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ABSTRACT 

Soil salinization is the process where water-soluble salts accumulate in the soil. It is considered as one of 

the most expensive soil degradation problems due to its high spatial and temporal variability. In the 

Philippines, there is no updated map available at the time of this study about the location, extent, and 

severity of areas affected by soil salinity. This research utilizes remote sensing data and ground-truth data 

in a machine learning algorithm (Random Forests regression) to detect and retrieve soil salinity in the rice 

areas of the Province of Ilocos Sur, Philippines. The province was selected as the study area due to 

increasing levels of soil pH that lead to salt accumulation. In addition, over-pumping of groundwater for 

irrigation and household use, salt-making, and extension of agricultural areas to non-suitable areas are the 

human activities that exacerbate this phenomenon. Moreover, the province is also one of the target areas 

that the Department of Agriculture – Bureau of Soils and Water Management plans to update soil salinity. 

 

The main objective of this study is to develop a method to detect the spatial pattern of soil salinity 

effectively. Furthermore, this study is geared up to recommend strategies for the stakeholder to combat 

and alleviate the adverse effects of soil salinization in the coastal rice areas of the Province of Ilocos Sur, 

Philippines. To achieve the research objective, satellite data from Sentinel-1, Sentinel-2, and Landsat-8 

were obtained. Twenty features from Sentinel-1 were generated comprising Gamma-nought and Gray 

Level Co-occurrence Matrix (GLCM) bands in VV and VH polarization. Seventeen bands of vegetation 

and salinity indices were calculated from Sentinel-2, and the land surface temperature from the thermal 

bands of Landsat-8 was derived. Ancillary data composed of soil properties, climate, and geographical 

coordinates were also used as input for the Random Forests regression. Furthermore, two different 

approaches were adopted: optimized multi-sensor predictors, where the predictor variables are the 

collection of those variables within the importance threshold from the three different sensors individually, 

and multi-sensor predictors in which all variables from three different sensors are used to select the 

predictor variables based on the importance threshold. 

 

Accuracy assessment shows that the multi-sensor predictors method was better in detecting and retrieving 

soil salinity. The RMSE of this method is 0.15, R2 of 0.82, and Pearson correlation coefficient of 0.91, 

which indicates the excellent performance of this model. Spatial variability of predicted soil salinity shows 

that the coastal rice areas have higher soil salinity levels than those near mountains. Multiyear variability of 

soil salinity was predicted in 2017, 2018, and 2020, showing an increase of soil salinity in the area ranging 

from 0.04 to 0.14 decisiemens per meter (dS/m) in four years. It was found out that the integration of the 

three sensors is more efficient and more accurate in detecting and retrieving soil salinity than using a single 

sensor. 
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1. INTRODUCTION 

1.1 Soil Salinization and its impacts 

Soil salinization is a process where the water-soluble salt accumulates in the soil surface or subsurface 

(USDA Natural Resources Conservation Service, 1998) that reduces soil fertility (Panagos et al., 2012). 

The simplest way to describe how soil salinity occurs is when irrigation water that contains salt particles is 

applied to the agricultural area. A portion of water is infiltrated down the soil profile. The plants absorb 

some water through transpiration. Some water is evaporated into the atmosphere, leaving the salt particles 

in the soil, as shown in Figure 1. Soil salinization also occurs in areas with dry climates and low 

precipitation, and excessive salts are not flushed from the soil, removing deep-rooted vegetation and 

raising of the water table as the consequence, sea-level rise, and inappropriate use of fertilizers (FAO, 

1986). 
 

 
Figure 1. Process of salt salinization (Hanson, 2011) 

 

Salinization affects the soil’s physicochemical properties and ecological balance in the area (Shrivastava & 

Kumar, 2015) and is a major factor of land deterioration (Szabolcs, 1998), affecting crop production 

globally (FAO, 2019). Soil salinity is considered as one of the most expensive environmental hazards 

because of its high spatial and temporal variability (Zhang et al., 2015). Furthermore, around 20% of the 

cultivated land and 33% of the irrigated land is salt-affected and degraded in the world mainly because of 

human activities (FAO and ITPS, 2015).  

 

Many anthropogenic factors contribute to soil salinization that affects the soil's water balance and energy 

flow, leading to severe salinization (Figure 2). These include improper irrigation methods, lack of drainage, 

agricultural intensification, deforestation, overgrazing, change in land use and cultivation patterns, 

depletion of freshwater layers, and chemical contamination brought by excessive application of mineral 

fertilizers (Szabolcs, 1998). Additionally, the consequences of climate change, such as rising sea levels, 

exacerbate this process, affecting farmers and local communities (FAO, 2019) due to saline intrusion. 

Moreover, soil salinity has become a severe problem for irrigated areas where irrigation often results in 

secondary salinization (Glick et al., 2007). 
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Figure 2. Schematic diagram of the factors affecting the soil salinity in agricultural lands 

 

The presence of salt affects the crops’ respiration and photosynthesis that is essential for crop growth by decreasing the 

biological N2 fixation and soil nitrogen mineralization (Dobermann & Fairhurst, 2000). For rice, 2.7 estimated million 

hectares of rice-growing areas have been constrained by soil salinity (Haefele et al., 2014). The rice plant is affected by 

salinity in each growth stage, though to different degrees, as shown in Figure 3. During germination, rice is tolerant, 

becomes very sensitive during the early seeding stage, becomes tolerant again during vegetative growth, returns to being 

very sensitive again during pollination and fertilization, and finally becomes tolerant at maturity to the harvesting stage 

(DA-PhilRice, 2011). Table 1 shows the soil salinity classification and its effects on the response of rice crops. 

 

 

 
Figure 3. The sensitivity of rice in soil salinity (DA-PhilRice, 2011) 
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Table 1. Soil salinity classification for rice production (DA-BSWM, 2021 & FAO, 1976) 

Electrical conductivity, 

dS/m 

Soil Salinity 

Class 

Hazard for 

Rice Growth 

Rice Response 

0 - 2 Non-saline Very low Negligible 

2.1 - 4 Slightly saline Low Restricted yield of sensitive 

crops 

4.1 - 8 Moderately saline Moderate Restricted yield of many crops 

8 - 16 Severely saline High Only a few tolerant crops yield 

satisfactorily 

>16 Very severely 

saline 

Very high Only a few tolerant crops grow 

satisfactorily 

 
 

1.2 Global issue of soil salinity 

Soil salinity can occur in all climatic conditions and dynamically spreads globally in more than 100 countries, making no 

continent is free from this phenomenon. It is expected to increase due to rising sea levels, rising temperatures, and lower 

precipitation brought by climate change in the future (Shahid et al., 2018). It was assumed that salinization has expanded 

on the areas primarily reported as salt-affected areas during the 1970s and 1980s (Zamann· et al., 2018). The 

Harmonized World Soil Database of the FAO Soils Portal provides an overview of the global salinity levels on a 

1:5,000,000 scale (Fischer et al., 2018) is shown in Figure 4.  

 

 
Figure 4. Excess salts from Harmonized World Soil Database (Fischer et al., 2018) 

 

1.3 Soil salinity in the Philippines 

Assessing soil salinization is crucial for agricultural areas, especially in the Philippines, where recent countrywide 

information on soil salinity is dated 1986 (DA-PhilRice, 2011). Soil salinization in the country was observed in low-lying 

coastal areas due to salt-water intrusion and the use of water with salt particles to irrigate agricultural fields. An estimated 
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0.4 million hectares were saline-prone, and 0.2 million hectares were severely affected (Asio et al., 2009). This number is 

expected to increase due to overexploitation and uncontrolled groundwater extraction in the coastal areas for household 

and agriculture practices. The Department of Agriculture - Philippine Rice Research Institute (DA-PhilRice) reported 

that salinization had become a widespread constraint to rice production in most parts of the country (DA-PhilRice, 

2011). Unfortunately, there is little opportunity to expand the rice areas as most of the lands surrounding it are being 

intended into another land use type such as built-up, industrial, and commercial areas expanding into agricultural areas. 

 

Although saline areas in the Philippines are smaller than the other countries in Southeast Asia, they are still important as 

a potential production area for rice and other staple crops (DA-PhilRice, 2011). Additionally, according to the 

Department of Agriculture - Bureau of Soils and Water Management (DA-BSWM), based on the reconnaissance survey 

conducted in the 1950s, 45 provinces were affected by soil salinization. However, the extent, severity, and variability of 

salinization are still unknown and need an update  (DA-BSWM, 2019). The DA-BSWM’s Land Degradation and 

Assessment (Project LADA) conducted in 2011 to 2013 shows that an estimate of 758 hectares of irrigated agricultural 

lands experiences severe soil salinity in Regions I (Ilocos Region) and III (Central Luzon) (Carating, 2015).  

 

 

1.4 Remote Sensing of Soil Salinity 

Various studies and literature show different approaches in mapping and assessing soil salinity. 

Traditionally, conventional methods such as field-based measurements and soil analysis in laboratories are 

commonly used. However, these approaches are expensive, time-consuming, laborious, and unsuitable for 

temporal analysis (Allbed et al., 2014; Allbed & Kumar, 2013). Therefore, it is essential to recourse to 

effective mapping and monitoring through remote sensing technologies to keep track of soil salinity 

changes and anticipate further degradation. This section discusses how salt-affected soils are detected 

using remote sensing, which can map and monitor this phenomenon more efficiently and economically 

feasible. 

 

In the 1990s to early 2000s, satellite data for assessing surface soil salinity ranges from multispectral to 

hyperspectral and microwave sensor data. Landsat TM, Landsat MSS, and SPOT XS multispectral sensor 

data have been used for soil salinity mapping in Western Nile Delta (Goosens et al., 1994). The addition of 

thermal bands added to visible-NIR bands was useful in extracting saline soils when there is complex 

spectral confusion (Singh et al., 2017). Landsat ETM+ has also been used (Band 1, 3, 4, and 7) but was 

ineffective in discriminating saline to non-saline areas due to spectral confusions (Verma et al., 1994). 

Moreover, small patches of soil surface where salinity was evident, implying that satellite images with low 

to medium resolution were not useful (Singh et al., 2017). IKONOS, Quickbird, and Worldview – 2 with a 

high spatial resolution (less than 5 meters) have been used for small patches of saline areas and were useful 

in differentiating various salinity classes at farm levels (El-Haddad & Garcia, 2006). The results from their 

studies suggest that higher resolution data has a great potential in studying soil salinity at farm levels. 

However, this has a higher cost of imagery data. Hyperspectral sensors, such as the Hyperion imagery, 

have also been used in examining the surface soil salinity in more detail than multispectral data. Results 

showed that Hyperion could not map soil salinity at low soil salinity levels but could be used for areas with 

severe soil salinity levels (Dutkiewicz et al., 2009).  

 

During the 2010s, multispectral optical sensors and hyperspectral data were successfully used to map soil 

salinity based on the correlation between several indices derived from spectral bands and soil reflectance 

data (Allbed & Kumar, 2013). The spectral reflectance of the salt present at the soil surface was initially 

used as a direct indicator of salinity. Several studies have used Landsat-8 OLI, which has been useful in 

detecting, mapping, and monitoring soil salinity (Allbed & Kumar, 2013). However, the salinity can be 
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detected directly if the area is dry (Mougenot & Pouget, 1993) and is not covered by vegetation for most 

of the year (Metternicht & Zinck, 2003). 

 

Aside from surface soil salinity, land use or land cover has also been used as an indirect indicator to 

predict and map soil salinity. The soil salinity has been predicted and mapped by assessing the crop 

condition using the spectral vegetation indices. Vegetation indices derived from high temporal resolution 

satellites such as the Moderate Resolution Imaging Spectroradiometer (MODIS) were found to have the 

potential to detect soil salinity efficiently (Paliwal et al., 2019). Among the spectral vegetation indices used 

were the Normalized Difference Vegetation Index (NDVI), Soil-adjusted Vegetation Index (SAVI), Ratio 

Vegetation Index (RVI), Brightness Index (BI), and Green Vegetation Index (GVI) (Aldakheel, 2011; 

Eldeiry & Garcia, 2008; Scudiero et al., 2014; Zhang et al., 2011). Hick and Russell (1990) stated that soil 

salinity is better detected and identified through the combinations and band ratios among visible and near-

infrared bands rather than by individual bands. In tropical areas where optical sensors are limited due to 

cloud coverage, the Synthetic Aperture Radar (SAR) data has been used to detect soil salinity. Hoa et al., 

2019, attempted to detect soil salinity in tropical areas focusing on Vietnam using Sentinel-1 SAR data. 

The intensity and phase images were related to field-measured salinity. 

 

1.5 Machine Learning Approaches 

Machine Learning (ML) algorithms have recently been used to model and predict soil salinity from 

remotely sensed data. The most commonly used MLs are Neural Networks (Hoa et al., 2019), Random 

Forests (Hoa et al., 2019; Ivushkin et al., 2019), Support Vector Regression (Taghadosi et al., 2019b), and 

Gaussian Process (Hoa et al., 2019). These ML algorithms are defined as data-driven, technique-based, 

and dependent on methods due to inputs retrieved from the remote sensing data and field data (Hoa et al., 

2019). Table 2 on the next page summarizes some fundamental studies that assess soil salinity using 

satellite data, remote sensing, and machine learning methods. 
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Table 2. Studies related to soil salinity mapping 

Study 

No 
Title 

Remote 

sensing data 
Method Results Reference 

1 Salinity stress detection in 

rice crops using time-series 

MODIS VI data 

MODIS VI Changes in crop phenology from MODIS 

time-series data were correlated with 

measured soil salinity 

Seasonal integral (SI) as the best indicator of soil salinity; 

negative correlation with r coefficient values of -0.76 and -

0.84 for SI and mean Electric conductivity (EC); both are 

found to be statistically significant (P>0.001); SI and EC 

have a strong negative correlation (r=-0.92) in 

homogenous rice pixels and r=-0.63 for mixed pixels 

(Paliwal et al., 

2019) 

2 Detecting soil salinity with 

MODIS time series VI data 

MODIS VI Vegetation indices and crop phenology 

were correlated with measured soil salinity 

in 3 different sites 

The strong negative correlation of NDVI and EC (r=-

0.57) and EVI and EC (r=-0.59); biomass decreased 

linearly with the increased soil salinity in cropland 

(R2=0.85). SI as the best indicator of soil salinity 

(Zhang et al., 

2015) 

3 Soil Salinity Mapping Using 

SAR Sentinel-1 Data 

and Advanced Machine 

Learning Algorithms: A 

Case 

Study at Ben Tre Province 

of the Mekong River Delta 

(Vietnam) 

Sentinel 1 SAR 

Data 

Backscatter values and GLCM from 

Sentinel-1 were correlated with measured 

salinity in 5 different machine learning 

algorithms 

Performance of the five models was assessed through 

RMSE = 2.885, MAE = 1.897, r=0.808 for GP and 

outperformed the other models; advanced machine 

learning models can be used for mapping soil salinity in 

Delta areas; a useful tool for assisting farmers and the 

policymakers 

(Hoa et al., 2019) 

4 Quantitative Estimation of 

Soil Salinity Using 

UAV-Borne Hyperspectral 

and Satellite 

Multispectral Images 

A hyperspectral 

camera installed 

in an Unmanned 

aerial vehicle 

(UAV) 

Reflectance factors from UAV and 

satellite data were correlated with field 

measured data to predict soil salinity in 

the Random Forests Regression method 

Bare land exhibited the most severe salinity, followed by 

vegetation area and then sparse vegetation. RMSE = 2.98, 

CC=0.94 and RPD values=1.40 dS m-1. Concluded that a 

UAV-borne hyperspectral imager is a useful tool for field-

based soil salinity mapping and monitoring 

(Hu et al., 2019) 

5 Retrieval of soil salinity 

from Sentinel-2 

Sentinel-2 in 

combination 

Satellite-derived soil features from 

Sentinel-2 and Landsat-8 were correlated 

Kernel-based regression showed the most accuracy for 

modeling soil salinity R2=87.42% and RMSE=5.1962 

(Taghadosi et al., 

2019a) 
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multispectral imagery with Landsat 8 

(thermal band) 

with measured salinity using MLR and 

SVR regression methods 

6 Assessing soil salinity using 

soil salinity and vegetation 

indices derived from 

IKONOS high-spatial-

resolution imageries: 

Applications in a date palm 

dominated region 

IKONOS 

satellite image 

Vegetation and soil salinity indices derived 

from the IKONOS satellite were 

correlated with measured salinity 

NDSI and SI-T indices in arid areas with low vegetation 

cover assess soil salinity; the SAVI index would yield 

better results for evaluating soil salinity in densely 

vegetated areas. 

(Allbed et al., 

2014) 

7 Studying Vegetation 

Salinity: From the Field 

View to a Satellite-Based 

Perspective 

Sentinel-2 Different spectral slopes in the VIR, NIR, 

and SWIR of Sentinel-2 were correlated 

with laboratory-measured halites 

Generated Sentinel-2 based vegetation salinity index 

(SVSI) using (band 4 − band 2)/(band 5 + band 11) 

(Lugassi et al., 

2017) 

8 Soil salinity prediction and 

mapping by machine 

learning regression in 

Central Mesopotamia, Iraq 

Landsat 5 TM 

and ALOS L-

band radar data 

Biophysical indicators from TM and soil 

component from ALOS were correlated 

with measured salinity in SVR, RFR, and 

MLR algorithms 

Random Forests performed better than SVR with higher 

accuracy (93.4–94.2% vs. 85.2–89.4%), and less 

normalized root mean square error (NRMSE; 6.10–7.69% 

vs. 10.29–10.52%) 

(Wu et al., 2018) 

9 Soil salinity mapping using 

dual-polarized SAR 

Sentinel-1 imagery 

Sentinel 1 SAR 

Data 

Radar intensities and GLCM from 

Sentinel-1 were correlated with measured 

salinity in the SVR method 

Radial Basis Function had the most accuracy of the 

coefficient of determination R2=0.97, RMSE=0.3561, 

GFO, VV, and RVH had the best performance in salinity 

detection 

(Taghadosi et al., 

2019b)  

10 Quantitative assessment of 

soil salinity using remote 

sensing data based on the 

artificial neural network, 

case study: Sharif Abad 

Plain, Central Iran 

Landsat-8 Spectral parameters from Landsat-8 were 

correlated with measured salinity in the 

Neural Network model 

GFF algorithm is the best method of preparing a soil 

salinity map; values from the ANN model are lesser than 

actual values 

(Habibi et al., 

2021) 
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1.6 Random Forests Regression 

As mentioned in section 1.5, Random Forests is one of the machine learning algorithms that has been 

used in predicting soil salinity. Random Forests is a non-parametric, supervised learning algorithm 

proposed by Breiman, 2001 which uses ensemble learning methods for classification and regression. 

Random Forests does not make strong assumptions about the form of the mapping function. The model 

is free to learn any functional form from the training data by not making any assumptions. It operates by 

constructing many decision trees at training time and outputting the class that is the mean prediction (for 

regressor) of the individual trees. In addition, it is a meta-estimator because it combines the result of 

multiple predictions, which aggregates the decision trees (Chakure, 2019).  

 

With the use of a training dataset, for example, dataset X, each tree is created from different dataset rows. 

At each node, a different set of sample features are selected for splitting. Then, each tree will make its 

prediction. Furthermore, the predictions are averaged to produce a single result. This averaging improves 

the accuracy of the model and reduces overfitting (Mwiti, 2021). An illustration of how Random Forests 

regression (RFR) works is shown in Figure 5. 
 

 

Figure 5. Random Forests Regression 

 

 

1.7 Problem Formulation 

1.7.1 Wicked problem 

Soil salinization in agricultural areas affects crop growth and production. In the Philippines, the regions 

affected by salinization and severity levels are still unknown due to a lack of updated information and 

database. Also, communicating the negative impacts of soil salinization in agricultural areas to the 

stakeholders such as the policymakers, local farmers, and other interested parties remains a challenge, thus 

creates a wicked problem. 

 

This study proposed a new method for retrieving and detecting soil salinization using a multi-sensor 

approach with field-measured data with the use of free high-resolution satellite data, remote sensing 

techniques, and machine learning methods. 
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1.7.2 Research Objectives 

General Objective 

The general objective of this study is to develop a method to effectively detect the spatial pattern of soil salinity 

using a multi-sensor approach. Furthermore, this study is geared up to recommend strategies for the stakeholder to 

combat and alleviate the adverse effects of soil salinization in the coastal rice areas of the Province of Ilocos Sur, 

Philippines. 

 

Specific Objectives 

Specifically, this research aims to: 

• determine the spatial extent of surface soil salinity from the predictor variables generated from 

Sentinel-1, Sentinel-2, and Landsat 8; 

• evaluate the performance of detecting soil salinity from a multi-sensor approach using the 

Random Forests Regression algorithm; 

• map and analyze the multi-year spatial pattern of soil salinity 
 

 

1.7.3   Research Questions 

• What is the spatial distribution of soil salinization predicted from the variables generated from 

Sentinel-1, Sentinel-2, and Landsat 8? 

• What is the accuracy of using the multi-sensor approach in retrieving soil salinity? 

• To what extent does soil salinity change over multiple years based on the multi-sensor 

approach? 

 

 

1.7.4 Research Hypothesis 

1. Combining data from multiple sensors will result in a more accurate soil salinity map than single sensor-based 

approaches. 
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2. DATA AND RESEARCH METHODS 

2.1 The Study Area 

The Province of Ilocos Sur is located in the central part of the Ilocos Region in the Northwest of Luzon 

Island, Philippines. The province lies within 16°40’ to 17°54’N and 120°20’ to 120°48’E, and the location 

is shown in Figure 6. It is bounded by the provinces of Ilocos Norte in the north, Abra and Mountain 

Province in the east, and La Union in the south. On the west is the West Philippine Sea. Vigan is the 

capital city of the province that is 276 miles or 443 kilometers from Manila. The province's total land area 

is approximately 2,596 square kilometers (National Statistics Office, 2012).  

 

According to the 2019 soil mapping of the DA-BSWM, the total surveyed area for rice production is 

13,872 hectares (DA-BSWM, personal communication, 23 July 2020). The soil sampling and testing results 

show that the rice areas have low soil fertility due to low macronutrient content and high soil pH level. A 

map of the rice areas is shown in Appendix A and shows that most rice areas are located primarily in 

coastal areas. 

 

The selection of this study area was due to various reasons: first, there is no updated map on soil salinity 

countrywide because the only information about soil salinity was dated 1986; second, the results of the 

2019 soil survey by the DA-BSWM shows that soil salinity is an issue in some rice-growing areas; and 

lastly, the province is one of the target areas that the DA-BSWM is planning to have information about 

soil salinity. 

 

The province falls into Type I of Modified Coronas’ Climate Classification, generally. According to 

Philippine Atmospheric, Geophysical, and Astronomical Services Administration (PAGASA), this is 

defined as having two pronounced seasons, dry from November to April and wet during the year. 

However, the Hernandez type of classification, which has higher spatial resolution than Coronas, under 

PAGASA, defines that the province's climate is generally arid (Type E). This type has more dry months 

than wet months. At most, there are only 4 ½ wet months in a year. However, the southernmost portion 

of the province (near the municipality of Cervantes) was observed to be humid (Type B), where rain is 

evenly distributed throughout the year with at most three dry months and the eastern part of Sugpon is 

dry (Type D) with rain not sufficiently distributed with at most six dry months (Ilocossur.gov.ph, n.d.). 

 

The DA-BSWM had conducted a reconnaissance soil survey of the province of Ilocos Sur in 1954. The 

soil survey report showed that the province comprises the middle portion of a distinct physiographic unit 

known as the Ilocos Coast strip, which extends along the western side of Luzon. It is very irregular, with 

the broadest portion hardly exceeding 20 kilometers. The province is relatively uneven in physical features. 

The relief ranges from level to hilly and mountainous, as shown in Figure 7. The narrow coastal plain is 

level to undulating, with several low hills scattered at random throughout the entire length of the province. 

The eastern portion, which borders Abra and the Mountain Province, is hilly to mountainous. The highest 

mountains in the province are the peaks of the Malaya Range southwest of the town of Cervantes, the two 

highest peaks of which are the Malaya mountains and Mount Libo (Mariano et al., 1954). The information 

on the soils of the province is shown in Appendix B.  
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Figure 6. Study Area 
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In general, the province drains to the west. Due to the narrowness of the plain and the nearness of the 

mountains and hills to the sea, the rivers and streams are generally short and rapid with few or no 

meanders. Most of the low-lying lands are subject to annual floods, and due to the high velocity of the 

streams, they are usually destructive. The Abra River, which rises from the slopes of Mount Data in the 

Mountain Province, debouches onto the plain near the town of Santa, south of Vigan. Some of the larger 

rivers in the province are the Chico, a branch of the Amburayan River, Buaya river, near the towns of Sta. 

Cruz, Candon, Sta. Maria, Narvacan, Parsua, Cabugao, and Sinait river. None of these are navigable except 

the Abra River, where raft and dugouts can be used as far inland as Bangued, the capital of Abra Province 

(Mariano et al., 1954). 

 

 
Figure 7. General landscape cross-section of the study area 

 

The sources of soil salinity in coastal areas of the province are increasing sea level rise, over-pumping of 

the aquifers, outflow along the river that occurs when seawater moves upstream into the river during high 

tide but low river flow (DA-BSWM, 2021). Climate is a factor for the increasing sea-level rise. The tropical 

monsoon climate causes freshwater to accumulate on the soil during the wet season and wash away the 

saline water. However, there’s not much fresh water supply during the dry season, and outflow along the 

river carries salt water. This salt will be washed out again in the next wet season. However, human 

activities accelerated soil salinization. One is the over-pumping of aquifers in agricultural areas, which is 

then associated with poor farming practices. In other areas, local people use shallow-tube well or pumping 

irrigation water from rivers or creeks. In the database of DA-BSWM, there are currently 59 shallow-tube 

well facilities throughout the province servicing 1,700 hectares (DA-BSWM, personal communication, 23 

July 2020). The province is also well-known for salt-making. Salt beds were established in the coastal areas 

in the different municipalities of the province (Fenix, 2020).  

 

Figure 8 below shows the general overview of soil salinity using sample points collected and tested by the 

DA-BSWM for 2019 ranging from 0.02 to 4.26 dS/m with an average of 0.25 dS/m. The soil samples 

were collected from 0 to 30 centimeters deep (DA-BSWM, personal communication, 23 July 2020). From 

the figure, higher salt concentrations are found in the province's coastal areas with the highest values in 

Santa Catalina, the City of Vigan, and Santa. However, as the sample points went further from the coastal 

areas, the salt concentrations are decreasing. 
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Figure 8. Field-measured soil salinity 
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2.2 Materials, Data, and Software Used 

The list of materials and data used in the study included field data, satellite data, and ancillary data 

comprised of soil properties, geographic location, and climate data. Table 3 summarizes data used, their 

types, format, sources, and collection method. 

 

Table 3. Summary of data, types, and their sources 

No. Data/Information Type/Format Source and Collection Method 

1 Ground-truth data Excel Provided by DA-BSWM 

2 Rice area Shapefile Provided by DA-BSWM 

3 Satellite data (Sentinel1) Compressed zip file,  

SAFE file 

Retrieved from Sentinel sci-hub 

website 

4 Satellite data (Sentinel2) Compressed zip file, 

SAFE file 

Retrieved from USGS website 

5 Satellite data (Landsat8) Compressed zip file, 

TIFF file 

Retrieved from USGS website 

6 Clay, silt, loam, soil pH, bulk 

density 

TIFF file Retrieved from SoilGrids website 

7 Digital Elevation Model TIFF file Provided by DA-BSWM 

8 Soil moisture and climate data 

(precipitation and temperature) 

.nc file Retrieved from the TerraClimate 

website 

9 Geographical coordinates TIFF file User-generated 

 

The software programs used were Sentinel Application Platform (SNAP) version 8 for processing images 

of Sentinel-1 and Sentinel-2; ArcGIS 10.8.1 was used to process images from Landsat-8, process images 

generated from SNAP, and creating visualizations. Spyder 4, a part of Anaconda 3, a python software used 

to develop and run the Random Forests Regression model. 

 

 

2.3 Data Collection 

2.3.1 Existing Data 

Existing data was composed of field or ground truth data from DA-BSWM last March to April 2019 (DA-

BSWM, personal communication, 23 July 2020). There were 706 soil samples collected from rice areas, as 

shown in Figure 8. The ground truth data is an excel file that contains the locations where the soil samples 

were taken and the results of soil analysis in rice areas of Ilocos Sur. The file contained the ID or the 

identification number of each soil sample, date when the soil samples were collected, pre-defined sampling 

point, sample number, barangay, latitude, longitude, municipality, farmer’s name, laboratory code, organic 

matter content, phosphorous, potassium, zinc, manganese, copper, iron, soil moisture, soil pH, electric 

conductivity (EC) and soil texture. For this research, only the ID, municipality, geographical coordinates, 

and EC were used. 

 

DA-BSWM also provided a delineation of rice areas (Appendix A). According to them, this delineation 

was done manually in Google Earth, supported by the sampling points taken in the ground (DA-BSWM, 

personal communication, 23 July 2020). This delineation also includes other vegetation such as corn and 

vegetables present in the area during soil sampling. The primary purpose of the land is for rice production. 

This delineation file was available as a shapefile in Universal Transverse Mercator (UTM) Zone 51 North 

(EPSG: 32651). 
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2.3.2 Satellite Data 

Three different satellite data were used in this study: Sentinel-1 Synthetic Aperture Radar (SAR) data, 

Sentinel-2 Multispectral Instrument (MSI), and Landsat-8 Operational Land Imager (OLI). These were 

collected through Sentinel Scihub for Sentinel-1 and the NASA USGS Earth Explorer for Sentinel-2 and 

Landsat-8. 

 

For Sentinel-1, the images were retrieved based on sensing date, in descending order, the polarization of 

VV+VH, the product type is Single Look Complex (SLC), and the sensor mode was interferometric swath 

(IW) with a 250-kilometer swath width. The time window was March 15 to April 10, 2019. This time 

window was selected to coincide with the dates of soil sampling. 

 

For Sentinel-2 and Landsat-8, since both are optical satellite data, the cloud cover was limited to 10%, and 

the date range of March 1, 2019, to April 30, 2019. The extent of the images was based on the coordinates 

in Table 4 below. 

 

Table 4. Footprint of the study area to download the images 

Point Coordinates 

1 17°57’09” N, 121°00’51” E 

2 17°57’28” N, 121°12’24” E 

3 16°38’00” N, 120°08’57” E 

4 16°37’13” N, 120°57’53” E 

 

 
2.3.3 Ancillary Data 

The ancillary data used in the study are soil properties like bulk density, soil pH level, soil texture (sand, 

silt, and clay), digital elevation model (DEM), soil moisture, climate data (average temperature and annual 

precipitation), and geographical coordinates. Soil properties such as bulk density, soil pH level, and soil 

texture were retrieved from SoilGrids (Poggio et al., 2021) through ISRIC – WDC Soils in WGS 1984 

(EPSG: 4326). The DA-BSWM provided the DEM projected in UTM Zone 51 N (EPSG: 32651), 

containing information on the elevation from mean sea level.  

 

Soil moisture and climate data are downloaded from TerraClimate (Abatzoglou et al., 2018) in WGS 84 

(EPSG: 4326). TerraClimate is a monthly climate and climatic water balance dataset for global terrestrial 

surfaces from 1958-2020. These data provide essential inputs for ecological and hydrological studies at 

global scales that require high spatial resolution and time-varying data. All data have monthly temporal 

resolution and a ~4-km (1/24th degree) spatial resolution (Abatzoglou et al., 2018). Table 5 below shows 

the description of the ancillary data used in the study. 

 

Table 5.General description of the ancillary data 

No. Soil Property Depth Unit Spatial 

Resolution 

1 Bulk density 0-5 cm cg/cm3 250 m 

2 Clay content 0-5 cm g/kg 250 m 

3 Sand content 0-5 cm g/kg 250 m 

4 Silt content 0-5 cm g/kg 250 m 

5 Soil pH level 0-5 cm pH*10 250 m 

6 Digital Elevation Not applicable m 100 m 
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Model 

7 Soil moisture Undefined m3 water/m3 soil ~4km 

8 Average Temperature Not applicable °C ~4km 

9 Precipitation Not applicable cm ~4km 

 

 

2.4 Processing of Satellite Data 

2.4.1 Sentinel-1 SAR Data 

The Sentinel-1 data were downloaded on The Copernicus Open Access Hub website 

(https://scihub.copernicus.eu/dhus/#/home). Level-1 Single Look Complex (SLC) was the product type 

used in dual (VV and VH) polarization, and Interferometric Swath (IW) was selected for Sensor Mode. 

The image dates were retrieved based on their sensing period in descending order. The images retrieved 

are listed in Table 6:  

 

Table 6. List of Sentinel-1 images 

No. Date Identifier 

1 March 17, 2019 S1B_IW_SLC__1SDV_20190317T100658_20190317T100726_015393_01CD2B_CECC 

2 March 17, 2019 S1B_IW_SLC__1SDV_20190317T100632_20190317T100700_015393_01CD2B_E2ED 

3 March 27, 2019 S1A_IW_SLC__1SDV_20190327T214555_20190327T214623_026529_02F906_7027 

4 April 10, 2019 S1B_IW_SLC__1SDV_20190410T100658_20190410T100726_015743_01D8B3_758E 

5 April 10, 2019 S1B_IW_SLC__1SDV_20190410T100633_20190410T100701_015743_01D8B3_7D75 

  

The images with the same date (1&2, and 4&5) are image pairs that cover the study area. However, the 

image had not fully covered the study area. Thus, image number 3 was also used. An overview of the step-

by-step process of pre-processing Sentinel-1 images is shown in Figure 9, and the detailed explanation of 

each step can be found in Appendix C. There were 20 variables, of which two were from the Gamma-

nought bands, and 18 were from the Gray-Level Co-occurrence Matrix (GLCM) generated from Sentinel-

1 as listed in Table 7. 

 

Table 7. List of predictors generated for Sentinel-1 

B1 VH Gamma0 B11 VV Gamma0 

B2 VH contrast B12 VV contrast 

B3 VH dissimilarity B13 VV dissimilarity 

B4 VH homogeneity B14 VV homogeneity 

B5 VH energy B15 VV energy 

B6 VH max B16 VV max 

B7 VH entropy B17 VV entropy 

B8 VH GLCM mean B18 VV GLCM mean 

B9 VH GLCM variance B19 VV GLCM variance 

B10 VH GLCM correlation B20 VV GLCM correlation 

 

 

https://scihub.copernicus.eu/dhus/#/home
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Figure 9. Workflow for processing Sentinel-1 Product 

 

 

2.4.2 Sentinel-2 MSI Data 

The Sentinel-2 images were retrieved from USGS Earth Explorer (https://earthexplorer.usgs.gov/). The 

data retrieved are in Level-1C Top-of-Atmosphere. The cloud cover in the search criteria was limited to 

10%, with the following spatial extent stated in Table 4. The list of Sentinel-2 images retrieved is listed in 

Table 8. 

 

Table 8. List of Sentinel-2 images 

No. Date Identifier 

1 March 7, 2019 L1C_T50QRE_A019348_20190307T023810 

2 March 7, 2019 L1C_T50QRD_A019348_20190307T023810 

3 March 27, 2019 L1C_T51QTV_A019634_20190327T023815 

4 March 27, 2019 L1C_T51QTU_A019634_20190327T023815 

5 April 11, 2019 L1C_T51QTV_A010940_20190411T023827 

6 April 11, 2019 L1C_T50QRD_A010940_20190411T023827 

 

Sentinel-2 has a total of 13 bands in different wavelengths of the electromagnetic spectrum. This satellite 

data is also available in three different spatial resolutions: 10, 20, and 60 meters. Table 9 shows the bands 

of Sentinel-2 as described by European Space Agency (ESA, n.d.). 

 

Table 9. Band names of Sentinel-2 

Band No. Band name Spatial Resolution Wavelength, μm 

Band 1 Coastal aerosol 60 0.443 

Band 2 Blue 10 0.490 

Band 3 Green 10 0.560 

Band 4 Red 10 0.665 

https://earthexplorer.usgs.gov/
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Band 5 Vegetation Red Edge 20 0.705 

Band 6 Vegetation Red Edge 20 0.740 

Band 7 Vegetation Red Edge 20 0.783 

Band 8 NIR 10 0.842 

Band 8A Vegetation Red Edge 20 0.865 

Band 9 Water Vapor 60 0.945 

Band 10 SWIR – Cirrus 60 1.375 

Band 11 SWIR 20 1.610 

Band 12 SWIR 20 2.190 

 

Figure 10 shows the overview of the pre-processing steps conducted for Sentinel-2 images. The detailed 

information can be found in Appendix D. A total of 17 vegetation and soil salinity indices have been 

generated from Sentinel-2 data. The list is shown in Table 10. 

 

 
Figure 10. Workflow for processing Sentinel-2 products 

 
Table 10. List of salinity indices generated from Sentinel-2 Data 

No. Index Formula Reference 

1 Normalized Difference 

Vegetation Index 

(NIR − R)

(NIR + R)
 

(Rouse et al., 1973) 

2 Normalized Difference 

Salinity Index 

(R − NIR)

(NIR + R)
 

(M. Khan & Sato, 2001) 

3 Normalized Difference Water 

Index 

(G − NIR)

(G + NIR)
 

(Gao, 1996) 

4 Canopy Response Salinity 

Index 

(R ∗ NIR) − (B ∗ G)

(R ∗ NIR) + (B ∗ G)
 

(Valley et al., 2014) 
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5 Combined Spectral Response 

index 

(B + G)

(R + NIR)
∗ NDVI 

(Fernández-Buces et al., 

2006) 

6 Enhanced Vegetation Index 2.5(NIR − R)

(NIR + 6 ∗ G − 7.5 ∗ B + 1)
 

(Liu & Huete, 1995) 

7 Brightness Index √R2 +NIR2 (N. Khan et al., 2005) 

8 Generalized Difference 

Vegetation Index 

(NIR2 − R2)

(NIR2 + R2)
 

(N. Khan et al., 2005) 

9 Simple Ratio Vegetation 

Index 

NIR

R
 

(Pearson et al., 1972) 

10 Salinity Index √B ∗ R (M. Khan et al., 

2001)Khan 2001 

11 Salinity Index - 1 (R ∗ NIR)

G
 

(Abbas et al., 2013; M. 

Khan et al., 2001) 

12 Salinity Index - 2 (B ∗ R)

R
 

(Abbas et al., 2013; M. 

Khan et al., 2001) 

13 Salinity Index - 3 (B − R)

(B + R)
 

(M. Khan & Sato, 2001) 

14 Salinity Index – 4 √R2 + G2 (Douaoui et al., 2006) 

15 Salinity Index - 5 √B2 + R2 + NIR2 (Douaoui et al., 2006) 

16 Salinity Index - 7 B

R
 

(Abbas et al., 2013; M. 

Khan et al., 2001) 

17 Soil Adjusted Vegetation 

Index 
1 + L

(NIR − R)

(NIR + R + L)
 

(Huete, 1988) 

 

 

2.4.3 Landsat-8 OLI Data 

The Landsat-8 images were downloaded from USGS Earth Explorer (https://earthexplorer.usgs.gov/). 

The cloud cover was limited to 10%, and the extent of the polygon to retrieve the images was the same as 

for Sentinel-2. The list of Landsat-8 images is listed in Table 11. 

 

Table 11. List of Landsat-8 images 

No. Date Identifier 

1 March 16, 2019 LC08_L1TP_117048_20190316_20190325_01_T1 

2 April 1, 2019 LC08_L1TP_117048_20190401_20190421_01_T1 

 
The metadata details of Thermal Infrared Sensor (TIRS) for Landsat-8 are listed in table 12. The metadata 

was used as input values for deriving land surface temperature (LST). 

 

Table 12. Metadata of thermal bands from Landsat-8 OLI Data 

Information Image 1 Image 2 

Sun Elevation 57.44314117 61.88528253 

Radiance-Mult-Band 10 3.3420E-04 

Radiance-Mult-Band 11 3.3420E-04 

Radiance-Add-Band 10 0.10000 

Radiance-Add-Band 11 0.10000 
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K1 for Band 10 774.8853 

K1 for Band 11 480.8883 

K2 for Band 10 1321.0789 

K2 for Band 11 1201.1442 

 

Landsat-8 OLI Data was used for deriving LST based on the following formula: 

 

𝐿𝑆𝑇 =
𝐵𝑇

1 +𝑊 ∗ (
𝐵𝑇
𝜌
) 𝑙𝑛𝜀𝜆

 

 

Where: 

 LST is the Land Surface Temperature in Celsius 

 𝐵𝑇 is the brightness temperature at satellite 

 𝑊 is the wavelength of emitted radiance 

 𝜌 is a constant equal to 1.438x10-2 m K derived from 

 

𝜌 = ℎ
𝑐

𝜎
 

 

  Where ℎ is Planck’s constant (6.626x10-34 JS) 

                 𝑐 is the velocity of light (2.998x108 m/s) 

                 𝜎 is the Boltzmann constant (1.38x10-23 J/K) 

 𝜀𝜆 is the emissivity calculated 

 

Figure 11 shows the overview of the processes conducted in deriving land surface temperature. The 

detailed information can be found in Appendix E. 

 

 
Figure 11. Workflow for deriving LST from Landsat-8 
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2.5 Processing of Ancillary Data 

2.5.1 Soil properties, Climate and DEM 

Ancillary data were processed using ArcMap 10.8. Processing includes setting no data values, reprojection, 

resampling, and clipping into the study area. Further processing of the images included averaging 

maximum and minimum temperature using the raster calculator tool and recalculating pixel values for soil 

pH. SoilGrids website reports that the soil pH level is multiplied by 10. Thus, it was recalculated to get the 

original range of soil pH (0-14) using a raster calculator tool. 

 

 
2.5.2 Geographical Location 

Geographic location (x and y coordinates) was also considered as an auxiliary (explanatory variables). A 

raster file was created containing the information on latitude and longitude in ArcMap. First, the boundary 

of the study area was converted into a raster file having 10 × 10 meter spatial resolution. Then, the 

rasterized study area was converted into a point in a vector format. Two fields were then added into the 

point file, containing the latitude and longitude information in meters. Lastly, the point file was converted 

into raster again for both latitude and longitude fields. 

 

 
2.5.3 Bare soil areas mask 

According to the soil sampling protocol of the DA-BSWM, the soil samples must be taken in areas that 

have no presence of vegetation, not fertilized, and not been disturbed, or have undergone land 

preparation. However, upon making the delineation of rice areas, DA-BSWM confirmed that they also 

include the rice areas with standing crop on the date of soil sampling (DA-BSWM, personal 

communication, 12 December 2020). These had to be removed with a masking process. The protocol of 

soil sampling used by the DA-BSWM can be found in Appendix F. 

 

The generated NDVI image from Sentinel-2 was used to extract the bare soil areas where NDVI was less 

than 0.35 values. This image was clipped to the DA-BSWM’s delineation of rice area to retrieve the bare 

soil in rice areas. The areas that were less than 0.2 hectares were removed because they did not represent 

the original rice area delineation. There were 1,614 rice areas generated and used for creating random 

points. 

 

 
2.5.4 Random sample points 

The geographical coordinates of the sampling points from DA-BSWM referred to the location where the 

“fieldman” was standing in the field when soil samples were taken in the rice areas. It does not represent 

the exact location of each of the ten soil samples taken for that rice area, nor does it necessarily represent 

the centroid of those ten sample locations. Therefore, it is unclear where the sub-samples were collected 

inside the rice area. Random points were created to compensate for this issue.  

 

Using the create random points tool in ArcMap, ten random sample points were created within the newly 

created rice areas having a maximum distance of 50 meters. This process resulted in 6,587 new random 

points. Note that this number was expected to be 16,140 points (ten times of the newly created rice areas); 

however, since not all the polygons have the same area and extent, not all polygons had 10 points in them. 
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2.5.5 Extracting pixel features 

Although this is not considered ancillary data, this method is essential to extract the pixel values of 

generated predictor variables. The pixel values were extracted using the Extract Multi Values to Points 

tool in ArcMap. This table was exported into an excel file and used as an input for machine learning. 

 

 

2.6 Modelling Soil Salinity 

The code for Random Forests (RF) regression was run in the Python Anaconda environment. The code 

contains the following ten parts that determine the flow of predicting soil salinity: 

1. General description of the code 

2. Importing plugins 

3. Specifying work path 

4. Reading the excel data and transforming it into a pandas data frame 

5. Training and testing of excel data 

6. Saving the trained dataset and drawing the figure of results 

7. Reading and loading the satellite data 

8. Reformatting the satellite data into a pandas data frame 

9. Predicting soil salinity 

10. Creating soil salinity map 

 

The number of estimators or number of trees was set to 300, and the random state was set to 42 to 

maintain reproducibility. Two multi-sensor approaches were used in training and testing the data. These 

are Optimized Multi-Sensor Predictors and Multi-Sensor Predictors. 

 

The Optimized Multi-Sensor Predictor (OMSP) is the process of combining the predictors that are 

derived from different sensors that were within the set threshold. Mainly, this method is merging the three 

different sensors into a union. The training and testing of data from Random Forests regression were run 

separately for predictors generated from Sentinel-1, Sentinel-2, Landsat-8, and all ancillary data. Every 

predictor from the three sensors within the significance threshold was used as input to establish the 

model. 

 

On the other hand, the Multi-Sensor Predictors (MSP) is a process where all predictor variables of all 

sensors were used to train the data and then select the predictors within the significance threshold to 

establish the model. This approach also means that a group of sensor data is associated with a common 

purpose. All of the 20 features generated from Sentinel-1, 17 salinity indices generated from Sentinel-2, 

one from Landsat-8, and 11 ancillary data were used to run in one training to see which remote sensing 

data is associated with the other. 

 

The set threshold for this study used the 0.05 feature importance value. This value is the typical threshold 

in selecting predictors that could reduce the noise, data redundancy, and uncertainty in establishing the RF 

model (Paul et al., 2013). Both of these approaches resulted in two different models were used in 

predicting soil salinity. 

 

 

2.7 Accuracy Assessment 

The two approaches were assessed using statistical metrics. The metrics used in measuring the accuracy of 

soil salinity modeling are root-mean-squared error (RMSE), r-squared (R2), and Pearson correlation 
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coefficient (PCC). These metrics were the basis of selecting which of the two approaches are better in 

predicting soil salinity. Furthermore, the predicted soil salinity maps in rice areas were prepared and layout 

in ArcMap. 

 

 

2.8 Soil Salinity Variability Analysis 

2.8.1 Spatial Variability 

The variability in soil salinity was analyzed per municipality. This variability was then related to the input 

data used in the model. Soil salinity levels guided the computation of the spatial extent of soil salinity in 

hectares in Table 13 below. Although using the USDA’s criteria for soil salinity levels, the predicted soil 

salinity range falls into the low to slight category (Table 1). The range is projected into low to high values 

for this study, as shown in Table 13. 

 
Table 13. Soil salinity levels for the study 

Predicted EC level, dS/m Description 

0.0-0.5 Low 

0.5-1.0 Moderately Low 

1.0-1.5 Moderately High 

1.5-2.0 

>2.0 
High 

 

 
2.8.2 Multiyear Variability 

The better-performing model from 2019 was used to predict the soil salinity for 2017, 2018, and 2020. 

The remote sensing data was retrieved on the same footprint used in establishing the model, as shown in 

Table 4 of Section 2.3.2. Table 14 below shows the list of images from the three different sensors. 

Furthermore, the climate data and soil moisture were also treated as varying explanatory variables. 

 

Table 14.  List of images used in multiyear analysis of soil salinity 

Sensor Image 

date 

Identifier 

Sentinel-1 30 March 

2017 

S1A_IW_SLC__1SDV_20170330T215340_20170330T215410_015927_01

A420_0C53 

S1A_IW_SLC__1SDV_20170330T215408_20170330T215435_015927_01

A420_146C 

6 April 

2018 

S1A_IW_SLC__1SDV_20180406T215347_20180406T215416_021352_02

4BFF_5204 

S1A_IW_SLC__1SDV_20180406T215414_20180406T215442_021352_02

4BFF_6A1D 

26 March 

2020 

S1A_IW_SLC__1SDV_20200326T215359_20200326T215429_031852_03

AD13_6E9D 

S1A_IW_SLC__1SDV_20200326T215427_20200326T215455_031852_03

AD13_BD08 

Sentinel-2 7 March 

2017 

L1C_T50QRE_A008909_20170307T023516 

L1C_T51QTU_A008909_20170307T023516 

17 March 

2018 

L1C_T50QRD_A005363_20180317T023117 

L1C_T50QRE_A005363_20180317T023117 
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21 March 

2020 

L1C_T50QRD_A024782_20200321T023819 

L1C_T51QTV_A024782_20200321T023819 

Landsat-8 10 March 

2017 

LC08_L2SP_117048_20170310_20200904_02_T1 

29 March 

2018 

LC08_L2SP_117048_20180329_20200901_02_T1 

3 April 

2020 

LC08_L2SP_117048_20180329_20200901_02_T1 

Precipitation TerraClimate_ppt_2017.nc 

TerraClimate_ppt_2018.nc 

TerraClimate_ppt_2020.nc 

Soil moisture TerraClimate_soil_2017.nc 

TerraClimate_soil_2018.nc 

TerraClimate_soil_2020.nc 

Temperature, max TerraClimate_tmax_2017.nc 

TerraClimate_tmax_2018.nc 

TerraClimate_tmax_2020.nc 

Temperature, min TerraClimate_tmin_2017.nc 

TerraClimate_tmin_2018.nc 

TerraClimate_tmin_2020.nc 

 

The multiyear variability of soil salinity from 2017 to 2020 was analyzed, and the hotspot areas were 

determined. The hotspot areas are the areas with increased soil salinity. The image processing was done in 

ArcMap using the raster calculator tool in ArcMap, calculating the difference of predicted soil salinity in 

2017 and 2020. Areas with negative differences describe the areas with decrease soil salinity, and the 

positive difference shows areas with increasing soil salinity levels. Both spatial and multiyear variability 

were further assessed in this method. The general workflow of the methods used in this study is shown in 

Figure 12 below. 
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Figure 12. General workflow of the methods used in the study 
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3. RESULTS AND DISCUSSION 

3.1 Random Forests Regression 

Five Random Forests regression (RFR) models were developed in Python: three RFRs all individually for 

Sentinel-1, Sentinel-2 and Landsat-8, one for a combination of the important predictors from all these 

sensors (Optimized Multi-Sensor Predictors), and the fifth for running a combination of all predictors 

from all three sensors (Multi-sensor Predictors). After running the RFR for individual sensors, the remote-

sensing-based predictor variables higher than the 0.05 variable importance threshold were selected based 

on Section 2.6. The training and testing of data took an average of 40 seconds. Ancillary data layers were 

included in all five models regardless of their variable importance score. An example of Python script is in 

Appendix G. 

 

 
3.1.1 Individual Sensors 

A. Sentinel-1 SAR Data 

Thirty-one features were used as an input variable for the Random Forests regression. The list of feature 

importance values is shown in Figure 13. The GLCM Variance in VH polarization was the only Sentinel-1 

variable above the 0.05 threshold. Thus, it was the only Sentinel-1 layer that was used in predicting soil 

salinity. The training and testing of this model resulted in an RMSE of 0.19, R2 of 0.59, and a Pearson 

correlation coefficient of 0.77. Their correlation between predicted salinity and field data is shown in 

Figure 14.  

 

 
Figure 13. List of feature importance from Sentinel-1 
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Figure 14. Scatterplot of field-measured vs. predicted soil salinity from Sentinel-1 

 

B. Sentinel-2 Multispectral Optical Data 

There were also a total of 31 features that were used in the training and testing of data from Sentinel-2. 

The list of feature importance values from Sentinel-2 was shown in Figure 15. Two of the seventeen 

Sentinel-2 predictor variables, the Simple Ratio Vegetation Index (RVI) and  Soil Adjusted Vegetation 

Index (SAVI), were above the 0.05 threshold. This model's training and testing resulted in an RMSE of 

0.16, R2 of 0.69, and a Pearson correlation coefficient of 0.83. The scatterplot of soil salinity predictions 

versus field data is in Figure 16. 

 

 
Figure 15. List of feature importance from Sentinel-2 
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Figure 16.Scatterplot of field-measured vs. predicted soil salinity from Sentinel-2 

 

C. Landsat-8 Thermal Data 

The only feature that was generated in Landsat-8 is the land surface temperature. The list of feature 

importance values is shown in Figure 17. Since the LST is within the threshold, it was used as an input for 

the OMSP in predicting soil salinity. The LST alone with ancillary data resulted in RMSE of 0.14, R2 of 

0.77, and a Pearson correlation coefficient of 0.88, which is the best performing among the three 

individual sensors and indicating that the thermal bands of Landsat-8 are a potential source of detecting 

and predicting soil salinity. The scatterplot of field-measured and predicted soil salinity is shown in Figure 

18. 

 

 
Figure 17. List of feature importance from Landsat-8 
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Figure 18. Scatterplot of field-measured vs. predicted soil salinity  from Landsat-8 

 

 
3.1.2 Optimized Multi-Sensor Predictors 

The important features of individual sensors from sections 3.2.1-A, B, and C were used in this Random 

Forests regression and ancillary data. The list of important features is shown in Figure 19 below.  

 

 
Figure 19. List of feature importance for OMSP 

 

Figure 19 shows the importance of both sensor data and ancillary data in the Random Forests regression 

model. Remote sensing data from SAVI contributes the most weight (0.20 importance) from Sentinel-2. 
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SAVI is used when vegetation is low, and the soil surface is exposed. It functions the same as NDVI, but 

this index has corrected the soil reflectance factor. The reflectance of light in the red and near-infrared 

spectra influences the vegetation index value (USGS, n.d.). In addition, SAVI is usually calculated to detect 

and map the extent of a healthy vegetation cover, enhance the differentiation of saline areas, suppressing 

the vegetation (Mokarram et al., 2015). 

 

Soil moisture was also found to have the same importance level as SAVI (0.20), although the data used has 

a very coarse spatial resolution (~4km). Soil moisture is one of the key factors in assessing salt-affected 

soils because salt concentration depends on soil moisture. This predictor is followed by the average 

temperature, which can be interrelated to soil moisture. High temperatures will lead to less soil moisture 

due to evaporation. Latitude was also found to be highly important. Due to the geographic location and 

layout of the study area, differences in latitude results in differences in the soil salinity. Also, latitude 

affects the differences in local climates, such as the temperature and precipitation, as mentioned in section 

3.1.2.  

 

Another remote sensing layer generated from Sentinel-2 is the Simple Ratio Vegetation Index (RVI). This 

index, simply the soil reflectance in the NIR band divided by the reflectance in the red band, is the 

quickest way to distinguish the green leaves from other objects and estimate the relative biomass present 

in the image (Hiphen, 2021). A high value of RVI usually indicates healthy vegetation, and lower values 

indicate soil, water, or ice areas (Humboldt State University, 2014). These values of RVI could be related 

to assessing soil salinity in bare soil areas and remove the effect of vegetation. 

 

Precipitation, DEM, and longitude have the same level of importance (0.04). Precipitation influences the 

average temperature and soil moisture. Precipitation, rainfall, or irrigation to salt-affected soils may wash 

away the salt particles and avoid salt accumulation. The DEM, which measures the ground surface 

elevation from the mean sea level, was also important. DEM has been used in several studies to map 

landforms and delineate areas affected by soil salinity (Samra & Ali, 2018), especially in low plains 

(Yahiaoui et al., 2015). Furthermore, Ali et al., 2016 stated the importance of DEM that land surface is 

highly considered in assessing and managing salt-affected areas. It was also mentioned in the geology of 

the study area and shown in Figure 6 that the water is being drained to the west (towards the West 

Philippine Sea). Longitude has lower importance than latitude due to the layout of the study area, that 

there’s more variation in latitude than longitude. While latitude is related to climate, longitude is associated 

with the distance of areas affected by soil salinity to the coast or sea.  

 

The next features were about the soil’s physical properties, even at a low importance level. Soil texture 

determines how much water will be able to pass through the soil. The presence of water affects the salt 

content in the soil. If there is a good soil texture, the salt particles will be washed away and will not 

accumulate on the soil. Silt and clay, which have 0.03 and 0.01 importance, respectively, have a smaller 

particle size, and smaller particle size can pack closely together. Small particle size blocks the particles' 

spaces and prevents the water and salt particles from passing through. The sand has a larger particle size, 

resulting in less surface area, and thus salt particles will not accumulate in these areas. Bulk density affects 

the water flow between soil particles due to soil porosity, and soil moisture determines the amount of 

water stored in the soil. Furthermore, bulk density is dependent on soil texture. Sandy soils have relatively 

high bulk density due to particle size. 

 

Land surface temperature from Landsat-8 that utilizes the thermal bands of this sensor is a newly added 

information in soil salinity mapping. This feature alone, together with the ancillary data, garnered the 
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highest correlation value in predicting soil salinity. However, no correlation can be seen in comparing the 

LST and field-measured EC. This explains the importance and effects of using ancillary data. This could 

be related to the climate data and soil moisture in the study area.  

 

The last remote sensing data that performs well in the model is the GLCM Variance in VH polarization 

generated from Sentinel-1. The GLCM Variance performs the same tasks as the common descriptive 

statistic called “variance.” It relies on the mean and the dispersion around the mean of cell values within 

the GLCM images. Furthermore, it is mainly associated with the visual edges of land cover patches, which 

explains the relationship of DEM and GLCM Variance. DEM differentiates the physical land 

characteristics in terms of elevation. GLCM Variance is used to extract information on land cover and 

bare soil within the same elevation group. It was also found out that this feature works better in VH 

polarization. Using C-band, the bare soil areas are clearly visible on this feature and strongly correlated in 

VH polarization (CEOS.org, 2018). The absence of standing crops increases this correlation. It separates it 

from VV polarization because plant growth, especially in newly planted areas, can cause confusion where 

soil roughness is likely to be the leading cause for scattering. This feature was also the most important 

feature in the soil salinity mapping conducted by Hoa et al., 2019 in Vietnam, utilizing Sentinel-1 data 

alone to model soil salinity in a machine learning environment. 

 

The last important feature in the model is the soil pH level. We can recall that the study area has been 

selected due to its high soil pH values. Agricultural soils are turning into alkaline soils, and that alkalinity is 

related to soil salinity. Soil pH has a low importance value because the main effect of soil pH on soil is the 

mobility of macro and micronutrients present in the soil (California Envirothon, 2017). In addition, it 

influences the rate of biochemical breakdown or mineral weathering in the soil; thus, the remote sensing 

and ancillary data for this study cannot be detected. With all the predictor variables identified, the 

statistical measures of RMSE, R2, and PCC are shown in Table 15 below. 

 

Table 15. Statistical Metrics of OMSP Model 

Sensor Important Predictor/s 
Metrics 

RMSE R2 PCC 

Sentinel-1 GLCM Variance VH 

0.13 0.80 0.90 

Sentinel-2 

Soil Adjusted Vegetation Index 

and 

Simple Ratio Vegetation Index 

Landsat-8 Land Surface Temperature 

Ancillary 
Soil property, climate, and 

geographical location 

 

The metrics from Table 15 above show that the selected features yielded an RMSE of 0.13, which 

indicates that the model is performing well in predicting the soil salinity. The R2 value of 0.80 shows that 

the relationship of the selected predictors in predicting soil salinity is high and that 80% of the data fits the 

model. The PCC value of 0.90 shows a very high positive relationship. In addition, a scatterplot of the 

field-measured vs. predicted soil salinity is shown in Figure 20. 

 



ASSESSMENT OF SPATIAL PATTERN OF SOIL SALINITY IN COASTAL AGRICULTURAL AREAS USING MULTI-SENSOR APPROACH 

 

33 

 

 

 
Figure 20. Scatterplot of field-measured vs. predicted soil salinity from OMSP 

 

 
3.1.3 Multi-sensor Predictors 

The list of feature importance values from MSP is shown in Figure 21 below. The satellite-based predictor 

variables within the 0.05 significance threshold are Energy from Sentinel-1 and RVI and SAVI from 

Sentinel-2. These important predictor variables were used in the model. Figure 22 shows the list of 

important features of the final MSP model.  

 

The RVI is the most essential feature of the MSP model. This result is surprising because RVI has been 

widely used for areas with vegetation while the study focuses on bare soils. However, if we look again at 

the formula of RVI, it utilizes the NIR and red bands. The reflectance of soil in the electromagnetic 

spectrum is best on these bands. SAVI is also of high importance. Similar to RVI, this index also utilizes 

the NIR and red bands.  

 

The importance of geographical location in this method is similar to the OMSP method. Bulk density, 

which has low significance from the OMSP method, became the 3rd most important feature in this 

approach. This feature is followed by the soil properties, DEM, and soil pH. The last important features 

were climate data and soil moisture. 

  

The Energy in VH polarization generated from Sentinel-1 is the least important feature in this method. 

Although considered least important, it is still performing in the model by affecting the input features. The 

texture is one of the essential spatial features of an image (Kupidura, 2019). Energy is one of the image 

textures from GLCM, is the orderliness of pixels that share similar backscatter characteristics that is 

beneficial in land-use and land-cover classification. The use of the Energy feature in the model is it helped 

in classifying the land cover in the image. Similar to OMSP, this predictor variable in Sentinel-1 also gave 

information in VH polarization. The results of metrics for MSP are shown in Table 16. 
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Figure 21. List of input features and their importance values from MSP 
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Figure 22. List of Feature importance from MSP 

 
Table 16. Statistical Metrics of MSP Model 

Sensor Important Predictor/s 
Metrics 

RMSE R2 PCC 

Sentinel-1 Energy VH 

0.13 0.82 0.91 
Sentinel-2 

Soil Adjusted Vegetation Index 

and 

Simple Ratio Vegetation Index 

Ancillary 
Soil property, climate, and 

geographical location 

 

The Multi-Sensor Predictors' metrics for predicting soil salinity showed slightly higher accuracy than the 

OMSP approach. The RMSE is 0.13, indicating a good fit, R2 value of 0.82, and a PCC of 0.91, indicating 

a very high correlation. Thus, the variables used in this model have a positive strong relationship. This 

relationship can also be seen on the scatterplot of field-measured soil salinity and predicted soil salinity in 

Figure 23. This result is not that different from the first method; however, there is a change in the remote 

sensing data that is important from Sentinel-1. Upon training and testing the data, the LST had an 

importance value of 0.01; thus, it was not included in the final model.  
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Figure 23. Scatterplot of field-measured vs. predicted soil salinity for MSP 

 

 

3.2 Predicted Soil Salinity 

Two soil salinity maps were produced using the two different approaches. Figures 24 and 25 show the 

predicted soil salinity based on these approaches. The ranges of the predicted EC were 0.25 to 1.20 dS/m 

and 0.3 to 1.9 dS/m for OMSP and MSP, respectively. Generally, this range is different from the field-

measured EC with a range of 0.02 to 4.26 dS/m. We can recall that the scatterplot of field-measured vs. 

predicted soil salinity from Figures 20 and 23 that both approaches can predict soil salinity up to 3.5 EC. 

The model then used this range in predicting soil salinity based on input maps; however, most of the 

points are concentrated on the lower soil salinity values. The Random Forests regression, by its function, 

averages the predictions within the range that is mostly between 0 to 2.0 EC. This feature of Random 

Forests explains why the predicted soil salinity in both methods resulted in even lower values in the 

resulting maps. In addition, the areas with predicted soil salinity are limited to the rice areas. During the 

processing (masking) of predicted soil salinity images in ArcMap, the original values of soil salinity are 

higher than the EC ranges mentioned above but decreased when rice areas mask was applied.  

 

Both of the methods show that the predicted soil salinity is evident in the coastal areas. However, the 

MSP approach detected more areas with higher soil salinity values than the OMSP method. In addition, 

the spatial distribution of the predicted soil salinity in MSP is similar to field data visually. In the OMSP 

approach, the predicted soil salinity showed that the soil salinity is evident in small patches located in 

coastal parts of Sinait, Cabugao, City of Vigan, Caoayan, Santa, Santa Maria and City of Candon. 

Moderately high EC (yellow-green) were also observed near the river systems near the coastal area. Low 

EC was found on areas alongside the river systems, however, in between mountain valleys. The areas with 

low EC values (0-0.3 dS/m) have 93.36 hectares or 1.19% of the rice areas, whereas moderately low EC 

(0.3-0.6 dS/m) have 7,580.19 hectares 96.81% of the rice areas. Lastly, the high EC values (0.9 to 1.2 

dS/m) have 156.52 hectares or 2.00% of the rice areas. 

 

In MSP, high soil salinity values on this range are located on coastal parts of Sinait, San Juan, San Vicente, 

Santa Catalina, City of Vigan, Caoayan, Santa, Santa Maria, San Esteban, City of Candon, Santa Lucia, and 

Santa Cruz. Moderately high EC is also located in flat or low-lying areas but is farther to the coast. Low 

EC values are located in the in-field valleys. The EC values that this method has predicted are higher than 
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the individual sensor method. The areas with low EC (0.0-0.5 dS/m) has a total area of 6,461.63 hectares 

or 82.52% of the rice areas; moderately low EC (0.5-1.0 dS/m) has an extent of 106.23 hectares or 1.36%; 

moderately high EC (1.0-1.5 dS/m) has a total area of 1,260.26 hectares or 16.10% of the rice areas, and 

the high EC (1.5-2.0 dS/m) has a total area of 2.01 hectares or 0.03% of the rice areas. Appendices H and 

I show the variability of soil salinity per municipality using OMSP and MSP, respectively. 
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Figure 24. Predicted soil salinity map based on Optimized Multi-Sensor Predictors Approach 
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Figure 25. Predicted soil salinity map based on Multi-Sensor Predictors approach 
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3.3 Spatial Variability 

Generally, high levels of EC are observed in the coastal areas of the study area. These are located in the 

coastal municipalities with soils of clay, silt loam, and sandy textures. Among these are the soils of Bantog 

clay found at Sinait, Cabugao, Sta. Maria, City of Candon, Narvacan, and Sta. Lucia; San Manuel silt loam 

soils located in Sinait, San Juan, San Vicente, Santa Catalina, Sta. Maria, Magsingal, City of Candon, Sta. 

Lucia, and Sta. Cruz; Umingan sandy loam soils in Santa. 

  

Some of the rice areas are expanding on the beach sandy soils in the City of Vigan, Sta. Catalina and 

Cabugao and also in the river wash soils on Santa with predicted soil salinity of moderately high. This 

result is surprising because these types of soils are not suitable for rice production. 

 

Area-wise, the MSP approach predicted more areas with moderately high soil salinity than the OMSP 

approach. Using the soil salinity levels described in Table 14 of section 2.8.1, only the municipality of 

Santa has the highest level of soil salinity (1.5 to 2.0 dS/m). Moreover, it can be seen from the produced 

maps and spatial extent of predicted soil salinity that the municipality of Santa and the City of Candon are 

the locations that experience high salt concentration in their rice areas.  

 

 

3.4 Multiyear Variability 

The Multi-sensor Predictors model was used to predict soil salinity for 2017, 2018, and 2020. Figures 25 

shows the multiyear change of soil salinity in the Province of Ilocos Sur.  

 

Visually, changes in the soil salinity in the years 2017 to 2020 can be seen easily on coastal rice areas. From 

2017, the soil salinity in the rice areas in San Vicente, Santa Catalina, City of Vigan, Santa, Narvacan, and 

City of Candon started with EC values ranging from 1.0 to 1.5 dS/m. However, in 2018 these areas had 

increased in soil salinity ranging from 1.5 to 2.0 dS/m. In addition, low soil salinity values in some rice 

areas of Narvacan, Santa Maria, and San Esteban became moderately low in the year 2018. Recalling from 

the MSP approach that the predicted soil salinity is for 2019, the areas affected by soil salinity are also in 

coastal areas but more evident in fewer coastal municipalities. This variability can be related to the drought 

in Ilocos Sur last 2017, and extended drought has been of concern for the province (Toldo, 2019). In 

September 2018, a strong typhoon with the local name of Ompong had caused up to six-meter storm surges 

that hit the province's coastal areas (ABS-CBN News, 2018). Another typhoon named Rosita had also 

made landfall in the province last October 2018 (Rappler, 2018). Although no storm surges have been 

reported, this typhoon might have pushed the salt particles into the sea, causing the soil salinity for the 

summer of 2019 low.  

 

In March 2019, droughts and El Niño were reported to affect the province in the same year. This 

phenomenon brought less rainfall and warmer temperatures (Flores, 2019). Some typhoons passed by the 

province in November 2019; however, this has not landed and affected the province, but more on the 

Province of Ilocos Norte (Arceo, 2019), approximately 200 kilometers northward away from the City of 

Vigan to the City of Laoag. Come 2020, and the rice areas experienced an increase in soil salinity again. 

The presence of drought and less rainfall during the previous year might have caused this increase in soil 

salinity in coastal rice areas. Since there is no field-measured soil salinity available, there is no data 

validation of whether droughts and typhoons have caused multiyear changes in soil salinity. However, with 

the general process of soil salinity shown in Figure 1, climate conditions can still be related to soil salinity 

dynamics. 
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 Figure 26. Predicted soil salinity for years 2017 to 2020 
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Most of the areas with high soil salinity values were identified in the northwest part of the province, 

around the City of Vigan. Figure 26 shows the soil salinity change in these municipalities. From 2017, the 

coastal rice areas had moderately high soil salinity in San Vicente, Santa Catalina, City of Vigan, Caoayan, 

and Santa. However, in 2018, these areas became high in soil salinity. As a result, most rice areas in Santo 

Domingo and the City of Vigan went from low to moderately low in soil salinity. In 2019, the areas with 

high soil salinity 2018 remained high, and the municipalities of Santo Domingo and the City of Vigan 

reached a low level of soil salinity again. The pattern and distribution of soil salinity in 2020 are not that 

different in the year 2018. High soil salinity values are still evident in San Vicente, Santa Catalina, Caoayan, 

and Santa. However, a small portion of the coastal rice area in Santo Domingo had a low salinity level in 

2020. In the municipality of Santa, fewer patches of rice areas remained at low salinity levels in 2020 than 

in 2018.  
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Figure 27. Soil salinity change in most affected areas 
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3.5 Soil Salinity Change 

Soil salinity change was generated by computing the difference of predicted soil salinity of 2017 and 2020. 

The change in soil salinity is shown in Figure 27; generally, there is an increase in soil salinity in all rice 

areas. The areas under green show an increase of soil salinity by a minimum of 0.04 dS/m for the whole 

four years. This change increases and is most evident in areas under red colors. These rice areas had 

increased soil salinity by 0.15 dS/m, maximum from 2017 to 2020. The soil salinity change also indicates 

that significant changes in soil salinity were observed in coastal areas and areas that low changes in soil 

salinity were found nearer to undulating to hilly areas. The general surface cross-section of the study area 

from Figure 7 explains this spatial variability and change in soil salinity. Due to hilly and undulating areas, 

salt particles were pushed to the west, coastal and low-lying areas.  

 

 

3.6 Management of salt-affected soils 

This section outlines the possible utilization of data generated in this thesis. 

 

3.6.1 For policy-making bodies 

Soil salinity data is evident in the province of Ilocos Sur and mainly detected on coastal rice areas. Areas 

high in soil salinity significantly changed over time and were identified and needed to be taken care of, 

especially with better and sustainable soil management. Therefore, policy-making bodies could include soil 

salinity information in developing time-efficient and budget-friendly projects that maintain agricultural 

soils' health. Furthermore, since areas high in soil salinity are also provided, they can use the information 

for project prioritization.  

 

For the national government level, DA-BSWM, this research serves as a basis and benchmark of soil 

salinity in coastal agricultural areas. Because they are mandated to map and provide information about 

agricultural soils, they can use the data to add to their soil information database. They can also recommend 

strategies to the local government down to farmer level on the sustainable use of land and water resources. 

For example, proper fertilizer formulation that could not increase the soil salinity can be suggested that 

contains the amount, timing of application, and the number of applications. There are also rice areas that 

have been detected in soils that are not suitable for rice production: beach sand and river wash. They can 

recommend other crops that are more suitable to produce in these areas because rice production might 

exacerbate the soil salinity. For water management, since they have a database on the areas that use pumps 

to extract groundwater for irrigation, they could recommend other irrigation sources. Some of these can 

be rainwater harvesting facilities or small-scale dams, which are also part of their functions. To monitor 

the local changes in soil salinity, they can use soil moisture data generated aerial images from UAVs with 

higher spatial resolution.  

 

Another national-level government that can be of concern is the Philippine Rice Research Institute 

(PhilRice). PhilRice aims to develop and promote technologies that are ecosystem-based, location, and 

problem-based. For example, the introduction of salt-resistant rice seeds can be distributed to the farmers 

severely affected by soil salinity. Their publication, Management of Salt–Affected Soils for Rice 

Production, is a good manual for managing soil salinity that includes cultural management of salt-tolerant 

seeds. 

 

Local government units such as the provincial and municipal levels could disseminate this information to 

the farmers during their weekly or monthly Municipal Agriculture Officer’s (MAO’s) meeting. Through 



ASSESSMENT OF SPATIAL PATTERN OF SOIL SALINITY IN COASTAL AGRICULTURAL AREAS USING MULTI-SENSOR APPROACH 

 

45 

 

 

this, they can work with farmers on rehabilitation, conservation, and management strategies together with 

two national agencies mentioned above. They could also collect new soil samples in the rice areas to check 

and monitor the soil salinity and track the changes with the method used in this study. 
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Figure 28. Soil salinity change 
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3.6.2 Farmers and farmer associations 

This study provides information on areas affected by soil salinity and the possible farmers that may be 

affected by it. Once the farmer is informed about the status of their soil, it would be better for them to 

manage it and the “guessing game” stops. The presence of drainage, limitation of groundwater extraction, 

and good irrigation schedules could help alleviate the problem of soil salinity. Farmers can also participate 

with the government's projects in correcting the land and soil by scraping, land leveling, subsoiling, and 

improving planting techniques. In addition, they can improve the soil texture by applying organic matter, 

mulching, green manuring, and crop rotation. 

3.7 Limitations of the Research and Future Work 

Like any other scientific model, the methodology used in this study is not perfect. The uncertainties of this 

research were found on soil data, delineated rice areas, remote sensing data, and the interpretation of 

results. For the soil data and delineation of rice areas, it was mentioned in Sections 2.3.1 and 2.5.4 that the 

geographical coordinates of the soil samples do not hold the exact locations where the soil samples were 

collected. Thus, new random points were created inside the delineated rice areas that served as the 

representative soil samples in the area. However, the values of the electrical conductivity of these points 

are duplicated. Therefore, it is essential to take note of the geographical coordinates where the sub-soil 

samples are collected. 

 

Furthermore, the delineated rice areas are manually made by the staff of DA-BSWM using Google Earth. 

This data may not have been very accurate due to differences in spatial resolution and imagery date. The 

delineated rice areas also include the rice areas with the standing crop, as mentioned in Section 2.5.4. The 

bare soil areas within the delineated rice areas were estimated using the averaged NDVI image, which may 

not also include a bare soil area in the ground. For future work, it is recommended to have more soil 

samples, and the exact geographical coordinates of soil samples were well noted. 

 

Another limitation of the study is the availability of satellite data. The satellite data of the three sensors 

were averaged per date to compensate for the period of soil sampling. These were averaged because 

different image tiles with varying image dates can cover the whole study area in Sentinel-1. Keeping the 

images not averaged would be a promising avenue for analyzing the spatiotemporal variability of soil 

salinity in a limited time window. There is also a limitation on the relationship between soil data and 

remote-sensing data. The image features extracted in the satellite data are related to soil salinity at the soil 

surface, whereas the soil samples were taken 0 to 30 centimeters below the soil surface. The remote 

sensing data tells the salinity in the surface; the field data represents the soil salinity at the subsoil. 

However, they are assumed to be related because the soil samples were taken when the surface is not yet 

disturbed, and parts of the soil surface were still analyzed in the laboratory. Utilization of higher resolution 

remote sensing data is highly recommended for better prediction of soil salinity. Furthermore, only the 

soil surface salinity has been assessed in this study. Some studies show the importance of analyzing the 

root-zone soil salinity, especially when the soil salinity per season (wet season) was added per year.  

 

We considered other methods for identifying relationships between soil salinity and remote sensing-based 

information, such as General Additive Models (GAMs). GAMs provide a simple solution between 

variables to see which fits with the linear regression. GAMs have been used in many studies in assessing 

soil salinity. However, there are limitations on the complex relationships between variables. Since we had 

59 explanatory variables for predicting field-measured soil salinity, we opted for a machine learning 

method that could handle interactions between so many variables. 
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One machine learning method was used in the study, although many models could be used. Other 

machine learning algorithms such as Neural Network, Support Vector Regression, Gaussian Process, and 

many more can also be explored to see which ML methods the multi-sensor approaches perform best. 

The use of Random Forests was due to its characteristics such as fast training speed, handling of high 

dimensional data, and there is low bias in each decision tree based on the previous related studies. In 

addition, RF has a built-in feature selection. According to Genuer et al., 2010 and Grömping, 2009, the 

variable importance based from RF is efficient for problems that has high number of input variables and 

low number of samples.  

 

However, the interpretability of the model is the main drawback of this machine learning algorithm. Most 

of the uncertainties of this study are concentrated on the interpretation of predicted multiyear soil salinity. 

Since the model for the year 2019 was used for predicting soil salinity for other years, there are no ground-

truth data available that could support it. However, they can use spatial and temporal variability to guide 

future soil sampling or cross-checking. Testing the model in other areas and other crops are also 

recommended to see how well the overall modeling approach can generalize. In addition, spatial variability 

of soil salinity was also found near the river systems. Therefore, information on the distance to river 

systems could also be another explanatory variable for future work. 

 

Lastly, this study is not providing information on which human activities contribute to soil salinity but the 

variability of soil salinity from environmental conditions. Therefore, it is essential to know where and how 

the soil salinity is becoming a problem in the study area for the more effective spreading of information 

and making policies by interviewing farmers and getting the actual situation on the ground.  
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4. CONCLUSION AND RECOMMENDATIONS 

Soil salinization is one of the most common soil degradation types and is considered one of the world’s 

most widespread soil problems. In the Philippines, the information about soil salinity has not been 

systematically updated since the 1980s. Soil salinity has been detected in the rice areas in the Province of 

Ilocos Sur using the combination of field data, remote sensing data, and ancillary data to train a machine 

learning regression algorithm. The affected areas, if left unmanaged, may increase and could lead to 

serious environmental problems, especially for rice production. Therefore, it is necessary to identify and 

determine where soil salinity occurs to rehabilitate the areas affected in its early stage. Two multi-sensor 

approaches were used in the study: Optimized Multi-Sensor Predictors and Multi-Sensor Predictors. In 

relation to the research questions expressed for this study, the following are concluded and recommended: 

4.1 What is the spatial distribution of soil salinity predicted from the variables generated from Sentinel-1, 
Sentinel-2, and Landsat-8? 

 
The predictor variables derived from Sentinel-1, Sentinel-2, and Landsat-8 were used to configure the two 

models: Optimized Multi-Sensor Predictors and Multi-Sensor Predictors. On a provincial scale, both of 

the approaches shows that the high values of soil salinity are more evident and clumped in the coastal rice 

areas of the municipalities of Banayoyo, Bantay, Caoayan, City of Candon, City of Vigan, Magsingal, 

Narvacan, San Esteban, San Juan, San Vicente, Santa, Santa Catalina, Santa Cruz, Santa Lucia, Santa 

Maria, and Santiago. Meanwhile, soil salinity becomes lower as the rice areas are located further from the 

coast side. Geographically, high soil salinity is also located in low-lying areas and mainly in soil textures 

with clay and sandy loam. It is also important to note that remote-sensed ancillary data plays a significant 

role in detecting and retrieving soil salinity. Without the ancillary data, the results of the metrics will be 

lower, and the model will not perform well. 

4.2 What is the accuracy of using the multi-sensor approach in retrieving soil salinity? 

 
There are two multi-sensor approaches used in the study: Optimized Multi-sensor Predictors and Multi-

sensor Predictors. These approaches showed excellent performance in predicting and retrieving soil 

salinity based on the RMSE, R2, and Pearson correlation coefficient values. The Multi-sensor Predictors 

model provided better accuracy than the Optimized approach because of higher correlation values with 

the same error value with RMSE of 0.15, the R2 value of 0.82, and the Pearson correlation coefficient of 

0.91. This approach also utilized fewer predictor variables than the Optimized by not including the land 

surface temperature from Landsat-8 because the LST was not within the significance threshold. It was 

attempted to include LST in configuring the model, although the results of the statistical metrics show that 

the RMSE increased and the correlations decreased. Therefore, LST has been influenced by other 

variables from other sensors upon the first training of the data. It can also be concluded that integrating 

the three sensors is more efficient and more accurate in detecting and retrieving soil salinity than using a 

single sensor. The ancillary data also plays a vital role in the configuration of model of the two approaches. 

Even though they are outside of the significance threshold, they still affect the metrics of the model and 

maintaining all of them resulted in higher accuracy of predicting soil salinity. 
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4.3 To what extent and pattern do soil salinity change over multiple years based on the multi-sensor 
approach? 

 
Using the Multi-Sensor Predictors model, soil salinity changes over multiple years increasingly. For 

example, soil salinity changed from 2017 to 2020, showing an increase of soil salinity from 0.04 to 0.15 

dS/m for four years. From the coastal rice areas, the soil salinity extends inwardly. Although the resulting 

predictions were not validated with field-measured soil salinity of different years, it is still valuable to 

understand the salt accumulation with climate. In addition, there is no information yet if the management 

practices and anthropological activities have affected these changes and increase soil salinity.  

 

In conclusion, the study's approaches present an efficient, cost-effective, and practical expert system to 

detect, predict, and update the soil salinity in the Philippines. The values of soil salinity predicted in this 

study are considered low or none to slight according to the USDA’s classification of soil salinity. This 

finding means that soil salinity is not a real problem to deal with. However, it has been detected that soil 

salinity was increasing per year. Thus, it is assumed that soil salinity is even higher for the year 2021. 

Utilizing recent data or collecting new soil samples would be helpful for further validation of the model. 
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APPENDICES 

Appendix A. Map of Rice Areas
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Appendix B. Soils of the Area 

Ilocos Sur has three distinct topographic units: the coastal plain, intermediate uplands, and mountains. 

According to the reconnaissance soil survey of the province (BSWM, 1954), the coastal plain part of 

the study area comprises four main soil orders in terms of the USDA soil taxonomic system. These are 

Fluvisols, Vertisols, Arenosol and Regosol (BSWM, 2019). In particular, the coastal plain soils are 

represented by the Bantog, San Manuel, and Umingan series and two miscellaneous land types: beach 

sand and river wash. All these soils manifest slight profile development: they are usually insufficient to 

moderately well-drained and medium to heavy textures, ranging from sandy loam to light clay loam 

(BSWM, 1954). For this research, only the soils of the coastal plain are discussed.  

 

Fluvisols 

Fluvisols are young soils that have the “fluvic soil properties.” For all practical purposes, this means 

that the soils receive fresh sediment during regular floods (unless empoldered) and still show 

stratification and irregular organic matter profile (ISRIC). The soil series of San Manuel and Umingan 

belong to this soil order. 

 

A. San Manuel sandy clay loam 

This series comprises the most extensive and of the best soils of the plain. Generally, these soils are 

well-drained as they usually occur along rivers. They are developed from alluvial material washed 

down from the higher areas' underlain by igneous and sedimentary rocks. This type occurs in widely 

scattered areas in the province. Still, the largest contiguous area occurs in the plain from Vigan 

northward up to midway between Lapog and Cabugao. It covers an area of 23,275.65 hectares or 

9.53 percent of the total soils of the province. This soil occupies nearly level to level areas with the 

elevation ranging from 15 to 30 meters above sea level. Drainage, both external and internal, is fair 

to good despite the nearly level topography. A few low areas, especially those devoted to lowland 

rice, have slow external drainage (BSWM, 1954). 

 

B. Umingan sandy loam 

This type occurs in the small alluvial plain below the town of Cervantes in the southeastern part of 

the province and along the highway from Santa northward up to Banaoang near the Abra river gap. 

It covers a total area of 1,356.00 hectares or 0.55 percent of the total soils mapped on the province. 

Due to the looseness of the surface and subsurface soil, this type is slightly erodible in the sloping 

areas. The surface soil is much thinner than the normal depth in some places, and the gravelly layer 

gets nearer the surface (BSWM, 1954).  

 

Vertisols 

Vertisols are churning heavy clay soils with a high proportion of swelling clays. These are found in 

depressions, level to undulating areas, mainly in tropical areas. They become very hard in the dry 

season and are sticky during the wet season (ISRIC). The soil series of Bantog fall into this type of soil 

order. 

 

The soil series of Bantog constitutes the second most extensive soil unit. During the dry season, this 

soil cracks forming massive blocks with irregular cleavage. It is widely scattered in several parts of the 

plain, but the large areas of the type are in Narvacan, Cabugao, Candon, Sta. Maria, Sta. Lucia, 

Banayoyo and Tagudin. It covers 24 480.04 hectares or 10.02 percent of the mapped soils in the 

province. Generally, this soil occupies lower elevations than the San Manuel silt loam. Of all the soils 

of Ilocos Sur, this soil series has the highest pH, going into the alkaline side. This makes the maximum 

expected yield of rice impossible if left unmanaged (BSWM, 1954).  
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Arenosols 

This soil type consists mainly of sand mixed with some hummus or clay and is commonly found in 

arid and tropical regions (ISRIC). In the province, this is the beach sand soils. This occurs in the 

different locations along the coast from north to south of the province, with a mapped area of 

1,484.31 hectares or 0.61 percent. There is little importance of agriculture production in this type of 

soil (BSWM, 1954. 

 

Regosols 

Regosols are the type of soil that could not be accommodated in any other Reference Soil Group. This 

occurs in eroding lands of arid and semi-arid areas and in mountain regions (ISRIC). The local name 

for this is the river wash. The land under this type consists of stony, gravelly, and sandy material that is 

generally bare and useless for plants. This has a mapped area of 2,566.24 hectares or 1.05 percent 

(BSWM, 1954. 

 

  

 
Soil map of Ilocos Sur Province (lowlands only) based on World Reference Based for Soil Resources 
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Appendix C. Preprocessing of Sentinel-1 

The whole preprocessing of Sentinel-1 data was done in the NRS Dunne server using the following 

steps in SNAP v.8: 

 

B.1 TOPS Split Used to select the interferometric swath (IW) in the image. IW2 was selected for 

Sentinel-1 B, and IW3 was selected for Sentinel-1 A products. VV and VH polarizations were also 

selected in the processing parameters.  

 

B.2  Apply Orbit File This improved the geolocation accuracy of the retrieved image.  

 

B.3 Calibration to Beta0  Normalized the backscatter signal to beta0 band and derived reliable radar 

backscattering coefficients. 

 

B.4 TOPSAR Deburst  Removed the seamlines in the image. 

 

B.5 Radiometric Terrain Flattening  This process performed the radiometric correction. “SRTM 3Sec” 

was selected as the digital elevation model, bilinear interpolation as the DEM resampling method, and 

the other parameters were set to default. This method produced the Gamma0 band. 

 

B.6 Speckle filtering  This reduced the speckle amount resulting from the resampling method of 

radiometric terrain flattening. Refined Lee was used as the filter. This filter averaged the image while 

the edges are preserved. 

 

B.7 Range doppler Terrain Correction  This geocoded the image by correcting SAR geometric 

distortion using DEM. This method produces a projected image. “SRTM 3Sec” was also the DEM 

used in the image, and the other parameters were set at default. 

 

B.8 Linear to dB: After getting the final gamma0 bands, they were converted from linear to dB and 

saved.  

 

B.9 Exporting of Gamma0 bands The final gamma bands in dB units were exported in 

GeoTIFF/BigTIFF format. This resulted in one raster file having two bands—Gamma0 in VH for the 

first band and GammaVV in VV for the second band. 

 

B.10 Generating Gray Level Co-occurrence Matrix (GLCM) Features For processing parameters, only 

the Gamma0 in dB bands were used with a 5x5 window size, quantification into 32 bins, and the other 

parameters were set as default. Furthermore, nine features were selected. This results in a product with 

18 bands (9 features in VV and 9 for VH polarization) with 13.89m spatial resolution. 

 

The selected features were contrast, dissimilarity, homogeneity, energy, max, entropy, GLCM mean, 

GLCM variance, and GLCM correlation. The Angular Second Moment (ASM), which was on the list 

for generating the GLCM features on SNAP, was not included due to its similar definition to energy. 

 

B.11 Exporting the GLCM features. This process was different from the earlier export of Gamma0 

bands. When the GLCM features were created on the product, it will automatically remove the 

Gamma0 bands and replace them with the generated GLCM features. The GCLM features were also 

exported into GeoTIFF/BigTIFF file format resulting in one raster file having 18 bands: 9 bands for 

GLCM in VH polarization and nine bands for GLCM in VV polarization. Table 6 shows the bands of 

the output raster file. 
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B.12. Processing in ArcMap 

B.12.1 Setting No Data Values Each band of the raster file was extracted to process them individually. 

A raster calculator in ArcMap was used to set the No Data value (-9999). 

 

B.12.2 Mosaicking The images were mosaicked using the cell statistics function in ArcMap to make the 

image pairs as one image. 

 

B.12.3 Reprojection and resampling The mosaicked images were reprojected to WGS84 UTM Zone 

51N. The image was resampled into 10 x 10-meter spatial resolution using the nearest neighbor 

resampling method. 

 

B.12.4 Clipping to Study Area The administrative boundary of the Province of Ilocos Sur was used as a 

mask to extract the study area. The function is used as an extract by mask in ArcMap. This function is 

essential because the random forest classification reads and transforms the images into a data frame, so 

each image must have the same extent and cell size. 
  



 

61 

 

 

Appendix D. Preprocessing of Sentinel-2 

Preprocessing of Sentinel-2 MSI Level 1 data was done in SNAP using Sen2Cor. Sen2Cor is a 

processor for Sentinel-2 Level 2A product generation and formatting; it performs the atmospheric-, 

terrain and cirrus correction of Top-Of- Atmosphere Level 1C input data. In addition, Sen2Cor creates 

Bottom-Of-Atmosphere, optionally terrain- and cirrus corrected reflectance images; additional, 

Aerosol Optical Thickness-, Water Vapor-, Scene Classification Maps and Quality Indicators for cloud 

and snow probabilities (ESA, n.d). 

 

C.1 Sen2Cor processing Sen2Cor version 2.5.5 plugin was first installed in SNAP, and the environment 

settings for this plugin were set in the local directory. Then, the downloaded images were opened in 

SNAP. In the processing parameters, “all” was chosen in the resolution, and the remaining parameters 

are set to default. The result of this is the Level 2-A of the product. 

 

C.2 Resampling Using the resampling tool in SNAP, the Level 2A products were resampled to 10m 

resolution.   

 

C.3 Exporting into GeoTIFF and BigTIFF All the bands (B1 to B12) were exported into 

GeoTIFF/BigTIFF file format. Which results in a raster file with 12 bands. 

 

C.4 Generating indices related to soil salinity Seventeen indices were explored in relating soil salinity to 

optical remote sensing. In ArcMap, bands 2, 3, 4, and 8 of Sentinel-2 Level 2A products were used to 

generate the indices using the raster calculator tool. These bands correspond to the Blue (B), Green 

(G), Red (R), and Near-Infrared (NIR) regions of the electromagnetic spectrum, as shown in Table 9. 

Raster calculator tool in ArcMap was used to generate the indices based on the following formulas 

shown in Table 10. 
  



 

62 

 

 

Appendix E. Preprocessing of Landsat-8 

The formula used to convert the digital number in Band 11 (Thermal Infrared 1) into radiance is 

 

D.1 Converting a digital number to radiance 

The formula used to convert digital number into radiance is 

 

𝐿𝜆 = 𝑀𝐿𝑄𝑐𝑎𝑙 + 𝐴𝐿 

 

Where  Lλ is the top of atmosphere (TOA) spectral radiance 

  𝑀𝐿 is the band-specific multiplicative rescaling factor from the metadata  

(radiance-multi-band) 

  𝑄𝑐𝑎𝑙 is the quantized and calibrated standard product pixel values (DN) 

  𝐴𝐿 is the band-specific additive factor from metadata (radiance-add-band) 

 

Therefore, for Lλ of the study area, the applied formula for Landsat-8 is 

 

Lλ=(0.0003342*Band10+0.1) 

  

The same formula was applied in Band 11 

 

D.2 Converting radiance to brightness temperature 

This step uses the thermal constant (K values) given in the metadata file. The formula used is 

 

𝑇 =
𝐾2

ln(
𝐾1
𝐿𝜆

+ 1)
− 273.15 

 

Where T is the At-satellite brightness temperature in Kelvin 

  Lλ TOA spectral radiance result from step 2.a 

  K_1 and K_2 are the band-specific conversions from the metadata 

 

Therefore, for T of the study area, the applied formula for Landsat-8 is 

 

𝑇𝐵10 = (
1321.0789

ln (
774.8853
𝐿𝜆𝐵10

+ 1)
− 273.15) 

 

𝑇𝐵11 = (
1201.1442

ln (
480.8883
𝐿𝜆𝐵11

+ 1)
− 273.15) 

 

D.3 Calculating Mean Statistics 

This step calculated the average temperature of both T_B10 and T_B11 using the Cell Statistics Tool 

and selected the mean statistics option. 

 

D.4 Calculating the NDVI 

The NDVI was calculated using ((Band5-Band4))/((Band5+Band4)) 

 

The maximum and minimum values of NDVI for both images are 1 and -1, respectively. 
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D.5 Calculating proportion of vegetation 

This was calculated using the NDVI values by the formula 

 

𝑝𝑣 = (
𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛
)2 

 

 

D.6 Deriving Land Surface Emissivity (LSE) 

The formula for LSE is  

 

LSE=float(0.004*pv+0.986) 

 

D.7 Calculating Land Surface Temperature 

Using equation 8, the LST was calculated using step B.2 as a substitute for BT, that is, brightness 

temperature in Celsius and the output of B.6 to replace e or emissivity. Using a raster calculator, the 

LST was calculated using the formula 

𝐿𝑆𝑇 = (
𝑇𝐵10

(1 + 𝐵10 ∗
𝑇𝐵10
14380) ∗ 𝑙𝑛𝐿𝑆𝐸

) 

 

 

D.8 Processing in ArcMap 

After generating the LST raster data, the further processing of the image includes setting no data 

values, mosaicking, reprojection, resampling, and clipping to the study area. Refer to sub-sections C.1 

to C.4 of section 3.4.1 for the methods used. Furthermore, the mean of two generated LSTs was 

calculated using the cell statistics tool. 
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Appendix F. Protocol on Soil Sampling 

Protocol on Soil Sampling 

Soils Survey Division 

Bureau of Soils and Water Management 

Philippines 

 

I. Pre-field Survey Activities 

• Coordination with stakeholders (DA-RFOs, LGUs, and partner agencies) 

• Preparation of base maps (topographic maps of 1:50,000 scale) 

• Procurement and preparation of office and field supplies and materials 

II. Field Survey Activities 

1. Preparation of materials, tools, and equipment 

• Soil auger 

• Shovel 

• Bolo 

• Soil sampling bags 

• Pail 

• Sack (for mixing and quartering) 

• Notebook and pens 

• Camera 

• Handheld GPS (or mobile tablets with GPS applications) 

• Interview Forms 

• Field maps 

2. Courtesy call with LGUs or barangay officials – upon meeting the stakeholders, 

determine the following: phenological stages of standing rice and area without 

fertilizer application 

3. Rice Boundary verification/validation – verify/check the location in the GPS and 

field map, observe the surroundings and check the differences in land use, slope, 

topography, and soil drainage in the area and further segregate the boundary 

delineation in the working sheet 

4. Collecting soil samples 

a. Homogenous Area – should there be homogeneity in land use and topography, 

collect one composite soil sample in 10 random sampling areas covering 50 hectares 

b. Heterogenous Area – if there is heterogeneity in land use and topography, the 

minimum area may be less than 50 hectares. Collect one composite soil sample in 3-5 

sampling points and trace the separation delineation 

• Using the soil auger - To break through the soil, push the soil auger 

downwards, rotating clockwise until the auger becomes loose, indicating that 

it is already full. Slowly pull the auger upward. Repeat the procedure until the 

desired depth (30 cm) is reached 

• Using the shovel - Remove the litter on top of the soil. Dig a “V-cut” hole at 

an approximately plow depth of 30 cm. From the newly exposed soil surface, 

get a slice of a soil sample, approximately 2 cm thick and 10 cm wide. 

• Gently remove the soil sample and place it in a pail. Repeat the procedure 

until the appropriate number of sampling points is reached. 

• Pour the collected soil samples taken from different sampling points into a 

sack, break the clods, and mix thoroughly. 
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• Conduct the quartering method and repeat this procedure for each sampling 

area until 1 kg of the composite soil sample is produced. 

• Place the 1kg of the composite soil sample in the sampling bag, tightly seal 

the bag with a rubber band and label it with sampling number, date, location, 

land use (irrigated or not), and farmer’s name (if available) 

 

Note: the following should be avoided when taking soil samples: 

1. Withstanding crop except when they are all ready for harvest 

2. With weeds, shrubs, and animal manure 

3. Near or beside a garbage pile, drainage system, irrigation canal, and road network 

 

5. Management of soil samples 

• Upon return from the field, prepare a master list of all samples collected 

within the day and submit/endorse the samples to the soil testing supervisor 

• Air-dry the soil samples and grind them. Sieve the ground soil samples using 

a 2mm mesh 

• Divide the soil samples into two, one for submission for complete (routine 

analysis) and one for soil testing using Soil Test Kit and place them on their 

respective sampling bags 

• Submit/endorse the soil samples to the Regional Soils Laboratory or soil 

testing supervisor 
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Appendix G. Python Script for Random Forests regression 

""" 

Title: Random Forests Regression for Predicting Soil Salinity 

Created on Tue Jan 19 07:44:34 2021 

@author: SarahJoey 

contact: s.j.salgado@student.utwente.nl 

 

Welcome 

This script is intended for the assessment of spatial variability of soil salinity 

in coastal agricultural areas in the Province of Ilocos Sur, Philippines 

using satellite data derived from Sentinel-1, Sentinel-2 and Landsat-8 

and field data taken from the DA- BSWM. 

""" 

 

#Importing plugins 

import os 

import sys 

from datetime import datetime 

import matplotlib.pyplot as plt 

import numpy as np 

import pandas as pd 

import random 

from pylab import hist2d 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import mean_squared_error 

from RF_Functions import file_path_check, read_tif, Run_RF, writeTiff, cal_ubrmse 

from joblib import dump 

from scipy.stats import pearsonr 

 

# time (start running) 

time_0 = datetime.now() 

start_time = time_0.strftime("%Y-%m-%d %H:%M:%S") 

print('Program start running at: %s. ' % start_time) 

 

''' 

Step 1. Specifying the working path. 

''' 

# Set the working path 

print('-- Step 1. Specifying the working path: Started! --') 

work_path = r'D:\Data\Personal\s2245531\RANDOMFOREST_21Apr' 

user_name = 'Sarah Joey Salgado' 

os.chdir(work_path) 

satellite_folder = 'sensor' 

output_folder = 'result_train_MSDA_2' 

if not os.path.exists(output_folder): 

    os.mkdir(output_folder) 

print('-- Step 1. Setting the work path: Completed! --\n') 

 

''' 

Step 2. Reading the excel data and transforming into pandas dataframe 
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''' 

print('-- Step 2. Read the excel data: Started! --') 

# read excel data  

file_insitu = 'in_situ\\extracted_26May.xls' 

df_insitu = pd.read_excel(file_insitu, sheet_name='Sheet3') # Transformed into pandas 

print('--Step 2. Read the excel data: Completed --\n') 

 

''' 

Step 3. Train and test the excel data 

''' 

print('-- Step 3. Train and test the Random Forest Regression Model: Started! --') 

df_insitu = df_insitu.dropna() 

# set the labels 

labels = np.array(df_insitu['EC']) 

features = df_insitu.drop('EC', axis=1) 

 

# remove the labels from the features 

features = features.drop('ID', axis=1) 

 

# dropping non-significant variables 

feature_list = list(features.columns) 

features = np.array(features) 

 

# Randomly split the features and labels . 

train_features, test_features, train_labels, test_labels = train_test_split(features, labels, test_size=0.25, 

random_state=42) 

# Run the random forest regression model 

rf_model = Run_RF(train_features, test_features, train_labels, test_labels, feature_list, output_folder) 

rf, predictions, importances, std, indices, rmse, r2, r = rf_model.train_model() 

# Calculate the Unbiased Root Mean Square Error of the test model. 

ubrmse, a_mean, b_mean = cal_ubrmse(test_labels, predictions) 

print('Test of the model:') 

print('rmse: %.2f. \n ubrmse: %.2f' % (rmse, ubrmse)) 

 

# Save the trained RF model. 

file_model = os.path.join(output_folder, 'RF_model_new_multi2.joblib') 

dump(rf, file_model) 

print('-- Step 3. Train and test the model: Completed!\n') 

 

'''-- Step 4. Draw the figure and save the result''' 

# Save the result 

print('-- Step 4. Showing Result and draw figures: started! --') 

file_txt = os.path.join(output_folder, 'result.txt') 

f1 = open(file_txt, 'w') 

f1.write("**** This is %s's running result of the RF model ****" % user_name) 

f1.write('\nStart running at: %s\n' % start_time) 

#  sort the feature_list 

feature_list_new = feature_list.copy() 

for idx in np.arange(len(feature_list)): 

    feature_list_new[idx] = feature_list[list(indices)[idx]] 
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# print the feature importances: 

f1.write('--- Train the model, importance of features ---') 

for count_k in np.arange(len(indices)): 

    print('Feature: %s, Importance: %.2f' % (feature_list_new[indices[count_k]], 

importances[indices[count_k]])) 

    f1.write('\nFeature: %s, Importance: %.2f' % (feature_list_new[indices[count_k]], 

importances[indices[count_k]])) 

 

f1.write('\n ---Test the model ---') 

print('\nMetrics:'), f1.write('\nTest the Model:') 

print("RMSE: %.2f [saturation degree]" % rmse), f1.write("\nRMSE: %.2f [saturation degree]" % 

rmse) 

print("r2: %.2f" % r2), f1.write("\nr2: %.2f" % r2) 

print("Pearson correlation coefficient: %.2f" % r), f1.write("\nPearson correlation coefficient: %.2f" % 

r) 

 

# Show the Images of Importance of Features 

plt.figure() 

plt.title("Importance of features") 

plt.bar(range(train_features.shape[1]), importances[indices], 

        color='b', yerr=std[indices], align='center') 

# set the x labels 

plt.xticks(range(train_features.shape[1]), feature_list_new) 

plt.xlim(-1, train_features.shape[1]) 

 

# Add the xlabel and ylabel 

plt.xlabel('Name of features') 

plt.ylabel('Relative importance [%]') 

out_name = os.path.join(output_folder, 'Feature_Importances.png') 

plt.savefig(out_name) 

# plt.pause(5)  # Show 5 seconds 

plt.close() 

 

#making a scatterplot 

x = test_labels 

y = predictions 

colors = (0,0,0) 

area=np.pi*3 

plt.scatter(x,y,s=area,c=colors,alpha=0.5) 

plt.title('Multi-sensor Data Association') 

plt.xlabel('Field-measured EC') 

plt.ylabel('Predicted soil salinity') 

plt.savefig(os.path.join(output_folder, 'Scatterplot of Soil Salinity.png')) 

plt.close() 

print('-- Step 4. Draw the figure and save the result: Completed!\n') 

 

 

''' 

--Step 5. Read and load satellite data-- 

''' 
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# Set the file path 

print('-- Step 5.1. Reading and loading satellite data: Started! --\n') 

 

# Set the file path 

file_enervh = 'sensor\\enervh.tif' 

file_rvi = 'sensor\\rvi.tif' 

file_savi = 'sensor\\savivi.tif' 

 

# Set the file path for Soil Properties Data (Ancillary) 

file_bk = 'prop\\bk.tif' 

file_silt = 'prop\silt.tif' 

file_sand = 'prop\\sand.tif' 

file_clay = 'prop\\clay.tif' 

file_ph = 'prop\\ph1.tif' 

file_mois = 'prop\\2019_mois.tif' 

 

# Set the file path for geographical data 

file_dem = 'prop\\dem.tif' 

file_long = 'prop\\longitude_null1.tif' 

file_lat = 'prop\\latitude_null1.tif' 

 

# Set the file path for climate data 

file_ppt = 'prop\\2019_ppt.tif' 

file_tave = 'prop\\2019_tave.tif' 

 

# Check the file path 

file_path_check([file_enervh, file_rvi, file-savi, 

                 file_bk, file_silt, file_sand, file_clay, file_ph, file_mois, 

                 file_dem, file_long, file_lat, 

                 file_ppt, file_tave]) 

print('-- Step 5.1. Setting the file path: Completed! --\n') 

 

# Read the data 

print('--Step 5.2. Read the data: Started!--') 

 

# read the data [important features] 

ds_enervh = read_tif(file_enervh) 

ds_rvi = read_tif(file_rvi) 

ds_savi = read_tif(file_savi) 

 

# read the data [Bulk Density, DEM] 

ds_bk, ds_dem = read_tif(file_bk), read_tif(file_dem) 

ds_bk = (ds_bk[0] * 0.001, ds_bk[1], ds_bk[2], ds_bk[3], ds_bk[4], ds_bk[5])  

# The scale of Bulk Density is 0.001 ; construct a new tuple 

 

# read the data [Soil Texture: Sand, Silt, Clay] 

ds_sand = read_tif(file_sand) 

ds_silt = read_tif(file_silt) 

ds_clay = read_tif(file_clay) 
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# read the data [pH and moisture] 

ds_ph =  read_tif(file_ph) 

ds_mois = read_tif(file_mois) 

 

# read the data [geographical data] 

ds_long = read_tif(file_long) 

ds_lat = read_tif(file_lat) 

 

# read the data [climate] 

ds_ppt = read_tif(file_ppt) 

ds_tave = read_tif(file_tave) 

print('--Step 5.2. Read the data: Completed!--') 

 

''' 

Step 6. Reformat the Array into pandas data frame 

''' 

#  list of the data and name for convenience. 

print('-- Step 6. Reformat the data: started! --') 

series_data = [ds_enervh, ds_rvi, ds_savi] 

series_data_list = ['enervh', 'rvi', 'savi']  

                                                             

property_data = [ds_bk, ds_dem, ds_sand, ds_silt, ds_clay, ds_ph, ds_mois, ds_long, ds_lat, ds_ppt, 

ds_tave] 

property_data_list = ['bk', 'dem', 'sand', 'silt', 'clay', 'ph', 'mois', 'long', 'lat', 'ppt', 'tave'] 

     

# Set the column list of the data frame 

columns_list = ['enervh', 'rvi', 'savi', 

                'bk', 'dem', 'sand', 'silt', 'clay', 'ph', 'mois', 'lat', 'long', 'ppt', 'tave'] 

 

# Initialize the data frame 

df_all = pd.DataFrame(columns=columns_list) 

df_all = df_all.dropna() 

 

print('Allocating DataFrame of', len(columns_list), 'columns') 

# Obtain the time-series data 

col = 1 

for idx, column in enumerate(series_data_list): 

    item = series_data[idx] 

    data = item[0] 

    pixels_x = item[1] 

    pixels_y = item[2] 

    nr_bands = item[3] 

    print('[',col,'/',len(columns_list),'] Filling column', column, 'with timeseries of', pixels_x, '*', pixels_y, 

'pixels *', nr_bands, 'bands =', pixels_x * pixels_y * nr_bands, 'samples') 

    df_all[column] = data.transpose().flatten() 

    col = col + 1 

 

# Obtain the 'stable'data 

for idx, column in enumerate(property_data_list): 

    item = property_data[idx] 
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    data = item[0] 

    pixels_x = item[1] 

    pixels_y = item[2] 

    print('[',col,'/',len(columns_list),'] Filling column', column, 'with fixed data of', pixels_x, '*', pixels_y, 

'pixels expanded to', nr_bands, 'bands =', pixels_x * pixels_y * nr_bands, 'samples') 

    df_all[column] = data.transpose().flatten().repeat(nr_bands) 

    col = col + 1 

print('-- Step 6. Reformat the data: Completed!--\n')               

 

''' Predicting soil salinity''' 

print('-- Step 6. soil Salinity Prediction: started! --') 

lines = ds_rvi[0][0, :].shape[0] #most important feature 

columns = ds_rvi[0][0, :].shape[1] 

 

# format the features into a line 

 

enervh_a_line = ds_enervh[0].reshape(1, lines * columns) 

enervh_a_line[ds_enervh ==-3.40282346639e+038] = 0 

rvi_a_line = ds_rvi[0].reshape(1, lines * columns) 

rvi_a_line[ds_rvi ==-3.40282346639e+038] = 0 

savi_a_line = ds_savi[0].reshape(1, lines * columns) 

savi_a_line[ds_savi ==-3.40282306074e+038] = 0 

 

bk_a_line = ds_bk[0].reshape(1, lines * columns) 

bk_a_line[ds_bk ==32767] = 0 

clay_a_line = ds_clay[0].reshape(1, lines * columns) 

clay_a_line[ds_clay ==32767] = 0 

dem_a_line = ds_dem[0].reshape(1, lines * columns) 

dem_a_line[ds_dem ==-3.40282306074e+38] = 0 

ph_a_line = ds_ph[0].reshape(1, lines * columns) 

ph_a_line[ds_ph ==32767] = 0 

sand_a_line = ds_sand[0].reshape(1, lines * columns) 

sand_a_line[ds_sand ==32767] = 0 

silt_a_line = ds_silt[0].reshape(1, lines * columns) 

silt_a_line[ds_silt ==32767] = 0 

 

lat_a_line = ds_lat[0].reshape(1, lines * columns) 

lat_a_line[ds_lat ==-3.40282306074e+038] = 0 

long_a_line = ds_long[0].reshape(1, lines * columns) 

long_a_line[ds_long ==-3.40282306074e+038] = 0 

 

mois_a_line = ds_mois[0].reshape(1, lines * columns) 

mois_a_line[ds_mois ==-3.40282306074e+038] = 0 

ppt_a_line = ds_ppt[0].reshape(1, lines * columns) 

ppt_a_line[ds_ppt ==-3.40282306074e+038] = 0 

tave_a_line = ds_tave[0].reshape(1, lines * columns) 

tave_a_line[ds_tave ==-3.40282306074e+038] = 0 

 

# concatenate the lines 

ms1_feature_arr = rvi_a_line.copy() 
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ms1_feature_arr = np.concatenate((ms1_feature_arr, enervh_a_line), axis=0) 

ms1_feature_arr = np.concatenate((ms1_feature_arr, savi_a_line), axis=0) 

 

ms1_feature_arr = np.concatenate((ms1_feature_arr, bk_a_line), axis=0) 

ms1_feature_arr = np.concatenate((ms1_feature_arr, clay_a_line), axis=0) 

ms1_feature_arr = np.concatenate((ms1_feature_arr, dem_a_line), axis=0) 

ms1_feature_arr = np.concatenate((ms1_feature_arr, mois_a_line), axis=0) 

ms1_feature_arr = np.concatenate((ms1_feature_arr, ph_a_line), axis=0) 

ms1_feature_arr = np.concatenate((ms1_feature_arr, sand_a_line), axis=0) 

ms1_feature_arr = np.concatenate((ms1_feature_arr, silt_a_line), axis=0) 

 

ms1_feature_arr = np.concatenate((ms1_feature_arr, lat_a_line), axis=0) 

ms1_feature_arr = np.concatenate((ms1_feature_arr, long_a_line), axis=0) 

 

ms1_feature_arr = np.concatenate((ms1_feature_arr, ppt_a_line), axis=0) 

ms1_feature_arr = np.concatenate((ms1_feature_arr, tave_a_line), axis=0) 

 

# transpose the array 

ms1_feature_arr = ms1_feature_arr.transpose() 

test_ms1_ss = rf.predict(ms1_feature_arr) #prediction of salinity 

test_ms1_ss = np.nan_to_num(test_ms1_ss) 

test_ms1_ss_rs = test_ms1_ss.reshape(lines, columns) 

 

 

# get the prediction result and create soil salinity map 

proj = ds_rvi[5] 

proj = proj.__call__() 

file_soilsalinity = os.path.join(output_folder, 'multisensor soil_salinity.tif') 

writeTiff(test_ms1_ss_rs, columns, lines, 1, ds_enervh[4], proj, file_soilsalinity) 

print('-- Step 6. Soil Salinity Prediction: completed! --') 

 

# time (end running) 

time_1 = datetime.now() 

end_time = time_1.strftime("%Y-%m-%d %H:%M:%S") 

print('program end running at: %s.' % end_time), f1.write('\nEnd running at: %s.' % end_time) 

time_consuming = (time_1 - time_0).seconds 

print('It takes %d seconds to run this scripts' % int(time_consuming)) 

f1.write('\nIt takes %d seconds to run this scripts' % int(time_consuming)) 

f1.write("\n**** This is %s's running result of the RF model ****" % user_name) 

f1.close() 
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Appendix H. Predicted Soil Salinity in Different Municipalities Using OMSP Model 

Municipality 

Multi-sensor Data Fusion 

Low 
Moderately 

Low 
Moderately High High 

Total Area, 

ha 

Alilem 118.15 - - - 118.15 

Banayoyo 132.84 - - - 132.84 

Bantay 222.04 0.23 - - 222.27 

Burgos 488.80 - - - 488.80 

Cabugao 364.71 23.69 - - 388.40 

Caoayan 132.64 7.32 0.50 - 140.46 

City of Candon 846.70 15.88 0.30 - 862.88 

City of Vigan 235.07 10.72 - - 245.79 

Galimuyod 108.98 - - - 108.98 

Gregorio del 

Pilar 
6.70 - - - 6.70 

Lidlidda 85.31 - - - 85.31 

Magsingal 531.04 - - - 531.04 

Nagbukel 94.11 - - - 94.11 

Narvacan 641.71 0.79 - - 642.50 

Quirino 75.27 - - - 75.27 

Salcedo 91.32 - - - 91.32 

San Emilio 47.51 - - - 47.51 

San Esteban 102.09 0.10 - - 102.19 

San Ildefonso 64.72 - - - 64.72 

San Juan 316.74 4.70 - - 321.44 

San Vicente 155.11 4.07 - - 159.18 

Santa 300.23 39.18 9.61 - 349.02 

Santa Catalina 138.60 7.27 - - 145.87 

Santa Cruz 368.00 1.44 - - 369.44 

Santa Lucia 251.97 1.80 - - 253.77 

Santa Maria 661.41 19.37 - - 680.78 

Santiago 170.36 1.49 - - 171.85 

Santo Domingo 586.16 3.34 - - 589.50 

Sigay 14.77 - - - 14.77 

Sinait 151.82 14.71 - - 166.53 

Sugpon 47.91 - - - 47.91 

Suyo 26.93 - - - 26.93 

Tagudin 83.84 - - - 83.84 

Total area, ha 7,663.56 156.10 10.41 0.00 7830.07 
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Appendix I. Predicted Soil Salinity in Different Municipalities Using MSP Model 

Municipality 

Multisensor Data Association 

Low 
Moderately 

Low 
Moderately High High 

Total Area, 

ha 

Alilem 118.15 
   

118.15 

Banayoyo 121.6 
 

11.24 
 

132.84 

Bantay 202.52 
 

19.7 
 

222.22 

Burgos 489.9 
   

489.9 

Cabugao 389.1 0.02 0.51 
 

389.63 

Caoayan 43.8 6.8 89.59 
 

140.19 

City of Candon 593.6 13.21 256.04 
 

862.85 

City of Vigan 179.63 8.6 56.89 
 

245.12 

Galimuyod 108.83 
   

108.83 

Gregorio del 

Pilar 

6.7 
   

6.7 

Lidlidda 85.2 
   

85.2 

Magsingal 484.83 
 

46.12 
 

530.95 

Nagbukel 94.44 
   

94.44 

Narvacan 550.91 0.9 92.16 
 

643.97 

Quirino 75.45 
   

75.45 

Salcedo 91.02 
   

91.02 

San Emilio 47.57 
   

47.57 

San Esteban 74.68 
 

27.61 
 

102.29 

San Ildefonso 60.21 
 

4.38 
 

64.59 

San Juan 272.36 3.71 45.45 
 

321.52 

San Vicente 69.87 3.96 86.01 
 

159.84 

Santa 90.63 34.19 220.85 4.01 349.68 

Santa Catalina 26.47 6.24 112.5 
 

145.21 

Santa Cruz 298.15 2.5 69.02 
 

369.67 

Santa Lucia 215 1.8 35.28 
 

252.08 

Santa Maria 591.31 8.77 80.74 
 

680.82 

Santiago 157.9 0.73 13.88 
 

172.51 

Santo Domingo 572.47 0.94 12.8 
 

586.21 

Sigay 14.92 
   

14.92 

Sinait 143.34 8.16 14.73 
 

166.23 

Sugpon 47.79 
   

47.79 

Suyo 28.62 
   

28.62 

Tagudin 77.94 5.7 
  

83.64 

Total area, ha 6,424.91 106.23 1,295.50 4.01 7,830.65 

 

 


