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ABSTRACT 

Information on crop production estimates is the basis for supporting the current and future food security 

initiatives, especially for developing countries. However, for most developing countries obtaining crop 

production estimates is a challenge due to several reasons. One of the reasons is a challenge in identifying 

and extracting information about the extent and location of agricultural areas. These agriculture areas have 

different characteristics that make them challenging to quantify their extent.   For instance, in Ethiopia's 

Oromia region, the arable fields are characterized by small size, irregular shape, often trees inside fields, 

irregular cropping patterns, and heterogeneity in weather conditions. These challenges increase the 

uncertainty in the delineation of the field extent. In this research, a combined method is developed to map 

arable field fractions with opensource earth observation data that minimize the uncertainty in estimating the 

field extent. Gradient boosted and Classical GAM models used with Sentinel-1 backscatter matrices, 

Sentinel-2 optical, topographic features, and hyper temporal images (i.e., Proba-V).  The hyper-temporal 

imagery is used primarily to extrapolate a 1km NDVI (i.e., a 1km arable field fraction map is extrapolated 

and used as an input variable for the model). The hyper-temporal images are also used for identifying the 

wet and dry seasons for downloading Sentinel-1&2 image features. Eight Sentinel-1 image features (i.e., dry 

and wet season VV (Vertical transmit, Vertical receive), VH (Vertical transmit, Horizontal receive), VV/VH 

ratio, and NRMP) and eleven Sentinel-2 optical image features (i.e., three red-edge bands, 2 SWIR, two dry 

and wet season NDVI, two dry and wet season Normalized Difference Tillage Index (NDTI), and two dry 

and wet season Land Surface Wetness Index (LSWI)) are used in the model. In addition to Sentinel-1&2 

image features, topographic variables (i.e., elevation, slope, relative DEM, and topographic wetness index) 

are included in the model. Gradient boosted regression is used to select the most important predictor 

variables, and the Classical GAM is used to predict arable field fractions from these important predictor 

variables. Based on the boosted GAM model and stability selection, six informative variables (i.e., dry season 

VH, elevation, red edge (Band-5), dry season VV/VH ratio, Slope, and a 1km arable field estimate) out of 

twenty-four explanatory variables are selected. The overall deviance of the model was 87%. The partial 

deviance explained by Sentinel-1 dry season VH was 33.3% which is the most explanatory variable in 

discriminating arable field fractions. The partial deviance of elevation, Band-5, 1km arable field fractions, 

slope and dry season VV/VH ratio was 17.2%, 14.4%,13.3%,6.2% and 3.34% respectively. Classical GAM 

is fitted with the most informative variables selected using the Gradient boost and stability selection method. 

Finally, a 20m arable field fraction map was extrapolated for the Oromia region. The developed method can 

be applied to extrapolate 20m arable field fractions for the rest regional states of Ethiopia and country-level 

wall-to-wall mapping by considering agroecological variations. 

 

Keywords: Hyper temporal Image, Sentinel-1 backscatter matrices, Sentinel-2 optical, Informative 

variables, Extrapolation 
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1. INTRODUCTION  
 

1.1.  Background Information and Justification 
 

Information on Crop Production estimates at district to national levels is a base for supporting the current 

and future planning of food security initiatives (See et al., 2015).  Agricultural information like arable land 

area, yield, and crop production estimates are crucial and the backbone for the development of the 

agricultural sector (FAO, 2017). This information is vital to Ethiopia, with 12 million smallholder farmers 

that contribute to 95 percent of the country's agricultural production (FAO, 2018). Most of the agricultural 

products are produced by smallholder farmers (Getahun, 2020). Ethiopia's estimated total population is 100.5 

million in 2015 (UNDP, 2018), and the economy depends on the agricultural sector, specifically on rainfed 

agriculture and smallholder farming (Demeke & Ferede, 2004). Therefore, to increase resilience in the 

economy and increase agricultural productivity, reliable agricultural information routinely plays a significant 

role.  

Agriculture production determines food availability, one of the five pillars of food security (Muzari, 2016). 

According to Muzari (2016), reducing poverty and food insecurity and increasing agricultural productivity 

have positive relationships. For instance, Thirtle & Piesse. (2003) indicate that the increment of 1% in crop 

yields reduces the number of economically poor people by 0.72% in Sub-Saharan Africa. Additionally, 

Jenkins (2005) finds a positive relationship between cereal crops and GDP per capita in developing countries. 

Therefore, agricultural productivity has a significant link with food security and depends on agricultural areas' 

productivity. 

Identifying and extracting information about the extent and location of agricultural areas are the fundamental 

steps for productive and sustainable agriculture (See et al., 2013). Under SDG (Sustainability Development 

Goal) 2.4.1, "the cropland within productive and sustainable agriculture are those farms that support the 

sustainability of the three dimensions (i.e., economic, social, and environmental dimensions)" (FAO, 2020b). 

The SDG 2.4.1 critically emphasized the importance of measuring the proportion of extent of land under 

sustainable agriculture and the overall extent of agricultural land area. Therefore, it is crucial to measure the 

countries agricultural area (i.e., arable field) to achieve sustainability in agriculture. 

The term arable field follows the definition of arable land (FAO, 2016), which states that" land under temporary 

crops (double-cropped areas counted only), and land under temporarily fallow (under less than five years)." After identifying 

the arable field, we can estimate the agricultural production, which is the actual yield per crop area (i.e., arable 

field) with the unit of Kgm-2 (Xiong et al., 2016). The authors indicate the essentiality of extracting arable 

fields to provide accurate arable field extent as baseline information, and this information is crucial for most 

African countries due to the absence of high-resolution crop land products.  

In Sub-Saharan Africa, arable fields size is very small (i.e., <2ha), there is also heterogeneity and sometimes 

indistinct field patterns (Debats et al., 2016). In Ethiopia, arable fields have different characteristics such as 
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an irregularity in crop calendar practice, higher topographic variation, non-contrasting irregular fields, and 

heterogeneity in weather conditions over shorter distances (Mohammed et al., 2020).  

In the Oromia region, Ethiopia, agricultural information obtained from the Central Statistics Agency (CSA), 

and the information was collected in 2002 by the traditional way of surveying techniques (IHSN, 2006); it is 

still challenging to conduct agricultural censuses throughout the country. Furthermore, traditional techniques 

are expensive, time-consuming, and labor-intensive (Marshall et al., 2019). For instance, the central statistics 

agency provides district-level information about the main agricultural crop products such as Teff (i.e., local 

crop name), barley, wheat, maize, and sorghum (Taffese et al., 2013). The expensiveness, labor intensiveness, 

and data type characteristics become a challenge to access timely and reliable agricultural information.  

The challenges in obtaining agricultural information can be acquired using the current data acquisition 

technology like remote sensing and mapping through using potential machine learning techniques. Different 

remote sensing data can be used for arable field mapping, and we have to choose which remote sensing data 

can fit our purposes. For instance, moderate resolution (20-30m) lacks some capability to map smallholder 

farms (McCarty et al., 2017). A high-resolution image can alleviate the coarse and moderate resolution image's 

feature identification problem, which is mixed pixel-spatial heterogeneity, and still, only a few scholars 

evaluate their effectiveness in mapping small fields (Crommelinck et al., 2016). According to Persello et al. 

(2019), accurate information of agricultural boundaries is possible using very high resolution (<5m) images 

of worldview 2/3. Generally, it's advantageous to consider the temporal, spatial, and spectral characteristics 

of remote sensing data to map the arable field. It is possible to use a different satellite image to get spectral, 

spatial, and temporal advantages. 

In general, Mapping arable fields requires a combination of remote sensing data with spatial and temporal 

characteristics additional to mapping methods(Haack & Bechdol, 1999). The current study focuses on the 

use of multisensor data like Sentinel-1 (i.e., backscatter matrices), sentinel-2 (i.e., red edge bands), topographic 

features (i.e., elevation, slope, Topographic Wetness Index), and 1km Proba-V NDVI. A 1km Proba-V is 

used to differentiate the wet and dry season periods and to prepare a 1km arable field estimate which is the 

important variable for predicting a 20m arable field fractions.  The main advantage of using Sentinel-1 image 

is obtaining cloud-free imageries (ESA, 2014). The sentinel-2 optical data is also important because the dry 

season red edge band can discriminate the vegetation cover from other land-use features (i.e., arable fields, 

water bodies, and urban land use) (Sun et al., 2020). Topographic data is used in this study because arable 

fields have strong relationships with topographic features (i.e., elevation and slope) (Husak et al., 2008). 

In this research, two GAMs models are used. The first one is gradient boosted GAM for selecting the most 

influential input variables. The second one is Classical GAM used for predicting a 20m arable field probability 

estimate. The classical GAM has flexibility in the statistical distribution of the data (Murase et al., 2009) and 

uses quasibinomial distribution. The quasibinomial distribution considers overdispersion (i.e., the variability 

of the input datasets, especially if there are zero and one value in the input data set) (Elder et al., 1999). The 

research explores the potential of Sentinel-1, Sentinel-2, and topographic features in estimating 20m arable 

field fractions in the Oromia region, Ethiopia. Still know the regional level a 20m arable field fractions are 

not extrapolated by using sentine1 microwave, sentinel-2 optical, and topographic features for the Oromia 
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region. The developed method with multisensor remote sensing data can be applied to extrapolate 20m arable 

field fractions for the rest regional states' of Ethiopia as well as country-level wall-to-wall mapping of arable 

fields by considering agroecological zones and farming practices. 

1.2. Research Objectives and Questions 

1.2.1. General Objective 

 

The general objective is to map a 20m arable field probabilities in Ethiopia's fragmented landscape using 

Sentinel-1 microwave, Sentinel-2 optical, and a combination of Boosted and Classical GAM models. 

1.2.2. Specific Objectives and Questions 

 

Subobjective 1: To stratify the landscape along with general crop phenological cycles or crop productions 

                           (CPZs) with 1km Proba-V NDVI 

Subobjective 2: To estimate coarse (1km) resolution arable field fractions by integrating the a1km NDVI 

                           classes with agricultural statistics data. 

Subobjective 3: To determine the relative importance of Sentinel-1 (i.e., Backscatter matrices), Sentinel-2  

                           (i.e., Red edge & SWIR Bands), a 1km field fraction estimate and topographic features in  

                            estimating a 20m arable field fractions by using Gradient Boosted Generalized Additive 

                            Model.      

    Q 1. What percentage of field fraction variability can be explained by using a 1km field fraction  

            estimates?                      

    Q 2. What is the relative importance of Sentinel-1 backscatter matrices in estimating 20m  

             arable field probabilities? 

    Q 3. What is the relative importance of Sentinel-2 Red edge bands, dry and wet season NDVI 

             in estimating 20m arable field fractions? 

    Q 4. Do topographic features outperform other predictor variables in estimating 20m arable 

            field fractions? 

 

Subobjective 4: To evaluate the Gradient Boosted and classical GAM model in predicting arable field 

                          Fractions using out-of-sample data. 

    Q 5. Does the Gradient Boosted outperform Classical GAM in predicting arable field fractions 

            using out-of-sample data?    
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1.3.  Research Hypothesis 
 

1.3.1. H1  = Sentinel-1 backscatter matrices (i.e., dry season VH and VV/VH ratio) have a relatively higher 

importance in estimating 20m arable field fractions 

H0 = sentinel-1 backscatter matrices have relatively low importance in estimating 20m arable  

             field fractions. 

1.3.2. H1 = Sentinel-2 dry season NDVI variable have a relatively higher importance in estimating 20m 

arable field fractions. 

             H0 = Sentinel-2 dry season NDVI variable have relatively lower importance in estimating 20m  

             arable field fractions. 

1.3.3. H1 = Sentinel-2 wet season NDVI variable have a relatively higher importance in estimating 20m 

arable field fractions. 

H0 = Sentinel-2 wet season NDVI variables have relatively lower importance in estimating a 20m 

arable field fractions. 

1.3.4. H1= The feature importance rank of red edge bands of sentinel-2 is higher than the overall model 

variables. 

             H0= The feature importance rank of red edge bands of sentinel-2 is lower than the overall model  

             variables. 

1.3.5. H1= elevation and slope have relatively a higher feature importance rank in the estimation of 20m 

arable field probabilities. 

             H0= elevation and slope have relatively a lower feature importance rank for the estimation of 20m 

             arable field fractions.   

1.3.6. H1 = The Gradient Boosted outperform Classical GAM in predicting 20m arable field fractions.  

             H0 = The Boosted and Classical GAM effectively estimate 20m arable field fractions within tolerable  

             R2 and AUC. 
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2. LITERATURE REVIEW 
 

2.1 Multisensor Remote Sensing data 
 

Remote sensing is one of the current technologies that offer techniques in acquiring information related to 

agriculture, especially for providing agricultural information (Huang et al., 2018). Remote sensing has an 

advantage over the traditional way of acquiring information related to agriculture(Xie et al., 2008). The 

authors indicated one of the advantages of remote sensing is providing large spatial and repetitive coverage 

datasets. The other advantage of remote sensing is the accessibility of freely available datasets. Obtaining 

vital information from different spatial, spectral, and temporal resolutions requires integrating multisensor 

remote sensing data(Kulo, 2020). The aim of multisensor remote sensing data integration is to combine 

various remote sensing data from different sources with different spatial, temporal, and radiometric 

resolutions to deliver timely and reliable information is crucial for various mapping (Pastorino et al., 2021). 

Therefore, by integrating multisensory remote sensing data, we can identify and collect information about 

the arable field and estimate the total crop production. In this paper, multisensor remote sensing data like 

Hyper-temporal image, Sentinel-1 Microwave, Sentinel-2 optical, and topographic data are used to estimate 

20m arable field fractions. 

2.1.1 Hyper-temporal Image Analysis 

A hyper-temporal image is one of the hyper-temporal data that can be collected from fine temporal resolution 

(Scarrott et al., 2019). Hyper-temporal image is used to map potential land cover, for instance, for large areas 

cropland mapping and help to differentiate forest, pasture, and shrublands (Craig, 2001). Hypertemporal 

image analysis depends on the time-based spectral originated from large observational dates like hyper 

temporal image data that uses profile patterns to classify vegetation (strata) over a landscape (De Bie et al., 

2008). For instance, identifying agricultural areas with different vegetation classes and cropland that follow 

different crop calendars is possible using hyper-temporal images (De Bie et al., 2008). A good example of a 

hyper-temporal image is Proba-V, a global vegetation monitoring satellite with a 100m to 1km spatial 

resolution. Proba-V provides information on a 10-day temporal basis (Taffese et al., 2013). Identifying 

agroecological zones is possible based on a careful study of the temporal profile. Hyper temporal images like 

Proba-V, MODIS, and Spot vegetation enable us to understand the temporal dynamics by a trade of the 

spatial resolution (i.e., a loss regarding spatial resolution). Hyper temporal images exist in a courser resolution 

(>=250) and inefficient in identifying small to medium agricultural fields. Identifying fields is challenging due 

to the mixed pixel effect (Taffese et al., 2013). Not only courser resolution satellite imagery (e.g., Proba-V 

and MODIS) are used to produce land cover maps using the temporal advantage, and moderate resolution 

satellites like Landsat 8 use the time series of NDVI for mapping crop phenology (Salik & Karacabey, 2019). 
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2.1.2 Sentinel-1 Microwave 

Sentinel-1 is a constellation of two satellites, namely Sentinel-1A and Sentinel-1B (Filgueiras et al., 2019). The 

temporal resolution of sentinel-1 is six days, and it is one of the types of SAR (Synthetic Aperture Radar) 

sensors that provide time series backscatter matrices. "Backscatter is the portion of the outgoing radar signal 

that the target redirects directly back towards the radar antenna" (ESA, 2017). According to Nasirzadehdizaji 

et al. (2021), the backscatter signal is returned to the radar mostly influenced by vegetation and soil properties. 

In general, the radar data mostly used for agricultural purposes because of the penetration capacity of the 

radar signal into vegetation canopy and other natural features (Fawwaz et al., 2015). Vreugdenhil et al. (2020) 

also show the properties of backscatter matrices with the characteristics of vegetation and bare soil (Figure 

1). The authors indicated the horizontal backscatter (H) in vegetation greater than the backscatter in bare 

soils (Figure 1b). In VV (Vertical transmit, Vertical receive) polarization, the energy is equally scattered in all 

directions, and we can say that volume scattering is much higher in vegetation (Figure 1c). When energy is 

scattered in all directions, the relationship between the backscatter and the incidence angle becomes flat 

(Figure 1d). When the incidence angle increases, the backscatter volume will decrease (Figure 1a), and the 

relationship between the backscatter matrices and the incidence angle becomes steeper.   

 

Figure 1 The relationship of backscatter with bare soil and vegetation. 

Source: Adapted from Vreugdenhil et al. (2020)  

Sentinel-1 also provides information and potentially discriminates crop types by considering the backscatter 

intensity. For instance, SAR intensity in VH polarization can differentiate crop types (Sun et al.,  2020). The 

single and dual-polarization mode of Sentinel-1 backscatter matrices has different application areas and 

different backscatter responses from the land features (Table 1).  
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Table 1 Backscatter matrices and their application areas 

Backscatter 

matrices 

Name 

Spatial 

resolution/Exporting 

scale in GEE (m) 

Description Application and backscatter 

matrices characteristics with the 

land features 

HH Single 

Co-

polarization 

10/20 Horizontal 

transmit/Horizontal 

receive 

Mapping flooded vegetation and water 

classification (López-Caloca et al., 

2018) 

HV Dual-

band Cross-

polarization 

10/20 Horizontal 

transmit/vertical 

receive 

Applied on the areas which have weak 

backscatter signals, like sea surfaces 

(López-Caloca et al., 2018) 

VV Single 

Co-

polarization 

10/20 Vertical transmit/ 

Vertical receive 

Very sensitive to crop structure 

(Lemoine, 2018) and very sensitive to 

crop phenological stages 

(Nasirzadehdizaji et al., 2021a). 

VH Dual-

band Cross-

polarization 

10/20 Vertical 

transmit/Horizontal 

receive 

VH Increase with increasing of the 

vegetation cover and vice versa 

(Lemoine, 2018) and VH increase with 

leaf development of crop due to 

increase in volume scattering 

(Khabbazan et al., 2019) 

VV/VH 20 Backscatter ratio Important for pasture classification 

(Nicolau et al., 2021) 

 

The looking angle of a radar image also has a relationship with soil moisture, residue moisture, and residue 

cover (Mc Nairn et al., 2001). The authors indicated that the look angle radar also has different responses for 

different crop residues; for instance, the backscatter has different responses for barely and corn residues. The 

study used the backscatter signal as the response variable and the soil moisture, crop residue moisture, and 

crop cover as independent variables (Table 2). According to Mc Nairn et al. (2001), the backscatter (i.e., C-

VH) distinguishes the crop residue moisture and crop cover within the range of looking angle from 300 up 

to 500. This looking angle of the backscatter is similar to the Sentinel-1 incidence angle range (i.e., 29.10-460 

with the interferometric wide swath mode) (ESA, 2021).  
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Table 2 Backscatter matrices and their relationship with Soil moisture, Residue moisture, and Cover.  

Multiple  regression results for corn residue plots 

Scatterometer Configuration Multiple 
Regression 
Coefficient (R) 

  Independent Variables 

Soil Moisture 
(0-3 cm) 

Residue 
Moisture 

Residue Cover 

Look Direction Parallel to Residue Row Direction 

C-HH 20 0.448   ✓ * 

30 0.678 ✓  ✓ *  

40 0.833 ✓  ✓ *  

50 0.813 ✓  ✓ *  

C-VV 20 0.764  ✓  ✓ * 

30 0.714 ✓  ✓ *  

40 0.746  ✓ *  

50 0.763  ✓ *  

C-VH 20 0.838 ✓  ✓ *  

30 0.843 ✓  ✓ *  

40 0.887 ✓  ✓ * ✓  

50 0.865 ✓  ✓ * ✓  

Multiple  regression results for barley residue plots 

Look Direction Parallel to Residue Row Direction 

C-HH 20 0.701 ✓  ✓   

30 0.758    

40 NS ✓    

50 0.499 ✓   ✓ * 

C-VV 20 0.717 ✓ * ✓  ✓  

30 0.827 ✓ * ✓  ✓  

40 0.752 ✓ * ✓   

50 0.825 ✓ * ✓   

C-VH 20 0.741 ✓ * ✓   

30 0.777 ✓  ✓ * ✓  

40 0.751 ✓  ✓ *  

50 0.745 ✓ * ✓   

✓ Indicates significance at p value<.05 

             *     Indicates the largest contribution 

Source: Adapted from Mc Nairn et al., (2001) 
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2.1.3 Sentinel-2 Optical 

Sentinel-2 optical data has thirteen bands: one coastal aerosol, three visible, Red edge, NIR, and SWIR bands 

(He & Yokoya, 2018) and accessed with a different spatial resolution (Table 3).  Sentinel 2 satellite data are a 

potential source of arable field mapping. According to Gumma et al. (2020), arable field areas of different 

crop types mapping are possible using a sentinel 2 NDVI time series. In addition to the NDVI index, another 

index can be calculated from the sentinel-2 image; for instance, NDTI is vital for crop type classification and 

improve classification accuracy (Zhang et al., 2020).  Arable field mapping even possible by using the spectral 

bands of Sentinel-2 (i.e., Band 11 &12) and its spectral indices (i.e., NDWI) (Sun et al., 2020). Band 11 and 

12 are also essential in fine crop classification (Zhang et al., 2020a). The use of all available sentinel-2 bands 

gives more information and improves classification accuracy (Qiu et al., 2017). Based on the above evidence 

from the literature, Sentinel-2 Red and NIR are selected for creating vegetation indices. In addition to this, 

Red edge bands and SWIR bands are used as additional input variables. 

Table 3 Sentinel 2 image characteristics (the bands with the red colors are used in this study) 

Spectral 

Band/Names 

Center Wavelength 

(mm) 

Band width (mm) Spatial resolution 

B1 - Coastal aerosol 443 20 60 

B2 - Blue 490 65 10 

B3 - Green 560 35 10 

B4 - Red 665 30 10 

B5 - Vegetation Red 

Edge 

705 15 20 

B6 – Vegetation Red 

Edge 

740 15 20 

B7 – Vegetation Red 

Edge 

783 20 20 

B8 - NIR 842 115 10 

B8a – Narrow NIR 865 20 20 

B9 – Water vapor 945 20 60 

B10 – SWIR-Cirrus 1375 30 60 

B11 - SWIR 1610 90 20 

B12 - SWIR 2190 180 20 

Source: Adapted from He & Yokoya. (2018) 
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2.1.4 Topographic Data 

Other supplementary remote sensing data sets, like Topographic data (i.e., Elevation and Topographic 

wetness index), can also provide information in mapping an arable field. Topographic features are essential 

variables for the estimation of the crop area. For instance, high field fractions exist on the higher elevations 

(i.e., within the range of 1500 up to 2300m) in some parts of the Oromia region, and after this range, there 

are lower arable field fractions (Mohammed et al., 2020). In addition to this,  Husak et al. (2008) also indicate 

in the fragmented landscape of Ethiopia; the maximum field fractions exist in higher elevation (i.e., 2000m). 

According to Wilson et al. (2016), the topographic wetness index of the topographic features also 

discriminates crop types. The topographic wetness index strongly correlates with species' vegetation 

composition (Moeslund et al., 2013). Not only the variables also the choice of the method play a crucial role 

in arable field mapping. 

2.2 Available Methods and Models for Mapping Arable field 
 

Most research is conducted to map cropland areas using remote sensing technologies and a specific method 

that covers continental levels. According to See et al. (2013), the cropland maps are prepared using 

crowdsourcing technology and combined with Google Earth imagery and Geo-wiki. A campaign organized 

for volunteers to collect cultivation areas, and the crop map produced using simple inverse distance weight 

(IDW) techniques. This map lacks detailed information on the extent of cropland because of its courser 

resolution (i.e., 1 km), and the method only considers the geographical location of cropland features. The 

cropland also can be mapped at the continental level. According to Xiong et al. (2017), cropland mapping 

across Africa is possible using the Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI data. 

And they show the possibility of mapping the cropland area using an automated cropland mapping algorithm 

(ACMA), which is implemented in GEE. The authors used a mobile application to collect ground truth 

through using a mobile application and additional reference data from literature reviews. In addition to the 

ground data, they used MODIS NDVI to create cropland layers (i.e., cropland extent, cropping intensities) 

for 2014. They use this reference year for producing an automated cropland layer for the years 2003 up to 

2014 by using MODIS NDVI data. Finally, they compare the 2014 automated result with census-based crop 

land data, and they found that there is under estimation of crop land area.  

Different scholars also use different machine learning algorithms for data analysis. Machine learning 

algorithms like Random Forest, Artificial Neural Network (ANN), and Support Vector Machines (SVM), 

and a combination of spectral indices used to map crop types (Taffesse et al., 2013). A random forest was 

also used with time series enhanced vegetation index (EVI) extracted from Landsat 7 ETM+ to produce a 

crop classification map, and it is noted that with a limited training sample, the random forest classification 

accuracy is strongly affected (Tatsumi et al., 2015). According to Zheng et al. (2015), a support vector 

machine (SVM) used for mapping crop type by using time series of NDVI extracted from the Landsat image 

and applied two types of training data collection approach (i.e., stratified sampling and intelligent selection 
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approach). The authors concluded that the SVM shows a greater performance when using the intelligent 

selection approach than the stratified approach.  

Additional to the above scholars, Mohammed et al. (2020) show the possibility of the crop area estimation 

using the Generalized additive model (GAM), which is not a machine learning technique. The authors use 

the GAM model by using five predictor variables: Landsat dry and wet season NDVI, topographic 

information (i.e., elevation and slope), and a 1km Field fraction map to estimate crop area. The model uses 

a classic GAM function (i.e., the Binomial link function).  

Therefore, we need to consider some of the characteristics of machine learning algorithms and GAM models. 

Machine learning algorithms have different characteristics for the given datasets, and machine learning 

algorithms face various challenges (Zoubin, 2018). For instance, a random forest (bagging approach) is 

sometimes hard to interpret results but in gradient boosted algorithms; the results are more interpretable 

(Niklas Donges, 2019). Mostly there are two types of ensemble methods bagging and boosting. The random 

forest, which follows the bagging approach, builds an ensemble of independent trees based on the majority 

vote. In contrast, the gradient boosted model, a boosting method, builds a tree in a sequential manner 

(Bradley & Brandon, 2020). On the other hand, the GAM model has flexibility in the statistical distribution 

of the data (Murase et al., 2009) and uses quasibinomial distribution. This research uses Gradient Boosted 

(i.e., Beta link function) for variable selection and classical GAM to predict the 20m arable field probabilities.   

2.3 Arable Field Mapping: The Current State and Knowledge Gap 

 
The choice and method of data collection can have a significant impact on arable field estimation. The 

quantification of arable field estimation is done by using field-based statistical surveys, remote sensing, and 

a combination of agricultural statistics surveys with remote sensing data.  

There are several land cover and cropland maps produced by using remote sensing data. However, some 

maps like MODIS and GLC2000 land cover maps have uncertainty incorrectly estimate the crop area (Eggen 

et al., 2016). According to the author, MODIS land cover underestimates cropland, whereas GLC-200 

overestimates the cropland area. Crop maps were produced using GLC2000, MODIS Land Cover, MODIS 

crop Likelihood, and Africover and combining with national agricultural data for sub-Saharan Africa. The 

produced crop maps have a courser resolution (i.e., 1km), and there is a higher error rate of omission and 

commission in identifying crop areas (Eggen et al., 2016). Additionally, the authors indicate such maps are 

inconsistent in determining the extent and size of the arable field in the fragmented landscape. 

On the other hand, mapping arable field using only optical images (i.e., sentinel-2 and Landsat images) is a 

challenge due to persistent cloud cover (Ashiagbor et al., 2020). Furthermore, the authors indicated that using 

only the optical images lowers the classification accuracy compared to using hybrid datasets (i.e., sentinel-1, 

sentinel-2, and image features). In addition to this, using a higher resolution optical remote sensing data 

requires a high cost (Ashiagbor et al., 2020), consumes much time, and computationally hard for extensive 

area mapping. Besides, measuring the arable field through conventional surveying techniques also requires 

higher cost, labor-intensive, collected at the district level, and crop estimation lacks spatial inaccuracies 



Mapping Arable Field Fractions with Remote Sensing Data-Driven Gradient Boosted and Classical GAM Models 

12 

(Marshall et al., 2019). Therefore, we need to establish a hybrid mapping method that can map the arable 

field by considering the integration of data, techniques, and methods.  

Different mapping methods and models lack some characteristics; For instance, in models like a random 

forest, sometimes it is difficult to interpret the result  (Hofner et al., 2014). Therefore, the research used 

gradient boosted regression models for variable selection because the model can select the most informative 

variables, and boosted model result is easy to interpret, and classical GAMs is used to estimate arable field 

fractions. 

A few studies used SAR backscatter matrices like VV, VH, VV/VH ratio (Abdikan et al., 2018; Kumari et 

al., 2019), and topographic features (i.e., elevation and slope) (Husak et al., 2008; M. T. Marshall et al., 2011; 

Mohammed et al., 2020) to map arable fields. In addition to this, other research studies tried to map the 

arable field for a specific location (regional level) or the larger areas (i.e., country or continental level) with 

courser resolution arable field estimates. Therefore, it is important to consider the fusion of spectral, spatial, 

and temporal characteristics of the data to map arable fields.  

The purpose of this study is to map 20m arable fields by using Sentinel 1 SAR backscatter matrices, Sentinel 

2, topographic features, and a 1km arable field fraction. In the research, the Gradient boost model is used to 

select the most informative variable, and classical GAM is used to estimate a 20m arable field fraction for 

the Oromia region, Ethiopia. 
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3. METHODOLOGY 
 

3.1 Study Area 
 

The study area is located in the Oromia Region, one of Ethiopia's tenth regional states. The Oromia region 

surrounds Addis Ababa, Ethiopia's capital city, and Harari regional states. The total area of the region is 

32,442.86 million hectares. The great African rift valley divides the region into two, and the region has 

different agroecological zones. In the Oromia region, there are 189 Woredas (i.e., districts).  

In Ethiopia, food security is deteriorating in parts of the country, specifically in the Oromia region within 

different zones like Bale, Guji, east, and west Harerge zones affected by drought due to below-average rainfall 

patterns (FEWS NET, 2020). In addition to drought, the desert locust invasion affects the country's 

agricultural production by damaging significant crops and becoming a challenge for Ethiopian regional states 

(i.e., Oromia, Tigray, Amhara, and Somalia regions) (FAO, 2020). Mostly severe locust invasion will occur 

within 25 years (OCHA, 2020).  

 

Figure 2 The Study Area 

In the Oromia region, crop agriculture is characterized by small and irregularly shaped arable fields and mainly 

produces cereal crops for private conception and sales (Taffese et al., 2013). The Oromia region is the primary 

crop-producing region of Ethiopia, and the main crop produced in these regions is cereal crops, pulses, and 

oil crops.  
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Cereal Crops like maize are produced with an elevation range of 1500 to 2200m, wheat and barley grown 

within elevation ranges 1800 to 2200m and mid-highlands areas of the region such as Bale and Arsi zones, 

and pulses(i.e., bean) are grown within the range of 1400 to 2000 (Argaw, 2015). The Oromia region is a 

mountainous region with the highest elevation of 4387m and the lowest 308m. Mostly the eastern part of 

the region is considered as low land. The slope of the region ranges from 00 up to 780. The study area's 

central, eastern, and southern part is below 100 in average (Figure 3). Figure 4 shows the extracted average 

rainfall distribution (i.e., five years Rainfall Estimate from Rain Gauge and Satellite (CHIRPS) data) by using 

the sample point locations (i.e., the actual field fractions). From the graph, we can see that the rainfall pattern 

becomes the lowest in January and February, mostly the dry seasons of the study area.  

 

Figure 3 The topographic characteristics of the area, Elevation (Left) and Slope (Right) 

 

 

Figure 4 shows the Average Rainfall distribution on the Sample points locations. 
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3.2 Methodological Flowchart 

 

 

Figure 5 Methodological Flowchart 

A summary of the method: the overall research workflow is presented in figure 5 and divided into three 

parts: hyper temporal image (i.e., a 1km Proba-V) classification, image feature extraction, and modeling 

process (i.e., using Gradient Boosted and Classical GAMs). In the first part, the Proba-V is classified into 

200 classes using iso clustering techniques to produce an agroecological map. The produced agroecological 

map (CPZs) integrated with agricultural statistics data. Then stepwise regression is carried out in SPSS to 

estimate a 1km arable field fractions map. In addition to this, during the Isodata clustering process, the 200 

classes were grouped into 66 clusters based on their relative minimum and maximum values of median 

monthly NDVI values to identify the wet and dry season periods. In the second part, based on the identified 

seasonal periods, the sentinel 1 and 2 images downloaded using GEE and image features are extracted from 

sentinel-1 and sentinel-2. In addition, topographic features were also extracted from the SRTM data. Gradient 

boost is used to select the important predictors in the third part, and the stability feature selection method is 

applied to the Gradient boosted method to select the most informative variable. The classical GAM is used 

to estimate 20m arable field fractions; Finally, the model performance was evaluated by using 321 validation 

points (30% of the total dataset). The detail of the method presented as follows:  
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3.3 Hyper temporal Image Classification 

 
3.3.1.  Data Preprocessing 

 
The source of 1km PROBA-V NDVI imagery is from the ITC archive, a copy of Copernicus global 1km 

NDVI imagery. After downloading the 1km PROBA-V NDVI data, all the NDVI data stacked using 

ERDAS imagine software by including six ten-day images before 1998 and after 2018 to allow proper 

temporal filtering (De Bie, 2020). The temporal filtering method will replace DN values that are above 250 

to zero (i.e., "The values are 251 for missing (Bad radiometry), 252 for cloud or shadow,253 for sea, and 255 

for background (missing input data)") (De Bie, 2020). In addition to temporal filtering, the Savitsky Golay 

filtering (i.e., Upper-Envelope filtering through iterative smoothing process used to reduce the noisy NDVI 

time serious) was applied to the temporal cleaned image using IDL ENVI software (Beltran-Abaunza, 2009). 

Finally, the cleaned image is classified in ERDAS by using Isodata clustering. 

3.3.2.  Isodata Clustering 

 
Isodata Clustering is a method of unsupervised classification that group classes based on their similarity in 

spectral characteristics by applying the clusters mean of the class values and stratifying the study area into 

different strata (Beltran-Abaunza, 2009). The PROBA-V NDVI data classified into 200 classes. The main 

reason for classifying the PROBA-V image into 200 classes is to capture the smallest variability of the arable 

field in each Ethiopian woredas (i.e., the total number of woredas is 520). In addition to this, "the choice of 

the 200 classes depends on the number of mixed categories within a pixel that is going to be differentiated" 

(De Bie, n.d.).  The classification result of PROBA-V NDVI is used for two purposes.  

The first one is to produce a crop production zone (CPZs) map which is a 1km arable field fraction estimate. 

To prepare CPZs, the classified Proba-V NDVI (i.e., 200 classes) converted into a shapefile and intersected 

with the Ethiopian woreda shapefile (Figure 7). The result is the NDVI classes per district shapefile and the 

area of NDVI clusters calculated for each class within the district. The R software is applied to automate the 

process, the Group_by and Summarize function is used; a parsed excel file is produced. The excel file merged 

with Ethiopian woreda agricultural statistics data (i.e., the arable field area per district level) 

https://catalog.ihsn.org/catalog/1438/related-materials. Then Stepwise regression is applied. The stepwise 

regression follows the following equation: 

               Arable field area district level = f(NDVI-Clusters area district level)-------------(1) (De Bie et al., 2008)     (1) 

The resulting data is used by SPSS software, and the coefficients are used as a field fraction. Finally, a 1km 

arable field fraction map is produced for the whole of Ethiopia, and masking is applied to reduce it to the 

Oromia Region. Figure 6 shows the overall detail of the method used to produce a 1km arable field fraction. 

https://catalog.ihsn.org/catalog/1438/related-materials
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Figure 6 shows the step used to produce a 1km arable field fraction map 

The second use of Isodata clustering is to create monthly NDVI profiles to identify the wet and dry seasons 

by using the relative minimum and maximum of the actual decadal NDVI values. After identifying the relative 

minimum and maximum NDVI values, the values are multiplied by 1.1 (i.e., 1.1*Lowest) and 0.9 (i.e., 

0.9*Highest), respectively. The multiplication by this constant number (i.e., 1.1&0.9) helps us to obtain other 

relatively low or high NDVI values in addition to the minimum and maximum NDVI values. Additionally, 

the difference of the relative minimum and maximum is computed. After identifying the relative minimum, 

maximum, and difference, the conditional statement is created to assign each decadal value to high (H) and 

low (L). For instance, if the decadal value is less than the multiplication result (i.e., 1.1*Lowest), the lowest 

(L) is assigned. When the decadal value is greater than the multiplication result (i.e., 0.9*Highest), we give the 

highest (H).  Flat (i.e., classes with "Flat" curves that indicate no growing seasons have similar characteristics 

throughout the year) is assigned when the difference of the maximum and minimum NDVI values are less 

than the minimum NDVI difference (i.e., the minimum NDVI difference equals zero). If these three 

conditions are not fulfilled, the decadal values are assigned a dashed line (i.e.,"-"). Then the table is sorted 

and grouped based on the similarity of high (H), low (L), and flat. For instance, the NDVI value 69 (i.e., the 

value with red color found at 6 dekad) assigned low “L” because it is below the multiplication result 
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(1.1*MIN), which is the threshold set to identify low “L” categories. The same is true for the high categories; 

if the value is greater than the multiplication result (0.9*Max), it will be assigned to High “H” (i.e., the value 

in the green color 174>160). The flat curves (Flat) are assigned when the difference of the multiplication 

results (0.9Max minus 1.1Min) less than the Min NDVI difference (i.e., zero). 

Table 4 shows the identification of high, low, and flat categories 

 

Source: Adapted from De Bie. (2020) 

Then the 200 classes were grouped into 66 clusters see Annex 2. The following figure shows an example of 

the time period used for downloading sentinel-1&2 image features. For instance, the offseason time period 

follows the minimum NDVI values (i.e., 4-10 dekad), and the on-season follows the maximum NDVI (i.e., 

22-30 dekad) (Figure 7). 

 

Figure 7 The periods used to download Sentinel-1&2 image features, the blue color shows the NDVI values, and the orange 
color indicates seasonal dates (dekad) 

The periods are adapted to differentiate the wet (on the season) and dry (off-season) periods, which is 

essential for selecting sentinel-1 and sentinel-2 image features.  
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3.4 Feature Extraction 

3.4.1 Sentinel-1  

 

In this study, Sentinel-1 image features are extracted from Google Earth Engine (GEE) see Annex 3. Each 

Sentinel scene was already preprocessed (i.e., thermal noise removal, radiometric calibration, and terrain 

correction) with the sentinel-1 toolbox, and no need for further preprocessing; it is used directly. The time 

period used to download sentinel-1 is from 2016 up to 2020 (i.e., the date interval is chosen to align with the 

FAO's arable field definition), and the median values are considered. Sentinel-1 Backscatter polarization VV 

(Vertical-Vertical), VH (Vertical-Horizontal), and VV/VH ratio used for monitoring crops (Sun et al., 2020). 

The author indicated that the backscatter matrices like the VV and VH show the biomass distribution and 

are used for crop monitoring. In contrast, the VV/VH ratio indicates the shooting and harvest of vegetation. 

In addition to this, the inclusion of Normalized Procedure Ratio between Bands (NRPB) in the model 

increases the classification result to reach good statistical matrices in the validation and increases the model's 

generalization ability (Filgueiras et al., 2019). Table 5 shows the main Sentinel 1 image features used for 

estimating 20m arable field fractions. 

Table 5 The Sentinel 1 image features 

Backscatter matrices name (on and off-season) Formula 

VV and VH  intensity 

VV/VH ratio VV/VH 

The Normalized procedure ratio between bands (NRPB)  

intVH-intVV/intVH+intVV 

 

3.4.2 Sentinel-2 

In this study, Sentinel-2 image features are extracted from Google Earth Engine (GEE) (Table 6). Before 

downloading Sentinel-2 image features, the built-in cloud masking function is applied in GEE. The time 

period used for downloading Sentinel-2 images starting from 2016 up to 2020 and the median values are 

considered. From Sentinel-2, three image features from the Red edge bands (i.e., Band 5-7), two Land Surface 

Water Index (LSWI), two Normalized Difference Tillage Index (NDTI), two SWIR (i.e., Band 11&12) image 

features, and the NDVI vegetation indices (dry and wet season). The NDVI has an advantage in the 

discrimination of vegetation (Gumma et al., 2020). Besides, Red edge bands have a higher importance in 

classifying vegetation-related land cover maps (Qiu et al., 2017), and also SWIR significantly discriminates 

fine crop classifications (Zhang et al.,  2020). The following image features are used for mapping the arable 

field fractions. 
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Table 6 The Sentinel 2 image features 

Matrices Name (on and off-season ) Formula 

Normalized Difference Vegetation Index (NDVI) B8-B4/B8+B4 

Land Surface Water Index (LSWI) B8-SWIR1/B8+SWIR1 

 
Normalized Difference Tillage Index (NDTI) SWIR1-SWIR2/SWIR1+SWIR2 

Red edge  & Shortwave Infrared (SWIR) bands The raw bands of Red edge and SWIR  

 

3.4.3        Topographic features 

The source of topographic features is the Shuttle Radar for Topographic Mission (SRTM). It is 

downloaded from USGS Earth Explorer. After downloading each tile of SRTM data for the whole 

Oromia region, all tiles are mosaicked in ArcGIS software. The SRTM data used to extract the 

topographic features (i.e., Topographic Wetness Index and Slope). The topographic wetness index is 

prepared by creating a tool in the Arc toolbox and using online topographic wetness index python scripts 

(i.e., the main input is SRTM) see Annex 1. The slope is also derived from the SRTM; additionally, 

relative DEM is a new concept developed by De Bie, and it was also created from SRTM data. The 

relative DEM data is accessed from the ITC archive., a new data set created from the SRTM and river 

shapefiles. The relative dem express the relative height of the surface by considering the river surface 

(i.e., a river surface has a zero meter elevation) as a starting point for the height measurement. The river 

shapefiles are also used for creating distance to the river input variable by using the Euclidean distance 

method.  

3.4.4 Training and Testing Data 

 

The training and testing data sets are obtained from a previous study. For this research, 1070 sample points 

are used, and these samples were prepared in the previous study by using 30m by 30m area frames' distributed 

randomly through the study area, and each area frame contains a grid of equally spaced 16 points 

(Mohammed et al., 2020). The points are assigned a label of an arable or non-arable field by using visual 

interpretation. The number of the arable field is divided by the total number of points to get the frames' 

arable field percentage. For instance, if there are 8 points labeled with arable field within the frame, to get 

the field fraction of the frame, we need to divide the labeled 8 points by the total number of the area frame 

points (i.e., 16) and the field fraction of the frame become 8/16 (0.5).  

3.5 Modeling Process and Validation of the model 

 

To achieve a better model result, we need to give more attention to the modeling process, especially in 

selecting the informative variables and the accuracy of each feature. Besides, the choice of the model also 

has a crucial impact on the final model prediction result. In this research, the classical GAM is used to 
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estimate 20m arable field fractions. For selecting the important variables, the Gradient boosted model is 

used, and to choose the most informative variables stability selection method is applied. Finally, the model 

validation is carried out by using out-of-sample (30% of the data) datasets. 

3.5.1 Classical Generalized Additive Model (GAM) 

Generalized Additive models are an extension of linear regression (i.e., Generalize Linear Model) with 

smooth terms (i.e., for fitting nonlinear terms) (Hastie & Tibshirani, 1986). The smooth terms imply a non-

parametric regression method that adjusts the degree of smoothness. In GAMs, we can model linear, 

categorical, and nonlinear effects to the input data. Data issues like the normality of errors, nonlinear 

relationships, and autocorrelation of variables are handled by GAM models (Schmid et al., 2013). The GAM 

is the extension of the linear logistic regression.  The linear logistic regression follows the following formula: 

          E(Y | X1,X2,…….,Xp) = β0  + β1X1+……+ βp Xp                                    (2) 

 Where Y is a random variable, X1, X2,……., Xp covariant of the regression model; β0, β1,…. Βp is the 

coefficient of explanatory variables, and E(Y | X1, X2,……., XP) is an estimate of the model. 

The model equation of GAM extends GLM linearity, and to estimate using the GAM model, we first need 

to estimate the coefficient of  (β0 ) and f(X1) …. f( Xp); an estimation of the GAM formula follows: 

                         𝑓𝐺𝐴𝑀(𝑋1 … … , 𝑋𝑝) =  β0 ∑ 𝑓j(𝑋j)
𝑝
𝑗=1                                                                  (3) 

Many researchers use classical GAM for ecological modeling (Citores et al., 2020; Maloney et al., 2012; 

Murase et al., 2009) and crop field mapping (Husak et al., 2008; M. T. Marshall et al., 2011; Mohammed et 

al., 2020). In this research, the classical GAM is used for estimating 20m arable field fractions. Many scholars 

use different models and multisensor remote sensing data to estimate arable field fractions. 

3.5.2 The Gradient Boosted Regression 

A. How Gradient Boosted Model Works? 

The gradient boosted model is a method of converting an ensemble of several weak learners into strong 

learners; the residual of the first weak learners is fitted with the next weak learner until the residuals approach 

zero through the inclusion of many weak learners in the model (Greenwell and Brandon, 2020). In each 

iteration step, the algorithm tries to minimize the error of the first step by the second one, and finally, the 

model sequentially adds the result of individual steps, then a strong model is created (Yıldırım, 2020). The 

following Figure 8 shows how the sequential approach of the gradient boosted algorithm works. 
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Figure 8 Sequential ensemble approach. 

In general boosting can be said that stage-wise procedures (Thomas et al., 2017). When we say stage-wise, it 

includes the first fitted variables without excluding them from the second fitting model processes, and the 

base learners are sequentially linked. Therefore, understanding the gradient boosted helps us to implement 

the model in practical application, but we also need to give emphasis on the hyperparameter tunning or 

hyperparameter selection during the modeling process of gradient boosted. 

The gradient Boosted regression (GBR) is used to select important input variables for predicting the arable 

field fractions. The Gamboost function is used for a boosted (generalized) additive model, and a model is 

validated by using cross-validation implemented in the cv risk function. The model uses base-learners (bbs) 

for fitting base models in component-wise gradient boosting in the function of Gamboost.  

B. Hyperparameter selection with GBR 

Hyperparameters are one of the model parameters that are set before starting to train the models. The 

promising model prediction results mostly depend on the choice of hyperparameter selection and predictor 

variables. Hyperparameter tuning is the basis for obtaining an optimal prediction result. Different algorithms 

use different techniques to determine the most influential hyperparameters. For instance, selecting a lower 

or higher learning rate will significantly impact the final model result (Yıldırım, 2020). Figure 9 shows a 

boosted gradient model with eight hundred iteration and different learning rate (i.e., Shrinkage) values.  In 

the model, when we include a large learning rate, some model gives a result with some predictor variables 

with lower squared error.  For instance, in Figure 9a, when the learning rate is one, we can get an optimal 

number of iteration at 28, but with a small number of predictor variables, and in Figure 9b with a 0.5 

shrinkage value, we can get 93 optimal number of iteration but with a higher number of predictor variable 

as compared to learning rate with one.  Whereas, when we incorporate a lower learning rate in the model, we 

are unable to reach the optimal boosting iteration (Figure 9d). The same is true for the number of iterations 

incorporated in our model when there are optimal iterations present in our model, the better and flexible 

option for achieving a good model result but with a low loss function (i.e., slower gradient decent) in finding 



Mapping Arable Field Fractions with Remote Sensing Data-Driven Gradient Boosted and Classical GAM Models 

23 

the local  minimum. Therefore, based on this Gradient boosting model, the main hyperparameter is 

the shrinkage value that has an influence on finding the optimal iteration.  

 

Figure 9 shows the relation between the learning rate and optimal iteration  

C. Fitting Generalized Additive Model with Gamboost function 

Fitting, a generalized additive model, requires a model formula with the base-learners a penalized regression 

splines. The general structure of the model is presented in Figure 6.  In the model, the formula is created by 

using field fraction as the dependent variable and the predictor variables as an explanatory variable by using 

base learner "bbs" for nonlinear features and "bols" for linear feature (i.e., a 1km field estimate). In the model, 

the hyperparameters used with mstop value of 800 and a shrinkage value of 0.3 applied to boost control 

functions. These values are selected by trying different combinations of mstop and shrinkage values. 

 

Figure 10 The General structure of Gradient boosted Model 

D. Base learners 

In the Gamboost function, the base learners are classified into three categories to capture linear or categorical 

effect by using bols(), smooth effect by using bbs(), and smooth surface estimation by using bspatial() 

functions (Hofner et al., 2014). The bols() function helps us define the ordinary least square base learner with 

a linear or categorical effect. In this research, the crop production zone estimate is considered a linear 

predictor variable because it is assumed that the field fractions and crop production zones (i.e., 1km estimate) 

have leaner relationships. The other 23 predictor variables are incorporated in the model as a smooth effect, 
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and the bbs() function is used. The spatial effect (i.e., bspatial()) is not incorporated in the model because of 

the spatial variability of the study area captured by crop production zones. 

The research used the extracted input features as base learners from sentinel-1 (i.e., VV, VH and VV/VH 

ratio, and NRMP), sentinel-2 (i.e., NDVI, LSWI, NDTI, the red edge, and SWIR bands) for the gradient 

boosted model as an input. In addition to this, topographic features (I.e., Elevation, slope, relative DEM, 

and topographic wetness index), distance to river, and a 1km arable field probability map (i.e., CPZs) are also 

used as input for the model.  

E. Cross-Validation: Early Stopping 

In the Gamboost domain, cross-validation of the model was constructed by using the CVrisk() function. The 

number of boosting iterations is one of the hyperparameters for boosting model (i.e., denoted by mstop). 

There are many ways to determine the early Stopping of the boosting methods, for instance, using Akaike 

Information Criteria (AIC) and cross-validation estimates (Hofner et al., 2014). In this research, ten-fold 

cross-validation is used to stop the model before overfitting.  

F. Variable Reduction: Stability Selection 

Selecting the most important variables is a base for achieving the best prediction result from a given 

algorithm. Identifying the most influential variable has an advantage for the machine learning algorithm to 

train quickly, increase the model's flexibility, and increase the model interpretability ability to achieve better 

accuracy and minimize overfitting of the model (Saurav, 2016). There are different types of variable 

importance selection methods like filter, wrapper, and embedded methods.  

Filter methods mostly depend on selecting the variable based on the performance criteria without considering 

the modeling algorithm (Jović et al., 2012). These variable selection methods are very flexible and have a high 

speed (Bouhamed et al., 2012). One of the drawbacks of filter methods is on the response and predictor 

variables relation; the method does not consider the relationship between the target and the predictor variable 

(Raschka, 2021). Information gain, chi-square test, fisher score, correlation coefficient, and variance methods 

are examples of filter methods.  

Wrapper methods focus on the efficiency of the chosen model algorithm for sub-setting the features; for 

instance, for classification, the subset depends on the classifier's performance (e.g., SVM) (Jović et al., 2012). 

In addition to this, wrapper methods are slower than filters method because it is more dependent on 

resource-demanding of a given algorithm, and forward (i.e., by adding variables) and backward (i.e., removing 

variables) selection methods are an example of wrapper method (Jović et al., 2012). 

Embedded methods differ from wrapper and filter methods based on the way of selecting an important 

variable. These models incorporate variable selection during the training process (Guyon & De, 2003). For 

instance, Random Forest uses a variable score for selecting an important variable and ranks them based on 

the score. The percentage score is calculated from the mean squared error, and the feature is ranked based 

on the importance score (Holzinger et al., 2014).  
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Component-wise boosting algorithms are one solution to select predictors in high dimensional data when 

there are many predictor variables than the observation. Through cross-validation, one can stop the boosting 

algorithm before overfitting, and variable selection is carried out during the modeling process, and the 

optimal base-learners are selected. Thomas et al. (2017) state that during cross-validation, the selection of the 

stopping iteration optimizes the empirical risk on the test data (predictor risk). Sometimes when we are 

implementing early Stopping, the boosting algorithm tends to offers a way to perform variable selection while 

fitting the model. Sometimes the boosting algorithm may incorporate some noisy variables during the model 

fitting(Thomas et al., 2017). Some researchers use different techniques to reduce such problems by plotting 

the Root Mean Squared Error (RMSE) and the number of iterations. In addition, some researchers use 

stability selection methods to resolve the issue of noisy variables. 

Stability selection is a dynamic and versatile approach that can be integrated with a different algorithm such 

as gradient boosted model and improve the already fitted model using the important unique variables from 

the gradient boosted model (Nicolai & Peter, 2010). According to the authors, the stability selection method 

follows five different steps to enhance model performance by reducing the noisy variable included during 

the modeling process. Implementation of stability selection in boosting algorithm presented in the following 

five steps :  

1. The first step is fitting the model with a sample dataset with a specified mstop and learning rate. 

2. Fitting the boosted model and increase the iteration until early stoping with mstop up to where the 

most important variable is selected. 

3. Repeat the above two steps for the selected variable 

4. Calculate the selection frequency per variable (i.e., base learner) 

5. Select all base-learners that were selected with a frequency of at least πthr (i.e., prespecified threshold 

values) and after the stable variables are identified. 

The Gamboost function gives the rank of feature importance in gradient boost but doesn't tell us which 

explanatory variable is crucial for the modeling process. The boosting algorithm often includes some noisy 

variables stopped based on early stopping cross-validation techniques (Thomas et al., 2016). Selecting an 

optimal predictor variable is a base for model building and stability selection method used to select the most 

influential variables. In this research, the Stability selection method is applied to choose the most influential 

variable by using the stabsel() function and using the fitted Gradient boost model.  The stability selection 

method in addition to the fitted Gradient boost model, also uses two main input variables for selecting the 

most influential input variables the cutoff value and the number of the unique variables from the result of 

the Gradient boost model (Hofner et al., 2015). Figure 11 shows how the stability selection works; 
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Figure 11 Shows the Components of the Stability Selection method  

Source: R package documentation. 

Where "x" is the fitted model, "cutoff" is the value to be set in between 0.6 up to 0.9, "q" is the number of 

unique variables in the boosted Gam model and PFER (Per family error Rates) this indicates falsely selected 

variables.  

Variable importance identification and future reduction is a base for obtaining a good model prediction result. 

Generally, mapping arable field fraction requires different datasets, variable reduction, and prediction models. 

The choice of a prediction model can have a significant impact on the estimation of arable field fractions. 

One can choose the prediction models based on the capacity of the model in capturing the characteristics of 

input datasets. For instance, classical GAM is a nice model for solving data issues. 

3.6 Model Validation and Prediction 

 
From 1070 samples, 70% (749 sample points) of the data used to train the model, and the rest 30 % (321 

sample points) were used to test the model accuracy. Multiclass ROC validation criteria are used for validating 

the model. Multiclass AUC considers the different class values (i.e., in the field fractions, different classes are 

starting from zero up to one) to be calculated and provide a total of multiclass measures. Thus, the multiclass 

AUC considers many class values and differentiates multiclass values, whereas the classical AUC considers 

only two-class problems (Landgrebe & Duin, 2007).  

The predicted model result depends on the accuracy and performance of the model in predicting the out-of-

sample data. The final prediction is made with the most informative image features, and the selection of these 

image features is based on the Gamboost model and stability selection method. The accuracy of the final 

model result was evaluated by using multiclass AUC, R2, and the overall deviance and deviance, explained by 

each predictor variable.  
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4. RESULT  
 

4.1 1km Arable Field Probability Estimate 
 

This research aims to produce a 1km arable field probability map, later used in the modeling process as an 

input variable. Using stepwise regression in SPSS software, the arable field probability is produced by 

integrating the regression coefficients as field fractions. The analysis result shows an 88.4% R2 value (adjusted 

R2).  Table 7 indicates the statistical summary of the regression result. Thirty-three classes are significant from 

200 Proba-V NDVI classes, and seven classes have more than 50% field fractions. 

Table 7 The statistical result of Stepwise regression 

NDVI Class Coefficient Significance 

Class 156 0.740 .000 

Class 110 0.607 .000 

Class 177 0.585 .000 

Class 103 0.509 .000 

Class 194 0.372 .000 

Class 184 0.325 .000 

Class 66 0.304 .000 

Class 172 0.234 .000 

Class 160 0.319 .000 

Class 114 0.791 .000 

Class 132 0.482 .000 

Class 197 0.232 .000 

Class 124 0.726 .000 

Class 187 0.874 .000 

Class 193 0.205 .000 

Class 170 0.357 .000 

Class 129 0.407 .000 

Class 100 0.449 .000 

Class 183 0.372 .000 

Class 80 0.249 .000 

Class 143 0.200 .022 

Class 20 0.132 .001 

Class 149 0.382 .001 

Class 145 0.424 .000 

Class 58 0.247 .012 

Class 97 0.366 .012 

Class 56 0.261 .006 

Class 26 0.328 .029 

Class 120 0.051 .029 

Class 174 0.172 .033 

Class 135 0.259 .004 
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From the seven classes, two classes (i.e., Class 177 and 110) are located in the eastern and western parts of 

the region; this shows the similarity of agroecological characteristics. Figure 12 shows the spatial orientation 

of classes with more than 50% of field fractions. In Figure 12, some characteristics of arable fields of the 

study area, for instance, in class 103 (Figure 12(1)) and class 177 (Figure 12(3)), we can observe trees inside 

arable fields.  

 

 

Figure 12 The classes with more than 50% field fractions 

Finally, 1km arable field fractions estimates were produced for the Oromia region. The Oromia region's total 

statistical agricultural crop production estimate is 4,077,968 hectares, and the estimated arable field fraction 

is 3917033.1 hectares. Higher field fractions are concentrated in the middle of the region. In Figure 13, the 

inset map shows the field fractions estimates are more or less discriminate the arable field and the forest 

cover. The arable fields are mostly concentrated at the central part of the region.  

 

Figure 13 A 1km Arable field estimate of Ethiopia and Oromia region 
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4.1. Feature extraction by Grouping NDVI Clusters 

Grouping NDVI classes into smaller groups can help us reduce computational time and generalize similar 

information from the group of classes. The main use of grouping NDVI clusters is to use the grouped clusters 

for extraction of Sentinel 1 and Sentinel 2 image features. In addition to this, before using the whole group 

of clusters, we can have the chance to exclude some groups that have different spectral responses (i.e., 

spectral profiles that have similar NDVI values throughout the years). The 66 groups (Annex 2) are identified 

based on their NDVI values by using the conditional statement (i.e., Low, high, and "flat" curves. The 

existence of arable fields analyzed by a careful study of the NDVI temporal profile within the group. 

Depending on the NDVI profile pattern, we can distinguish the type of land use land cover of the study area, 

and the interpretation of some of the classes are presented as follows. For instance, Figure 14a (Group 1)  

shows a flat curve in the highest NDVI values and in the lowest part. The lowest NDVI values could 

represent permanent cropland, and the highest NDVI flat curve represents a forest cover because it shows 

a similarly high value throughout the year. Therefore, we cannot expect arable fields from this group, and 

this group is excluded from the modeling process. On the other hand, Figure 14b represents the Oromia 

region arable field because the graph shows two periods, one for the lowest, representing the harvesting time, 

and the second period indicates high NDVI values, which is most probably the growing season.  Figure 16b 

is also overlaid on Google Earth, and it indicates the existence of an arable field. In the Oromia region, we 

can get double-cropping seasons. Figure 14c shows the four seasons of the study area, with two dry seasons 

where the NDVI values are too low and two wet seasons where the NDVI values are too high. For such a 

season, the dates for downloading Sentinel images are chosen based on the lowest NDVI values. 
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Figure 14 The spectral profile curve of Group 1(a), Group 21(b), and Group 46 (c) 

4.2 Modeling process and Model Accuracy 
 

The main goal is to find out the optimal model parameters that can lead to a good model prediction result in 

the modeling process. To achieve an optimal prediction result, we need to select the hyperparameters and 

the most informative variables. In gradient boost, early stopping is applied to stop the model before 

overfitting occurs, and the most explanatory variables are selected using stability selection. Then the model 

used the most informative variable to estimate 20m arable field fractions. The detail of results are presented 

as follow: 

4.2.1 Early Stopping 

Most modeling algorithms require hyperparameter selection to prevent the model from overfitting. In 

gradient boosted regression, early Stopping is used to prevent overfitting by using cross-validated predictive 

risk with 10-fold bootstrapping. Eight hundred boosting iterations are used, and the model stopped at 141 

iterations to prevent overfitting (Figure 15). 

 

Figure 15 Cross-validation predictive risk with 10-fold (The optimal number of boosting iteration) 
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4.2.2 Variable Importance 

 

The major activities in the research community are the estimation or prediction of the dependent variable 

from the collection of predictor variables by selecting the most informative variables (Looppe et al., 2020). 

The Varimp () function applied on the optimal boosted GAM model for ranking the variables according to 

their importance. Varimp () function in boosted regression works by selecting the most important variable 

based on the selection frequency of the variables. Figure 16 shows the rank of the variable based on their 

importance. The most influential variable is Sentinel-1 (dry_season_vh), from the total of twenty-four image 

features. Thus, there are ten unique (i.e., their selection frequency greater than 0.01) informative variables for 

mapping arable field probability, starting from dry_season_vh up to LSWI_dry variables. 

 

Figure 16 Feature importance of the model input variables 

4.2.3 Variable Reduction Using Stability Selection Method 

 

It is important to reduce the number of predictor variables before running the gradient boosting model 

prediction. Variable reduction is very important in making a prediction based on informative variables. The 

important variables were also identified by using the stability selection method. Six variables are selected, and 

the most influential variables are two sentinel one image features (i.e., dry season VH and dry season VV 

over VH ratio), topographic features (i.e., elevation and slope), Sentinel-2 (i.e., Band 5), and a 1km arable 

field probability estimates (i.e., CPZs). The red dot in the graph shows the most informative variables that 
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are found beyond the cut-off value (i.e., π equals 0.6). The rest variables below this cutoff line are not 

important for estimating a 20m arable field fraction. 

 

Figure 17 Feature reduction using Stability Method: where π is selection frequency; the six red above the cut-off line (0.6) are 

the most informative variables that are used to estimate 20m arable field fractions. The grey line represents the threshold.                                                                                                  

4.2.4 Partial effect of the model input variables on the Actual field fractions 

 
We analyzed the partial deviance explained by each informative variable before describing the partial effect 

of the model predictor variables on the actual field fractions. Figure 18 shows the partial deviance explained 

by each predictor variable in incremental order. The partial deviance explained by dry season VH was 33.3% 

which is the most informative variable. The second most important informative variable is elevation, and the 

partial deviance explained 17.2%. The deviance explained by Band 5, a 1km arable field fractions, and the 

slope was 14.4%, 13.3%, and 6.2%, respectively. The least informative variable is the dry season VV/VH 

ratio, and the partial deviance explained was 3.34%.  

 

Figure 18 The partial deviance of each informative variable 
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One of the classical GAM advantages is to provide information about the effect of the input variable on the 

dependent variable (i.e., Actual field fractions). For instance, figure 19a shows the partial effect of Sentinel-

1 offseason VH on the actual field fractions. As the value of dry season VH increases, the partial effect on 

the existence of arable field will increase up to the -25 value (i.e., the presence of high field fractions) 

afterward;  the effect will decrease as the value of dry season VH increases, and we can get above 50% of 

field fraction from offseason VH backscatter matrices. As we can see from the counter map of dry season 

VH, the central part of the region has a weak backscatter signal. The dark tones potentially can be an arable 

field, whereas a very dark one is a water body, especially the reft valley lakes. Figure 19b shows that as 

elevation increases, the partial effect on the field fraction will increase to an elevation value around 2500m, 

and the partial effect decreases after 2500m. Therefore, as we can see from the graph, there is a likely chance 

of obtaining a 50% field fraction within the range of 1500m to 2500m. This range in the map potentially can 

be the yellow color range, and most of this range is expected to have arable field fractions. Figure 19c, as the 

dry red edge band reflectance value increases, the effect on the field fraction will also increase, and most 

arable fields exist in the spectral reflectance value of 0.05 up to 0.2. There is a likely chance of obtaining 50% 

of arable field fractions within the range of 0.05 up to 0.2 reflectance value. The red edge (Band 5) map also 

shows a lower spectral reflectance around the center of the region, and the dark black color indicates the 

forest area. Figure 19d shows the sentinel-1 ratio of VV/VH similar characteristics up to 0.6, and beyond 

0.6, its effect goes down. Most fields are concentrated in the range of 0.4 up to 0.6. As the slope increases in 

figure 19e, the partial effect on arable field fraction will decrease. The slope and the field fractions are 

negatively correlated, and mostly we can obtain 50% arable field fractions within the range of 0 up to 10 

degrees. Above 10-degree slope decrease with decreasing field fractions. 
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Figure 19 The partial effect of the explanatory variables on the actual field fractions (a-e) and the input 

variable map. The red line represents a 50% probability of field fraction, and the dots indicate the standard 

error.  
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4.2.5 Model Accuracy and Prediction 

 

The performance of many machine learning models is evaluated based on their potential in predicting by 

using unseen or out-of-the-bag data. There are different model evaluation measures. In this study, the model's 

accuracy was evaluated by using Area Under Curve (AUC) and R2 values evaluation techniques. A multiclass 

AUC evaluation technique is applied to identify AUC, and the 76% AUC value was obtained for the gradient 

boosted model. The model's accuracy by using the calibration data indicates a 69% R2 value, and in the 

validation dataset, the R2 value of 71%. The model accuracy of the classical Gam is the 74% AUC value and 

the R2 value of 69%. 

After checking the model accuracy and informative variable selection, the prediction was made on the six 

image features. The gradient boosted model performed well in ranking the most informative variable using 

early Stopping. Satbility selection method applied on the fitted Gradient boosted model and six most 

informative variables are identified. The classical GAM uses the six informative variables to estimate a 20m 

arable field fraction. The model result shows that the model captures the arable field characteristics of the 

study area. Figure 20 shows the 20m arable field estimate of classical GAM, and most of the arable fields are 

concentrated in the middle of the study area. The occurrence of arable field fraction in the southeastern part 

of the area is very low. The inset map shows a clear separation of forest cover and arable field fractions. 

 

Figure 20 The Extrapolated 20m arable field fraction estimate 
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5. DISCUSSION 
 

This research examined multisensor remote sensing data in estimating a 20m arable field probability estimate 

using the gradient boosted model for variable selection and classical Gam for prediction. The stratification 

of PROBA-V NDVI plays a significant role in estimating a 1km arable field fraction. In addition to this, the 

stratification of PROBA-V NDVI can discriminate the dry wet season of the study area. Most importantly, 

Sentinel 1 backscatter matrices have a higher relative importance in identifying the occurrence of arable field 

fraction. In this research, gradient boosted is performed well in selecting the most informative variable and 

classical GAM has the higher prediction on the estimation of arable field fractions. This section introduces 

in detail the main findings of the research based on the research questions and hypothesis. 

5.1. 1km Field Fraction Estimation 
 

Arable field estimation can be prepared by integrating hyper-temporal image (i.e., Prova-V NDVI) and 

agricultural district level area estimates. In this study, the hyper-temporal image plays a significant role in 

estimating arable field probability and in determining specific dates for downloading sentinel-1 and 2. One 

of the uses of the hyper-temporal image is for estimating a 1km arable field probability. Many researchers 

utilize this hyper-temporal image for estimating arable field probability by integrating it with agricultural 

statistics data. For example, De Bie et al. (2008) prepared a 1km crop field, and Mohammed et al. (2020) also 

uses a 1km hyper-temporal image to map the crop field. A 1km arable field probability estimate is produced 

in this study by integrating district-level agricultural statistics and Proba-V NDVI data.  The result shows 

that an agreement of 89.6 adjusted R2 and an area estimation of 3,917,033.1 hectares which accounts for a 

bit of difference with the reported regional level statistics of 4,077,968 hectares. This does not give any 

guaranty that the estimation report of the Central Statistics Agency is exact. However, such a result can 

support the report in determining specific areas within the district level (i.e., Woreda) rather than one estimate 

for the whole of Woreda, depending on the size of the district.  

A 1km arable field estimate is also used as an input for the classical GAM model for estimating 20m arable 

field probability. The 1km arable field estimate entered into the model as a linear effect. The assumption is 

the actual field fraction and a 1km arable field probability estimate have a positive relationship (i.e., as the 

actual field fraction increases, the 1km arable field probability also increases). The result indicates the variable 

becomes the fifth predictor variable. Compared to Sentinel 1 and 2, topographic features a 1km estimate is 

the least predictor variable in estimating 20m arable field fraction. The main reason for a reduction in the 

importance of 1km estimate could be data issues meaning a 1km estimate contains much of zero 

probabilities) and modeling issues (i.e., gradient boosted model does not account for zero values meaning 

the model uses Betareg as a family and doesn't allow the response variable to be one or zero). When we 

compare the result with the classical GAM, a 1km estimate becomes the fourth informative variable, and the 
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deviance explained by this variable is 13.3%. Including a 1km arable field estimate in classical GAM improve 

the estimation of arable field fractions, whereas including a 1km arable field in the Gradient boost model 

does not improve the estimation of arable field fractions. 

5.2. The relative importance of model input variables 
 

Hyper temporal images also help us to download Sentinel-1 backscatter matrices. First, one should have to 

identify the time periods for downloading dry and wet season Sentinel-1 images. To identify these time 

periods, the Proba-V plays a significant role. Based on the specified periods, eight Sentinel-1 image features 

are downloaded and used as an input variable for the model. From those six variables, only off_season_VH 

and off_season_VV_VH ratio are the most informative image features in estimating a 20m arable field 

probability.  

The backscatter matrices of Sentinel-1 play a major role in determining arable field, especially after harvesting 

and removing the crop’s ruminant, due to interaction among the SAR signal and the soil (Nasirzadehdizaji 

et al., 2021b). One of the backscatter matrices of the Sentinel-1 image is the single co-polarization of the VH 

backscatter. In this research, the VH backscatter is identified as the influential variable in distinguishing the 

arable fields. Sentinel-1 (i.e., off_season_Vh) is the most informative class from the sentinel-1 image features 

and from all the model input variables used in the model.  The model result Figure 19a shows within the 

range of -30dB up to -17dB, and there is the existence of an arable field. Especially, in between -25dB and -

20dB, we can obtain high actual fractions (i.e., 100% field fractions).  The main reason could be Sentinel-1 

Vh polarization can detect the backscatter information from arable field characteristics. 

Sentinel-1 Vh polarization can detect crop residue (i.e., stubble) and soil moisture. For instance, crop residue 

like stubble and straw are the main determinant of the radar backscatter (McNairn et al.,2002). In Ethiopia, 

mostly the months like October, November, and December are the harvesting periods, and after these 

periods, the dry seasons follow.  During this dry period (February up to march) in the Oromia region, mostly 

arable fields are covered with crop residue and some land management practices. Even though this period is 

identified as dry seasons, there is also frost during the morning periods with little rain. This weather condition 

makes the soil moisture increase. In general, crop residue, land management practice, and some soil moisture 

significantly impact the sensitivity of the VH backscatter matrices. Therefore, we can conclude that the VH 

backscatter matrices have a significant impact in identifying Arable fields. This conclusion is supported by 

Sun et al., (2020) findings they indicate the VH intensity has the potential in discriminating arable field 

features. The Sentinel-1 VV_VH ratio also has a significant contribution in identifying arable fields. Mostly 

arable fields are concentrated in the range of 0.4 up to 0.6 dB. The sentinel 1 VV_VH ratio also has the 

potential to discriminate pasture land from other land features (Nicolau et al., 2021).  Therefore, Sentinel-1 

VH backscatter and VV over VH ratio significantly impact the estimation of arable field probability. 

Many studies investigated the importance of topographic features for mapping arable fields. (Husak et al., 

2008; M. T. Marshall et al., 2011; Mohammed et al., 2020) shows the importance of elevation and slope in 

estimating arable field probabilities. In this study, four topographic features were used to estimate 20m arable 
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field probabilities, and elevation becomes the most informative variable compared to the rest topographic 

features and followed by slope predictor variable. Elevation also the second most influential variable from 

all model input features. Primarily, the arable fields exist in the elevation range of 1500 up to 2500 and this 

result is similar to the previous study conducted in Oromia region (Mohammed et al., 2020). The other most 

informative variable is from the topographic features is the slope, and most arable field fractions exist in the 

range of 0 up to 10 degrees. The slope and elevation variable express the fragmented landscape characteristics 

of the study area and the existence of arable fields.  Mostly cereal crops like Teff, wheat, and barley grow at 

an elevation range of 1800 to 2200, and corn grows at an elevation range of 1500 to 2200 meters. This 

confirms the potential of classical GAM model in determining the relationships among the explanatory 

variable (i.e., elevation) with the actual arable field fractions.  

This study used the optical Sentinel-2 data for extracting three red-edge bands, two SWIR bands, dry and 

wet season NDTI, and LSWI. From these nine Sentinel-2 image features, Band 5 (Red edge 1) is the most 

informative variable, and the rest eight variables are not significant variables for estimating a 20m arable field 

probability. Mainly red edge bands can differentiate the most vegetated areas because of their spectral 

response of green vegetation (Weichelt et al., 2012). The dry season Band 5 (red edge) variable can exclude 

the more vegetated areas. Most arable fields in the study area are concentrated at the lower portion of their 

spectral reflectance values (i.e., with a Band 5 reflectance value of 0.1 up to 0.2). It is expected to have even 

lower than these spectral values for arable fields, but the study area arable field characterized in some parts 

with trees inside the field boundaries. This makes the rise in spectral reflectance value of the red edge band. 

The rest of Sentinel-2 drive products like the vegetation indices the dry, wet season NDVI, dry and wet 

season NDTI, and LSWI are not important explanatory variables. We can conclude the red edge band is one 

of the informative variables in estimating arable field fractions. Sun et al. (2020) also show the red edge (i.e., 

Band 5) as the most important variable for mapping arable field areas. 

5.3. Model Evaluation 
 

The gradient boosted model fitted with twenty-four explanatory variables and the response variable (i.e., 

Arable field fractions). From the twenty-four predictors, the boosted GAM chooses ten informative 

variables. To select these variables, boosted GAM used cross-validation as an early stopping mechanism for 

solving overfitting issues. An add-on feature (i.e., stabsel ()) function is applied on the boosted GAM to 

reduce feature reduction from the ten most informative variables to six predictor variables. Finally, the 

boosted GAM with stebsel () function identifies the most informative six variables, and the variables are used 

to estimate 20m arable field probabilities. 

The research utilizes the advantage of the two models for estimating arable field probabilities and exploring 

the models' potential. Before using the classical GAM for prediction, the boosted Gam were tested in 

estimating arable field fractions. Table 8 shows the prediction result of classical GAM, Boosted GAM, the 

previous study result, and the agricultural statistics report. The final arable field fractions estimation result of 
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the classical GAM is 8,345,975 ha and around 600,000 ha difference from the previous study. When we 

compare with the reported agricultural data, the estimated area doubled the reported agricultural statistics.  

Table 8 shows a 20m Arable field fractions estimation of Classical Gam, Boosted Gam, Previous study, and agricultural 
report 

Type R2 ROC Area Estimation (ha) 

Classical GAM 69 74 8,345,975 

Boosted GAM 71 76 10327221.5 

Previous study result 65 71 8,903,744 

1Km Estimate 88.4 --- 3917033.1 

Agricultural Report --- -- 4,077,968 

 

The result shows the overestimation of the arable field compared to statistical reports and the prediction 

estimate of classical GAM. As we can see from the table, the R2  value of out-of-sample data for the classical 

GAM is lower than the gradient boost model. Even the Gradient boosted R2 value is better than the previous 

study R2 value. The same is true for the evaluation depending on the multiclass AUC value. The gradient 

boosted gam arable field fraction estimation is higher or overestimated than the classical. GAM and exceeded 

the classical GAM result by 1.4 million hectares. The result also doubles the area estimation of the reported 

agricultural statistics.  The overestimation of the arable field is due to the response variable used in this model 

with zero and one values. In addition to this, the overestimation could be the classification of non crop areas 

as crop land, and the capability of the model (i.e., spectral classifier) is limited in discriminating and identifying 

unique signatures for mixed pixels (Husak et al., 2008). The model lacks capturing these extreme values of 

the response variable, and the boosted model with the family betaReg() lacks in considering the extreme 

values. The data issues are the main reason for choosing classical GAM. The classical GAM utilizes the quasi 

binomial distribution. It captures zero or one inflated response variable (i.e., The actual field fraction has 

over-dispersed zero and one values). The classical GAM gives a better estimation of arable field fractions 

than the Gradient boost estimates.  

The 1km estimate of arable field fractions approximately equals the reported agricultural statistics data. Even 

though the estimation of a 1km estimate almost equals the reported agriculture statistics data, it may include 

the uncertainty with its resolution (1km).  In 1Km resolution, we can get other land features, and also, it 

doesn’t confirm the correctness of the agricultural statistics estimate of the Government. 

The current and the previous study also compared based on the method, the number of input variables, and 

the relative importance of each variable included in both studies. The current study used two models (i.e., 

Gradient Boosted and Classical GAM) with twenty-four predictor variables and used six of the most 

informative variables to estimate a 20m arable field fractions. In contrast, in the previous study, only the 
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classical GAM is used with five predictor variables (i.e., a 1km arable field estimate, dry and wet season 

NDVI, elevation, and slope) to estimate a 30m arable field fractions. In the previous study, the most 

informative variable is a 1km estimate which is converted into dummy variables before running the classical 

GAM model. In the current study, the significancy of 1km estimate is low compared to the previous study. 

This variable is included in our model as a linear input variable in the Gradient boosted model and as a 

continuous input variable in the classical GAM model. 

When we compare the partial deviance explained by each predictor (i.e., using common predictor variables 

in both studies) in the current and previous studies, there is a small difference in variations explained by each 

predictor variable.  Table 9 shows the comparison of the current and previous studies based on the partial 

deviance of each predictor variable. In the current study, the elevation shows a higher variation explained 

than the previous study, but less variation is explained by a 1km arable field estimate in the current study 

compared to the previous study. The slope explains almost the same variation. 

Table 9 shows a comparison of the current and previous studies based on the partial deviance explained by each predictor 

Predictor Variable Name Partial Deviance Explained (%) 

Current Study Previous Study 

Elevation 17.2  12.2 

A 1km arable field fractions 13.3 19.7 

Slope 6.2 5.8 

  

In General, the result suggests the gradient boosted model has higher prediction accuracy in out-of-sample 

data. This shows the potential of the boosted model, and it is wise to consider other possibilities to boost its 

capacity by increasing the number of ground sample data, especially by considering a 1km field fraction 

estimates (i.e., creating random sample points within the most significant classes that have more than 50% 

field fractions to surpass zero or one inflated actual field fractions or the response variable). In addition to 

this, more focus to include other explanatory variables, especially the raw bands rather than the vegetation 

matrices.  
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6. CONCLUSION AND RECOMMENDATION 

6.1 CONCLUSION 
 

This study explored the potential of multisensor remote sensing data like Sentinel-1\2 and topographic data 

using boosted and classical GAM models. From twenty-four predictor variables, six variables were identified 

by using boosted GAM model and stability selection method, which is a good model for selecting the most 

informative variables. The study identified Sentinel-1 backscatter matrices are the most informative variables 

in estimating arable field probabilities. Not only Sentinel-1 image features but also elevation and Sentinel-2 

red edge bands are also the most significant predictor variables in estimating arable fields. The classical GAM 

model fitted with those six explanatory variables, and a 20m arable field fraction map is extrapolated. In 

general, the fusion of multisensor remote sensing data like Sentinel-1 microwave, Sentinel-2 optical, and 

topographic data is essential in estimating 20m arable field fractions. 

6.2 RECOMMENDATIONS 
 

A good Model prediction result depends on the number of input variables, training and validation dataset, 

selection of informative variables, and model used for the prediction. Most machine learning algorithms 

satisfy this requirement, like Random Forest and Gradient Boosted models. In this research, the potential of 

the gradient boosted model is explored, and the model overestimates 20m arable field fractions as compared 

to the classical GAM. The reason can be the Gradient boost model uses the family betaReg(), and this 

function doesn't allow the response variable to have zero and one. To maximize the prediction performance 

of the gradient boost model, one can explore the use of other families like zero or one inflated beta and other 

families to incorporate the response variable with zero and one. Further research needs to be done by 

incorporating suitable families that consider zero and one response values.   

Generally, to increase the performance of the classical GAM and the Gradient boosted in the estimation of 

arable field fractions, it is good to include a 1km arable field estimate as a dummy variable rather than a linear 

or continuous feature. In addition to this, it needs a careful study to exclude some areas that are not belonging 

to arable fields by using the sixty-six Proba-V NDVI groups (i.e., in the current study, only group 1 is 

excluded) before the modeling process. More training and validation datasets also needed to be incorporated 

for obtaining an optimal estimation of arable field fractions. 
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ANNEXES  
Annex 1. Code used to prepare Topographic Wetness Index (TWI) 

The following code is used for preparing TWI by integrating this code with Arc toolbox.  

import arcpy, math 

if __name__ == '__main__': 

 arcpy.CheckOutExtension("Spatial") 

  

 # Define workspace and set input and output files 

 arcpy.env.workspace = arcpy.GetParameterAsText(0) 

 inDEM = arcpy.GetParameterAsText(1) 

 outTWI = arcpy.GetParameterAsText(2) 

 

 # Intermediates 

 arcpy.AddMessage("Filling DEM.\n") 

 DEM_filled = arcpy.sa.Fill(inDEM) 

 arcpy.AddMessage("Creating flow direction.\n") 

 outFlowDirection = arcpy.sa.FlowDirection(DEM_filled, "FORCE") 

 arcpy.AddMessage("Creating flow accumulation.\n") 

 #outFlowAccumulation = arcpy.sa.FlowAccumulation(outFlowDirection, "", "FLOAT") + 1  

 outFlowAccumulation = arcpy.sa.FlowAccumulation(outFlowDirection, "", "INTEGER") + 1  

  

 arcpy.AddMessage("Creating slope.\n") 

 slope = arcpy.sa.Slope(DEM_filled) 

 arcpy.AddMessage("Converting slope in degrees to slope in radians") 

 # 2Pi radians = 360 degrees 

 # Pi radians = 180 degrees 

 # conversion: Pi radians/180 degress 

 slope_radians = slope * math.pi/180.0 

  

 # Output 

 arcpy.AddMessage("Creating TWI\n") 

 TWI = arcpy.sa.Ln(outFlowAccumulation / (arcpy.sa.Tan(slope_radians)+.01)) 

 TWI.save(outTWI) 

 arcpy.AddMessage("Saved TWI. Done.") 
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Annex 2. The NDVI groups (i.e., 66 groups) 

 

Annex 3. The code used to download Sentinel-1 and 2 
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Annex 3. Code used to download Sentinel-1 and 2 
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