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Abstract—Almost every product in a supply chain comes with
a barcode that can be decoded using special decoding devices.
Barcodes are usually classified into one and two-dimensional.
One-dimensional barcodes are often used for retail product
labeling while two-dimensional barcodes are commonly used
for manufacturing, warehousing, and logistics. DataMatrix is
a popular type of 2D barcodes that, in the context of this
work, was used for post parcel and envelope labeling. It is not
always possible to successfully extract the information present
in a DataMatrix barcode since the decoding may suffer from
various image distortion types including blur, smudge, and
deformation. In order to improve the decoding rate, classical
binarization methods and modern deep learning enhancement
solutions were investigated. More specifically, Otsu, Sauvola,
Niblack, and Nick binarizations methods were contrasted against
state-of-the-art Unet architectures such as AttUnet and Unet3+.
The main research question of this work was to find out to
what extent Unet-based architectures outperform binarization
methods in terms of the DataMatrix decoding rate. In this paper,
65237 decodable DataMatrix barcode samples were analyzed,
where 56580 samples were decoded using the open-source ZXing
library. The decoded barcodes served as a training set for the
deep learning methods since every decoded barcode could be
reconstructed into a distortion-free reference image. The results
have revealed that the investigated deep learning methods led
to 74% decoding rate improvement, and clearly outperformed
binarization methods which achieved a 24% decoding rate on
the same test set.

I. INTRODUCTION

DataMatrix barcodes are extensively used for automatic
identification and data capture [1]. The food industry, logistics,
and many other commercial products utilize DataMatrix codes
as it allows to store a significant amount of information
occupied by a small area. DataMatrix barcodes can be decoded
by a scanning device which is substantially faster than entering
information into a system by hand. Moreover, it results in
fewer errors because decoding machines are more reliable in
this task [1].

While DataMatrix barcodes generally offer very good per-
formance, from time to time decoding issues do take place.
The most common causes of unreadable barcodes include low
contrast, poor printing quality, barcode damage, and various
types of distortion [2].

This work explores and compares several enhancement
methods that are primarily addressed to improve the DataMa-
trix barcode decoding rate. Traditionally, binarization methods
were used to solve some of the decoding problems, however,

in this work, it was attempted to apply deep learning solutions
aiming to reconstruct the ground truth barcode image and
potentially make a barcode image easily decodable.

A convolutional autoencoder architecture was found suitable
for many image denoising, deblurring and resolution enhance-
ment applications [3, 4, 5]. The encoder-decoder structure
allows to learn the underlying data patterns, and reconstruct
the noiseless output image.

Unet architecture is a more advanced version of the convo-
lutional autoencoder that was initially developed for biomed-
ical semantic segmentation. This paper is mainly focused on
the possibilities of barcode enhancement using Unet-based
architectures. Subsequently, the main research question of this
paper is: ”To what extent do Unet-based DataMatrix enhance-
ment solutions outperform classical binarization methods in
terms of the decoding rate?”. This paper has the following
sub-research questions:

1) To what extent do Unet-based solutions outperform tradi-
tional convolutional autoencoders in terms of the Data-
Matrix decoding rate?

2) What Unet architecture is best-suited for DataMatrix
barcode enhancement?

3) What binarization method is best-suited for DataMatrix
barcode thresholding?

This work is structured as follows: Section II provides a
short overview of DataMatrix barcodes. It also describes the
existing barcode decoding tool that was used to conduct the
experiments described in this paper. Section III discusses the
related works that attempted enhancing 2D barcode images.
Section IV provides a detailed overview of the DataMatrix
dataset, several binarization methods as well as different Unet
architectures. The results of this work are described in Section
V. Discussion and conclusion can be found in Sections VI and
VII respectively.

II. BACKGROUND

A. DataMatrix

DataMatrix is composed of a sequence of black and white
modules (cells) that can be arranged in square or rectangular
shapes, and may appear in different sizes.

The size of a DataMatrix code varies from 10×10 to
144×144 modules [6]. The newest ECC (Error Checking and
Correcting) 200 standard allows for the 10×10 DataMatrix
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Fig. 1: Small DataMatrix Examples

Fig. 2: Large DataMatrix Examples

Fig. 3: DataMatrix Alignment Pattern Examples

version to have a capacity of 3 bytes which is equivalent
to six numeric or three alphanumeric symbols while the
144×144 DataMatrix can store 1558 bytes corresponding to
3116 numeric or 2335 alphanumeric symbols.

The DataMatrix alignment pattern (see Figure 3) is a solid
line of contiguous dark cells abutting a line of alternating
dark and light cells. The alignment patterns run horizontally
and vertically within the symbols [6]. The alignment pattern
line splits a barcode into several data regions. The larger the
barcode, the more data regions are present. Small barcodes
(see Figure 1) have only one data region while larger barcodes
(see Figure 2) have four or more data regions.

DataMatrix codes are designed in such a way that even
if a part of the image is severely damaged, the barcode can
still be decoded. The ECC 200 standard of DataMatrix uses
Reed–Solomon codes for error and erasure recovery. It allows
for up to 30% damage while still preserving a decodable
barcode [7].

This work is mostly focused on square-shaped barcodes
with the number of cells varying from 18×18 to 36×36 and
containing at most four data regions.

B. ZXing decoder

Decoding a DataMatrix is the process of converting barcode
image pixels into an array of bytes that represent the data
encoded in the barcode. The first step in decoding a Data-
Matrix is to split the data regions into L-shaped blocks (see
Figure 4). If the L-shape does not fully fit, then part of it
is placed on the other side of the DataMatrix. The cells in
every L-shaped block (except for error correction blocks) are
numbered according to the powers of two, starting from 128

and ending up with one. For example, in order to obtain an
ASCII value of an encoded symbol (not necessarily the first
symbol), consider the top left L-shape in Figure 4 (blue color).
Numbers 64, 4, and 1 are highlighted since they correspond to
black cells of the DataMatrix code. The ASCII value is then
a summation of the numbers in the highlighted cells minus
one. For this case, this would result in (64+ 4+1)− 1 = 68,
where 68 corresponds to the character D. Note that the minus
one operation corresponds specifically to ASCII encoding.

Fig. 4: DataMatrix Decoding Pattern Example

Zxing is a third-party open-source library developed by
Owen et al. [8], that allows to both detect and decode barcodes
and retrieve the data encoded regardless of its rotation angle.
ZXing library supports several 1D barcodes (e.g. Code 39,
Cobabar, ITF) as well as 2D barcodes (e.g. QR-code, DataMa-
trix, Aztec, MaxiCode). ZXing is one of the most popular and
recognized open-source barcode processing libraries. Table I
summarizes the rating of ZXing against other open-source
libraries. This rating represents the public recognition of the
library. Generally, this rating is composed based on the number
of library features and their performance. Despite the fact
that amongst open-source barcode decoder projects ZXing is
the most successful one, it still does not support complex
scanning conditions such as nonuniform illumination, bend,
and deformation [9]. For the barcode detection part (i.e.
finding barcode region), ZXing uses its own local binarizer
call HybridBinarizer, however, after the barcode is located,
no further image preprocessing is applied.

III. RELATED WORK

A. Classical Methods
The work by Brouwer [13] attempted to improve DataMa-

trix read rates by using image pre-processing. It involved mor-
phological erosion, region growing for object segmentation,
edge analysis, and Fisher’s linear discriminant as means for
element classification. The entire dataset consisted of 1020
thick dot DataMatrix images, 510 of which were used for
training and the remaining 510 exclusively for testing. 2DTG,
AYPSYS, and ClearImage were used as software decoding
packages. The results demonstrated improved read rates in
most test cases. More specifically, the read rate accuracy on the
test set was improved from 99.4% to 99.8% for the AYPSYS
decoder, and from 90.6% to 98.0% for the ClearImage decoder.
It was observed that the read rate accuracy for the 2DTG
decoder was not improved after image pre-processing.
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TABLE I: Open-source Barcode Decoders Rating Comparison: the rating is based on library public recognition by its users

ZXing Efqrcode Zxinglite BarcodeScanner
Rating source 1 [10] 28124 4015 1933 -
Rating source 2 [11] 26379 3800 1503 -
Rating source 3 [12] 28108 4015 - 4015

The paper by Ottaviani et al. [14] proposed the entire
2D barcode (incl. DataMatrix) processing framework that
involved region of interest detection, barcode pre-processing,
and decoding. The pre-processing step included the modified
version of the Niblack binarization algorithm to deal with
variable lighting conditions. The barcode pixel segmentation
was performed by an alternate sequence of region growing
and convex hull evaluation. The suggested approach led to
high reading performances even under bad lighting conditions
and strong perspective deformations.

The paper published by Li et al. [15] aimed to apply a multi-
feature fusion algorithm to improve QR-code recognition
rates. The algorithm incorporated color and texture feature
extraction that were further used to classify pixel points using
k-means clustering. Final QR-code image optimization was
done using mathematical morphology. The proposed method
evaluation was performed on 400 QR-code images samples
each of size 653×673. Data samples represented QR-codes
that were laser ablated on the rough surfaces of aluminum
ingots. The proposed methods appeared superior compared to
the accepted Otsu binarization method. The read rate after
Otsu thresholding was 50%, while the proposed method led
to a read rate of nearly 100%.

The work by Chen et al. [16] tackled the problem of
QR-code uneven illumination in warehouse automatic sorting
systems. The proposed method selected the size of the block
window adaptively and then used this window to divide the
uneven illumination of the QR code image into several blocks.
Afterward, it performed the thresholding on each image block
and then combined them in sequence. The experiments were
conducted on 80 QR-code samples of size 300×300, where
30 contained weak uneven illumination and the remaining
50 - strong uneven illumination. The suggested approach
outperformed other binarization methods such as Niblack, Yao,
Di, and Otsu in terms of PNSR and SSIM metrics. Moreover,
it surpassed the previously mentioned binarization methods in
terms ZXing decoding rate which was boosted from 35% (no
binarization) to 88.75% (proposed method). The read rate for
the other methods did not exceed 54%.

B. Deep Learning

Huo et al. [17] strived to improve QR-code read rate which
was negatively influenced by uneven background fluctuations,
inadequate illuminations, and geometrical deformations. These
distortions were the result of the improper image acquisition
method. To increase the read rate, an improved adaptive
median filter algorithm was used, followed by the Otsu bi-
narization method. Geometrical deformations and perspective
correction were performed by a feed-forward neural network
that was trained using ground truth QR-code samples. A total

of 300 QR-code samples were acquired by a smartphone
camera. The QR-code samples were printed on objects that
were prone to wrinkles. 209 samples were decoded by a
smartphone barcode scanner. The decoded barcodes were
reconstructed into ground truth samples which were used for
the neural network training. The read rate on the entire dataset
before and after image pre-processing was 69.7% and 83.7%
respectively.

IV. METHODOLOGY

A. Overview
Figure 5 shows the pipeline of DataMatrix processing.

The pipeline involves two steps. The first step is image
preprocessing that can be achieved either by binarization
or deep learning enhancement. The second step is image
decoding using the ZXing library that determines whether the
decoding was successful. Image binarization and deep learning
enhancement are processed independently from each other.

Fig. 5: DataMatrix Processing Pipiline

B. Dataset
For the experimental scope of this work, PrimeVision B.V.

[18] provided access to a private DataMatrix dataset. The
entire DataMatrix barcode dataset consisted of 65237 unro-
tated greyscale barcodes that were acquired from various post
parcels and envelopes using a very high-resolution camera.
All the DataMatrix images were proved to be decodable
using a SwiftDecoder - commercial state-of-the-art software
package developed by Honeywell [19]. The dataset images
included barcodes with various types of distortions such as
geometrical transformations, partial occlusion, low contrast,
low ink, smudge, blur, white noise, and ink merging. Some of
the barcode examples are depicted in Figure 6.

The majority of the barcodes (> 99.9%) had a square shape,
the remaining ones - rectangular.

The average image size was 188×188 pixels while the
largest and the smallest - 403×401 and 66×65 pixels
respectively. For neural network training purposes, all images
were resized to 120×120 pixels. For the binarization methods,
the size of all images remained unchanged.
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Fig. 6: Dataset Example Samples

1) Training Data: In order to train a neural network, a
ground truth image needs to be generated. In fact, the ground
truth sample is merely a distortion-free, black and white image
that preserves exactly the same barcode content. To obtain the
ground truth image, the original barcode has to be decoded
first, and the information, encoded in bytes, needs to be
extracted. Once the barcode information bytes are extracted,
the clean version of the barcode can be deterministically
reconstructed. Ground truth generation examples are shown
in Figure 7.

Fig. 7: Ground Truth Example: original samples (top row),
ground truth samples (bottom row)

Not every dataset sample can be decoded due to various
distortion problems. A total of 56580 samples out of 65237
were decoded using the ZXing library.

2) Test Data: The remaining 8657 samples form the test
set that contains barcodes that are impossible to decode using
the ZXing library without any pre-processing (enhancement).
The amount of successful barcode decodes on the test set
determines the performance of neural network-based and
binarization enhancement methods.

3) Data Augmentation: Data augmentation can prevent a
neural network from learning irrelevant patterns, essentially
boosting overall performance [20]. In this work, every barcode
in the training set was rotated three times by 90 degrees, thus
increasing the training set size by a factor of four (226320
total training samples). This approach increases the variability
in the dataset and helps reduce overfitting. One limitation of
data augmentation arises from the data bias. The augmented
data distribution can be quite different from the original one.
This might lead to suboptimal performance of existing data
augmentation methods [21].

C. Binarization

Binarization is the method of converting a grayscale image
into a black-white image depending on a certain threshold. If
the gray value of the pixels is less or equal to the threshold,
then those pixels become black, and similarly, if the gray value
of the pixels is larger than the threshold, then those pixels
become white.

Binarization is an essential preprocessing step for many
OCR (Optical Character Recognition) solutions [22].
Regarding barcode binarization, the main objective of the
pre-processing phase is to make it as easy as possible for the
decoding system (e.g. ZXing) to distinguish a barcode pixel
from the background.

1) Global Binarization: Global binarization methods use
information from the whole image to find one threshold which
will make a binary image. One of the most popular global
binarizations is the Otsu method that utilizes the grayscale
histogram to find the best separation result [23]. Otsu algo-
rithm exhaustively searches for the threshold that minimizes
the intra-class variance, defined as a weighted sum of variances
of the two classes [24]. The mathematical definition of the
intra-class variance is shown in (1)

σ2
w(t) = w0(t)σ

2
0(t) + w1(t)σ

2
1(t) (1)

where weights w0 and w1 are the probabilities of the two
classes separated by a threshold t and σ2

0 and σ2
1 are the

variances of these two classes. The class probability w0,1(t) is
computed from the n bins of histogram of gray-scale values.

w0(t) =

t−1∑
i=0

p(i)

w1(t) =

n−1∑
i=t

p(i)

where p is the histogram value at bin i. The optimal number
of bins n can be derived from the Freedman-Diaconis rule
[25] which states that the optimal bin width h can be found
as shown in (2)

h = 2
IQR

k
1
3

(2)
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where k is the number of observations and IQR is the in-
terquartile range. The number of bins n can then be computed
as shown in (3)

n =
max−min

h
(3)

where max and min are the largest and the smallest data points
in the sample.

The Otsu approach is simple, fast, and effective for many
thresholding applications, however, its performance may
suffer from nonuniform image lighting.

2) Local Binarization: Local binarization techniques de-
termine a different threshold value for every pixel based on
characteristics of their surrounding area [26]. Local binariza-
tion algorithms calculate a pixel-wise threshold by sliding a
rectangular window w over the image [27]. It was discovered
that for many OCR applications as well as for degraded
document restoration, local thresholding algorithms have su-
perior performance to the global Otsu thresholding algorithm
[28, 29].

Several local binarization methods, that are commonly
used in OCR applications [30, 31, 32], were considered in
this work.

a) Niblack Algorithm: The computation of threshold T
for the Niblack method is based on the local mean m and the
standard deviation s =

√
1
N

∑
(pi −m)2 of all the pixels in

the window w and is given by the (4)

TNiblack = m+ k · s (4)

where N is the number of pixels, m is the average pixel
value of the pixels pi, and k is the fade control factor [33].

b) Sauvola Algorithm: Sauvola algorithm computes the
threshold by using the dynamic range of image gray-value
standard deviation [27]. Sauvola threshold value can be com-
puted as described in (5)

TSauvola = m(1− k(1− s

R
)) (5)

where constant R is set to 128. Sauvola method outperforms
Niblack algorithm in images where the pixels have near
0 gray-value and the background pixels have near 255
gray-values. [27]. Sauvola binarization results substantially
degrade when background and foreground pixels values are
close to each other.

c) Wolf Algorithm: To solve the issues in Sauvola‘s
method, the Wolf algorithm aims to normalize the contrast and
the mean gray value of the image and compute the threshold
as described in (6) [27]

TWolf = (1− k)m+ kM + k
s

R
(m−M) (6)

where the value of R is set to the maximum gray-value
standard deviation obtained over all the local neighborhoods
and the value M is the minimum gray value of the image.

The disadvantage of the Wolf method is that it cannot handle
sharp changes in background gray values across the image.
This occurs because values M and R are computed based on
the entire image.

d) Nick Algorithm: Nick binarization algorithm is de-
rived from the Niblack method. Its main advantage is that it
substantially improves binarization for light images by shifting
down the binarization threshold [27]. The Nick threshold value
is depicted in (7)

T = m+ k

√
(
∑
p2i −m2)

N
(7)

Only for the Nick algorithm, the control parameter k is
negative and normally varies between -0.2 and -0.1 [27]. For
the remaining binarization algorithms described in this paper,
the value of k is positive.

Local binarization algorithms require a user-defined sliding
window size w and the fade control parameter k while global
binarization methods (e.g. Otsu) can binarize a sample without
any additional parameters.

D. Deep Learning

1) Convolutional Autoencoder: Convolutional autoen-
coders (see Figure 8) are widely used for many image pro-
cessing tasks including image denoising [34, 35]. Denoising
autoencoders are an important and crucial tool for feature
selection [36]. Works by Mao et al. [4] and Bigdeli and
Zwicker [5] have successfully applied a convolutional autoen-
coder architecture to solve image denoising and non-blind
deblurring problems. Regarding the barcode enhancement, we
attempt to apply the image denoising/deblurring approach to
restore the clean version of the barcode.

Fig. 8: Convolutional Autoencoder Architecture [37]

Taking into account that the paper by Huo et al. [17] demon-
strated that it was possible to correct QR-code geometrical
deformations using a BP neural network, it is assumed that
DataMatrix geometrical distortions can be corrected using a
convolutional autoencoder.

2) Unet: Unet structure (see Figure 9) is similar to the
structure of a convolutional autoencoder, however, unlike the
autoencoder, Unet supplements plain long skip connections
(going from encoder path scale to the same scale at decoder
path) that enable high resolution features to be combined in the
output layer [38] which results in successfully recovering fine-
grained image details [39]. Unet networks showed excellent
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performance in various tasks, including image segmentation
and denoising [40].

Fig. 9: Unet Architecture [40]

3) Attention Unet: Attention (see Figure 10), in the context
of image segmentation, is a way to highlight only the relevant
activations during training. This reduces the computational
cost and provides the network with better generalization power
[41, 42]. There are two types of attention: hard and soft. Hard
attention highlights relevant regions by cropping the image
or iterative region proposal. Soft attention assigns different
weights to different parts of the image. Areas of high relevance
are multiplied with larger weights while areas of low relevance
are marked with smaller weights. The attention concept can
complement the Unet model by implementing soft attention
at the plain long skip connections. This actively suppresses
activations in irrelevant regions and reduces the number of
redundant features being passed on.

Fig. 10: Attention Unet Architecture [42]

4) Unet 3+: Unet3+ architecture (see Figure 11) takes
advantage of full-scale skip connections [43] and deep su-
pervisions. The full-scale skip connections incorporate low-
level details with high-level semantics from feature maps in
different scales while the deep supervision learns hierarchical
representations from the full-scale aggregated feature maps
[44]. The proposed approach maximizes the use of feature
maps in full scales which results in accurate segmentation and
efficient network architecture with fewer parameters. Unet3+

outperformed both Unet and Attention Unet in biomedical
image segmentation.

Fig. 11: Unet3+ Architecture [44]

Table II shows a short summary of the neural network
architectures used in this work.

TABLE II: Unet Models Summary

Model Number of Features
Maps per Layer

Number
of Parameters

CAE [64, 128, 256] 1329153
Unet [64, 128, 256] 2066497

Attention Unet [64, 128, 256, 512] 7911460
Unet3+ [64, 128, 256, 512] 7639297

All the described networks had symmetric encoder-decoder
architecture and were trained for 40 epochs with a batch size of
64 using the Adam optimizer, the MSE loss, and the sigmoid
activation function in the final layer. During the neural network
training, 10% of the training data (i.e. 22632 out of 226320
samples) was used for validation and the remaining 90% for
training (i.e. 203688 out of 226320 samples).

E. Similarity Metrics

Neural network barcode reconstruction quality can be evalu-
ated using similarity metrics. The predicted image is compared
to the ground truth sample. The similarity metrics serve as an
intermediate enhancement quality assessment that is decoder
(e.g. ZXing) independent.

1) MSE: The MSE (Mean Squared Error) is the most
traditional difference estimator [45] that is used to compare
how far away the ground truth image’s pixels are from the
predicted image’s pixels. The mean of each pixel’s difference
is taken and then squared [46]:

MSE =
1

NM

M∑
i=1

N∑
j=1

(Ipr(i, j)− Igr(i, j))
2 (8)

where values N and M are the image dimensions, Ipr and
Igr are the predicted and the ground truth gray-scale images
respectively. The dissimilarity between the two images is
directly proportional to the mse value.
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2) SSIM: The SSIM (Structural Similarity) that was first
introduced by Wang et al. [47], is correlated with the quality
and perception of the human visual system [45]. The SSIM
models image distortion as a combination of three factors that
are luminance l, contrast c, and structure s.

Given two gray-scale images Ipr and Igr the structural
similarity is defined as follows

SSIM = l(Ipr, Igr)
α · c(Ipr, Igr)β · s(Ipr, Igr)γ (9)

where

l(Ipr, Igr) =
2µIprµIgr + c1

µ2
Ipr

+ µ2
Igr

+ c1

c(Ipr, Igr) =
2σIprσIgr + c2

σ2
Ipr

+ σ2
Igr

+ c2

s(Ipr, Igr) =
σIprIgr + c3

σIprσIgr + c3

The greater the ssim value, the greater the similarity between
images.

Parameters µIpr and µIgr are the means of the predicted
and the ground truth image while σIpr and σIgr are their
respective standard deviations. The value σIprIgr denotes the
covariance of the two images. Constants c1, c2 and c3 are
meant to maintain the stability of the comparison functions
[16]. In the original specification for SSIM, the weights α, β
and γ are set to 1 [48].

V. RESULTS

A. Binarization

The effect of different binarization methods on the read rate
was evaluated on the DataMatrix test set consisting of 8657
samples. Table III shows the read rate percentage on the test set
after the binarization. The best two read rates were highlighted
and accompanied with a two (sample) standard deviation
margin 2σ. The standard deviation was calculated on eight
non-overlapping subsets (obtained based on a random split),
each consisting of 1082 images (except for one consisting of
1083 images). This process was repeated three times, and in
the end, the average (out of three) standard deviation value
was presented.

For the local binarization methods, several combinations of
the sliding square window of the size w and the fade control
factor k were used.

The time (in milliseconds) it takes to binarize the entire
DataMatrix dataset is shown in Table IV. Nine measurements
corresponding to nine different parameter combinations (same
as in Table III) were performed. The timing results were
obtained using a Linux computer running on a dual-core
1.20GHz CPU.

The visual binarization results are presented in Figure 12.
The checkmark (3) on top of the barcode image indicates that
the barcode was decoded after binarization, while the cross

mark (7) shows that the barcode was not decoded after bina-
rization. The first column of the images in Figure 12 represents
the original images from the test set, the second, third, fourth,
fifth, and sixth columns correspond to Otsu, Niblack, Sauvola,
Wolf, and Nick binarization results respectively. For the local
binarization methods (i.e. Niblack, Sauvola, Wolf, Nick) the
first two rows correspond to (w = 15, |k| = 0.05), the two
middle rows to (w = 17, |k| = 0.1), and the last two rows to
(w = 19, |k| = 0.2).

B. Deep Learning

The neural network training and validation losses are de-
picted in Figure 13.

Neural network enhancement results are separated into two
types: type 1 (see Figure 14) shows successful enhancement
which was determined by the visual barcode quality and the
successful decoding. Type 2 (see Figure 15) corresponds to
a poor enhancement that did not result in visually correct
DataMatrix barcodes which thereupon were not decoded.

The results of the deep learning experiments are summa-
rized in Table V. The first two columns show the average
MSE and SSIM metrics evaluated on the training set (226320
samples). The third and the fourth columns represent the read
rate on training (226320 samples) and test (8657 samples)
sets respectively. Similar to the binarization results (see sub-
section V-A), the best two read rates on the test sets are
highlighted and presented with the double standard deviation.

VI. DISCUSSION

A. Binarization

Applying binarization as means of DataMatrix pre-
processing showed an improved read rate on the test set
(see Table III). While the Niblack method had the worst
performance, the Nick method corresponded to the best read
rate (i.e. 24%) with w = 19 and k = −0.1. The Otsu algorithm
with a read rate of 23.35% came very close to the result
obtained by the Nick approach.

The visual barcode binarization quality is presented in Fig-
ure 12. Regarding the first row, all the samples were decoded
after binarization. This can be explained by a relatively low
level of distortion in the original sample. In fact, all the bina-
rized images look very similar to each other. The Otsu image,
however, appeared to be thicker than the rest, and the Niblack
image had surrounding noise around the barcode. In the second
row, not a single binarized image was decoded. Only the
Otsu image appeared quite clean, while the other binarizers
resulted in an image with the surrounding noise which can
be explained by a small window size w and strongly uneven
background color. It can be suggested that the Otsu image was
not decoded due to a small barcode size. Regarding the third
row, only the Otsu and Nick images were decoded, where only
the Otsu image did not have any surrounding noise. In fact, it
cannot be fully determined why the Nick image was decoded
since it appeared quite similar to Niblack, Sauvola, and Wolf
images. It can be argued that the Nick image had slightly less
surrounding noise around the barcode which was the deciding
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TABLE III: Binarization Read Rate Results: best two results are highlighted and provided with two standard deviation margin

Parameters (w,|k|)
Binarization

method (15,0.05) (15,0.1) (15,0.2) (17,0.05) (17,0.1) (17,0.2) (19,0.05) (19,0.1) (19,0.2)

Otsu 23.35% ± 0.026%
Niblack 10.45% 8.65% 4.14% 12.75% 10.72% 6.98% 14.05% 12.27% 9.22%
Sauvola 20.05% 21.08% 16.73% 20.37% 22.04% 18.69% 20.28% 22.15% 20.52%

Wolf 17.68% 19.71% 21.83% 18.49% 20.00% 22.31% 18.00% 19.68% 22.07%
Nick 21.67% 20.50% 12.58% 22.31% 23.02% 14.00% 22.31% 24.00% ± 0.017% 16.29%

TABLE IV: Binarization Time [ms] of 65237 DataMatrix Barcodes

Binarization method Otsu Niblack Sauvola Wolf Nick
Mean 2 120 73 656 502

Standard deviation 0.6 20 24 238 46

7 3 3 3 3 3

7 7 7 7 7 7

7 3 7 7 7 3

7 7 3 7 7 7

7 7 7 3 7 3

7 3 7 3 3 3

Fig. 12: Binarization Results. Column order from right to left: Original, Otsu, Niblack, Sauvola, Wolf, Nick. Local binarization
methods w and |k| parameters for the first two rows: (15, 0.05), middle two rows: (17, 0.1), last two rows (19, 0.2). 3- barcode
was decoded after binarization, 7- barcode was not decoded after binarization

factor for the ZXing decoder. The fourth row demonstrates an
example of uneven background illumination, where only the

Niblack image was decoded. The other binarized images had
a large amount of white space in the middle of the barcode
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TABLE V: Deep Learning Results Summary: best two results are highlighted and provided with two standard deviation margin

Architecture Train Data
MSE

Train Data
SSIM

Train Data
Read Rate

Test Data
Read Rate

Cae 41.03 0.9653 82.96% 55.60%
Unet 10.65 1.0285 97.08% 70.72%

Attention Unet 11.32 1.0326 98.86% 72.22% ± 0.114%
Unet3+ 10.77 1.0298 97.27% 74.40% ± 0.132%

Fig. 13: Neural Networks Training/Validation Losses

Fig. 14: Neural Network Type 1 Enhancement (barcodes
were decoded after enhancement): column left to right order:
Original, Cae, Unet, Attention Unet, Unet3+

Fig. 15: Neural Network Type 2 Enhancement (barcodes were
not decoded after enhancement): column left to right order:
Original, Cae, Unet, Attention Unet, Unet3+

which could have prevented them from being decoded. In the
fifth row, both Otsu and Niblack images were not decoded,
which can be explained by incorrectly separating background
and foreground. The Sauvola, Wolf, and Nick images appeared
very similar, however, the Nick image was a bit thinner. It
cannot be concluded why the Sauvola image was not decoded.
In the very last row, all the binarized images were decoded
except for the Niblack image which contained a large amount
of surrounding noise. The only explanation behind the decoded
Niblack image in the first row and not decoded Niblack image
in the last row might be related to the decoding algorithm
specifics of the ZXing decoder.

Taking into account a significant transcendence of the
Otsu method in terms of execution time (see Table IV), and
very high read rate results (compared with other binarization
methods in this work), it can be concluded that it is the most
suited method for DataMatrix thresholding.

One way to potentially improve local binarization methods
(e.g. Nick) is to select the window w adaptively depending
on the image size. This might help with dealing with uneven
background barcode image lighting.

As mentioned in related works [13, 15], the barcode decod-
ing rate can be improved by applying morphological opera-
tions such a dilation and erosion. The experimental scope of
this work has shown that in some cases, the above-mentioned
morphological operations can improve the DataMatrix decod-
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ing rate. More specifically, the Wolf image in the fifth row of
Figure 12, was decoded after applying dilation operation on
the initially undecoded binarized image.

Another way to improve the local binarization method was
suggested by works published by Shafait et al. [49] and Chan
[50] that proposed several optimizations to the existing algo-
rithms that led to substantial binarization speed improvement
that came close to the Otsu algorithm performance and were
independent of the sliding window size.

While this paper covered some of the most popular bi-
narization methods, other approaches such as Gatos [51],
Improved Sauvola [52] and WAN [53] were found successful
in historical and degraded document binarization, and, as
a part of future work could be incorporated in DataMatrix
binarization.

B. Deep Learning

Four different neural network architectures were trained to
enhance a DataMatrix image, and subsequently improve the
barcode read rate. The after-enhancement read rate results are
summarized in Table V.

The last column of Table V clearly shows that Unet-based
architectures lead to notably higher read rates in comparison
with convolutional autoencoders. Another observation that
points to Unet-based solution superior performance is the
approximately 200 times lower training and validation losses
depicted in Figure 13. Accurately reconstructing (enhancing) a
DataMatrix barcode is a challenging task due to a large amount
of image content (barcode cells). It is assumed that Unet-
based solutions are far more effective in enhancing DataMatrix
barcodes because they incorporate long skip connections that
allow to combine high-resolution features in the output layer.
Long skip connections help to recover spatial information lost
during downsampling which results in a more accurate output
image reconstruction [54].

Image enhancement quality can be directly accessed using
similarity scores. The mse and ssim values together with
the read rates on the training set can be found in Table V.
The training set read rates are directly proportional to both
mse and ssim scores which shows that the more accurate
the predicted image, (in comparison with the ground truth)
the higher the read rate. This, however, does not hold for
the read rates on the test set where Unet3+ model had the
best performance (74.40%), and CAE the worst (55.60%).
Decoding most of the test samples (that are potentially harder
to decode) demonstrates neural network generalization ability.
The reason behind Unet3+ winning performance on the test set
can be explained by its full-scale skip connections. Both Unet
and Attention Unet incorporate only plain skip connections
that fail to sufficiently explore DataMatrix image information
from full scales which might lead to an inaccurate barcode
enhancement.

The examples of barcode enhancement shown in Figure 14
prove that Unet-based deep learning solutions can almost
perfectly reconstruct a barcode image. Minor side effects
such as occasional grey-scale spots, do take place, however,

they do not affect the overall image quality and do not
prevent a barcode from being decoded. The deep learning
barcode enhancement approach allows to restore barcodes
(see Figure 14) from poor contrast (row 1), blur (row 3),
geometrical transformation such as shearing, and barcode
modules narrowing (row 4).

The ineffective barcode enhancement samples that could
not be decoded are shown in Figure 15, where the majority
of the barcode content was either smudged or covered with
grey-scale paint. The reason behind the failed enhancements
is explained by severe barcode deformations that appear quite
rarely in the training dataset, and thus do not allow a neural
network to sufficiently learn its specific patterns.

Recent publications made by Chen et al. [55] and Cao
et al. [56] presented Unet-like architectures (TransUnet and
SwinUnet respectively) based on a visual transformer model.
These architectures were predominantly addressed to improve
medical segmentation quality. Both TransUnet and SwinUnet
showed excellent performance and generalization ability.

Within the experimental scope of this work, the SwinUnet
model (1.8M parameters) was trained for 10 epochs and
resulted in a 48% read rate on the test set. Unlike the Unet
models described in this work, SwinUnet has a wider choice
of hyper-parameters which, as a part of future work, creates
room for various architectural decisions.

Another potential improvement to this work is training
Unet-based models on a considerably larger DataMatrix
dataset including more barcodes with large distortions. In case
of the unavailability of a larger dataset, a possible solution
could be training Unet-based networks on augmented data
incorporating barcode geometrical distortions (at this moment,
the Unet-based network cannot accurately enhance barcodes
with large geometrical distortions (see Figure 15)). Such an
approach might lead to a better barcode enhancement, which
subsequently might result in a better DataMatrix decoding rate.

C. Binarization vs Deep Learning
The read rate results have identified the Unet-based ap-

proach far more superior than image binarization in terms of
barcode enhancement. This might be explained by the fact that
Unet-based neural networks were trained to reconstruct the
ideal barcode image, overcoming various types of distortion,
and, therefore, making it as easy as possible, for the ZXing
library to decode the enhanced samples. Binarization, on the
other hand, is a rather limited tool, that can only solve image
contrast problems and uneven illumination issues. Binarization
is not able to correct barcode image geometrical transforma-
tions.

The advantage of the binarization methods is that, un-
like neural networks, they do not require any training and
thus do not depend on a particular dataset (e.g. DataMatrix,
Aztec, QR-code) which makes it a more generic barcode pre-
processing tool.

D. Deep Learning vs State-of-the-art Swift Decoder
The experiments in this work have shown that using Unet3+

architecture for DataMatrix enhancement resulted in a 74%
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read rate on the test set which accounts for 6406 decoded
samples out of 8657 test samples. This indicates the to-
tal amount of decoded images from the DataMatrix dataset
(65237 samples) is equal to 62986 (56580 decoded without
any enhancement plus 6406 decoded using Unet3+) which is
96.55% of the barcode samples decoded by the state-of-the-art
Swift decoder.

VII. CONCLUSION

In this work, two fundamentally different DataMatrix en-
hancement ways were proposed intending to increase the
barcode read rate. Traditional image binarization was con-
trasted with state-of-the-art deep learning solutions. The results
identified the Unet architecture as a more superior tool for
DataMatrix image pre-processing that essentially was able to
solve not only the binarization problem but also correct various
barcode geometrical transformations. Regarding the main re-
search question, the Unet-based architecture performance was
several times better than the performance of the binarization
methods. More specifically, the Unet3+ architecture demon-
strated the best performance - 74% read rate improvement on
the test set, while the Nick binarization method resulted only
in 24% read rate improvement.
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