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ABSTRACT 

Long-term monitoring of fumarole temperatures variation can provide insight into the subsurface behavior, 

especially fluxes in the geothermal and volcanic system. Conventional field-based monitoring methods, e.g., 

calorimetric methods, though accurate, are limited in the temporal frequency domain. The thermal infrared data, 

especially geostationary thermal infrared sensors’ have widely been useful for fumarole monitoring, especially in 

eruptive volcanic surveillance studies. However, pertinent issues such as spatial resolution and influences of 

atmospheric and surface effects on recorded temperature values have hampered comprehensive monitoring 

campaigns. For this reason, the study investigated the activities of fumarole in line with the following objectives: 

(i) apply high temporal resolution thermal infrared imagery to study surface temperature variation as a proxy to 

subsurface geothermal heat flux, (ii) To understand external factors affecting the apparent temperature using 

weather data (air temperature and precipitation), (iii) contextualize subsurface dynamics of the geothermal reservoir 

using fumarole gas discharge data.  

 

Data processing was done procedurally: Demarcation of regions of interest from specific hour-of-day TIR imagery 

by visual inspection of principal component analysis, temporal mean, standard deviation, and optical image 

collected by the daytime timelapse camera. Secondly, time series plots of the apparent radiant temperature of the 

demarcated regions of interest were generated and their long-term patterns analysed. The third step involved 

removing low-quality images based on the standard deviation value of pixels of time series TIR images. 

Normalization of time series plots was done to remove further daily components associated with environmental 

effects. Finally, the normalized time series plots were used to calculate radiative heat flux plots. Finally, fumarole 

gas concentration data were plotted, and temporal patterns were analysed. 

 

The results show comparable spatial patterns within indicator products of principal component analysis, temporal 

mean products of selected hour-of-day TIR images. The temporal of time series plots of different ROIs extracted 

from TIR show variation with seasonality. The variations were related to existing environmental conditions and 

were specifically enhanced during rainy periods.  The periodicity also varied per region of interest and was optimal 

in thermally anomalous sections near the fumarole area. The results further show that removing images acquired 

during foggy conditions and the time normalization procedure eliminated anomalous signals from time series plots. 

The heat flux plots, calculated from normalized radiant temperature values, were useful in identifying endogenous 

processes associated with subsurface heat emission. Finally, fumarole gas chemistry concentration plots show 

variability with occasional peaks (between July 2008 to June 2020), which were attributed to subsurface processes 

such as dilution and boiling. Such processes were linked with the variability of subsurface fluid movement, an 

aspect of fluctuating speeds of the geothermal motor.  

 
In conclusion,  the study revealed that TIR imagery acquired by ground-based thermal infrared cameras is a useful 

tool in monitoring fumarole's thermal behavior in a productive geothermal field. Besides, the study's novelty lies 

in isolating external influences from TIR infrared imagery time series data, analyzing the residual trends, and 

associating them with subsurface geothermal activities.   
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1. INTRODUCTION 

1.1. Background 

Geothermal energy is the heat that emanates from the earth's surface (Meyers, 2012). The energy is formed by heat 

flow from the earth's core as a result of the decaying of radioactive elements such as K, Th, and U (Lund, 2013). 

Exploitable geothermal energy resources are found in various geological environments, predominantly along high 

crustal heat zones and active volcanic systems (Haselwimmer et al., 2013). The energy resource is often 

characterized by surface manifestation features such as fumaroles, hot springs, mud pools, and volcanic centers. 

Globally, many geothermal systems have been exploited for power generation. Among them are those in the East 

African Rift System (EARS), with an estimated potential capacity of over 10000 Megawatts electric (MWe) 

(Omenda, 2018). Within this system is the Greater Olkaria Geothermal Area (GOGA), which has been extensively 

exploited for electric power generation and is the focus of this study (elaborately described in section 1.5). 

 

To generate geothermal electricity, production wells are drilled to extract fluids or steam to spin geothermal 

powerplant turbines. Also, separated brine and power plant condensate are reinjected into the reservoir to ensure 

resource recovery and sustainability (Diaz et al., 2016). If the extraction of geothermal reservoir fluids exceeds the 

rate of reinjection, mass imbalance of the geothermal system might occur (Fadel et al., 2021). Mass imbalance is 

occasionally characterized by changes in the geothermal systems, such as unusual compositional variation in 

fumarole gas, the collapse of earth materials along highly altered surfaces (Malvina et al., 2019), and increased 

seismic activity (Rashmin et al., 2003). In extreme cases, it is characterized by a decline and eventual extinction of 

surface manifestation features (Barrick, 2007), a phenomenon experienced in the Rotorua geothermal field, New 

Zealand (Hunt, 2013). Therefore, there is a need to monitor and understand geothermal systems' activities and 

their relationship with the ‘geothermal motor’.  

 

The term 'geothermal motor' was recently introduced by Fadel et al. (2021). They defined it as the movement of 

large convective cells within a geothermal reservoir that distribute hot and cold fluids along up flow and downflow 

zones in a geothermal system. Also, the description by Reinsch et al. (2017) in p.12, 'the dynamics of hydrothermal 

fluids in the earth's subsurface that characterizes the geothermal reservoir,' gives an alternative overview of the 

concept. Hot fluids originating from the reservoir rocks are circulated upwards while cool meteoric fluids from 

direct precipitation recharge flows downwards in a ‘motor-like’ pattern.  

 

Generally, the activities of the geothermal motor significantly affect the sustainability of the geothermal resource. 

An imbalance in the geothermal system causes unintended changes in the speed and efficiency of the geothermal 

motor. Such changes can be detected by long-term monitoring surface and subsurface changes of a geothermal 
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reservoir. The long-term monitoring of reservoir pressures/ temperatures and heat flux changes of surface 

manifestation features (e.g., fumaroles), guides in understanding a geothermal motor’s behavior. As such, it is 

necessary to adopt a comprehensive monitoring plan to ensure sustainable utilization of the resource and avert 

future problems associated with increased exploitation of the geothermal resource (Axelsson, 2010). The behavior 

of surface manifestations features such as fumaroles offers a glimpse into the status of a geothermal reservoir 

which can indirectly link to the geothermal motor behavior.  

 

1.2. Fumarole monitoring in geothermal systems 

Fumaroles are important surface manifestation expressions associated with convective geothermal reservoirs. They 

are found in high and moderate-temperature geothermal systems, with characteristic reservoir temperatures of 

over 200 ºC and fluid enthalpies in excess of 800 kJ/kg  (Axelsson, 2010). By observing the thermal hydrothermal 

fluids and steam emitted by fumaroles, it is possible to understand the state of fluids within the geothermal system 

(Inguaggiato et al., 2018). Similarly, periodic variation of fumarole gas composition (i.e., CO2, CH4, H2, and N2) 

cannot at all give insight into degassing activities, often associated with changes in pressure and temperatures of 

fluids in the geothermal reservoirs (Hunt, 2013). Also, quantifying and monitoring long-term fluctuation of surface 

parameters such as radiative heat flux and discriminating the meteorological components makes it possible to 

understand the processes within a geothermal system (Malvina et al., 2019). 

 

For many years, conventional field-based methods such as calorimetric monitoring (Ozawa, 1958), chloride-

inventories (Ingebritsen & Mariner, 2010), soil-temperature (Dawson & Dickinson, 1970), and fumarole gas flux 

(Wen et al., 2016)  methods have been used to monitor fumarole behavior in geothermal fields. Usually, a network 

of  thermal probes and funnel flasks are inserted within fumarole vents to measure kinetic temperature and gas 

composition. These methods are relatively cheap, comparatively sensitive, and reflect actual in-situ conditions 

(Gaudin et al., 2017; Malvina et al., 2019). However, there are also notable weaknesses in the aforementioned 

methods. Firstly, calorimetric measurements are not suitable for monitoring high-temperature fields (Lindsey et 

al., 2015). Secondly, temperature and gas flux measurements are affected by inaccuracies arising from sampling 

and instrument calibration (Coolbaugh & Sladek, 2013). Moreover, the field-based methods do not provide a 

synoptic view of the spatial distribution of the surface heat variation. There are chances of overestimation as a 

result of focusing on a subset of the area of interest (Gaudin et al., 2017). Consequently, some gaps may arise 

inconsistent temporal resolution of the data. Thermal infrared remote sensing is considered a viable alternative. 

 

Time-series data derived from sun-synchronous orbit thermal infrared remote sensors (e.g., ASTER, Landsat 

ETM+) have gained extensive usage in monitoring the thermal variation of geothermal fields (Chan & Chang, 

2018; Haselwimmer et al., 2013; Mia, Bromley, & Fujimitsu, 2012). Anomalous signals trends arising from Land 

Surface temperature(LST), surface latent heat flux, or top-of-the atmosphere long wave radiance derived from 

these sensors are used to characterize geothermal fields on a low spatial and temporal resolution context  (Malvina 
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et al., 2019; Mia et al., 2012; Vaughan et al., 2012). Although such datasets address some gaps associated with field-

based methods (e.g., low synoptic coverage), they are affected by topographical and terrain differences and 

localized weather conditions such as winds and cloud cover (Kuenzer & Dech, 2013). Thus, subtle signal anomalies 

related to physical processes associated with geothermal motor/system activities might go unnoticed.  

 

To address this shortcoming, high temporal resolution ground-based thermal infrared cameras have been adopted 

for indirect geothermal monitoring (Silvestri et al., 2020). They record radiated heat and quantify them into 

temperature measurements, visualized as thermal images (Kuenzer & Dech, 2013). The radiant temperature values 

are subsequently used for the estimation of surface radiative heat flux, which can give insight into the subsurface 

behavior of the reservoir systems. Their usage in geothermal investigations has been limited to hot water 

geothermal systems (Haselwimmer et al., 2013).  In this case, the usage has been confined to quantification of heat 

flux and estimation of flow rates of geothermal springs. Other applications have mostly been used to detect and 

monitor thermal anomalies that might trigger eruptions of quiescent volcanoes (Chiodini et al., 2007; Sansivero & 

Vilardo, 2019; Stevenson & Varley, 2008).  

1.3. Problem statement 

One way to qualitatively monitor a geothermal system’s  activities is by assessing the surface temperature variation 

at specific geothermal hotspots (fumarole) on a multi-temporal basis (Stevenson & Varley, 2008). By examining 

the daily or seasonal variation of surface radiant temperature time series trends, it is possible to identify outlier 

signals which can be linked shallow and deep subsurface hydrothermal processes (e.g., magma degassing).  

However, Sansivero & Vilardo (2019) showed that such signals may be associated with other external influences 

that are both of atmospheric (e.g.,  precipitation, fog, solar illumination) and surface (emissivity, differential thermal 

intertia) origin. Efforts have been made to detect and isolate these artifacts, using a variety of time series detrending 

techniques. For instance, Chiodini et al., (2007), and Sansivero et al., (2013) applied the background removal 

techniques to isolate these artifacts and use the residual values to identify signals linked with mild explosions in 

volcanic systems. However, these findings were still inhibited by fog and precipitation, resulting in more false 

signals that were specifically enhanced on predawn TIR imagery acquired during rainy and foggy weather 

conditions. In addition, the lower temporal frequency of data used (i.e., weekly interval) meant that higher number 

of flagged scenes, thereby compromising the eventual residual trends.  

Bearing the above mentioned limitations, this study, tested the detrending technique on similar datasets using 

higher temporal acquisition rate (hourly interval) in a productive geothermal field. In addition, the technique was 

also tested on day-time TIR scenes to check whether such influences can be minimized by using different day-time 

images. The resulting residual temperature was then integrated with subsurface data (i.e., fumarole gas chemistry) 

to understand subsurface variability; and link them with the ‘geothermal motor.’     
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1.4. Research Objectives 

1.4.1. Overall objective 

To investigate the applicability of high temporal resolution time series of ground-based thermal infrared scenes, 

combined with fumarole gas concentration and meteorological time series data, as a monitoring tool for fumarole 

activity of the Olkaria productive geothermal system. 

1.4.2. Specific objectives 

 

Objective 1 
To define and isolate potential external (surface and atmospheric) influences on recorded radiant temperature. 

❖ Which indicators can be used to define and isolate these influences? How do they spatially change over 

different hours of the day? 

❖ How do the minimum, maximum, and mean values of radiant temperature from specific zones of TIR 

images vary in time? How do they relate with the time series plots of meteorological parameters? 

 
Objective 2 

To perform a correction to remove potential outlier signals associated with external influences. 

❖ Which pixel indicators can be used to isolate these signals?  How effective are the indicators under 

different atmospheric conditions over different hours of acquisition?  

 

Objective 3 

To analyse the temporal variation of the temperature corrected for external influences. 

❖ Is there a notable trend in the time series temperature plots? If so, what is their general temporal behavior? 

❖ How does the periodicity of the apparent radiant temperature trends relate to the daily weather trends? 

 

Objective 4 

To ascertain whether there exist a relationship between the surface heat flux (calculated from corrected detrended 

surface radiant temperature) and fumarole gas composition data. 

❖ What are the general trends of the heat flux and gas chemistry time series plots? Are there any outlier 

signals? If so, how does this link to the speed of the geothermal motor?  
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1.5. Study Area 

1.5.1. Geographical set up of the study area 

The area of study is located in the Nakuru county (formerly the Rift Valley province) Kenya, approximately 120 

km northwest of Nairobi. It is one of the many active geothermal fields in the Kenyan Rift system (Figure 1.1-A). 

It borders Lake Naivasha to the South. It is bound by latitude 0° 53.022’S-0° 56.135’S and 36° 14.370’E-36° 

19.430’E (Figure 1.1).  

 

The field is exploited for electricity generation and is subdivided into six developmental sections namely: Olkaria 

East, Olkaria West, Olkaria Central, Olkaria Northeast, and Olkaria Domes. The approximate installed capacity of 

the study area is estimated to be about 800 MWe (Omenda, 2018).  

 

 

Figure 1.1: (A) The study area and its location among other geothermal fields along the Kenyan rift system (Credit: Fadel et 
al., 2020). (B) The various fields and wells drilled in the Greater Olkaria Geothermal Area (Munyiri, 2016).  

1.5.2. Geological setting of the study area 

Late Quaternary volcanic rocks flank the study area. These rocks are divided into surface and subsurface rocks.  

The surface rocks consist of volcanic ash, comenditic rhyolites, pumiceous deposits, and occasional lacustrine 

sedimentary deposits (Lagat, 2007). The subsurface rocks consist of basalts, rhyolites, and trachytes of the Pliocene 

to Holocene epoch. Structurally, the area comprises normal faults, fissures, craters, and numerous dykes (about 

6m thick).  
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The structures also act as conduits or flow paths for surface fluids (Ofwona, 2002). Axelsson et al., (2013) further 

states that cold fluids (of meteoric origin) infiltrate into the geothermal system through N-S fault systems along 

the Ololbutot fault axis, which is characterized by numerous fumaroles. This is specifically interesting for this study 

because (OMF8), the fumarole of focus, is situated along the Ololbutot lava flow flanked by the numerous fault 

systems (see Figure 1.2). 

 

 
Figure 1.2: Distribution of various geological structures and surface geothermal manifestations in the study area 
(Topographic background map sourced from ESRI (2021), while shapefiles are sourced from KenGen, PLC database). Note 
the N-S alignment of fumaroles (blue dots), an indication of structural control. The yellow pointer shows the position of 
fumarole of study.  

1.5.3. Status of Geothermal exploitation of the study area 

The Olkaria geothermal field area has been exploited for geothermal power since the 1980s. Recently, the field has 

witnessed increased exploitation of geothermal resources for power generation. Notable developments include the 

recent commissioning of the 280 Mwe powerplants in 2015 (Njoroge, 2016). Over the past years, some reservoir-

induced changes have been observed, with the most notable being moderate well pressure decline and fluid 

chemical changes in some selected wells within the field (Ouma et al., 2016). For instance, the drop in chloride 

levels of geothermal wells OW-15, OW-16, and OW-18, was recorded between 1995 to 2017, was attributed to 

reinjection in the field (Wafula, 2018) to stabilize the field’s pressure drawdown.. 
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Other wells such as OW-05, OW-15, OW-18, OW-19, OW-20 in the East field have also shown high enthalpy 

changes (Koech, 2014). During this period, the chloride, CH4, and CO2 of fluid condensate, significantly increased, 

a phenomenon attributed to increased subsurface boiling processes (Karingithi, 2015).  Importantly, these wells 

sited near the Ololbutot fault axis, which acts as hydrological barrier, controlling inflow of surface recharge into 

the system (Axelsson et al., 2013). In addition, OMF8 which is the focus of this study, is located in this zone thus 

changes might give an idea of the subsurface processes affecting the system.. Consequently, monitoring plans have 

been placed to observe the geothermal system’s response. 
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2. DATASETS AND METHODS 

2.1. Datasets 

2.1.1. Thermal infrared imagery  

These were the primary datasets for this study.  The datasets comprised of thermal infrared (TIR) images were 

acquired using ground-based broadband FLIR A6555sc thermal cameras. Two identical cameras with different 

lenses were installed on two fumaroles, i.e., OMF8, located at the Ololbutot lava flow (Figure 2.1-A), and OMF6 

sited along the Olnjorowa Gorge (Figure 2.1-B) in the Olkaria geothermal field, Kenya. The cameras are sensitive 

in the longwave infrared wavelength range between 7.5-14 µm (FLIR, 2021). Both cameras collected data between 

19th July 2019 to 24th March 2021 at an hourly interval. However, occasional breaks in power supply meant that 

data gaps were encountered during the acquisition periods. This study deals with data collected at OMF8.  

The detailed specifications of the camera at OMF8 are shown in  

Table 1. Some of the camera’s parameters were used in the estimation of radiative heat flux in section 2.3.  

 

The radiant temperatures recorded by the thermal infrared camera are apparent for each pixel in object space. The 

temperatures are recorded in Kelvin*10 and converted to Degree Celsius in ENVI™ software. A sample image 

acquired by thermal camera at OMF8 is shown in Figure 2.1-D.  

  

Table 1: Technical specification of the thermal infrared camera at OMF8 (FLIR, 2021) 

Field of view 45º × 34º 

Lens focal length (mm) 13.1   

Spatial pixels (length × width) 640 × 480 pixels 

Image size (length × width) 73 × 75 mm 

Approximate distance between camera to target 

(m) 

20m 

Size [L x W x H ] of Lens 216 × 73 × 75 mm 

Detector type Uncooled Microbolometer 

Temperature range -40°C to 650°C  
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Figure 2.1: A) Installation of field lab station with a thermal camera, time-lapse camera, and meteorological 

station at OMF8. B) Thermal infrared camera at OMF6. C) A daytime optical image of OMF8 acquired by a 

time-lapse camera. D) Sample thermal infrared image, acquired at OMF8; the warmer pixels are located near the 

fumarole vent, while the sky and background regions are cooler. 

 

2.1.2. Time-lapse camera imagery 

The time-lapse imagery are RGB images acquired by a time-lapse camera installed with the thermal camera at the 

OMF8 in the Ololbutot lava flow (Figure 2.1-A). The camera records two images per day, one acquired at local 

noon and another in the late evening. The noon acquisition aims to monitor surface variation under maximum 

solar angle and illumination. The late afternoon images are useful in monitoring the surface conditions under 

maximum contrast conditions.  

 

The time-lapse camera imageries were primarily purposed to investigate the surface movements around the main 

fumarole area. However, in this study, they were combined with other TIR image products to demarcate different 

land cover for further spatial and temporal analysis (see section 2.2.2 for elaborate explanation).  
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2.1.3. Meteorological parameters 

Meteorological data was recorded by a ”Davis Vantage Pro” meteorological station installed with the OMF8 

thermal camera at the Ololbutot lava flow (Figure 1.1A). The recorded parameters include rainfall, air temperature,  

wind speed, barometric pressure, relative humidity, solar irradiance, and soil moisture. The data sets were helpful 

in monitoring and understanding surface-atmospheric interactions, which affect apparent radiant temperatures 

recorded by thermal infrared cameras. For this study, precipitation and air temperature data have been used.  

 

The data acquisition began on 19th July 2019 at an hourly interval and was ongoing at the time of this report’s 

preparation. Therefore, for this study, only data acquired between 19th July 2019-24th December 2020 has been 

used. A data gap was observed between 4th December 2019-1st January 2020 and 7th June to 1st July 2020.  

 

2.1.4. Fumarole gas chemistry data 

Sampling of fumarole gas discharge and laboratory analysis of its chemical constituents was carried out by a team 

from the Kenya Electricity Generation Company, PLC (see Figure 2.2 ) based on the method proposed by 

Arnórsson et al. (2006) as follows:  

 

i. Insertion of stainless steel funnel tube into the fumarole vent. The funnel’s contact with the steam vent 

was sealed with mud to avoid possible contamination with air.  

ii. Gases were then directed into an evacuated (giggenbach) flask containing about 50 ml of 40% NaOH 

solution to trap non-condensable gases. The flask was immersed in a bucket of water e to push the 

condensate through the tube.  

iii. The acidic gases (e.g., CO2 and H2S) are dissolved into the NaOH solution. The non-acidic gas species 

(e.g., hydrogen (H2), methane (CH4), nitrogen (N2), and oxygen (O2)) are determined using the gas 

chromatography technique.   Other condensate samples are used for the analysis of volatiles. A portion 

of the condensate is also set aside for in-situ measurements, e.g., pH, Total Dissolved Solids (TDS), among 

others.  

The above-mentioned processes are shown in a sketch in Figure 2.3. 

 

 The sampling was carried out on a 3-month basis, from 27th July 2019 to 18th March 2021. Archived data recorded 

from 4th February 2018 was incorporated to have a historical overview of the compositional changes of the gases. 

However, the sampling frequency was irregularly done (approximately after 3 months) due to logistical challenges.  

 

For this study, three constituents, namely: carbon dioxide (CO2), Hydrogen dioxide (H2S), and chloride (Cl) have been 

analysed and interpreted (See Table 2 for further clarification).  
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Figure 2.2: Field sampling of OMF8 at the Olkaria Geothermal Field (Source: KenGen internal database) 

 

 
Figure 2.3: A sketch of equipments used for sampling of fumarole gas discharge (Arnórsson et al., 2006). (1) Fumarole 
steam outlet, (2) Funnel, (3) silicon tubing (4). Bucket with cold water to  cooling the condensate  (5). evacuated 
(Giggenbach) flask  
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Table 2: Selected elements and gases used for the for fumarole activity monitoring 

Element/compound Reason for selection 

CO2 and H2S • They are most dominant gas species of a 

geothermal system. The increase or decrease 

of these paraments reflects magmatic 

degassing activities in a geothermal system 

(Hunt, 2013). 

• Increased H2S is associated with percolation 

of cool fluids into geothermal reservoir .  

Chloride • These element is associated with dilution of 

shallow thermal waters; and is linked with 

surface shallow recharge. Their variation of is 

also linked with reinjection of cold fluids into 

the geothermal system (Karingithi, 2015). 

 

The time series of the plots of the above-mentioned parameters were created (section 2.4), and subsequent 

analysis and interpretations made.    
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2.2. Data processing 

This section outlines the various steps involved in the analysis of TIR images and other ancillary datasets used in 

the study. The data processing procedure was carried out sequentially as follows: 

 

i. Temporal subset by the hour of acquisition: this involves selecting a specific hour of the daytime series 

TIR images in order to understand how radiant temperature changes under different environmental and 

surface conditions (section 2.2.1). This step answers question 1 of the first study objective. 

 

ii. Spatial subset into regions of interest: This involved demarcating smaller regions of interest from the 

selective hour-of-day TIR images; to separate areas affected by external influences (i.e., weather, surface 

material properties) and fumarole activity (proxy to geothermal activities). This step partly answers 

question 1 of the first objective and question 2 of objective 1. It is described in section 2.2.2.  

 

iii. Removal of foggy thermal infrared scenes: This step involves removing outlier signals from time series 

plots of TIR scenes acquired during foggy and rainy weather conditions. The step answers the second 

objective of the study and is described in section 2.2.3. 

 

iv. Normalization of the defogged time series data: This step helps explain the findings of objective 2 of the 

study and involves further exclusion of the dominant daily weather from time series plots resulting from 

the implementation of step iii. This step is explained in section 2.2.4. 

 

v. Radiative heat flux estimation: This step involves estimating heat emitted by radiating surface using 

normalized radiant temperature values (step iv).  This answers the fourth objective of the study and has 

been explained in section 2.3. 

 

vi. Analysis of fumarole gas chemistry data: This step involves creating and analyzing time series plots of 

different fumarole gas components. This step also answers the fourth objective of the study.  

 

The above-mentioned data processing steps are presented as a workflow diagram in Figure 2.4. 
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Figure 2.4: Methodological workflow 

2.2.1. Temporal subset by the hour of acquisition 

This step involved selection of specific hour of day thermal infrared time-series images with the aim of analyzing 

the spatio-temporal distribution of radiant temperatures under different surface and atmospheric conditions as 

described below: 

• 00:00 and 03:00 UTC (local Predawn and dawn): At this hour of acquisition, the effects of solar 

illumination are minimal (Romaguera et al., 2018). False anomalies associated with surface albedo, 

topographic effects, and thermal inertia are minimized.  

 

• 09:00 UTC (local noon): At this time, the sun is overhead, while solar insolation is at its maximum. As 

such, the radiant temperature values recorded by the TIR camera are relatively high. The surface moisture 

content is low; therefore, the effects associated with foggy conditions are presumed to be minimal. In 

addition, effects of thermal shadows on the thermal infrared imagery are minimal. 
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• 12:00 (Local late afternoon): At this hour, the ground attained maximum heating. Therefore, the soil 

moisture content is relatively low (higher latent heat loss). Maximum contrast is also observed on the 

thermal infrared imagery, thus easier to understand the behavior of surface materials based on thermal 

response to differential solar heating.  

 

• 21:00 UTC( local midnight): At this hour of acquisition, the surface temperatures are relatively low. The 

surface moisture content is presumably high, while the effects of solar illumination are reduced. It also 

possible to identify subtle patterns associated with geothermal influences.  

The selection of specific hour-of-day images was made using an ENVI-IDL script, attached in Appendix 9 

 

Two hour-of-day time series data with contrasting stability (of radiant temperature values) under different 

surface and environmental conditions were selected for subsequent Spatio-temporal analysis.  

2.2.2. Spatial subsets into regions of interest 

Due to the heterogeneity of surface materials in the study area, there was a need to demarcate the image into 

smaller regions to identify regions affected by external and fumarole (proxy to geothermal influences) activities. 

Areas affected by fumarole activities are identified in this study as areas with high radiant temperature values 

consistent over different day hours. On the contrary, background regions are referred to as regions affected by 

other non-fumarolic factors such as fog, differential heating due to relative slope orientation with regards to solar 

illumination, among others (Romaguera et al., 2018).  

The processes demarcation of specific regions of interest (ROIs) was done chronologically as discussed below: 

1. Principal component analysis (PCA) (Lillesand et al., 2008) was performed on selected hour-of-the-day layer 

stacked TIR images. This was meant to reduce dimensionality and to produce few uncorrelated principal 

components containing the most information. The first three Principal components containing the most 

significant percentage of data variance were combined into RGB composite images and used for exploratory 

analysis. The demarcation was done by interpretation of subtle patterns brought about by contrasting 

homogeneously colored pixels of PCA composite images.  

 

2. Temporal averaging of radiant temperature and standard deviation values of each pixel in specific hour-of-

the-day layerstacked TIR images:  For each spatial pixel, the temporal mean and standard deviation was 

calculated over the whole time-series images. This resulted in two images (temporal mean, standard deviation) 

that represent the general behavior of each pixel at a certain time of the day.  This procedure was done in the 

ENVI™ software using the ‘Sum Data Bands’ function. For this study, these products were used alongside 

PCA and time-lapse optical images to help identify and demarcate regions of interest for further analysis. 

 

3. Overlay and creation of ROI statistics: The ROIs generated by manually drawing polygons on selected hour-

of-day TIR images based on visual comparison with spatial patterns of PCA, temporal mean, standard 
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deviation, and optical time-lapse camera images.  In addition, the statistical parameters (minimum, maximum, 

mean, and standard deviation) of specific ROIs were extracted and saved as shapefiles for further analysis.   

Measuring the maximum value in each ROI ensures that the temporal behavior of the hottest pixel was 

captured. On the other hand, the minimum temperatures ensure that the coldest pixels are captured, while the 

mean gives an overview of temporal behavior with minimum noise levels for control purposes.   

 

4. Generation of time series plots: Temporal plots of minimum, maximum, mean, and standard deviation of 

specific ROIs were generated from specific ROIs, then saved as ASCII files for further analysis. Pursuant to 

objective three of the study, the plots were stacked with meteorological parameters (air temperature, rainfall) 

to assess their dependence on ambient weather conditions. The stability of time series plots of various ROIs 

was assessed by visual inspection of synchrony (i.e., the relative distance between line graphs of minimum, 

maximum, mean). In addition, association with ambient conditions was assessed by correlating minimum 

radiant temperature values with air temperature values. The time series plots with the highest coefficient of 

determination are postulated to have the strongest influences of ambient weather conditions (Zimmer et al., 

2017).  

The above-mentioned steps are shown in Figure 2.5.  

 
Figure 2.5: Schematic flow chart showing steps in ROI creation 
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2.2.3. Foggy scenes removal 

One of the challenges experienced in processing thermal infrared datasets is the occurrence of hazy images acquired 

during foggy and rainy weather conditions. Such images are typified by low standard deviation values (i.e., values 

in lower quantile in a frequency distribution). As such, the thresholding algorithm by Sansivero et al. (2019) was 

used to isolate the scenes as illustrated in equation (1).  

 

𝜎𝐹𝑖 > 𝑚𝜎 − 𝑐 ∗ 𝜎𝐹𝜎                                                                                            Equation 1 

 

Where 𝜎𝐹𝑖  is the Standard Deviation (SD) of the nth thermal Infrared image, mσ is the median of Standard 

Deviation values of all TIR images,  𝜎𝐹𝜎  is the Standard Deviation of all standard deviations of the thermal 

infrared scenes, and c is a user-defined coefficient depending on the statistical distribution of data. For this study, 

the user-defined value of 1 was preferred because it represents values of the lower quartile in a distribution 

statistical distribution population. The TIR images whose apparent temperature values did not satisfy the condition 

in equation (1) were excluded.  

 

To evaluate the performance of the algorithm, a confusion matrix was used. A binary approach (True/False) was 

used to ascertain whether or not the flagged scenes matched their actual quality, as shown in Table 3.  

Table 3: Confusion matrix to assess fog removal algorithm’s performance 

Predicted  

True Negative (TN) False Positive (FP) A
ctu

al o
b

serv
atio

n
 

False Negative (FN) True positive (TP) 

Where TP (True positives) represents foggy scenes that were flagged by the algorithm, TN (True negative) 

represents clear (non-foggy) scenes that were flagged by the algorithm. FN (False negative) represents clear scenes 

that were not flagged by the algorithm. Finally, FP (False Positive) refers to foggy scenes that were not flagged by 

the algorithm.  

 

The performance of the algorithm was further evaluated as shown in equation 3:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                                       Equation 2 
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2.2.4. Normalization of temporal time series  

Normalization is a technique used to remove the dominant daily and seasonal component on raw TIR time-series 

plots (Pavlidou et al., 2016). Different normalization techniques have previously been tested on TIR data. 

However, the two methods, namely the Background removal procedure (Sansivero et al., 2013) and STL 

decomposition (Cleveland et al., 1990), have been found effective in the analysis of similar datasets. The STL 

decomposition method requires a longer (greater than 2 years) and continuous dataset compared to the background 

removal technique. Owing to the limitation of the study’s datasets (i.e., less than 2 years and lack of continuous 

datasets), the latter technique has been adopted. The technique is done chronologically as follows: 

 

Step 1: Identification of regions of interest with contrasting thermal behavior: one consisting of the most radiant 

pixels (presumably affected by fumarolic activity) and another region composed of cool pixels (postulated to be 

affected by minimal fumarolic activities).  

 
Step 2: Generation of time series plots of maximum apparent radiant temperature from the ROIs identified in 

step 1). 

 
Step 3: Establishing the linear relationship between the maximum temperature of the thermally anomalous region 

(Tmax_sc) and the corresponding maximum values of the background ROI (TmaxBKG) established using scatter 

plots.  

Step 4: Fitting a trendline between values in the scatter plot; then subtract the trendline  values from the Maximum 

value of thermally anomalous (Tmax) ROI  as shown by the following equation: 

 

𝑑𝑡𝑥 = 𝑇𝑚𝑎𝑥⁡(𝑠𝑐) − 𝑇𝑓𝑖𝑡(𝑥)                                                                                    Equation 3 

where dT(x) is the normalized temperature value, Tmax (sc) is the maximum temperature value derived from ROI 

of the nth TIR scene, and Tfit(x) is the value obtained from the trend line equation of value of TmaxSc(n) and 

corresponding TmaxBKG.  

The above-mentioned procedure is illustrated in Figure 2.6. 
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Figure 2.6: Background removal normalization procedure 

The normalized temperature residuals (calculated in equation 3) are used in the estimation of heat flux (2.3) 

2.3. Geothermal heat flux estimation 

Heat flux is defined as subsurface heat that is transferred by fluids into the surface by conduction and convection 

processes (Vaughan et al., 2012). The heat flux that is recorded on the surface is a mix of the geothermal 

component and environmental origin, derived from reflected and re-radiated solar radiation (Mia et al., 2012).   

For this study, the radiative geothermal heat-flux was calculated based on the Stefan-Boltzmann equation  (Mia et 

al., 2012), as shown in equation 4. By using the normalized temperature values, it is assumed that the environmental 

affecting heat flux measurements have been removed. 

 

𝑄𝑡 = ϭ𝑀A(𝑇)4                                                                                              Equation 4 

where Qt is the emitted radiation in units of Wm-2, σ is the Stefan-Boltzmann constant 

(5.667× 10-8), A is the area size (m2) obtained by multiplying the pixel size by the number of pixels in a certain 

ROI. The pixel size estimation procedure is elaborated in section 2.3.1.  

M is the emissivity of the surface materials. For this study, the emissivity of surface rhyolitic lava was assumed to 

be 0.9 based on measurements by Treiman et al. (2021). T is the radiant temperature (in Kelvin), calculated using 

the background removal procedure in equation 3.  

The average radiative heat flux values (W/m2) pixels were then plotted, analyzed, and interpreted.  

Step 1 Step 2 

Step 3 

Step 4 
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2.3.1. Pixel size estimation 

The size of a single-pixel in image space, also referred to as Ground Sampling Distance (GSD), can be calculated 

for nadir and oblique views. In this study, the GSD was estimated based on the approach by Balamuralidhar et al. 

(2021) shown in Equation 5. The initial step assumes nadir orientation and specific camera parameters (see Table 

1).  

 

GSD =
SW⁡×WD

FL×IW
                                                                                                      Equation 5 

Where GSD is the ground sampling distance or pixel size,  SW is the width of the thermal infrared camera's sensor 

(mm); find value in  

Table 1, WD is the approximate distance between camera and target (find value in  

Table 1); estimated from a Google Earth platform (see Figure 2.7),  FL is the focal length of thermal infrared 

camera (mm); find value in  

Table 1.,  IW (image width)  is the number of pixels in the thermal infrared camera's image resolution (find value 

in  

Table 1).  

 

Owing to the oblique camera orientation (see Figure 2.1-A), the second step was to convert the nadir pixel size 

(calculated in equation 5) into off-nadir context by multiplying it with GSD Rate as shown in Equation 6.  

GSDRate =
1

cos(θ+ϕ)
                                                                                                        Equation 6  

Where θ is the camera tilt, Φ describes the angle of field of view. In this study, θ is estimated at 45º, while Φ is 34 

º based on field of view specifications shown in Table 1.  
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Figure 2.7: Estimated distance between the thermal camera and OMF8 on the Google Earth Pro platform. The camera is 
oriented in a relative N-S position. 

2.4. Analysis of gas discharge chemistry data 

In this step, the temporal variation of fumarole gas discharge chemical constituents was analyzed to proxy 

geothermal reservoir processes such as boiling, mixing, and hydrothermal degassing. Therefore, the analysis was 

done as follows:  

1. Creation and analysis of temporal time series plots of major gaseous components (CO2 and H2S) over the 

entire period.   

 

2. Creation of time series plots of chloride concentration of different periods of observation. The plots were 

then analyzed for any unusual behavior (of peaks and troughs).  

 
3. Grouping of the above gas components based on the period of observation. Due to the low temporal 

resolution of the datasets, the grouping was done per year of observation. After that, the statistical distribution 

of yearly values was analyzed using clustered box plots. A trend line was fitted along with the mean values, 

and the overall trend was assessed. 
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3. RESULTS 

3.1. Spatial subsets into regions of interest 

The aim of this section is to demarcate the specific hour-of-day time TIR scenes into regions of interest that are 

affected by geothermal and non-geothermal influences. These results address the first objective of the study. The 

findings are presented as follows: principal component analysis (3.1.1), analysis of temporal mean and standard 

deviation (3.1.2), and analysis of time series plots of specific ROIs (3.1.3). 

3.1.1. Principal component analysis (PCA) 

Principal Component Analysis products of different hour-of-day TIR images are shown in Figure 3.1 (a-e). In this 

study, three principal components were taken for this data set, which possesses over 99% of the total proportion 

of data variance (Appendix 1). The time-lapse camera optical image (Figure 3.1 f) has been used as a ground truth 

tool to provide the context of zones with contrasting colored pixels of PCA images. PCA images show different 

regions with spatial contrast based on the distribution of homogeneously colored pixels (labeled using equally 

shaped polygons).  

 
For example, the reddish-brown to purple colored pixels of the PCA images (labeled 1) corresponds to rock debris 

at the foot of the fumarole (south western regions of time-lapse camera image).  In addition, the purplish to light 

green pixels (labeled 2) correspond to vegetated sections in the area's southern portion. The greenish-colored pixels 

(labeled 3) mainly correspond to unconsolidated soils, constituting most of the land cover of the focus area. Finally, 

purplish to dark green colored pixels (labeled 4) of PCA image relates to the eastern portion of the focus area.  

 
Figure 3.1: Band combination RGB=Principal Components 123 of TIR images acquired at (a) 00:00 UTC, (b) 03:00 UTC, 
(c) 09:00 UTC, (d) 12:00 UTC and (e) 21:00 UTC. (f) is an optical time-lapse camera image of the area acquired at 09:00 
UTC. Polygons 1-4 represent zones with homogeneously colored pixels, selected based on visual inspection of the time-
lapse optical image and considering other factors such as relative slope orientation and surface material variability. 
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Polygons are overlayed over other products (temporal mean and standard deviation images) to demarcate regions 

of interest for subsequent analysis, as discussed in the next section.  

 

3.1.2. Temporal mean and standard deviation 

Figure 3.2 (a-e) shows the temporal mean radiant temperature of the selected hour of day TIR images and 

corresponding time-lapse camera image of the area of focus. It observed that the spatial distribution of radiant 

surface temperature on the ROIs varies across different hours of acquisition. The central, southwestern parts of 

the images (labeled 1) exhibit the highest radiant temperature values across all hours of acquisition. Some high-

temperature pockets are also seen (highlighted by black circles) in the south-eastern part of the image. They tend 

to be pronounced during the day, especially at 09:00 UTC. Low radiant temperature values (blue colored) are 

observed in the northern and eastern (labeled 4) and southern (labeled 2) parts of the image. These values in the 

western and southern regions increases during the day, particularly at 09:00 UTC.  Medium temporal mean radiant 

temperature values (25.3-35.0) are observed over the northern portions of the images (near the fumarole vent area), 

remain constant over different hours of acquisition.   The estimated spatial mean temperature values bounded by 

the polygons (labeled 1-4) of different hour-of-day temporal images of acquisition are shown in Table 4. For the 

sake of consistency, the polygons are named ROI-1, ROI-2, ROI-3, and ROI-4, respectively.  

Generally, ROI-1 has the highest surface radiant temperature values, followed by ROI-3, RO1-2, and ROI-4.  

 

 
Figure 3.2: Temporal mean of TIR images acquired at (a)00:00 UTC, (b)03:00 UTC, (c)09:00 UTC, (d)12:00 UTC and 
(e)21:00 UTC. Polygons 1-4 represent different ROIs generated by demarcating homogeneously colored pixels of PCA 
images.(f) is an a time lapse optical image acquired at 09:00 UTC. Pockets of high radiant temperature pixels across different 
hour-of-day images are highlighted using black oval shapes.  



 

29 

Table 4:  Measured surface radiant temperature distribution across different ROIs of selected hour-of-day temporal mean 
images 

ROI  Temperature per hour of the day (ºC) 
 Temp values of ROIs at 

different hour-of-day 

00:00 03:00 09:00 12:00 21:00  

ROI-1 39.9 39.4 57.1 56.4 41.9  46.9 

ROI-2 17.7 17.2 35.6 35.9 18.8 25.0 

ROI-3 25.1 32.0 46.4 46.2 34.2 36.8 

ROI-4 17.7 17.2 35.6 35.9 11.3 23.6 

 

The polygons (ROIs) are overlayed over various standard deviation images as described in the next paragraphs.  

Figure 3.3 (a-e) shows the spatial distribution of standard deviation of the radiant temperature of different hour-

of-day TIR images. The time-lapse camera image (Figure 3.3 f) has been used to contextualize the various standard 

deviation values with real surface objects of the focus area. The results show varying spatial contrast of standard 

deviation values of different surface materials over different hours of acquisition. For instance, the southwestern 

parts of the images (ROI-1), corresponding to the hottest part of the fumarole,  exhibit the high standard deviation 

values across all hours of acquisition, except at 12:00 UTC; where western zones exhibit high standard deviation 

values.  

 

The lowest standard deviation values are of night-time TIR scenes (00:00, 03:00, and 21:00 UTC) are seen over 

the western (ROI-4) and southern (labeled ROI-2) parts of the image. However, these values increase during the 

day and are highest at 12:00 UTC. In addition, the northern parts (mainly sky and other background areas) have 

low values at 12:00 UTC, compared to other hours of acquisition. The estimated standard deviation values of 

selected ROIs of different hour-of-day time series TIR images are shown in Table 5. The highest values are seen 

over ROI-1, followed by ROI-3, ROI-4, and ROI-2, respectively.  
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Figure 3.3: Temporal standard deviation of TIR images acquired at (a) 00:00 UTC, (b)03:00 UTC, (c)09:00 UTC, (d)12:00 
UTC and (e) 21:00 UTC. Polygons 1-4 represent different ROIs generated by demarcating homogeneously coloured pixels 
of PCA images. (f) is a time lapse optical image acquired at 09:00 UTC. 

Table 5 Standard deviation distribution across different ROIs of selected hour-of-day 

ROI  Standard deviation per hour of the day 

 Average standard deviation 
values of ROIs at different 

hour-of-day 

00:00 03:00 09:00 12:00 21:00  

ROI-1 6.35 4.88 3.44 7.77 5.74 5.6 

ROI-2 1.59 2.70 5.01 5.74 1.52 3.3 

ROI-3 3.96 3.79 6.59 7.77 3.59 5.1 

ROI-4 1.59 1.63 8.17 7.77 1.52 4.1 

 

Time series of minimum, maximum, mean are extracted from the different ROIs to further assess the temporal, 

discussed in the next section.  

3.1.3. Radiant temperature time series across different ROIs  

This section describes the time series plots of specific ROIs of different hour-of-day TIR images and their 

relationship with ambient weather conditions (air temperature and precipitation). In this section, the time series 

plots of the 00:00 UTC and 09:00 UTC are being presented; as a representative of daytime and night surface radiant 

temperature temporal behavior.  Time series plots of other hour-of-day scenes are shown in Appendices (1-3).  
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Temperature variation in ROI-4  

Figure 3.4 (A-B)  shows the daily average minimum/maximum/mean radiant temperature, air temperature, and 

precipitation (mm) of ROI-4 acquired at 00:00 UTC between July 2019 to December 2020. The time series plots 

show a variation with seasonality.  In addition, the minimum, maximum, mean, and standard deviation values of 

the 00:00 UTC time series plots are lower than those of 09:00 UTC. The minimum radiant time series plot of the 

00:00 UTC is consistent with the air temperature, with a coefficient of determination (R2) of 0.1891 (Appendix 5-

i). 

 

 On the other hand, the time series plot of the 09:00 UTC hour-of-day scenes is higher than the air temperature 

plots. They also have a lower coefficient of determination (R2) of 0.1015 (Appendix 5-ii).  

A drop in temperature peak values of time series plots is observed during rainy periods for both 00:00 and 09:00 

UTC. This is evident between September, December 2019, and October 2020 (highlighted using black arrows).  

 
Figure 3.4: Variation of minimum,  maximum, mean, and standard deviation apparent temperature values of ROI-4 at (A) 
00:00 UTC and (B) 09:00 UTC, in combination with hourly air temperature and daily rainfall and air temperature for the 
period 2019-2020. The arrows show periods with a decline in apparent radiant temperature values due to precipitation. 
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Temperature variation in ROI-3 

The time plot of radiant temperature and corresponding weather values of ROI-3 is shown in Figure 3.5 (A-B).  

Similar to ROI-4,  the radiant temperature time series plots variation (peaks and troughs) with seasonality (i.e., 

irregular peaks and troughs over time). However, the ranges of radiant temperature values of 00:00 UTC are lower 

than 09:00 UTC, varying between 8-12 oC (minimum), 8-13 oC (mean), and 21-27 oC (maximum). The 09:00 UTC 

values mainly ranges between 17-40 oC (minimum), 23-65 oC (maximum), 18.0-46 oC (mean).  

 

Like the ROI-4, the relative distance between the minimum, maximum, and mean values of 00:00 UTC plots are 

lower than the 09:00 UTC, with a coefficient of determinations (R2) of 0.1002 and 0.0242, respectively (Appendix 

5-iii and iv).  Finally, similar effects of rainfall on time series plot values are also evident in this ROI’s plots, as 

highlighted by black arrows.  

 

 

 
Figure 3.5 : Variation of minimum,  maximum, mean, and standard deviation apparent temperature values of ROI-3 at (A) 
00:00 UTC and (B) 09:00 UTC, combined with hourly air temperature and daily rainfall and air temperature for the period 
2019-2020. The arrows show periods with a decline in apparent radiant temperature values due to precipitation. 
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Temperature variation in ROI-2 

The time series plots of radiant temperature and corresponding weather values of ROI-2 (Figure 3.6) show similar 

temporal behavior with other background ROIs ( i.e., ROI-4 and ROI-3).  

  

However, their radiant temperature values are higher compared to ROI-4 and ROI-3.  The air temperature values 

are lower than the minimum radiant temperatures for both 00:00 UTC and 09:00 UTC plots. There is no 

correlation between the air temperature and minimum radiant temperature values (see Appendix 5(v-vi)).  

 

 
Figure 3.6: Variation of minimum,  maximum, mean, and standard deviation apparent temperature values of ROI-2 at (A) 
00:00 UTC and (B) 09:00 UTC, combined with hourly air temperature and daily rainfall and air temperature for the period 
2019-2020. The arrows show periods with a decline in apparent radiant temperature values due to precipitation.  

Temperature variation in ROI-1 

Finally, the time series plots of values in ROI-1 (Figure 3.7) are described. They also show irregular variations of 

peaks and troughs with time. Their radiant temperature values are highest compared to other ROIs. One notable 

observation in this ROI is that they show the highest enhanced seasonal variation (highlighted by black arrows). 
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For instance, the average radiant temperature value of pixels recorded between consecutive days differs by over 

40 ºC.  

Lastly, the minimum radiant temperature values are higher than the air temperature, with a coefficient of 

determination (R2) of 0.0326 and 0.0045 for 00:00 and 09:00 UTC, respectively (Appendix 5 vii-viii).  

 

 
Figure 3.7: Variation of minimum,  maximum, mean, and standard deviation apparent temperature values of ROI-1 at (A) 
00:00 UTC and (B) 09:00 UTC, in combination with hourly air temperature and daily rainfall and air temperature for the 
period 2019-2020. The arrows show periods with a decline in apparent radiant temperature values due to precipitation.  

In summary, the following are the key take-aways from section 3.1.3: 
▪ ROI-1 has the highest instability of values in temporal space, signified by the highest periodic variation of 

the time series plot values. Its radiant temperature values have the least influence on air temperature, 

signified by the lowest coefficients of determination.  
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▪ ROI-4 has the highest stability of values in temporal space, as shown by the highest consistency between 

minimum, maximum, and meantime series plots. In addition, these values have the strongest influence on 

air temperature, signified by the highest coefficients of determination.  

As such, the temporal values of the two ROIs (represents extreme conditions) have been used for subsequent 

analysis.  

3.2. Foggy scenes removal  

This section presents the results of flagging anomalous radiant temperature signals associated with foggy TIR 

scenes. This was done using a foggy images detection algorithm based on standard deviations of all pixels of 

selected hour-of-day TIR scenes. The algorithm’s findings are summarized in Table 6. It is shown that more night-

time values are flagged compared to daytime scenes. In addition, the flagged values correspond to low radiant 

temperature signal values, mainly dominant in pixel values of ROI-1, as demonstrated by time plots in Figure 3.8 

A. The precipitation-induced rapidly varying peaks and troughs (dotted lines) of the raw time series value plots 

have been flagged.  The effects are more pronounced on the night-time plots( Figure 3.8 A) than day-time plots 

(Figure 3.8 B). However, the overall trends of the time series plots devoid of foggy scenes do not change. The time 

series plots (minus foggy scenes) for other hour-of-day acquisitions are shown in Appendix 6.   

Table 6: Summary of TIR scenes flagged by algorithm 

Time 00:00 UTC  03:00 UTC 09:00 UTC 12:00 UTC 21:00 UTC 

No of flagged 

scenes 

115 98 42 22 108 

Sample size 416 416 416 416 416 
 

 

A 
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Figure 3.8: Time series plots of original (red dotted colors) TIR images (with foggy scenes) and without foggy scenes (black 
line) graphs of ROI-1 at  (A) 00:00 UTC and (B) 09:00 UTC.  

3.2.1. Evaluation of fog removal algorithm’s performance 

The performance of the algorithm is represented using a confusion matrix in Table 7 and Table 8. From Table 7 

(00:00 UTC), out of 115 flagged scenes, 100 were correctly flagged (True Positives), and 3 were classified as clear 

(False Negatives). On the contrary, out of 313 unflagged scenes,  300 were clear (True negatives), while 13 were 

foggy (False positives). 

On the other hand, the confusion matrix of Table 8 (09:00 UTC) shows that out of 42 flagged scenes, 15 had fog 

(True Positives), while 27 were clear (False Negative). In contrast, out of  374 unflagged scenes,  303 were clear 

(True negatives), while  71 were foggy (False positives).  

 

Table 7: Confusion matrix showing performance of the algorithm on 00:00 UTC TIR scenes  

Predicted  

250 (TN) 15 (FP) A
ctu

al 

o
b

serv
atio

n
 15 (FN) 100 (TP) 

Accuracy (TP + TN / TP 

+ TN + FP + FN) 

84%  

 

 
Table 8: Table 3.4: Confusion matrix showing performance of algorithm on 09:00 UTC TIR scenes 

B 
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Predicted  

303 (TN) 71 (FP) A
ctu

al 

o
b

serv
atio

n
 27 (FN) 15 (TP) 

Accuracy (TP + TN / TP 

+ TN + FP + FN) 

76%  

 

 

3.3. Time series normalization  

The results of time series normalization (based on background procedure) of maximum apparent radiant 

temperature values of ROI-1 and ROI-4 are shown in Figure 3.9. Both normalized time series plots show 

seasonality variation, with irregular random fluctuations (highlighted using black circle) between July 2019 and 

March 2020. It is then followed by a gradual increase between July to November 2020. 

Finally, sharp peaks (labeled using black arrows) are observed on the 09:00 UTC time series plots between July 

2019, March 2020, and December 2020.   

 
Figure 3.9: Time series plots of normalized (background removal procedure) maximum apparent radiant temperatures 
values at 00:00 UTC (blue) and 09:00 UTC  (red). The black circles shows the time window characterized by fluctuation of 
time series values. The black arrows show periods characterized by anomalous peaks values.   

3.4. Geothermal heat flux estimation 

The time series plots results of geothermal heat flux estimations are shown in Figure 3.10. The heat flux plots have 

been generated using normalized maximum radiant temperature (section 3.3), thus representing the focus area's 
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subsurface emission’s temporal behavior.  The time series plots (00:00 UTC and 09:00 UTC) show a similar pattern 

of variability with the normalized time-series plots (Figure 3.9). 

 

The heat flux values of 00:00 UTC plots (blue colored) are higher than 09:00 UTC. They also show a higher 

variation of peaks and troughs compared to the 09:00 UTC plots.   

 

 
Figure 3.10: Heat flux plots of detrended surface radiant temperature of TIR scenes at 00:00 UTC (blue color) and 09:00 
UTC (red color). The period highlighted by black circle is characterized by occasional random variability.  

 

3.5. Analysis of gas discharge chemistry data  

This section presents the findings of the temporal variation of fumarole gas chemical concentration.  

To start with, the overview of gas concentration measurements is outlined in Appendix 7.  The data consist of 

the gaseous component (CO2, H2S, SiO2) and non-gaseous parameters constituting, e.g., Ca, Li, Na, Cl, SO4,  and 

K.  Data gaps are observed in the SO4, Cl, Na, and Li columns. The analysis of the temporal variation of selected 

fumarole gas parameters is discussed in sections 3.5.1 and 3.5.2.  

3.5.1. Temporal variation of CO2, H2S, and chloride  

The time series plots of two gases (CO2 and H2S) between 2008 to 2020 are shown in Figure 3.11 (A). Their time 

series plots vary considerably during the period of observation. Some peak signals of both gases were observed 

between 2009, mid-2010, late 2013, 2014, and mid-2020. The plot values were relatively stable between mid-2015 

to 2018.   

 

On the other hand, the chloride plot ( Figure 3.11 B) values vary considerably during the observation time, with 

occasional peaks in 2012, 2016, and 2020.  
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The grouped plots (Appendix 8) also show a similar temporal pattern with raw value plots described in the 

previous paragraphs. 

 

 

 

Figure 3.11: (A) Temporal variation of CO2  and H2S between and (B) chloride for the period 2008 to 2020. The black 
arrows time periods with peaks of the fumarole gas components.  
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4. DISCUSSION 

4.1. Discussion of spatial subset into ROIs  

The spatial distribution of pixels of various indicator products, e.g., principal component analysis, temporal mean, 

and standard deviation, can be used for preliminary identification of areas affected by environmental (e.g., fog, 

rain, solar illumination) and fumarole activity (geothermal )effects. The findings are discussed in the subsequent 

paragraphs.  

 

To begin with, the subtle spatial patterns discernible on PCA composite images through homogeneously are useful 

in exploratory analysis (see Figure 3.1 a-e). These similar colored spatial patterns (denoted using polygons) depict 

the overall behavior of few uncorrelated principal component products, with the highest variance (see Appendix 

1). Although such patterns spatially compare with those of time-lapse cameras, inference cannot be made solely 

based on visual inspection of the spatial distribution of the colored pixels.   

 

The use of other products, i.e., temporal mean (Figure 3.2 a-e) and standard deviation (Figure 3.3 a-e), give a better 

overview of the thermal behavior of surface material in the area of focus. Observing the general spatial distribution 

and stability of pixel values across different acquisition hours made it possible to determine which part of the area 

was affected by environmental and fumarole activity. For example, the results show the highest temporal mean 

and standard deviation values in sections near the main fumarole area and surrounding rock debris (ROI-1) across 

different hours of acquisition. Such behavior can be attributed to pronounced effects of fumarole activity on these 

regions, which are of geothermal origin based on the study’s hypothesis. In contrast, the other regions whose 

temporal mean and standard deviation values are lower relative to those near the main fumarole area have reduced 

effects of fumarole activity. It is also assumed that environmental effects are more pronounced in these areas than 

in thermally anomalous regions. As such, the eastern part of the study area (ROI-4) with the lowest temporal mean 

and standard deviation values across different hours of acquisitions are deemed to have the strongest influences 

of environmental effects, hence most suitable for control purposes. However, one limitation with the standard 

deviation products is that it shows some inconsistencies in values distribution across specific day hours. For 

instance, reversal of values experienced at 12:00 UTC hour-of-day image (Figure 3.3 e) emphasizes its unreliability 

to demarcate external influences when the ground has attained optimal heating.   

 

The temporal statistics (minimum, maximum, mean, standard deviation) of selected ROIs of specific hour-of-day 

TIR images (Figure 3.4 to Figure 3.9) were useful to assess the temporal behavior and stability of the surface 

temperatures over time.  In this study, all the time series plots of different ROIs depict seasonal variability across 

different hours of acquisition. The seasonal variation can be attributed to the effects of environmental factors on 

the apparent temperature values. It is also shown that variability depends on specific ROI. For example, seasonal 

variability is most pronounced on apparent temperature values of ROI-1 (main fumarole area), implying that they 
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have the highest instability across different hours of acquisition. Such instability is an indication that the surface 

temperature of materials in these ROI are strongly affected by ambient weather conditions. Moreover, the rapid 

fluctuation of temporal plots during rainy periods indicates that precipitation is the main external factor controlling 

the recorded apparent radiant temperatures. In general, precipitation is known to induce cooling effects on the 

surface temperature, implying that the recorded apparent temperatures of this ROI are underestimated (Zimmer 

et al., 2017).  

 

The dependence of TIR radiant temperature and air temperature has also been statistically tested, as shown by 

scatter plots in   Appendix 5, assuming that the dynamics of air temperature and surface temperature interactions 

affect the emitted radiance.  In this regard, a high coefficient of determination between the minimum radiant 

temperature in a specific ROI and hourly air temperature implies a strong dependence on ambient conditions 

resulting in decreased surface emittance. As such, the highest correlation between minimum radiant temperature 

and air temperature is observed in pixels of ROI-4 (Appendix 5-i), implying that they experience the strongest 

control of ambient weather conditions relative to other regions. On the contrary, the absence of correlation 

between ambient air temperature and minimum radiant temperature of pixels in the thermally anomalous zones 

(Appendix 5-vii) suggests that factors other than air temperature affect their variability.  

 

The temporal and spatial behavior of other ROIs (i.e., vegetation (ROI-3), unconsolidated pyroclastic debris (ROI-

2) is unstable over different hours of the day. Such instability can be attributed to effects of surface materials mainly 

results from varying thermal inertia properties of different land surface materials within specific ROIs.  For 

example, the vegetated pixels have lower seasonal variability across different hours of observation. However, these 

variations can be attributed to other processes such as evapotranspiration that compromise such values' reliability 

for analysis purposes.  Finally, the relative instability of unconsolidated pyroclastic materials can be attributed to 

differential heating due to thermal inertia, which is also higher than the vegetation pixels.  Owing to the above-

mentioned factors, the time series plots of thermally anomalous ROI and those at the eastern part of the area of 

focus were therefore considered suitable for subsequent analysis.  

4.2. Discussion of fog removal thresholding algorithm 

The thresholding algorithm (equation 1) was used to isolate signals associated with specific hour-of-day TIR images 

acquired during foggy conditions. The number of flagged signals at night was higher than during the day (Table 

6). This can be attributed to higher homogenization effects (signified by low standard deviation) experienced at 

night than during the day (Chiodini et al., 2007). This effect increases the absorption of thermal infrared signals, 

leading to underestimating apparent temperature values recorded by the thermal camera (Stevenson et al., 2008).  

Consequently, more outlier signals are notes at night compared to daytime.  
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The accuracy of the thresholding algorithm also depended on the time of acquisition; higher accuracy is attained 

on night-time scenes than daytime acquisitions (see Table 7 and Table 8). The following reasons can be for the 

errors above is discussed as follows: 

• The thresholding algorithm adopts a distribution-based outlier detection approach (Kou et al., 2006). This 

implies that observations (i.e., standard deviation) with unusual behavior within the frequency distribution 

are always considered outliers. For example, clear TIR images acquired during cloudy days, characterized 

by lower standard deviation values, are considered anomalous, compared to others acquired during sunny 

conditions, therefore flagged. In other instances, for example during  colder months (between July-

September 2020), a slight increase in temperature values of specific periods is considered anomalous 

compared to other observations, therefore flagged.  

4.3. Discussion of time series normalization 

The normalization process further suppressed extreme values from time series plots, resulting in smoothened time-

series plots (see Figure 3.9 and Appendix 6). However, cyclic effects are signified by irregular fluctuations observed 

on the normalized time series plots. Such fluctuations are attributed to exogeneous effects that arise from short 

precipitation episodes between November to December 2020. Such conditions impose homogenization conditions 

(discussed in section 4.2), implying an increased number of foggy TIR scenes and corresponding false outlier 

signals. Such periods are generally typified by an increased number of foggy scenes’ radiant temperature values that 

were not flagged by the fog-removal algorithm. 

 

Another reason for the irregular fluctuation could be the choice of ROI identified in the normalization procedure. 

In general, the success of this normalization procedure depends on the homogeneity of the land surface materials 

of specific ROIs (Sansivero et al., 2013). The method assumes spatial autocorrelation (i.e., the high similarity of 

radiant temperature values in a specific ROI). For instance, if the thermally anomalous ROI (e.g., ROI-1) has some 

less emissive materials (e.g., pyroclastic rubble), the overall average apparent value tends to be underestimated, 

which affects the selected (Tmax) value used in the normalization process. The same applies to other ROIs.  

 

4.4. Discussion of heat flux estimation and implications on the geothermal motor 

It is noted that there is a similarity in trend between the heat flux plots (Figure 3.10) and normalized temperature 

plots (Figure 3.9). This similarity is an indication that the heat loss is sensitive to temperature changes of the surface. 

Nevertheless, the temporal behavior of heat flux plots (Figure 3.10) represents the heat emitted from the surface 

and is postulated to characterize the subsurface behavior of the geothermal system, thus linked to the ‘geothermal 

motor’ activities. The following interpretations can be made from the heat flux time series plots: 

• The irregular random variations (between October to November 2019) are a factor of weather, specifically 

precipitation. Precipitation generally causes surface cooling, which lowers the apparent radiant 

temperature values, implying that the estimated heat flux values are lower than those recorded during dry 
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periods (Mia et al., 2012). Within the Olkaria geothermal field, reduced heat flux has been associated with 

an influx of cold fluids along downflow zones, i.e., mainly along the fault axis (Ofwona, 2002). Such 

scenario is evidenced by reduced steam discharge along fumarole vents (e.g., East field),  majorly attributed 

to a decrease in the boiling of reservoir fluids by the infiltrating fluids (Axelsson et al., 2013), postulated 

to decrease the geothermal motor speed. Another possible reason for the periodic variation of heat flux 

plot values is the oscillation of fluids in a shallow hydrothermal system (Spampinato et al., 2012), which 

prompts cyclic emission of heat into the surface. In the Olkaria geothermal field, such events are triggered 

by magma degassing (West jec, 2009), which is manifested by the cyclic variation of enthalpies in the wells 

around the neighbouring fields as OW-39A and OW-201 (Wamalwa et al., 2016).  

 

• The period characterized by an increase in trend (July to August 2020) can be associated with increased 

heat discharge, which, according to Mia et al. (2012), increases agitation of subsurface fluids, evidenced by 

increased emitted heat through the fumarole vent opening. 

Within the Olkaria field, such activities have been linked with increased steam discharge through 

permeable structures of deep up-flow zones, especially the N-S faults of the Olkaria East field (Axelsson 

et al., 2013), where the fumarole of focus is situated. Since the movement of fluids is convective, such 

episodes signify an increase in discharge, which, based on the study’s hypothesis, increases the speed of 

the geothermal motor.  

 

• The periods of near-constant trend (July to November 2019) might be linked by the quiescent phase of a 

magmatic system (Spampinato et al., 2012). Previous studies, e.g., Axelsson et al. (2013), have associated 

such events with a reduction in movements of fluids within geothermal systems. In a productive 

geothermal setup (e.g., Olkaria field), such period can be attributed to reduced extraction of the geothermal 

resource or even phases where production wells are shut for maintenance (Ouma et al., 2016). Based on 

the study’s hypothesis,  events signifies phases with reduced geothermal motor speed.   

 

  

4.5. Discussion of gas geochemistry 

The time series plots of selected fumarole gas chemical components (i.e., CO2, H2S, and chloride (Cl)) in Figure 

3.11 show variability with occasional spikes between consecutive observations.  Although the spikes are postulated 

to be contributed by subsurface dynamics of the fumarole, they might also be associated with data quality. For 

instance, irregular and inconsistent sampling could significantly contribute to the fluctuation of peaks and troughs 

observed on time series plots. As stated in section 2.1.4, the sampling was inconsistently done (yearly basis), while 

data gaps were encountered in some cases. Since this is difficult to verify, interpretations were focused on the 

status of data and described as follows:   
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• The increase in the absolute composition of CO2 and H2S is associated with enhanced volcanic degassing 

activities in a geothermal system (Hunt, 2013). Such episodes directly result from enhanced boiling 

activities, which causes the escape of fumarole gases along vents in active, productive reservoirs (West jec, 

2009), a situation evidenced by a rise in enthalpies of wells in the Olkaria East geothermal field (Wamalwa 

et al., 2016).  

 

• The periods characterized by increased rapid fluctuations (spikes) are likely associated with subsurface 

hydrothermal unrest, typified by enhanced exhalation of gases underneath the geothermal system. Such 

events are usually linked with increased permeability of subsurface reservoir rocks, which can be attributed 

to increased pressure on reservoir rocks which enlarges the existing fractures and cracks on the host rocks 

(Eggertsson et al., 2020). It was not possible to establish this for this study due to the absence of literature 

on reservoir response studies. 

  

• A decline in chloride concentration (e.g., in 2012) is due to the dilution of geothermal reservoir fluids 

resulting from the infiltration of meteoric fluids into the geothermal reservoir (Wamalwa et al., 2016). Other 

factors such as excessive injection of cold fluids have also been shown to decrease chloride concentration 

in geothermal systems (Hunt, 2013). In this study, the absence of well discharge chemistry data meant that 

it was impossible to associate such events to the dynamics of the geothermal reservoir and, to a large extent, 

the ‘geothermal motor.’  

• The increase in absolute chloride levels (e.g., between 2012 to 2014) is caused by increased localized 

subsurface boiling (Karingithi, 2015).  Such boiling mainly results from decreased pressure levels in the 

geothermal system (Wamalwa, 2017), which in the Olkaria context has been linked with the re-injection of 

hot fluids into the geothermal reservoir (Wafula, 2018).  Such dynamics can be associated with a reduced 

speed of the geothermal motor.   

4.6. Limitations of the study 

The major limitation of the study was the absence of continuous TIR and geochemistry datasets. The data gaps 

between March and July 2019 for TIR datasets meant that the resulting temperature trend was not continuous, 

affecting subsequent analysis and interpretation. It also influenced the choice of time series normalization 

technique used.  

  

Secondly, the unavailability of similar frequency secondary datasets made it impossible to compare geochemistry 

and temperature data's time series plot values. This meant that independent inference of subsurface conditions 

was made against the original goal of the study. In addition, irregular temporal frequency of gas geochemistry data 

limited the complete analysis and interpretation of the datasets. 
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Other factors such as wind speed, known to influence the surface's heat flux measurements, were not factored in 

the study. In addition, the study assumes uniform emissivity values of surface materials, thus makes the study’s 

findings subjective.  
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5. CONCLUSIONS AND RECOMMENDATIONS 

5.1. Conclusions 

The research aimed to monitor fumarole activity using multi-temporal ground-based thermal infrared, 

meteorological, and gas discharge chemistry data. The following are the major conclusions in line with the study’s 

objectives: 

• The main environmental factors affecting the apparent radiant temperatures recorded by ground-based 

TIR cameras include rain, solar illumination, and fog. The TIR images acquired during foggy and rainy 

periods have lower radiant temperature values compared to those acquired during clear and sunny 

conditions. The surface factors affecting the apparent temperature mainly include material property and 

how they respond to various under different meteorological conditions. In this study, the surface 

influences were more pronounced in the thermally anomalous region of interest, near the fumarole area 

than in other background  regions, composed of vegetation, unconsolidated pyroclastic rubble. 

• The standard deviation of radiant temperature of TIR images pixels is useful in identifying and isolating 

images acquired under different weather conditions. In this study, the images acquired during foggy or 

rainy conditions had lower standard deviation values than those collected during sunny and clear 

conditions. The effectiveness of using this index for thresholding is dependent on the hour of acquisition. 

For this study, higher accuracy of isolation was attained on night-time acquisitions compared to daytime 

scenes.    

• Time series plots of apparent radiant temperature values of regions of specific hour-of-day images show 

variation with seasonality. The seasonal variation is due to the influence of meteorological-induced factors 

such as rain, fog, and solar illumination on the apparent radiant temperature values. The variation is ROI-

specific and is most pronounced on the hottest regions of area of focus (i.e.,  ROI-1). The study found 

that night-time data suffers from the effects of fog, while day-time data from seasonality induced by solar 

illumination effects.  

 

• Time series normalization (using the background removal procedure) is an effective technique of isolating 

signals associated with meteorological induced influences such as fog. However, the success of this 

procedure relies on hour of acquisition of the TIR scenes; with higher accuracy attained on night-time 

scenes. Applying the normalization on time series plots did not affect the overall trend pattern, but 

removed the extremely low values (troughs) from the time series plots. It is therefore concluded that night-

time data can be corrected by the algorithm compared to daytime data.  

 

• Heat flux time-series plots (calculated from normalized time series values) effectively affect surface emitted 

radiance estimation. The trends compare with those of detrended temperature plots of various ROIs, 

illustrating its dependence on the recorded apparent radiant temperature. Despite this similarity, heat flux 
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plots give an impression of subsurface emission, characteristic of geothermal fields. As such, it can be 

concluded that periods characterized by increasing heat flux trends are associated with the agitation of 

subsurface hydrothermal fluids, interpreted to be associated with the increased speed of the geothermal 

motor. The periods characterized by constant trends generally describe quiescent periods of the 

geothermal reservoir, an indication of reduced geothermal motor speed.. 

 

• The time series plots of absolute chemical concentration of specific fumarole components (e.g., CO2, H2S, 

and Cl) show variability in trends, with occasional spikes on specific periods of observation. Periods 

characterized by increased CO2 and H2S are generally associated with increased emission of gases from 

the subsurface reservoir onto the fumarole vent, which is linked with enhanced subsurface degassing. For 

this study, such behaviour is associated with increased boiling activities, an implication of increased 

geothermal activities, which can be attributed to increased speed of geothermal motor. On the other hand, 

periods with increased chloride content are generally characterized by dilution  of chloride fluids, by 

subsurface steam-heated fluids. For this study, it is concluded that such behaviour results from increased 

subsurface reservoir, associated with an increased in geothermal motor speed.  

 

5.2. Recommendations 

 
The following recommendations are made based on interpretation of this study’s findings and conclusions: 

• Incorporate downhole data of wells within the Ololbutot fault axis further to understand the subsurface 

dynamic of the geothermal reservoir. It would be interesting to monitor how their flow rates, 

pressure/temperature, and enthalpies change with time; and establish how their trends compare with 

radiant temperature measurements of OMF8. 

• The use of continuous time series TIR datasets to address gaps brought about by data gaps and test other 

time series normalization techniques. For instance, the periods of incomplete datasets  (i.e., March-July 

2020) fall during prolonged precipitation (long-rains), implying that it was impossible to investigate their 

effects on both apparent radiant temperature and estimated heat flux. 

• Regular and consistent sampling of fumarole gas discharge data to compare with radiant temperature 

measurements, collected by TIR images. In addition, incorporate other anions and cation components of 

fumarole gas discharge (e.g., Na, Ca, Mg2+, etc.) to understand other processes, e.g., mixing of surface 

fluids that characterizes the behavior of geothermal reservoirs.   
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6. APPENDICES 

Appendix 1: Principal component matrix showing contribution of the first five components of 
ROI-1 

HOUR PRINCIPAL 
COMPONENT 

VARIANCE 
CONTRIBUTION 
(%) 

ACCUMULATIVE OF 
EIGENVALUES 

00:00 
UTC 

PC1 94.02465666 94.02465666 

PC2 4.703103747 98.72776041 

PC3 0.782166582 99.50992699 

PC4 0.280347842 99.79027483 

PC5 0.209725168 100 

03:00 
UTC 

PC1 93.88727245 93.88727245 

PC2 4.574984375 98.46225683 

PC3 0.919565574 99.3818224 

PC4 0.367348124 99.74917052 

PC5 0.250829477 100 

09:00 
UTC 

PC1 96.25708975 96.25708975 

PC2 2.037961964 98.29505172 

PC3 1.29714507 99.59219679 

PC4 0.215624261 99.80782105 

PC5 0.192178952 100 

12:00 
UTC 

PC1 95.94027934 95.94027934 

PC2 2.175986074 98.11626541 

PC3 1.379883134 99.49614855 

PC4 0.281103914 99.77725246 

PC5 0.222747539 100 

21:00 
UTC 

PC1 94.98272944 94.98272944 

PC2 3.85043995 98.83316939 

PC3 0.662584063 99.49575346 

PC4 0.29075348 99.78650693 

PC5 0.213493065 100 
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Appendix 2: Time series plots of radiant temperature values of ROI-1 (03:00 UTC, 06:00 UTC, 
and 12:00 UTC 
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Appendix 3: Time series plots of radiant temperature values of ROI-2 (03:00 UTC, 06:00 UTC, 
and 12:00 UTC) 
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Appendix 4: Time series plots of radiant temperature values of ROI-2 (03:00 UTC, 06:00 UTC, 
and 12:00 UTC) 
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Appendix 5: Scatter plots showing the relationship between minimum radiant temperature 
values and air temperature  

 (i) 

(ii) 

(iii) 
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(iv) 

(v) 

(vi) 
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(vii) 

(viii) 
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Appendix 6: Fog removed radiant temperature time series plots 
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Appendix 7: Fumarole gas chemical concentration of OMF-8 

Date SO4 Cl 

(ppm) 

CO2 H2S SiO2 

(ppm) 

Ca 

(ppm) 

Li(ppm) Na 

(ppm) 

07/02/2008 30.7 0.5 32.45 0.17   0.791 0 0.491 

10/11/2008 21.4  147.75 0.51 8.38 0.008 0.105 15.05 

07/04/2009 11.9 0.375 27.72 0.68 0.01 0.62* 0 2.07 

30/07/2009 2.5 0.15 38.06 0.136 0.3 1.37 0.001 0.79 

11/11/2009 11.7 0 66 2.04 0.39 1.616 0 0.77 

26/11/2009 28.3 7.56 49.94 2.686 0.5 2.224 0.002 0.94 

08/10/2009 7.5 0 46.86 1.7 0.275 1.246 0 0 

22/01/2010 28.6 0.41 76.12 1.6 0.425 0.34 0 0.516 

17/02/2010 30.1 0.0625 61.6 2.11 0.3 0.157 0 0.409 

17/03/2010 26.8 0.4 53.02 0.85 0.296 0.628 0 0.641 

22/04/2010 10.8 1.35 42.46 0.102 0.15 2.022 0 0.32 

15/07/2010 11.8 0.22 233.86 8.16 0.48 1.8 0.01 0.257 

18/08/2010 2.4 0.43 62.04 0.272 0.34 0.456 0 0.513 

19/08/2010 4.83 0.38 57.2 0.136  0.525 0 0.513 

26/04/2011 23.2 0.39 51.7 1.36 0.42 1.1061 0.199 0.325 

24/11/2011  42.54 79.86 0.204  0 0 0 

20/01/2013   47.995 0.34 8.148    

28/04/2013 6.7  75.16 1.36 1.345    

21/07/2013 8.4  187.57  1.216    

14/12/2013  1.275 77.22 0.34 1.65 3.144 0 6.585 

19/01/2014  13.5561 77.88 0.068  0.024 0 2.481 

19/04/2014  16.963 75.56 0.272 3.425 1.166 0 8.672 

22/07/2014   160.3 5.26     

25/09/2014   68.2 0.03     

22/07/2014   168.18 17.884 0.975    

25/09/2014   71.88 0.102     

24/07/2017 2.4 0.13 64.9 0.17     

02/02/2018 9.1 0.3 64.9 1.36  0.03 0 10.36 

19/07/2018   126.6 0.34   0 0.0836 

28/08/2019 9.5 0.474 86.9 0.34     

17/06/2020 9.6 16.89 39.6 5.96 1.581 0.609 3.29  

30/07/2020  1.03 50.6 0.272 2.612 0.159 0.019 0.335 

26/10/2020  0.984 114.4 17.816 1.703 0.3161 0.004 5.515 

22/12/2020   147.4 16.32     

23/12/2020     74.8 2.992         
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Appendix 8: Box plots showing statistical distribution of fumarole gas discharge data at OMF8 
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Appendix 9: ENVI-IDL code for selection of hour of day TIR images (Written by Harald van 
derwerff) 

; MODIFICATION HISTORY: 

;   Written  :  vdwerff, UT-ITC, Jan 2020 

;- 

 

pro hw_flirt_import,ev 

 

  compile_opt idl2 

   

  catch, theerror 

  if theerror ne 0 then begin 

    catch, /cancel 

    print, !error_state.msg 

    return 

  endif 

   

  ; select input files 

  files = dialog_pickfile(/read,/multiple_files,filter='*.tif') 

  if files[0] eq '' then return 

  files = files[sort(files)] 

   

  ; select output file 

  bsqfile = 

dialog_pickfile(/write,/overwrite_prompt,filter=['*.dat','*.bsq','*']) 

  if bsqfile eq '' then return 

  hdrfile = bsqfile+'.hdr' 

   

  ; open output file 

  openw,lun,bsqfile,/get_lun 

   

  ; query and read tiffs, write each to the output file 

  bnames = '' 

 

  for i = 0, n_elements(files)-1 do begin 

     

    ok = query_tiff(files[i],s) 

     

    if (ok) then begin 

       

      bnames = [bnames,file_basename(files[i],'.tif')] 

       

      band = read_tiff(files[i]) 

      writeu,lun,band 

       

    endif 

     

  endfor 

   

  ; close & write output file 

  free_lun,lun 

   

  ; check that any bands have been added 

  if n_elements(bnames) eq 1 then return 

   

  ; prepare output file header data 

  bnames = bnames[1:*] 

  nb = n_elements(bnames) 

  ns = s.dimensions[0] 
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  nl = s.dimensions[1] 

   

  ; check which datatype we have 

  datatype = size(band,/type) 

   

  ; write output file header 

  openw,lun,hdrfile,/get_lun 

   

  printf,lun,'ENVI' 

  printf,lun,'description = {FLIRt import}' 

  printf,lun,'samples = '+strtrim(ns,2) 

  printf,lun,'lines   = '+strtrim(nl,2) 

  printf,lun,'bands   = '+strtrim(nb,2) 

  printf,lun,'header offset = 0' 

  printf,lun,'file type = ENVI Standard' 

  printf,lun,'data type = '+strtrim(datatype,2) 

  printf,lun,'interleave = bsq' 

  printf,lun,'byte order = 0' 

  printf,lun,'wavelength_units = "Index"' 

  printf,lun,'wavelength = {' 

  printf,lun,strtrim(indgen(nb-2)+1,2)+',' 

  printf,lun,strtrim(nb,2)+'}' 

  printf,lun,'band names = {' 

  for i = 0, nb-2 do printf,lun,bnames[i]+',' 

  printf,lun,bnames[nb-1]+'}' 

  if datatype eq 12 then begin 

    printf,lun,'data gain values = {' 

    for i = 0, nb-2 do printf,lun,'0.1,' 

    printf,lun,'0.1}' 

    printf,lun,'data offset values = {' 

    for i = 0, nb-2 do printf,lun,'-273.15,' 

    printf,lun,'-273.15}' 

  endif 

   

  free_lun,lun 

 

end 
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Appendix 10: Scatter plot (Tmax (ROI-1) vs Tmax (ROI-4) at 09:00 UTC. 
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