulation 

models. Bornatico et al. (2013) applied surrogate modelling to optimise PV systems and 

demonstrated that the computation time could be reduced to 150 times less than physics-based 

simulation. Similar results were reported by Perera et al. (2019). However, this study only 

considered the optimisation of the PV system from the mechanical perspective and not the 

layout design. Xu et al. (2017) also showed promising results in applying surrogate models for 

the building façade design. However, only the impact of using a default BIPV system on the 

cost of the overall design was considered and not the detailed layout design.  

To the best knowledge of the authors, the surrogate modelling approach on design optimisation 

of solar panel layout on the building façades has not been considered before.  

 
Figure 2 Schematic representation of meta-modelling 

1.1. Research Objective and Scope 

On the premise of the above research gap, this study aims to investigate the feasibility and 

effectiveness, i.e., in terms of prediction accuracy, of using a meta-model to assess the solar 

radiation potential of building façade. To this end, first, a framework will be developed to apply 

the concept of surrogate modelling for the approximation of the PV layout parametric model 

developed previously by Salimzadeh et al. (2020). Different approaches for the development 

of these surrogate models will be explored. Finally, the performances of the other surrogate 

models are assessed through comparison with the results of the parametric model.  
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This newly developed framework is expected to provide the building façade designers with an 

insight into how data-driven metamodeling techniques can help incorporate a better analytical 

approach in building design. It should be highlighted that this research focuses only on 

developing the surrogate model for the vertical surfaces of the building, and thus the rooftop 

PV modules are not considered. Nevertheless, it is expected that the same method can be 

applied to the rooftop as well.   

The remainder of this paper is organised as follows. Section 2 presents the proposed framework 

and various metamodeling approaches. Section 3 elaborates on implementing the proposed 

method into a case study and is followed in Section 4 by the corresponding results. Finally, the 

conclusions, limitations, and future work are presented in section 5. 
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2. Proposed method 

This chapter presents the overall method applied in this research to develop the surrogate model 

of solar radiation potential. Figure 3 shows the overview of this method. Overall, the proposed 

method consists of three phases. The first phase is allocated to building the dataset that will be 

used to develop the machine learning model. In this phase, several datasets will be generated 

based on different strategies for approximating solar panel behaviour. Next, in Phase 2, an ML 

method is used to develop the surrogate model for other datasets. Then, the performance of the 

developed surrogate model is evaluated through comparison with the physics-based simulation 

model.  

2.1. Building Datasets 

As shown in Figure 3, the first phase is dedicated to building the dataset used for training and 

validation of the surrogate model. To this end, a previously developed parametric model of the 

façade PV module is used (Salimzadeh, et al., 2020). For completeness, a brief overview of 

this parametric model is explained below.  

2.1.1. Simulation-based Parametric Model 

Figure 4 shows a schematic representation of how the PV module layout parametric model 

functions. Figure 4(a) shows that the potential candidate location for installing PV modules is 

first selected on the external surfaces. In this step, only feasible surfaces are considered. 

Therefore, if there are elements on a specific surface, e.g., a mechanical unit, that hampers the 

installation of the PV module, the surface is excluded. Next, the parametric model allows the 

user to specify the geometric specification of the PV module in terms of width (Wi),  length 

(Li), and tilt angle (θi), as shown in Figure 4(b). Finally, the user-specified layout is determined 

in terms of panels that are installed on the desired location (Pi), as shown in Figure 4(c).
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Figure 3 The framework of the research method
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(a) (b) 

 
(c) 

Figure 4 Simulation-based parametric model of PV module layout 

2.1.2. Data Structure for Machine Learning  

In preparing the data for ML development, it is vital to identify the relevant features that will 

be used for the training of the ML model. The selection of features determines the parameters 

deemed to be suitable for predicting the PV module radiation potential. In this research, the 

following features are considered: (1) location of the PV Module: the location of the PV 

module, as shown in Figure 4(a), is an important factor in determining the radiation potential. 

The location of the panel captures the impact of geographical location, building orientation as 

well as the morphology of the surrounding of the building. The location can be expressed in 

terms of a cartesian coordinate of the centre point of the installation (i.e., x, y, z) or using 

ordinal data that represents the index of installation point, e.g., point “1” represents (x = 10, y 

= 15, z = 25). Both possibilities will be evaluated in this research; (2) size of the panel: the size 

of the panel, i.e., W and L in Figure 4(b), has an impact on the amount of solar radiation; (3) 

orientation of the PV module: this represents the tilt angle of the PV module in terms of θ; (4) 

size and orientation of panels above the PV module: the size and orientations of panels above 

any given PV module have an impact on the radiation potential of the PV module because of 

the shading effect they have on the panel. However, due to the impact of building orientation 
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on the incident angle of radiation, it can be imagined that it is not only the panel immediately 

above the studied PV module that may cast shade but also panels further away on left and right, 

as shown in Figure 5. Therefore, this study considers the size and orientation of panels above, 

top left and top right of the PV module. It should be highlighted that depending on the 

geographic location and orientation of the building, even panels further away might have a 

shading effect. However, in this research, it is assumed that the immediately adjacent panels 

capture the majority of the panel-induced shading effect. Therefore, the impact of panels further 

away can be ignored. In case any of these locations do not have a PV module, the W, L and θ 

are considered zero, as explained earlier in Figure 4(c).  

   
 

Figure 5 Shading effect of other surrounding PV modules  

 

As for the labels (or output variables) of the machine learning model, the Annual Solar 

Radiation (ASR) can be used in terms of MWh. Ultimately, each data point in the dataset has 

a structure shown in Table 1. It should be highlighted that if the panel size is considered the 

same for all the panels, the pertinent variables can be ignored for the development of the 

machine learning model. 
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Table 1 Data structure for the development of the ML model of the PV panel layout design 

Features (i.e., Input Variables) Label 

 (i.e., Output) 

Point 

index 

Location Size Tilt Top-left Panel Top Panel Top-right Panel Annual Solar 

Radiation Width Length Width Length Tilt Width Length Tilt Width Length Tilt 

i 𝑋𝑖 𝑌𝑖 𝑍𝑖 𝑊𝑖 𝐿𝑖 𝜃𝑖 𝑊𝑇𝐿,𝑖 𝐿𝑇𝐿,𝑖 𝜃𝑇𝐿,𝑖 𝑊𝑇,𝑖 𝐿𝑇,𝑖  𝜃𝑇,𝑖 𝑊𝑇𝑅,𝑖 𝐿𝑇𝑅,𝑖 𝜃𝑇𝑅,𝑖 𝐴𝑆𝑅𝑖 

 

2.1.3. Development of different Scenarios  

The common practice in the development of surrogate models is to generate a large number of 

random solutions that is well-balanced and distributed within the design space and use it as the 

dataset for the training. However, in the context of this research, a number of other scenarios 

can be envisioned to develop the ML model, mainly to simplify the dataset development 

process. In total, three different scenarios are considered in this research, as shown in Figure 

6. In Scenario one, as shown in Figure 6(a), a number of entirely random solutions are 

generated using the parametric model explained above. This scenario is called random 

variation, and the same data structure presented in Table 1 is used to build the dataset.  

In Scenario 2, as shown in Figure 6(b), the design space is discretised into larger cells. It is 

assumed that the behaviour of PV modules in that portion of the façade can be represented by 

the four-panel layout shown in Figure 5. To this end, first different cells are formed on the 

façade of the building. Then, PV modules are placed at the centre of the cell as well as above, 

top left, and top right of the cell. Next, each panel is tilted between 0° to 90° with an increment 

of 10°. This procedure creates a combinatorial set consisting of 10,000 variations (i.e., 10 

possible orientations for 4 panels generates 104 variations for the layout). This scenario is called 

Grid Variation. The structure presented in Table 1 is slightly modified for this scenario, in the 

sense that the grid label replaces the point label, and x, y, z of location is replaced with those 

of the centre of the cell. 
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(a) Random variation 

  
(b) Grid variation 

  
(c) Uniform Variation 

 

Figure 6 Different scenarios studied in this research   

 

This adjustment has a consequence in the Estimation phase and how the validation dataset 

needs to be prepared for this scenario. It will be explained in Section 2.1.4. It should be noted 

that since this grid is an approximation behaviour of the modules on the façade, the typical 

constraints, such as mechanical units, are disregarded in the placement of the representative 

modules in the grid. For instance, PV modules are placed in the centre of the window frame in 

the schematic Figure 6(b). This has no impact on the feasibility of the final solution because 

only the feasible PV modules belonging to each cell will be considered during the Estimation 
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phase. It is hypothesised that the size of the cell has a negative impact on the accuracy of the 

surrogate model, meaning the larger the cell size, the lower the accuracy. This hypothesis will 

be tested in the case study by comparing the performances of ML models for three different 

sizes of cells.  

In Scenario 3, shown in Figure 6(c), it is assumed that the relationship between the tilt angles 

of top panels and ASR of the target PV module is relatively linear and, therefore, can be 

approximated by linear functions. Thus, all panels are tilted in a uniform manner, meaning that 

all panels would always have the same angle. In this scenario, all panels are tilted from 0° to 

90° using an increment of 5°. This scenario generates 19 different variations for the layout.  

2.1.4. Splitting the datasets 

Once datasets of different scenarios are built, they need to be split into training and validation 

datasets. While the training dataset is developed for each scenario, the validation dataset only 

contains solutions from Scenario 1, i.e., the Random Variation scenario. This is because 

regardless of how the ML model is developed, it is intended to approximate the solar radiation 

of any possible layout. Therefore, the model must be tested in cases where PV modules can be 

installed at any given location with any configuration.  

However, some adjustments are required to prepare the validation dataset for the Grid Variation 

scenario, as shown in Figure 7. First, an extra feature needs to be added for each data point to 

represent cell to which each panel belongs. This can be done through simple point in polygon 

algorithm. Once the hosting cell of each panel is identified, the x, y, z of the PV module will 

be changed to the x, y, z of the cell. This is because the model in this scenario is built based on 

the cell coordinates.   
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Point Features (i.e., Input Variables) Label 

 (i.e., Output) 

Cell 

index 

Location Size Tilt 

(°) 

Top-left Panel Top Panel Top-right Panel Annual Solar 

Radiation 

(MWh) 
Width 

(m) 

Length 

(m) 

Width 

(m) 

Length 

(m) 

Tilt 

(°) 

Width 

(m) 

Length 

(m) 

Tilt 

(°) 

Width 

(m) 

Length 

(m) 

Tilt 

(°) 

P9 1 𝑋𝑐1 𝑌𝑐1 𝑍𝑐1 1.5 1.5 20 0 0 0 1.5 1.5 35 1.5 1.5 10 0.657 

P19 1 𝑋𝑐1 𝑌𝑐1 𝑍𝑐1 1.5 1.5 40 1.5 1.5 20 1.5 1.5 15 1.5 1.5 50 0.678 

P27 3 𝑋𝑐3 𝑌𝑐3 𝑍𝑐3 1.5 1.5 16 0 0 0 1.5 1.5 0 1.5 1.5 48 0.632 

 

Figure 7 Example of preparing the validation dataset for Grid Variation scenario 

2.2. Development of Surrogate Model 

The main steps of the proposed GA-based surrogate modelling method are shown in Figure 3. 

After datasets are generated, the ML model can be developed. In this research, a GA-based ML 

development approach is adopted to optimise the hyperparameters of the ML model. 

Hyperparameters refer to the basic configuration parameters of the ML model. The 

configuration of hyperparameters is shown to have a significant impact on the performance of 

the ML model (Han & Kim, 2019; Genuer et al., 2008; Wang et al., 2018). In this method, a 

population consisting of a random set of individual possible solutions is generated. Each 

solution to this population is called a chromosome. Each chromosome is divided into several 

parts, each consisting the hyperparameter geness of the ML method to be optimised. In each 

hyperparameter gene, each value in the given range will be used and paired with the value of 

other hyperparameters. This method will make multiple configurations to be evaluated. Figure 

8 shows the structure of the chromosome in this method.  

 
Figure 8 Structure of chromosome in the GA-based optimisation method 
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𝑘-fold cross-validation method is used to train and test the ML model. Each 𝑘-1 subsamples 

from the training dataset will be used exactly once as the testing data. Then, as shown in Figure 

9, the results from each iteration of the 𝑘−1 are averaged to estimate the final performance of 

each chromosome (Wainer & Cawley, 2017).  

 

Figure 9 A general framework of k - fold cross-validation iteration 

This research proposes the use of Random Forest (RF) as the ML method. RF is a popular and 

powerful supervised machine learning algorithm capable of performing both regression and 

classification tasks (Hasti et al., 2008). This method is selected mainly due to its demonstrated 

superiority in terms of handling the multi-dimensionality and imbalanced dataset (Brown & 

Mues, 2012; Ahmad et al., 2017; Langroodi et al., 2021). Besides, RF offers an approach to 

assess how important a variable is compared to the others, select the most important variables, 

and reduce dimensionality. Moreover, the parameters of RF are simple and computationally 

lighter than other machine learning methods, i.e., RF is computable even when it only has the 

number of decision trees (ntree) and the number of input variables (mvariables) (Rodriguez-Giliano 

et al., 2014). Although the RF algorithm is well established (Breiman, 2001), a brief overview 

is presented for completeness.  

RF is an ensemble method that combines several individual decision trees and forms the so-

called forest. Every particular tree {ℎ(𝐱, ΘT ), T = 1,2, … } will be grown using the training 

set and the value of an independently-sampled random vector {ΘT}, where this value is 



18 

 

distributed equally among each tree in that forest. The training data subsets for each tree are 

created through a procedure called bootstrapping. Bootstrapping creates training data by 

randomly resampling the original dataset without deleting the data selected from the input 

sample. This process makes the model more robust when facing slight variations in input data. 

Therefore, more excellent prediction stability can be achieved, and, at the same time, it 

increases prediction accuracy. When the target variable is continuous, RF uses Sum of errors 

or weighted Variance as the criterion for branching the tree at a node (Probst et al., 2019; 

Pedregosa, et al., 2011). Each selected feature will be calculated to explore the possible split 

point with minimum variance. In each possible split, the variance of each child node is 

individually calculated. Then, the variance of each split is computed as the weighted average 

variance of the child node. The one with the lowest variance value is selected as the best split 

(Sharma, 2020). At any step of the RF growth, the potential of the child nodes being a “leaf” 

must be controlled beforehand to define the end of the tree branch. A branch is considered a 

leaf when the information gain of the node is larger than any possible split to be considered.  If 

it is still possible to split the node into two new nodes, it is not a leaf yet. This procedure is 

repeated until there are no more unbranched nodes and no more features left. The procedure of 

growing a regression tree is repeated for T trees in the forest. 

After numerous trees are generated, the final prediction of RF uses the averaged value of the 

predictions from each tree (Breiman, 2001). Because RF is chosen in this research, the 

hyperparameters relevant to this study are shown in Table 2. 

Table 2. Hyperparameters to be optimised 

Hyperparameter Description 

n_estimators The number of trees in the forest 

max_depth The maximum depth of each MTRT in the forest 

max_features The number of features to consider when looking for the best split 

min_samples_leaf The minimum number of samples required to be at a leaf node 
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The fitness function for the evaluation of the RF model is the accuracy of the prediction. In this 

research, the Mean Absolute Percentage Error (𝑀𝐴𝑃𝐸) is used to measure accuracy. Equation 

1 presents 𝑀𝐴𝑃𝐸 calculation method. 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦𝑖 − �̂�𝑖

𝑦𝑖
|

𝑛

𝑖=1

 

 

Eq. 1 

Where: 
𝑛: the number of samples 
𝑦𝑖:the actual value 
�̂�𝑖 : the predicted value 
 

The GA-based method stops if the improvement in the fitness function between two 

generations is smaller than a threshold or when the maximum generation number defined by 

the user has reached. The final RF model represents the optimum feature subset and 

hyperparameters. If the stopping criteria are not yet satisfied, another population of solutions 

will be generated through selection, crossover, mutation, and replacement.  

2.3. Estimation 

As the last phase, the ML model is used to estimate the solar radiation of the validation dataset. 

As stated in section 2.1.4, the validation dataset is a randomly selected subset of data from 

Scenario 1, i.e., Random Variation. Each includes a Cartesian coordinate (x, y, z) and the 

random tilt angle of the PV module, and also the random tilt angle of the top, top left, and top 

right panels, as shown in Table 1. 

Finally, the (adjusted) validation dataset is fed into the ML model along with its best RF model 

developed in Phase 2, predicting the solar radiation amount. The accuracy performance of the 

prediction is then calculated using 𝑀𝐴𝑃𝐸. 
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3. Case Study 

A case study is conducted to test the performance and feasibility of the developed methodology. 

The case used in this research will be the John Molson School of Business (JMSB) building 

from Sir George William (SGW) campus of Concordia University in downtown Montreal 

Canada. This building stands 55 m tall with 15 storeys above the ground and an all-glass curtain 

wall as the façade (Concordia University, 2021). This is the same building used in the earlier 

research of the authors (Salimzadeh, et al., 2020). Having the same case study allows direct 

comparison of the results and, therefore, better identify the effect of the proposed method in 

improving the solar radiation simulation.  

Although the process of preparing the 3D model for the solar radiation simulation was 

explained in the authors’ previous work (Salimzadeh, et al., 2020), a brief overview is provided 

for completeness. As shown in Figure 10(a), Revit (Autodesk, 2021) was used to model the 

building in an object-oriented fashion, i.e., the BIM model of the building. This model was 

then integrated with the CityGML model of the surrounding buildings (City of Montreal, 2021), 

i.e., to consider the shadow effect of the neighbouring buildings in solar simulation in Revit 

environment, as shown in Figure 10(b). Inside Revit, Dynamo visual programming (Dynamo, 

2021) was used to develop the PV layout parametric model. The implementation detail of this 

parametric model is provided in the authors’ previous work (Salimzadeh, et al., 2020). 

It should be noted that after the careful study of the surfaces in the JMSB building, it was 

discovered that the north-east façade of the building has a scant solar radiation potential 

because of the surrounding buildings. Therefore, this face of the façade was not considered for 

the installation of PV modules. The final configuration created a total of 1137 potential points 

for the installation of PV modules on the vertical surfaces of this study.  It is essential to 

mention that in all these scenarios, the panel size was fixed at 2 × 1.5 m. Because of this 
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simplification, the features pertinent to the size of the panel were removed from the dataset, 

i.e., because they were uniform across all the layouts in the dataset. 

  
(a) 

 

 
(b) 

Figure 10 (a) JMSB BIM model, (b) BIM Model and CityGML integration in Revit 

(Salimzadeh, et al., 2020) 

As discussed in Section 2.1.3, three different scenarios were studied in this research. Table 3 

shows the detail of the three scenarios and their configurations. As shown in this table, for the 

Random Variation scenario, 2200 random layouts were generated. For these random layouts, 

the option of not to put a PV module on a potential location was not considered because absence 

of PV module on a location result in the radiation of zero and also the impact of having no PV 

module on other surrounding panels is equal to having a panel with zero tilt angle. Therefore, 

the random solutions only include the random variation of PV modules tilt angles in the range 

of 0° to 90°. Of the 2200 generated solutions, 200 were set aside as the validation dataset used 

Southwest 

Southeast  Southwest 

Northwest 
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to validate all three scenarios' performance. The validation dataset, consisting of 200 random 

layouts, was used to estimate the performance of the surrogate model. For the grid approach, 

as explained in Section 2.1.4, the location coordinates of panels were adjusted.  

Four different configurations of this scenario were considered to test the impact of the dataset's 

size on the surrogate model's performance, using 500, 1000, 1500, and 2000 of the random 

solutions as the training dataset.  

Table 3 The configurations of different scenarios used in this research 

Scenario Training dataset Validation dataset 

Scenario 1: Random Variation 

500 layouts 

200 random layouts 

1000 layouts 

1500 layouts 

2000 layouts 

Scenario 2: Grid Variation 

Large grid: 26 cells 

Medium grid: 37 Cells 

Small Grid: 56 Cells 

Scenario 3: Uniform Variation 19 uniform layouts 
  

In Scenario 2, three different sizes of grids were considered, as shown in Figure 11. These grid 

sizes were first built based on the surface given by using Dynamo nodes of  

𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑦. 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠 and 𝑉𝑒𝑟𝑡𝑒𝑥. 𝑃𝑜𝑖𝑛𝑡𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦. These nodes allow user to take a list of 

geometry surfaces containing a layout and export the corner point coordinates of those surfaces. 

The first surface export gives the corner points of the cell as used as a whole for the large grid, 

as given in Figure 11(a). For the medium grid, the sizes of the cells are reduced to 50%, except 

those containing less than 50 panels on the comprehensive case. Meanwhile, for the small grid, 

the size of the cells is reduced to 33% from the initial grid, except for those cells that contain 

less than 25 comprehensive panels. These thresholds created 26, 37, and 56 cells for large, 

medium and small grids, respectively. As explained in Section 2.1.3, each cell contained one 

PV module in the centre and three PV modules on the top, creating a 4-panel system that is 

expected to approximate the behaviour of PV modules in each cell.  
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Scenario 3, as mentioned in Section 2.1.3, includes uniformly tilted panels with the tilt angle 

varying between 0° to 90° with the steps of 5°, generating an overall of 19 distinct solutions 

for the ML training.  

It should be noted that as mentioned in Section 2.1.2, each configuration of the training dataset 

was used to develop two surrogate model, once with the cartesian coordinate and once with the 

index representing the specific panel location, as Shown in Table 1.  

 South West Face North West Face South East Face  

 
(a) 

 
(b) 

 
(c) 

Figure 11 (a) Large, (b) Medium, and (c) small grid layout  
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As explained in Section 2.2, a GA-based RF model is proposed in this research. Table 4 

presents the ranges of RF hyperparameters explored in this research. Concerning the minimum 

number of samples required for a node to be a leaf, this value is not recommended to use the 

default value of 1 because it can cause overfitting in cases where the training dataset is very 

large (Mantovani, et al., 2018). The “auto” in max_feature means that all features are 

considered when looking for the best split. For those with 𝑛 values means that there are 𝑛 

features considered in each split. 

Table 4 Range of hyperparameters to be optimised 

Hyperparameter Range 

n_estimators 100, 250, 500, 750, 1000 

max_depth 7, 15, 25, 50 

max_features 'auto', 2, 3, 4 

min_samples_leaf 10, 25, 50 
 

Also, the configuration of the GA used for the optimisation of RF is presented in Table 5. The 

initial generation number was set to 20, which means that GA ran 20 iterations to find the near-

optimum RF model. In each generation, 50 individuals were generated. For the cross-

validation, a 5-fold cross-validation structure was used, with 𝑀𝐴𝑃𝐸 being the minimisation 

objective function. 

Table 5 Configuration of GA algorithm 

GA Parameters Description Value 

Generations Number of iterations to run the pipeline optimisation process. 20 

Population_size The number of individuals that will be evaluated and selected. 50 

Scoring Function used to evaluate the quality of a given pipeline for the regression 

problem. 

𝑀𝐴𝑃𝐸 

cv Number of folds in cross-validation strategy to be used when evaluating 

pipelines. 

5 
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4. Results and Discussion 

As stated in Section 2.3, the accuracy performance of the developed ML model is assessed 

using 𝑀𝐴𝑃𝐸. However, in regression problems, researchers usually also use 𝑅2 to demonstrate 

the accuracy and performance of the ML model’s prediction (Breiman, 2001; Rodriguez-

Galiano et al., 2014; Biau & Scornet, 2016). Therefore, to confirm the accuracy performance 

of each model, this research shall use two estimations, i.e., 𝑀𝐴𝑃𝐸  and 𝑅2. Unlike 𝑀𝐴𝑃𝐸, if 

the performance’s value of 𝑅2 is closer to 1, it means that the accuracy is higher. 

Table 6 presents the optimal configuration of RF hyperparameters for each scenario. This table 

allows acknowledging the result of hyperparameter optimisation if using different approaches. 

As shown in this table, optimum hyperparameters are relatively consistent across different 

scenarios. Interestingly, the maximum performance was achieved with the smallest number of 

trees, i.e., estimators, in the RF. Regarding the considered features that gives the best 

performance, most of the optimisation returns “auto” which means those scenarios consider all 

features when looking for the best split and no features are excluded. However, two scenarios, 

i.e., Random variation with 1500 layouts and 2000 layouts, showed that the number of 

considered features are only four. Both applies to when the coordinates of the points are used 

in the training. 

Table 6 Results of the optimal hyperparameters 

Scenario n_estimators max_depth max_features min_samples_leaf 

Coordinate Index Coordinate Index Coordinate Index Coordinate Index 

Random 

Variation 

500 layouts 100 100 25 25 "auto" "auto" 10 10 

1000 layouts 100 100 25 25 "auto" "auto" 10 25 

1500 layouts 100 100 25 50 4 "auto" 10 10 

2000 layouts 100 100 25 50 4 "auto" 10 10 

Grid 

Variation 

Large grid 100 100 25 15 "auto" "auto" 10 50 

Medium grid 100 100 25 7 "auto" "auto" 50 50 

Small grid 100 100 25 25 "auto" "auto" 10 10 

Uniform Variation 100 100 25 25 "auto" "auto" 10 10 
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Table 7 shows the result of feature importance of the developed models. This table gives which 

features are the best and which has little to almost no contribution with the prediction of the 

data in each scenario. The most important feature for all of the models are related to the location 

of the point, but different location height, i.e., the z coordinate, gives less impact to the 

prediction. Even for some models, the different location height is less important than the tilt 

angle of the panel itself. Also, for most scenarios, different input of the surrounding panels’ tilt 

angle are the least important in predicting the solar panel amount.  

Table 7 Result of feature importance 

Type of Scenario Approaches 

Location Tilt  

Index X Y Z Panel 
Top 

Panel 

Top-right 

Panel 

Top-left 

Panel 

Random 

500 

layouts 

Coordinate - 32.79% 48.39% 8.21% 8.34% 1.25% 0.49% 0.52% 

Index 75.13% - - - 8.50% 1.92% 7.01% 7.44% 

1000 

layouts  

Coordinate - 32.42% 48.83% 8.23% 8.29% 1.25% 0.47% 0.52% 

Index 75.84% - - - 8.26% 1.70% 6.93% 7.27% 

1500 

layouts  

Coordinate - 41.30% 37.27% 9.27% 8.42% 1.31% 1.31% 1.12% 

Index 76.50% - - - 8.05% 1.84% 6.62% 6.99% 

2000 

layouts  

Coordinate - 41.85% 36.83% 9.39% 8.41% 1.25% 1.16% 1.11% 

Index 76.55% - - - 8.00% 1.84% 6.62% 6.98% 

Grid 

Small Coordinate - 28.89% 55.52% 3.04% 11.73% 0.44% 0.32% 0.06% 

 Index 87.01% - - - 12.18% 0.44% 0.32% 0.06% 

Medium Coordinate - 27.29% 55.96% 4.41% 11.58% 0.36% 0.37% 0.04% 

 Index 87.26% - - - 11.99% 0.35% 0.36% 0.03% 

Large Coordinate - 24.34% 55.46% 7.30% 12.09% 0.37% 0.42% 0.04% 

 Index 87.88% - - - 11.36% 0.34% 0.40% 0.03% 

Uniform  
Coordinate - 36.44% 48.22% 6.61% 5.84% 1.44% 0.36% 1.08% 

Index 68.32% - - - 4.40% 3.66% 12.22% 11.40% 

 

Table 8 presents the results of the estimation of various surrogate models developed in this 

research. Also, Figures 12 to 14 show the regression plots of different surrogate models. Since 

all the models use the same set for the validation dataset, the regression plots for generated 

solar radiation are normalised.  
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Table 8 Performance of different Surrogate models 

Type of Approaches 

Coordinate Index 

R-squared MAPE  

(%) 

R-squared MAPE 

(%) 

Random 

Variation 

500 layouts 0.96 6.70 0.90 10.71 

1000 layouts 0.96 6.61 0.90 10.64 

1500 layouts 0.96 6.57 0.95 7.27 

2000 layouts 0.96 6.55 0.95 7.18 

Grid Variation Large grid 0.53 35.54 0.54 35.04 

Medium grid 0.55 34.70 0.55 34.56 

Small grid 0.55 34.67 0.55 34.64 

Uniform Variation -1.41 61.98 -1.35 81.52 

 

From three different scenarios, all configurations of the Random variation scenario perform 

decisively better than other scenarios. This result is interesting because the dataset size for this 

scenario is orders of magnitude smaller than that of the Grid variation scenario, as explained 

in Section 2.1.3. In the Random variation scenario, it seems that the size of the dataset has little 

impact on the performance of the ML model, more so when the coordinates of the points are 

used for training. When training with the index of points, then the size of the dataset became 

more influential, where the larger dataset performed better in terms of both R2 and MAPE. 

While the use of index instead of coordinate had a negative impact on the accuracy of the 

models in Random variation and Uniform variation scenarios, it had a minimal positive impact 

in the Grid variation scenario. Looking at the Random variation scenario, the negative impact 

of using an index instead of coordinates became smaller with the increase in the size of the 

training dataset, showing that index-based training is more sensitive to the size of the dataset. 

The fact that even the smallest dataset in the Random variation dataset had a high performance 

is promising because it indicates that even with a small number of randomly generated layouts, 

a reliable and accurate surrogate model can be developed. 
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500 layouts with Coordinates 500 layouts with Index 

  
1000 layouts with Coordinates 1000 layouts with Index 

  
1500 layouts with Coordinates 1500 layouts with Index 

  
2000 layouts with Coordinates 2000 layouts with Index 

Figure 12 Regression plots of different configurations of Random variation scenario 
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Large grid with Coordinates Large grid with Index 

  

Medium grid with Coordinates Medium grid with Index 

  
Small grid with Coordinates Small grid with Index 

Figure 13 Regression plots of different configurations of Grid variation scenario  

 

  
Uniform variation with Coordinates Uniform variation with Index 

Figure 14 Regression plots of Uniform variation scenario 



30 

 

Despite having massive training datasets, all configurations of the Grid variation scenario 

showed low accuracy. Nevertheless, the increase in the number of cells, i.e., smaller grid, 

proved to have a slight but positive effect on the model's performance. A few points in the 

regression plots with the greatest deviation were analysed to understand better why this 

scenario did not perform well. It was observed that these deviations belong to locations on the 

façade which, based on the grid-based approximation, were supposed to generate a large 

amount of radiation because the surrounding panels had little to no tilt angle. However, when 

projected to the actual layout, it was observed that these panels received considerable shadow 

effect from the building façade or surrounding buildings. Although the result of this scenario 

is not favourable, it provides the valuable insight that the simulation of solar radiation is very 

sensitive to the location and configuration of the panels, so that an accurate approximation 

cannot be made by applying zoning on the façade. Nevertheless, as shown in the previous 

scenario, it is evident that by simulating a random solution sample for each potential installation 

point, a high-accuracy prediction can be made on the solar radiation potential. 

The above observation about the complexity of the solar radiation simulation is further 

corroborated by the very low performance of the Uniform variation scenario. It is demonstrated 

that an accurate prediction can be made by using a small dataset consisting of a Uniform 

variation of tilt angles. This shows the high sensitivity of the solar radiation simulation to the 

shadow effect of the surrounding panels. 

In terms of the simulation time needed, generating the radiation amount of one random solution 

configuration in Dynamo requires approximately 19 seconds. Using the RF model, 200 random 

solutions from the validation dataset requires 236 seconds to export the amount of solar 

radiation obtained. This means the RF model takes 1.18 seconds to generate one solution. 

Therefore, using the RF model is 16 times faster compared to using the simulation-based 

parametric model. 
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5. Conclusion 

This research investigated the performance of a surrogate modelling approach for the 

simulation of solar radiation potential on the vertical surfaces of tall buildings. Surrogate 

modelling was used to approximate the input-output behaviour of the existing simulation 

model. The RF machine learning approach was used in investigating three different scenarios, 

namely (1) Random variation, (2) Grid variation, and (3) Uniform variation. GA was used to 

optimise the hyperparameters of the RF model. A case study was performed to investigate the 

performance of surrogate models.  The case study used a building in Sir George William 

(SGW) campus of Concordia University in downtown Montreal Canada. 

It was demonstrated that, in general, surrogate modelling has a great potential to accurately 

approximate the simulation of solar radiation on the vertical surfaces of tall buildings. It was 

shown that accuracy of up to 94% could be achieved even by only using a small sample of data, 

i.e., 500 random layouts. In fact, the surrogate model is capable to give the result of solar 

radiation amount by 16 times faster compared to the existing simulation model. This 

development can help to tremendously reduce the computational intensity of optimisation-

based PV model layout design. However, it was observed that the best approach to develop the 

surrogate model is to use a number of random layout designs rather than more guided strategies, 

such as grid-based approximation or uniform variation of tilt angles. This attests to the fact that 

while surrogate modelling is very promising and applicable, the solar radiation simulation is 

very complex and too sensitive to the location and shadow effects. Because of this sensitivity, 

simplification cannot be made to approximate the solar radiation potential. Nevertheless, even 

a small sample of random design layout that captures the diversity of panel configurations for 

all the potential locations can be used to predict solar radiation potential accurately.  
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However, there are a few limitations to this research. First, this study only considers using 

Random Forest for developing the ML models. It is possible to use other types of ML methods, 

such as Neural-Network-based methods. Also, the PV panel size in this study only was fixed 

at 2 x 1.5 m. It is also possible to add other possible panel sizes to see how different sizes affect 

ML models' prediction and performance. Finally, although the developed surrogate model 

could be easily used to optimise the PV layout, i.e., to perform a generative design, it was out 

of the scope of this research. In the future, the authors intend to perform generative design 

based on this surrogate model and then compare the results of the design optimisation with that 

of simulation-based optimisation to investigate to what extent the use of the surrogate model 

can contribute to finding better layout design and faster.  
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