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ABSTRACT 

Natural forest conversion to oil palm in tropical wetlands is dangerous for humans and biodiversity. 

Their capability to store carbon and flood prevention becomes the main reason that stakeholders 

should protect natural forest areas and tropical wetlands. The moratorium was enacted in 2018 to 

ban the expansion of oil palm plantations by companies or smallholder farmers through natural 

forest loss in tropical wetlands. Visual inspection of Google Earth imagery shows violations of the 

moratorium remains in Pelalawan Regency, Riau Province. The finding raises a question about the 

effectiveness of the moratorium to reduce oil palm expansion in tropical wetlands. Meanwhile, the 

Indonesian government legalized the conventional techniques (on-screen digitization) to map land 

cover in Indonesia. It is uncertain because prone to human error and time-consuming. Moreover, 

RPSO has been criticized by researchers because they have lack land trajectory information to track 

the data of previous land cover before becoming oil palm plantations. Remote sensing data has 

been used by academia to discriminate between land cover types and change detection. The 

synergies of Sentinel 1 and Sentinel 2 is the potential to overcome the limitation of Sentinel 1 and 

Sentinel 2 data alone for land cover classification and change detection. Moreover, the FCN  model 

also has been used to automate semantic segmentation of remote sensing data in different 

resolutions and scales in the decoder-encoder style. This study examines which method (single 

imagery-based, synergy of Sentinel 1 and Sentinel 2 data) produces the reliable land cover 

classification. Then, using the best technique is to generate the map of natural forest to oil palm 

conversions in tropical wetlands, Pelalawan Regency, Riau Province, Indonesia. Also, this study 

wants to evaluate the moratorium's progress by comparing the change detection before (2016-

2018) and after the moratorium period (2018-2020). This study figured out that the synergy of 

Sentinel 1 and Sentinel 2 data improved land cover classification compared to the single imagery-

based technique. Using a GIS-practical approach, the post-classification composition technique 

achieved the highest accuracy over time with the averaged F1 score of 0.67. The natural forest to 

oil palm conversion map presents that the conversion patterns of the riparian zones and peatlands 

are different spatially. Conversions in riparian zones elongated follow the river, whereas 

conversions were irregularly distributed in peatlands. Regardless of misclassification in the 

conversion map, the moratorium looks like it did not work as it should be because this study 

observed the conversion area increased after the moratorium period, especially in riparian zones. 

Nevertheless, the method used in this study is more automated than conventional techniques used 

by the Indonesian government. Further investigation is necessary to improve the land cover 

classification and change detection accuracy using different sampling techniques and deep learning 

models.  Moreover, the natural forest's trend, time, and magnitude to oil palm conversions based 

on Sentinel 1 and Sentinel 2 time-series data are also essential to further understand how effectively 

moratorium reduces oil palm expansion through natural forest loss.  
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1. INTRODUCTION 

1.1. Oil palm trees in tropical wetlands, Indonesia 

The tropical wetlands and natural forests are ecologically important and have climate benefits. They play an 

essential role to provide habitats for animals and livelihood for humans. Moreover, it stores numerous 

amounts of carbon as plant biomass in trees and peat soil. They also provide ecosystem services to local 

people, including providing timber and non-timber forest resources and maintaining the water level and 

quality. However, when farmers drain tropical wetlands and cut down the natural forest, it can support the 

growth of oil palm trees as one of the profitable crops in Indonesia (Gunawan, 2018).  

 

Tropical wetlands are identical to peatlands and riparian zones in which both ecosystems are inundated by 

water permanently or seasonally (Kolka et al., 2016).  When natural forests cover riparian zones, they act as 

an ecological corridor to wildlife along the river. Moreover, stream banks in riparian zones also protect 

humans from a flood. A few studies reported that when the natural forest along the river channel is 

converted to oil palm plantations by farmers, the geomorphic consequences increase runoff and shorten 

runoff time to river streams. It accelerates soil sedimentation on riverbeds (Horton et al., 2018). 

Consequently, riparian zones become flood-prone areas and endanger wild and human lives.  Also, oil palm 

in riparian zones in Indonesia decreases water quality because herbicide, liming, and chemical fertilizer 

contaminate the river (Chellaiah & Yule, 2018). Then,  if riparian zones are not protected, and actions against 

sustainability remain by stakeholders, aquatic ecosystems nearby riparian zones may be degraded, and 

biodiversity may go extinct in the future.  

 

Oil palm trees are also extensively planted in peatlands. Peatlands in Indonesia is unique comparing to 

temperate peatlands in Europe. It is formed as an accumulation of forest trees, including branches, leaves, 

roots, and trunks, for over a thousand years to form deposits up to a thickness of 20 meters (Yustiawati et 

al., 2015). Temperate peatlands are mainly formed from mosses and shrubs. Nowadays, peatlands have been 

destroyed by farmers. They drain peatlands and clear natural forests to decrease the water level and provide 

space for new oil palm plantations. As a side effect of these activities, it accelerates the decomposition of 

organic matter, releasing carbon and methane into the atmosphere (Afriyanti et al. 2019). If land clearing 

remains in peatlands,  numerous carbon and methane stored will be released into the atmosphere. As a 

consequence, peatlands may sink, causing floods, droughts, ruins of buildings or roads in the future. 

1.2. The wicked problem of tropical wetlands protection 

In recent days, the Indonesian government has been concern about the natural forest to oil palm conversion 

in tropical wetlands. They implemented some regulations to protect tropical wetlands and natural forests. 

In particular, President Instruction Number 18/2013 regulates the width of the riparian buffer zone for big 

(> 15 m width) and small (<15 m width) rivers that the government should protect from any conversions. 

In 2018, the government enacted the moratorium of oil palm that legally banned issuing new permits to 

clear the natural forest for new oil palm plantations, either by smallholder farmers or oil palm companies 

(Yusuf & Roos, 2017). However, farmers look like they violate the regulations since lack of law enforcement 

is also the central issue in Indonesia (Jong, 2021). By looking through Google Earth Map in 2020, it is 

proved that irregular oil palm trees were still found in riparian zones (Figure 1). It raises the question of 
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whether the regulations effectively reduce the natural forest loss through the oil palm expansion in tropical 

wetlands.  

 

   

 

 

 

 

 

 

 

Figure 1.Violation of aforementioned regulation in Pelalawan Regency, Indonesia, where the pink line covers the 
riparian buffer and the areas covered by the yellow polygon is oil palm. (Source: Google Earth image 2020) 

Oil palm trees in tropical wetlands have raised the alarm to pay attention to the moratorium's progress in 

reducing the natural forest loss through oil palm expansion in Indonesia. Jong  (2021) reported that the 

government provided a platform in which people can check the progress of the moratorium. Nevertheless, 

they presented results based on Landsat 8 OLI and on-screen digitization as official data and technique 

(Ministry of Environmental and Forestry, 2017). Landsat 8 OLI images are less reliable due to cloud 

coverage and coarse spatial resolution (30 m). The conventional technique used is prone to human error 

and is time-consuming. Researchers should recommend an automated approach for land cover classification 

and change detection to the government, and thus they can tackle mentioned limitations. 

 

The certification institution (e.g. Roundtable on Sustainable Palm Oil or RSPO) has been criticized because 

of the lack of information and knowledge about the land-clearing trajectory of oil palm growers (Gaveau et 

al., 2016). Although this criticism, they play a role to assess the Standard for Sustainable Palm Oil Production 

of oil palm companies and smallholder farmers globally. The standards ensure the growers apply 

sustainability practices. In addition, the certificate guarantees the oil palm-based products that customers 

consume are produced sustainably by the growers. As proof, the growers (e.g. oil palm companies or 

smallholder farmers) will receive the sustainability certificate. It allows their products to enter the European 

market because it is needed to fulfil mandatory requirements (Ruysschaert & Salles, 2014). One of the 

standards mentioned a prohibition from clearing any forests identified as having High Conservation Value 

or High Carbon Stock (RSPO, 2018). In fact,  farmers likely confronted the standards (Figure 1) that oil 

palm trees remained in prohibited areas. Gaveau et al. (2016) commented that RSPO is also likely disputed 

by oil palm growers, claiming they plant oil palm trees in degraded and abandoned land. If the issue remains 

without any solutions, it will lead to further miss assessment and violations. 

 

The effects of oil palm plantations converted from the natural forest in tropical wetlands become a primary 

issue in this study. A wicked problem framework is created to illustrate the problem complexity (Figure 2). 

It shows the consensus among stakeholders toward the certainty of knowledge on various aspects of the 

problem. Stakeholders know the regulations and Standard for Sustainable Palm Oil Production. However, 

the conflict between stakeholders becomes apparent when it comes to the importance of tropical wetlands. 

Each stakeholder (the government, oil palm companies, certificate institutions and local people) has 

different interests toward the natural forest and tropical wetlands, such as conservation, restoration, or oil 
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palm cultivation. The official method to support the moratorium's progress is considered less reliable. It 

contributes to the uncertainty of the information provided about the natural forest to the oil palm area 

conversion. Consequently, the debates on the topic become endless while tropical peatlands and the natural 

forest have been cleared. 

 

 

 

 

 

 

1.3. Potential of Sentinel imagery for differentiating natural forest and oil palm trees and change 
detection 

 

Since oil palm has become an attractive industrial crop, academia mainly uses remote sensing to provide 

methods and data to stakeholders. They support detecting illegal deforestation driven by oil palm and map 

land cover classes to demarcate oil palm and natural forest boundaries  (Chong et al., 2017). Thanks to the 

European Space Agency (ESA) that launched Sentinel 2 (S2) in 2015, it has demonstrated an excellent 

potency for land cover mapping and change detection with 10-m resolution images. Descals et al. (2019) 

achieved an overall accuracy of 90% using Sentinel 2 data to separate smallholders and industrial oil palm 

areas in Riau Province. Sentinel 2 was equipped with red-edge bands (B5, B6, and B7) that were useful for 

all-scale forest disturbance mapping due to their sensitivity to the chlorophyll content presented by Xu et 

al. (2019). For change detection, Close et al. (2021) demonstrated the potential of Sentinel 2 data regarding 

land conversion/changes. But, clouds in tropical areas often become a problem when researchers use 

Sentinel 2 images alone (Reiche et al.,2015). 

 

Researchers have extensively used Sentinel-1 Synthetic Aperture Radar images (S1) because their active 

sensor can overcome cloud coverage issues on satellite imagery. Adeli et al. (2020) described that the SAR 

sensor could interact with the object at the macroscopic level, which is related to physical properties of the 

earth surface, such as structure, surface roughness, and moisture content. Ballester-berman & Rastoll-

gimenez (2021) also showed the utility of S1 data for oil palm and natural forest discrimination using VV-

VH backscatter in the riverine area, Africa. However, land cover classification and change detection in 

wetlands is challenging due to radar's double bounce could generate false detection. Complex surfaces with 

large branches and high-water content in natural forests and wetlands often illuminate SAR signals (Adeli et 

The role of stakeholders  

The moratorium 

Standard for Sustainable 

Palm Oil Production 

The importance of tropical 

wetlands 

The data type and method 

for land cover classification 

and change detectionz 

Figure 2. A wicked problem framework 
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al., 2020). A previous study by Makinde & Oyelade (2020) observed that Sentinel 1 images caused falsely 

classified bare land and forest known as water bodies around riparian zones. The same misclassification may 

also be apparent in peatlands. Approaches to compensate for the limitation of using S1 images alone are 

needed to enhance their reliability.   

 

To overcome Sentinel 1 and Sentinel 2 limitations, the synergy of Sentinel 1 and Sentinel 2  images could 

be a promising approach. Pohl & Van Genderen (1998) introduced the fusion technique to generate fused 

images. This technique synergizes information from different sensors, providing more features to be 

extracted using a particular algorithm. Chatziantoniou et al. (2017) proved that the fusion of Sentinel 1 and 

2 data improve land cover classification accuracy in wetlands. Clerici et al. (2017) also inspected that natural 

forest areas are distinguished well when the synergy of sentinel 1 and 2 images are used. Another widely 

known technique is post-classification composition, which incorporates ancillary data before, during, or 

after the image classification.  The ancillary data could be spatial or non-spatial information that may refine 

the image classification. Thakkar et al. (2017) composed land cover classification derived from Maximum 

Likelihood Classifier (MLC), Normalized Different Water Index (NDWI), and Geographical Information 

System (GIS)-based information based on visual interpretation to reduce misclassifications of natural forest. 

Nevertheless, previous studies mostly tested Sentinel imagery application for land cover classification, but 

it was less for change detection studies. It can be an opportunity to explore further and understand how 

reliable these techniques are for change detection.  

1.4. Deep learning in remote sensing applications 

 
Deep learning (DL) has been introduced as a set of neural network-based algorithms that automatically learn 

features available in remote sensing data. It could compensate for feature extraction by humans because it 

is lack complexity. In the case of deep learning, learnt features are capable of representing high-level 

characteristics of the data, being also learning optimized for each classification process. In neural networks, 

hidden layers are available between the input layer and output layer. Hidden layers allow the information 

provided by satellite data is extracted before producing outputs in the prediction stage. Each layer in hidden 

layers is responsible for learning a particular feature of the input image, then transform it to a more abstract 

level (X. X. Zhu et al., 2017). With this multilayer transformation architecture, the invariance and selectivity 

of the representation are improved. Nowadays, DL has been employed in almost all major sub-areas of 

remote sensing studies, such as land cover classification (Bermudez et al., 2018; Ienco et al.,2019; Lyu et 

al.,2016) and change detection (Sefrin et al., 2021). To further understand DL performance further, it is 

necessary to test deep learning and remote sensing data to different issues, including the natural forest and 

oil palm conversion in tropical wetlands, Indonesia. 

 

The Fully Convolutional Networks (FCN) model have been developed for semantic segmentation, which 

assigns a class label to each pixel in an image. It considers the entire spatial context around each pixel in 

several scales to produce their labels with embedded spatial information (Zhuang et al. 2019; Yuan et al., 

2021). Features extraction of the FCN model is structured based on stacked convolutional layers in an 

encoder-decoder style, allowing features extraction in different resolutions and scales (Flood et al., 2019). 

The encoder downscales the input image to a coarser level through the pooling operations (red arrow in 

Figure 3). In contrast, the decoder upscales back the input image to the original resolution and scales. U-net 

is FCN -based model that is widely used to generate land cover classified maps.  As shown in Figure 3, the 

U-net is also built following the concept of encoder-decoder style.  The U-net also contains the skip 
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connections (grey arrows in Figure 3) used to pass low-level features from encoder to decoder path. It allows 

the model to preserve object boundaries that often vanish during downscaling (Zhang et al., 2020). 

 

 
Figure 3. U-Net architecture (Olaf Ronneberger et.al, 2015) 

A few researchers have used the U-net model for land cover classification and change detection. For 

example, Parente et al. (2019) combined U-net and  Recurrent Neural Network (RNN) based on  

PlanetScope imagery that achieved 97% of overall accuracy. Maretto et al. (2020) achieved an overall 

accuracy of 95% with the spatiotemporal variation of the U-net architecture based on Landsat 8 Operational 

Land Imager (OLI). Nevertheless, limited studies combined the U-net and different techniques of Sentinel 

1 and Sentinel 2 data synergy, such as fusion approach and post-classification composition for land cover 

classification and change detection using the FCN (U-net) model. It could be potential to extract more 

features and thus producing  a high-accurate land cover classification and change map 

1.5. Research Problem 

 

The natural forest change driven by oil palm expansion in tropical wetlands causes biodiversity loss, carbon 

emission, and natural disasters. Even though the moratorium of oil palm was enacted in 2018 to protect 

tropical wetlands, there are indications of regulatory violations. The quality of the information provided by 

the government through satellite data is uncertain to human error due to the conventional technique and 

30-m resolution satellite imagery used. It hampers the stakeholders to evaluate the progress of the 

moratorium further.  

 

Land cover classification and change detection in tropical wetlands is challenging when Sentinel 1 (S1) and 

2 (S2) products are used alone. Previous studies showed their peculiarities obscure in generating a high 

accurate mapping that may be potentially improved when the information from Sentinel 1 and Sentinel 2 

are combined. Moreover, a Fully Convolutional Network (FCN) is also a promising model that could 

automatically learn feature information (e.g., edge, textures, and shapes) from the raw images provided by 

satellite data in a spatial context. Nevertheless, a few studies used synergetic information from multi-sensor 

images for land cover classification and change detection.  
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According to the opportunities mentioned above, this study wants to test which method between single 

images  (S1 and S2 alone) and the synergy of Sentinel 1 and 2 data (fusion approach and post-classification 

composition) can produce the most reliable natural forest-to-oil palm change derived from land cover 

classifications using the FCN model. Furthermore, the land cover classification and change map produced 

in this work can help to evaluate the moratorium in reducing the natural forest loss through oil palm 

expansion in tropical wetlands. 

1.6. Research objectives and questions 

The main research objective is to compare the classification of single images (S1 or S2 data) and the synergy 

of Sentinel 1 and 2 data (fusion approach and post-classification composition) using the FCN model. The 

comparison is presented to test which method produces the most accurate land cover maps and the natural 

forest-to-oil palm change map in tropical wetlands. Next, the natural forest-to-oil palm change detection 

produced before is used to evaluate the moratorium of oil palm by comparing between before and after the 

moratorium period. The objective can be achieved through the following sub-objectives  : 

 

a. To identify the accuracy of land cover mapping in tropical wetlands based on single images (S1 and 

S2) and the synergy of Sentinel 1 and 2 data using the FCN model 

b. To map the natural forest change into oil palm before (2016-2018) and after (2018-2020) the 

moratorium of oil palm in tropical wetlands.  

c. To evaluate the effect of the moratorium in reducing natural forest loss through oil palm expansion 

in tropical wetlands. 

 Research questions : 

a. To what extent do FCN and data types (S1, S2, and synergy of Sentinel 1 and 2 data) influence land 

cover classification accuracy in tropical wetlands? 

b. How was the natural forest area converted to oil palm before (2016-2018) and after (2018-2020) 

the moratorium in tropical wetlands?  

c. What is the moratorium's impact in reducing natural forest loss and oil palm expansion in tropical 

wetlands?  
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2. METHODOLOGY 

2.1. Study area 

Since reliable data is limited and restricted by stakeholders, the specific study area within Riau province was 

selected based on visual inspection of Planet imagery and online documents. The study area selection was 

considered to achieve the research objectives and answer research questions. It is necessary to identify areas 

based on specific criteria, whereby it could be assumed natural forests change into oil palm plantation has 

occurred in tropical wetlands. The criteria for selecting the study area are the following : 

1. Peatlands and rivers are available in the study area to  

2. Natural forest and oil palm areas are available in the study area. 

3. Cloud-free Planet images of 2016, 2018, and 2020 are available to set reference points. 

 
Figure 4.Study area 

Based on those criteria, the tropical wetlands in Pelalawan Regency, Riau Province located on 00°46'24" N 

- 00°24'34" S and longitude 101°30'37" E - 103°21'36" E, was chosen as the study area in this study (Figure 

4). This area covers peat swamps (east side), the Kampar river (large river), and small rivers. For this location, 

the number of cloud-free Planet images (<20%) in the study area are available and can be streamed online 

in QGIS through the Planet QGIS plugin (Planet, 2020). 
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2.2. Workflow  

As shown in Figure 4, the workflow displays the steps to obtain results, answer the research questions and 

achieve the research objectives in this study.  

 

 
 

Figure 5. The workflow of the research 
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2.2.1. Generating tropical wetlands layer 

The tropical wetlands layer in the Pelalawan regency was generated based on the available online dataset in 

the Indonesia Geoportal (https://tanahair.indonesia.go.id/portal-web) for the river layer (shapefile format) 

and the World Resources Institute (https://www.wri.org/resources/data_sets) for the peatlands layer 

(shapefile format). Also, the width of riparian buffer was applied to the river layer with regards to the 

Indonesia regulation, which is 50 m for small (<15 m) and 100 m for large rivers (>15 m). Then, both layers 

were merged to generate the Tropical Wetlands layer  (shapefile format) (Figure 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.2. Sentinel imagery 

Sentinel 1 and Sentinel 2 images that are the Programme Satellite of the European Space Agency (ESA) 

were used in this study. They are online available and were downloaded from ESA Sentinel Scientific Hub 

(https://scihub.copernicus.eu/).  Satellite images covering the study area consist of  5 tiles of Sentinel 1 

images and 9 tiles of Sentinel 2 images (Appendix 1) before being mosaiced. The date of acquisition of each 

tile was taken in Indonesia's dry season (March-October) of 2016, 2018, and 2020 to avoid cloud covers on 

Sentinel 2 images and image desynchronization between Sentinel 1 and Sentinel 2 images, even between tiles 

of each satellite image.  

 

To be specific, Sentinel 1 images are categorized as SAR (Synthetic Aperture Radar) data. It is a type of 

active data collection in which a sensor sends its own signals and receives the number of signals after 

interacting with the earth's surface. ESA's Sentinel 1 consists of Sentinel 1 A and Sentinel B, launched on 

April 2014 and April 2015. C-band is carried and can transmit in vertical (V) or horizontal (H), and then 

receive the signal in vertical (V) or horizontal (H). It is categorized into 4 possible polarizations: single-

polarization (VV, VH) and dual-polarization (VV+VH, HH+HV). Moreover, the data is acquired in four 

modes: SM (StripMap), IW (Interferometric Wide Swath), EW (Extra-Wide Swath), and WV (Wave). On 

the ESA's website, two types of Sentinel 1 data are accessed: Ground Range Detected (GRD) and Single 

Look Complex (SLC). For this study, Sentinel 1 –GRD (S1) images with IW mode were selected. The S1 

data were acquired images were selected in dual-polarization (VV+VH) to capture small and large land cover 

types on the earth's surface recommended by Steinhausen et al. (2018). 

 

Figure 6. Tropical wetlands  

https://tanahair.indonesia.go.id/portal-web
https://www.wri.org/resources/data_sets
https://scihub.copernicus.eu/
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Sentinel 2 is an optical-passive satellite that relies on natural solar radiation reflected from the earth's surface. 

Sentinel 2 consists of Sentinel 2A and Sentinel 2B, launched in June 2015 and March 2017. It carries 13 

bands at the spatial resolution of 10 m (four visible and near-infrared bands), 20 m (six red edge and 

shortwave infrared bands), and 60 m (three atmospheric bands) (Table 1). For this study, Sentinel 2 images 

with cloud coverage less than (20%)  and  Top-of Atmosphere (TOA) reflectances were used,  

 

Table 1. List of bands on Sentinel 2 satellite 

Band Spectral region Wavelength 

(µm) 

Resolution 

(m) 

Band 1  Coastal Aerosol 0.443 60 

Band 2 Blue 0.490 10 

Band 3 Green 0.560 10 

Band 4 Red 0.665 10 

Band 5 Vegetation Red Edge 0.705 20 

Band 6 Vegetation Red Edge 0.740 20 

Band 7 Vegetation Red Edge 0.783 20 

Band 8 Near Infra Red (NIR) 0.842 10 

Band 8A Vegetation Red Edge 0.865 20 

Band  9 NIR Narrow /Water vapour 0.945 60 

Band 10 Short-Wave Infra-Red (SWIR) 1.375 60 

Band 11 SWIR 1.610 20 

Band 12 SWIR 2.190 20 

 

2.2.3. Sentinel 1 data preprocessing 

This stage is necessary to reduce radiometric bias, geometric distortion, and raw backscatter intensity. As a 

result, meaningful SAR data are acquired that represent actual radar backscatter of the object surface. To 

preprocess SAR images, the S1 preprocessing was preprocessed in open-source software known as the 

Sentinel Application Platform (SNAP), following preprocessing steps for land cover classification by 

Filipponi (2019) (Figure 7).  

 

 

 

 

Figure 6. Sentinel 1 preprocessing steps 

The explanation and logic for performing the preprocessing steps are described as follows : 

a. Apply orbit file; SAR data are generally inaccurate. To tackle this, applying position correction in 

SNAP allows updating of satellite position for each SAR scene.  

b. Noise removal; SAR data are disturbed by additive thermal noise and low-intensity noise on scene 

edges. These noises are caused by background energy and the change of Earth's curvature created 

during Sentinel 1 products generation. 

c. Calibration; SAR data were converted to digital pixel values known as sigma nought (Sigma0).  It 

is necessary to reduce radiometric bias remains and highlight radar backscatter of reflecting surface. 

Calibrated values represent a percentage of microwave energy received from the target surface, 

which depends on the characteristic of the target surface (e.g. shape, size, and moisture content), 

and the sensor system(e.g. polarization, and incident angle). 

Figure 7. Sentinel 1 preprocessing steps 
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d. Speckle filtering; SAR images has granular noises known as the salt and pepper effect because of the 

interference of waves reflected from all kinds of elementary scatter. Therefore, noises could be 

reduced, and thus the quality of images would be improved. In this step, the refined lee with a 

window size of 3x3 was applied to SAR scenes due to its ability to preserve edges and texture 

information on SAR data while reducing speckle.  

e. Terrain correction; SAR data frequently sense with different viewing angles, resulting in images 

distortion associated with the side-looking geometric. Digital Elevation Model (DEM) that 

automatically downloaded were used to compensate these distortions and reveal accurate geometric 

representations. 

f. Conversion to dB; SAR data were converted to physical quantity called the backscattering 

coefficient measured in decibel (dB) units. The dB value describes whether the radiated terrain 

scatters away from the SAR sensors or toward the SAR sensors.  

2.2.4. Sentinel 2 data preprocessing 

In this study, Sentinel 2 bands related to clouds were removed to reduce the atmospheric effect (Band 1, 

Band 2, Band 9 and Band 10), as Maretto et al. (2020) recommended. As similar to S1 preprocessing, S2 

preprocessing steps were also executed in SNAP following steps in Figure 8. 

 

 

 

Figure 7. Sentinel 2 preprocessing steps 

 
Firstly, S2 images of Top-of Atmosphere (TOA) reflectances acquired were converted to Bottom of 

Atmosphere (BOA) reflectances. It is necessary to reduce atmospheric, terrain, and cirrus distortion.  To 

capture all-size natural forest change, Sentinel 2 –BOA images were resampled to 10 m resolution using 

bilinear interpolation technique, in which four pixels nearest uncorrected pixel are used to assign corrected pixel 

value. By applying this strategy, object edges/ boundaries would be preserved (Dahiya, Garg, & Jat, 2013). 

2.2.5. Sampling 

Samples referred to each land cover class were necessary to obtain the land cover classes' spectral signatures 

(Li et al., 2017). Due to it was not allowed to collect samples on the ground,  high-resolution Planet was 

used.  Samples were collected on small patches by generating a grid with a size of 300 by 300 pixels across 

the study area. The patch size was chosen larger than the top of targets to capture textures of each land 

cover class.  After that, 110 patches were randomly chosen from the grid generated to collect samples. In 

order to train the model, corresponding labels accompanied each patch, in which labels represent land cover 

type on the ground. Labelling was identified by visual inspection and delineated by drawing polygons within 

patches collected. Labels naming followed land cover classes defined Ministry of Environment and Forestry 

(2017). It was aggregated into six categories (Table 1) to highlight necessary land cover classes (natural forest 

and oil palm class) from the other land cover types. This strategy was also implemented to obtain patches and 

labels of 2016, 2018, 2020 separately. Figure 9 shows an example of sampling patches distribution applied 

on Sentinel 2 images of 2016. 

Table 1. Land cover classes and criteria 

Aggregated 

category 

Criteria  Data classes by MoEF 

Natural Forest Tree-covered areas  Primary dryland, secondary dryland, 

primary swamp, secondary swamp, and 

secondary mangrove forest 

Figure 8. Sentinel 2 preprocessing steps 
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Aggregated 

category 

Criteria  Data classes by MoEF 

Oil Palm Star-shaped structure area Oil palm plantation 

Bare land  Open areas without any land cover 

types 

Bare land   

Water  Land covered by an accumulation of 

water 

River and lake 

Other Land 

Covers 

Anthropogenic landscape Built-up area, agriculture area,  acacia 

plantation, and road 

Cloud  (S2 images) Cloud and cloud shadow - 

 
Figure 9. Sampling patches distribution of Sentinel 2 data of 2016  

In addition, 110 patches were also used to slice the input image into image patches of 2016, 2018, and 2020. 

Patches with no data value were removed from the training data set. After slicing the input image, the whole 

set of paired image patches and labels of 2016, 2018, and 2020 were split into 80% for training (86 patches) 

and 20% for testing (24 patches).  Training data is necessary to train the model, whereas testing data support 

model evaluation. 

2.2.6. Data preprocessing 

This stage refers to the technique of preparing training samples to make them suitable during training 

samples in the deep learning model. Ying (2019) noticed that overfitting is the common issue in supervised 

deep learning, which the model does not generalize well when the number of samples is too small or less 

representative. Due to overfitting, the model which may perform poorlyon different datasets /predicted 

data. 

 

To reduce overfitting, two strategies were applied: data augmentation and L2 regularization, as 

recommended by R. V. Maretto (2020). Data augmentation artificially inflate the size of the training set (Yan 

et al. 2019). It gives different transformations on the training set to make the model more invariant to the 
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target object's position in the image. Augmentations applied were rotations (90 o, 180 o, and 270o) and flips 

(left-right, up-down, and transpose) to the training set in this study.  

 

This study used satellite imagery with the number of bands having numerous features to be learned by the 

model. Ying (2019) mentioned that overfitted models tend to consider all the features. However, not all 

features have a significant impact or are noise-free which are meaningless to the prediction. Thus, the effect 

of useless features needs to be limited. For this study, L2 regularization was applied. It includes less valuable 

features by giving them small weights instead of rejecting them to obtain as many features as possible (Ying, 

2019).  

 

Both strategies were performed on the fly during the training process. In addition, the same procedures 

were also applied over methods.  Thus, the classified maps generated by several methods are comparable. 

The DeepGeo toolbox was used to perform mentioned strategies, generate a training and test set, train the deep 

learning model, apply deep learning classification based on a trained model, and analyze and visualize results 

(R. V. Maretto, 2019).  

2.2.7. Land cover classification 

In this study, three types of methods were tested for land cover classification: 1) Single imagery-based land 

cover classification, 2) Fusion-based land cover classification, and 3) Post classification composition. 

Mentioned methods were executed using the FCN model (U-net), developed by R. V. Maretto (2020). For 

single imagery-based land cover classification, the training set generated from  Sentinel 1 and Sentinel 2 

images each year trained the model to produce the classified map of each year (Figure 10). 

 

 

 

 

Figure....Single imagery-based land cover classification scheme 

For image fusion, the early fusion approach was applied in this study. The early fusion scheme was inspired 

by R. V. Maretto (2020) (Figure 11). The early fusion approach was executed by concatenating the training 

set generated from  S1 and S2 images of N timestamps before the training stage. As shown in  Figure 11, 

Image year 1 and Image year 2 were replaced to Sentinel 1 and 2 images, respectively, to provide more 

information to the model and generate the classified map.  

 

 

 

 

 

 

 
                    

 

 

 

 

 

Figure 10. Single imagery-based land cover classification scheme 

Figure 11. U-net with early fusion architecture (R. V. Maretto, 2020) 
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For post-classification composition, S1-based and S2-based  land cover classifications of N timestamps were 

produced first. Then, pixels affected by cloud class in Sentinel 2 classified maps were masked and replaced 

with S1 classified maps to reveal land cover types under clouds over time (Figure 12). This technique was 

inspired by Thakkar et al. (2017).  

 

 
Figure 12. Post-classification composition approach 

After land cover classification of each method over time were generated, the classified maps were masked 

corresponds to the Tropical Wetlands layer to focus on the study area 

2.2.8. Hyperparameters tuning 

The learning process of deep learning is controlled by hyperparameters (network parameters). Compared to 

parameters that the model learns, hyperparameters control the learning process of the model. For the model 

used in this work,  they consist of the learning rate, the number of epochs, decay rate, and batch size. 

Learning rate controls how far the model updates the weights. The number of epochs describes the number 

of times that the learning algorithm passes through the entire training data during the backpropagation. One 

epoch compose of several steps of training, controlled by batch size. Batch size defines as the number of 

samples taken in each step. The decay rate allows the model to reduce the learning rate over time (You et 

al., 2019). In this study, exponential decay were used to prevent the model from stopping working in the 

middle of traning process . This study tested several sets of hyperparameters, as shown in Table 2. 

 
Table 2. Several sets of hyperparameters were tested in this study. 

Set Learning rate Epochs Decay rate Batch size 

A 0.1 100 0.95 5 

B 0.1 200 0.95 5 

C 0.01 100 0.95 5 

D 0.01 200 0.95 5 

E 0.001 200 0.95 5 

 

Since the deep learning model is trained using a stochastic gradient descent algorithm, the loss function was 

set to calculate how well the model is trained for the given data.  In this study, the loss function followed 

the weighted cross-entropy (WCE) to overcome the unbalanced number of samples over land cover types. The 

disparity number of samples was ignored by assigning the weight over land cover classes. This strategy 

allowed unbalanced data contribute to total loss during training (Phan & Yamamoto, 2020). It was 

performed before the training stage. Additionally, the loss curves were produced during training for 

monitoring the model performance. The calculation of WCE followed the equation described by Maretto 

et al. (2020):  
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WCE =  − ∑ 𝑊𝑐𝐶
𝐶=1  ∑ 𝑌𝑡𝑟𝑢𝑒 log (𝑌𝑝𝑟𝑒𝑑)𝑁

𝑖=1   (Eq 1) 

Wc = 
𝐴𝑐

𝑃𝑐
  (Eq 2) 

 

Where Wc is a weight of each class defined as the average of all classes' proportions (Ac) divided by the 

proportion of N class (Pc), Ytrue is the test data, and  Ypred is the prediction.  

 

Due to lack of memory and overcome computation time, the Sentinel 2 image of 2016 was chosen for fine-

tuning.  For choosing optimum hyperparameters, the overall accuracy and loss curves were selected, 

followed by criteria: 1) the overall accuracy achieved the highest (Eq 3), and 2) the loss curves show a 

decreasing trend, as the model minimizes it. Mentioned criteria were necessary to ensure the model trained 

well with minimum loss/error.  

 

𝑂𝐴 =
𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑝𝑖𝑥𝑒𝑙𝑠 𝑜𝑣𝑒𝑟 𝑙𝑎𝑛𝑑 𝑐𝑜𝑣𝑒𝑟 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑑𝑎𝑡𝑎
 (Eq 3) 

 

Once optimum hyperparameters were obtained, it attempted over methods in this study.To be more detail, 

the reference data is explained in the next step (accuracy assessment).  

2.2.9. Accuracy assessment 

Once methods generated results over time, the confusion matrix was also generated to assess the image 

classification accuracy.  The accuracy of the FCN model on different methods was assessed by calculating 

three indices, specifically recall, precision, and F1 score (Eq 4-6). These indices can help to evaluate the 

accuracy and reliability of a particular class being mapped using several methods in this works. The recall is 

defined as a ratio of correctly classified pixels in the prediction map to the number of pixels in the reference 

points belonging to a certain class. Precision is defined as a ratio of the number of correctly classified pixels 

in the prediction map to the number of pixels classified into a certain class. F1 score is a harmonic mean of 

precision and recall (Graf et al., 2020). 

  

R= 
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (Eq 4) 

P =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (Eq 5) 

𝐹1 = 2
(𝑃𝑥𝑅)

(𝑃+𝑅)
  (Eq 6) 

 

Where , P = precision ,R= recall , F1 = F1 score, TP = True Postive, FP = False Positive, FN = False 

Negative 

 

In particular, recall (R) and precision (P) were computed based on True Positive (TP), False Positive (FP), 

and False Negative (FN) of each land cover type. TP means correctly classified pixels of a particular class in 

prediction and reference data. FP is the number of classified pixels that are not the same as reference data. 

FN denotes the number of pixels that are falsely detected by the classifier.  

As this study mapped each land cover type over time, the averaged F1 score was also computed to determine 

which method produced the best results over time. It is computed by averaging the F1 score of a particular 

class over time. For reference data, 150 points of 2016, 2018, and 2020 were randomly distributed across 

the study area using random points generator in Quantum Geographic Information System (QGIS). Data 

attributes of reference points were collected using visual interpretation of high-resolution imagery (Planet 
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images). The reference points generated were also used to compute overall accuracy in hyperparameters 

tuning. Figure 13 shows the reference points distribution of 2016.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 13. Sampling points distribution of 2016 

2.2.10. Change detection 

 
The goal of change detection is to obtain the change difference map between two or more images of the 

same area. Since this study is concerned with the natural forest to oil palm conversion, the post-classification 

technique was used to derive a change map. It worked by overlaying two input classified maps to produce 

"from-to" change information (Spruce et al. 2020). To accomplish that, the classified map of year one and year 

two were overlayed, correspond to 2016-2018 and 2018-2020.  Next, the pixels associated with the natural 

forest class in year one and oil palm class in year two in the same area were extracted because this study wanted 

to present only the natural forest-to-oil palm change map.  

2.2.11. Rate of change analysis 

In this stage, the proportion of an area occupied by oil palm and natural forest throughout time were 

calculated. Then, the relative changes of both land cover classes were determined before (2016-2018) and 

after the moratorium period (2018-2020). It was followed by the determination of the relative change of 

changing area in both periods. For detailed analysis, the change analysis was measured in peatlands and 

riparian zones separately, following the mathematical formula by Suleiman et al. (2017) : 

 

ΔA = A1-A2   (Eq 7) 

𝑃𝐴𝐶 =
∆𝐴

𝐴1
𝑥100  (Eq 8) 

 

PAC= percentage area change (%) 

ΔA = the difference of targeted area at the period one and period two (ha) 

A1= targeted area at the beginning of the period (ha) 

A2 = targeted area at the end of the period (ha) 

Figure 13. Reference points distributio 
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3. RESULT 

3.1. Selection of the optimum hyperparameters 

After a thorough experiment, the overall accuracy (OA) and loss curves were produced to evaluate the 

training process. Table 3 displays the overall accuracy achieved using several sets of hyperparameters tested 

in this study. The result generated with each set is shown in Appendix 2. Implementing Set A and B did not 

improve the overall accuracy. It started to increase when Set C or the learning rate was reduced to 0.01. Yet,  

it stays the same using set D which used the learning rate of 0.01 and 200 epochs. The highest overall 

accuracy was reached when the learning rate of 0.001 and epochs of 200 was performed in Set E.  

 

Table 3. Results of hyperparameters tuning 

Set A B C D E 

OA 0.01 0.01 0.65 0.65 0.66 

 
Figure 14 shows the results with each set applied. Set A and Set B show that the model could not predict 

well, as only oil palm class was mapped. The results of Set C, D and E display similar results. However,  Set 

C and D have misclassification of water class and natural forest class (Appendix 2) 

       

 

 
Figure 14. The classified map of Sentinel 2 data with different set of hyperparameter 

Set A 

 

Set B 

 

Set C 

 

Set E 

 

Set D 
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To monitor the model performance, Figure 15 presents loss curves of each set of hyperparameters tested. 

This study aimed for a decreasing trend of the loss value, as the model learns the training data with minimum 

error. Loss curves exhibited a fluctuation trend when Set A and Set B were applied, meaning the model 

could not understand the training dataset. The loss started decaying when Set C was implemented. Still, the 

loss curves did not reach stability, indicating more epochs are needed. When Set D and E were applied, the 

loss decreased over time and got stability tren in the low loss value. 

 

 
 

(a)                                           (b)                                             (c) 

 

 
 

            (d)                                       (e) 

 

 

 

According to Table 3 and Figure 15, this study figured out that decreasing the initial learning rate allows the 

model to reduce loss. On the other hand, inreasing the number of epochs enable the model to reach 

minimum loss as more steps are available. The model achieved the highest overall accuracy when the loss 

curves have decreased over time. Once the best hyperparameters were achieved, it was implemented over 

methods (Appendix 3). Most of the overall accuracy achieved is more than 80% by the other techniques, 

except Sentinel 2-based technique due to clouds that obscure the validation of land cover types behind it.  

3.2. Qualitative comparison of land cover classification over methods 

 
This stage investigates the performance of different methods in removing artefacts, such as missing lines on 

Sentinel 1 images and clouds on Sentinel 2 images. It is necessary because the existence of artefacts hinder 

the estimation of oil palm and natural forest areas. As shown in Figure 16, missing lines were wrongly 

classified as water class in the Sentinel 1 classified map. Meanwhile, the post-classification composition 

approach successfully compensated missing lines in Sentinel 1 images. Meanwhile, small-size of missing 

lines were apparent in the early fusion classified map.  
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Figure 15. Loss curves produced by each set of hyperparameters (a) Set A, (b) Set B, (c) Set C, (d) Set D, (e) Set E. 
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In Figure 17, the early fusion technique was not fully removed cloud covers on the Sentinel 2 scene of 2020. 

It looks like cloud shadow and  thick clouds became a source of misclassifications. It wrongly classified as 

oil palm, and other land cover class. On the other hand, the post-classification composition approach performed 

superior in removing clouds on the Sentinel 2 image of 2020.  The small pixels associated with cloud shadow 

and thick clouds were not fully removed. It was wrongly classified as other land covers, oil palm, and water class. 

 

 

 

Figure 16. The comparison of each method to overcome missing lines on Sentinel 1 of 2018 images shown as a 
red circle  (a) Sentinel 1 image of 2018, (b) Sentinel 1 classified map, (c)  Early fusion classified map  (d) Post-

classification composition classified 
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Figure 17. The comparison of each method to overcome clouds on Sentinel 2 images observed in the red circle  (a) 

Sentinel 2 image of 2020, (b) Sentinel 2 classified map, (c) Early fusion classified map, (d) Post classification 
composition classified map. 

 

Then, the comparison also investigates the capability of each method to distinguish land cover classes, 

especially between natural forest and oil palm class. In addition,  Sentinel 2 classified maps are excluded in this 

stage because clouds were majorly mapped in the study area (Appendix 4). According to Figure 18, the 

synergy of Sentinel 1 and 2 data (Early Fusion and Post Classification Composition technique) improved 

the separability over land cover classes. Specifically, the border of natural forest and oil palm class shown 

by the early fusion and post-classification composition classified map are more prominent than Sentinel 1 

data in Figure 18.    
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3.3. The accuracy of land cover classification 

Before deciding which method is the best, the confusion matrix of each method was generated (Appendix 

4) to describe the performance of each method toward reference points collected. Table 4 shows an example 

of the confusion matrix of early fusion of 2016. The result revealed that the oil palm class in the reference 

points were wrongly classified as bare land class and vice versa, shown as 4 and 1 reference points (red in 

Table 4) were misclassified. Furthermore, natural forest class in the reference were mapped by the model as oil 

palm, and other land covers class (green in Table 4). 

 

 

Figure 18. The comparison for each of the methods continued to the discrepancy of land cover 
classes Sentinel 2 images (a) Sentinel 2 image of 2018, (b) Sentinel 1 classified map, (c)Early fusion 

classified map, (d) Post-classification composition classified map. 
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Table 4. The confusion matrix of early fusion classified map of 2016 

Predicted 

Reference 

Land cover 
class 

bare land natural forest 
other land 

covers 
oil palm water Total 

bare land 4 0 3 4 1 12 

natural forest 0 69 0 0 1 70 

other land 
covers 

3 5 29 5 0 42 

oil palm 1 2 2 17 0 22 

water 0 0 0 1 3 4 

Total 8 76 34 27 5 150 

 

This study is interested in the quality of each method in delineating a particular class. Table 5 shows the F1 

score of a specific land cover class over time and averaged F1 score over methods.  

 

Table 5. The F1 score of a particular land cover class and averaged F1 score over methods 

Dataset Year 

F1 score 
Averaged 
F1 Score Bare land 

Other 
land 

covers 
Water 

Natural 
Forest 

Oil 
Palm 

Sentinel 1 

2016 0.40 0.79 0.75 0.90 0.70 

0.63 2018 0.33 0.89 0.89 0.90 0.64 

2020 0.67 0.93 0.89 0.90 0.79 

Sentinel 2 

2016 0.53 0.69 0.33 0.53 0.69 

0.50 2018 0.50 0.81 0.67 0.50 0.81 

2020 0.55 0.80 0.57 0.56 0.80 

Early Fusion 

2016 0.40 0.76 0.67 0.95 0.69 

0.66 2018 0.67 0.93 0.91 0.92 0.81 

2020 0.73 0.87 0.89 0.89 0.84 

Post 
classificaition 
composition 

2016 0.53 0.86 0.89 0.93 0.69 

0.67 2018 0.62 0.85 0.91 0.92 0.76 

2020 0.63 0.84 0.89 0.92 0.76 

 
As shown in Table 5, The accuracy of Sentinel 2 data-based classified maps achieved a low F1 score (<0.80) 

in a particular land cover class because clouds covered the study area that obscured the validation of land 

cover type behind clouds (Appendix 4). Regardless of misclassifications on Sentinel 2 classified maps, the 

FCN model performed well in mapping natural forest class, followed by other land cover and water class over 

methods on the other techniques that mostly achieved more than 0.80 of the F1 score.  Meanwhile, the F1 

score of the oil palm and bare land class barely exceed 0.80 in any techniques tested. It means that oil palm and 

bare land class appeared unreliable, as pixels were mostly misclassified as other land cover types (Appendix 

4).  

 

Nevertheless, this study was interested in a method that produced the best classification results over 

time.Because of this, comparing averaged F1 score is more preferred than the F1 score of each land cover 

class in Table 5. The Sentinel 2-based method also reached the lowest averaged F1 score, indicating clouds 

obscure validation of land cover type behind it. Otherwise, land cover classification results generated using 
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the post-classification composition technique reached the highest  F1 score (0.67), showing a more 

substantial agreement with reality than the other methods. It also confirmed that their results were chosen 

for change detection. Figure 17 exhibits the post-classification composition classified maps of 2016, 2018, 

and 2020. 
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Figure 19. The classified land cover maps of 2016, 2018, and 2020 are based on post-classification composition 
technique. The red circle shows misclassifications associated with artefacts observed. 

Figure 19 displays the post-classification composition classified map of 2016, 2018, and 2020. Based on 

visual inspection, artefacts (clouds and missing lines) were not entirely removed. Results revealed the 

misclassification of missing lines were apparent on the classified map of 2016. Clouds were misclassified on 

the classified map of 2018 and 2020. Moreover, most of them are exhibited in the natural forest area around 

peatlands, indicating the estimated size of natural forest looks like bias in peatlands.  

3.4. The natural forest to oil palm conversions 

As mentioned in the methodology section, the natural forest-to-oil palm conversion map was produced 

based on the chosen classified maps generated from the highest F1 score method (post-classification 

composition technique). The conversion map was produced using a post-classification approach. This 

procedure corresponds to before (from 2016 to 2018) and after the moratorium (from 2018 to 2020). Figure 

20 shows the natural forest-to-oil palm conversion in both periods across the study area. In detail, Figures 

20a and 20b show the distribution of the conversions in peatlands and riparian zones. Conversions in 

riparian zones elongated follow the river, whereas conversions were irregularly distributed in peatlands 
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For qualitative analysis, the number of locations is checked to understand to what extent the post-

classification approach generated the natural forest to oil palm conversions map is real or unreal changes 

(misclassifications). Several conversions are identified as real (blue circle) and unreal (pink circle) changes. 

It indicates that correctly and incorrectly classified natural forest and oil palm class over time were compounded 

in the change map. Figure 21 and 22 portrays subsets of Planet imagery in the study area to identify real and 

unreal natural forest to oil palm changes before and after the moratorium period. 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 21. A subset of Planet imagery before the moratorium period (a) 2016, (b) 2018, (c) 2018 and conversion 
area classified. Blue circles observe real changes, whereas pink circles display unreal changes. 

 

 

   

 

Figure 19. The natural forest to oil palm conversions map Figure 20. The natural forest to oil palm conversions map 
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(a) 

 
(b) 

 
(c) 

 
Figure 22. A subset of Planet imagery after the moratorium period (a) 2018, (b) 2020, (c) 2020 and conversion 

area classified. Blue circles observe real changes, whereas pink circles display unreal changes. 

 

3.5. The impact of the moratorium in reducing the natural forest loss through oil palm expansion 
This section evaluates the progress of the moratorium comparing before (2016-2018) and after the 

moratorium (2018-2020) in peatlands and riparian zones despite misclassification available. The difference 

between the classified natural forest and oil palm areas is presented through the absolute and percentage of 

loss and gain. The green/positive sign shows gain, and the red/ negative sign shows a loss. 

 

Table 6. The trend of natural forest areas 

Tropical 

Wetlands 

Total natural forest areas (ha) 
Absolute loss/gain                  

(ha) 

Percentage loss/gain 

(%)              

2016 2018 2020 
2016 - 

2018 

2018 – 

2020 

2016 - 

2018 

2018 - 

2020 

Peatlands 344,675 321,314 342,846 -23,361 21,532 -6.78 6.70 

Riparian 

zones 
3,891 3,760 2,955 -131 -805 -3.37 -21.41 

 

As shown in Table 6, the natural forest areas in both ecosystems decreased before the moratorium period 

(2016-2018). The percentage of natural forest loss in peatlands (-6.78%) was around two times higher than 

in riparian zones (-3.37%). However, the peat swamp forest was almost recovered after the moratorium. On 

the other hand, riparian forest intensively declined about around 21% after the moratorium period. 

 

Table 7. The trend of oil palm areas 

Tropical 
Wetlands 

Total oil palm areas (ha) Absolute loss/gain 
(ha) 

Percentage 
loss/gain 

(%) 

2016 2018 2020 
2016-
2018 

2018-
2020 

2016-
2018 2018-2020 

Peatlands 
                  

102,858  
                       

137,495  
                         

112,863  34,637 - -24,632 33.67 -17.91 

Riparian 
zones 

                          
655  

                               
744  

                              
1,290  89 546 13.59 73.39 
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According to Table 7, oil palm areas increased before the moratorium period in peatlands (33.67%) and 

riparian zones (13.59%). However, after the moratorium, oil palm trees massively grew about 73 % in 

riparian zones. Meanwhile, the natural forest areas in peatlands declined about 18 % after the moratorium.  

 

Table 8 provides a comprehensive result regarding natural forest to oil palm conversion issued in this study. 

In addition, the absolute and percentage of the conversions also are presented. Similar to the previous table, 

the green/positive sign shows gain, whereas the red/negative sign shows a loss.  

 

Table 8. The trend of the conversions 

Tropical Wetlands 
Natural forest to oil palm (ha) Absolute loss/gain 

(ha) 
Percentage loss/gain 

(%) 2016-2018 2018-2020 

Peatlands 29,980 11,694 -18,289 -61  

Riparian zones 320 636 316 98.75  

 

The natural forest loss driven by oil palm expansion decreased by about 61 % in peatlands, but it intensively 

increased nearly 99 % in riparian zones. These findings confirmed the difference of natural forest areas in 

both landscapes, as shown in Table 6. After the moratorium, the increase of 21,532 ha of natural forest areas 

replaced oil palm areas with about 18,289 ha in peatlands. Moreover, 316 ha of total natural forest loss in 

riparian zones (805 ha) was converted to oil palm areas. It concluded that the moratorium effectively reduced 

the natural forest conversion to oil palm areas in peatlands rather than in riparian zones.  
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4. DISCUSSION 

In this chapter,  Section 4.1-4.3, methods and results of land cover classification and change detection in 

this study are discussed. Section 4.4 discusses the moratorium's implication in reducing natural forest loss 

through oil palm expansion based on findings in this study. Section 4.5 findings are concluded to achieve 

research objectives and answer research questions. Section 4.6 recommended techniques are listed to 

improve this study in future works. 

4.1. The importance of sampling design for land cover classification 

A study conducted by Descals et al. (2019) mentioned that young oil palm plantations (<3 years old) in the 

Pelalawan Regency with minor canopy closure are available, whereas the mature oil palm plantations fully 

cover the surface in the study area through the field survey. Moreover, they also observed that people logged 

the natural forest areas. It may influence the quality of training samples that were collected using visual 

interpretation in this study. It did not consider the different ages between oil palm plantations and the 

disturbance of natural forests on the ground. It could be compensated if high-resolution imagery (e. g drone, 

Planet images) are available in the study area. However, it would also be a problem if the interpreter does 

not have experience in the study area. Therefore, the variation of physical characteristics (e. g canopy closure, 

ages, and level of disturbance) would be collected through a field survey to improve the quality of samples. 

 

Besides the absence of a field survey, the low quality of samples may be caused by mixed pixels collected 

during samples collection. It is challenging for supervised classification to acquire highly separable training 

samples since this study used Sentinel imagery (10 m-spatial resolution). Lu et al. (2004) mentioned that 

satellite imagery pixels sometimes contain more than one land cover class. Pixels in training samples may 

have a mix of different land cover types, which is not representative. Spectral Mixture Analysis (SMA) could 

be applied prior to the training stage to improve the quality of samples. Mainly, the images would be 

transformed into fraction images to analyze Pixel Purity Index (PPI). It would be used to estimate the 

proportion of each pixel that is covered by a series of assigned land cover types. Pixels with 80-100% purity 

could be given as training samples of specific land cover types. Exploiting high-resolution imagery (e.g. 

Planet images) would also promising to avoid mixed pixels collected during samples collection. They have 

a higher spatial resolution so that land cover class captured would be more obvious than Sentinel imagery. 

As samples with mixed pixels are separated from pure pixels, the deep learning classifier could be trained 

well.   

 

Sakti & Tsuyuki (2015) stated that accuracy shortcoming often occurs in heterogeneous land cover types, 

such as young plantations, burned peat, shrub, and the built-up area in the Pelalawan Regency. Using random 

sampling is inappropriate since the samples are generated randomly throughout the study area without 

controlling samples proportion. Stratified random sampling would be fit and manageable in large and 

heterogeneous areas, as Rocha et al. (2020) recommended. Large land cover classes would have more 

samples than small-area land cover classes. It is assumed large land cover classes having more diverse 

characteristics, which are needed to be captured, than smaller land cover classes. According to Appendix 3, 

the samples in this study may be distributed sequentially from large to small areas over time: 1) natural forest, 

2) other land covers, 3) oil palm,  and 4) bare land class if the stratified random sampling wants to be 

performed for further studies.  
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Samples collection within a patch size of 300 by 300 pixels is impracticable on Sentinel imagery. It was too 

large for generating samples in a large and heterogeneous area. Unrepresentative samples may be included 

within large patches. Then, generating smaller patches for samples collection would reduce unrepresentative 

samples collected, as long as the patch size is larger than the objects. Flood et al. (2019) employed a patch 

size of 128 by 128 pixels for land cover classification using the FCN model. Another alternative is to use 

points instead of polygon during samples collection. Sampling using points are manageable since the number 

of points represents the sample size. Meanwhile, the sample size is expressed as the polygon size when 

samples are collected based on polygons. Both recommendations may be tested to compare which technique 

would be the best to represent land cover types in a large and heterogeneous area. 

4.2. The quality of land cover classification 

This study observed that synergetic information between Sentinel imagery by early fusion and post-

classification composition technique improved land cover classification accuracy. One of the problems 

observed is when Sentinel 1 and Sentinel 2 images were acquired on different dates. For instance, the 

Sentinel 1 images of 2016 were acquired in June 2016, while the Sentinel 2 images of 2016 were primarily 

acquired in September 2016 in this study (Appendix 1). The inconsistency of the acquisition date among 

Sentinel 1 and Sentinel 2 images issued images synchronicity (Christine Pohl, 2013).  The issue also might 

appear at the tile level of Sentinel 1 and 2 images, as each image were mosaiced by tiles with a different date 

of acquisition (Appendix 1). Shortening the time difference among Sentinel 1 and 2 images and tiles may be 

an option to ensure the surface condition presented in both images is relatively the same. 

 

Thick clouds are still a problem in both techniques. The results of the early fusion technique confirmed the 

findings by Bermudez et al. (2018) that spectral difference among the pixels of SAR and optical images 

caused a problem in removing thick clouds. To remove clouds, they also revealed a strategy to produce thin 

and thick clouds-free images, called Conditional Generative Adversarial Networks (cGAN). It mainly would 

remove clouds detected from Sentinel 2 imagery using Sentinel 1 images as auxiliary data through an 

adversarial scheme. Meraner et al. (2020) published residual learning for cloud removal (ResNet), which is 

derived from a super-resolution scheme, by integrating the information provided by Sentinel 1 and 2 images. 

In the future, researchers could test mentioned strategies before feeding them into the FCN model.  Still, 

both strategies mentioned may be applicable if the date of acquisition between Sentinel 1 and Sentinel 2 

imagery is close to avoid images desynchronization.  

 

Meanwhile, cloud shadow detection on Sentinel 2 images are important in terms of the post-classification 

composition technique. This study observed small pixels associated with cloud shadow becoming 

misclassifications on Sentinel 2 classified maps. Although, pixels affected clouds should be classified 

thoroughly before being replaced by Sentinel 1 classified map. An operation that fully detects all types of 

clouds, especially cloud shadow,  are necessary to avoid further misclassification when users apply the post-

classification composition. Magno et al. (2021)  introduced the AgroShadow tool to detect cloud shadow 

on Sentinel 2 images, consisting of several thresholds on reflectance ratio, indices, and k-mean classification 

algorithm. The mentioned operation may be included in the DeepGeo toolbox, developed by R. V. Maretto 

(2019) to improve cloud detection further.  

 

The performance of the post-classification composition technique also relies on the accuracy of Sentinel 1 

classified maps to fill the cloud pixels on Sentinel 2 classified maps. The accuracy of Sentinel 1 classified 

maps would be improved by adding additional bands in Sentinel 1 images. This study revealed that feeding 

only a dual-polarization band (VV-VH) to the FCN model misclassified oil palm class to the other land cover 
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types or vice versa over methods. Descals et al. (2019) demonstrated that adding texture information/Grey 

Level Co-occurrence Matrix (GLCM) to Sentinel 1 images could improve oil palm separability, natural 

forest, and built-up areas. Moreover, Ballester-berman & Rastoll-gimenez (2021) also suggested adding the 

VV/VH ratio band to distinguish between the oil palm class and the other land cover types. As a result,  the 

model could extract more features of Sentinel 1 images by providing more bands to improve land cover 

types' discrepancy. 

 

The proposed technique automatically produced higher overall accuracy than the land cover map of 2016 

using visual interpretation by The Ministry of Agriculture of Indonesia (2016). It achieved 0.70 of overall 

accuracy, comparing to the post-classification composition classified map of 2016 reached 0.85 (Appendix 

2) . Descals et al. (2019)  also mapped the natural forest and oil palm in Riau Province. They achieved an 

overall accuracy of approximately 0.90  in 2018 based on the fusion of S1 and S2 using a random forest 

classification. It was higher than our result produced in this study. They applied feature selection of S1 and 

S2 to filter redundant and non-informative data. Yet, this technique requires experts to choose the most 

relevant features. It could lead to an inaccurate prediction when experts wrongly select the features 

(DeLancey et al., 2020). Nevertheless, their technique could be applied in the circumstance of high-quality 

samples, and well-experienced experts are available. If both conditions are unavailable, users could test the 

deep learning and post-classification composition technique that this study revealed more than 80% of 

overall achieved in each classified map. Human intervention is only in the selection of training and test data 

and choosing optimal hyperparameters. The recommended technique (the post-classification composition 

technique) is also easily implemented since it only requires a GIS-practical approach.  

4.3. The natural forest to oil palm change detection 

Change detection in this study was derived from land cover classification produced using the FCN-based 

model (U-net). The constraint is that the FCN model only considers the spatial context of input images 

during the training process. Although, phenology patterns vary by vegetation type over time, which affects 

the signals or reflectance received by sensors (Rose & Nagle, 2021). It may cause misclassifications between 

vegetation classes in this study, such as oil palm, natural forest, and other land cover class. Constructing a model 

that could learn temporal dependencies or phenology patterns may improve land cover classification and 

then change detection. Ienco et al. (2019) proposed TWINNS (TWIn Neural Networks for Sentinel data) 

architecture to discover spatial and temporal dependencies of Sentinel imagery. By exploiting Convolutional 

Neural Networks (CNN) and Recurrent Neural Networks (RNN), the discriminative process of land cover 

types would be improved since the model look at the input images (Sentinel 1 and Sentinel 2) not only in a 

spatial context but also in a temporal context. Applying TWINNS may also enable the model to be trained 

with more features available. As a result, the high-accurate land cover classification may be achieved, as well 

as change detection.  

 

A study conducted by Z. Zhu (2017) mentioned that the post-classification technique only identifies abrupt 

changes between dates. However, this technique is limited to a single-date approach to visualize abrupt 

changes within a study area. The information provided by post-classification change detection may be 

acceptable to visualize where conversions have taken place and the magnitude of changes. The trend and 

time of changes were not identified, which requires time series analysis. Verbesselt et al. (2010) developed 

The Breaks for Additive Season and Trend (BFAST) that iteratively decompose time series into trend, 

seasonal, remainder components for detecting changes. Reiche et al. (2015b) tested the capability of The 

Breaks for Additive Season and Trend (BFAST) and Landsat-SAR time series to detect natural forest change. 

They showed a satisfactory result, with the accuracies of fusion images remained high (0.95). Further studies 
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may test BFAST and Sentinel 1 and Sentinel 2 time series data to detect natural forest to oil palm conversion 

or vice versa to explore the technique and changes further. 

4.4. The implication of the moratorium in reducing oil palm expansion in the natural forest area 

 
The moratorium was enacted in 2018 to prevent natural forest loss through oil palm expansion. According 

to the map and change analysis produced in this study (Figure 20), the moratorium looks like it did not work 

as it should be. The conversions are seemed more intense in riparian zones than peatlands regardless of 

imperfection results generated. It does not mean the natural forest to oil palm changes in peatlands is 

neglected, as this study observed the natural forest to oil palm conversion in peatlands is larger than in 

riparian zones. It would generate an alarm to the Indonesian government that growers in tropical wetlands 

probably violated the moratorium. Appendix 5 also shows other land cover, and bare land class increased in 

peatlands or riparian zones that may be recommended for further research. The other stakeholders (e.g. 

certification institutions and NGOs) could track the land trajectory because change detection produced in 

this study is the "from-to" change map. It may be beneficial to avoid miss assessment and evaluate the 

moratorium's progress further. They also may adopt various methods based on their condition and shift 

from conventional to automated methods with various methods tested in this study.  

 

Having the change map also shows the importance of transparent and up-to-date information. It may 

support in generating evidence-based decision making. Petrokofsky et al. (2011)  mentioned that evidence-

based decision making would be an asset to policymakers (Indonesia government). Policymakers enact 

decisions would be based on relevant studies that carefully describe the problem to define the best current 

evidence. The change map produced in this study could be used to give a broad understanding of natural 

forest to oil palm changes in the study area. Time series and change detection may support the findings 

further by providing evidence of the study area's magnitude, trend, and time of changes.  

 

Nevertheless, the government has limited resources and requires collaborative efforts from various 

stakeholders to make evidence-based decision making happen. Researchers could help in improving 

methods to producing more robust and accurate change detection than before. Certification institutions and 

NGOs could disseminate results generated by researchers to growers and evaluate their sustainable practices 

in their plantations. Also, they could involve in the discussion, collect and validate information on the 

ground to be delivered to researchers and policymakers. If this strategy could be applied, sustainability in oil 

palm businesses would be achieved because the data is transparent and up-to-date between stakeholders. 

And thus, policymakers may enact further decisions based on better-informed evidence. 

4.5. Conclusion 

 

Land cover classification generated based on the synergy of Sentinel 1 and 2 data using the FCN model 

reached higher accuracy than single imagery results. Post classification composition technique (PCC) is more 

suitable than the early fusion technique (EF) for land cover classification as the PCC technique achieved a 

higher averaged F1 score than the EF technique. Besides the best technique mentioned achieving the highest 

accuracy, the recommended technique is practically easy to minimize cloud effects and reveal land cover 

types behinds clouds using the GIS-practical approach. 

 

After the natural forest to oil palm changes map was generated, this study realizes that the spatial pattern of 

conversions is different in peatlands and riparian zones. The conversions in riparian zones elongated along 
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the river, while irregularly distributed conversions are observed in peatlands. Regardless of findings observed 

in this study, unreal changes mapped in some parts of the study area that would bias the information 

provided in the change map and need further improvement. 
 

The moratorium looks like not effectively reduce the natural forest loss through oil palm expansion. 

Conversions in riparian zones seem more intense than in peatlands, whereas conversion area in peatlands 

also seems larger than in riparian zones. Besides providing information about the conversions in the study 

area, the results could be considered by different stakeholders involved to support evidence-based decision 

making. Therefore, the generation of further policies may be based on well-informed evidence driven by 

each stakeholder expertise.  

4.6. Recommendation 

 
List of  recommendations for improving land cover classification and  change detection in this study, as 

follows : 

1. Implementing stratified random sampling to cope with the large and heterogeneous area of tropical 

wetlands. 

2. Applying smaller size of patches to reduce unrepresentative samples collected. 

3. Assigning samples by drawing points instead of polygons to manage the sample size. 

4. Shortening the time difference at image-level and tile-level between Sentinel 1 and Sentinel 2 images 

before feeding into the model to avoid image desynchronization. 

5. Shortening time difference between tiles of images before being mosaiced to reduce image 

desynchronization. 

6. Conducting a field survey and inspecting the study area through high-resolution imagery (e.g. drone 

or Planet images) to differentiate the land cover types based on canopy coverage and level of natural 

forest disturbance.  

7. Collecting pure pixels for samples collection by implementing Spectral Mixture Analysis (SMA) to 

obtain representative samples.  

8. Applying an operation to fully detect clouds, including thin clouds, thick clouds, and cloud shadow, 

on Sentinel 2 images (e.g Agroshadow) 

9. Adding additional bands of Sentinel 1 images (e.g. GLCM and VV/VH ratio) allow the model to 

extract the features further and increase the accuracy of the post-classification composition 

approach.  

10. Applying noise removal techniques, such as cGAN or ResNet, to overcome cloud and missing lines 

issues when the early fusion technique wants to be performed.  

11. Integrating  BFAST and Synergy of sentinel 1 and 2 images to understand natural forest to oil palm 

changes further (e.g. the trend, and time of changes). 

12. Applying the TWINNS model that would train the classifier in the spatial and temporal context 

together.  

13. Collaborating with various stakeholders to improve change detection methods and data and support 

evidence-based decision making. 
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APPENDICES 

 

1. Date of Acquisition 

 

a. Sentinel 1 

 

Year 
Number of 

tiles 
Date of Acquisition 

2016 5 

19 July 2016 

19 July 2016 

19 July 2016 

26 July 2016 

26 July 2016 

2018 5 

9 July 2018 

16 July 2018 

21 July 2018 

28 July 2018 

28 July 2018 

2020 5 

28 June 2020 

10 July 2020 

10 July 2020 

17 July 2020 

17 July 2020 

 

 

b. Sentinel 2 

 

Year 
Number of 

tiles Date of acquisition 

2016 9 

19 May 2016 

7 Agustus 2016 

7 Agustus 2016 

3 September 2016 

3 September 2016 

3 September 2016 

3 September 2016 

3 September 2016 

3 September 2016 

2018 9 

3 June 2018 

10 June 2018 

30 June 2018 

5 July 2018 

5 July 2018 
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Year 
Number of 

tiles Date of acquisition 

5 July 2018 

5 July 2018 

12 Agust 2018 

13 September 2018 

2020 9 

30 May 2020 

2 July 2020 

7 July 2020 

28 Agust 2020 

28 August 2020 

22 September 2020 

1 October 2020 

2 October 2020 

2 October 2020 

 

2. Confusion matrix of Sentinel 2 classified maps of 2016 during hyperparameters 

tuning 

Set C 

Classified 

Reference 

 Land cover 
class cloud bare land 

natural 
forest 

other land 
cover oil palm water 

Total 

cloud 0 2 13 11 4 5 35 

bare land 0 4 0 0 3 0 7 

natural forest 0 0 58 0 4 0 63 

other land 
cover 0 1 2 20 1 0 23 

oil palm 0 1 2 3 15 0 21 

water 0 0 1 0 0 0 1 

Total 0 8 76 34 27 5 150 

 

Set D 

Classified 

Reference 

 Land cover 
class cloud bare land natural forest 

other land 
cover oil palm water 

Total 

cloud 0 2 13 11 5 4 35 

bare land 0 4 0 0 2 0 6 

natural forest 0 0 58 1 5 0 64 

other land 
cover 0 1 2 19 0 0 22 

oil palm 0 1 3 3 15 0 22 

water 0 0 0 0 0 1 1 

Total 0 8 76 34 27 5 150 
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Set E 

Classified 

Reference 

 Land cover 
class cloud 

bare 
land 

natural 
forest 

other land 
covers oil palm water 

Total 

cloud 0 2 13 11 5 4 35 

bare land 0 4 0 0 3 0 7 

natural forest 0 0 60 1 4 0 65 

other land 
covers 0 2 0 19 0 0 21 

oil palm 0 0 3 3 15 0 21 

water 0 0 0 0 0 1 1 

Total 0 8 76 34 27 5 150 

 

 

3. After Implementing the best hyperparameters over methods over time 

Dataset Year Overall Accuracy 

Sentinel 1 

2016 0.81 

2018 0.83 

2020  0.87 

Sentinel 2 

2016 0.66 

2018 0.78 

2020 0.71 

Early Fusion 

2016 0.81 

2018  0.89 

2020  0.87 

Post classification 
composition 

2016 0.85 

2018 0.86 

2020 0.85 
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4. Land cover classification 

a. Sentinel  1 (S1) 

2016 

 
 

 

 

Confusion matrix of S1 2016 

Predicted 

Reference 

Land cover 
class 

bare 
land 

natural forest 
other land 

covers 
oil 

palm 
water Total 

bare land 4 1 2 5 0 12 

natural forest 0 69 2 4 2 77 

other land 
covers 

3 5 29 2 0 39 

oil palm 1 1 1 16 0 19 

water 0 0 0 0 3 3 

Total 8 76 34 27 5 150 

 

 

 

 

 

 

 

 

 

 



DETECTING OF NATURAL FOREST TO OIL PALM CONVERSIONS IN TROPICAL WETLANDS BASED ON SENTINEL IMAGERY USING DEEP LEARNING 

41 

2018 

 

 

 

 

Confusion matrix of S1 2018 

Predicted 

Reference 

Land cover class 
bare 
land 

natural forest 
other land 

covers 
oil 

palm 
water Total 

bare land 2 1 1 3 0 7 

natural forest 0 71 2 8 1 82 

other land 
covers 

1 1 32 2 0 36 

oil palm 2 2 1 16 0 21 

water 0 0 0 0 4 4 

Total 5 75 36 29 5 150 
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2020 

 

 

 
 

 

 

Confusion matrix of S1 2020 

Predicted 

Reference 

Land cover class bare land natural forest 
other land 

covers 
oil 

palm 
water Total 

bare land 5 1 0 2 0 8 

natural forest 0 64 2 1 0 67 

other land cover 1 2 33 0 0 36 

oil palm 1 8 0 25 1 35 

water 0 0 0 0 4 4 

Total 7 75 35 28 5 150 
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b. Sentinel 2 (S2) 

2016 

 
 

 

 

Confusion matrix of S2 2016 

Classified 

Reference 

 Land cover 
class cloud 

bare 
land 

natural 
forest 

other land 
covers oil palm water 

Total 

cloud 0 2 13 11 5 4 35 

bare land 0 4 0 0 3 0 7 

natural forest 0 0 60 1 4 0 65 

other land 
covers 0 2 0 19 0 0 21 

oil palm 0 0 3 3 15 0 21 

water 0 0 0 0 0 1 1 

Total 0 8 76 34 27 5 150 
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2018 

 
 

 

 

Confusion matrix of S2 2018 

Classified 

Reference 

Land cover class cloud 
bare 
land natural forest 

other land 
covers oil palm water 

Total 

cloud 0 2 4 3 4 2 15 

bare land 0 3 1 2 1 0 7 

natural forest 0 0 64 2 2 0 68 

other land covers 0 0 3 28 2 0 33 

oil palm 0 0 3 1 19 0 23 

water 0 0 0 0 1 3 4 

Total 0 5 75 36 29 5 150 
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2020 

 

 

 

 

Confusion matrix of S2 2020 

Classified 

Reference 

Land cover 
class cloud bare land natural forest 

other land 
covers oil palm water 

Total 

cloud 0 1 16 2 2 3 24 

bare land 0 5 1 4 1 0 11 

natural forest 0 0 54 2 4 0 60 

other land 
covers 0 1 1 26 2 0 30 

oil palm 0 0 3 1 19 0 23 

water 0 0 0 0 0 2 2 

Total 0 7 75 35 28 5 150 
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c. Early Fusion (EF) 

2016 

 

 
 

 

 

 

 

 

 

 

Confusion matrix of EF 2016 

Predicted 

Reference 

Land cover 
class 

bare land natural forest 
other land 

covers 
oil palm water Total 

bare land 4 0 3 4 1 12 

natural forest 0 69 0 0 1 70 

other land 
covers 

3 5 29 5 0 42 

oil palm 1 2 2 17 0 22 

water 0 0 0 1 3 4 

Total 8 76 34 27 5 150 
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2018 

 
Confusion matrix of EF 2018 

Predicted 

Reference 

Land cover 
class 

bare land natural forest 
other land 

covers 
oil palm water Total 

bare land 4 1 1 1 0 7 

natural forest 1 69 2 3 0 75 

other land 
covers 

0 0 31 0 0 31 

oil palm 0 4 2 24 0 30 

water 0 1 0 1 5 7 

Total 5 75 36 29 5 150 
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2020 

 

 

Confusion matrix of EF 2020 

Predicted 

Reference 

Land cover 
class 

bare 
land 

natural forest 
other land 

covers 
oil palm water Total 

bare land 4 0 0 0 0 4 

natural forest 0 63 2 2 0 67 

other land 
covers 

2 6 33 0 0 41 

oil palm 1 6 0 26 1 34 

water 0 0 0 0 4 4 

Total 7 75 35 28 5 150 
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d. Post classification composition (PCC) 

2016 

 

 
Confusion matrix of PCC 2016 

Predicted 

Reference 

Land cover 
class 

bare 
land 

natural forest 
other land 

covers 
oil palm water Total 

bare land 5 0 2 4 0 11 

natural forest 0 73 2 5 1 81 

other land 
covers 

2 0 27 0 0 29 

oil palm 1 3 3 18 0 25 

water 0 0 0 0 4 4 

Total 8 76 34 27 5 150 
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2018 

 
 

Confusion matrix of PCC 2018 

Predicted 

Reference 

Land cover 
class 

bare 
land 

natural forest 
other land 

covers 
oil palm water Total 

bare land 4 1 2 1 0 8 

natural forest 0 68 2 3 0 73 

other land 
covers 

0 3 31 3 0 37 

oil palm 1 3 1 21 0 26 

water 0 0 0 1 5 6 

Total 5 75 36 29 5 150 
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2020 

 
 

Confusion matrix of PCC 2020 

Predicted 

Reference 

Land cover 
class 

bare 
land natural forest 

other land 
cover oil palm water 

Total 

bare land 6 1 4 1 0 12 

natural forest 0 69 2 4 0 75 

other land 
cover 1 1 28 2 0 32 

oil palm 0 4 1 21 1 27 

water 0 0 0 0 4 4 

Total 7 75 35 28 5 150 
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5. The trend of land cover types in the study area 

 

The trend was acquired from the best method in this study over time (Post-classification 

composition) 

 

a. Peatlands 

 
 

The trend of land covers in peatlands 

Land cover 
Total area (ha) 

2016 2018 2020 

Bare land 49,690 38,634 45,719 

Other land 
covers 148,392 147,385 139,987 

Natural Forest 344,675 321,314 342,846 

Oil Palm 102,858 137,495 112,863 

 

b. Riparian zones 
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The trend of land covers in riparian zones 

Land cover 
Total area (ha) 

2016 2018 2020 

Bare land 160 53 79 

Other land covers 320 33 100 

Natural Forest 3,891 3,760 2,955 

Oil Palm 655 744 1,290 

 

6. Coding 

The coding is inspired from https://github.com/rvmaretto/deepgeo  by Raian Vargas 

Maretto 

 

a. Generating Train and Test data 

 

#Import Necessary Libraries 

import numpy as np 

import gdal 

import skimage 

import deepgeo.common.geofunctions as gf 

import deepgeo.common.visualization as vis 

import deepgeo.dataset.dataset_generator as dg 

import deepgeo.dataset.preprocessor as prep 

import deepgeo.dataset.sequential_chips as seqchips 

import deepgeo.networks.model_builder as mb 

from deepgeo.dataset import rasterizer 

 

 

 

#Defining Input Files 

local_dir = ‘path to your folder’ 

raster_file = ‘path to your tif file’ 

shape_file = 'path to your shape file’ 

 

#Visualizing Raster Image 

img_raster = gf.load_image(TIF file, no_data = 0) 

vis.plot_rgb_img(TIF file, bands=[0, 5, 2 ], contrast=True, title="Satellite imagery ") 

 

#Rasterizing Shape File 

classes_of_interest = [‘list of your land covers assigned’] 

non_class = 'a land cover class assigned' 

class_column = ‘column in the attribute 

out_labels = ‘path to your output tif file’ 

 

rstzr = rasterizer.Rasterizer(shape_file,  

                              raster_file, 

https://github.com/rvmaretto/deepgeo
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                              class_column, 

                              classes_interest=classes_of_interest, 

                              non_class_name=non_class) 

 

rstzr.collect_class_names() 

rstzr.rasterize_layer() 

class_names = ['no_data'] + rstzr.get_class_names()  

rasterized_layer = rstzr.get_labeled_raster() 

 

vis.plot_labels(rasterized_layer,class_names, colors=['white','pink', 'red', 'green', 'black', 

'orange', 'blue'] ,title = 'rasterized full area') 

 

rstzr.save_labeled_raster_to_gtiff(out_labels) 

 

#Preprocessing the dataset 

output_ds = ‘path to your dataset 

ds_file_name = 'name of your dataset’ 

 

dataset_description = {'years': 2020,  

                       'standardization': 'norm_range', 

                       'indexes_to_compute': 'none', 

                       'bands': [‘bands'],  

                       'sensor': Satellites',  

                       'classes':class_names, 

                       'img_no_data': 0, 

                       'chip_size': 300, 

                       'tolerance_nodata': 0.2, 

                       'notes': } 

preproc = prep.Preprocessor(raster_file, no_data = 0) 

 

#Generating Chips 

generator = dg.DatasetGenerator([raster_img],  

                                [rasterized_layer], 

                                #strategy='random', 

                                strategy='sequential', 

                                description=dataset_description) 

params = {'win_size': dataset_description['chip_size'], 

           'class_of_interest': classes_of_interest, 

          'class_names':class_names} 

generator.generate_chips(params) 

chip_struct = generator.get_samples() 

vis.plot_chips(chip_struct, raster_img, bands=[0, 5, 1], contrast=True) 

generator.remove_no_data(tolerance=dataset_description['tolerance_nodata']) 

 

#Splitting the dataset 80% training and 20% test 

generator.shuffle_ds() 

generator.split_ds(perc_test=20, perc_val=0) 
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chip_struct = generator.get_samples() 

generator.save_to_disk(output_ds, ds_file_name) 

 

b. Training 

#Import Necessary Libraries 

import numpy as np 

import gdal 

import os 

import deepgeo 

import deepgeo.networks.model_builder as mb 

import deepgeo.networks.loss_functions as lossf 

 

#Defining the files 

model_dir = ‘name of your model’ 

train_tfrecord = ‘path to  train dataset’ 

test_tfrecord = ‘path to test dataset’ 

 

#Calculating the weigths over land cover classes 

weights_train = lossf.compute_weights_mean_proportion(train_tfrecord, [‘list of land 

covers assigned], classes_zero =['no_data'])  

weights_eval = lossf.compute_weights_mean_proportion(test_tfrecord, [‘list of land 

covers assigned'] , classes_zero=['no_data']) 

 

#Hyperprameter setting 

params = { 

    'network': 'unet', 

    'epochs': number of epochs, 

    'batch_size': number of batch_size, 

    'chip_size': size of the chip’, 

    'bands': number of bands, 

    'learning_rate': number of learning rate, 

    'learning_rate_decay': True, 

    'decay_rate': number of decay rate, 

    'l2_reg_rate': 0.0005, 

    'chips_tensorboard': 2, 

    'loss_func': 'weighted_cross_entropy', 

    'data_aug_ops': ['rot90', 'rot180', 'rot270', 'flip_left_right', 

                     'flip_up_down', 'flip_transpose'], 

    'data_aug_per_chip': 6, 

    'class_weights' :{'train':weights_train, 'eval':weights_eval}, 

    'num_classes': 7, 

    'class_names': [‘list of land covers assigned’] 

    'num_compositions': 1, 

    'bands_plot': [1, 5, 2], 

    'Notes': ‘satellite’ 

 

#Model training 
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model = mb.ModelBuilder(params) 

model.train(train_tfrecord, test_tfrecord, model_dir) 

 

c. Prediction 

 

#Import Necessary Libraries 

import numpy as np 

import gdal 

import os 

import deepgeo.common.geofunctions as gf 

import deepgeo.common.visualization as vis 

import deepgeo.dataset.dataset_generator as dg 

import deepgeo.dataset.preprocessor as prep 

import deepgeo.dataset.sequential_chips as seqchips 

import deepgeo.networks.model_builder as mb 

 

#Pre-processing The Predicted Image 

raster_file = ‘path to the satellite image that want to be predicted’ 

preproc = prep.Preprocessor(raster_file, no_data = 0) 

raster_array = preproc.get_array_stacked_raster() 

 

#Generating Chips over The Predicted Image 

params_cg = {'raster_array': raster_array, 

             'overlap': [184,184], 

             'win_size': 300} 

 

chip_struct = seqchips.SequentialChipGenerator(params_cg).generate_chips() 

 

#Prediction 

trained_model = ‘path to your trained model’ 

model = mb.ModelBuilder(trained_model) 

chips = model.predict(chip_struct, model_dir=trained_model) 

 

output_pred = ‘path to the predicted file image in tif format’ 

preproc = None 

raster_array = None 

gf.write_pred_chips(output_pred, raster_file, chips, chip_key='predict') 

pred_rarr = gdal.Open(output_pred).ReadAsArray() 

 

#Visualization of the prediced image 

vis.plot_labels(pred_rarr, [‘list of land covers assigned], colors = [‘list of colors'],title= title 

of the predicted image')
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