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ABSTRACT 

The rate of sea-level rise (SLR) influenced by global warming has increased the risk of coastal flooding. 

Long-term sea-level rise induces shoreline retreat. Shoreline monitoring is necessary for beach 

monitoring, identifying areas that are vulnerable to coastal erosion and flooding, and sustainable 

management of the coastal environment. Remote sensing offers possibilities for regional monitoring and 

analysis of coastal dynamics in a fast, efficient, and relatively cheap way. This study investigates the long-

term shoreline change in Dakar (Senegal) for the past 20 years using satellite data. Shorelines extracted 

from median composite images of Landsat-7 (ETM+), Landsat-8 (OLI), Sentinel-1 (SAR), and Sentinel-2 

(MSI) using Modified Normalized Difference Water Index, adaptive thresholding, and Canny Edge 

Detection techniques were compared. The change statistics of the extracted shorelines were analysed 

using the Digital Shoreline Analysis System (DSAS), a software extension in ArcGIS for calculating 

shoreline change statistics and making forecasts, with the Net Shoreline Movement (NSM) and End Point 

Rate (EPR) techniques. The DSAS was used to calculate future positions of the shoreline for the next 10 

and 20 years (using the Linear Regression Rate (LRR)). Finally, the study explored the influence of sea-

level rise on shoreline change and identified areas vulnerable to shoreline retreat. Modified Normalized 

Difference Water Index (MNDWI) was more reliable in delineating the shoreline than adaptive 

thresholding and Canny Edge Detection techniques. Validation of the shorelines extracted from satellite 

data (Landsat 7, Landsat 8, and Sentinel-2) using MNDWI revealed that their positions fell within the 

high and low waterline. The accuracy assessment returned an overall mean (µ) error of 20.9 m (seaward 

bias with Root Mean Square Error (RMSE) not exceeding 33.0 m) and -11.9 m (landward bias with 

RMSE not exceeding 28.6m) with respect to the high and low waterline, respectively. The evolution of 

the shoreline from 2000 to 2020 reveals an erosive trend with an average Net Shoreline Movement 

(NSM) and End Point Rate (EPR) of -71.2 m of -3.6 m/year, respectively. The negative correlation 

obtained between shoreline displacement and increasing sea level provides insight into the potential SLR 

has on the retreating shoreline. Prediction of the shoreline position in 2100 (considering the high 

emission scenario (RCP 8.5) of SLR projection (> 1 m by 2100)) using the linear regression model 

equation obtained linking shoreline displacement and sea-level reveals that the shoreline is likely to retreat 

by 187.2 m landward from the 2020 shoreline position. 
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1. INTRODUCTION 

1.1. Background 

More than 50 % of the global population dwell within 100 km of the coast (Toure, Diop, Kpalma, & 

Maiga, 2019). The coastal zones in Senegal form a significant economic asset for the country (Bakhoum et 

al., 2017). However, coastal erosion and flooding have caused havoc to humans and destroyed many 

properties around the coast of Senegal, particularly in the capital, Dakar (Sane & Yamagishi, 2004). The 

rate of sea-level rise (SLR) due to global warming associated with subsidence has increased the risk of 

coastal erosion and flooding (Church & White, 2011). In the long-term, sea-level rise induces shoreline 

retreat (Bird, 1996; Stive et al., 2002; Pradhan, Rizeei, & Abdulle, 2018; Su & Gibeaut, 2017). 

A shoreline (or coastline) is a boundary between water and land (or sand) observed at a particular time 

(Vos, Splinter, Harley, Simmons, & Turner, 2019). Shoreline indicators, e.g., high water line and low water 

line, are measurements that define a shoreline (Leatherman, 2003). The dynamic nature of the shoreline 

makes establishing these indicators difficult (Boak & Turner, 2005). Shoreline indicators can either be 

mathematical or physical. Local tide data are sources of mathematical shoreline indicators. Morphological 

and non-morphological indicators make up the physical indicators (Pajak & Leatherman, 2002). Shoreline 

monitoring is necessary to identify vulnerable coastal erosion and flooding areas, for beach monitoring, 

and sustainable management of the coastal environment (Toure et al., 2019; Ericson, Vörösmarty, 

Dingman, Ward, & Meybeck, 2006). 

Detecting shorelines using surveying methods is stressful and expensive (Rumson, Hallett, & Brewer, 

2017; Mirsane, Maghsoudi, Emadi, & Mostafavi, 2018). Visual inspection of high-resolution aerial images, 

on the other hand, needs a lot of time and a trained eye (Mirsane et al., 2018). Numerous free satellite 

images are available for shoreline extraction (Demir, Oy, Erdem, Seker, & Bayram, 2017). They offer 

possibilities for regional monitoring and analysis of coastal dynamics in a fast, efficient, and relatively 

cheap way (Mirsane et al., 2018).  

1.2. Research problem 

Shoreline extraction is a challenge in satellite remote sensing due to its vulnerability to dynamic processes 

(like sediment transport and global warming effects such as sea-level rise), as reported in various 

publications (e.g., Paravolidakis, Ragia, & Moirogiorgou, 2018; Nandi, Ghosh, Kundu, Dutta, & Baksi, 

2016; Aedla, Dwarakish, & Reddy, 2015; ChenthamilSelvan, Kankara, & Rajan, 2014; Mukhopadhyay et 

al., 2012; El-Deen Taha & Elbeih, 2010; Fenster, Dolan, & Morton, 2001). For example, the main 

challenge of using optical sensors is that they depend on sunlight, and the images might not be usable due 

to the presence of clouds (Buono, Nunziata, Mascolo, & Migliaccio, 2014). However, it is easy to extract 

the shoreline from optical images because the spectral signatures allow discrimination of land and water 
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using simple approaches, possible with pixel-level accuracy (Mirsane et al., 2018). Synthetic Aperture 

Radar (SAR), on the other hand, is an imaging technology that operates day and night. The SAR images 

are not affected by weather conditions, but they are more difficult to process than optical images because 

they usually need terrain correction and contain speckles and noise (Demir et al., 2017). For these reasons, 

it will be useful to compare the results of different techniques of extracting shorelines from remotely 

sensed satellite (optical and SAR imaging technologies) imageries. 

1.3. Research justification 

Evaluating the long-term shoreline evolution relative to sea-level changes will help provide insight into the 

dynamics and the coast’s future. This study will help the stakeholders in efficient beach monitoring, 

erosion-accretion studies, environmental protection, and sustainable management of the coast. 

1.4. Research objectives  

The main objective of this research is to evaluate the rate of shoreline change in Dakar (Senegal) for the 

last 20 years using satellite data. 

The specific objectives are: 

➢ To assess techniques for extracting shoreline from Sentinel-1 (SAR), Sentinel-2 (MSI), 

Landsat-7 (ETM+), and Landsat-8 (OLI) data.  

➢ To evaluate the evolution of the shoreline from 2000 to 2020. 

➢ To investigate the trend of sea-level rise in the area. 

1.5. Research questions 

➢ How similar are the results of the shoreline extraction techniques?  

➢ What is the magnitude and direction of the shoreline change? 

➢ Is the shoreline changing relative to sea-level rise?       

1.6. Study area 

Senegal is a West African country located between latitudes 12°N and 17°N and longitudes 11°W and 

18°W. The coastal area (facing the Atlantic Ocean) is made up of long sandy coastline stretches, the 

Senegal Delta, a small stretch of rocky shoreline, and the sheltered shorelines (of the Saloum and 

Casamance). The open and sheltered coasts have a total length of about 500 km and 1565 km, respectively 

(Clemens et al., 1995). The study area is in Dakar (the capital and the largest city in Senegal), located in the 

western part of Senegal (Figure 1). The region considered is a sandy shoreline that stretches across Malika 

and Gadaye beaches. Sandy shorelines are prone to abrupt changes due to environmental conditions 

(Wright & Short, 1984). According to Sagne et al. (2020), the beaches at Malika and Gadaye are faced with 

severe erosion, attributed to their low topography and absence of barriers against swells.  
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Figure 1. Study area in Senegal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



EVALUATING LONG-TERM SHORELINE CHANGE IN DAKAR (SENEGAL) USING SATELLITE DATA 

 

4 

2. CONCEPTUAL FRAMEWORK AND RELATED WORKS 

This chapter explains some basic concepts and literature (background) related to shoreline detection, most 

importantly getting information from those associated with the study area. This background focuses on 

information about shoreline indicators, sea-level rise, and the coastal zone in Senegal. This review also 

covers remote sensing and GIS applications in shoreline monitoring and related studies conducted around 

the study area.  

2.1. Shoreline dynamics and evolution 

Episodic, short, and long term changes in sea level significantly govern shoreline movement, and a good 

insight into these dynamics supports the prediction of the rate of change (Grases, Gracia, García-León, 

Lin-Ye, & Sierra, 2020;  Ryabchuk, Spiridonov, Zhamoida, Nesterova, & Sergeev, 2012). Various other 

physical factors also influence shoreline changes, namely wind, waves, currents, the supply of sand (Thoai, 

Dang, & Kim Oanh, 2019), and human activities (Hauser et al., 2017). The rate of sand supply affects how 

the shoreline evolves at a particular location (Stronkhorst, Huisman, Giardino, Santinelli, & Santos, 2018). 

The coastal environment can vary from open coasts to coastal areas sheltered from waves or next to a 

seawall, adjacent to a tidal channel, etc. (Armaroli, Ciavola, Balouin, & Gatti, 2006).  

Episodic changes happen due to abrupt tectonic movements, tropical storms, or hurricanes (Grases et al., 

2020). Short-term changes occur over a few tens of years and vary along the coastline. Long-term changes 

occur in tens to thousands of years. Determination of average annual rates incorporates estimation of 

these changes (Ryabchuk et al., 2012). 

2.2. Identification of shoreline indicators 

Berm crest, vegetation, scarp edges, and dunes are regarded as morphological indicators. Non-

morphological (sand wetness and waterline) can be identified from satellite images (Pajak & Leatherman, 

2002). The non-morphological indicators are identified as the previous high water (backshore) line 

(PHWL), the high water line (HWL), instantaneous water line (IWL), and low water (tidal plain) line 

(LWL). These lines are dynamic, and the positions are influenced by the sea state (van der Werff, 2019). 

Figure 2 presents a sketch of the commonly used shoreline indicators. 

Boak & Turner (2005) carried out a review of the definition and detection of shoreline. They reported that 

the data sources for identifying shoreline indicators are historical land-based photographs, coastal maps, 

and charts, aerial photography, beach surveys, GPS shorelines, Remote sensing (multispectral/hyperspect-

ral) imaging, airborne light detection, and ranging technology (LIDAR), microwave sensors, and video 

sensors). 
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Figure 2.  Schematic representation of the spatial relationship between typical shoreline indicators (Source: Boak & Turner 

(2005)). 

2.3. Remote sensing application in shoreline extraction 

Shoreline monitoring using remote sensing has become widely embraced by coastal engineers, coastal 

scientists, and coastal managers. Shorelines may be derived based on visual interpretation of coastal 

features, a specified tidal datum, or digital image-processing analysis (Boak & Turner, 2005). 

2.3.1. Optical satellite imagery 

Since the launch of the Landsat satellite in 1972, medium-resolution optical imagery became widely 

accessible. Commercial high-resolution optical satellites such as IKONOS and Quickbird became available 

a few decades after as alternatives to airborne systems (Gens, 2010).   

The advantage of optical imagery is that large areas can be covered with detailed spectral information. 

Shorelines can therefore be derived from the visual definition of coastal features or digital image 

processing techniques because the spectral information enables a better distinction and classification of 

land and water (Boak & Turner, 2005). However, the drawbacks of optical systems are their reliance on 

sunlight, and the images might not be usable when affected by clouds (Mirsane et al., 2018). Sentinel-2 
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images offer a higher spatial and temporal resolution than other optical images (e.g., Landsat-5, Landsat-7, 

and Landsat-8) that are useful for shoreline extraction (Vos et al., 2019). 

2.3.2. Synthetic Aperture Radar (SAR) imagery 

Synthetic Aperture Radar (SAR) is an active imaging technology that uses microwaves. It penetrates 

through clouds, and its operation is independent of the Sun’s illumination (Bamler, 2000). SAR imagery 

became available for shoreline extraction after the launch of the Seasat satellite in 1978 (Gens, 2010). J. 

Lee & Jurkevich (1990) extracted the shoreline from Seasat SAR and Shuttle Imaging Radar B (SIR-B) 

images by integrating an edge detection method and an edge tracing algorithm to identify a continuous 

shoreline. They reported that the success of the algorithm was dependent on the contrast between land 

and water areas and also that the SAR signal echo from the sea surface greatly depends on the sea state at 

the time of image acquisition. They further pointed out that for improved accuracy of the method, 

additional processing would be required. 

Demir et al. (2017) applied random forest classification (in the segmentation of land and water) to RASAT 

(pan-sharpened) and Sentinel-1 (SAR) images in shoreline extraction. They compared the results with the 

manually digitized shoreline. The assessment of the accuracy was done by calculating perpendicular 

distances from the reference data and the shoreline extracted. The mean difference obtained was 

approximately a pixel.  

H. Liu & Jezek (2004a) developed a method that incorporates Canny edge detection and local 

thresholding approaches in shoreline extraction from Radarsat SAR imagery (25 m resolution). Adaptive 

thresholding was used to segment the orthorectified SAR image while Canny edge detection was applied 

to process the segmented images into vector-based output. The average relative accuracy of coastline 

position obtained was within one image pixel. 

Coastal areas usually have windy and cloudy weather conditions. Weather conditions do not affect SAR 

images which is an advantage (in monitoring coastal and cloudy areas) they have over optical images. 

However, processing of  SAR data (due to the presence of noise and speckles and the need for terrain 

correction) is more challenging compared to optical data (Demir et al., 2017).  

2.4. Water-land segmentation 

Segmentation is a process where attributes of an image are extracted based on intensity values (Gonzalez, 

Woods, & Hall, 2002). There are three categories of automated methods of shoreline extraction from 

satellite imagery (Zhang, Yang, Hu, & Su, 2013): 

Classification methods (e.g., Modified Normalized Difference Water Index (MNDWI) (Xu, 2006), 

Spectral Angle Mapper (SAM) classification techniques (Rashmi, Addamani, & Ravikiran, 2014)): This 

approach extracts homogenous areas (or regions) into classes. The method could be pixel-based (e.g., 

MNDWI) or object-oriented (e.g., SAM). Pixel-based classification deals only with the spectral details of 

pixels and disregards their spatial arrangement. Object-oriented classification, on the other hand, deals 
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with the spectral, textural, contextual, and spatial information of pixels in the classification process (Toure 

et al., 2019). 

Edge detection: This technique deals with identifying areas of abrupt variation in grey-level, colour (or 

intensity), or texture of an image. The edge detection techniques are Canny Edge detection, Snakes, and 

Level set algorithm (Toure et al., 2019). Snakes and Level Set Algorithm have been reported to be prone 

to errors and time-consuming (Yu et al., 2013; Toure et al., 2018), respectively. 

Band thresholding methods: This technique uses a histogram to generate two classes, segmented from 

panchromatic images. The methods are not reliable for hyperspectral (HS) and multispectral (MS) images 

because details of the images will be lost when the histogram operation is applied (Toure et al., 2019). 

Ghosh, Kumar, and  Roy (2015) used the Modified Normalized Difference Water Index (MNDWI) over 

Landsat images for coastline extraction and change detection in Hatiya Island (Bangladesh). The results 

they obtained revealed that the island experienced erosion and accretion of 6476 hectares and 9916 

hectares, respectively, from 1989 to 2010. The MNDWI method was validated by comparing the output 

with results obtained from manually digitizing boundaries between land and water from reference data. 

The accuracies obtained ranged from 88% to 95%.  

de Boer et al. (2019) explored publicly available (on Google Earth Engine (GEE)) composite images of 

Landsat 5, 7, and 8 satellite imagery between 1 January 1984 and 1 January 2018 to assess the evolution of 

the beaches around the seaports in Africa. The coastlines were detected using an automated satellite-

derived shoreline (SDS) algorithm based on the Normalized Difference Water Index (NDWI). A total area 

of 44 km2  (23 km2  accretion and 21 km2 is erosion) was evaluated as changes in the beach area.  

Konko, Bagaram, Julien, Akpamou, & Kokou (2018) analysed the spatial and temporal changes of the 

Togolese coast  (and the nearby Lake Togo and Lake Boko) from 1988 - 2018. They combined optical and 

radar remote sensing in their approach. They used the Normalized Difference Water Index (NDWI) in 

discriminating aquatic areas, terrestrial areas, and in extracting the coastline. With the Digital Shoreline 

Analysis System (DSAS), their results revealed that the coastline retreated at rates ranging from 1.66 to 

5.25 m/year. Lake Togo was expanding at an average rate of 1.55 m/year, while Lake Boko was shrinking 

at an average rate of 1.25 m/year.  

Paravolidakis, Ragia, & Moirogiorgou (2018) developed an automated approach for extracting coastline 

using Canny Edge detection and optimization operations. They compared their results with ground 

control points and obtained an acceptable accuracy (using RMSE) equivalent to 0.85 m.  

2.4.1. Modified Normalized Difference Water Index (MNDWI) 

The MNDWI is a technique that reduces the signal from land (built-up areas) so that extracted water 

features are not mixed up with the built-up areas (Xu, 2006). The near-infrared (NIR) band in the 

Normalized Difference Water Index (NDWI) (McFeeters, 1996) (see equation (1) is substituted with the 

mid-infrared (MIR) band in the MNDWI. Mathematically, the MNDWI can be calculated (as shown in 
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equation (2)) by subtracting the values of mid-infrared (MIR) reflectance from green (Green) reflectance 

(Figure 3) and dividing it by the sum of both.  

𝑁𝐷𝑊𝐼 =  
𝐺𝑟𝑒𝑒𝑛 − 𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑁𝐼𝑅
  (1)     

𝑀𝑁𝐷𝑊𝐼 =  
𝐺𝑟𝑒𝑒𝑛 − 𝑀𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑀𝐼𝑅
  (2)     

The values of MNDWI range from -1 to +1. Water will have positive values (greater than in the NDWI) 

as it has a lower reflectance in the MIR band than in the Green band, whereas land and built-up areas will 

have negative values since they have higher reflectance in the MIR than in the Green band. A binary 

approach will be applied over the MNDWI images to obtain land and water classes. Subsequently, the 

classified image will be converted to vector format.  

 
Figure 3.  Spatial resolution and spectral range of Landsat (7 and 8) and Sentinel-2 bands (in the optical spectral region) 

(Source: (Pardo-Pascual et al., 2018)). 

2.4.2. Adaptive thresholding 

This method is based on partitional clustering (K-means) (Macqueen, 1967; Anderberg, 1973; Fu & Mui, 

1981) that considers only two (e.g., land and sea) clusters to produce a binary image. Clustering is a 

process of segmenting an image such that elements with similar reflectance are grouped in the same 

cluster (Bhatia, 2004). K-means clustering considers that each element in the image has a location in space. 

It further creates partitions (using an iterative process) such that elements within each class (or cluster) are 

close to each other (based on their mean and standard deviation) and far enough from elements in other 

clusters (Paravolidakis et al., 2018). The threshold clustering algorithm assigns two elements to be in the 
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same cluster if the distance separating them is below an assigned threshold. Details of the steps of the 

algorithm (Bhatia, 2004) are as follows: 

• An element is selected and assigned the seed of a particular cluster 

• The distance of an unclassified element is compared with the mean (or centroid) of existing 

clusters. It will be assigned to a cluster if the distance is less than the specified threshold. 

Otherwise, the element is passed to a new cluster. 

• The iteration stops after all elements have been placed in matching clusters. 

2.4.3. Canny Edge Detection 

Canny Edge detection (Canny, 1986) is a technique that detects the edge pixels in an image. The details of 

the algorithm can be simplified in the following steps (H. Liu & Jezek, 2004; Zheng, Lei, Yao, Gong, & 

Yin, 2018): 

Gaussian filter 

In Canny Edge detection, a Gaussian filter is applied to smoothen (blur) the image. The main purpose of 

applying the filter is to remove noise. 

Calculation of gradient value and direction 

The Canny Edge detection algorithm applies four operators to detect edges (in the blurred image) in the 

horizontal, vertical, and diagonal directions. The technique uses the Sobel operator to obtain the values of 

the first derivative in the horizontal (Gx) and vertical directions (Gy) in order to calculate the gradient (𝐺) 

(equation (3)) and direction (θ) of the pixel points (equation (4)). 

G =  √Gx
2  + Gy

2  (3)     

θ =  arctan
Gy

Gx
  (4)     

Non-maximum suppression 

This process helps to identify areas with local maximum gradient values (change of intensity) and leaving 

out lower values. This operation recognises the gradient intensity of the current pixel as an edge point only 

if it is larger than the gradient intensities of the pixels in the positive and negative gradient directions 

otherwise, it will be suppressed. For better accuracy, linear interpolation is applied between the adjacent 

pixels to obtain the gradient direction of the current pixel.  

Double threshold detection 

The algorithm applies double (high and low) threshold values in detecting the edge pixels. Edge pixel 

gradients larger than the high threshold are detected as strong edge points. An edge gradient lower than 

the high threshold but larger than the low threshold is identified as a weak edge point. The edge pixel 

gradients are suppressed if they are lower than the low threshold.  

 



EVALUATING LONG-TERM SHORELINE CHANGE IN DAKAR (SENEGAL) USING SATELLITE DATA 

 

10 

Boundary (Edge) tracking by hysteresis 

The edge boundary tracking by hysteresis is done to ascertain that only strong edge pixels are retained in 

the final image. A weak edge that is connected to a true edge will be linked to a strong edge pixel. The 

algorithm trails the 8-connected surrounding pixels of a weak edge pixel to preserve strong edge pixels and 

discard non-edge pixels. 

2.5. Literature review 

Toure et al. (2019) reviewed shoreline detection approaches using optical remote sensing. They reported 

that the methods adopted relied on the resolution of the image and the proposed application. Toure, 

Diop, Kpalma, and Maiga (2018) applied image segmentation clustering to separate different classes 

(waves, dry sand, wet sand, and land) and edge detection to an image from Google Earth in detecting the 

shoreline. Distance Regularization Level Set Evolution (DRLSE) was applied to set the limit for the 

average level of high water tide and improve the accuracy of the extracted shoreline. They found that the 

technique was effective because the results obtained were very similar to ground truth data with a Root 

Mean Square Error (RMSE) of  0.2 m. 

Bakhoum et al. (2017) extracted shoreline positions of Goree Island (Senegal) from an aerial photograph 

(1942, 1966, and 2011) using ArcGIS software and the Digital Shoreline Analysis System (DSAS). They 

also applied End Point Rate (EPR) and Net Shoreline Movement (NMS) in estimating the rate of change. 

The results they obtained revealed that the shoreline retreated at a mean rate of -0.16 m/year and                  

-0.06m/year between 1942 to 1966 and 1966 and 2011, respectively.  

Thior et al. (2019) studied the dynamics of the coastline linking northern Casamance (Senegal) and 

southern Gambia using multi-date images (1968 aerial photographs captured by France National 

Geographic Institute (IGN), 1986 Landsat images, and Google Earth images of the years 2004 and 2017). 

After identifying a coastal reference line and image correction, they digitized the coastline, then applied the 

DSAS to estimate uncertainty and calculate the rate of change of the coastline. They found out that the 

study area experienced accretion between 1968 and 1986 and erosion between 1986 and 2004.  

Pardo-Pascual et al. (2018) evaluated the accuracy of the positions of shorelines extracted from the 

infrared bands of satellite images (Landsat 7, Landsat 8, and Sentinel-2) on beaches. Reference lines of the 

respective images (taken at the expected scene registration time) were used to assess the errors. Each 

shoreline (sub-pixel) was connected by points. The distances between the points and the reference line 

revealed the error (positive (seaward) and negative (landward)). The mean error was an indication of the 

satellite-derived shoreline bias. On the other hand, the standard deviation revealed the difference in 

shoreline position at the instance of image registration. 

Cozannet et al. (2015) used satellite synthetic aperture radar interferometry to characterise vertical coastal 

ground motion velocities in Dakar (Senegal) from 1992–2010. They found out the differential ground 

motion in Dakar was low (not exceeding 1mm year−1). However, the ground motions had no effect on the 

historical tide gauge (sea-level) records of Dakar. 
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3. RESEARCH METHODOLOGY 

3.1. Work Flow 

This chapter describes the methodology followed (Figure 4) to achieve the desired objectives and answer 

the research questions. This research intends to evaluate the rate of shoreline changes in Dakar (Senegal) 

for the last 20 years using satellite data. 

 

 
Figure 4. Flowchart of the methodology for the study. 

3.2. Data collection 

3.2.1. Field data 

A beach survey of the high and low waterline was done with a differential GPS by the Ecological 

Monitoring Centre in Senegal on 16 December 2020. Series of points were recorded every 50 meters along 

the high and low waterline. The sea-level data was retrieved from the University of Hawaii Sea Level 

Center website (http://uhslc.soest.hawaii.edu/data/). 

http://uhslc.soest.hawaii.edu/data/
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3.2.2. Satellite data 

Annual median (median pixel value) composites of optical and Synthetic Aperture Radar (SAR) images 

were used in this study to minimise the effect of clouds (particularly in optical images) and tides 

(Dimosthenis Traganos, Poursanidis, Aggarwal, Chrysoulakis, & Reinartz, 2018). Median composite 

Landsat-7 (Enhanced Thematic Mapper Plus (ETM+)), Landsat-8 (Operational Land Imager (OLI)), and 

Sentinel-2 (Multispectral Instrument (MSI)) images were obtained from the Google Earth Engine (GEE) 

platform (https://code.earthengine.google.com). Sentinel-1 (SAR) images were obtained from the Alaska 

Satellite Facility Data Search website (https://search.asf.alaska.edu/#/). Digital Elevation Model (Shuttle 

Radar Topography Mission (SRTM)) was obtained from the United States Geological Survey Earth 

Explorer website (https://earthexplorer.usgs.gov/). The detailed information about the satellite data can 

be seen in Table 1. 

 

Table 1. List of satellite data used 

Mission Instrument Image resolution Date 

Sentinel-1 SAR 10 m  2016 - 2020 

Sentinel-2 MSI 10 m R, G, B, NIR;  20 m SWIR1  2016 - 2020 

Landsat-7 ETM+ 
30 m R, G, B, NIR, SWIR1 bands; 
15 m panchromatic band 

2000 - 2012 

Landsat-8 OLI 
30 m R, G, B, NIR, SWIR1 bands; 
15 m panchromatic band 

2013 - 2015 

SRTM SAR 30 m 2000 

3.3. Satellite image processing 

3.3.1. Synthetic Aperture Radar (Sentinel-1) image processing  

The SAR data used in this study is Sentinel-1 level 1 Ground Range Detected (GRD) images (available 

from 2016 – 2020) with Interferometric Wide Swath (IW). The individual mages were mosaicked and 

processed by applying the common workflow (Filipponi, 2019) within ESA’s Sentinel Application 

Platform (SNAP). The steps involved are: Apply orbit file, thermal noise removal, calibration, terrain 

correction, speckle filtering, linear to decibel (dB) conversion, and reprojection. 

The GRD (Sentinel-1 level 1) products have been multi-looked and projected (to the ground range). 

Apply orbit file operation is done to update the orbit details of the SAR scenes. Thermal noise removal 

minimises the noise effects (incoherence), resulting in multi-swath acquisition scenes. Calibration 

transforms the values of the pixels (image intensity) to sigma nought (calibrated SAR backscatter) values. 

Terrain (range doppler) correction was done (using 30 m SRTM) to rectify the geometric distortion (of 

each pixel) caused by topography (foreshortening and shadows). The image quality was improved during 

speckle filtering (using the refined Lee filter (J. S. Lee, Jurkevich, Dewaele, Wambacq, & Oosterlinck, 

https://search.asf.alaska.edu/
https://earthexplorer.usgs.gov/
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1994)) to preserve texture information and edges. The backscatter coefficient (unitless) was converted to 

decibel (dB). The final output was reprojected (EPSG 32628: WGS 1984 – UTM Zone 28 N) to the 

coordinate reference system of the study area (Filipponi, 2019). 

3.3.2. Optical image processing 

Cloud masking: The Quality Assessment band of each image contains a per-pixel cloud mask. This 

information is generated by the data provider (ESA for Sentinel-2 or USGS for Landsat) based on the 

number of cloudy pixels in a region of interest (Vos et al., 2019). The search was limited to images with 

less than 40% cloud cover, and subsequently, median composite images were obtained to further minimise 

the effect of tides and cloud shadow (Dimosthenis Traganos et al., 2018). Top-of-Atmosphere (TOA) 

reflectance Landsat images were used in this study because it presents a representative comparison 

between images (Chander, Markham, & Helder, 2009). Co-registration and processing of Landsat images 

were done on the GEE platform before downloading. Co-registration was carried out because the 

misregistration (or misalignment) between Landsat and Sentinel images can go beyond 38 m (Storey et al., 

2016).  

The panchromatic band (15 m) of Landsat-7 and Landsat-8 was used to down-sample the multispectral 

bands from 30 m to 15 m (by bilinear interpolation). This was done by replacing the first principal 

component (principal component analysis) with the panchromatic band (Tu, Su, Shyu, & Huang, 2001). 

Sentinel-2 level 1C images were used in this study. The mid-infrared (SWIR1) band was down-sampled to 

10 m (by bilinear interpolation) for a uniform resolution (10 m) for all bands (Vos et al., 2019). 

3.3.3. Digital Terrain Model (DTM) processing and elevation extraction 

The DTM was reprojected (using ArcGIS 10.7.1) to the coordinate reference system of the study area 

(EPSG 32628: WGS 1984 – UTM Zone 28 N). The reprojected DTM was then reclassified to extract the 

elevation of the area.  

3.4. Shoreline extraction 

3.4.1. MNDWI technique 

MNDWI (Xu, 2006) was applied to the optical images (using the Green and Mid-infrared (MIR) bands) to 

classify the pixels into two (land and water) classes using ArcGIS 10.7.1 software. The jagged edges of the 

shorelines were smoothened using a low pass filter (3x3) (Dewangan & Kumar Sharma, 2017). The 

MNDWI image was converted to polygon (vector file) then to line features (using the polygon to line tool 

in ArcGIS 10.7.1) afterward. Finally, the delineated shoreline was extracted. 

3.4.2. Canny Edge Detection Algorithm 

Canny Edge Detection (Canny, 1986; H. Liu & Jezek, 2004) was applied to SAR (Sentinel-1) and optical 

(MIR band of Sentinel-2) images on GEE platform to delineate the shoreline from the edge pixels at the 

land-sea boundary. GEE provides the inherent implementation of Canny Edge detection algorithm 
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identifying edges from images. The Canny Edge Detection image was exported as a raster (.tif format) 

then imported into ArcGIS 10.7.1 environment. The raster image was smoothened (low pass filtering) and 

converted to polygon. Subsequently, the polygon was converted to lines (using the polygon to line tool in 

ArcGIS 10.7.1) for extraction of the shoreline. 

3.4.3. Adaptive thresholding technique  

Adaptive thresholding (H. Liu & Jezek, 2004; Aedla, Dwarakish, & Reddy, 2015) was applied to the optical 

images (using the Mid-infrared (MIR) band) to group the pixels into two (land and water) clusters using 

ArcGIS 10.7.1 software. The segmented image was smoothened (low pass filtering), converted to polygon 

(vector file), and subsequently to lines. The shoreline was finally extracted from the line features. 

3.5. Shoreline validation 

The beach survey points (of the high and low waterline) acquired using a GPS were converted to line 

features in the ArcGIS v10.7.1 environment. The validation was carried out on shorelines extracted from 

Landsat-7, Landsat-8, and Sentinel-2 median composite images. The median composites were obtained 

from images available within the two (2) weeks date range window (01 December 2020 – 31 December 

2020) centred around the beach survey date.  

The Digital Shoreline Analysis System (DSAS) (Himmelstoss, Henderson, Kratzmann, & Farris, 2018) was 

used in validating the shorelines. DSAS is an extension (created by United States Geological Survey 

(USGS)) within Esri’s Geographic Information System (ArcGIS) software that can create a baseline, cast 

transects, and calculate rate-of-change statistics of shoreline (vector) time series data. The high and low 

waterline were selected as baselines in separate validations of the shorelines. Transects were cast from 

respective baselines and clipped to the shorelines at 50 m intervals with a search distance of 170 m 

(National Oceanography Centre, 2020). The offset (residual) of the shorelines from baseline was obtained 

from the distance between the intersection points of each transect. Offset values are either zero, positive, 

or negative, signifying a seaward (towards the sea) or a landward (towards the land) shift. Root Mean 

Square Error (RMSE) was used in assessing the accuracy (validation) of the satellite-derived shorelines 

(SDS). The RMSE (equation (5)) was obtained as follows: 

RMSE =  √[
(residuals)2

number of transects intersected
]     (5)     

3.6. Shoreline evolution 

The shoreline change from 2000 to 2020 was calculated with the DSAS. The process involves four main 

steps (Himmelstoss et al., 2018): baseline creation, casting transects, calculating statistics, and forecasting. 

The baseline was created by selecting the earliest year (2000) shoreline.  Transects were cast from the 

baseline to clip the shorelines at 50 m intervals (with a search distance of 170 m). The Net Shoreline 

Movement (NSM) and End Point Rate (EPR) were determined to calculate the shoreline change rates. 

The Net Shoreline Movement (NSM) is obtained as the distance between the oldest and the most recent 
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shoreline for respective transects. The EPR, on the other hand, is the ratio between the NSM (in meters) 

and the period (in years) between the oldest and the most recent shoreline position. The linear regression 

rate-of-change (LRR) statistic for a transect can be derived from the fitted least-squares regression line to 

all shoreline points. The slope of the line gives the LRR. The DSAS uses the linear regression rate in 

calculating (forecasting) the future positions of the shoreline for the next 10 and 20 years with uncertainty 

regions of 10m (that lie within 95% confidence level). This process uses a Kalman filter (Kalman, 1960) in 

combining observed shoreline positions with positions derived from the model (DSAS). 

3.7. Vulnerability assessment of shoreline change 

The predicted positions (10- and 20-year forecasts) of the shoreline were overlaid on the elevation map 

(generated from the DTM) of the area to discriminate elevated areas from low-lying areas and identify 

locations that are vulnerable to the future (predicted) positions of shoreline. 

3.8. Shoreline and sea-level data analysis 

The parameter used in the statistical analyses are: the intercept and slope of the regression line, Pearson’s 

correlation coefficient (r), coefficient of determination (R2), the Mean Absolute Percentage Error (MAPE). 

The slope and intercept are the steepness of the regression line and the point of intersection of the 

regression line with the y-axis, respectively (Hoffmann, 2010). Practically, the slope depicts the rate of 

change of a variable due to the effect of another variable. Similarly, the intercept represents the increase of 

a variable due to the effect of another variable (Siswati, Mahanal, Susilo, & Corebima, 2016).  

The Pearson’s correlation coefficient (r) assesses the linear relationship of two variables. The value 

(unitless) of the correlation coefficient has a magnitude in a positive or negative direction that ranges 

from ‒1 to 0 to +1. A coefficient of zero signifies no association between the variables, but a more 

linear association is established between the two variables as the coefficient approaches -1 or +1. A 

positive coefficient implies that the second variable (the criterion) increases in response to an increase 

in the first variable (the predictor). In contrast, a negative correlation coefficient implies that the second 

variable decreases in response to a rise in the first variable (Taylor, 1990).  The formula (Zhou, Deng, 

Xia, & Fu, 2016) for calculating Pearson’s correlation coefficient is presented in equation (6).  

𝑟𝑥𝑦 =
∑ (𝑥𝑖 ‒ �̅�)(𝑦𝑖 ‒ �̅�)
𝑛
𝑖=1

√[∑ (𝑥𝑖 ‒ �̅�)
2𝑛

𝑖=1 ]√[∑ (𝑦𝑖 ‒ �̅�)
2𝑛

𝑖=1 ]
  (6)     

where n is the sample  size, �̅� is the mean of x (�̅� = 
1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1 ), �̅� is the mean of y (�̅� =

1

𝑛
∑ 𝑦𝑖
𝑛
𝑖=1 ).  

The coefficient of determination (R2) is used in assessing the goodness of fit in a linear regression 

model. R2 corresponds to the square of the multiple correlation coefficient (Cheng, Shalabh, & Garg, 

2014). 

The MAPE assesses the quality of regression models. It interprets the model in terms of the relative 

error (de Myttenaere, Golden, Le Grand, & Rossi, 2016). It is the mean of absolute percentage errors 
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(equation (7)) (Kim & Kim, 2016). MAPE has been widely used and found to be appropriate in 

forecasting applications (Armstrong & Collopy, 1992).  

MAPE =  
1

N
∑ |

At ‒ Ft   

At
|N

t=1   (7)     

where N denotes the number of data points, At and Ft are actual and forecast values (at data point t).   

The P-value and the Mann-Kendall test were used to test the significance of the statistical analyses. The P-

value is the probability that the selected test statistic would not have been larger than its observed value if 

the assumption of the model were correct (including the test hypothesis) (Greenland et al., 2016). The 

Mann-Kendall test (Mann, 1945; Kendall, 1975) is a non-parametric test that considers the relation 

between the order and sequences of a time series. The assumption of the null hypothesis H0 of a given 

time series {xi, i = 1, 2…, n} is that it is independently distributed, whereas the alternative hypothesis H1 

assumes that a monotonic trend exists (Wang et al., 2020). The test statistic (S) (Mann, 1945; Kendall, 

1975) is obtained using equation (8): 

S =  ∑ ∑ sgn(xj‒ xi)
n
j=i+1

n‒1
i=1   (8)     

where n is the number of observations (length of the time series), xi and xj are data values of sequence 

(time series) i and j (j > i), respectively, and sgn(xj ‒ xi) denotes the sign function obtained using equation 

(9): 

sgn(xj‒ xi) = {

+1, if xj ‒ xi >  0   

0, if xj ‒ xi =  0     

‒ 1,   if xj ‒ xi <  0     

  (9)     

The variance (Var(S)) is obtained using equation  (10):  

Var(S)  =  
n (n‒1)(2n+5)‒∑ ti(ti‒1)(2ti+5)

m
i=1

18
   (10)     

where n is the length of the time series, m is the number of tied ranks, and ti represents the number of ties 

(of extent i). A group of tied ranks represents a set of sample data with the same value. If the sample 

size n > 10, the standard normal test statistic ZS is obtained using equation (11):  

 

𝑍𝑆= 

{
 
 

 
 

𝑆‒1

√𝑉𝑎𝑟(𝑆)
,             𝑖𝑓 𝑆 >  0              

0,               𝑖𝑓 𝑆 =  0     
𝑆+1

√𝑉𝑎𝑟(𝑆)
,          𝑖𝑓 𝑆 < 0           

  (11)     

  
Positive values of ZS signify increasing trends, while negative ZS values indicate decreasing trends. The 

trends are tested at the specific significance level (α). At α = 0.05  (5% significance level), the null 

hypothesis (no trend) is rejected if |ZS| > 1.96 and rejected if |ZS| > 2.576 at α = 0.01(1%  significance 

level) (Gocic & Trajkovic, 2013). At a 5% significance level (α = 0.05), if the p-value ≤ 0.05, then the 

trend is statistically significant. (Yue & Wang, 2004).  
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The Mann-Kendall test has been widely used in testing the significance of monotonic trends, especially in 

hydrometeorology (e.g., Douglas, Vogel, & Kroll, 2000; Yue, Pilon, & Phinney, 2003). Wahl, Jensen, 

Frank, & Haigh (2011) applied the Mann-Kendall in testing to assess the significant trends of sea-level 

time series from tide gauge data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



EVALUATING LONG-TERM SHORELINE CHANGE IN DAKAR (SENEGAL) USING SATELLITE DATA 

 

18 

4. RESULTS AND DISCUSSION 

4.1. Results 

4.1.1. Shoreline extraction and validation 

The techniques applied in the extraction of the shorelines were assessed to identify a suitable approach for 

evaluating the evolution of the shoreline. Each methods’ performance was examined by overlaying the 

shoreline derived over the source image. Results of shorelines extracted using adaptive thresholding 

techniques were compared against MNDWI-derived shorelines from 2010 Landsat-7 (Figure 5), 2013 

Landsat-8 (Figure 6), and 2020 Sentinel-2 (Figure 7) median composite images. Shorelines derived using 

Canny Edge Detection on 2020 Sentinel-1 (Figure 8) and 2020 Sentinel-2 (Figure 9) median composite 

images were compared to assess their similarity.  

Shorelines extracted using MNDWI delineate a clear and continuous land-sea boundary (Figure 5(a), 

Figure 6(a), and Figure 7(a)). The adaptive thresholding method displays limitations in identifying the line 

separating water and land in the Landsat-7 (2010) median composite image (Figure 5(b)).  

                          
(a)      (b)          

                    
     (c)                                                                                    (d) 

Figure 5. Overlay of shoreline extracted from 2010 Landsat-7 median composite image using (a) MNDWI (on MNDWI image),      

(b) adaptive thresholding (on MIR band), (c) MNDWI (on RGB  composite image), (d) adaptive thresholding (RGB composite 

image). 
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(a)                                                                        (b)   

                             
      (c)                            (d)            

Figure 6. Overlay of shoreline extracted from 2013 Landsat-8 median composite image using (a) MNDWI (on MNDWI image),     
(b) adaptive thresholding (on MIR band), (c) MNDWI (on RGB composite image), (d) adaptive thresholding (RGB composite 
image). 

                     
(a)                                                                                          (b) 

            
(c)      (d) 

Figure 7. Overlay of shoreline extracted from 2020 Sentinel-2 median composite image using (a) MNDWI (on MNDWI image),  

(b) adaptive thresholding (on MIR band), (c) MNDWI (on RGB composite image), (d) adaptive thresholding (RGB composite 

image). 
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       (a)                                                                                                   (b)     

Figure 8. Overlay of shoreline extracted from 2020 Sentinel-1 median composite using Canny Edge Detection on (a) 2020 

Sentinel-1 median composite image, (b) 2020 Sentinel-2 median composite, (RGB) image.  

                                                                                                    
(a)                                                                                               (b) 

Figure 9. Overlay of shorelines extracted from 2020 Sentinel-2 median composite image using Canny Edge Detection on                

(a) 2020 Sentinel-2 median composite (MIR band), (b) 2020 Sentinel-2 median composite (RGB) image. 

 

Canny Edge Detection applied on 2020 Sentinel-1 median composite image (Figure 8(a)) identifies the 

contrast between vegetation (Figure 8(b)) and sand as a strong edge but not the shoreline. This limitation 

is observed because the method identifies the abrupt change in intensity of the SAR signal between the 

vegetation and the beach sand during the non-maximum suppression. Another drawback of the technique 

is that the preservation of only strong edges created gaps (in the edges extracted) where vegetation is 

replaced by sand (Figure 8(b)).  

Canny Edge Detection executed on 2020 Sentinel-2 median composite image delineates two edges of the 

shore (after cleaning up edges that are non-shorelines). The edges extracted were not continuous at areas 

with a non-abrupt change in intensity (Figure 9(a) and Figure 9(b)). The two edges were generated because 

a strong edge was identified, and weak edge pixels connected to strong edge pixels were also preserved. 

Shorelines extracted using MNDWI from 2020 median composite (01 December 2020 to 31 December 

2020) images of Landsat 7, Landsat 8, and Sentinel-2 were visualised against the surveyed (16 December 

2020) high and low waterlines (Figure 10) to examine their accuracies. The high and low waterline were 

selected as the baselines, respectively, for validation against the extracted shorelines. Sixty-three (63) 

transects were cast at 50 m spacing (with a 170 m search distance) from respective baselines and clipped 

(to create transect intersects) to the shorelines and separate beach survey data for accuracy assessment.  
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Figure 10. Comparison of shorelines derived from 2020 median composite (01 December 2020 to 31 December 2020) images 

of Landsat-7, Landsat-8, and Sentinel-2 using MNDWI. 

 

The histogram of horizontal errors along transects (in meters) of all the SDS shows a mean (µ) error and 

standard deviation (σ) of 20.9 m and 16.9 m, respectively, in comparison with the high waterline (Figure 

11(a)). Similarly, a mean (µ) error and standard deviation (σ) of -11.9 m and 16.9 m, respectively, were 

obtained for all the SDS in comparison with the position of the low water line (Figure 12(a)). The RMSE, 

mean error, and standard deviation of shorelines (from different satellite missions) were obtained with 

respect to the high and low waterline (Table 2). The RMSE and mean error values (Table 2) of shorelines 

derived from Landsat-7 and Landsat-8 images reveal a higher bias with the high waterline (Figure 11(b)) 

than the low water line (Figure 12(a)). On the other hand, RMSE and mean error (Table 2) values of the 

shoreline derived from the Sentinel-2 image show a lower bias with the high waterline (Figure 11(b)) 

compared to the low waterline (Figure 12(a)). 
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(a) 

    
(b) 

Figure 11. (a) Histogram of horizontal displacement (along transects) of satellite-derived shorelines from the high waterline (b) 

boxplot of horizontal displacement (along transects) of satellite-derived shorelines (from different satellite missions) from the 

high waterline. 
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(a) 

(b) 
Figure 12. (a) Histogram of horizontal displacement (along transects) of satellite-derived shorelines from the low waterline (b) 
boxplot of horizontal displacement (along transects) of satellite-derived shorelines (from different satellite missions) from the low 
waterline. 

 
Table 2. Validation of the satellite-derived shorelines (SDS) from different satellite missions relative to the high 

and low waterline 

Satellite-

derived 

shoreline 

High waterline  Low waterline 

RMSE [m] 

Mean error 

[m] 

Standard 

deviation 

[m] 

 
RMSE 

[m] 

Mean 

error 

[m] 

Standard 

deviation 

[m] 

Landsat-7 33.0 28.8 16.3  17.4 -4.2 17.0 

Landsat-8 30.6 28.0 12.6  12.6 -4.7 11.8 

Sentinel-2 11.5 5.9 10.0  28.6 -26.8 10.0 
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4.1.2. Shoreline evolution  

Shorelines were derived from Landsat-7, Landsat-8, and Sentinel-2 images for 2000 – 2012, 2013 – 2015, 

and 2016 – 2020, respectively, using the MNDWI technique. The output highlights the shoreline changes 

over the 20-year study period. The Net Shoreline Movement (NSM) (Figure 13) derived with transects 

cast at  50 m intervals ranged from -32.89 m to -105.7 m with a mean of -71.2 m.    

 
(a) 

(b) 
Figure 13. Net Shoreline Movement (NSM, in meters) of shorelines from 2000 - 2020 (a) across transects (b) scatter (line) plot. 
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The distance of the shorelines from the baseline (2000) across all transects (cast at 50 m intervals) (Figure 

14) presents the retreating trend at a rate (Linear Regression Rate (LRR)) of -3.4 m/year that is statistically 

significant at 95% confidence interval (Mann Kendall test; p-value < 0) (Table 3) with a good coefficient 

of determination (R2 = 0.63).   

  
Figure 14. Scatter plot showing the Linear Regression Rater (LRR) of the shoreline from 2000 to 2020. 

 

Table 3. Mann-Kendall test in detecting monotonic trends in shoreline retreat 

Parameter Value 

P-value 0* 

 *Statistically significant at 5% (α = 0.05) significance level (p-value < 0.05)  
 

The End Point Rate (EPR) (Figure 15) was also derived (from the ratio between the NSM (in meters) and 

the period (in years) between the oldest and the most recent shoreline position) with transects cast at 50 m 

intervals ranged from -1.64 m/year m to -5.29 m/year with an average of -3.6 m/year.  
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(a) 

    

 
(b) 

Figure 15. End Point Rate (EPR, in m/year) of shorelines derived from 2000 – 2020 (a) across transects (b) scatter (line) plot. 
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4.1.3. Forecasts of the shoreline position and vulnerability assessment 

The forecast of the shoreline position over the next decade (10-year) and two decades (20-year) are shown 

in Figure 16. The DSAS uses the linear regression rate in predicting the future shoreline position. A 10 m 

uncertainty for each shoreline is set by USGS (Himmelstoss et al., 2018) as part of the forecast used to 

generate an uncertainty region that lies within a 95-percent confidence interval. An overlay of the forecasts 

of the future positions of the shoreline on the elevation map of the area was used to identify areas 

vulnerable to shoreline retreat (Figure 17). The degree of vulnerability decreases with an increase in 

elevation. 

 
Figure 16. Forecasts (10- and 20-year) of the shoreline position. 
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Figure 17. Elevation map covering part of the built-up area close to the shoreline 

4.1.4. Sea-level change 

Monthly sea-level were obtained from daily tide gauge data. Annual mean (Figure 18) and annual 

maximum (extreme) (Figure 19) sea-level were computed afterward. The coast is microtidal (small tidal 

range (0 – 2 m)) (Hayes, 1975) with an annual mean and maximum sea-level rise of 2.4 cm (Figure 18) and 

8.3 cm (Figure 19), respectively,  between 2007 and 2020. The annual mean and annual maximum sea-level 

display an upward trend at a rate of 1.4 mm/year (Figure 18) and 4.4 mm/year (Figure 19). The Mann-

Kendall test (Mann, 1945; Kendall, 1975) proved that the upward trend of the annual maximum sea-level 

was significant at a 5% significance level (with a low MAPE (1.72%) but low R2 (0.33)), but the upward 

trend of the annual mean sea-level was found not to be significant at 5% significant level (with R2 =0.13)   

(Table 4).  
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Figure 18. Annual mean sea-level from 2007 to 2020. 

 

 
Figure 19. Annual maximum sea-level from 2007 to 2020. 
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  Table 4. Mann-Kendall test in detecting monotonic trends in sea-level time series 

Parameter Annual mean sea-level Annual maximum sea-level 

Standard normal test statistic (ZS) 0.93 2.47* 

P-value 0.35 0.01** 

            *Reject null hypothesis at 5% (α = 0.05) significance level (ZS > 1.96) 
            **Statistically significant at 5% (α = 0.05) significance level (P-value < 0.05) 

 

4.1.5. Sea-level change and shoreline displacement 

The results of shoreline displacement and sea-level change are presented in Table 5. The cross-correlation 

of cross-shore displacement and sea-level rise (Table 6 and Table 7) yielded negative correlation 

coefficients (r), revealing that the shoreline has a corresponding retreating response with increased sea 

level. However, without a lag, the correlation between all scenarios of sea-level and cross-shoreline 

displacement and coefficient of determination values were low (R2 < 0.5) and not significant at a 95-

percent confidence interval. The optimum correlation between the annual minimum shoreline retreat and 

annual maximum sea-level (Table 7) was good (r = ‒0.75 and R2 > 0.5), but the effect was significant (at a 

95-percent confidence interval) after four years.  

The linear regression model equation (equation(12)) of the scatter (line) plot between the annual mean 

shoreline displacement and the annual maximum sea-level rise (Figure 20) was not statistically significant   

(p = 0.12, R2 = 0.19, MAPE = 17.22%). However, it was selected to predict the future mean shoreline 

displacement because it had the highest correlation between cross-shore displacement and sea-level rise 

without a lag  (lag (in years) = 0) (r = ‒0.44 as shown in Table 7).      

𝑦 = ‒0.19(𝑥)  +  185.8  (12)     

 

 

 

 

     

where y(criterion) = predicted future shoreline displacement (m), x (predictor) = sea level (mm),                       

‒0.19 = coefficient of the predictor, and 185.8 = residual.  
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Table 5. Annual shoreline displacement and sea-level changes 

Year Annual mean 

sea-level  

[mm] 

Annual 

maximum 

sea-level  

[mm] 

Minimum 

shoreline 

distance from 

baseline [m] 

Mean 

shoreline 

distance from 

baseline [m] 

Maximum 

shoreline 

distance from 

baseline [m] 

2007 1078 1255 -6.68 -36.78 -61.19 

2008 1053 1239 -1.98 -33.13 -67.02 

2009 1043 1245 -4.50 -38.12 -63.95 

2010 1088 1291 -28.05 -52.55 -74.19 

2011 1067 1260 -30.61 -54.72 -78.06 

2012 1054 1268 -17.63 -50.71 -76.82 

2013 1073 1262 -28.56 -48.01 -63.90 

2014 1051 1263 -29.51 -54.69 -67.49 

2015 1075 1347 -24.05 -51.64 -67.49 

2016 1069 1275 -23.56 -65.90 -98.98 

2017 1085 1304 -23.07 -65.61 -100.55 

2018 1053 1274 -30.38 -74.16 -106.12 

2019 1072 1263 -38.81 -76.50 -108.34 

2020 1102 1338 -32.89 -71.2 -105.70 
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Table 6. Correlation between annual shoreline displacement and annual mean sea-level 

*Significant at 90-percent confidence interval (p < 0.1) 

Series  Minimum 
lag (years) 

Correlation (r) Coefficient of 
determination 
(R2) 

Probability 
value  
(p-value) 

 Optimum 
number of 
lags (years) 

Optimum 
correlation 
(r) 

Coefficient of 
determination 
(R2) 

Probability 
value  
(p-value) 

Annual 
minimum 
shoreline 
displacement 
vs  
Annual mean 
sea- level 

 

0 -0.41 0.17 0.14 

 

3 -0.55 0.30 0.08* 

Annual mean 
shoreline 
displacement 
vs  
Annual mean 
sea- level 

 

0 -0.36 0.13 0.21 

 

0 -0.36 0.13 0.21 

Annual 
maximum 
shoreline 
displacement 
vs  
Annual mean 
sea- level   

 

0 -0.34 0.11 0.24 

 

0 -0.34 0.11 0.24 
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Table 7. Correlation between annual shoreline displacement and annual maximum sea-level 

Series  Minimum 
lag (years) 

Correlation 
(r) 

Coefficient of 
determination 
(R2) 

Probability 
value  
(p-value) 

 Optimum 
number of 
lags (years) 

Optimum 
correlation 
(r) 

Coefficient of 
determination 
(R2) 

Probability 
value  
(p-value) 

Annual minimum 
shoreline 
displacement  
vs  
Annual maximum 
sea-level 

 0 -0.43 0.18 0.13  4 -0.75 0.56 0.01** 

Annual mean 
shoreline 
displacement  
vs  
Annual maximum 
sea-level   

 0 -0.44 0.19 0.12  4 -0.62 0.39 0.06* 

Annual maximum 
shoreline 
displacement 
vs  
Annual maximum 
sea-level 

 0 -0.33 0.11 0.24  6 -0.66 0.44 0.08* 

**significant at 95-percent confidence interval (p < 0.05)    *Significant at 90-percent confidence interval (p < 0.1) 
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Figure 20. Scatter plot of annual mean shoreline displacement (m) and annual maximum sea-level (mm) 

4.2. Discussion 

4.2.1. Shoreline extraction 

Shoreline extraction using satellite data is a complicated and time-consuming task. The major challenge 

faced by most image segmentation and edge detection techniques arises due to insufficient intensity 

distinction in areas covered by water and land (H. Liu & Jezek, 2004b) because water has a relatively low 

reflectance in the visible spectrum (Malinowski, Groom, Schwanghart, & Heckrath, 2015). Therefore, a 

slightly wet shore will lead to a wrong delineation (Levy, Nolin, Fountain, & Head, 2014). The accuracy 

assessment of the shoreline extraction techniques applied in this study was based on visual interpretation 

and comparison with the source (original) satellite images. MNDWI approach displayed an excellent 

segmentation of the land and sea boundary in this study. The method suppresses land and vegetation and 

creates a binary image that delineates the shoreline (Xu, 2006). Applying MNDWI in shoreline extraction 

was satisfactory on Landsat-7, Landsat-8, and Sentinel-2 median composite images (Figure 5(a), Figure 

6(a), Figure 7(a)).   

The adaptive thresholding technique proves to delineate the line separating water and land (Figure 6(b), 

Figure 7(b)). However, the technique displays limitations (Figure 5(b)) observed due to the grouping of 

land and water (sea) pixels in the same cluster. 

Canny Edge Detection identified two edges when applied to the 2020 Sentinel-2 median composite image 

creating uncertainty about the shoreline position (Figure 9). The technique failed to identify the shoreline 
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from the Sentinel-1 median composite image. It rather returned edges between vegetation and sand 

around the beach because the change in the intensity (sigma nought) was more abrupt compared to the 

land-sea boundary (Figure 8). The MIR band of the Sentinel-2 image presents apparent differences in 

intensity between land and water (Figure 9(a)), which aided better identification of the shoreline (Pardo-

Pascual et al., 2018) as compared to the Sentinel-1 image. The technique identified two edges because 

pixels containing both land and sea created a fuzzy shoreline that led the method to detect two edges due 

to the intensity changes within those pixels (Figure 9(a)). However, the edges extracted from Sentinel-2 

were also not ultimately continuous because some locations had little or no change in intensity. 

Shoreline extracted with four (4) weeks median composite images (centred around the beach survey date) 

using MNDWI were validated with the beach survey (high and low waterline) data. The differences in the 

number of images (due to the satellite revisit time differences) in the median composites of Landsat and 

Sentinel (Sentinel-2) account for the variation in bias in connection with the high and low waterline (Table 

2). Validation of the shorelines returned a mean (µ) error of 20.9 m and -11.9 m with respect to the high 

and low waterline, respectively. The use of median composite images (an image composed from the 

median pixel value of all the images in a composite) used in extracting the shorelines also contributed to 

the bias obtained between the SDS and the in situ (beach survey) data) because the positions of shorelines 

obtained (from the median composite image) are not instantaneous (Dimosthenis Traganos et al., 2018). 

4.2.2. Sea-level rise and shoreline evolution 

GMSL rise triggered by climate change is caused by the increase in ocean water and ocean mass (from 

melting glaciers) due to global warming (Oppenheimer et al., 2019). The Intergovernmental Panel on 

Climate Change (IPCC) Fifth Assessment Report (AR5) GMSL projection considered the contributions 

from physical processes in the derivation of a possible 66% probability value of GMSL rise of               

0.52 – 0.98 m in the uncontrolled increase in greenhouse gas emissions scenario (Representative 

Concentration Pathway [RCP] 8.5) by 2100 (Church et al., 2013; Horton et al., 2020).  However, most 

publications since 2013 linked to the high emission scenario (RCP 8.5) made projections of GMSL rise 

greater than 1 m by 2100 (Garner et al., 2018, Horton et al., 2020), with many reporting the likelihood of 

an increase higher than 2m (Kopp et al., 2017; Wong, Bakker, & Keller, 2017). 

The shoreline evolution in the region of interest (covering Gadaye and Malika beaches in Dakar) from 

2000 to 2020 reveals a retreating trend (average NSM and EPR of -71.2 m of -3.6m/year, respectively). 

The negative correlation between sea-level rise (SLR) and shoreline retreat (Table 6 and Table 7) provides 

insight into the potential SLR has on shoreline displacement. However, the results point out that the effect 

of sea-level rise on shoreline retreat might not be instantaneous but become significant over the long term, 

which agrees with the Bruun rule (Bruun, 1954, 1962, 1988).  

Thior et al. (2019) assessed the northern Lower Casamance’s (Senegal) coastal dynamics and the southern 

Gambia from 1968 to 2017. Between 1968 and 1986, the entire extent of the study area was dominated by 

accretion (-0.33 m/year in the north and +6.01 m/year in the south) while an erosive trend (-4.76 m/year 
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and -4.57 m/year in the north and south, respectively) was observed between 1986 and 2004. The erosive 

(-3.75 m/year in the north and -2.03 m/year in the south) pattern (attributed to SLR) progressed from 

2004 to 2017. Bakhoum et al. (2017) carried out coastline mobility assessment in Goree Island (Dakar, 

Senegal) from 1942 to 2011. The results they obtained show that the shoreline retreated (-4 m) at an 

average rate of -0.16 m/year and -0.06 m/year from 1942 and 1966 and 1966 to 2011, respectively. The 

island was identified to be vulnerable to sea-level rise between 1942 and 1966, but the construction of 

protective structures (1979 – 1981) to control flooding led to the reduction in the rate of retreat (-0.06 

m/year) recorded between 1966 to 2011. 

SLR poses as a ‘substantive driver,’ with extreme events, tides, changes in wave patterns, and human 

intervention usually portrayed as the principal drivers of coastal flooding (Grady, Moore, Storlazzi, Elias, 

& Reidenbach, 2013; Albert et al., 2016; Pollard, 2018). In addition to global and regional sea-level 

variations, vertical ground motions can significantly promote local promote sea-level changes (Cozannet et 

al., 2015). Subsidence ascribed to shrinkage of aquifer-system due to groundwater extraction accounted for 

about 85% (of the 0.7 m) relative SLR since 1909, and an extra 1.9 m is predicted by 2100 (Y. Liu, Li, 

Fasullo, & Galloway, 2020).  

Instantaneous events such as storm surges (temporal extremes of sea level) can cause abrupt and non-

reversible shoreline changes. These events can contribute to the long-term shoreline evolution (Sagne et 

al., 2020). The open-ocean coast of Dakar is also exposed to the impacts of these natural processes. 

Typical strong and constant swells in Dakar (with an NNW ‒ SE orientation) and strong eroding waves 

induce the shoreline’s landward movements (Sane & Yamagishi, 2004).   

Sagne et al. (2020) assessed the morphological impacts of swells in Dakar (Malibu, Gadaye, and  Malika) 

between October and November 2018. They found out that swells have a significant erosive effect which 

was attributed to low topography and unsheltered setting of the environment. The slopes of Gadaye, 

Malika, and Malibu beaches changed (decreased) from 7.39% to 5.91%, 7.28% to 3.78%, and 7.38% to 

6.15%, respectively. Gadaye and Malika beaches’ foreshore widened by 11.8 m and 42.5 m, respectively, 

whereas Malibu beach reduced by 7.5 m (due to underwater beach erosion). 

The Bruun rule (Bruun, 1954, 1962, 1988) postulates that the shape of the active part of the profile 

perpendicular to the shore is maintained over the long term and rises with sea-level rise. The active profile 

moves upward when there is a source of sand supply (Figure 21). The profile extends to a depth known as 

“closure depth.” Beyond the closure depth, the sand motion is minimal. The Bruun rule assumes that the 

sand is transported from the shore, leading to shoreline recession. Equation (13 presents the relationship 

between shoreline change (ΔX), sea-level rise (ΔS), length of active profile (W⁎), beach berm height (B), 

and closure depth (h⁎) with the assumption that ΔX≪W⁎ and ΔS≪h⁎ (Dean, 1987).  
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Figure 21. Active profile response to sea-level rise according to the Bruun rule (Source: (Dean & Houston, 2016)) 

𝛥𝑋 =   ̶  𝛥𝑆 (
𝑊∗

ℎ∗ + 𝐵
)  (13)     

The high concentration of industries and rapid population growth (3% per year) in the study area (Dakar) 

has adversely affected the open-ocean coast in the past years. The strong eroding waves (especially during 

the rough-sea season (December to May)) and wind force supply sand to the beach, but the local 

populations remove a large volume of the sand as construction material. Human alteration of the sediment 

supply process contributes to the erosion of the shoreline in the area (Sane & Yamagishi, 2004). The 

induced (natural and human) net sediment imbalance decreases the elevation of the dunes, which allows 

such locations to be flooded with seawater (Filho et al., 2021). 

Regardless of the rapid population growth and development in Dakar, the city has not been affected by 

vertical ground motions greater than 1 mm/year. Subsidence recorded after 2000 was attributed to land 

reclamation works. Notwithstanding, these accounts of ground motions did not affect the tide gauge 

observations (Cozannet et al., 2015).   

Considering the high emission scenario (RCP 8.5) of SLR projection (> 1 meter by 2100), the annual 

maximum sea level in the study area is likely to rise from 1338 mm (in 2020) (Table 5) to greater or equal 

to 2338 mm. Applying the projected sea-level value (2338 mm) in equation (12), the predicted future 

shoreline displacement (m) will be equal to -258.4 m (187.2 m landward from mean shoreline position in 

2020. This prediction implies that the shoreline is likely to retreat to the road (Figure 17) in the study area 

(especially areas with elevation less than 1m).  
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5. CONCLUSION AND RECOMMENDATIONS 

5.1. Conclusion 

This research assessed techniques (Modified Normalized Difference Water Index, Adaptive thresholding, 

and Canny Edge Detection Algorithm) of shoreline extraction from Landsat-7 (Enhanced Thematic 

Mapper), Landsat-8 (Operational Land Imager), Sentinel-1 (Synthetic Aperture Radar), and Sentinel-2 

(Multispectral Instrument) median composite images. The rate of shoreline change statistics from 2000 to 

2020 was evaluated with the Digital Shoreline Analysis System (DSAS).  The DSAS calculates future 

positions of the shoreline for the next 10 and 20 years using the linear regression rate. Finally, the study 

also explored the influence of sea-level rise on shoreline change and identified areas vulnerable to 

shoreline retreat. The discoveries from the study are as follows:   

❖ Modified Normalized Difference Water Index (MNDWI) was more reliable in delineating the 

shoreline than adaptive thresholding and Canny Edge Detection techniques. 

❖ Adaptive thresholding technique displayed limitations observed due to the grouping of land and 

water (sea) pixels in the same cluster. 

❖ Canny Edge Detection applied to Sentinel-1 annual median composite image failed to 

delineate the shoreline but returned the edge between vegetation and sand around the beach 

instead due to the abrupt change in intensity (sigma nought) observed compared to the land-sea 

boundary. 

❖ Validation of the shorelines extracted from satellite data (Landsat-7, Landsat-8, and Sentinel-2) 

using MNDWI revealed that their positions fell within the high and low waterline. The accuracy 

assessment  returned an overall mean (µ) error of 20.9 m (seaward bias with RMSE not exceeding 

33.0 m) and -11.9 m (landward bias with RMSE not exceeding 28.6m) with respect to the high 

and low waterline, respectively.  

❖ The shoreline evolution in the region of interest (an open coast in Dakar) from 2000 to 2020 

reveals an erosive trend with an average Net Shoreline Movement (NSM) and End Point Rate 

(EPR) of -71.2 m of -3.6 m/year, respectively. 

❖ The negative correlation between sea-level rise (SLR) and shoreline retreat provides insight into 

the potential SLR has on shoreline displacement. 

❖ Applying the linear regression model equation obtained linking shoreline displacement and sea-

level, the shoreline is likely to retreat by 187.2 m landward from the 2020 shoreline position by 

2100 (considering the high emission scenario (RCP 8.5) of SLR projection (> 1 m by 2100)). 

5.2. Recommendations 

❖ For a near real-time accuracy assessment of satellite-derived shoreline, the beach survey should be 

carried out at the same time the satellite passes over the area of interest.  
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❖ The results reveal that the effect of sea-level rise on shoreline retreat might not be instantaneous 

but become significant over the long term. 

❖ For further research, the movement of the sediments should be monitored and quantified over 

the long term relative to the changes in the sea level to gain proper insight into how the shoreline 

changes in response to sea-level rise. 
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