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Abstract

The study investigates the influence of awareness in the spread of infectious disease on
networks with community structures. Awareness is defined as the reaction of individuals
to the presence of infections in their environment. As the number of infections rises, they
adjust their behaviour so that the probability of becoming infected decreases. We distin-
guish between local, community and global awareness, that is, awareness of the number
of infected among one’s direct neighbours (local awareness), one’s community (community
awareness) and the entire network (global awareness). The impact of awareness is studied
on an SIS epidemic model using stochastic simulations and the mean-field approach. The
results are reported for two major characteristics of an epidemic: the epidemic prevalence
and the epidemic threshold. As expected, each of these three types of awareness reduces
the epidemic prevalence. Interestingly, the epidemic threshold is lowered only by the local
awareness and possibly by the community awareness when the communities are small.

Keywords: network epidemiology, infection awareness, community structures, Hierarchical
Configuration Model, SIS model
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1 List of Abbreviations

Abbreviation Meaning
CM Configuration Model

COVID-19 Coronavirus Disease 2019
DBMF Degree-Based Mean-Field
HCM Hierarchical Configuration Model
IBMF Individual-Based Mean-Field
MF Mean-Field
MSE Mean Squared Error
ODE Ordinary Differential Equation
QS Quasi-Stationary

SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus-2
SEIR Susceptible-Exposed-Infected-Recovered
SEIS Susceptible-Exposed-Infected-Susceptible
SIR Susceptible-Infected-Recovered
SIRS Susceptible-Infected-Recovered-Susceptible
SIS Susceptible-Infected-Susceptible
SS Steady-State

UAU Unaware-Aware-Unaware
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2 Introduction

First identified in late 2019 in the Wuhan province of China, the virus SARS-CoV-2,
which causes the disease COVID-19, has spread worldwide, infecting and killing millions
and causing significant and unprecedented disruption on the daily lives of people around
the globe. The reaction of the scientific community to the virus was equally unprecedented
on multiple fronts; treatment protocols and vaccines were developed on record time, and
mathematical models were brought to the spotlight, informing political decision-making
on non-pharmaceutical interventions [4] [31]. The present master’s assignment comes to
contribute to this growing literature on epidemiological modelling.

Until the development and full deployment of vaccination programmes, our primary
weapon against the virus was behaviour modification. Similar to other respiratory infec-
tions, SARS-CoV-2 primarily spreads through social contacts. Consequently, behaviours
that decrease the number or the form of social contact can effectively lower the trans-
mission rate. According to the World Health Organization, such behaviours include social
distancing, increased attention to personal hygiene and mask-wearing, as well as quarantin-
ing in case of observing related symptoms [27]. The importance of behaviour modification
is highlighted by the evolution of the pandemic which seems to indicate that behaviour,
either self-adjusted or imposed through government lockdowns, is one of the primary driv-
ing factors of upward and downward trends in the infection rates. Moreover, it has been
observed that past epidemic outbreaks caused behaviour adjustments depending on the
risk perception of the population [7]. Thus, examining the interaction between perception-
based behaviour modification and infection spread is paramount to understand the state of
the unfolding pandemic and gain valuable insights on curbing the development of similar
infections that have plagued humanity since the dawn of time and will probably continue
reappearing in the future.

The present investigation is not specific to the ongoing (as of 2021) pandemic. Instead,
it is an abstract investigation of the spread of infections in contact networks. Various infec-
tions spread in this manner, such as sexual contact in the case of venereal disease or social
contact in the case of respiratory diseases. The contact networks on which infections spread
can be modelled as a graph on which vertices represent individuals and edges represent
the contacts through which the infection can be transmitted. It has been observed that
the topology of the network plays a significant role in the outbreak’s evolution. The study
of the spread of epidemics on networks has given rise to the field of network epidemiology
[19].

Real-life social networks tend to exhibit community structures in which certain indi-
viduals interact with other members of their community with a higher frequency than with
members of other communities [38]. Furthermore, individuals tend to be aware and react
to the presence of the infection on the community level, and individuals belonging to the
same community tend to have similar risk perception [21]. Lastly, to the best of the au-
thor’s knowledge, epidemic spreading in networks with community structures has not been
examined adequately, especially regarding risk perception. Thus, in the present study, we
focused our investigations on such networks.

The main research question that we set to investigate was "What is the influence of
awareness on the spread of infectious disease on networks with community structures?"

To answer this question, we needed to model the network’s community structure, the
spread of the disease, and the awareness-based behaviour adjustment. For the first, we
used the Hierarchical Configuration Model (HCM) [38], a model that allows us to math-
ematically describe as well as generate instances of random networks with community
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structures. For the second, we applied the network SIS model [29], which is the simplest
model of epidemic spread. By applying a simple model, we were able to focus on the ef-
fects of the variable of interest, which was awareness. The modelling of awareness is a more
complicated matter because it is essentially an attempt to quantify a psychological and
sociological phenomenon. The awareness was divided into local, community and global
awareness, calculated proportionally to the prevalence of infection in the corresponding
regions. The effects of awareness were limited on a decrease of the infection rate.

In the field of network epidemiology, the study of the development of an outbreak on
a network can be conducted in two ways, both of which were deployed in the duration
of this thesis: compartmental models and agent-based models [12]. Compartmental mod-
els rely on separating the population in compartments and modelling the process using
systems of differential equations that describe the evolution of the disease. Agent-based
models employ simulations that follow the interactions of agents on the individual level.
In simulations, specific instances of the outbreak were realized in specific networks, while
the stochastic nature of the process causes the events in each simulation to be unique.
However, stochastic analysis allows us to derive a set of differential equations, also called
master equations, that describe the approximate time evolution of the system on a large
scale. In this way, an agent-based model is approximated using a compartmental model.
The method used to derive the master equations is the mean-field approach which consists
of averaging over different attributes of the system [19] over time.

In Chapter 3, we expand on the mathematical preliminaries required to follow the
subsequent study and report on the relevant literature on the effects of awareness on the
spread of disease on networks. Afterwards, in Chapters 4 and 5, we formulate the mathe-
matical model and define the relevant notation, respectively. Subsequently, in Chapter 6,
we derive the master equations using the mean-field approach. We follow with Chapter 7,
in which we explain the simulation methodologies that were deployed. Then, in Chapter
8, we present the analysis results on specific types of networks and compare the mean-field
predictions with the results of the simulations. Finally, in Chapter 9, we discuss the results
and limitations of the study, propose possible future research directions and close with a
conclusion in Chapter 10.
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3 Literature Review

In this chapter, we present some preliminary knowledge that is necessary to follow the
proceeding analysis. We commence with a presentation of the random graph models used
to model the networks, first the Configuration Model and then its extension to the Hierar-
chical Configuration Model, which can also express the presence of community structures.
Afterwards, we proceed in analyzing the epidemiological SIS model and its applications on
networks. Thereupon, we explain the algorithm used to perform stochastic agent-based
simulations. Eventually, we conduct a literature review on the effects of awareness on the
spread of infectious diseases.

3.1 Configuration Model

Considering the numerous different types of networks available in our modelling repertoire,
we shall begin by restricting our scope to a specific type of network. Namely, we may
investigate simple undirected graphs, that is, undirected graphs without self-loops and
multiple edges.

Researchers are often required to generate a random graph with a certain number of
nodes and a given degree sequence. The Configuration Model (CM) was formulated to
answer that specific need [37].

Let N denote the number of nodes in a random graph and d = (di)i∈[N ] a sequence
of degrees. We assume that di ≥ 1, for all i ∈ [N ], since isolated nodes with zero degree
cannot participate on disease spread. An inviolable constraint for such a graph to exist is
that the sum of the degrees `N =

∑
i∈[N ] di should be an even number. Then, it is always

possible to construct a multigraph with the exact degree sequence (di)i∈[N ]. Nonetheless,
this multigraph may contain multiple edges between nodes and self-loops.

The construction of a configuration model is conducted as follows:

1. A graph is initialized with N nodes; each one with an associated degree given by the
degree sequence d = (di)i∈[N ].

2. Node i is assigned di half-edges. Every half-edge needs to be connected to another
half-edge to form an edge. The total number of half-edges is `N , which equals the
sum of all degrees. Half-edges are numbered arbitrarily from 1 to `N .

3. We start by connecting the first half-edge randomly with one of the `N −1 remaining
half-edges. Next, we remove these two half-edges from the list of half-edges that need
to be connected.

4. We continue until we have connected all half-edges.

Definition 3.1 (Configuration Model). The network constructed with the process de-
scribed above is called the Configuration Model with degree sequence d, abbreviated as
CMN (d).

As mentioned above, we are interested in producing simple undirected networks. How-
ever, this may not be possible for a given degree sequence d, even when `N is even. In the
literature, two approaches to deal with the problem of generating a CM without multiple
edges and self-loops are described [3]:

Erased Configuration Model: A CM is first generated using the procedure described
above. Then, all self-loops are removed, and multiple edges are merged into one
single edge.
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Repeated Configuration Model: The process of producing a CM is repeated until a
simple graph is generated.

Each method has advantages and disadvantages. On the one hand, the Erased CM is
faster and computationally cheaper, but it generates graphs on which the degree sequence
differs from the one prescribed. On the other hand, the Repeated CM is computationally
costly, but it produces a graph with the given sequence when possible.

In the present work, the importance of the exactness of degree distributions is secondary
to the primary goal, the study of the effects of awareness in the spread of infectious disease.
Thus, the Erased CM was deemed preferable.

3.2 Community structures

The notion of community originates in the social sciences and has been extended to math-
ematical network theory because of the prevalence of community structures in real-life
social networks [28]. The prevalence of community structures was demonstrated in [14]
where the community detection algorithm of "edge betweenness" was introduced and used
to establish that many real-life social networks exhibit clustering in groups, showing that
investigating the community structures was a meaningful endeavour.

In mathematical network science, communities are seen as groups of nodes in a graph
that are tightly connected or cohesive. The notion of cohesion can be defined in many
different ways, which means that there are multiple mathematical definitions of the term
"community". The strongest definition is that of a clique that consists of nodes adjacent
to each other. A more general class of definitions is based on the relative frequency of
connections; communities are defined as sets of nodes within which connections are dense
and between which they are sparse [2]. In [32], two definitions of the community are given:

• Strong definition of community: A subgraph V is a community in the strong
sense if kini > kouti , for all i ∈ V .

• Weak definition of community: A subgraph V is a community in the weak sense
if
∑

i∈V k
in
i >

∑
i∈V k

out
i .

Here, kini and kouti are the intra-community degrees and inter-community degrees of node
i ∈ V respectively. In the strong case, each node in a community has more connections
with other nodes in the community than with nodes outside the community, while in
the weak sense, there are more intra-community edges than inter-community edges. In
the present work, the weak definition of community may be assumed unless otherwise
stated. However, it should be noted that the model used to generate random graphs, the
Hierarchical Configuration Model, allows for the definition of communities that are not
even communities in the weak sense. This is useful when a community is defined as a
group of nodes that share the same risk perception or disease awareness, even though they
do not form a cohesive community.

The model used in this study is the Hierarchical Configuration Model (HCM), a model
expressive enough to describe arbitrary community structures with given degree sequences.
This network model has a hierarchical structure that consists of two levels, connections
between communities and within communities [38]. The model builds upon the well-studied
Configuration Model for which many efficient random network generator algorithms exist,
and transforming these algorithms to generate an HCM is relatively effortless, as we shall
see in Chapter 4.
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Definition 3.2 (Hierarchical Configuration Model). Let random graph G with n commu-
nities. A community H is represented by H = ((VH , EH), (doutu )u∈VH ) where (VH , EH) is
a simple, connected graph and doutu is the number of edges from vertex u ∈ VH to other
communities.

Each vertex v has inter-community degree (hereafter called out-degree) doutv and intra-
community degree (hereafter called in-degree) dinv . The degree of the vertex is then dv =
doutv + dinv . We also define the total number of edges out of community H as dH =∑

v∈VH d
out
v . We should stress that the terms in-degree and out-degree as used in this work

should not be confused with their meaning in directed graphs, where the prefixes in- and
out- signify the direction of the edge.

Since we examine the spread of diseases through edges, we shall exclude from our
research vertices with zero degrees because they are inconsequential. Moreover, by defi-
nition, we examine non-overlapping communities; each node belongs to exactly one com-
munity and belonging to a community requires the vertex to be connected to other ver-
tices inside the community. Therefore, for the in-degrees we shall set dinu ≥ 1, for all u ∈
H and for all H ∈ G, while for the out-degrees we have doutu ≥ 0, for all u ∈ H and for all H ∈
G.

We shall also define the denseness of the network δnetw as the number of edges in the
network divided by the number of edges in a complete graph of the same size. Similarly,
we define the denseness of community H, δHcom, as the number of edges in the community
divided by the number of possible edges in the community [36].

3.3 SIS model

Epidemiological models assume that the population can be separated into different cate-
gories (often referred to as compartments) depending on the status of the infection. In
the simplest case, the model considers a fixed population of N individuals and ignores
demographic changes such as births and deaths.

Compartmental models operate under two fundamental assumptions. The first assump-
tion is that individuals in a particular compartment behave in the same manner, which is
not always realistic, but it is a necessary simplification to allow for aggregation. The sec-
ond assumption is the law of mass action, an idea borrowed from chemistry. According to
this law, the rate of change of the number of individuals in a compartment is proportional
to the number of individuals in this compartment [12].

The SIS model is the epidemiological model in which each individual can be in one
of two possible states: S for susceptible individuals who can contract the disease and
I for infected/infectious individuals who have contracted the disease and can spread it.
Note that infected individuals are immediately infectious and can transmit the disease to
other susceptible individuals. More complicated models differentiate between the states
"exposed infected" E and "infectious" I. However, there is no such discrimination in
the SIS model, and the terms "infected" and "infectious" may be used interchangeably
to signify the I state. Additional compartments can be appended in different models to
signify other possible states of infection, i.e. R for recovered. [29].

In the SIS model, two transitions are possible (see Figure 1):

• S → I or from susceptible to infected: This transition occurs when a susceptible
individual becomes infected/infectious through contact with another infected indi-
vidual.
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• I → S or from infected to susceptible: This transition happens when an infected
individual recovers from the infection and becomes susceptible again.

Figure 1: Flow diagram of the SIS model.

Since a recovered individual can be immediately reinfected, immunity effects are not
considered in the SIS model. Therefore, individuals can undergo a cycle of the form
S → I → S, which reveals the origin of the model’s name. Consequently, the long-term
regime of the model can exhibit an endemic state characterized by a constant number of
infections on average [29], as we can see in Figure 2.

Figure 2: Fractions of the susceptible (green) and infected (red) with respect to
time in the SIS model [19].

In contrast, we shall mention the SIR model in which recovering individuals enter the
R (recovered) state and become hereafter immune to the infection or die; in both cases,
the epidemiological effect is indistinguishable since they cannot be reinfected. In the SIR
system, the long-term number of infected individuals always tends to zero, and the infection
dies out in finite populations [29].
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3.3.1 Deterministic Compartmental SIS

The time evolution of the SIS model can be described by a system of Ordinary Differential
Equations (ODE), also called "master equations". This method of analysis, that reduces
the stochastic variation of the system to a deterministic average, is called the mean-field
approach.

Let i and s represent the fractions of infected and susceptible individuals in the popula-
tion respectively. By definition, we have that s+ i = 1 and consequently, by differentiating
with respect to time, di

dt = −ds
dt . Hence, in order to fully describe the behaviour of the

system, it is sufficient to deduct an expression for either i or s.
In the SIS system, we assume that the transition rate I → S is constant. In discrete

time formulation, we define the average number of recoveries per time unit, or recovery
rate, γ. Then, the mean time an individual remains in the I state is γ−1 time steps. In
continuous time formulation, if we assume that recovery is a Poisson process, the recovery
time follows an exponential distribution with mean γ−1 [19].

Moreover, we assume that the transmission rate S → I is constant. This is the rate that
an infectious individual will transmit the infection to a susceptible individual with whom
they come into contact in one time step. In discrete time, we define the average number
transmissions, or infection rate, τ . Similarly, in continuous time formulation, assuming
that infection is a Poisson process, the time until a susceptible individual is infected by an
infectious individual is an exponential distribution with mean τ−1 [19].

Homogeneous mixing is the assumption that every infected individual can infect every
susceptible individual. Under this assumption, we have that:

di

dt
= τis− γi

= τi(1− i)− γi. (1)

Intuitively speaking, τ is the rate at which infected individuals have infection-transmitting
contacts. Then, the total rate of infection-transmitting contacts is τi, but only a fraction
s of them is with susceptible individuals and lead to new infections. Hence, the rate of
change of the fraction of infections equals the fraction of new infections τis minus the
number of existing infections that recovered γi [19]. This is an application of the law of
mass action that was discussed above.

It is interesting to investigate the steady-state solutions of equation (1). We see that:

di

dt
= 0 =⇒

τi(1− i)− γi = 0.

The last equation has two solutions indicating two steady-states or equilibria: the
infection-free steady-state i = 0 and the endemic state i = 1 − γ

τ which only exists when
γ
τ < 1 or inversely τ

γ > 1. The last fraction is called basic reproductive ratio R0 = τ
γ and is

a significant value in epidemiological models. Specifically, in the case under examination,
when R0 ≤ 1 the infection-free steady-state is stable and the endemic state unstable and
when R0 > 1 the endemic state is stable and the infection-free state unstable [29].

We shall call the fraction of infected individuals in the steady-state "epidemic preva-
lence" iss. Hence, in the infection-free steady-state we have iss = 0 while in the endemic
steady-state we have iss = 1 − γ

τ . Moreover, we notice that if we fix the recovery rate γ,
there is a critical value of the infection rate τc above which the system has an endemic
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equilibrium and below which it has an infection-free equilibrium. We shall call this critical
value "epidemic threshold". In this case, the epidemic threshold is τc = γ. These two
values shall serve as quantitative metrics of the spread of disease.

3.3.2 SIS in Networks

In the previous section, we assumed that every individual can infect everyone else, an as-
sumption called homogeneous mixing. In reality, this assumption is rarely fulfilled because
people tend to have potentially disease-transmitting interactions only with specific indi-
viduals. Thus, the network point of view is more realistic: individuals are seen as nodes
in a network and their interactions as edges. In this model, the infection can spread from
infectious nodes only to their susceptible neighbours.

As in the case of homogeneous mixing, in the SIS network model, each node can be in
one of two states: S (susceptible) and I (infected). Infected nodes recover with constant
rate γ but, contrary to homogeneous mixing, susceptible nodes can become infected only
by their infected neighbours with a constant rate τ per infected neighbour.

The epidemic process can be described as a continuous-time Markov chain. In a net-
work with N nodes, there are 2N states because each node can be in two possible states.
The Markov chain approach is exact, but it has limited use because the size of the sys-
tem grows exponentially with the size of the graph. Therefore, different mean-field ap-
proaches have been developed to decrease the system’s degrees of freedom and make it
more tractable. Particularly for the SIS system, there are two derivations of a mean-field
approximation: the individual-based mean-field (IBMF) and the degree-based mean-field
(DBMF) approach [29].

On the one hand, the IBMF approach simplifies the presentation by assuming that
the probability that a node belongs to a compartment is statistically independent of the
state of its immediate neighbours. Then, we can derive the mean-field equations using
the governing equations of the 2N -state Markov chain, under the assumption that the
expected values of variable pairs factorize. The IBMF method takes into consideration the
topological structure of the network, encoded in the adjacency matrix, and its solutions
depend on the spectral properties of said matrix. On the other hand, the DBMF assumes
that all nodes with the same degree are statistically equivalent. Consequently, it does not
preserve the totality of the topological structure; it only retains the degree distribution
[29].

In the subsequent analysis, the aim is to investigate the effects of the awareness of the
infection in the environment of each node. Thus, it is convenient to use a modified version
of the DBMF such that nodes that are statistically equivalent under this method also have
the same expected awareness. Therefore, we shall build our analysis using the DBMF
approach, which we shall hereafter simply refer to as the mean-field (MF) approach. This
method was the first one to be used to investigate the SIS model in complex networks [30].

Let ik(t) be the fraction of infected nodes with degree k at time t and sk(t) the fraction
of susceptible nodes with degree k at time t1. That is:

ik(t) =
# infected nodes with degree k at time t

# nodes with degree k
,

sk(t) =
# susceptible nodes with degree k at time t

# nodes with degree k
.

1In infinite networks, ik(t) and sk(t) are interpreted as the probability that a node of degree k at time
t is infected or susceptible respectively.
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Also, let P (k′|k) be the probability that a node of degree k is connected to a node of degree
k′. Then, the dynamic equation that describes the evolution of the system is:

dik
dt

= −γik(t) + τk(1− ik(t))
∑
k′

P (k′|k)ik′(t). (2)

The first term of the right-hand side accounts for the infected nodes that recovered
and became susceptible anew. The second term accounts for the susceptible nodes that
were infected. According to the law of mass action, this is proportional to the fraction
of susceptible nodes 1 − ik(t), the number of edges k through which the infection can
travel to a node of degree k and the probability that their edges point to an infected node.
The probability that they are connected to an infected node is calculated by summing the
probabilities that they are connected to a node of degree k′ times the fraction of these
nodes that are infected ik′ for all degree classes k′ in the network [29].

Since there are only two compartments, we have that ik(t) + sk(t) = 1 and dik
dt = −dsk

dt .
Thus, it is sufficient to describe the time evolution of ik for all degree classes k in the
network.

Uncorrelated networks are networks in which the degrees of nodes are uncorrelated,
such as the networks generated with the Configuration Model method. In this case, we
have that P (k′|k) = k′

〈k〉P (k′) where 〈k〉 =
∑

k′ k
′p(k′) the mean degree of the network.

Then, equation (2) can be written as:

dik
dt

= −γik(t) + τk(1− ik(t))
∑
k′

k′

〈k〉
P (k′)ik′(t), (3)

where the term

Θ =
∑
k′

k′

〈k〉
P (k′)ik′(t) (4)

is the probability to find an infected node following a randomly selected edge.
The system of ODE (3) cannot be solved in a closed form for general degree distribu-

tions. However, it is possible to investigate its steady-state behaviour by solving the linear
system of equations for the stationarity condition dik

dt = 0 [30]. In the steady-state, we
obtain:

ik =
kΘ τ

γ

1 + kΘ τ
γ

. (5)

We notice that ik is increasing with k, meaning that more interconnected nodes are more
likely to become infected.

Then, the epidemic prevalence is:

iss =
∑
k

P (k)ik =
∑
k

P (k)
kΘ τ

γ

1 + kΘ τ
γ

.

The parameter Θ is computed by substituting (5) to (4) to obtain the self-consistent
equation
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Θ =
1

〈k〉
∑
k

kP (k)
kΘ τ

γ

1 + kΘ τ
γ

. (6)

The equation (6) has a non-zero solution for Θ, that leads to the endemic state, only
when:

τ > τc = γ
〈k〉
〈k2〉

,

which is the epidemic threshold of the model. The epidemic threshold is proportional
to the mean degree and inversely proportional to the mean squared degree. The mean
squared in the denominator shows the importance of degree heterogeneity in the spread of
the epidemic.

For a fully homogeneous network where all degrees are equal, we have that 〈k2〉 = 〈k〉2
and τc = γ 1

〈k〉 , an epidemic threshold inversely proportional to the average connectivity.
However, in networks with high degree heterogeneity, the second moment of the degree
〈k2〉 grows relative to the mean 〈k〉, lowering the epidemic threshold. For example, this is
observed in networks with power-law degree distribution P (k) ∼ k−α. In the special case
of 2 < α ≤ 3, we have 〈k2〉 → ∞ as the size of the network grows to infinity. In such cases
of so-called scale-free networks, the epidemic threshold vanishes τc → 0 as the network size
grows to infinity.

3.4 Stochastic Simulations

The mathematical models described in the previous sections attempt to aggregate the
degrees of freedom of the systems and predict the time evolution of stochastic processes.
They were examples of compartmental models. Another way to study stochastic processes
is to perform agent-based stochastic simulations. In this method, there is no aggregation,
and each individual’s behaviour is taken into consideration.

In this work, stochastic simulations were run on specific networks for multiple repeti-
tions so that the results gain statistical significance. Then, the results of the simulations
were compared with the expected results of the mathematical models to verify the models.
The simulations shall be treated as the stochastic "reality" that the mathematical models
attempt to describe deterministically.

Stochastic simulations can be performed either in discrete or in continuous time. In
discrete time simulations, we calculate the probability that a node will transition in status
(S → I or I → S) in each time step, and then we determine which transition happens
using random number generators. The main disadvantage of this method is that it cannot
take into consideration that transitions that happen within one time step can influence
each other since they are seen as happening simultaneously [19].

Since epidemic outbreaks, in reality, happen in continuous time, we opt out for con-
tinuous time simulations. In this work, we used the Gillespie algorithm, which was first
introduced to simulate chemical reactions [13]. The idea of the algorithm is as follows:

1. In the present time tnow, each possible event e has a rate re associated with it. In
the SIS model, the possible events are of two kinds: each susceptible individual may
become infected by one of its infected neighbours and each infected node may recover
and become susceptible again.
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2. We calculate the total rate rtotal =
∑

e re and generate the time until the next event
tnext from an exponential distribution with that rate.

3. Next, we need to determine which event occurred. For this purpose, we assign a
probability to each possible event pe = re

rtotal
and select randomly which event oc-

curred.

4. We set tnow → tnow+tnext and update the state of the system. Then, we calculate the
new set of possible events and update the associated rates. The process is repeated
until rtotal = 0 or tnow becomes larger than a set value tmax.

The Gillespie algorithm provides an exact stochastic simulation in the case of a Markovian
system [19].

An alternative continuous time simulation method is the event-driven simulation. In
this method, a priority queue of upcoming events is kept in memory, and the events are
processed sequentially. Each event causes a series of upcoming events that are then added
to the queue at the appropriate locations. For example, when individuals become infected,
we can calculate when they will recover and which other individuals they will infect in the
meantime [19]. In general, the event-driven algorithm is more efficient than the Gillespie
algorithm. However, our analysis cannot exploit its efficiency because each new infection
affects all subsequent infections until recovery through the awareness mechanism, which
causes an adjustment to the infection rates of all individuals in the network, as we shall
see below.

3.5 Approximation of the Epidemic Threshold Using Stochastic
Simulations

Recall that the epidemic threshold is the critical infection rate τc above which we reach
the endemic steady-state in the SIS model. When we solve the system using a mean-field
approximation, calculating the epidemic threshold is a matter of studying the stability of
a dynamic system. However, when we examine the results of stochastic simulations, a
specialized methodology is required.

In [35] and [41], the researchers ran multiple realizations of the simulations for an ade-
quate time horizon and averaged the results to reduce stochastic fluctuations. Then, they
estimated the epidemic threshold as the minimum infection rate that caused an average
infection density over a threshold. However, it is admitted that this methodology may
lead to overestimating the epidemic threshold because of finite-size effects, which we will
explain next.

There are two types of finite size effects that may affect the estimation of the epidemic
threshold. Firstly, the SIS system contains an absorbing state, the infection-free equilib-
rium, which cannot be exited once visited. Stochastic simulations of finite systems are
particularly sensitive to this effect because the absorbing states may be reached even in
the supercritical regime because of random stochastic fluctuations. Then, even infection
rates above the epidemic threshold may lead to a vanishing infection. This may lead to an
overestimation of the epidemic threshold.

The standard solution to this problem is to restrict the simulations to runs that do
not visit the infection-free equilibrium, which is called the surviving runs method [9]. This
is a rather costly process because of the large number of runs that will not be taken into
consideration. A second approach is the so-called quasi-stationary (QS) procedure in which
the absorbing configuration is excluded from the dynamics. This is achieved by keeping
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track of a set of active states from the history of the simulation and regularly replacing
the present configuration with one from the past with a certain probability [6] [9].

A second related issue is that of the degree-distribution related finite-size effects. As we
discussed previously, in a scale-free network, the epidemic threshold vanishes. This effect
is attributed to the infinite variance of the degree distributions in such networks. However,
real-life networks, as well as specific network configurations used in simulations, are not
infinite. This means that there is an inevitable cut-off to the network’s power-law degree
distribution, which leads to an epidemic threshold even in networks with infinite variance
degree sequences. In these cases, the epidemic threshold tends to be inversely proportional
to the size of the network, meaning that smaller networks tend to overestimate the epidemic
threshold [26] [24].

To attend to this problem, the size dependent susceptibility is introduced:

χ = N
〈i2〉 − 〈i〉2

〈i〉
,

where the average infection density 〈i〉 and its second moment 〈i2〉 are computed using
surviving runs or quasi-stationary simulations [8]. The methodology entails running mul-
tiple realizations of networks with the same degree distribution and different sizes N . The
size-independent epidemic threshold is the infection rate τc for which the susceptibility χ
peaks.

3.6 Spread of Infections on Networks with Community Structures

The existence of mesoscopic community structures in networks has been investigated for
its effects on the spread of infections. It has often been seen in the literature that such
structures have profound effects on the evolution of an outbreak.

In [36], the researchers investigated several real-world networks and extracted several
statistics as well as the community structures using a community detection algorithm.
Then, they generated networks using three methods. First, they applied the CM algorithm
to create networks with identical degree sequences as the real ones while at the same time
destroying the community structures. Then, they used the HCM method to rewire only the
inter-community edges; in this way, they preserved the community structures themselves
and the intra-community microscopic structures. Lastly, they used the HCM algorithm to
rewire both the inter-community and intra-community edges with the restriction that intra-
community edges shall remain within their respective communities and inter-community
edges shall remain between communities. The last method preserves both the mesoscopic
and microscopic structures without overfitting to specific cases. The last algorithm was
denoted with HCM*.

In these three models, the spread of a SIR epidemic was studied using the bond per-
colation method, and the results were compared with the original network. In the context
of a SIR epidemic, the bond percolation method entails removing edges from the network
with probability 1−p and retaining them with probability p, where p is the probability that
an infected node will transmit the infection to a susceptible neighbour. In the resulting
network, the size of the largest component provides information on the final size of the
epidemic. It was shown that the HCM and HCM* models follow the development of the
epidemic with greater fidelity to the original model than the CM model. This led to the
conclusion that the community structures play a vital role in the epidemic. Furthermore,
the fact that HCM and HCM* did not differ significantly in how closely they modelled
the epidemic shows that the internal structure of the communities is insignificant for the
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most part. This is explained by the relative denseness of the edges inside the commu-
nities compared to between them; an epidemic reaching a community would eventually
infect most of the members while the spread was inhibited by the relative sparseness of
the inter-community degrees.

In [23], the researchers generated random networks by first partitioning the nodes to
communities and then generating edges between them with different probabilities: q for
inter-community edges and p for intra-community edges. They also defined the degree of
community σ = p

q >> 1; with a larger degree of community, the edges within communities
become denser in comparison to the inter-community edges. This is a special case of the
stochastic block model [17] which generates Erdös-Rényi-like networks with a given number
of Erdös-Rényi-like communities. With σ >> 1 and considering the stochastic element in
network generation, we should expect the communities to comply with the weak definition
of community.

Afterwards, the spread of an SIS infection was examined using both simulations and
deterministic compartmental modelling. Both methods were in agreement that the epi-
demic threshold was inversely proportional to the degree of community τc ∼ 1

σ . Therefore,
the denser the communities compared to the inter-community connectivity, the less likely
it was for a global epidemic outbreak to occur. The explanation was that outbreaks tend to
spread locally and die out before they reach other communities. Nonetheless, community
structures were shown once more to play a crucial role in the evolution of the epidemic.

In [21], a variation of the stochastic block model was used, and extensive mean-field
analysis, as well as stochastic simulations, were conducted in both the SIS and SIR models.
The analysis was performed based on a distinction between infections within the community
and infections introduced from outside a community. On this level of analysis, the focus
is on the boundary nodes of each community, defined as the nodes that have external
connections. The results indicate that only a small fraction of infections happen between
different communities. In fact, when the communities were analyzed in the absence of
external connections, no considerable change in the infection levels was noted. Hence, the
conclusion was that boundary nodes play an essential role in introducing the infection to a
community or reintroduce it after dying out in a specific community while still circulating
in the network. However, other than that, the role of external connectivity is mostly
insignificant.

3.7 Infection Awareness

As we saw in the preceding sections, the rate of infection is proportional to the frequency
of contact with other infected individuals. Nevertheless, it has been observed that individ-
uals and communities tend to adjust their behaviour based on the perceived risk related
to the levels of infection in the environment [15] [31] [11]. Moreover, risk perception tends
to differ between individuals or groups based on various factors such as their location,
their demographics, their susceptibility to infection and media exposure. Notably, risk
perception does not depend on the real danger but only on the perceived risk, as the name
suggests [1]. The behaviour adjustment, which is directed by risk perception, takes the
form of precautions that limit the probability of infection. Depending on the nature of
the infection, these include decreased frequency of contacts, use of protective apparatuses,
social distancing and personal hygiene [27]. Such precautions can be undertaken individu-
ally or imposed in some form by authorities or social pressure. In effect, these behaviours
decrease the probability of infection.

In [11], the researchers classified the behaviour-disease models based on three aspects:
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• The source of information: The source could be either global, such as public
announcements, or local, coming from their neighbourhood or community.

• The type of information: The type was either prevalence-related (directly related
to the level of infection) or not prevalence-related, which can be set independently
of the progression of the outbreak.

• The effects of the behavioural change: The effects can be on three levels: the
disease state (e.g. vaccinations making individuals immune), the infection or recovery
rate and the contact network on which the disease spreads.

In [1], the authors analyzed the effects of risk perception on an SIS infection spreading
on a scale-free network generated using the preferential attachment algorithm [37]. The risk
perception differs per susceptible node, and it was modelled by a function A(kinf , k) ≤ 1,
which depends on the degree k and the number of infected neighbours kinf . This function
is multiplied with the infection rate τ so that the effective infection rate is decreased by a
certain factor. The risk perception was defined as

A(kinf , k) = e−(K+J(
kinf
k

)α1 ), (7)

where J represents the level of precautions adopted in response to new infections in the
neighbourhood, α1 ≤ 1 models the use of special prophylaxis (additional safety measures),
and K quantifies the global influence over the whole population. It should be noted that
K remains constant, meaning that the global risk perception does not depend on disease
prevalence. J and α1 can be thought of as quantifying the linear and non-linear responses
on the local level. It was demonstrated that for fixed or bounded connectivity and α1 = 1,
there was always a finite value Jc that would lead the epidemic into extinction. However,
when the variance of the degree distribution diverged to infinity, the disease could only
become extinct by setting α1 < 1, namely by applying non-linear risk perception.

In [20], the same model (7) for the risk perception was used on scale-free networks with
power-law degree distribution. The main focus of this paper is to study the effect of risk
perception on nodes with different connectivity. Power-law degree distributions result in a
few nodes with disproportionately high degrees, and it seems that these highly connected
nodes are responsible for the bulk of infections. When the local risk perception J is
introduced, the infection levels among highly connected nodes do not change significantly.
However, the infection fails to reach nodes in the low end of the degree distribution in the
periphery of the network. The effect of K is predictably the lowering of the infectivity
across the network.

In [21], we encounter an investigation on the effects of risk perception on networks with
community structures. The authors adapted the equation (7) by setting different global
awareness K for each community, now called community awareness. As in [1] and [20],
K remained constant throughout the epidemic outbreak, independently of the levels of
infection. Nonetheless, it allowed the researchers to consider the effects of different levels
of community awareness. In high awareness communities, the infection tended to die out
and had to be reintroduced by the boundary nodes. Therefore, as the community awareness
increases, the effects of external connectivity become more pronounced in sustaining the
infection, while their impact was minor in the absence of awareness. Moreover, this effect
highlights the importance of low awareness communities in preserving the infection in the
network and repeatedly reintroducing it to high awareness communities.

15



In [35] and [41], the researchers investigate the effect of prevalence-related awareness
both on the local and the global level. Furthermore, they introduce the contact awareness
ψ(k), which is not dependent on the presence of the infection but on the degree of a
node. The rationale of the contact awareness is that highly connected nodes are at greater
risk of infection, and therefore they would take precautionary measures of proportional
magnitude. In this case, a linear model of awareness is used following the formula:

A(kinf , k, i) = ψ(k)(1− J
kinf
k

)(1−Ki), (8)

where i is the fraction of infected nodes in the network, or infection density.
It is shown, using both stochastic simulations and mean-field analysis, that all forms of

awareness affect the epidemic prevalence. However, local and contact awareness were also
able to influence the epidemic threshold.

In [35], non-linear effects were also studied in the form of the exponents α1, α2 in the
formula:

A(kinf , k, i) = ψ(k)(1− J(
kinf
k

)α1)(1−Kiα2), (9)

and it was shown once more that only the local parameter α1 affects the epidemic threshold.
In the investigations described thus far, the awareness of the infection was produced

either in reaction to the presence of infection or imposed globally. An alternative research
direction draws from the literature on the spread of ideas on social networks. As a matter
of fact, the study of the spread of ideas has been influenced by epidemiological modelling in
networks where opinions take the form of contagious agents spreading through social con-
tact or imitation [22]. In this case, awareness becomes a discrete state in which nodes can
enter under the influence of their neighbours, in a similar manner as in the epidemiological
models of diseases.

In [16], the researchers defined a multiplex network with two layers. In the first (phys-
ical) layer, an SIS infection process unfolds, while the second (virtual) layer is dedicated
to the spread of awareness. The awareness process was modelled using two discrete states,
aware (A) and unaware (U), forming a cyclical process UAU in which aware nodes could
spread their awareness to neighbouring unaware nodes in the virtual layer. Additionally,
nodes could also become aware if they received an infection in the physical layer (self-
initiated awareness). The awareness status of a node would affect the transmission rate
of the infection on the physical layer creating an interesting dynamical interplay between
the two processes where the infection and the awareness spread antagonistically to each
other. In particular, the epidemic threshold and the epidemic prevalence in the steady-state
depended on the awareness dynamics and the topology of the virtual layer.

In [40], the same UAU awareness model was studied with a SEIS infection, including an
exposed state in which nodes are infectious but unaware of the fact, making them asymp-
tomatic carriers2. The processes spread in a two-layer multiplex network. The presence
of asymptomatic carriers in the model inhibited the self-initiated awareness, leading to a
decrease in the epidemic threshold and an increase in the epidemic prevalence. In [10],
it was observed that centrally imposed awareness can decrease the epidemic prevalence
but has a negligible effect on the epidemic threshold. Nonetheless, a local self-initiated

2This should not be confused with the exposed state in the regular SEIR or SEIS models in which the
agent is not yet infectious. Here, E is used instead of A for "asymptomatic" to avoid confusion with A for
"aware".
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awareness process can affect the epidemic threshold by preventing an outbreak before it
spreads globally, mainly when the awareness and the infection spread on the same network
rather than on a multiplex.

In the literature, we encounter different terms such as risk perception, infection aware-
ness, information, alertness and behavioural adaptation. All these terms are used to express
the same notion that the awareness of an infection in the environment causes behavioural
adaptation. Hereafter, we shall refer to the notion as "awareness" to avoid further confu-
sion.

17



4 Model Formulation

In this chapter, we shall define the mathematical model that was studied and explain the
modelling choices. We begin by disclosing the choices related to the network structures
used and then justify our choice of epidemiological model. Lastly, we shall expound on
how the awareness was modelled.

4.1 Network Modelling

In the present analysis, we shall use graphs that consist of nodes and edges that connect
them. Each node models an individual with a status related to the infection, while edges
model the interactions between individuals that can transmit the infection.

The topologies of the networks studied are static, meaning that the connections between
nodes do not change over time. This is a convenient approximation since real-life networks
are rarely static; edges are being cut, created or rewired at some rate. A static network
provides a good approximation for processes that evolve at a much faster scale than the
network topology [29].

Moreover, we shall examine networks that are simple, unweighted and undirected
graphs. Simple graphs are graphs without multiple edges and self-loops. The fact that
edges are unweighted means that each interaction between individuals is equally likely to
transmit the infection. In real life, this may not be the case, as some interactions are con-
sidered riskier. Similarly, multiple edges could be used to model the fact that nodes may
interact more often, increasing the probability of infection, which is reducible to a weighted
edge. Undirected edges model the fact that the infection can travel in both directions, a
choice that is quite realistic for most infections. However, it should be noted that there are
cases in which there is an intrinsic directionality, such as blood transfusions [29]. Finally,
self-loops do not have a physical meaning in the study of epidemics.

Furthermore, in this work, we focus on networks with community structures. As we saw
in the literature review, community structures have been shown to play a critical role in the
spread of disease. It must be stressed that, in this project, we shall not focus on the effect
of community structures but on the effects of awareness, which may be shared among
individuals belonging to the same community. To generate networks with community
structures, we shall use the Hierarchical Configuration Model (HCM) that was described
in the literature review. The main advantage of this method is that it makes it possible to
generate networks with prescribed degree distributions.

Now, we shall explain how we generated HCM networks. Let N be the number of nodes
in the network, n the number of communities, and NH the number of nodes in community
H. Furthermore, let an out-degree sequence dout of length N and n in-degree sequences
dinH , one for each community. The communities are ordered arbitrarily, H1, · · · , Hn. Then,
the nodes are assigned a number from 1 to N such that the nodes 1, · · · , NH1 belong to
H1, the nodes NH1 + 1, · · · , NH2 belong to H2 and so on. Thus, each node is assigned a
number, a community, an in-degree and an out-degree. We can construct a Hierarchical
Configuration Model with the following process:

S.1 Generate n different graphs, one for each community H using the in-degree distribu-
tions dinH with the Configuration Model process.

S.2 Generate one graph using the out-degree distribution dout with the Configuration
Model process.
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S.3 Superimpose the graph generated in step 2 on the community graphs generated on
step 1 using the ordering of the nodes.

In this work, we used the Erased Configuration Model process to create graphs in steps
S.1 and S.2. Moreover, there is no guarantee in step S.2 that an edge will not point to
the same community, although the probability of this happening decreases as the fraction
of inter-community half-edges of each community by the inter-community half-edges of all
other communities decreases. Consequently, the in-degrees and out-degrees in the final
network may differ slightly from the prescribed ones.

4.2 Epidemiological Model

The epidemiological model used in the following analysis is the SIS model on networks
which was described in Chapter 3. As we mentioned, individuals can be in either of two
states I for infected/infectious and S for susceptible.

Real-life diseases rarely comply with this model. In most cases, individuals gain some
level of immunity after infection, something more accurately portrayed in the SIR model.
Furthermore, immunity may not last forever. Thus individuals may end up in the sus-
ceptible state again, as in the SIRS model. Alternatively, it is common for patients not
to become infectious immediately after exposure, which is conveyed by the E state in the
SEIS, SEIR and SEIRS models.

In any case, the SIS model expresses an idealized case that epidemiologists regularly
study because of its conceptual simplicity and mathematical tractability. The results of
SIS modelling can still offer essential understandings of the infection dynamics. In our case,
we opted for the SIS model because by simplifying the model, we could add complexity
and study the effects of other aspects of the system, such as the presence of awareness.
After understanding the effects of awareness on networks with community structures on the
simple SIS model, we may invite researchers to add realism by researching more complicated
epidemiological models.

A susceptible node j ∈ S becomes infected upon contact with infected node m ∈ I
at some rate. When a susceptible node is infected, it immediately moves to the set of
infected nodes I. The transmission rate along edge jm is AjTm where Aj is the admission
rate of j ∈ S and Tm the infection rate of m ∈ I. The admission rate Aj depends on the
behaviour of the susceptible node and will be used to model the awareness of the disease;
nodes with high awareness will have lower Aj that will make it harder to become infected,
with 0 ≤ Aj ≤ 1. In our model, we set the infection rate constant Tm = τ , where τ
is the awareness-free per edge infection rate. Note that in the absence of awareness, we
have Aj = 1, and the transmission rate is equal to the infection rate. We define τ based
on the nonlinear contagion scheme as in [25], where 0 ≤ τ ≤ 1 is the probability that a
susceptible node will be infected by one infected neighbour in one time step in the absence
of awareness. Thus, if a node j ∈ S has kinf infected neighbours, the probability that it
will become infected in one time step is 1 − (1 − Ajτ)kinf . Lastly, let γ be the recovery
rate, the rate with which infected nodes recover, which is constant. When a node recovers,
it becomes susceptible immediately. Note that γ refers to an infected node while τ refers
to an edge that connects a susceptible node with an infected one.

4.3 Infection Awareness

The effects of infection awareness form the core of the present research. Hence, it is essential
that we locate our research in the infection awareness literature and highlight our novel
contributions.
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In this thesis, we shall model the awareness of susceptible node j as a continuous
variable:

Aj = φLj φ
C
Hφ

G,

which depends on three types of awareness:

• φLj is the local awareness that depends only on the immediate neighbours of node j.

• φCH is the community awareness of community H to which the node j belongs.

• φG is the global awareness that is shared along with the whole network G.

We define the awareness such that 0 ≤ φLj , φCH , φG ≤ 1 which implies that 0 ≤ Aj ≤ 1.
We favoured a multiplicative model in which the effect of each type of awareness is

multiplied with the rest. The rationale is that each type of awareness decreases the rate
of transmission by a certain factor and that the three types are independent of each other
[1]. Therefore, without awareness, node j becomes infected by one infected neighbour with
rate τ . After receiving the local awareness, the rate becomes τφLj . Subsequently, after
receiving the community and global awareness, the rate becomes τφLj φ

C
Hφ

G = τAj .
According to the classification given in [11], the source of awareness Aj is both local

and global. Specifically, the global source is captured by the global awareness φG, while the
local and community awareness φLj and φCH are forms of awareness from local sources with
different horizons. Furthermore, the effects of the behaviour change are only captured
in the transmission rate; neither the disease state nor the network topology is affected.
Lastly, as we shall see, the type of information in our awareness model is prevalence-related,
meaning that the awareness is proportional to the prevalence of the infection, either locally
or globally. The mechanism with which the awareness depends on the prevalence depends
on the specific awareness model.

In this work, we used a linear awareness model. In this model, the awareness has a
linear relationship with the prevalence of the infection. Specifically, the three types of
awareness are defined below.

Local awareness: φLj = 1−cL
kinf
k , where cL is the local awareness coefficient, kinf is the

number of infected neighbours and k is the degree of the node j.

Community awareness: φCH = 1 − cCiH , where cC is the community awareness coeffi-
cient and iH the fraction of infected nodes in the community H.

Global awareness: φG = 1− cGi, where cG is the global awareness coefficient and i the
fraction of infected nodes in the network.

The linear relationship is characterized by the local, community and global awareness
coefficients cL, cC and cG, respectively. With 0 ≤ cL, cC , cG ≤ 1 we have 0 ≤ φLj , φCH , φG ≤
1. Hence, we have:

Aj = φLj φ
C
Hφ

G

= (1− cL
kinf
k

)(1− cCiH)(1− cGi)

with 0 ≤ Aj ≤ 1. We observe that Aj decreases as the awareness of the infection increases.
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With the above formulation, we have that the transmission rate along the edge jm
with j ∈ S and m ∈ I is:

Ajτ = φLj φ
C
Hφ

Gτ = τ(1− cL
kinf
k

)(1− cCiH)(1− cGi).
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5 Notations

5.1 Compartments and Classes of Nodes

Before proceeding, we need to clarify the notation that will be used in the subsequent steps.
The symbols I and S have multiple meanings according to the context. Firstly, they are
used to denote the state that a node can be in as well as the sets of all nodes at that state,
susceptible and infected, respectively (i.e. v ∈ S means that node v is susceptible). A set
of all nodes in the same state is also called a compartment. Moreover, in the mean-field
analysis, they will be used to denote the number of infected or susceptible nodes at a
specific time t (i.e. I(t) and S(t)).

When S(t) and I(t) are in capital letter notation, they denote the absolute number
of nodes in a specific state, while in the lower case, they denote the fraction of the nodes
in that state, otherwise called infection density. Therefore, we have that s(t) = S(t)

N and
i(t) = I(t)

N , where N is the number of nodes in the network.
In the SIS model, we have s+ i = 1 and S + I = N . By differentiating with respect to

time, we have that ds
dt + di

dt = 0 or ds
dt = −di

dt .
Let G be a network with N nodes and n communities, as defined above. The com-

munities will be represented as H1, · · · , Hn, and NHi represent the number of nodes in
community Hi.

We may also need to denote the number or fraction of nodes in a specific state in the
community Hi. This will be denoted by SHi , IHi and sHi , iHi respectively. Thus, we have
iHi = IHi

NHi
and sHi = SHi

NHi
.

Each node has an in-degree kin, the number of neighbours that belong to the same
community, and an out-degree kout, the number of neighbours that belong to a different
community. We shall denote the number (fraction) of infected and susceptible nodes in
community Hi with in-degree kin as IHikin and SHikin (iHikin , s

Hi
kin

) respectively. These fractions
are defined with respect to the number of nodes in the community. Thus, we have iHikin =

I
Hi
kin
NHi

and sHikin =
S
Hi
kin
NHi

.
Furthermore, we will denote the number (fraction) of infected and susceptible nodes

with out-degree kout by Ioutkout
and Soutkout

(ioutkout
, soutkout

) respectively (note the absence of the

community in the superscript). Hence, we have ioutkout
=

Ioutkout
N and soutkout

=
Soutkout
N . Note that

in this case, the fraction is with respect to the total population N .
Finally, we denote the number (fraction) of infected and susceptible nodes in community

Hi with in-degree kin and out-degree kout with IHikin,kout and SHikin,kout (iHikin,kout , s
Hi
kin,kout

)
respectively. In this case, we will define the fractions with respect to the total population

N , hence we have iHikin,kout =
I
Hi
kin,kout
N and sHikin,kout =

S
Hi
kin,kout
N .

5.2 Relations Between Classes of Nodes

Having defined the different classes of nodes, we need to define the relations between them.
As we mentioned earlier, the mean-field analysis culminates in the derivation of the master
equations. As we shall see, the level of analysis will be on classes of nodes in the same
community with the same in-degree and out-degree. This means that we shall assume that
nodes in each class defined by their community, in-degree and out-degree are statistically
equivalent. Thus, in the master equations, we will examine the time evolution of the
fraction of infected or susceptible nodes in each class.
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However, on some occasions, we need the fraction of all the infected nodes in a specific
community or a specific community with a specific in-degree or a specific out-degree. In
this section, we show that these classes are related given the in-degree distribution for each
community pHikin and the out-degree distribution poutkout

.
First, we also need to define the maximum out-degree in the network kmaxout , the max-

imum in-degree in community Hi, k
max,Hi
in , and the maximum in-degree in the network

kmaxin = maxHi k
max,Hi
in . Lastly, by

∑
Hi

we shall denote the operation of summing over all
the communities Hi of the network.

• The in-degree distribution in community Hi is defined as the fraction of nodes in
community Hi with in-degree kin:

pHikin =
# nodes in Hi with in-degree kin

NHi

.

• The out-degree distribution for all v ∈ G is defined as the fraction of nodes with
out-degree kout among all the nodes of the network:

poutkout =
# nodes in with out-degree kout

N
.

• The distribution of the nodes in each class defined by the community Hi and the in-
and out-degrees kin and kout is:

pHikin,kout =
# nodes in community Hi with in-degree kin and out-degree kout

N
.

• The number of infected nodes in community Hi with in-degree kin is:

IHikin =

kmaxout∑
kout=0

IHikin,kout = N

kmaxout∑
kout=0

iHikin,kout .

Thus, the fraction of infected nodes in community Hi with in-degree kin is:

iHikin =
IHikin
NHi

=
N

NHi

kmaxout∑
kout=0

iHikin,kout .

• The number of infected nodes in community Hi is:

IHi =

k
max,Hi
in∑
kin=1

kmaxout∑
kout=0

IHikin,kout =

k
max,Hi
in∑
kin=1

kmaxout∑
kout=0

NiHikin,kout = N

k
max,Hi
in∑
kin=1

kmaxout∑
kout=0

iHikin,kout .

Therefore, the fraction of infected nodes in community Hi is:

iHi =
IHi

NH
=

N

NHi

k
max,Hi
in∑
kin=1

kmaxout∑
kout=0

iHikin,kout .
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• The number of infected nodes with out-degree kout is:

Ioutkout =
∑
Hi

k
max,Hi
in∑
kin=1

IHikin,kout = N
∑
Hi

k
max,Hi
in∑
kin=1

iHikin,kout .

Therefore, the fraction of infected nodes with out-degree kout in the network is:

ioutkout =
Ikout
N

=
∑
Hi

k
max,Hi
in∑
kin=1

iHikin,kout .

• The number of infected nodes in the whole graph G is:

I =
∑
Hi

k
max,Hi
in∑
kin=1

kmaxout∑
kout=0

IHikin,kout = N
∑
Hi

k
max,Hi
in∑
kin=1

kmaxout∑
kout=0

iHikin,kout .

Thus, the fraction of infected nodes in the whole graph is:

i =
I

N
=
∑
Hi

k
max,Hi
in∑
kin=1

kmaxout∑
kout=0

iHikin,kout .
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6 Mean-field Analysis

6.1 Preliminaries

In the mean-field analysis, we will derive a system of nonlinear Ordinary Differential Equa-
tions, called the master equations, that describe the evolution of the system over time.
Specifically, we derive two differential equations per class of nodes where each class con-
sists of all the nodes that belong to the same community Hi and have the same in-degree
kin and out-degree kout. Thus, we shall assume that all nodes of each class behave epi-
demiologically in the same manner.

Since we examine the SIS model, infected nodes that recover become susceptible again.
Therefore, the rate of change of the fraction of susceptible nodes of a target class equals
minus the rate of change of the fraction of the infected nodes in the same set. Thus, it
suffices to derive the differential equation for the fraction of infected in each class:

dsHikin,kout
dt

= −
diHikin,kout

dt
.

For these functions, we have the constraints:

0 ≤ sHikin,kout , i
Hi
kin,kout

≤ pHikin,kout and s
Hi
kin,kout

+ iHikin,kout = pHikin,kout , ∀Hi, kin, kout

We first need to define an ordering of the node classes so that the differential equation
can be ordered and written in a vector notation. In other words, we need to define a
totally ordered set [5]. Thus, we define the array i which contains all the functions iHikin,kout
ordered using the algorithm described below.

1. The communities are defined with an arbitrary ordering H1, H2, . . . Hn.

2. The functions are first ordered per community.

3. Then, they are ordered by their in-degree in their community.

4. Lastly, when the community and in-degree are the same, they are ordered by their
out-degree.

The number of node classes, and hence the number of differential equations is L =
(kmaxout + 1)

∑
Hi
kmax,Hiin . Hence, we have that i ∈ RL.

Now, we can define the vector i:

i =
[
iH1
1,0, i

H1
1,1, . . . i

H1
1,kmaxout

, iH1
2,0 . . . i

H1

k
max,H1
in ,kmaxout

, iH2
1,0, . . . , i

Hn
kmax,Hnin ,kmaxout

]T
.

Then, the system of differential equations can be written as:

d

dt
i = F (i),

where F is a nonlinear function RL → RL.
Each susceptible node can become infected either from a neighbour within the commu-

nity or from a neighbour from a different community. We will examine each case separately
and then we will combine the results.
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6.2 Infections within a community

Let the in-degrees of the nodes within the community Hi be distributed according to pHikin .
Then, let θinHi(t) be the probability that a randomly chosen edge between nodes of the
community Hi points to an infected individual. We have:

θinHi(t) =
# edges pointing to an infected node in Hi

# of edges in Hi

=

∑k
max,Hi
in
kin=1 kinp

Hi
kin
iHikin(t)∑k

max,Hi
in
kin=1 kinp

Hi
kin

=

∑k
max,Hi
in
kin=1 kinp

Hi
kin
iHikin(t)

〈k〉Hi

=

∑k
max,Hi
in
kin=1 kinp

Hi
kin

N
NHi

∑kmaxout
kout=0 i

Hi
kin,kout

(t)

〈k〉Hi

=
N

NHi

∑k
max,Hi
in
kin=1

∑kmaxout
kout=0 kinp

Hi
kin
iHikin,kout(t)

〈k〉Hi
, (10)

where 〈k〉Hi is the average in-degree in the community Hi.
Then, let XHi

kin
be a random variable representing the number of infected neighbours

within the community Hi of a node in the community Hi with in-degree kin. This is a
binomial random variable with success probability θinHi and number of trials the in-degree
kin. Hence:

P (XHi
kin

= sin) =

(
kin
sin

)
(θinHi)

sin(1− θinHi)
kin−sin , for 0 ≤ sin ≤ kin.

Similarly, we define the probability θout(t) that a randomly selected edge between nodes
of different communities points to an infected node and poutkout

the out-degree distribution
in the network.

Then we have:

θout(t) =
# edges between communities pointing to an infected node

# of edges between communities

=

∑kmaxout
kout=0 koutp

out
kout

ioutkout
(t)∑kmaxout

kout=0 koutp
out
k

=

∑kmaxout
kout=0 koutp

out
kout

ioutkout
(t)

〈k〉out

=

∑kmaxout
kout=0 koutp

out
kout

∑
Hi

∑k
max,Hi
in
kin=1 iHikin,kout(t)

〈k〉out

=

∑kmaxout
kout=0

∑
Hi

∑k
max,Hi
in
kin=1 koutp

out
kout

iHikin,kout(t)

〈k〉out
, (11)

where 〈k〉out is the average out-degree in the network.
We also define Xout

kout
to be a random variable denoting the number of infected neigh-

bours outside the community of a node with out-degree kout. This random variable is
binomially distributed with success probability θout(t) and number of trials the out-degree
of the node:
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P (Xout
kout = sout) =

(
kout
sout

)
(θout(t))sout(1− θout(t))kout−sout , for 0 ≤ sout ≤ kout.

A susceptible node j in the community Hi with degree k = kin + kout and one infected
neighbour is infected with rate Ajτ . Since we defined the infection rate τ based on the
nonlinear contagion scheme [25], this means that the node is infected with probability Ajτ
per time unit. Therefore, the probability of not becoming infected is 1−Ajτ per infected
neighbour per time unit. Since infections along each edge are assumed independent, the
probability of not becoming infected when it has sin infected neighbours in its community
and sout infected neighbours outside its community is:

P (not infected from inside|sin, sout) = (1−Ajτ)sin = (1− τφLj φCHiφ
G)sin .

Note that the probability is dependent on both sin and sout because they both affect the
local awareness φLj .

6.3 Infections from outside the community

We have already defined poutkout
, θout(t) and Xout

kout
in the previous section.

With a similar reasoning as in the previous section, the probability that a node j from
community Hi with degree k = kin + kout, sout infected neighbours outside the community
and sin infected neighbours within its community will not become infected from outside
the community is:

P (not infected from outside|sin, sout) = (1−Ajτ)sout = (1− τφLj φCHiφ
G)sout .

6.4 Combination of infections from inside and outside of the
community

Consider a node j belonging to the community Hi with in-degree kin, out-degree kout
infection density in the community iHi and global infection density i. The probability
of not becoming infected depends on the number of infected neighbours from the same
community XHi

kin
, the number of infected neighbours from outside the community Xout

kout
as

well as iHi and i. With iHi and i given, the probability that the node will not become
infected in a time unit is:

Pnot infected = E
X

Hi
kin

,Xout
kout

[P (not infected|XHi

kin
, Xout

kout
)|iHi , i]

= E
X

Hi
kin

,Xout
kout

[P (not infected from inside|XHi

kin
, Xout

kout
)P (not infected from outside|XHi

kin
, Xout

kout
)|iHi , i]

= E
X

Hi
kin

,Xout
kout

[(1− τφLj φCHi
φG)

X
Hi
kin (1− τφLj φCHi

φG)X
out
kout |iHi , i]

= E
X

Hi
kin

,Xout
kout

[(1− τφLj φCHi
φG)

X
Hi
kin

+Xout
kout |iHi , i]

= E
X

Hi
kin

,Xout
kout

[
(
1− τ(1− cL

XHi

kin
+Xout

kout

kin + kout
)(1− cCiHi)(1− cGi)

)XHi
kin

+Xout
kout ]
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=

kout∑
sout=0

kin∑
sin=1

P (Xout
kout

= sout)P (XHi

kin
= sin)

(
1− τ(1− cL

sin + sout
kin + kout

)(1− cCiHi)(1− cGi)
)sin+sout

.

In the above derivation we used the assumption that the probabilities of (not) getting
infected from within and from outside the community are independent:

P (not infected|XHi

kin
, Xout

kout
) = P (not infected from inside|XHi

kin
, Xout

kout
)P (not infected from outside|XHi

kin
, Xout

kout
).

Since it is enough for a node to be infected from one infected neighbour in order to
become infected, the probability of infection is:

Pinfected = 1− Pnot infected

= 1− E
X

Hi
kin

,Xout
kout

[
(
1− τ(1− cL

XHi

kin
+Xout

kout

kin + kout
)(1− cCiHi)(1− cGi)

)XHi
kin

+Xout
kout ]

= E
X

Hi
kin

,Xout
kout

[1−
(
1− τ(1− cL

XHi

kin
+Xout

kout

kin + kout
)(1− cCiHi)(1− cGi)

)XHi
kin

+Xout
kout ]. (12)

6.5 Derivation of the master equation

To facilitate the understanding of the reasoning, we shall start by examining the discrete
time dynamics of the system, that is, what the state of the system is after one unit of time
t + 1 given the status at the present time t. From the law of mass action, we have that
the number of infected nodes in a specific class of nodes at time t + 1 equals the number
of those who were infected at time t plus those susceptible at time t who became infected
minus those infected at time t that recovered. Hence:

iHi

kin,kout
(t+ 1) = iHi

kin,kout
(t)− γiHi

kin,kout
(t) + sHi

kin,kout
(t)Pinfected

(12)
=⇒

iHi

kin,kout
(t+ 1)− iHi

kin,kout
(t) = −γiHi

kin,kout
(t) + (pHi

kin,kout
− iHi

kin,kout
(t))

E
X

Hi
kin

,Xout
kout

[1−
(
1− τ(1− cL

XHi

kin
+Xout

kout

kin + kout
)(1− cCiHi)(1− cGi)

)XHi
kin

+Xout
kout ].

Let us now move on to the continuous time dynamics and examine the infinitesimal
time interval (t, t + h] as in [33]. Since the amount of time until a transition (infection
or recovery) is assumed to follow an exponential distribution, the probability of two or
more transitions in time h is o(h). Recall that a function g(h) ∈ o(h) if limh→0

g(h)
h = 0.

Thus, the probability that an infected node recovers at time h equals the probability that
a transition occurs within time h plus a small value compared to h or γh + gr(h) with
gr(h) ∈ o(h), and gr(0) = 0 since at time h = 0 no events can happen. Similarly, the
probability that a susceptible node gets infected within time h is hτAi + gi(h) per infected
neighbour with gi(h) ∈ o(h) and gi(0) = 0 [34].

Therefore, in this infinitesimal (as h→ 0) interval we have:

iHi

kin,kout
(t+ h)− iHi

kin,kout
(t) = −γhiHi

kin,kout
(t) + gr(h) + (pHi

kin,kout
− iHi

kin,kout
(t))

E
X

Hi
kin

,Xout
kout

[1−
(
1− hτ(1− cL

XHi

kin
+Xout

kout

kin + kout
)(1− cCiHi)(1− cGi) + gi(h)

)XHi
kin

+Xout
kout ]. (13)
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We should note that, generally, gi(h) is going to be different for each value that XHi
kin

and
Xout
kout

can take. Then, we divide both sides of the equation with h and take the limit for
h→ 0:

diHi

kin,kout

dt
= −γiHi

kin,kout
+ (pHi

kin,kout
− iHi

kin,kout
)

lim
h→0

1

h
E

X
Hi
kin

,Xout
kout

[1−
(
1− hτ(1− cL

XHi

kin
+Xout

kout

kin + kout
)(1− cCiHi)(1− cGi) + gi(h)

)XHi
kin

+Xout
kout ] (14)

since limh→0
gr(h)
h = 0 from gr(h) ∈ o(h).

Now, let us define the function:

f
X
Hi
kin

,Xout
kout

(h) = 1−
(
1− hτ(1− cL

XHi
kin

+Xout
kout

kin + kout
)(1− cCiHi)(1− cGi) + gi(h)

)XHi
kin

+Xout
kout ,

which is the expression inside the expectation as a function of h.
Note that the random variables XHi

kin
, Xout

kout
are bounded with maximum values kin, kout

respectively. Therefore, f
X
Hi
kin

,Xout
kout

(h) is analytic in the neighbourhood of h = 0. So, we

can take the Taylor expansion of the function around 0:

f
X
Hi
kin

,Xout
kout

(h) = f
X
Hi
kin

,Xout
kout

(0) + hf ′
X
Hi
kin

,Xout
kout

(0) + hR(h)

with limh→0R(h) = 0.
At h = 0, we have:

f
X
Hi
kin

,Xout
kout

(0) = 0.

The derivative is:

f ′
X
Hi
kin

,Xout
kout

(h) =
(
τ(1− cL

XHi
kin

+Xout
kout

kin + kout
)(1− cCiHi)(1− cGi)− g′i(h)

)
(XHi

kin
+Xout

kout)

(
1− hτ(1− cL

XHi
kin

+Xout
kout

kin + kout
)(1− cCiHi)(1− cGi) + gi(h)

)XHi
kin

+Xout
kout
−1
.

Note that limh→0
gi(h)
h = 0 =⇒ g′i(0) = 0, so:

f ′
X
Hi
kin

,Xout
kout

(0) = τ(1− cL
XHi
kin

+Xout
kout

kin + kout
)(1− cCiHi)(1− cGi)(XHi

kin
+Xout

kout).

Thus, the Taylor expansion of f
X
Hi
kin

,Xout
kout

around 0 is:

f
X
Hi
kin

,Xout
kout

(h) = hτ(1− cL
XHi
kin

+Xout
kout

kin + kout
)(1− cCiHi)(1− cGi)(XHi

kin
+Xout

kout) + hR(h).
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We shall now compute the remaining limit in equation (14) by substituting the Taylor
expansion for f

X
Hi
kin

,Xout
kout

. Since h is deterministic, 1
h can get inside the expectation. More-

over, as we mentioned, XHi
kin
, Xout

kout
are bounded, hence f

X
Hi
kin

,Xout
kout

is bounded, and from the

Dominated Convergence Theorem [37], we can interchange the limit and the expectation.
So we have:

lim
h→0

1

h
E

X
Hi
kin

,Xout
kout

[1−
(
1− τ(1− cL

XHi

kin
+Xout

kout

kin + kout
)(1− cCiHi)(1− cGi) + gi(h)

)XHi
kin

+Xout
kout ]

= E
X

Hi
kin

,Xout
kout

[ lim
h→0

1−
(
1− τ(1− cL

X
Hi
kin

+Xout
kout

kin+kout
)(1− cCiHi)(1− cGi) + gi(h)

)XHi
kin

+Xout
kout

h
]

= E
X

Hi
kin

,Xout
kout

[ lim
h→0

hτ(1− cL
X

Hi
kin

+Xout
kout

kin+kout
)(1− cCiHi)(1− cGi)(XHi

kin
+Xout

kout
) + hR(h)

h
]

= E
X

Hi
kin

,Xout
kout

[τ(1− cL
XHi

kin
+Xout

kout

kin + kout
)(1− cCiHi)(1− cGi)(XHi

kin
+Xout

kout
)]

= τ(1− cCiHi)(1− cGi) E
X

Hi
kin

,Xout
kout

[(1− cL
XHi

kin
+Xout

kout

kin + kout
)(XHi

kin
+Xout

kout
)]

= τ(1− cCiHi)(1− cGi) E
X

Hi
kin

,Xout
kout

[(XHi

kin
+Xout

kout
)− (XHi

kin
+Xout

kout
)2

cL
kin + kout

]

= τ(1− cCiHi)(1− cGi)
(

E
X

Hi
kin

,Xout
kout

[Xout
kout

+XHi

kin
]− cL

kin + kout
E

X
Hi
kin

,Xout
kout

[(Xout
kout

+XHi

kin
)2]
)
.

We can now return in (14) and substitute the limit we just calculated:

diHi

kin,kout

dt
= −γiHi

kin,kout
+(pHi

kin,kout
− iHi

kin,kout
)τ(1− cCiHi)(1− cGi)(

E
X

Hi
kin

,Xout
kout

[Xout
kout

+XHi

kin
]− cL

kin + kout
E

X
Hi
kin

,Xout
kout

[(Xout
kout

+XHi

kin
)2]
)
. (15)

Moreover, we know that Xout
kout
∼ Binomial(kout, θout) and XHi

kin
∼ Binomial(kin, θHiin ).

Hence:

E[Xout
kout ] = koutθ

out,

E[XHi
kin

] = kinθ
Hi
in ,

V ar(Xout
kout) = koutθ

out(1− θout),
V ar(XHi

kin
) = kinθ

Hi
in (1− θHiin ).

So:

E
X
Hi
kin

,Xout
kout

[Xout
kout +XHi

kin
] = E[Xout

kout ] + E[XHi
kin

] = kinθ
Hi
in + koutθ

out. (16)

Assuming Xout
kout

and XHi
kin

are independent, we also have:
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E
X

Hi
kin

,Xout
kout

[(Xout
kout

+XHi

kin
)2] = E

X
Hi
kin

,Xout
kout

[(Xout
kout

)2 + (XHi

kin
)2 + 2Xout

kout
XHi

kin
]

= E[(Xout
kout

)2] + E[(XHi

kin
)2] + 2E[Xout

kout
]E[XHi

kin
]

= V ar(Xout
kout

) + (E[Xout
kout

])2 + V ar(XHi

kin
) + (E[XHi

kin
])2 + 2E[Xout

kout
]E[XHi

kin
]

= koutθ
out(1− θout) + (koutθ

out)2 + kinθ
Hi
in (1− θHi

in ) + (kinθ
Hi
in )2 + 2koutθ

outkinθ
Hi
in . (17)

We can now substitute the expressions (16) and (17) as well as the relations (10) and
(11) and the expressions for i, iHi , ioutkout

, iHi , iHikin from Chapter 5 in the equation (15):

diHi

kin,kout

dt
= −γiHi

kin,kout
+ (pHi

kin,kout
− iHi

kin,kout
)τ(1− cC

N

NHi

k
max,Hi
in∑
sin=1

kmax
out∑

sout=0

iHj
sin,sout

)(1− cG
∑
Hj

k
max,Hj
in∑
sin=1

kmax
out∑

sout=0

iHj
sin,sout

)

(
kinθ

Hi
in + koutθ

out − cL
kin + kout

(koutθ
out(1− θout) + (koutθ

out)2 + kinθ
Hi
in (1− θHi

in ) + (kinθ
Hi
in )2 + 2koutθ

outkinθ
Hi
in )
)

or

diHi

kin,kout

dt
= −γiHi

kin,kout
+ (pHi

kin,kout
− iHi

kin,kout
)τ(1− cC

N

NHi

k
max,Hi
in∑
sin=1

kmax
out∑

sout=0

iHj
sin,sout

)(1− cG
∑
Hj

k
max,Hj
in∑
sin=1

kmax
out∑

sout=0

iHj
sin,sout

)

(
kin

∑k
max,Hi
in

sin=1 sinp
Hi
sini

Hi
sin

〈k〉Hi

+ kout

∑kmax
out

sout=0 soutp
out
sout

ioutsout

〈k〉out

− cL
kin + kout

(
kout

∑kmax
out

sout=0 soutp
out
sout

ioutsout

〈k〉out
(1−

∑kmax
out

sout=0 soutp
out
sout

ioutsout

〈k〉out
)

+ (kout

∑kmax
out

sout=0 soutp
out
sout

ioutsout

〈k〉out
)2 + (kin

∑k
max,Hi
in

sin=1 sinp
Hi
sini

Hi
sin

〈k〉Hi

)2

+ kin

∑k
max,Hi
in

sin=1 sinp
Hi
sini

Hi
sin

〈k〉Hi

(1−
∑k

max,Hi
in

sin=1 sinp
Hi
sini

Hi
sin

〈k〉Hi

)+

+ 2kout

∑kmax
out
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6.6 Linearization

The equation (18) defines a system of nonlinear Ordinary Differential Equations that de-
scribes the evolution of the system. To proceed with our analytical reasoning, we shall
establish a linearization of the system by omitting higher orders of iHikin,kout .

For reasons of clarity, we shall proceed step by step. We first note that θout and
θHiin contain a sum of iHikin,kout . Therefore, the terms (koutθ

out)2 and (kinθ
Hi
in )2 should be

omitted. Moreover, we have that (koutθ
out(1−θout) ≈ koutθout and kinθHiin (1−θHiin ) ≈ kinθHiin .

Similarly, we omit the term koutθ
outkinθ
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in . This leaves us with:
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Then, we shall expand the parentheses:
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Now, we shall omit any factor that contains a higher order of iHikin,kout , considering the
fact that θHiin and θout contain multiple factors iHikin,kout in their formula. Then, the final
linearization is:
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We notice that the only awareness coefficient that remains in the equation after lin-
earization is the local coefficient cL. Note that this result follows because we defined the
awareness as a linear multiplicative function; other awareness models may lead to linearized
master equations that preserve the community and global awareness coefficients.
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7 Simulation Study

In this chapter, we shall discuss the methodology of the simulations conducted in the course
of the research. We commence by explaining how the Gillespie algorithm was adjusted so
that it includes infection awareness. Afterwards, we shall present the methodology that
was used to approximate the epidemic threshold using simulations.

7.1 Adjusted Gillespie Algorithm

The version of the Gillespie algorithm that was used in the current project was adapted
from the SIR simulation algorithm presented in [19]. We transformed it into the SIS
simulation algorithm by replacing the final R state with the S state. Furthermore, as the
name of the project suggests, the most important modification was the addition of infection
awareness which was calculated every time a new infection or recovery was recorded and
affected the infection rates of all the nodes in the network. The pseudo-code that was used
is presented in Algorithm 1.

7.2 Calculation of the Epidemic Threshold

Much of the work performed in this project centres around the approximation of the
epidemic threshold, which was defined above for the SIS model as the critical infection
rate τc such that for τ > τc we reach the endemic equilibrium and for τ ≤ τc we reach the
infection-free steady-state.

As we mentioned in the literature review, there are two types of finite-size effects that
may lead to overestimating the epidemic threshold using stochastic simulations. One of the
causes is the degree sequence cut-off in scale-free networks, a type of network that was not
examined during this work. The second cause affects all finite networks with an absorbing
state, meaning that our case studies are susceptible to it. The cause of the problem is
that once a realization reaches the infection-free absorbing state, the outbreak cannot be
revived. The stochastic nature of the simulations causes fluctuations that may drive the
system to the absorbing state, even for infection rates τ > τc. Therefore, this may lead to
an overestimation of the threshold.

In the literature, we saw that the most common method for addressing this issue is to
only take into consideration the surviving runs [8] [9]. In our case studies, we shall follow
this method. Specifically, we shall run each configuration with a specific infection rate
τ until we have r1 realizations that are not in the infection-free steady-state. However,
when the infection rate τ is below the epidemic threshold, all the realizations will reach
the infection-free equilibrium in the long run. Thus, we need an upper bound r2 > r1
for the number of realizations that we will run to avoid simulating ad infinitum. After
running r2 realizations, the simulations will stop, and the τ under consideration will be
considered lower than the epidemic threshold. To reduce the probability of a supercritical
system reaching the infection-free equilibrium, we initialized the simulations with all the
nodes in the system infected.

After executing r1 surviving runs, we calculate the average infection density. To further
reduce the fluctuations within each realization, we averaged over the last tlast time steps.
To make sure that we have reached the equilibrium of each realization, we let it unfold
for adequate time steps tmax. Finally, we compare the average infection density 〈i〉 with
a given threshold as in the literature. In [35], the threshold was set to θ = 0.0025 while
in [41] it was set to θ = 0.0005. In our case, we shall set it to the higher one θ = 0.0025.
It should be noted that in some of the specific network cases that were examined, the
threshold is surpassed even with one infected node. Finally, if the τ under consideration
is not found to be the τc, we repeat the process by incrementing τ by a predefined step.
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Data: Network G, per-edge infection rate τ , recovery rate γ, initial_infections,
maximum time tmax, awareness function A

Result: array of timestamps times, S and I containing the number of nodes in
each state at each time in times and IHkin,kout , S

H
kin,kout

containing the
number of nodes in each node class at each time in times.

times, S, I ← [0], [|G| - len(initial_infections)], [len(initial_infections)];
infected_nodes← initial_infections;
at_risk_nodes← uninfected nodes with infected neighbour;
for each node u in at_risk_nodes do

infection_rate[u]← τ× # infected neighbours of u;
end
calculate awareness[v] for each node v in at_risk_nodes depending on the
number of infected nodes in its neighbourhood, community and network and the
awareness function A;
effective_infection_rate← awareness× infection_rate;
total_infection_rate←

∑
u∈at_risk_nodes effective_infection_rate[u];

total_recovery_rate← γ× len(infected_nodes);
total_rate← total_recovery_rate+ total_infection_rate;
time← exponential_distribution(total_rate)
while time < tmax and total_rate > 0 do

r ← uniform_random(0, total_rate);
if r < total_recovery_rate then

u← random_choice(infected_nodes);
remove u from infected_nodes;
update infection_rate[v] for all susceptible neighbours v of u;

end
else

choose u from at_risk_nodes with probability effective_infection_rate[u]
total_infection_rate ;

remove u from at_risk_nodes;
add u to infected_nodes;
for susceptible neighbours v of u do

if v not in at_risk_nodes then
add v to at_risk_nodes;

end
update infection_rate[v];

end
end
add time to times;
update S, I and IHkin,kout , S

H
kin,kout

for each node class;
update awareness[v] for each node v in at_risk_nodes depending on the
number of infected nodes in its neighbourhood, community and network and
the awareness function A;
effective_infection_rate← awareness× infection_rate;
total_infection_rate←

∑
u∈at_risk_nodes effective_infection_rate[u];

total_recovery_rate← γ× len(infected_nodes);
total_rate← total_recovery_rate+ total_infection_rate;
time← time+ exponential_distribution(total_rate)

end Algorithm 1: Gillespie Algorithm with Awareness
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8 Results

In this chapter, we shall perform numerical experiments in the form of simulations and test
whether the results agree with the predictions of the mean-field analysis. The mean-field
master equations will be solved numerically because of the non-linearity of the system. The
comparison will be performed on multiple levels. First, we will plot a simulated outbreak
and compare the findings with the results of the mean-field approximation. Then, we will
examine the relationship between the awareness coefficients and the epidemic prevalence.
Lastly, we shall compare the epidemic threshold as approximated using simulations and
mean-field analysis.

Without loss of generality, in the following analysis, we shall set the recovery rate γ = 1.
This is equivalent to rescaling the time such that one time unit is equal to the recovery
time.

Because of the complicated nonlinear nature of the master equations (18), we shall
restrict ourselves to computing the steady-state solution of the system. As we saw, the SIS
system has two equilibria: a disease-free steady-state and an endemic steady-state. The
condition for the equilibrium is:

diHikin,kout
dt

= 0, with 0 ≤ iHkin,kout ≤ p
H
kin,kout

∀Hi, kin, kout in the network.

This leads to a nonlinear system of equations with restrictions which can be solved
using the usual equation solvers. In the following analysis, we used the nonlinear least-
square equation solver [18] from the SciPy library with the default options [39]. The initial
guess was set by default to the maximum value, that is, iHkin,kout = pHkin,kout . When the
least-squares failed to converge to a solution with this initial guess, we used different values
by trial and error and chose the one that produced the lowest value for the cost function.
Then, the epidemic prevalence was calculated by:

iss =
∑

∀H,kin,kout

iHkin,kout .

To estimate the epidemic prevalence using stochastic simulations, we simulated the
development of the outbreak for tmax = 100 time steps because it was empirically noticed
that this is enough time for the system to reach the steady-state. The system was initialized
with 10% of the population infected, selected randomly. To reduce stochastic fluctuation,
we ran the system for r = 10 realizations and averaged the final epidemic prevalence. For
the same reason, for each realization, we averaged over the tlast = 10 last time steps.

In order to estimate the epidemic threshold using simulations, we ran each configuration
until we had r1 = 10 realizations that did not reach the infection-free equilibrium (surviving
runs method) or r2 = 20 realizations in total. The parameters r1 and r2 were selected
based on practical considerations regarding the execution time of the algorithm. Then, we
averaged over the tlast = 10 last time steps of each run to calculate the average infection
density. Each realization was allowed to reach a steady-state by being executed for tmax =
100 time steps, a temporal horizon that was empirically verified to be adequate for the
system to reach an equilibrium. However, in many cases, the system has reached the
infection-free equilibrium earlier. Each realization was initialized with all the population
being infected to reduce the finite-size effects, as explained in Chapter 7. This process was
repeated for gradually increasing infection rates τ from 0 to 1 with a step of 0.05. The
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epidemic threshold was the smallest τ for which the final average infection density over the
surviving runs was above the threshold θ = 0.0025, similar to the threshold used in the
literature [35].

In the case of the mean-field approximation, we found the steady-state infection density
for the system with increasing infection rates τ from 0 to 1 with a step of 0.05. The
threshold was the smallest infection rate τc that led to a steady-state infection density that
surpassed the same threshold θ = 0.0025.

Below, we present the results of this analysis in three network case studies. Each
network consists of several identical communities, while the degree distributions are simple,
all have in-degrees kin = 2 and out-degrees kout = 1. Note that the real degrees may differ
from the prescribed ones because of the HCM generation method that we used, as we
explained in Chapter 4. The first network, G1, consists of a small number of relatively
sparse communities, which are large compared to the size of the network. The second
network, G2, consists of n =

√
N communities with

√
N nodes each, with N the number

of nodes in the network; that is, we have that n→∞ as N →∞. The third network, G3,
consists of a large number of small communities, which are denser than the communities
of the former two graphs. The defining difference of the three networks is the size of the
communities relative to the network, large in G1, growing with the size of the network
in G2, and small in G3. The driving factor behind the choice of these three case studies
was to investigate whether the effects of community awareness depend on the size of the
communities.

8.1 Network G1 - Large Communities

We start by examining a simple network, which we shall call G1. The network G1 consists
of n = 3 communities, each with NH1 = NH2 = NH3 = 100 nodes for a total of N = 300
nodes. All the nodes in the network have in-degree kin = 2 and out-degree kout = 1.
However, because of the network generation method, the final network may contain nodes
that deviate from the prescribed degrees.

G1 is a relatively sparse network with denseness:

δG1 =
# edges

# possible edges
=

1
2

∑
v∈G1

dv
1
2N(N − 1)

=
900

89700
≈ 0.0100.

Moreover, the denseness coefficients of the three communities are all equal to each other
δH1
com = δH2

com = δH3
com = δG1

com and they are

δG1
com =

1
2

∑
v∈H1

dinv
1
2NH1(NH1 − 1)

=
200

9900
≈ 0.0202.

Note that these denseness coefficients were calculated on the prescribed degree distribu-
tions. The real degree distributions, and therefore the denseness coefficients, may vary.

In Figure 3, we present the fractions of infected nodes per community3 IH

N as well as the
total fraction of infected nodes i = I

N for the network G1 with τ = 1 and cL = cC = cG =
0.5 and tmax = 150 time steps as observed by a run of a stochastic simulation. We initialized
the system with 10% of the nodes infected, randomly selected. As we observe, the infection
rate τ = 1 appears to be above the epidemic threshold since we have reached an endemic
steady-state. The epidemic prevalence is calculated from the simulations as the average
fraction of infected over the last 10 time steps (to reduce stochastic fluctuations). This is

3This should not be confused with the infection density per community iH = IH

NH
.
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equal to iss = 0.483, which is not far from the mean-field approximation of 0.469. Naturally,
as the communities are defined identically, the plots for each community overlap. The
prevalence per community is calculated similarly to 0.163, 0.150 and 0.166 for communities
1, 2 and 3, respectively. This agrees with the mean-field approximation of the steady-state
infected fraction, which is also approximately 0.15.

Figure 3: Fraction of infected per community for the network G1 with τ = 1 and
cL = cC = cG = 0.5

In Figure 4, we present how the results of stochastic simulations compare with the
results of the mean-field solution for the network G1 when it comes to the epidemic preva-
lence. As we can observe, we approximated the epidemic prevalence for gradually increasing
awareness coefficients from 0 to 1 by a step of 0.1. In the top subfigure, we kept the com-
munity and global awareness coefficients constant to cC = cG = 0 while increasing the
local awareness coefficient cL. In the middle subfigure, we performed the same operation
by keeping constant cL = cG = 0 and increasing the community awareness coefficient cC ,
while at the bottom subfigure, we kept cL = cC = 0 and varied the global coefficient cG.
The infection rate was set to τ = 1 and the simulations were initialized with 10% of the
population infected.

We notice that in all cases, the numerical solution of the mean-field equations overes-
timated the epidemic prevalence. However, in all cases, the prevalence follows the same
downward trend as the awareness coefficients increase. In Table 1, we present the Mean
Squared Errors of the three graphs.
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Figure 4: Epidemic prevalence iss as a function of varying awareness coefficients
in the network G1 with τ = 1. In the top subfigure we set cC = cG = 0 and varied
cL from 0 to 1 by a step of 0.1. In the middle subfigure we kept cL = cG = 0 and
varied cC and in the bottom one we set cL = cC = 0 and varied cG.

Table 1: MSE between mean-field approximations and simulations of the epidemic
prevalence on the network G1 while varying cL, cC and cG.

Varying coefficient cL cC cG
Mean Square Error 0.0093 0.0098 0.0089

In Figure 5, we show a comparison of the mean-field approximation for the epidemic
threshold and the threshold approximated through the use of simulations for the network
G1. In the top subfigure, we gradually increased cL from 0 to 1 with a step of 0.1 while
keeping cC = cG = 0. In the middle subfigure, we similarly varied cC while keeping
cL = cG = 0 and in the bottom one we varied cG while setting cL = cC = 0.

We observe that the mean-field approximation consistently underestimates the epidemic
threshold. Moreover, we notice that the value of the epidemic threshold increases as the
local awareness cL increases while the community and global awareness coefficients cC and
cG do not seem to affect it. In Table 2, we present the Mean Squared Errors between the
mean-field approximations and the simulations.
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Figure 5: Epidemic threshold as a function of the awareness coefficients in the
network G1. In the top subfigure, we set cC = cG = 0 and varied cL from 0 to 1
with a step of 0.1. In the middle subfigure, we set cL = cG = 0 and varied cC while
in the bottom subfigure, we set cL = cC = 0 and increased cG.

Table 2: MSE of between mean-field approximations and simulations of the epi-
demic threshold on the network G1 while varying cL, cC and cG.

Varying coefficient cL cC cG
Mean Square Error 0.0195 0.0235 0.0235

8.2 Network G2 -
√
N Communities with

√
N nodes each

Next, we examine a more complicated network configuration. We shall follow the rule
that a network with N nodes consists of

√
N communities each having

√
N nodes. In our

case, we choose N = 302 = 900, so the network, which we shall call G2 contains n = 30
communities each with NH1 = · · · = NH30 = 30 nodes. Once more, all nodes have in-degree
kin = 2 and out-degree kout = 1, with the note that using the HCM generation algorithm
from Chapter 4 may cause some small deviations from the rule.

The denseness of G2 is

δG2 =
1
2

∑
v∈G2

dv
1
2N(N − 1)

=
2700

809100
= 0.0033.

Since the communities are identical to each other, the denseness of the communities are
all equal to each other δH1

com = · · · = δH30
com = δG2

com and they are equal to
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δG2
com =

1
2

∑
v∈H1

dinv
1
2NH1(NH1 − 1)

=
60

870
= 0.0690.

We observe that the network G2 is less dense than G1, but the communities of G2 are
denser than those of G1.

In Figure 6, we present the fraction of infected nodes per community IH

N as well as
the total infection density i in the network G2 for τ = 1 and cL = cC = cG = 0.5 and
tmax = 150 time steps as observed by a Gillespie simulation. Once more, we initialized the
system with 10% of the nodes infected, selected randomly. We observe that the system
reached the endemic equilibrium (hence τ = 1 > τc) and the plots of the infections per
community largely overlap. The prevalence calculated using the simulations (averaged
over the last 10 time steps) is iss = 0.505 while the mean-field approximation resulted in
iss = 0.477. The fraction of infected nodes per community was of the order of 0.016 in both
the mean-field and the simulations method, with differences mostly in the third decimal.

Figure 6: Fraction of infected per community for the network G2 with τ = 1 and
cL = cC = cG = 0.5

In Figure 7, we show the epidemic prevalence in the network as a function of the
awareness coefficients. In each subplot, we set two of the three coefficients equal to zero
and vary the next one with a step of 0.1 from 0 to 1. The infection rate was set to τ = 1
and the simulations were initialized with 10% of the population infected. Once more, we
notice that the awareness coefficients have a monotone decreasing relationship with the
epidemic prevalence, a trend that is followed by both the mean-field and the simulation
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approximation. The simulation approximation is consistently lower than the mean-field.
In Table 3, we see the Mean Squared Error of the two approximations.

Figure 7: Epidemic prevalence iss as a function of the awareness coefficients on
the network G2 with τ = 1. In the top subplot, we set cC = cG = 0 and vary cL
from 0 to 1 with a step of 0.1. In the middle subplot we repeat the process with
cL = cG = 0 and varying cC and on the bottom with cL = cC = 0 and varying cG.

Table 3: MSE between mean-field approximations and simulations of the epidemic
prevalence on the network G2 while varying cL, cC and cG.

Varying coefficient cL cC cG
Mean Square Error 0.0067 0.0037 0.0046

In Figure 8, we compare the mean-field approximation for the epidemic threshold with
the threshold that was approximated by simulations for the network G2. In each subfigure,
we set two out of the three awareness coefficients constant and varied the third from 0 to 1
with a step of 0.1. In Table 4, we see the Mean Squared Error of the two approximations.
Once more, we remark that the epidemic threshold seems to increase as cL increases, a
trend that is not apparent in the cases of cC and cG. In addition, we notice that the
mean-field approximation of the threshold is consistently smaller than the approximation
by simulations.
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Figure 8: Epidemic threshold as a function of the awareness coefficients in the
network G2. In the top subfigure, we set cC = cG = 0 and varied cL from 0 to 1
with a step of 0.1. In the middle subfigure, we set cL = cG = 0 and varied cC while
in the bottom subfigure, we set cL = cC = 0 and increased cG.

Table 4: MSE between mean-field approximations and simulations of the epidemic
threshold on the network G2 while varying cL, cC and cG.

Varying coefficient cL cC cG
Mean Square Error 0.1880 0.1385 0.1385

8.3 Network G3 - Small Communities

The last network we examined was characterized by smaller communities. That is, we
define network G3 with N = 300 nodes and n = 30 communities with NH1 = · · · =
NH30 = 10 nodes each. All the nodes have in-degree kin = 1 and out-degree kout = 2. As
in the previous examples, we used the HCM generation algorithm descried in Chapter 4
to build it.

The denseness of G3 is

δG3 =
1
2

∑
v∈G3

dv
1
2N(N − 1)

=
900

89700
= 0.0100,

which is equal to the denseness of G1. The denseness coefficients of the communities are
equal to each other δH1

com = · · · = δH30
com = δG3

com and they are
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δG3
com =

1
2

∑
v∈H1

dinv
1
2NH1(NH1 − 1)

=
20

90
= 0.2222.

We observe that δG3 = δG1 > δG2 and δG3
com > δG2

com > δG1
com

In Figure 9, we show the fraction of infected nodes per community IH

N as well as the
infection density in the network G3 with τ = 1 and cL = cC = cG = 0.5. As in the
previous cases, we ran the simulations for tmax = 150 time steps and initialized the system
with a random selection of 10% of the nodes infected. The average infection density over
the last 10 time steps of the simulation is iss = 0.526 while the mean-field equations gave
iss = 0.584. The prevalence per community was of the order of 0.017 for the simulations
and 0.019 for the mean-field approximation.

Figure 9: Fraction of infected per community for the network G3 with τ = 1 and
cL = cC = cG = 0.5

In Figure 10, we see a comparison between the epidemic prevalence computed using
stochastic simulations and mean-field approximations while in Table 5, we present the
MSE. In each of the three subplots, we varied one awareness coefficient from 0 to 1 with
a step of 0.1 while keeping the other two constant and equal to zero. The infection rate
was τ = 1 and the simulations were initialized with 10% of the population infected. In
all cases, iss follows a downward trend as the awareness coefficients increase. It it worth
noting that the numerical method failed to converge when the initial guess was set to

iHikin,kout = pHikin,kout as usual and it only converged when set to iHikin,kout =
p
Hi
kin,kout

2 , a value
which was decided upon trial and error.
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Figure 10: Epidemic prevalence iss as a function of varying awareness coefficients
in the network G3 with τ = 1. In the top subfigure, we set cC = cG = 0 and varied
cL from 0 to 1 by a step of 0.1. In the middle subfigure, we kept cL = cG = 0 and
varied cC and in the bottom one, we set cL = cC = 0 and varied cG.

Table 5: MSE between mean-field approximations and simulations of the epidemic
prevalence on the network G3 while varying cL, cC and cG.

Varying coefficient cL cC cG
Mean Square Error 0.0028 0.0181 0.0169

In Figure 11 we contrast the mean-field approximation of the epidemic threshold with
the one calculated using the simulation method. In each subfigure, we set two of the three
awareness coefficients equal to zero while increasing the third one from 0 to 1 with a step of
0.1. In Table 6, we see the MSE of the two approximations. As seen in graphs G1 and G2,
the mean-field method consistently underestimates τc. Moreover, we observe a relationship
between τc and cL, where τc increases as cL increases. Furthermore, in this case, there
seems to be a relation between τc and cC ; the epidemic threshold increases slightly with an
increasing community awareness in the approximation by simulation. However, this trend
does not manifest itself in the mean-field approximation.
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Figure 11: Epidemic threshold as a function of the awareness coefficients in the
network G3. In the top subfigure, we set cC = cG = 0 and varied cL from 0 to 1
with a step of 0.1. In the middle subfigure, we set cL = cG = 0 and varied cC while
in the bottom subfigure, we set cL = cC = 0 and increased cG.

Table 6: MSE between mean-field approximations and simulations of the epidemic
threshold on the network G3 while varying cL, cC and cG.

Varying coefficient cL cC cG
Mean Square Error 0.1213 0.1413 0.1413
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9 Discussion, Limitations and Future Research

In this chapter, we shall discuss the analysis and results presented in the previous chapters,
explore some of the limitations of our study and suggest possible future research directions.

9.1 Discussion

We start the discussion by highlighting the differences between the present work and related
studies in terms of methodology. Then, we proceed by explaining the key findings of the
research regarding the two metrics for which the case studies were examined: the epidemic
prevalence and the epidemic threshold.

Comparison with the Literature

In the relevant scientific literature, there have been a few attempts to study the effects
of awareness on infectious disease. In [35] and [20], the researchers implemented a simi-
lar prevalence-related model in the absence of community structures, while in [21], they
included community awareness, which, however, remained constant during the outbreak,
while they excluded global awareness. In our work, we implemented a model which cap-
tures the effects of awareness on all three levels, micro (neighbourhood), meso (community)
and macro (global), with an awareness function that was prevalence-related on each level.
Furthermore, during the course of this work, we used an alternative community struc-
ture model compared to [21], namely the Hierarchical Configuration Model (HCM) [38],
which has the advantage of generating graphs with communities using a predefined degree
sequence.

The epidemiological model used was the network SIS model, a well-studied model
in network epidemiology. Based on previous research [35], we proceeded in analyzing the
model using a variation of the Degree-Based Mean-Field (DBMF) approach [29]. Typically,
DBMF methods separate the vertices of a graph in classes based on their degree and assume
that the behaviour of all vertices in each class is equivalent. In contrast, to capture the
community structure in our model, we discriminated the nodes in classes based on their in-
degree (internal connectivity), out-degree (external connectivity), and on the community
to which they belong.

Epidemic Prevalence

The first characteristic that was studied was the epidemic prevalence. The main observation
was that the epidemic prevalence is decreasing as the awareness coefficients cL, cC and cG
increase, a trend that was derived by both the mean-field analysis and the simulations. In
fact, there was significant agreement between the values computed with the two methods,
which indicates that the mean-field approach that we presented in Chapter 6 accurately
describes the evolution of the epidemic in the given networks. In the networks G1 and
G2 (see Figures 4 and 7), the mean-field approach slightly overestimated the epidemic
prevalence while in G3 (see Figure 10) this effect was not observed; in some configurations,
the mean-field results were larger while in most cases they were smaller than the outcomes
of the simulations. A likely reason for that may be the potential sensitivity of the numerical
solver used to find the mean-field solutions to the initial guess; as we discussed, the mean-
field equations were solved numerically using the nonlinear least-squares method, which
requires an initial guess that may affect the convergence to the solution. In networksG1 and

G2, the initial guess was set to iHikin,kout = pHikin,kout while for G3 it was iHikin,kout =
p
Hi
kin,kout

2 .
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The initial guesses were found through a process of trial and error; if the original guess
produced a high value for the cost function of the numerical solver, an alternative guess
was tried.

The fact that the epidemic prevalence decreases as the awareness coefficients increase
makes intuitive sense; as nodes become more aware of the presence of the infection, their
infection rates drop, leading to a lower probability of becoming infected and hence to a lower
epidemic prevalence overall. In the networks G1 and G2, the effect of the local awareness
appears to be more pronounced, while the effects of community and global awareness
appear to be of a similar magnitude. A possible explanation for this effect could be the
relative scale of the three areas; a neighbourhood is quite smaller than the communities and
the entire graph in these two cases. Therefore, it is easier for local awareness to reach its
maximum value. In fact, since all nodes have degree k = 3, having one infected neighbour
leads to the local awareness acquiring 1

3 of its maximum value. In graph G3, the size of
the communities is closer to the size of the neighbourhood, making the strength of the
effects of community awareness comparable to that of local awareness. Furthermore, as
we observed in the linearization of the mean-field equations in Chapter 6, the community
and global awareness coefficients were multiplied to higher-order infection densities, which
means that their effect is expected to be weaker.

Epidemic Threshold

The second characteristic of the epidemic that was investigated was the epidemic threshold,
which was computed in the three network case studies for varying awareness coefficients.
The first observation is that the outcomes of the mean-field approximation and the results
of the surviving runs method for simulations appear to differ; the mean-field approxima-
tion consistently estimated a smaller epidemic threshold, something that will be discussed
below. However, it was also apparent that in all case studies, the epidemic threshold ex-
hibits a monotone increasing relationship with the local awareness coefficient, a trend seen
in both approximation methods. Moreover, we can notice that the community and global
awareness coefficients do not seem to affect the epidemic threshold. This lack of correlation
is seen in all networks with both methods apart from a curious exception; the epidemic
threshold appears to follow an upward trend as the community awareness increases in
network G3, a tendency only observed in the approximation by simulation (see Figure 11).

As we discussed in the case of the epidemic prevalence, the local awareness has a clear
effect on the epidemic threshold because of the relatively smaller scale of the neighbour-
hood compared to the community or the entire network. This was also hinted at by the
linearization results, in which the community and global awareness coefficients vanished,
and it aligns with the findings of the relevant literature [35] [41]. Additionally, the differ-
ence in effect of the different types of awareness may become more pronounced close to
the critical value because the infection densities in the community or network have not yet
stabilized to a level that would cause these types of awareness to become consequential.
This also suggests a reason behind the possible connection between community awareness
and epidemic threshold in G3. The communities of G3 are of comparable size with the
neighbourhoods, bringing the scale of the community closer to the local level. However,
this connection is still weak and speculative, while it is not captured by the mean-field
approximation. A possible reason the mean-field does not capture these dynamics may
be that the community awareness is multiplied with higher order terms in the equations,
making its effect weak even with small communities.

Intuitively speaking, it can be understood that an infection outbreak is better stopped
at its initial stages, before reaching the endemic state, by increased awareness in the
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neighbourhood of the first infections. At these early stages, the infection density in the
community and the network are not large enough for the effects of community and global
awareness to be substantial. By the same token, when the community and global awareness
take effect, the outbreak has already reached the endemic equilibrium and is difficult to be
extinguished. This latter point highlights the difference between the two metrics that we
explored; all types of awareness affect the epidemic prevalence, albeit at different degrees,
because we examined the systems in the endemic equilibrium where the infection densities
were large enough for the community and global awareness to become consequential.

Discrepancy in the Epidemic Threshold Approximation

In contrast to the epidemic prevalence, we noticed that the mean-field and the simulation
approximation of the threshold differ significantly, although they generally follow the same
trends. The MSE was smaller in the simple network G1 (see Table 2) than in the more
complicated cases G2 and G3 (see Tables 4 and 6), but still significantly larger than in
the epidemic prevalence estimation. In [35], the researchers also observed this discrepancy,
although to a smaller scale. The inconsistency could be attributed to multiple reasons.

Firstly, as we saw above, the mean-field approximation tended to overestimate the epi-
demic prevalence, which would lead to an underestimate of the threshold. However, in the
case of G3, where the mean-field calculated prevalence was sometimes an underestimate,
the difference in the threshold remained. Another indication that the discrepancy may
originate in the mean-field approximation is that the estimations are closer in the simple
network case G1, where there are fewer mean-field equations, and therefore the system is
easier to solve. This would make the mean-field approach potentially more accurate in
this case, while there is no apparent reason for the surviving runs method to work better
in simpler networks. Nevertheless, the inaccuracies in the mean-field epidemic prevalence
estimations were not as significant as the epidemic threshold estimations and cannot suf-
ficiently account for them.

A second possible cause may be the finite-size effects, which is the explanation given
in [35]. In [35], these effects could be induced by the cut-off in the power-law degree
distribution as well as the by the presence of an absorbing state. In our case, we did not
use power-law distributions, but we were still vulnerable to the absorbing state issue. As
we discussed in Chapter 7, stochastic fluctuations during the simulations may lead the
system to the absorbing infection-free equilibrium even when τ > τc, especially in the
neighbourhood of τc. Although we attempted to combat this effect by only considering the
surviving runs, there was also an upper limit to how many simulations would be run before
proceeding to the next τ , a limit that may have been set too low. Another parameter that
could play a role in the approximation is the threshold θ which was drawn from literature
that dealt with larger networks [35]. However, we deem it unlikely to have had an effect
because, in the cases of the endemic equilibrium, the densities vastly surpassed it. Similarly,
the infection rate step, which was set to 0.05, could have been set lower to improve the
accuracy, but it is unlikely that this caused the discrepancy because the differences between
the approximations were multiples of that step.

It should be reminded that contrary to the case of the prevalence where the simulations
were exact representations of the physical system, the simulation computed threshold is
still an estimate calculated using the surviving runs method. If finite-size effects cause the
discrepancy in the approximations, it would mean that it is the surviving runs method
that overestimates the value rather than the mean-field underestimating it. It is also very
likely that it is a combination of both that causes the divergence.
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9.2 Limitations and Future Research

The findings of this study have to be considered in light of some limitations, which in turn
point to new potential research directions.

Alternative Epidemiological Models

Firstly, the epidemiological model investigated was the SIS model, a simple model with
only two possible states. Although it is a commonly used model because of its simplicity,
it should be noted that it is not a particularly realistic one; real-life infections tend to be
more complex than the SIS model can capture. Infections may lead to a permanent or
temporary immunization of the population, an effect that can be described by the SIR and
SIRS models, respectively, which include the recovered state R [29]. Moreover, it is possible
that individuals may not become immediately infectious after exposure, leading researchers
to propose models which include an exposed E state, such as in the SEIR and SEIRS models
[29]. Investigating the effects of awareness on networks with community structures in such
systems may lead to more complicated master equations, but the research is recommended
such that the studies gain in veracity.

Node Classes Aggregation

Another limitation of our study is that the mean-field analysis presented previously dis-
tinguishes vertices based on their in-degree, out-degree and community. In networks with
degree distribution with non-zero variance, this classification will lead to a significant in-
crease in the number of equations, something which may render the master equations
computationally intractable or complicate the convergence to a solution. Moreover, there
may be classes that contain a small number of nodes, something that will obscure the ag-
gregation and make it more difficult for the mean-field equations to capture the dynamics
of the system. Therefore, it could be helpful to follow up this study with a mean-field
derivation that aggregates the vertices in fewer classes. In [21], the researchers derived one
equation per community by counting the nodes in each community that have kout 6= 0 and
calculating the force of infection each community receives from within and from outside.
Alternatively, we could bin the in- and out-degrees in degree classes and derive a different
equation for each degree class. These are only two approaches that could lead to a simpler
system of ODEs. It should be noted that the accuracy of such an aggregated method may
be reduced.

Network case studies

In our case studies, the investigated networks were small, simple, static and had identical
degree distributions. This means that we were not exposed to the limitation discussed
in the previous paragraph. Nonetheless, the narrow case studies limit the generalization
of the results. Thus, we suggest that the findings be verified with larger networks and
networks with non-zero variance in the degree distributions. The need for such investi-
gation is highlighted in [20], where the researchers investigated networks with power-law
degree distributions, and they discovered that in the case of infinite variance distributions,
linear awareness function did not affect the epidemic threshold because it tends to vanish.
However, they showed that nonlinear local awareness did affect the threshold. Moreover,
real-life networks are rarely static and usually change over time. An investigation on the
effects of awareness on so-called temporal networks would shed more light on this topic.
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Alternative awareness models

The awareness function that we used includes a set of assumptions that impose further
limitations on our study. We assumed that the awareness is linear and prevalence-related,
the awareness coefficients were equal all over the network, individuals were immediately
aware of infections in their environment and their reaction was also prompt, and the effects
were limited to the transmission rate. These limitations point to new research directions.
Awareness models do not need to be linear, and as seen in [20], nonlinear effects could po-
tentially change the results. Moreover, the awareness coefficients could be different across
the network. Specifically, we could define different community awareness coefficients per
community, as in [21]. Furthermore, we could envision models in which nodes would be
infectious, yet their environment would not be immediately aware or immediately react
to them, and the awareness would propagate in the network with a delay. The delayed
awareness may cause some interesting dynamics while providing a more accurate represen-
tation of reality. Additionally, the awareness could cause effects that are not limited to the
transmission rate, such as leading to rewiring in the network.

A potentially fruitful research direction seems to be the study of discontinuous aware-
ness functions. In the currently unfolding COVID-19 pandemic, individuals did not seem
to react linearly to the presence of new infections. On the contrary, private, munici-
pal and national authorities imposed rules and regulations limiting or weakening disease-
transmitting interactions when infection densities reached specific levels. This behaviour
could be captured better by a multiple level awareness function. In the simplest case,
awareness would be activated when infections in an area attained a level and deactivated
when they decreased below that level, with multiple levels added in more complex models.
In a preliminary investigation conducted during this work, which is not included in the
present thesis, there were indications that the infection densities would oscillate around the
awareness activation level. An even more realistic model would have different activation
and deactivation levels; the awareness would be activated when infections reach a certain
height and deactivated when they decline to a level lower than the activation level. This
last model would probably lead to wave-like behaviours, with infection densities oscillating
between the activation and deactivation levels. Nonetheless, it should be noted that this
model is not Markovian and does not have an endemic equilibrium, which would make
deriving and solving mean-field expressions a complicated task.

Resolving the Discrepancy in the Epidemic Threshold Approximation

As discussed above, there is a discrepancy between the mean-field and surviving runs
approximations of the epidemic threshold, primarily attributed to an overestimation by
the surviving runs method. It is certainly possible to improve the method by increasing
the number of surviving run iterations r1 as well as the upper bound on the number of
runs r2. However, this would make the already costly method significantly less practical.
A more efficient method that could be explored in future research is the quasi-stationary
(QS) procedure in which the absorbing state is artificially excluded from the dynamics [9]
[6].

Effects of Community Awareness

Lastly, we should mention the interesting, albeit weak, result that smaller communities
may make the community awareness relevant in terms of the epidemic threshold. Our
research points to this direction but cannot provide conclusive outcomes. Therefore, we
would suggest that this result be further investigated since it provides one more course in
preventing an infection from reaching the endemic state.

52



10 Conclusion

The main research topic that we set out to investigate was the influence of awareness on
the spread of infectious disease on networks with community structures. In this direction,
we studied an SIS epidemic on networks generated using the Hierarchical Configuration
Model. We defined a prevalence-related awareness function for each susceptible node that
consisted of three levels of awareness, local, community and global, and would affect the
transmission rate of the node. At each level, the awareness depends on an awareness coef-
ficient. Afterwards, we analysed the epidemic using Gillepsie-style stochastic simulations
and a Degree-Based Mean-Field approach, adjusted to our model. For the mean-field
method, we separated nodes in classes based on their community as well as their intra-
and inter-community connectivity and derived differential equations that would predict the
infection density in each class of nodes.

The system was examined for two metrics, the epidemic prevalence in the steady-
state and the epidemic threshold, which were approximated using the mean-field and the
stochastic simulations methods. The two metrics were studied for their relation with the
three awareness coefficients on three network case studies. It was revealed that all coeffi-
cients affect the epidemic prevalence with higher coefficients leading to lower prevalence,
an outcome on which both the mean-field and the simulation results were aligned. The
local awareness coefficient seems to have a more substantial effect in this case. Regarding
the epidemic threshold, the local awareness coefficient appears to have an impact, with
higher coefficients leading to higher thresholds. The mean-field and simulation approxi-
mations differed by a margin, but they agreed on the trend. Contrary to the epidemic
prevalence, the community and global coefficients did not seem to influence the threshold.
However, there are some indications that in small communities, the community awareness
becomes consequential, but further research is required because this result only showed in
the stochastic simulations and not in the mean-field.

In conclusion, our research verifies that awareness-based behaviour modification can
significantly affect the time evolution of an SIS epidemic outbreak in networks with com-
munity structures. Local, community and global awareness can decrease the epidemic
prevalence, while local awareness can even stop an outbreak from occurring. Therefore,
our study suggests that an effective way to stop new infections from reaching the status of
an epidemic or becoming endemic is to focus on rapid reactions on the local level in the
neighbourhood of the initial infections.
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