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ABSTRACT 

Drought events of high precipitation deficits have become rampant in the Netherlands in the recent years. 

The year 2018 was recorded as the worst drought with associated huge impacts on the economy, 

agriculture, and navigation industry. Drought indices (often unitless, and between 1 and -1) have provided 

a reliable way of quantifying the characteristics of droughts by comparing prevailing climatic conditions to 

their long term normal (mean). This research investigated the potential of meteorological drought indices 

(the Standardized Precipitation Index, SPI, and the Standardized Precipitation Evapotranspiration Index, 

SPEI) in combination with vegetation drought indices (the Normalized Difference Vegetation Index 

Anomaly, NDVI-A and the Normalized Difference Water Index Anomaly, NDWI-A) to quantify 

agricultural droughts as observed by anomalies of in-situ soil profile measurements in the Twente region, 

The Netherlands. These indices provided flexibility in detecting short term dry events that occur in 

meteorological and agricultural droughts at two given timescales (16-day and monthly). For meteorological 

indices, higher correlations of SPEI over SPI in relation to soil moisture anomalies, indicated the 

importance of incorporating the water demand component that corresponds to the role of soil moisture 

(provision of water vapor) which is not accounted for by SPI. For the vegetation drought indices, high 

correlations of NDWI-A over NDVI-A in relation to soil moisture anomalies, provided insight on the 

complex relationship between various leaf components (leaf water content and chlorophyll content 

(“greenness”) and soil moisture. When soil moisture anomalies were lagged backwards in months, SPEI 

yielded a higher correlation over SPI with a lag of one month. This illustrated that impacts of the water 

balance anomalies (high precipitation deficit, high temperatures, and increased radiation) are best observed 

in soil moisture after one month. The NDVI-A correlation illustrated a slight increase with a lag of one 

month indicating that observed vegetation “greenness” responds optimally to antecedent soil moisture 

conditions of one month. Conversely, the NDWI-A reduced its correlation with one-month lag but had a 

high correlation at zero-time lag. This illustrated that the leaf water content responds quicker to ongoing 

soil moisture variations without delay than observed “greenness”. The research concluded that SPEI and 

NDWI-A were the preferred drought indices for estimating agricultural droughts based on their high and 

quick response to soil moisture anomalies in Twente region. 
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1. INTRODUCTION 

1.1. Scientific Background 

 
Low precipitation amounts, usually accompanied by warm surface temperatures trigger a reduction in 

moisture levels, often referred to as drought (Mishra & Singh, 2010; Sivakumar et al., 2010). Other climatic 

factors such as high winds, low relative humidity exacerbate the occurrence of the event (Sivakumar et al., 

2010). Drought is perceived to occur gradually, probably for several months and years. However, the 

onset of drought can also be rapid in instances where extreme atmospheric anomalies persist only for 

several weeks within a region, referred to as ‘flash droughts’ (Osman et al., 2021; Svoboda et al., 2002). 

Such flash droughts have been reported to have detrimental effects to the environment and society due to 

insufficient early warnings (Osman et al., 2021; Zhang & Yuan, 2020). 

 

There are expected changes in the frequency and severity of droughts in the 21st century in Europe as 

articulated by climate change reports (Dai, 2013; McCarthy et al., 2001; Pachauri & Meyer, 2014). Major 

drought events that have been recorded in many parts of Europe, including Northern and Western 

Europe, for the last thirty years occurred in 1976, 1989, 1991, 2003 and recently, in 2018 during the 

summers accompanied by heat waves (Feyen & Dankers, 2009; Fu et al., 2020). Spatio-temporal analysis 

of droughts in Europe pointed out that past droughts over 250 years ago had characteristics of longer 

duration, higher intensity and larger spatial extent than the drought events seen in the recent years (Brázdil 

et al., 2018). 

 

The high spatial and temporal variability of drought events and associated impacts makes it challenging to 

monitor drought onset and termination as well as its magnitude /severity (Brown et al., 2008). The effects 

of drought in an area are cumulative in nature and can be observed during and after termination of the 

drought event (Sivakumar et al., 2010). In an attempt to define drought characteristics, Byun & Wilhite, 

(1999) defined the severity of drought as the consecutive dry periods below a certain threshold of climatic 

anomalies. The severity can also involve the impacts observed on water resources, such as depletion in soil 

moisture and water reservoir levels.  

 

A drought indicator is defined as a variable of which a change in its behavior gives information on the 

potential of drought-related stress (Yihdego et al., 2019). Drought indicators commonly used in drought 

studies include rainfall, temperature, soil moisture, stream flow to monitor various types of drought. These 

drought indicators are singly or in combination converted to standardized drought indices (unitless 

numerical value and between 1 and -1) (Zargar et al., 2011). A drought index is a measure of the deviation 
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of drought indicators from the normal moisture conditions (Van Loon, 2015). Drought indices have been 

developed to quantify drought events in terms of severity, duration, intensity and spatial extent (Mishra & 

Singh, 2010). Mishra & Singh, (2010) outline an overview of numerous drought indices, their strengths, 

and weaknesses in monitoring drought studies worldwide.  

1.1.1. Meteorological drought indices 

 
Meteorological drought caused by accumulation of precipitation deficits, is the key driver of other types of 

drought (Spinoni et al., 2013; S. Vicente-Serrano et al., 2004). Meteorological drought indices have been 

developed to monitor this type of drought. The Palmer Drought Severity Index, PDSI (Palmer, 1965), was 

among the initial meteorological indices developed. The index considers the water balance by 

incorporating several variables including precipitation, evapotranspiration, and soil water capacity in its 

computation. However, the soil moisture estimations are complex and parameters used in its computation 

are only tested for regions in the United States, limiting further application in other regions (Akinremi et 

al., 1996; S. M. Vicente-Serrano et al., 2011).  

 

Complexities associated with the PDSI formulation led to the development of Standardized Precipitation 

Index, SPI (Mckee et al., 1993) and Standardized Precipitation Evapotranspiration Index, SPEI (S. M. 

Vicente-Serrano et al., 2010) that involve simple computations using readily available climatological 

variables. SPI and SPEI have been widely used due to their ability to quantify climatological anomalies for 

various periods (referred to as ‘timescales’ ) allowing for monitoring of short-term and long-term drought 

events (S. M. Vicente-Serrano et al., 2011). 

 

The SPI is computed as normalized values of the probability distribution of rainfall recorded in an area 

(usually > 30 years rainfall) for a certain period and quantifies the precipitation deficits as dry events of 

different degrees of severity (see Table 1) (Mckee et al., 1993). SPI has garnered wide use on drought 

intensity / severity assessment (Naresh et al., 2009; Spinoni et al., 2013) and other applications such as 

estimation of soil moisture (Gwak et al., 2017; Sims et al., 2002). 

 

SPEI was developed to improve existing meteorological drought indices, such as SPI, that only considers 

precipitation as the driving factor for drought and the simplify the complexities of PDSI. It’s similar to 

SPI in its computation of standardization. However, SPEI is developed from a water balance by 

introducing the demand factor (reference evapotranspiration) to the supply (precipitation) component 

(Vicente-Serrano et al., 2006; 2010). The water balance is the difference between precipitation and crop 

reference evapotranspiration (Vicente-Serrano et al., 2006; 2010). While SPI values are derived from the 

normalization of precipitation probability distribution, SPEI values are computed from the normalization 

of the water balance probability distribution (Van Oijen et al., 2014).  
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Table 1: Standardized Precipitation Index drought severity categories 

SPI values Drought category 

SPI ≥ 2.0 Extremely wet 

≤ 1.5 SPI < 2.0 Very wet 

≤ 1.0 SPI < 1.5 Moderately wet 

-1.0 < SPI < 1.0 Near Normal 

-1.5 < SPI ≤ -1.0 Moderate dry 

-2.0 < SPI ≤ -1.5 Severely dry 

SPI ≤ -2.0 Extremely dry 

Note. Adapted from “The relationship of drought frequency and duration to time scales” by Mckee, T. B., 

Doesken, N. J., & Kleist, J. 1993, Eighth Conference on Applied Climatology, 17–22. Copyright 1993. 

 

Many studies have successfully used SPI and SPEI in combination to compare temporal variations of 

droughts and their degree of severity (Mehr & Babak, 2019; Tirivarombo et al., 2018), in estimation of soil 

moisture (Ariyanto et al., 2020), for quantification of drought impact on crop yield (Peña-Gallardo et al., 

2019) among other applications. 

 

1.1.2. Agricultural drought indices 

 
The physiological and biochemical processes in vegetation are highly depended on soil moisture variability 

(Carter, 1994; Peñuelas et al., 1994). Methods used for monitoring vegetation response to soil moisture 

variability include the use of crop production yields (Peña-Gallardo et al., 2019; Potop et al., 2009) and 

tree ring analysis (Abrams et al., 1998). These methods suffer from spatial and temporal limitation due to 

limited time series data for drought analysis and lack of comparability between drought effects on 

vegetation across various regions (S. M. Vicente-Serrano, 2007).  

 

Remote sensing methods provide information on the amount of radiation absorbed and reflected by plant 

leaves (Gallo et al., 1985). Water stressed vegetation show a variation in their spectral signatures (reflected 

radiation) due to altered leaf components such as the leaf water content, leaf pigments, amount of dry 

matter and leaf area index (Wang et al., 2008). Commonly used remote-sensed vegetation indices for 

monitoring vegetation response to drought conditions include The Normalized Difference Vegetation 

Index (NDVI) and associated vegetation indices (Vegetation Condition Index, VCI, and Enhanced 

Vegetation Index, EVI). The NDVI is estimated from the near infrared (NIR) and visible red bands due 

to their sensitivity to plant’s chlorophyll content, a measure of “vegetation greenness’’. An assumption 

follows that there exists a relationship between the “greenness” observed by satellite sensors and climate 

variability in a region (Di et al., 1994; Gutman, 1990; Ji & Peters, 2003). 
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The NDVI solely, is limited in identifying drought and non-drought conditions (Anyamba & Tucker, 

2012). Therefore, NDVI anomalies have been developed as standardized values computed from historical 

NDVI values to quantify temporal variations of the NDVI (Anyamba & Tucker, 2012; Li et al., 2014; 

Thenkabail et al., 2004; Wgnn & Vmi, 2020). Many studies have investigated the relationship between 

NDVI anomalies and climatic anomalies to quantify drought occurrences in vegetation (Nanzad et al., 

2019; Nicholson & Farrar, 1994; Udelhoven et al., 2009).  

 

Another remote-sensed vegetation index is the Normalized Difference Water Index (NDWI) that 

provides information on the leaf water content (Gu et al., 2007). This is through the sensitivity of the near 

infrared (NIR) and shortwave wave infrared (SWIR) bands, to changes in leaf water content (Gao, 1996). 

Similar to the NDVI, anomalies of NDWI have been developed from historical NDWI estimates to 

quantitively assess drought on vegetation, where negative anomalies indicate water stressed vegetation 

(Anderson et al., 2010).   

 

Many studies have used the NDWI anomalies (NDWI-A) and NDVI anomalies (NDVI-A) in 

combination as proxies for agricultural drought, and compared them with climatological anomalies to 

reliably monitor such drought occurrences (Anderson et al., 2010; Mladenova et al., 2020; Nanzad et al., 

2019; Nicholson & Farrar, 1994; Paruelo & Lauenroth, 1995). In other drought monitoring studies, these 

vegetation index anomalies have been used to reflect to soil moisture variability (Gu et al., 2008; West et 

al., 2018) 

1.1.3. Soil moisture  

 
Soil moisture generally refers to the water content found in the unsaturated zone of the soil profile and 

exhibits heterogeneity, among other characteristics, in its distribution both vertically and horizontally in 

such soil profiles (Seneviratne et al., 2010). Soil moisture has a role in the water and energy cycles whereby 

it’s a source of atmospheric moisture through evaporation from bare soil and transpiration from 

vegetation (Seneviratne et al., 2010).  

 

The relationship between soil moisture and climatic components, such as precipitation and 

Evapotranspiration (ET) involves several processes that can be explained in feedback loops (see Figure 1). 

Relationship C indicates how increase in precipitation leads to increase in soil moisture levels with the 

assumption that the soils are not saturated prior to precipitation fall. Relationship A indicates high soil 

moisture levels lead to high evapotranspiration rates and holds more when soil moisture is the limiting 

factor (Seneviratne et al., 2010). The negative arrow in relationship A indicates the existence of a negative 

relationship whereby increased ET rates lead to reduced soil moisture levels. Relationship B indicates 
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uncertainty that exists in that high ET rates lead to high precipitation amounts or lead to reduced soil 

moisture that reduces atmospheric moisture needed for cloud formation (Seneviratne et al., 2010). 

 

Figure 1: A schematic representation of the of the physical processes that contribute to soil moisture precipitation 

coupling and feedbacks. Adapted from “Investigating soil moisture-climate interactions in a changing climate” 

by Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., Orlowsky, B., & Teuling, A. 

J. 2010, A review. In Earth-Science Reviews (Vol. 99, Issues 3–4, pp. 125–161). Copyright 2010 by Elsevier. 

 

Based on the above physical processes of soil moisture, the adequate soil moisture levels ensure optimum 

photosynthetic processes and transpiration rates in vegetation with the availability of incoming shortwave 

radiation and atmospheric carbon dioxide (CO2) (Sellers et al., 1997). Vegetation response to changes in 

soil moisture conditions exists with a time delay observed to be as a result of the ability of the roots to 

maintain the plant’s optimum activities through the uptake of soil moisture until its depleted (Gutman, 

1990). Soil moisture has been considered a good drought indicator due to its contribution to vegetation 

growth (Di et al., 1994) and its relation to recent precipitation depicting drought potential within a region 

(Keyantash & Dracup, 2002). Moisture in the top layers of the soil profile relates to the short term 

precipitation and can be seen as a measure of meteorological drought while moisture in the root zone 

affects different stages of crop growth by ensuring sufficient is water available for transpiration and is a 

good measure of agricultural drought (Holzman, Rivas & Piccolo, 2014; Keyantash & Dracup, 2002).  

1.2. Problem statement 

 
The National meteorological agency in Netherlands, Koninklijk Nederlands Meteorologisch Instituut 

(KNMI) reported a uniform increase in temperatures across the country from 2018, and increased solar 

radiation occurring in the inland regions compared to the coastal area (KNMI, 2020). These occurrences 

come after the earlier climate change scenarios report, labelled KNMI’14, that pointed out The 

Netherlands and the neighbouring countries have been facing an increase in temperatures over the last 50 

years, linked to increased winds in winter months and increased solar radiance in summer months (van 
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den Hurk et al., 2014). The 2018 drought experienced in the Netherlands motivated various regional 

drought assessments in the country (Philip et al., 2020; Weijers, 2020).  

 

The potential precipitation deficit (Flach & Phillips, 2018; Sluijter et al., 2018), which is the common 

drought indicator used for quantifying drought severity across the country, has been recording increasingly 

high values for the southern and eastern parts of the country especially during the summer period (KNMI, 

2020; Philip et al., 2020). The precipitation deficit values are calculated from April 1st to September 30th 

(summer period) ignoring dry events in the winter season (Weijers, 2020). The high precipitation deficit 

values recorded have been associated with reduced precipitation amounts, an increase in temperatures and 

global radiation, that are the key drivers of agricultural drought in the region. (Philip et al., 2020). 

However, how these precipitation deficits vary at different time scales remains elusive. 

 

The research introduced the use of standardized (with mean of zero and standard deviation of one) 

drought indices to capture the reported droughts and put them in a historical perspective to determine 

their frequency and severity. These indices included meteorological drought indices (SPI and SPEI) and 

vegetation drought indices /anomalies (NDVI-A and NDWI-A). The drought indices had the advantage 

of analyzing drought in multi-temporal scales making them suitable to capture shot-term meteorological 

and agricultural droughts that are highly depended on each other through the role of soil moisture in the 

hydrological cycle.  

 

SPI and SPEI were selected to evaluate how variability in one or more climatic parameters (precipitation 

variability, radiation, temperatures) influence the occurrence of drought and how soil moisture captures 

such droughts in Twente. The vegetation anomalies of NDVI and NDWI (NDVI-A and NDWI-A, 

respectively) provided an opportunity to use remote sensed estimates to monitor vegetation. While the 

NDVI gives information on the leaf “greenness” associated with chlorophyll content (Rouse et al., 1974), 

the NDWI gives information on the leaf water content (Gao, 1996).  These differences motivated the 

selection of these vegetation indices to examine their responses to climatic anomalies and soil moisture 

variations. The standardized nature of all the drought indices allowed for their computation at 16-day and 

monthly timescales to detect the shortest dry events in the region. 

 

Thus, the meteorological and vegetation drought indices were selected to determine their relationship with 

observed soil moisture anomalies related to agricultural droughts 
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1.3. Research objectives 

 

The main objective of research was to assess the potential of meteorological and remote sensing-based 

drought indices in detecting agricultural drought as observed in profile soil moisture measurements. 

 

The specific objectives addressed in this study were formulated as, 

i. To develop time series from January 2001 to December 2020 with meteorological drought indices 

(SPI & SPEI) and remotely-sensed vegetation index anomalies (NDVI-A) and NDWI-A) for the 

study area. 

ii. To establish a root zone soil moisture time series from profile soil moisture measured across 

Twente region. 

iii. To assess the behavior of drought indices with respect to the identification of the onset and 

frequency of droughts against the root zone soil moisture measurements over the Twente region. 

iv. To explore the agreement between surface soil moisture as observed by the satellites and root 

zone soil moisture as measured in-situ across Twente. 

 

The research questions investigated in the this research are,  

 
i. How does drought progress over-time from the perspective of meteorological drought indices 

and remotely sensed vegetation index anomalies?  

ii. What assumptions are needed for developing and computing reliable time series drought indices? 

iii. How to determine the root zone soil moisture anomalies from soil profile measurements? 

iv. How do the drought indices and root soil moisture anomalies compare over-time? 

v. How do surface and root soil moisture measured across the Twente region compare to each 

other? 

 

1.4. Research hypothesis 

 

The research hypothesized that meteorological drought indices and remotely sensed indices could detect 

agricultural droughts as observed by soil moisture anomalies in the study area. To chieve this hypothesis, it 

was assumed that the time series meteorological indices (SPI and SPEI) would adequately indicate climatic 

anomalies in the study area using available rainfall and crop reference evapotranspiration data (1988-2020) 

from Twenthe, KNMI station. The use of remotely sensed vegetation index anomalies, followed the 

general assumption that there exists a relationship between the “greenness” estimated by satellite sensors 

and moisture conditions in a region (Di et al., 1994; Gutman, 1990; Ji & Peters, 2003). The use of 

anomalies was assumed to remove seasonal variations observed in vegetation as suggested by van Hateren 
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et al. (2021). The integral role of soil moisture in land processes was assumed to be an important variable 

in illustrating the climate- soil- vegetation- relationships in the hydrological cycle. An assumption in the 

study was moisture variability was as a function of natural climate variability, omitting irrigation inflows. 

1.5. Conceptual framework of research 

 
This research focused on the first two types of droughts, meteorological and agricultural droughts 

(highlighted in Figure 2). Meteorological drought indices (SPI and SPEI) and remote sensed vegetation 

index anomalies (NDVI-A and NDWI-A) were selected to quantify the drought events in the study area. 

SPI and SPEI were used as representatives of meteorological droughts and their complementarity in the 

parameters used to quantify drought, that is, precipitation (SPI) and water deficit (SPEI). The NDVI-A 

and NDWI-A observe chlorophyll content and leaf water content respectively. The drought indices were 

computed for two short time scales (16-day and monthly) to detect the shortest drought event as possible 

since drought is a function of time. These indices were compared against soil moisture anomalies to 

observe their sensitivity to soil variability.  
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Figure 2: Propagation of drought through the hydrological cycle as a function of time. Adapted from “Seasonal 

Drought Prediction: Advances, Challenges, and Future Prospects” by Hao, Z., Singh, V. P., & Xia, Y. 2018. 

Copyright 2018 Blackwell Publishing Ltd 
 

1.6. Thesis structure 

 
This research is structured into six sections. Section one introduces the scientific background of the 

research, research problem, research objectives, research hypothesis and conceptual framework of the 

research. Section two focuses on the study area including the climate, the meteorological and soil 

measurements acquired from the region. Section three includes remote sensing data and processing of 

the products; section four discusses the different methods applied to come up with drought indices and 

methods of comparison. Section five consists of the results and discussion of results. Section six 

includes the conclusion and recommendation of the study. 



ASSESSING METEOROLOGICAL AND VEGETATION DROUGHT INDICES AGAINST SOIL MOISTURE MEASUREMENTS OVER TWENTE REGION, THE NETHERLANDS 

18 

2. STUDY AREA AND IN-SITU MEASUREMENTS 

2.1. Twente region 

 
Twente region is located in the Eastern part of the Netherlands in the Overijssel province (52° 06' N - 52° 

30'N, 6° 15' E - 7° 05' E). The region is relatively flat with altitudes ranging between 3m to 85 m above sea 

level (Pezij et al., 2019). Pasture is the major vegetation on agricultural fields while a few fields grow corn, 

wheat, and potatoes (Van Der Velde et al., 2021). Soils in the region are sandy with more loamy soils 

(Buitink et al., 2020). Often, fields in low lying flat areas suffer from stagnant water during wet seasons in 

winter and extreme rainfalls in summer (Van Der Velde et al., 2021). The Twente soil monitoring network 

is found in the region and encompasses about twenty-two soil moisture stations as indicated in Figure 3. 

 

 

 

Figure 3: Study area (a) Left side: Netherland’s map indicating the location of Twente region (b) Right side: Twente 
region indicating Twente soil monitoring network (red marks)  

The climate of the region is temperate marine (Hendriks et al., 2014). The winter and summer seasons 

tend to be mild and wet with a few extremes of below -10 ºC and above 30 ºC in winter and summer 

respectively (Van Der Velde et al., 2021). For better understanding of the prevailing climatic conditions in 

the region in reference to the long-term normal conditions (33 years), Figure 4 (a) illustrates the long-term 

monthly average rainfall and reference crop evapotranspiration (ETref) over (1988-2020). Figure 4 (b) 

illustrates the variations in the climatic conditions for the recent years (2018-2020). 



19 

       

Figure 4: (a) average monthly rainfall and average monthly crop reference evapotranspiration (ETref) for the period 
1988-2020 (b) monthly sum rainfall and monthly sum ETref for the period 2018-2020, derived from meteorological 
observations performed at KNMI’s Twenthe automated weather station. 

2.2. Meteorological measurements 

 
In this study, the meteorological variables used for the computation of time series meteorological drought 

indices were daily measured precipitation (resolution 0.1 mm) and daily calculated crop reference 

evapotranspiration (ETref) (resolution 0.1 mm) from the automated weather station of the Royal 

Netherlands Meteorological Institute (KNMI). Weather data used for the calculation of crop reference 

evapotranspiration (ETref) include daily mean temperature (℃), latitude of the station, daily mean surface 

air pressure (hPa) and daily sunshine duration (0.1h), which are all measured at the station or known. Long 

term historical data of meteorological variables were accessible from the KNMI website after data quality 

checks (source: https://www.knmi.nl/nederland-nu/klimatologie). Thirty-three-year record data was 

derived from KNMI Twenthe station. The data is acquired in 0.1 mm hence scaled to 1_mm for the entire 

time series before further analysis. 

 
The KNMI stations being sparsely located, limited the study to one weather station. Moreover, the long-

term average rainfall (1981-2020) received in the region in different months indicated that the rainfall does 

not vary significantly across the study area (see Figure 5).  

 

https://www.knmi.nl/nederland-nu/klimatologie
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Figure 5: Average long term monthly precipitation (1981-2010) for sample months (March, April & December 
respectively). Red box illustrates the study area.  

source: https://www.meteo-julianadorp.nl/Klimaatatlas/Klimaatatlas-Neerslag.html 

 

Table 2 Summary of KNMI station meteorological data 

Meteorological variable Type of data Temporal 

resolution 

Period 

Precipitation (mm/day) 

 

Measured Daily 1988 - 2020 

Crop reference potential 

evaporation (mm/day)  

Calculated Daily 1988 - 2020 

 

2.3. Soil moisture profile measurements 

 
In - situ soil profile measurements were acquired from the Twente soil monitoring network that has been 

previously used as a validation site for satellite estimates (Van Der Velde et al., 2021). The soil profile 

measurements record volumetric soil moisture (𝜃) [m3 water/m3
soil] and temperature [ ºC] at nominal depths 

of 5-cm, 10-cm, 20-cm, 40-cm, and 80-cm (Van Der Velde et al., 2021). The soil moisture sensors are 

spread over different vegetation cover with majority of the sensors installed on pasture / grass, a few in 

corn fields and one station in a forest. The forest location was terminated in 2017. The temporal 

resolution of the data is 15 minutes as recorded by the Decagon EM50 ECH2O data loggers (Dente et al., 

2011). The available soil moisture observations were for the period 2015- 2020 for about Twenty soil 

moisture stations. The data was acquired from the ITC Water department as processed and calibrated 

data.  

 

https://www.meteo-julianadorp.nl/Klimaatatlas/Klimaatatlas-Neerslag.html
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2.3.1. Root zone soil moisture 

 

The data records for the soil moisture stations had several gaps. Some stations had incomplete 

measurements of (5-cm, 10-cm) profile measurements. Majority of the stations had complete 

measurements up to 40-cm and these are the stations that their data records were used in the study (twelve 

stations in 2015, & seventeen stations from 2016 to 2020). The availability of data of up to 40-cm made 

this the preferred root depth. Moreover, Pezij et al., (2019) determined the root zone depth for different 

vegetation types in Twente region for both summer and winter periods as varying between 0.20-m in 

winter and 0.40-m in the summer period for grass and between 0.10-m in winter and 0.40-m during 

summer for corn fields. 

 

   

Figure 6: A schematic diagram showing the installation setup at each soil moisture station and the depth at which the 
root zone was calculated (40cm). Adapted from “Root zone soil moisture estimation with Random Forest.” By 
Carranza, C., Nolet, C., Pezij, M., & van der Ploeg, M. 2021, Journal of Hydrology, Copyright 2021 by Elsevier B.V. 

The root zone soil moisture was calculated based on Carranza et al., (2021) root zone moisture estimation 

method of using the zone-weighted depth-averaged values of the soil profile measurements and associated 

soil thickness, given by the Eq. (1). The method took the midway distance between the adjacent 

measurement points in the soil profile (see figure 5). 

 

𝜃𝑟𝑧 =
∑ 𝜃𝑗 ∆𝑍𝑗

𝑛
𝑗=1

𝑧
         Eq 1 

 

Where 𝜃𝑟𝑧 is the root zone soil moisture,  𝜃𝑗 is the volumetric water content (m3/m3) for the measurement 

depth j (m), ∆𝑍𝑗 (m) is the thickness of the soil associated with the measurement depth, and z (m) is the 

total averaging depth of the profile, in this case 0.40m. 
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3. REMOTE SENSING DATA  

3.1. Mission and instrument 

 
The vegetation indices used for this study were acquired by the MODIS (MOderate Resolution Imaging 

Spectroradiometer) instrument onboard both the Terra (EOS AM) and Aqua (EOS PM) satellites. Terra 

satellite was launched by the end of 1999 whereas Aqua satellite was launched in 2002. MODIS has a 

temporal resolution of 1 to 2 days, acquiring data in 36 spectral bands https://modis.gsfc.nasa.gov/data/ 

These spectral bands provide data in three spatial resolutions 250 m, 500 m, and 1 km (Lindsey & Herring, 

1990). The high spatial resolutions are seen as an improvement over the AVHRR sensor which provides 1 

km resolution local area coverage and 4 km resolution global area coverage (Huete et al., 1997). MODIS 

offers surface reflectance data products that are an estimate of ground observations in absence of 

atmospheric interference, and among the products are the vegetation indices products (Vermote et al., 

2015).  

3.2. Data Products 

 

3.2.1. Time series NDVI  

 

One of MODIS vegetation indices products is the NDVI data product that is a 16-day composite.  In this 

study, MODIS VI NDVI (MOD13A1) data products were used, generated from two 8-day composite 

surface reflectance of TERRA MODIS red and near infrared bands at 500m spatial resolution (Didan et 

al., 2015). The product is corrected for atmospheric conditions such as gases, aerosols, and Rayleigh 

scattering (Vermote et al., 2011). The time series for each year started at 001 and ends at 353, with an 

interval of 16 days. The equation used to obtain the 16-day composite is 

 

NDVI =  
ρred−ρNIR

ρred+ρNIR
          Eq 2 

 

Where 𝜌𝑟𝑒𝑑 , and 𝜌𝑁𝐼𝑅 are MODIS band 1 (620 – 670 nm) and band 2 (841-876 nm) respectively. 

 
NDVI data for the study area was acquired from the Land Processes Distributed Active Archive Centre 

using the AppEARS tool that allows for easy access to MODIS data products using point sample of 

geographic co-ordinates or area sample of vector polygon (shapefiles) 

https://lpdaac.usgs.gov/tools/appeears/. Soil moisture geographic co-ordinates (22 points) from the 

Twente soil moisture network were used to acquire data as point samples over the period from 2001 to 

2020.  

https://modis.gsfc.nasa.gov/data/
https://lpdaac.usgs.gov/tools/appeears/
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The AppEARS tool allowed for the specification of the data format and projection before data 

acquisition, that is available in GeoTIFF format and geographic projection (datum: WGS 84). The data 

was linearly scaled with NDVI values ranging between -1 to 1. 

3.2.1.1. NDVI Data processing  

 

Alongside the NDVI data product, is the Quality assessment metadata that was used to filter and omit 

data values captured with the lowest quality, that is, pixels produced under cloudy conditions. De Oliveira 

& Epiphanio, (2012) suggested the use of these Quality assessment (QA) in pre-processing NDVI to 

check for errors in the MODIS data products before further analysis.  

 

The NDVI data used for research did not consider smoothing techniques since further processing 

(averaging to spatial mean) of the point-derived data was further done and this would minimize inherent 

point skewed data. Rahimi, (2020) pointed out that the Harmonic Analysis of Time Series (HANTS) 

(Roerink et al., 2000; Wit & Su, 2005), a commonly used smoothing method, had limitations of not 

retaining the actual NDVI values observed at given observation dates. Tian et al. (2015) argued that 

averaging NDVI values for a region reduces small scale errors by balancing them out leaving room for 

detection of major errors caused by sensor differences or sensor shifts. Moreover, many data smoothing 

procedures are more appropriate when assessing phenological indicators such as the start and end and 

length of the growing season (Kross, 2005).  

 

As a result, actual observations were used to obtain the spatial means NDVI of the study area. To obtain 

spatial mean NDVI for the study area, an average over the soil moisture point NDVI estimates was 

computed for each 16-day DOY observation. Aggregation by average method on all land cover types for 

an entire region was applied by Mennis, (2001) to get spatial mean. For better understanding of the NDVI 

variations over the years, average 16-day NDVI timeseries over the period 2001-2020 was plotted (see Fig. 

4(a)). To derive monthly NDVI values, average of two 16-day DOY observations according to the date of 

capture was done and the average monthly NDVI timeseries was plotted (2001-2020) (see Fig. 4 (b)).  



ASSESSING METEOROLOGICAL AND VEGETATION DROUGHT INDICES AGAINST SOIL MOISTURE MEASUREMENTS OVER TWENTE REGION, THE NETHERLANDS 

24 

 

Figure 7: (a) 16-day spatial mean for NDVI timeseries from 2001-2020 plotted against the Day of the Year (DOY), 
(b) monthly spatial mean for NDVI timeseries from 2001-2020, derived from MODIS surface reflectance products 
(MOD13A1) version 6 collection 

   

3.2.2. Time series NDWI   

 

Long term NDWI datasets are not readily available. This necessitated the calculation of the index based 

NIR (band 2) and SWIR (band 6) surface reflectance bands from MODIS product (MOD09A1) Version 6 

collection. From the Land Processes Distributed Active Archive Centre using the AppEARS tool 

https://lpdaac.usgs.gov/tools/appeears/, geographic co-ordinates from the Twente soil moisture network 

were used to acquire data as point samples from 8-day NIR and 8-day SWIR bands at 500m. Unlike the 

16-day composite NDVI product, the 8-day surface reflectance products were the best observed estimate 

within an 8-day period. The best product was one taken with a low view angle, cloud free or minimal 

cloud and cloud shadow (Roger et al., 2011).  

3.2.2.1. NDWI Data processing  

 

The NDWI data products from MOD09A1 had a Quality assessment metadata also, that was used to filter 

and omit the lowest quality data values (those captured under cloudy conditions). The two datasets (8-day 

NIR and 8-day SWIR bands) containing 22 time series (number of soil moisture station points) for the 

period 2001-2020 each, were used for the calculation of the NDWI to obtain the 8-day NDWI values 

using Equation 4. 

https://lpdaac.usgs.gov/tools/appeears/
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NDWI =  
ρNIR−ρSWIR

ρNIR+ρSWIR
          Eq. 3 

Where 𝜌𝑁𝐼𝑅, and 𝜌𝑆𝑊𝐼𝑅 are MODIS bands 2 (841-876 nm) and band 6 (1628-1652 nm) respectively. 

The NDWI data values had a range of -1 to 1. An average of two calculated 8-day NDWI observations 

was done to obtain 16-day NDWI time series for the Twente region and subsequent average of two 16-

day NDWI calculations to obtain monthly NDWI values. To obtain spatial mean NDWI for the study 

area, an average over the soil moisture point NDWI estimates was computed for each 8-day, 16-day DOY 

and monthly observation and plotted for the period 2001-2020 (see Figure 9) 

   

Figure 8: (a) 8-day spatial mean for NDWI timeseries from 2001-2020 plotted against 8-day Day of the year (DOY), 
(b) 16-day spatial mean for NDWI timeseries from 2001-2020 plotted against 16-day DOY & (c) monthly spatial 
mean for NDWI timeseries from 2001-2020, derived from MODIS surface reflectance products (MOD09A1) 
version 6 collection 
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4. METHODS 

4.1. Standardized Precipitation Index (SPI) 

 
To compute the Standardized Precipitation Index (SPI), rainfall records of more than 30 years 

(climatology) are essential. This study used thirty-three-year daily precipitation data (1988 – 2020). 16-day 

and monthly precipitation time series were fitted to a gamma probability distribution function (PDF). The 

gamma was recommended as the most suitable PDF for fitting rainfall at various timescales by Lloyd-

Hughes & Saunders, (2002) who tested several PDFs (gamma, log-normal and normal) using a 

Kolmogorov-Smirnov Test (K-S test) and gamma showed the best fit. The K-S test (Chakravarti et al., 

1967) is a non-parametric statistical fit test that compares hypothetical PDF (e.g., gamma) with the 

empirical PDF, generated by the data. The hypothetical PDF that best fits the empirical PDF is most 

suitable (Chakravarti et al., 1967). (see Figure 9.) 

 

Figure 9: Scatter plot indicating gamma CDF fitness to monthly rainfall empirical CDF  

 

The gamma PDF was given by the equation: 

 

𝑔(𝑥) =
1

𝛽𝛼Г(𝛼)
𝑥𝛼−1𝑒𝑥 𝛽⁄    𝑓𝑜𝑟 𝑥 > 0        Eq 4 

Where α > 0 is a shape parameter, β > 0 is a scale parameter, x > 0 is the amount of precipitation and Γ 

(α) is the gamma function. The two timeseries of 16-day precipitation and monthly precipitation were 

uploaded into a math program, EasyFit professional version 5.0 used for fitting data to their distributions 

(source: https://easyfit.informer.com/5.5/). -The estimation of the α and β parameters is done by the 

https://easyfit.informer.com/5.5/
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program based on the Maximum likelihood estimation (Genidy, 2020). The fitted gamma PDF is used to 

calculate the cumulative distribution function (CDF) using the equation: 

 

𝐺(𝑥) =  
1

�̂��̂�Г(�̂�)
∫ 𝑡�̂�𝑥

0
𝑒−𝑥 �̂�⁄ 𝑑𝑥         Eq 5 

The inverse normal function was applied to the CDF to obtain standardized normal distribution of SPI 

values with a mean zero and standard deviation of one (Guttman, 1998; Sepulcre-Canto et al., 2012). 

 

4.2. Standardized precipitation and Evaporation Index (SPEI) 

 
The computation of SPEI involved use of precipitation and the crop reference evapotranspiration (ETref) 

data. The acquired ETref data is calculated using a radiation-based Evapotranspiration method, the 

Makkink formula, that incorporates incoming shortwave radiation and average daily temperatures. The 

crop reference evapotranspiration (ETref) is defined as the “atmospheric evaporative demand of grass as 

the hypothetical reference crop surface and its independent of the crop type or crop development” (Allen 

et al., 1998, p. 7). The ETref is majorly driven by radiation, temperature, humidity and windspeed at 

different latitudes (Peng et al., 2018) and these variables captured by the Makkink equation expressed as: 

 

𝐸𝑇 𝑟𝑒𝑓 = 0.65 .  
𝜃

𝜃+𝛾
  .

𝑠↓𝑑𝑎𝑦

𝜆∗𝜌
         Eq 6 

         

Where ETref  is the Makkink reference evaporation (mmd-1), θ the slope of the curve of saturation water 

vapor pressure (kPao C-1) that is derived from the mean daily temperature, γ the psychometric constant 

(kPao C-1),  𝑠 ↓𝑑𝑎𝑦 the daily incoming shortwave radiation (Jm-2d-1) and  the bulk density of water, i.e. 

1000 kgm-3  (Hiemstra & Sluiter, 2011).   

 

Steps of computing SPEI index are similar to the SPI computation procedure. Thirty-three-year daily 

precipitation and daily crop reference evapotranspiration (ETref) (1988-2020) were summed up to 16-days 

and monthly timescales. The water deficits (D) were computed, given by,  

 

𝐷𝑖 = 𝑃𝑖 − 𝐸𝑇𝑟𝑒𝑓          Eq 7 

 

Where 𝐷𝑖 is water deficit at timescale 𝑖  (16-days / monthly),  𝑃𝑖 is precipitation at timescale 𝑖  and ETref is 

the crop reference evapotranspiration at timescale 𝑖. The water deficit time series (D) from each time scale 

(16-day and 1 month) were then fitted into a log logistic distribution which has been recommended by S. 

M. Vicente-Serrano et al. (2010) (see Figure10.) 
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Figure 10: Scatter plot indicating log-logistic CDF fitness to the monthly water deficit empirical CDF  

 

The Log-logistic distribution, which is a three-parameter distribution can account for negative values and 

is given by:  

 

𝑓(𝑥) =  
𝛽

𝛼
(

𝑥−𝛾

𝛼
)

𝛽−1
[1 + (

𝑥−𝛾

𝛼
)

𝛽
]

−2

        Eq 8 

 

where 𝑥 can take values in a range (ϒ >  𝑥 >  ∞), ϒ is the parameter of origin and 𝑥 can take any value 

including negative values found in water deficit values (S. M. Vicente-Serrano et al., 2010). The parameters 

of the distribution were then retrieved from the EasyFit program using the Maximum Likelihood 

Estimation. Results from the program were pointed out to be quantifiable in a study that compared 

parameter estimation of log-logistic distribution using the software and using an algorithm of percentile 

roots (Genidy, 2020). The CDF of the log-logistic distribution is given by: 

 

𝐹(𝑥) =  [1 + (
𝛼

𝑥−𝛾
)

𝛽
]

−1

         Eq 9 

 

Where 𝛼, 𝛽, and ϒ are the scale, shape, and origin parameters for the water balance series (D) (ϒ >  𝐷 >

 ∞). The SPEI index was then calculated as standardized values of F(x) using the classical approximation 

of Abramowitz  and Irene (1970) that has been recommended in many studies (Pei et al., 2020; S. M. 

Vicente-Serrano et al., 2010). 

𝑆𝑃𝐸𝐼 = 𝑊 −
𝐶0+𝐶1𝑊+𝐶2𝑊2

1+𝑑1𝑊+𝑑2𝑊2+𝑑3𝑊3        Eq 10 
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where, 

𝑊 =  √−2 𝑙𝑛(𝑃)  𝑓𝑜𝑟 𝑃 ≤ 0.5         Eq 11 

 

𝑃 is the probability of exceeding a determined water balance (D) value, 𝑃 = 1 − 𝐹(𝑥). Where if 𝑃 >

 0.5, 𝑃 is replaced by 1 − 𝑃 and the sign of the resultant SPEI is reversed. The constants used in the 

equation are C0 = 5 2.515517, C1 = 5 0.802853, C2 = 0.010328, d1 = 1.432788, d2 = 0.189269, and d3 = 0.001308. To quantify the severity of 

drought conditions, SPEI values were put to similar categories as SPI values (S. M. Vicente-Serrano et al., 

2006; 2010) (see Table 1). 

4.3. Vegetation indices anomalies  

 

4.3.1. NDVI Anomaly (NDVI-A) 

 
The NDVI anomaly (NDVI-A) is derived from comparing the current NDVI value with the long-term 

mean NDVI for a given timestep (Anyamba & Tucker, 2012). In the research, to derive the NDVI 

anomalies, the long-term mean NDVI and standard deviation at both timesteps (16-day and monthly) 

were computed for the whole period (2001-2020). Standardized NDVI anomalies were calculated 

following the procedure by Udelhoven et al. (2009). 

 

𝑁𝐷𝑉𝐼𝑎𝑛𝑜𝑚𝑎𝑙𝑦 𝑖 =  
𝑁𝐷𝑉𝐼𝑚𝑒𝑎𝑛 𝑖− 𝑁𝐷𝑉𝐼 𝑖

𝑁𝐷𝑉𝐼𝜎 𝑖
        Eq 12 

 

Where 𝑁𝐷𝑉𝐼𝑎𝑛𝑜𝑚𝑎𝑙𝑦, is the NDVI anomaly for the timestep 𝑖 (16-day, or monthly) and 𝑁𝐷𝑉𝐼𝑚𝑒𝑎𝑛 is the 

spatial mean NDVI over the study area at timestep 𝑖 (16-day, or monthly) and 𝑁𝐷𝑉𝐼̅̅ ̅̅ ̅̅ ̅̅  is the long-term 

mean NDVI and 𝑁𝐷𝑉𝐼𝜎 is the long-term standard deviation for corresponding timestep 𝑖 (16-day, or 

monthly). The NDVI anomalies were then classified according to SPI /SPEI classification scheme in 

Table 1 since the anomalies were calculated using a similar normalization procedure used in SPI and SPEI 

computation. 

 

4.3.2. NDWI Anomaly (NDWI-A) 

 
To derive NDWI anomalies at 16-day and monthly timestep, the long-term mean NDWI and standard 

deviation were first computed for the period (2001 - 2020) for both timesteps. The NDWI anomalies were 

then calculated using the equation, 

 

𝑁𝐷𝑊𝐼𝑎𝑛𝑜𝑚𝑎𝑙𝑦 𝑖 =  
𝑁𝐷𝑊𝐼𝑚𝑒𝑎𝑛 𝑖− 𝑁𝐷𝑊𝐼 𝑖

𝑁𝐷𝑊𝐼𝜎 𝑖
       Eq 13  
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Where 𝑁𝐷𝑊𝐼𝑎𝑛𝑜𝑚𝑎𝑙𝑦 , is the NDWI anomaly for the timestep 𝑖 (16-day, or monthly) and 𝑁𝐷𝑊𝐼𝑚𝑒𝑎𝑛 is 

the spatial mean NDWI over the study area at timestep 𝑖 (16-day, or monthly) and 𝑁𝐷𝑊𝐼̅̅ ̅̅ ̅̅ ̅̅  is the long-term 

mean NDWI and 𝑁𝐷𝑊𝐼𝜎 is the long-term standard deviation for corresponding timestep 𝑖 (16-day, or 

monthly). Similar to the NDVI anomalies, the drought categories were categorized according to SPI & 

SPEI classification scheme (see Table 1.) 

4.4. Soil moisture anomalies 

 

The soil moisture anomalies were grouped into surface soil moisture anomalies (𝜃𝑠𝑚 – A) and root zone 

soil moisture anomalies (𝜃𝑟𝑧 - A). These anomalies were calculated as a deviation from the mean of the 

six-year soil moisture records at the two timescales (16-day, monthly). Due to the limitation of in-situ 

measurements in providing long-term data, only six-year data was available for determining soil moisture 

anomalies. The mean and the standard deviation for the full period (2015-2020) were first computed and 

Equation 15 used to compute the surface soil moisture anomalies and Equation 16 to compute the root 

zone soil moisture anomalies. 

 

𝜃𝑠𝑚 − 𝐴𝑖 =  
𝜃𝑠𝑚 𝑖−𝜃𝑠𝑚 𝑖

𝜃𝑠𝑚𝜎 𝑖
          Eq 14 

Where 𝜃𝑠𝑚 − 𝐴 is the surface soil moisture anomaly for the timestep 𝑖 (16-day, or monthly), 𝜃𝑠𝑚 𝑖 is the 

surface soil moisture for the timestep 𝑖  (16-day, monthly), 𝜃𝑠𝑚 𝑖  is the long-term average surface soil 

moisture and 𝜃𝑠𝑚𝜎 𝑖 is the standard deviation surface soil moisture for corresponding timestep 𝑖 (16-day, 

or monthly). 

 

 

𝜃𝑟𝑧 − 𝐴𝑖 =  
𝜃𝑟𝑧 𝑖−𝜃𝑟𝑧 𝑖

𝜃𝑟𝑧𝜎 𝑖
          Eq 15 

         

Where 𝜃𝑟𝑧 − 𝐴 is the root zone soil moisture anomaly for the timestep 𝑖 (16-day, or monthly), 𝜃𝑟𝑧 𝑖 is the 

root zone soil moisture for the timestep 𝑖 (16-day, monthly), 𝜃𝑟𝑧 𝑖 is the long-term average root zone soil 

moisture and 𝜃𝑟𝑧𝜎 𝑖 is the standard deviation root zone soil moisture for corresponding timestep 𝑖 (16-

day, or monthly). The soil moisture anomalies were grouped according to SPI & SPEI classification 

scheme (see Table 1.) 
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4.5. Description of analysis methods  

 

4.5.1. Trend Analysis 

 

In this study, trend analysis was done using the Mann-Kendall test (Kendall, 1948; Mann, 1945) which is a 

non-parametric statistical method that looks at the correlation between ranks and sequencies in a data 

series. It has been used in trend detection of climatic variables (Karmeshu, 2012). A significance level of 

5% (p = 0.05) has been applied in identifying trends in drought indices (Alsafadi et al., 2020; Hui-Mean et 

al., 2018). The trend test is depended on the value of p that is the basis of the two hypothesis, null 

hypothesis suggests that p ≥0.05, there is no existence of a trend in data and alternative hypothesis 

suggests the existence of a trend when p ≤ 0.05. The Mann-Kendall test (S) considers 𝑛 data points of a 

time series given by, 

 

𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝑋𝑗 − 𝑋𝑖
𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1 )         Eq 16 

 

𝑠𝑔𝑛(𝑋𝑗 − 𝑋𝑖) = {

 1    𝑖𝑓  𝑋𝑗 − 𝑋𝑖 > 0

    0    𝑖𝑓 𝑋𝑗 − 𝑋𝑖 = 0 

−1   𝑖𝑓 𝑋𝑗 − 𝑋𝑖 > 0

        Eq 17 

Where 𝑋𝑗 𝑎𝑛𝑑 𝑋𝑖   are two subsets of data where 𝑖, = 1,2,3, …., 𝑛 − 1 and  𝑗 = 𝑖 + 1, 𝑖 + 2, 𝑖 + 3, …, 𝑛  

𝑋𝑗 𝑎𝑛𝑑 𝑋𝑖   can be monthly precipitation /drought index or 16 days precipitation /drought index values in 

years 𝑗 and 𝑖 where  𝑗 > 𝑖  respectively. The use of programming language, python, facilitated the testing 

of the data series using the pymannkendall library (Hussain & Mahmud, 2019).   

 

4.5.2. Correlation Analysis 

 
To statistically analyse the relationship between the meteorological drought indices (SPI & SPEI), 

vegetation anomalies (NDVI-A & NDWI-A), and the root zone soil moisture anomalies, Pearson 

correlation coefficient (R) was used. The correlation coefficient was used to measure linear association 

between two continuous variables where a high value depicts a strong association and a low value depicts 

the lack of association (USGS, 2020). The correlation coefficient was also calculated at different time lags. 

 

𝑅𝑥𝑦 =  
∑ (𝑥𝑖−�̅�)(𝑦𝑖−�̅�)𝑛

𝑖=1

√∑ (𝑥𝑖−�̅�)𝑛
𝑖=1

2
(𝑦𝑖−�̅�)2

         Eq 18 

Where 𝑅𝑥𝑦 is the Pearson correlation coefficient of two datasets 𝑥  and 𝑦 of 𝑛 are the number of data 

points. 𝑥 can be a meteorological or vegetation drought indices series and 𝑦 is soil moisture anomalies 

series respectively. 
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Many investigations have used the correlation analysis in drought analysis to find the relationship between 

vegetation drought indices and soil moisture (West et al., 2018), between surface soil moisture anomalies 

and SPI at various timescales (Spennemann et al., 2015).  

 

To test for the significance of the correlation coefficient (R), the probability value (p-value) was used as 

computed from a t-test ( which gives information on the strength of the linear relationship) (Greenland et 

al., 2016). To p-value ranges from 0 to 1, where values closer to zero indicate that (R) is statistically 

significant and a larger p-value indicates non-significance (Illowsky & Dean, 2021). In this research, at 5% 

significance level, p values ≤ 0.05 indicated that the linear association (R) was significant and p values ≥ 

0.05 suggested that (R) was not significant. The T-test is given by, 

 

𝑡 =
𝑅√𝑛−2

1−𝑅2            Eq 19 

 

Where 𝑅 is the Pearson’s correlation co-efficient, 𝑅2 is the coefficient of determination and 𝑛 number of 

data points. 
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Figure 11: Flow chart of the Methods used in the study 
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5. RESULTS AND DISCUSSION 

In this chapter, the results of the study are discussed. Section 5.1 discusses the temporal evolution of 

meteorological drought as quantified by SPI and SPEI at 16-day and monthly timescales. In addition, 

further analysis is done to detect the frequency and severity of meteorological drought events for the 

period 2001 to 2020. Section 5.2 discusses the temporal evolution of agricultural drought as quantified by 

vegetation index anomalies (NDWI-A and NDVI-A) at 16-day and monthly timescales. Analysis is also 

done detect the frequency and severity of the agricultural drought events over 2001-2020.  Section 5.3 

discusses the temporal evolution of soil moisture anomalies (surface, 𝜃𝑠𝑚 − 𝐴 and root zone, 𝜃𝑟𝑧 − 𝐴) for 

the period 2015 to 2020. A comparison analysis using Pearson’s correlation coefficient (R) is done to show 

the relationships between the drought indices and soil moisture anomalies at 16-day and monthly 

timescales. Section 5.4 shows an overview of how drought indices quantified the 2018 drought. Section 

5.5 outlines the assumptions / limitations in the development of the drought indices (meteorological, 

agricultural and soil moisture anomalies) 

 

5.1. Meteorological drought indices 

 
Standardized precipitation index (SPI) and Standardized precipitation evapotranspiration index (SPEI) are 

the meteorological drought indices used for quantifying drought in the last twenty years (2001 – 2020). 

Due to their multi-temporal characteristic, both indices were computed according to 16-days and monthly 

timescales to capture drought events of different magnitudes / severity and their frequency in a short-term 

duration. Drought commences when the SPI / SPEI value goes below zero to negative values and ends 

when the values approach zero and progress towards positive values (non-drought). 

 

5.1.1. Temporal evolution of meteorological drought 

 
Figure 12 illustrates the variations in 16-day SPI and SPEI for the period (2001 – 2020). Further variations 

of monthly SPI and monthly SPEI are illustrated in Figure 13. 
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Figure 12: Temporal variations of 16-day SPI and SPEI timeseries over (a) 2001-2010 & (b) 2011– 2020. 

 

 

Figure 13: Temporal variations of monthly SPI timeseries and monthly SPEI timeseries over (a) 2001 – 2010 & (b) 
2011– 2020. 

Based on Figure 12, the 16-day SPI and SPEI show similarity of high fluctuations in identifying drought 

and non-drought events. This explains the detection of the slightest precipitation deficits within 16-days. 

A high coefficient of variation in rainfall and (ETref) at 16-day shown in Table 3 below, supports the 
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observed fluctuations. The indices illustrate differences in their peaks indicating differences in the 

magnitude / severity of the drought events they identify. A high non-significant correlation, R of 0.76, p 

(1.00) is yielded between the two indices at 16-day timescale. These results are in agreement with Stagge et 

al. (2014) who found that correlation of SPEI with SPI was in the range of (R of 0.65–0.98).  

 

Based on Figure 13, the monthly SPI and SPEI illustrate a similar pattern in the detection of drought 

(below zero) and non- drought conditions (above zero) with minimal fluctuations compared to 16-day SPI 

and SPEI. A high non-significant correlation, R of 0.710, p (1.00) is yielded between monthly SPI and 

monthly SPEI. The differences in the magnitude of droughts quantified is slightly lower than in 16-day 

indices.  This can be explained by a lower coefficient of variation in the monthly sum rainfall as the key 

driver of drought shown in Table 4. Pei et al., (2020) suggested that minimal fluctuations in monthly SPI 

and SPEI, are an indication of a long - term change characteristics of drought in response to climate 

anomalies of a month that are not observed in shorter timescales of 16 days.  

 

Table 3: Statistical summary of 16-day sum rainfall and sum (ETref) in Twente region using thirty-three-year 
climatological data (1988-2020) 

 16 - day sum rainfall 16 - day sum (ETref)  

Mean [mm] 33.87 25.95 

Std [mm] 23.61 18.63 

Coefficient of Variation (CV) 0.70 0.72 

 

 

Table 4: Statistical summary of monthly sum rainfall and monthly sum ETo in Twente region using thirty-three-year 
climatological data (1988-2020) 

 Monthly sum rainfall Monthly sum (ETref) 

Mean [mm] 34.39 47.79 

Std [mm] 65.26 35.13 

Coefficient of Variation (CV) 0.53 0.73 

 

5.1.2. Frequency of meteorological drought events and their degree of severity 

 
Drought frequency is taken as the number of events identified within a certain category of severity over 

the total number of SPI /SPEI values (Nanzad et al., 2019). The levels of severity are determined using 

the drought classification categories of SPI and SPEI whereby, the negative values are grouped into 

moderately dry (≤ -1), very dry (≤ -1.5) and extremely dry (≤ -2.0) events. Oliveira-Júnior et al. (2018) also 

used this truncation level of drought events (≤-1) to evaluate drought severity using SPI.  
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Table 5: Summary of the degree of severity and frequency of drought events as identified by SPI and SPEI at both 

16-day and monthly timescales over the period 2001-2020 for the Twente region 

Meteorological  

drought indices 

Moderately 

dry 

Severely dry Extremely dry 

16-day SPI Mean 

Std dev 

Frequency [%] 

-1.217 

0.188 

7.7 

-1.747 

0.143 

5.5 

-2.505 

0.429 

5.0 

16-day SPEI Mean 

Std dev 

Frequency [%] 

-1.249 

0.123 

12.3 

-1.656 

0.138 

7.0 

-2.176 

0.120 

1.1 

Monthly SPI Mean 

Std dev 

Frequency [%] 

-1.228 

0.172 

10.0 

-1.701 

0.152 

2.9 

-2.514 

0.335 

3.8 

Monthly SPEI Mean  

Std dev  

Frequency [%] 

-1.228 

0.149 

12.1 

-1.742 

0.134 

6.7 

-2.073 

0.01 

0.8 

  

Based on Table 5, for moderately dry category, 16-day SPEI identifies dry events with the highest mean 

and higher frequency. For severely dry category, 16-day SPI detects a high mean of dry events. For the 

extremely dry events, monthly SPI detect dry events with the higher means and frequency than 

corresponding SPEI. 

At both timescales (16-day and monthly), the differences in quantifying the magnitude /degree of severity 

of the drought events by both SPI and SPEI could be attributed to the components they consider in their 

methodology. SPI only uses precipitation normalities while SPEI introduces the component of water 

demand (ETref) that reduces the normality of the water balance from which SPEI is computed. This 

significantly affects the magnitude of drought quantified, leading to the identification of more extremely 

dry events by SPI than SPEI (Alsafadi et al., 2020; Tirivarombo et al., 2018; Werner et al., 2015). 

5.2. Agricultural drought indices  

 

The use of vegetation index anomalies (NDVI-A & NDWI-A ) as agricultural drought indices allowed for 

the comparison of current vegetation conditions to the long term mean conditions to monitor variations 

in vegetation response to climatic changes over-time (Anyamba & Tucker, 2012).  
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5.2.1. Temporal evolution of agricultural drought  

Negative values below zero for both vegetation drought indices (NDVI-A and NDWI-A), indicate 

drought conditions / below normal vegetation conditions and above zero indicate non-drought 

conditions/ normal vegetation conditions and the degree of severity, based on the drought classification 

scheme in Table 2 above.  

 

Figure 14 (a & b) illustrate line graphs of NDVI-A and NDWI-A over 2001-2020 at 16-day timescale. 

 

 

Figure 14: Temporal variations of 16-day NDVI-A timeseries and NDWI-A timeseries over 2001-2010 & 2011-2020  

 

Based on Figure 14, the 16-day NDWI-A and NDVI-A illustrate high variations and high fluctuations in 

identifying non-normal conditions in majority of the years, shown by the negative peaks below zero level. 

A major difference is observed in 2010 where both drought indices show opposite extremes in their values 

at the beginning and end of the year. A further analysis of 2010 is shown in Table 4. The extreme positive 

peak values of NDWI-A across the years, shows its sensitivity to highly fluctuating short-term rainfall than 

the NDVI-A.  

 

Correlation analysis between the 16-day NDVI-A and NDWI-A anomalies yields a significant R of 0.383, 

p (0.00). The research assumed the low correlation observed is affected by the extreme outliers in 2010. 



39 

Omitting 2010 records and performing a correlation analysis again, a significant correlation is yielded, R of 

0.505, p (0.00).  

 

Figure 15 (a & b) further illustrates monthly line graphs of NDVI-A and NDWI-A over the years from 

2001-2020  

 

Figure 15: Temporal variations of monthly NDVI-A timeseries and NDWI-A timeseries over 2001-2010 & 2011-
2020 

 

Based on Figure 15, slight variations are observed in monthly NDVI-A and NDWI-A in their response to 

below normal (drought) and above normal (non-drought) conditions. Reduced fluctuations in both indices 

are observed especially, in the monthly NDWI-A. A time delay is clearly observed in how the monthly 

indices peak to drought and non-drought conditions. A non-significant low correlation (R) of 0.169, p 

(0.98) is yielded between the monthly vegetation index anomalies. Similar to the 16-day vegetation 

anomalies, the year 2010 is considered an outlier and omitted giving a new non-significant correlation, R 

of 0.272 p (1.00) was yielded. Further detailed analysis for the year 2010 as a case study are summarized in 

Table 6. 

 

The correlation in the vegetation anomalies at both timescales shows that there exists interdependence 

between leaf components, that is, chlorophyll content (greenness) and leaf water content (Sellers, 1987) 

However, the low correlation in monthly vegetation indices indicates the differences in vegetation 

response to seasonal climatic patterns and the vegetative growth cycles. For instance, in winter periods it 
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would be expected that leaf water content would be high but no greenness since vegetation is inactive, as 

shown in 2010 case.  

 

Table 6: Summary of 2010 NDVI-A and NDWI-A, and their response to monthly rainfall and monthly (ETref) 

    

 

Table 6 illustrates further analysis of the year 2010 showing differences in how the NDVI-A and NDWI-

A respond to seasonal climatic variations. The red shaded cells under vegetation index anomalies, illustrate 

values below (≤ -1) indicating drought events. Red shaded cells under rainfall and ETref, are the values 

below the thirty-three-year average monthly total rainfall and mean monthly total ETref respectively.  

 

Based on Table 6, a contrast is observed in the response between the NDWI-A and NDVI-A response to 

climatic variables during the winter months (October- March). Positive NDWI-A values, associated with 

high leaf water content, respond positively to moderate monthly total rainfall amounts (around the mean) 

accompanied by low ETref values. The NDVI-A on the other hand, associated with leaf greenness 

(chlorophyll content) responds negatively to these climatic variables in winter period. 

 

To better understand the role of rainfall on vegetation index anomalies, a correlation analysis is done for 

the whole time series (2001- 2020) between monthly total rainfall and the vegetation anomalies as 

illustrated in Figure 16.   
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Figure 16: Time lag relationship between monthly sum rainfall and monthly sum ETref, and vegetation anomalies 
(NDVI-A & NDWI-A), shown by cross correlation function 

In relation to rainfall, a non-significant correlation R of 0.287, p (1.00) for NDWI-A was slightly higher 

than a non-significant R of 0.253, p (1.00) for NDVI-A. This indicates the higher sensitivity of NDWI to 

rainfall than the NDVI. However, at one month lag, the NDVI-A and rainfall correlation goes up to R of 

0.268 while NDWI-A goes very low to R of 0.013. These findings also support the high fluctuations in 

NDWI-A response at 16-days that corresponds high rainfall variability (coefficient of variation of 0.72). 

This supported Chakraborty & Sehgal, (2010) study that NDWI anomalies showed a better efficacy in 

identifying water stress in vegetation in a short-timescale of less than a month while NDVI anomalies 

indicated a lag relationship with moisture content in vegetation.  

 

A negative relationship between ETref (radiation and temperature) and the monthly vegetation index 

anomalies is illustrated by R of -0.089 by NDVI-A and R of -0.008, by NDWI-A. The overall low 

correlation could be an indication of variation of solar radiation during different seasons leading to 

variations in ETref. However, the negative correlations for both precipitation and ETref   indicates that 

drought conditions observed on vegetation do not only stem from these two variables. 
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5.2.2. Frequency of agricultural drought events and their degree of severity 

 

To analyze the frequency of agricultural drought events and their degree of severity as identified by the 

vegetation index anomalies, the drought events are put in categories as classified by SPI and SPEI drought 

classification scheme (see Table 1).  

Table 7: Summary of the degree of severity and frequency of drought events as identified by NDVI-A and NDWI-A 
at both 16-day and monthly timescales over the period 1988-2020 for the Twente region 

Agricultural 

drought indices 

Moderately 

dry 

Severely dry Extremely dry 

16-day 

NDVI-A 

Mean 

Std dev 

Frequency [%] 

-1.268 

0.175 

6.3 

-1.789 

0.146 

4.4 

-2.770 

0.434 

3.91 

16-day  

NDWI-A 

 

Mean 

Std dev 

Frequency [%] 

-1.212 

0.141 

7.4 

-1.698 

0.095 

4.1 

-2.381 

0.264 

3.0 

Monthly 

NDVI-A 

 

Mean 

Std dev 

Frequency [%] 

-1.195 

0.153 

6.7 

-1.699 

0.148 

4.6 

-2.704 

0.478 

4.6 

Monthly 

NDWI-A 

Mean  

Std dev  

Frequency [%] 

-1.184 

0.103 

7.5 

-1.750 

0.133 

5.8 

-2.339 

0.294 

2.9 

 

 

Based on Table 7, Generally, NDVI-A identified higher means of the three categories of drought than 

NDWI-A. However, the drought frequencies vary between the indices. Extremely low or prolonged 

NDVI anomalies could be associated with instances of water stress levels that have gone beyond plant 

adaptive mechanisms leading to deterioration of vegetation health and a rainfall event would not lead to 

immediate greenness of the vegetation (Mladenova et al., 2020). 

5.2.3. Trend Analysis by Mann-Kendall 

 
Man-Kendall test was done to test whether there was a significant trend in the meteorological and 

vegetation drought indices at the given timescales (16-day and monthly) at 5% significance level and the 

results are illustrated in Table 8. 
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Table 8: Mann-Kendall for the meteorological and agricultural drought indices series based on 16-day and monthly 
timescales 

Monthly Mann-Kendall Trend test (α = 0.05) 

 SPI SPEI NDVI-A NDWI-A 

16-day drought indices 

 p-value 

 

0.273 

 

0.169 

 

2.58 

 

0.96 

Monthly drought indices  

p-value 

 

0.605 

 

0.325 

 

3.11 

 

0.47 

 

The Mann-Kendall (M-K) test on all the times series of the drought indices (meteorological and 

agricultural drought indices) from 2001-2020 show p ≥ 0.05 that indicates that there is no significant trend 

in all the indices. 

 

To test for seasonal trends, M-K test was computed based on monthly timescale for the meteorological 

and agricultural drought indices. The months with trends are illustrated in bold. 

 

Table 9: Man-Kendall Trend Test on meteorological and agricultural drought indices based on monthly timescale 

Monthly Mann-Kendall Trend test (α = 0.05) 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

SPI 

 

p-value 

z-value 

0.792 

 

0.877 0.676 0.168 0.768 0.780 0.901 0.792 0.306 0.678 0.889 0.722 

SPEI 

 

p-value 

z-value 

0.722 0.792 0.515 0.036 

-2.092 

0.733 0.377 0.609 1.000 0.159 0.676 0.889 0.768 

NDVI-A  

 

p-value 

z-value 

0.056 

 

0.010 

2.563 

0.098 0.603 0.048 

1.979 

0.581 0.974 0.871 0.006 

2.758 

0.001 

3.472 

0.007 

2.693 

0.005 

2.823 

NDWI-

A 

 

p-value 

z-value 

0.626 0.581 0.144 0.074 0.417 0.086 0.673 0.381 0.820 0.581 0.074 0.871 

 

Based on Table 9, SPI shows no trend in monthly trend test, while SPEI shows a negative trend test, 

indicated by the negative z value in the month of April. For the agricultural drought indices, the NDWI-A 

shows no monthly trend while the NDVI-A shows positive trend in the drought events identified. 

However, the observed “no trends” could be associated with incidences of auto correlation inherent in the 

data series that leads to rejection of the null hypothesis (Kendall, 1948; Mann, 1945). The autocorrelations 

could be caused by seasonal climatic variations and vegetation growth cycles.  
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5.3. Soil moisture anomalies 

5.3.1. Temporal evolution of soil moisture anomalies 

 
Surface soil moisture (𝜃𝑠𝑚 − 𝐴 )/ 5 cm anomalies were computed and plotted against the root zone soil 

moisture anomalies (𝜃𝑟𝑧 -A) as shown in Figure 17. Both soil moisture anomalies illustrate a similar 

pattern in the response to dry and non-dry conditions over-time with an exception in 2015 where the root 

zone soil moisture anomalies go below surface soil moisture anomalies. The driest year identified was in 

July 2018 (-1.80, -1.68) corresponding to 16-day (𝜃𝑠𝑚 − 𝐴 ) and (𝜃𝑟𝑧 -A) respectively. 

 

Figure 17: Temporal variations of soil moisture anomalies timeseries (a) 16-day root zone anomalies (𝜃𝑟𝑧 -A) and 

5cm (𝜃𝑠𝑚 − 𝐴 ) anomalies over 2015-2020 and (b) monthly root zone anomalies (𝜃𝑟𝑧 -A) and monthly 5cm (𝜃𝑠𝑚 −
𝐴 ) anomalies over 2015-2020 

 

Using 2015 as a case study, Table 10 shows the soil moisture anomalies and corresponding monthly total 

rainfall and monthly total (ETref). The red shaded cells under vegetation index anomalies, illustrate values 

below (≤ -1) indicating drought events. Red shaded cells under rainfall and ETref, are the values below the 

thirty-three-year average monthly total rainfall and mean monthly total ETref respectively. 
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Table 10: Summary of 2015 Soil moisture anomalies, and their response to monthly rainfall and monthly ETo 

  

 
Based on Table 10, moderate monthly total rainfall (above average) lead to positive soil moisture 

anomalies (5cm and root zone) due to the supply of moisture into the soil layers and reduced loss (low 

monthly total ETref). The root zone anomalies (𝜃𝑟𝑧 -A) illustrate dry events of more intensity in the 

summer months (Jun-Aug) than the dry events identified by 𝜃𝑠𝑚 − 𝐴 )/ 5cm soil moisture anomalies. 

These dry events could be associated with corresponding high ETref values that lead to drying of the soil 

that propagates deep into the soils despite moderate rainfall. Surface anomalies (𝜃𝑠𝑚 − 𝐴) suffer low 

intense dry events due to high faster replenishment of rainfall of any amount even after drying.  

 

  

Figure 18: Time lag relationship between monthly sum rainfall and monthly sum ETref, and soil moisture anomalies 

(5cm and root zone), shown by cross correlation function 
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Based on Figure 18, the correlation analysis between soil moisture and climatic variables (precipitation and 

ETo) illustrates a complex relationship. Positive significant correlations are yielded between monthly 

precipitation and monthly 5cm anomalies (𝜃𝑠𝑚 − 𝐴) and root zone (𝜃𝑟𝑧 -A), R of 0.355, p (0.00) and 

0.324, p (0.00) respectively. These correlations then reduce at one month lag. Conversely, very negative 

correlations yield between monthly ETref and the monthly 5cm anomalies (𝜃𝑠𝑚 − 𝐴) and root zone soil 

moisture anomalies (𝜃𝑟𝑧 -A), R of - 0.698 and - 0.693 respectively. The correlation progresses to positive 

values after the soil moisture anomalies are lagged backwards for two months. 

 

These extreme correlations between soil moisture anomalies and climate variables indicate the complexity 

in the role of soil moisture in the climate system, that is, in land water and land energy balance 

(Seneviratne et al., 2010). Soil moisture influences the evapotranspiration process, leading to drying of the 

soils and less precipitation amounts and intense radiation, makes soil moisture a limiting factor leading to 

decrease in ET. This could be associated with the negative correlation values observed between soil 

moisture anomalies and ETref. 

 

5.3.2. Frequency of drought events by soil moisture anomalies and their degree of severity 

 
Soil moisture anomalies were used to further quantify the frequency of drought events and the degree of 

severity. Both 5cm anomalies (𝜃𝑠𝑚 − 𝐴) and root zone soil moisture anomalies (𝜃𝑟𝑧 -A) were used. Based 

on Table 11, extremely dry events were not identified by the soil moisture anomalies at both timescales. 

 
Table 11: Summary of the soil moisture anomalies based on the 16-day and monthly timescales 

Soil moisture 

 anomalies 

Moderately 

dry 

Severely dry Extremely dry 

16-day 

(𝜃𝑠𝑚 − 𝐴) 

Mean 

Std dev 

Frequency [%] 

-1.219 

0.135 

17.6 

-1.699 

0.048 

2.3 

- 

16-day  

(𝜃𝑟𝑧 -A)  

Mean 

Std dev 

Frequency [%] 

-1.243 

0.152 

17.6 

-1.625 

0.086 

3.8 

- 

Monthly 

(𝜃𝑠𝑚 − 𝐴) 

 

Mean 

Std dev 

Frequency [%] 

-1.207 

0.129 

18.1 

-1.656 

0.147 

2.8 

- 

Monthly (𝜃𝑟𝑧 -

A) 

Mean  

Std dev  

Frequency [%] 

0.124 

-1.250 

16.7 

0.060 

-1.633 

4.2 

- 
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Moderately dry events had a high frequency of occurrence illustrated by both soil moisture anomalies. 5cm 

anomalies (𝜃𝑠𝑚 − 𝐴)  illustrated a slightly higher mean of severely dry events than root zone soil moisture 

anomalies (𝜃𝑟𝑧 -A) over the six-year period at both timescales. The severe dry events identified by 5cm 

anomalies indicate that, despite the expected replenishment of surface soil layers by rainfall events, rapid 

climatic variations such as increased radiation, high temperatures and high winds reported in the region 

KNMI, (2020), could exacerbate the drying of the surface soils. Furthermore, the lack of extremely dry 

events could be associated with the region’s mild and wet winter and summer seasons year round (Van 

Der Velde et al., 2021).  

5.3.3. Relationship between meteorological &vegetation drought indices against soil moisture anomalies at 16-
day timescale 

 
To compare the temporal patterns and relationships between meteorological & vegetation drought indices 

against soil moisture anomalies, line graphs of SPI, SPEI, NDVI-A, NDWI-A, against 5cm soil moisture 

anomalies (𝜃𝑠𝑚 − 𝐴)  and root zone soil moisture anomalies (𝜃𝑟𝑧 -A) were plotted at 16-day timescale 

(Figure 19 (a) & (b))  

 

Based on Figure 19, the 5cm anomalies (𝜃𝑠𝑚 − 𝐴)  and root zone anomalies (𝜃𝑟𝑧 -A) illustrate a dynamic 

close variation with both meteorological and vegetation indices over the period 2015-2020. The 16-day 

SPI and SPEI and 16-day NDVI-A and NDWI-A illustrate more frequent fluctuations and extreme peaks 

compared to less fluctuations in 16-day soil moisture anomalies ((𝜃𝑠𝑚 − 𝐴)  and (𝜃𝑟𝑧 -A)). There is a clear 

indication of time delay / lag in how all the drought indices and soil moisture anomalies respond to 

drought and non-drought conditions.  
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Figure 19: 16-day timeseries of meteorological drought indices (SPI & SPEI), vegetation drought indices (NDVIA & 

NDWIA) against 5cm anomalies (𝜃𝑠𝑚 − 𝐴)  and root zone soil moisture anomalies (𝜃𝑟𝑧 -A) over 2015-2020 

  

Table 12: Pearson’s correlation (R) and p-values for soil moisture anomalies and meteorological (SPI & SPEI) and 

vegetation drought indices (NDVI-A & NDWI-A) at 16-day timescale 

16-day timescale  

 

 

Soil moisture anomalies 

Meteorological drought 

indices 

Vegetation drought 

 indices 

SPI SPEI NDVI-A NDWI-A 

5 cm anomalies 

p-value 

0.291 

0.0 

0.624 

0.0 

0.496 

0.0 

0.470 

0.0 

Root zone anomalies  

p-value 

0.336 

0.0 

0.659 

0.0 

0.481 

0.0 

0.483 

0.0 

 

Based on Table 12, the relationship between 5cm (𝜃𝑠𝑚 − 𝐴) and root zone soil moisture anomalies (𝜃𝑟𝑧 -

A) illustrate positive correlations of statistical significance with both meteorological & vegetation drought 

indices at 16-day timescale. However, SPEI yields the highest correlation with the soil moisture anomalies 

(R of 0.624, 0.659) corresponding to (𝜃𝑠𝑚 − 𝐴) and (𝜃𝑟𝑧 -A) respectively. This can be explained by the 
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inclusion of the loss term in SPEI, that highly influences soil moisture availability as discussed under 

section 5.4.1. These findings are consistent with the study by S. M. Vicente-Serrano et al., (2012) who 

concluded that SPEI has a higher accuracy in predicting soil moisture anomalies than SPI in agricultural 

monitoring due to the inclusion of the moisture loss through ETref in its computation.  

Root zone anomalies (𝜃𝑟𝑧 -A) illustrate higher correlation than 5cm anomalies (𝜃𝑠𝑚 − 𝐴)  with SPI, SPEI 

and NDVI-A indicating further processes that occur when precipitation falls on the surface (filtration, 

percolation) and subsequent loss through evapotranspiration. Conversely, the 5cm soil moisture is prone 

to run off or flooding depending on the antecedent soil moisture conditions reducing the correlation with 

meteorological indices (Seneviratne et al., 2010). A higher correlation between NDWI-A and root zone 

anomalies (𝜃𝑟𝑧 -A) indicates that NDWI (measure of leaf water content) (Gao, 1996) is highly related with 

the soil moisture in the lower zones of the profile where plant roots uptake their moisture.  

 

However, some studies show a weaker correlation exists between NDVI-A /NDWI- A and the 5-cm soil 

layers than with deeper soil layers arguing that some plant roots have deeper roots that capture water at 

such depth (Gu et al., 2008). This is not the case in this research. The higher correlation of both NDVI-A 

and NDWI-A with surface anomalies (see Table 12), indicates that pasture (which is the common 

vegetation), is shallow rooted and highly influenced by surface anomalies (𝜃𝑠𝑚 − 𝐴).   

 

5.3.4. Relationship between meteorological &vegetation drought indices against soil moisture anomalies at 
monthly timescale 

 
Further analysis of the relationship between the meteorological & vegetation drought indices against soil 

moisture anomalies (5cm and root zone) was done at a monthly timescale. Based on Figure 20, the 

monthly soil moisture anomalies illustrate a dynamic variation with both meteorological and vegetation 

indices with reduced fluctuations in both monthly SPI and SPEI. A visible time delay in the response to 

drought and non-drought conditions by all the monthly drought indices and soil moisture anomalies is 

observed and further explained in Figure 21. 
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Figure 20: Graphs of monthly timeseries of meteorological drought indices (SPI & SPEI), vegetation drought 

indices (NDVIA & NDWIA) against 5cm soil moisture anomalies (𝜃𝑠𝑚 − 𝐴) and root zone soil moisture anomalies 

(𝜃𝑟𝑧 -A) 

For the monthly indices, SPEI yielded the highest correlation with soil moisture anomalies, followed by 

the NDWI-A as illustrated in Table 13. The R values were statistically significant as indicated by the p 

values of less than 0.05 

Table 13: Pearson’s correlation (R) and p-values for soil moisture anomalies and meteorological (SPI & SPEI) and 

vegetation drought indices (NDVI-A & NDWI-A) at monthly timescale 

monthly timescale  

 

 

Soil moisture anomalies 

Meteorological drought 

indices 

Vegetation drought 

 indices 

SPI SPEI NDVI-A NDWI-A 

5 cm anomalies 

p-value 

0.343 

0.0 

0.660 

0.0 

0.382 

0.0 

0.490 

0.0 

Root zone anomalies  

p-value 

0.381 

0.0 

0.679 

0.0 

0.379 

0.0 

0.478 

0.0 
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To investigate lagged responses of the meteorological (SPI & SPEI), vegetation drought indices (NDVI-A 

& NDWI-A) on soil moisture anomalies, graphs of monthly time lag were plotted.  

 

Figure 21: Graphs of time lag relationship between monthly meteorological drought indices (SPI & SPEI), vegetation 

drought indices, and (a) 5cm soil moisture anomalies, (b) root zone soil moisture anomalies, shown by cross 

correlation function 

Based on Figure 21, when soil moisture anomalies were lagged backwards, the SPEI illustrates its 

superiority over all indices in the relationship with soil moisture anomalies, shown by the highest 

correlation (0.808, 0.828) corresponding to (𝜃𝑠𝑚 − 𝐴)  and (𝜃𝑟𝑧 -A) a lag of one month. The NDWI-A 

shows a high correlation at zero-time lag with R of (0.490, 0.478) corresponding to (𝜃𝑠𝑚 − 𝐴) and (𝜃𝑟𝑧 -A) 

and reduces its correlation at the one-month lag. The exceptional results of NDWI-A indicate a high 

relationship exists between soil moisture content and leaf water content in vegetation (Chen et al., 2005; 

Cheng, 2007). Low correlation between NDVI-A and soil moisture anomalies could be attributed to 

seasonal patterns of high radiation (summer) and low radiation (winter) that influence heavily the 

“greenness” of vegetation in combination to moisture availability. 
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5.4. 2018 as an exceptional drought year 

 
Based on all the indices, 2018 was identified as a drought year which coincided with KNMI reports of the 

highest precipitation deficits recorded (KNMI, 2020). Table 14 indicates the drought events as identified 

by monthly soil moisture anomalies ((𝜃𝑠𝑚 − 𝐴) and (𝜃𝑟𝑧 -A)), meteorological drought indices (SPI and 

SPEI) and agricultural drought indices (NDVI-A and NDWI-A). The red shaded cells under vegetation 

index anomalies, illustrate values below (≤ -1) indicating drought events. 

 

Table 14: Summary of the 2018 drought events identified by meteorological and agricultural drought indices at 
monthly timescale  

 

 

Based on Table 14, the vegetation index anomalies (agricultural drought indices) correspond to the soil 

moisture anomalies, especially in the summer months (June- September). The SPEI identifies a higher 

number of events than SPI during these months. This is a clear indication that the agricultural droughts of 

this year were not affected by limited moisture but possibly other factors such as intense radiation, and 

increased temperatures. The extreme dry events ( ≤ 2.0) observed in NDWI-A could be attributed to high 

evaporative water demand leading to increased water stress in vegetation.  van Hateren et al. (2021) 

pointed identified droughts that were energy limited in 2003 and 2005 in some parts of Europe. 
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5.5. Assumptions / Limitations of the study 

 

The SPI and SPEI values are derived from probability distribution functions that assume that the PDFs 

provide valid fitting of the meteorological variables. Gamma and log-logistic PDFs were tested against the 

empirical distributions derived from the meteorological variables (precipitation and water balance). 

This research assumed the role of seasonal patterns in how meteorological and agricultural droughts 

indices would respond to different seasons in a year and the associated seasonal climatic variability. This 

was tested using the M-K Test trend analysis on monthly drought indices to capture any trends over-time. 

SPI has been suggested to have incidences of skewed SPI values when using short term time scales of 

weeks (Edwards & Mckee, 1997; Wu et al., 2007). In this research, to eliminate the skewed SPI, low 

precipitation values were omitted recommended by Wu et al., (2007) in the application of SPI in arid areas 

and dry seasons. Soil moisture variability, vertically and horizontally, caused by factors such as different 

soil types was not considered in the generation of root zone soil moisture. Insufficient remote sensing data 

(2001-2020) led to computation of meteorological indices that ran for the same period 2001-2020, 

however, based on thirty-three-year rainfall and ETref climatology the M-K test was used to test the 

significance of the trends in droughts identified by all the drought indices (SPI, SPEI, NDVI-A &NDWI-

A) for the whole period (2001-2020). To account for seasonal changes, monthly trend tests using the M-K 

test were done. Insufficient soil moisture data (2015-2020) led to the comparison of the drought indices 

with soil moisture anomalies foe the period (2015-2020). The correlation results were tested for 

significance using the p test values at 5% significance level.  

 

 

 

 

 

 

 

 

 

 

 

 



ASSESSING METEOROLOGICAL AND VEGETATION DROUGHT INDICES AGAINST SOIL MOISTURE MEASUREMENTS OVER TWENTE REGION, THE NETHERLANDS 

54 

6. CONCLUSION AND RECOMMENDATIONS 

6.1. Summary and Conclusion 

 
In this research, both meteorological and vegetation drought indices were assessed on their capability to 

detect short-term droughts observed in meteorological and agricultural droughts. The findings of this 

research indicated that in the detection of meteorological droughts, SPI quantified severe (≤ -1.5) to 

extremely (≤ -2.0) dry events shown by higher mean values than SPEI at both timescales. Conversely, 

SPEI quantified droughts of moderate (≤-1) dryness of high frequency indicating the consideration of the 

demand component in drought monitoring. For vegetation drought indices, the 16-day NDVI-A 

illustrated high means of moderate, severely dry, and extremely dry events with a variation in frequency. 

Monthly NDWI-A showed slightly high mean for severely dry events. These illustrated the differences in 

how vegetation components (leaf water content, chlorophyll content) respond to drought and non-

drought conditions at various timescales.  

 

A higher significant correlation, R of 0.505, p (0.0) was observed between 16-days NDWI-A and NDVI-A 

in comparison to a non-significant correlation R of 0.272, p (0.0) between monthly NDWI-A and NDVI-

A. This indicated the short-term interdependence between the leaf components (chlorophyll content and 

leaf water content). High fluctuations in 16-day NDWI-A which reduced in monthly NDWI-A illustrated 

the influence of short-term high moisture variability on the leaf water content. 

 

Further findings of the relationship between vegetation index anomalies and rainfall showed that the both 

monthly vegetation indices showed low correlations of non-significance, R of 0.287, p (1.0) and (R of 

0.253, p (1.0) corresponding to monthly NDWI-A and NDVI-A respectively. When rainfall was lagged 

backwards for a month, the NDWI-A correlation reduced whereas the correlation between NDVI-A and 

the monthly total rainfall increased. A negative relationship occurred when the vegetation drought indices 

were compared to ETref, illustrated by NDWI-A negative correlation R of -0.089 and NDVI-A R of -

0.008. This could be due to the variation of solar radiation during different seasons. These low 

correlations between the vegetation drought indices and climate variables indicated that drought observed 

in vegetation is not entirely depended on climatic variability. 

 

The comparison of the droughts identified by both surface soil /5cm anomalies (𝜃𝑠𝑚 − 𝐴 ) and root zone 

moisture anomalies ( 𝜃𝑟𝑧 -A), indicated that both anomalies captured high moderately dry events. 

However, 5cm anomalies (𝜃𝑠𝑚 − 𝐴 ) identified high mean of severely dry events than (𝜃𝑟𝑧 -A) indicating 

the top layers to be prone to rapid climatic variations such as high temperatures, high winds imposing a 

strong control on the available soil moisture content. The comparison between monthly soil moisture 
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anomalies and rainfall yielded significant positive correlations (R of 0.355, p (0.0) and 0.324, p (0.0)) with 

corresponding ( 𝜃𝑠𝑚 − 𝐴 ) and ( 𝜃𝑟𝑧 -A). However, when the monthly soil moisture anomalies were 

compared with monthly ETref, extremely negative correlations were observed with R values of - 0.698 and 

- 0.693 for ( 𝜃𝑠𝑚 − 𝐴) and (𝜃𝑟𝑧 -A), respectively. These differences in the relationship between climatic 

variables and soil moisture anomalies display the complexities of the role of soil moisture in the climate 

feedbacks. 

 

SPEI yielded significantly the highest correlation with the soil moisture anomalies R of > 0.6, p (0.0) at 16-

day timescale and monthly timescale among all the drought indices used in the research. This high 

correlation can be explained by the inclusion of the loss term (ETref) in SPEI, that highly influences soil 

moisture availability. The NDWI-A yielded a significant higher correlation than NDVI-A with soil 

moisture anomalies R of >0.4, p (0.0) without a time delay /lag. When soil moisture was lagged 

backwards, the NDVI-A, increased the correlation while the NDWI-A correlation reduced. This 

illustrated the quicker response of leaf water content to soil moisture anomalies than chlorophyll content 

“greenness”. 

 

In the trend analysis with Mann -Kendall (M-K) test on monthly time series of all drought indices, only a 

few months showed trends. The SPEI indicated a trend in April an indication of drying springs associated 

with higher temperatures, high radiation and lower rainfall as depicted earlier in the long-term average 

ETref. The NDVIA showed trends in the months of (Feb, May, Sep, Oct, Nov & Dec) an indication of 

varying response in vegetation to the climatic variability overtime.    

 

For the case of 2018, the SPEI showed a higher number of events than SPI during the summer months as 

observed by soil moisture anomalies. Both vegetation indices (NDVI-A and NDWI-A) responded to 

these soil moisture anomalies with NDWI-A showing droughts of extremely dry events (≤ 2.0). These 

responses by SPEI and NDWI-A indicated the contribution of high evaporative water demand to 

increased water stress in vegetation.  

 

The research concluded that SPEI and NDWI-A were the preferred drought indices for estimating 

agricultural droughts based on their high correlation with soil moisture anomalies in Twente region. The 

combination of meteorological drought indices and remotely sensed vegetation indices provided a holistic 

approach in estimating agricultural droughts observed by soil moisture anomalies leading to reliable 

conclusions. 
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6.2. Recommendations 

 
The good performance of SPEI in its relationship with soil moisture anomalies could be a potential 

alternative drought indicator by KNMI over the commonly used drought indicator, “het potentiele 

neerslagtekort”. 

The study recommended further studies on the potential of using soil moisture anomalies to monitor 

hydrological droughts in the region, important for ground water investigations.  

The low variations in how 5 cm anomalies (𝜃𝑠𝑚 − 𝐴 ) and root zone soil moisture anomalies (𝜃𝑟𝑧 -A) 

responded to the meteorological and vegetation drought indices recommended the potential use remote 

sensed surface soil moisture for agricultural drought monitoring for the Twente region. 
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