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ABSTRACT 

Historical records show the highly destructive power that torrential flows have had in the Colombian 

Andes. In the current climate change scenario, frequencies and intensities of extreme events are expected 

to increase in the upcoming years, likely leading to an increase in torrential flow events. Despite each 

municipality in Colombia requires susceptibility assessment of torrential flow as a basis for the land use 

planning, very few studies have been done at a national scale in Colombia. Besides, a recent 

methodological guide for assessing torrential flow describes methods that require detailed information 

which cannot be applied to the entire Colombian territory n. Therefore, prioritizing the watersheds where 

detailed torrential flow hazard analysis should be applied is a crucial first step for spatial planning 

purposes. This research applied Generalized Additive Models in a Bayesian framework to model torrential 

flow susceptibility at a national scale in Colombia. Different watershed levels were considered to find a 

suitable representation of these phenomena. Two inventories, DesInventar and SIMMA were used for the 

susceptibility model. The predisposing and triggering factors were grouped into morphometric indices, 

lithology, land cover-land use, and rainfall. Validation and performance estimations were assessed with the 

Area Under the Receiver Operating Characteristics (AUROC) using a k-fold cross-validation. The results 

were classified into five classes according to the success rate curves. Afterward, the selected levels of 

watersheds were combined with different Elements at Risk (urban centers and small settlements) to 

prioritize areas prone to torrential flows. In terms of the predictor variables, slope and maximum daily 

rainfall showed the highest contributions to the susceptibility models. Also, the obtained performances 

(median AUROC from 0.82 to 0.87) suggest a relatively high predictive power for all the watershed levels. 

The integration with the EaR showed a total of 871 watersheds out of 32,293 (with an area of 21,600 km2) 

for the most detailed level (Level 1-1,000 ) were in the highest priority class. At the second level of detail 

(Level 2 -5,000) the results showed that in 429 watersheds out of 6,906 with an estimated area of 51,900 

km2 where more detailed studies should be carried out.  

 

 

 

 

Keywords: Torrential flows, Data-driven models, Susceptibility, Urban planning 
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1. INTRODUCTION 

This chapters covers the general research idea with the corresponding background (1), problem statement 

(2), and (3) research objectives with the respective research questions. 

1.1. Background 

Yearly, all around the world, a large number of human casualties result from the occurrence of different 

natural hazards like earthquakes, landslides, wildfires, and floods. According to The International Disasters 

Database of the Centre for Research on the Epidemiology of Disaster (EM-DAT), 330 disasters were 

triggered by hydro-meteorological extremes in 2019, resulting in 11.266 fatalities and affecting 73.1 million 

people, with total damages of 96.3 billion USD. Froude and Petley (2018), also based on data from EM-

DAT for the years 1990 to 2015, showed that in comparison to other natural disasters, landslides are 

equivalent to 4.9% of all-natural disaster events, accounting for 1.3% of all the natural disaster fatalities in 

the mentioned time window. Within the landslide group, debris flows are often considered one of the 

most devastating types of events in terms of damage and losses. Dowling and Santi (2013) built a global-

scale database for 1950-2011, where they compiled 213 events and found 77.779 associated fatalities. 

 

Different flow-like landslide classification schemes have been proposed before. For example, Hungr and 

Jakob (2005) defined the term debris flow as a flow-like movement that consists of a mixture of water and 

sediments in different proportions descending downslope at extremely rapid velocities (several tens of 

km/h) with a long runout (from tens of m up to several km). The type of sediment, which can vary from 

cohesive material to granular, and even coarse boulders, along with the proportion of water, gives the 

debris flow their distinct characteristics. Furthermore, the relation of sediment/water, type of material, 

and triggering may give a place to some other variants of this phenomenon, better known as mud flows 

and debris floods (Hungr, Leroueil, & Picarelli, 2014). For this study, the debris flows and the variant 

processes which resulted in changes of the water/sediment ratio and type of sediments are referred to as 

torrential flows following the term in Spanish avenidas torrenciales. It is essential to highlight the importance of 

flow velocity in terms of destructive power. The faster the flow, the more sediments it can transport, and 

the larger the objects it can move. This destructive power has been evidenced across the world, resulting 

in many casualties and substantial economic losses. 

 

At a continental scale, the impact of torrential flows is remarkable. Some examples can be found in Peru 

with the Chosica debris flow (see, e.g., Villacorta, Evans, Nakatani and Villanueva, (2020)) or the Glacial 

Lake Outburst Flood (GLOF) in the Cordillera Blanca, which in 1941 claimed 5,000 lives (Carey, 2008). 

There are also records of large events near Lake Ranco in Chile in 1991, 1993, and 2004 (see, e.g., 

Sepúlveda, Rebolledo and Vargas (2006)), in Venezuela, the Vargas tragedy, which caused an estimated 

death toll of 19,000 people and economic losses by 1.79 billion U.S. (Larsen, Wieczorek, Eaton, Morgan, 

& Torres-Sierra, 2001). At a country scale, Colombia has been impacted by numerous torrential flow 

events. Based on the Disaster Inventory System (DesInventar), Colombia has a record of 1,356 small to 

mid-size torrential flow events in the time window of 1921 to 2018, causing 3,318 deaths (Arango, 

Aristizábal, & Gómez, 2020). Besides, examples of significant events took place in Putumayo in 2017 with 

332 casualties, Salgar in 2015 with 93 casualties, El Playón (1979) with 200 casualties, and the Armero 

tragedy in 1985 with a record of more than 22,000 deaths (Aristizábal, Arango, & López, 2020; Voight, 

1990). These examples serve as proof and illustrate the need to incorporate measures to avoid losses. 
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In general, an important portion of the damage caused by torrential flows can be avoided if the exposure 

is reduced. Nevertheless, to achieve a decrease in the exposure, at least spatial predictive models that show 

where the events are expected to occur should be developed (Guzzetti, Reichenbach, Cardinali, Galli, & 

Ardizzone, 2005). The inclusion of susceptibility models can be considered a fundamental step for the 

appropriate risk reduction planning, including the set-up of risk mitigation measures (Hervás & 

Bobrowsky, 2009; Nadim, Kjekstad, Peduzzi, Herold, & Jaedicke, 2006). Creating a susceptibility model 

requires understanding the phenomenon’s behavior and in-depth knowledge of its causative factors. To 

illustrate this, the spatial probability of torrential flows can be described through parameters such as 

lithology, land cover, and different morphometrical features. Also, rainfall, earthquakes, volcanic activity, 

snow-melting among others play essential roles since they may directly act as triggering factors; however, 

their spatial/temporal distribution is often more difficult to assess (Aristizábal & Sánchez, 2020; Zhang, 

Zhang, & Glade, 2014). 

 

This research aims to estimate torrential flow susceptibility by implementing spatial predictive models at a 

national scale in Colombia. The Integrated Nested Laplace Approximation approach (INLA) is proposed 

to address the aforementioned goal. INLA, introduced by Rue, Martino and Chopin (2009), is a novel 

approach that makes Bayesian inference faster. "INLA relies on a combination of analytical 

approximations and efficient numerical integration schemes to achieve highly accurate and deterministic 

approximation to posterior quantities of interest" (Martino & Riebler, 2019, p. 1). This robust approach, 

which can be employed in R through the package R-INLA, is used to model the torrential flow 

susceptibility by implementing Generalized Additive Models (GAM). Previous studies which used this 

model design have shown optimal results (e.g. (Lombardo, Opitz, & Huser, 2018)). 

 

1.2. Problem statement  

In the current climate change context, frequencies and intensities of extreme events are expected to 

increase in the upcoming years, boosting the number of natural hazards (Güneralp, Güneralp, & Liu, 

2015). Thus, the accurate estimation of the hazard and risk components could significantly reduce 

uncertainties in the whole risk assessment cycle and, consequently, reduce losses in the future. 

Furthermore, the accelerated growth of the population has led to an increase in the number of people 

affected by natural hazards as well as economic losses. Many regions of the world have then become 

subject to multiple hazards. Hence, decision-makers face the challenge of designing and implementing 

adequate risk assessments due to single hazards and multi-hazards (Komendantova et al., 2014). In 

September 2015, the General Assembly adopted the 2030 Agenda that includes 17 Sustainable 

Development Goals (SDGs) in which disaster reduction plays an important role in 10 of these goals, 

making the hazard assessments a relevant topic to be explored. 

 

There are approaches which have provided initial schemes for risk management and urban planning at a 

national level in Colombia. In 2012, the Geological Survey of Colombia (SGC for its abbreviation in 

Spanish) proposed and developed the project under the translated name of "Landslide relative hazard map at 

a national level 1:100.000 scale" (SGC, 2012). The implemented methodology in that project was based on a 

multi-criteria/heuristic method known as the Analytic Hierarchy Process (AHP). In this method, decisions 

are taken using weights through pair-wise relative comparisons without inconsistencies in the decision 

process (Kayastha, Dhital, & De Smedt, 2013). To generate the landslide susceptibility map, this project 

considered predisposing factors based on morphometric characteristics, lithology, soil types, and land 

cover (SGC, 2012). Triggers, mainly rainfall and seismic load, were incorporated through arithmetic 

operations resulting in a relative hazard map. However, accuracy and uncertainty for the hazard model 

could not be quantitatively evaluated since there was no landslide inventory when the project was carried 



SPATIAL PREDICTING MODELING FOR OUTLINING TORRENTIAL FLOW PRONE AREAS IN THE COLOMBIAN ANDES 

12 

out. Certainly, heuristic approaches are practical since they can be easily implemented but complex 

because they require extensive expert knowledge. Such approaches can be used to model landslides caused 

by different mechanisms together as opposed to other frameworks (Ruff & Czurda, 2008). They can also 

be used when no data are available to estimate susceptibility using data-driven or physically-based models. 

Multiple and more sophisticated approaches have been used to prioritize areas prone to torrential flows at 

a regional and municipal scale. 

 

Different authors have used machine learning techniques to perform variable selection of morphometric 

parameters at a regional scale, aiming to distinguish torrential and non-torrential watersheds (Arango et al., 

2020). Some others have focused on developing indices based on watershed parameters and land cover 

features to distinguish watersheds prone to different types of torrential flows and their spatial probability 

(Rogelis & Werner, 2014). There are complex approaches based on the integration of discriminant analysis 

to assess the debris flow spatial probability, logistic regression to account for the temporal probability, and 

physically-based models to include the flow magnitude (e.g., (Aristizábal, Arango, Gómez, et al., 2020)). 

Nevertheless, there has not been any spatial assessment of susceptibility or hazard of torrential flows at a 

national scale. Moreover, recently, a methodological guide to assessing torrential flow hazard at scales of 

1:25,000, 1:2,000, and its incorporation with the land use planning is being produced (SGC & PUJ, 2020). 

The guide outlines a detailed procedure using physically-based models that involves a large amount of 

high-resolution data, which is challenging to adapt for many locations in Colombia. Therefore, having a 

pre-screening assessment that can indicate whether specific watersheds or mapping units are prone to 

debris flow or not is indeed helpful. 

 

To summarize, the problem statement addresses that Colombia currently does not count with a national 

level assessment of torrential flow susceptibility. Several attempts have been made in small to medium size 

study areas. At a national level, the best approximation is a relative landslide hazard map that does not 

consider the distribution of past events nor the differentiation between torrential flows and other mass 

movements. Also, a new guide for torrential flow hazards at medium and detailed scales has been recently 

issued. Nevertheless, there is still the need to zoom into those areas so that the methods stated in the 

guide can be implemented. Having such susceptibility assessment at a national scale would indeed help in 

prioritizing specific areas and focusing efforts on more detailed analyses in them  

 

1.3. Research objectives 

This research exploits novel spatial predictive modeling approaches to generate a prioritization for 

watersheds prone to torrential flows at a national scale in Colombia. This general objective is subdivided 

into three sub-objectives which were addressed through their associated research questions. 

 

1.3.1. To understand the role that the predisposing and triggering factors play in the occurrence of torrential flow 
events 

− Which predisposing factors should be included in the torrential flow susceptibility model? 

− What is the contribution and meaning of the predisposing factors in the torrential flow model? 

1.3.2. To find a suitable basic mapping unit when estimating torrential flow susceptibility at a national scale in 
Colombia. 

− How can the different mapping units influence the model outcomes, i.e., 

performance/uncertainty of the torrential flow susceptibility model? 

− Which level of mapping unit can be best used to represent torrential flow susceptibility, given the 

available historical data, predisposing, and triggering factors? 
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1.3.3. To prioritize areas prone to torrential flow by integrating the outcomes of the susceptibility model and land-
use features. 

− How can the outcomes in the susceptibility map be interpreted and classified to achieve an 

optimal classification?  

− How can the results of susceptibility model be used in the analysis of torrential flow hazard for 

spatial planning purposes? 
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2. CONCEPTUAL FRAMEWORK 

This chapter describes the literature review divided into (1) debris flow concept, (2) susceptibility and 

hazard models, and (3) Generalized Additive Models. 

2.1. Debris flow concept 

Classification schemes for debris flow have been discussed and have evolved in the literature over time. 

Initially, Cruden and Varnes (1996) provided a landslide classification scheme based on material and 

movement type. According to their proposed system, debris flow could be every flow-like movement 

where the material was predominantly coarse granular soils (debris), which opened an extensive discussion 

since this concept would include short phases of other landslide types. The term was adjusted by adding 

the constraints that debris flow must have extremely rapid velocities, flow through a confined steep 

channel, and in saturated water conditions (Hungr, Evans, Bovis, & Hutchinson, 2001). Iverson (2005) 

described debris flows as an intermediate event between dry rock avalanches and sediment-laden water 

floods whose distinction must be based on a strong interaction between solids and liquids. Later, Jakob 

and Hungr (2005) emphasized that the term debris flow should be used to represent the whole process, 

since an initiation slide in a slope, the extremely rapid flow along a steep confined channel, and the 

deposition on a debris fan. Also, the material classification was adapted according to geomorphological 

conditions, giving place to other terms such as mud flow, debris flood, and debris avalanche.  

 

Nevertheless, differentiating between these phenomena, especially debris floods and debris flows, is 

difficult since the sediment concentrations can vary considerably across space and time. Thus, distinctions 

based on the peak discharges are often found in the literature. For instance, while debris floods have peak 

discharges limited to two or three times a major flood, debris flows may have extremely large peak 

discharges around fifty times more than a major flood (Jakob & Hungr, 2005). The differences in the 

discharges are directly related to the destructive power. Also, there are hydro-geomorphological 

differences in both processes. A debris flood is generated when the erosion power of a stream drastically 

increases due to highly intense rainfalls, landslide dams, man-made dams, or glacial lake outbreaks 

producing extreme floods or flash floods (Borga, Stoffel, Marchi, Marra, & Jakob, 2014). In these 

scenarios of extreme floods, the stream bed may be destabilized, causing a significant movement of 

sediments through rolling and saltation, which is called debris flood (Hungr et al., 2014). On the other 

hand, the same rainfall event may trigger clusters of landslides, whose deposits may reach the flooded 

channel. The sediment concentration increases to the point where the mix of water/sediments becomes a 

debris flow.  

 

For mud flows, Hungr et al. (2014) suggested that the difference is given by the proportion of fine-grained 

material reflected in the plasticity. In that way, mud flows have much higher plasticity indices in 

comparison to debris flows. Lastly, in the case of debris avalanches, the primary distinction is that they can 

be found anywhere on steep slopes without entering into an established channel. However, it is common 

for debris avalanches to enter into pre-defined channels and become debris flows (Hungr et al., 2014). 

 

In the Colombian context, this large group of phenomena is technically referred to as avenidas torrenciales. 

During this research, the term is further addressed as torrential flows. 
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2.2. Susceptibility and hazard models  

Torrential flows are commonly modeled with approaches focused on the susceptibility and hazard of 

slope stability (source areas), which can be either qualitative or quantitative (Reichenbach, Rossi, Malamud, 

Mihir, & Guzzetti, 2018). The models used in the literature can be grouped into three prominent families, 

as shown in Table 1. 

 

In the heuristic/knowledge-based models, the outcomes are primarily determined by the knowledge/skills 

of an expert. These methods are often applied when there are no sufficient data available to account for 

other modeling approaches. Besides, the main benefit is that the expert’s knowledge can be incorporated, 

which allows establishing relationships that are difficult to estimate when analyzing only the data. 

Frequently, photointerpretation and fieldwork campaigns are carried out to support the execution of these 

approaches. They may vary from direct methods, such as detailed geomorphological maps and process 

inventory analysis, to indirect methods like multi-criteria assessment, where the expert ranks different 

variables associated with the phenomena of interest (Castellanos Abella & Westen, 2007). 

 

 
Table 1. Examples of the different sets of techniques to evaluate landslide susceptibility and hazard. 

Type Group Method Examples 

Qualitative Heuristic 

Geomorphological 

mapping 

(Westen, Rengers, & 

Soeters, 2003) 

Inventory analysis 

(Galli, Ardizzone, Cardinali, 

Guzzetti, & Reichenbach, 

2008) 

Multi-criteria decision 

analysis 

(Bahrami, Hassani, & 

Maghsoudi, 2020; Meena, 

Mishra, & Piralilou, 2019) 

Quantitative 

Physically-based 

 

Iterative slope failure 

OpenLISEM (Bout, 

Lombardo, Westen, & 

Jetten, 2018a) 

Infinite slope 
TRIGRS (Saadatkhah et 

al., 2016) 

Random spheroid 

sampling 

SCOOPS 3D (Palazzolo 

et al., 2021) 

Finite slope based 
Slide-rocscience (Khan & 

Wang, 2021) 

Data-

driven 

S
ta

ti
st

ic
a
l 

Index of entropy (Constantin et al., 2010) 

Weights of evidence (Westen et al., 2003) 

Frequency ratio (Chen et al., 2017) 

Information value (Lin et al., 2004) 

Logistic regression 
(Lombardo et al., 2018; 

Steger et al., 2016) 

Discriminant analysis (Murillo-García et al., 2015) 

M
a
c
h

in
e
 

le
a
rn

in
g

 

Support vector machine 
(Ballabio & Sterlacchini, 

2012) 

Random forest (Barbosa et al., 2021) 

Artificial neural networks (Ermini et al., 2005) 
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Physically-based approaches describe instability through mechanical laws. Hence, they consider the 

materials' rheology and their interaction with external and internal settings. These methods account for 

slopes failures and the estimation of failure volume and timing, which results in hazard estimations (Bout 

et al., 2018). Its applicability is often restricted to small areas due to the computational time and the highly 

detailed information (geotechnical data) needed to conduct these analyses. Recently, the inclusion of slope 

stability models couple with full hydrological models allows accounting for multi-hazard events. 

 

Data-driven methods are built under the fundamental assumption that future landslides will be more likely 

to occur under environmental settings associated with the past or present landslide (Guzzetti, 2006). These 

approaches study the functional relationships between the presences/absences provided in a landslide 

inventory over a set of known predisposing and triggering factors. Moreover, the gain relies on their 

applicability in large areas since they do not require specific pre-defined information at specific 

resolutions. The landslide susceptibility literature tends to establish distinctions between statistical-based 

and machine learning methods within the data-driven methods. In terms of the use, the difference is that 

while statistical models go more towards the understanding and interpretation of predisposing factors, 

machine learning leans towards the performance of predictions because of their ‘black box’ nature (Goetz, 

Brenning, Petschko, & Leopold, 2015). 

 

2.3. Generalized Additive Models (GAMs) 

In a general context, a Generalized Linear Model (GLM) was firstly introduced by Nelder and 

Wedderburn (1972) as a flexible generalization of an ordinary linear regression under the assumption that 

the errors in the response do not strictly need to follow a normal distribution. For example, GLM can 

handle Poisson, Binomial, Bernoulli, among other distributions. In the geomorphological literature, GLMs 

are one of the most common statistical approaches (Brenning, 2005). They are implemented with a logit 

function (logistic regression), which allows handling a binary response, e.g., presence/absence of 

landslides. A GLM can establish linear relationships between dependent, continuous/discrete variables 

and an independent binary (in this case) response. 

 

𝑙𝑜𝑔𝑖𝑡(𝑃) = 𝛽0 +  𝛽1𝑋1 + ⋯ + 𝛽𝑛𝑋𝑛  (1) 

 

 

Equation (1) illustrates the general structure of the GLM with a logit link (logistic regression) function in a 

landslide susceptibility context. 𝑃is the landslide susceptibility, 𝛽0 refers to the global intercept and 𝛽𝑛𝑋𝑛 

refers to the regression coefficient 𝛽𝑛 associated to each one of the covariates 𝑋𝑛. 

 

Furthermore, a GAM can be understood as a non-linear extension of a GLM. Unknown smooth 

functions are added into the GLM structure (Equation (2)) to model non-linear associations between the 

predictors and the binary response. Also, fixed (linear) and random (non-linear) effects can be modeled 

with GAMs. For the particular case of random effects, the variables can be modeled as iid (independent 

and identically distributed) or using a random walk option of the first order (RW1) (Bakka et al., 2018). 

The primary difference is that iid treats the classes of a discrete covariate as independent from the other 

classes. Meanwhile, RW1 accounts for dependency among the classes of an ordinal covariate. GAMs are 

well known for landslide susceptibility because of their high performances and the transparent 

interpretation of the results (Brenning, 2005). 

 

𝑙𝑜𝑔𝑖𝑡(𝑃) = 𝛽0 +  𝛽1𝑓1(𝑋1) + ⋯ + 𝛽𝑛𝑓𝑛(𝑋𝑛)  (2) 
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Equation (2) shows the structure of a GAM with a logit link (logistic regression). The terminology is the 

same as describe in Equation (1). The difference is the term 𝑓𝑛 which refers to the unknown smooth 

function associated to each one of the covariates 𝑋𝑛. 

 

The GAM models are implemented in a Bayesian framework through INLA. As mentioned before, INLA 

is a novel approach that makes Bayesian inference faster (Rue et al., 2009) and can be implemented 

through the R package R-INLA.  
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3. STUDY AREA 

This chapter focuses on (1) the physiographical description of the study area, (2) geological and tectonic 

context, and (3) administrative context regarding the urban planning regulations for torrential flows. 

3.1. Location 

The territory of the Republic of Colombia is located in the northwestern corner of South America (see 

Figure 1). Colombia is crossed from south to north by the Andes Mountain range. The Colombian Andes 

is divided into three ranges (east, central, and west), and intermediate valley lowlands with elevation ranges 

from 0 to ~5000 mamsl in the most prominent zones. Moreover, the subduction of the Nazca and the 

Caribbean underneath the South American plates creates an active tectonic setting with regional fault 

systems, which results in a significant number of earthquakes with different magnitudes and depths and 

severely fractured lithological units (Pulido, 2003). Also, a series of active volcanoes, some of which are 

snow covered, provide an additional initiation mechanism for torrential flows (e.g., the lahars that 

destroyed Armero in 1985). Besides, because of its equatorial position, where the climate is mainly 

controlled by the Intertropical Convergence Zone, Colombia experiences intense rainfalls influenced by 

the atmospheric circulation over the Atlantic and Pacific oceans combined with the Amazon and Orinoco 

basins (Poveda et al., 2007). This combination of environmental settings produced a geomorphologically 

dynamic landscape with a significant concentration of mass movements and other erosive processes. 

 

 

Figure 1. Location and physiographical overview of Colombia.. 
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3.2. Geomorphological and geological settings 

The geological settings of Colombia are very diverse, with lithological units of many types and ages 

ranging from the Paleoproterozoic to the Holocene (Gómez Tapias et al., 2020). In the Colombian Andes, 

each of the three mountain ranges has a different geological composition. For example, the Western range 

(Cordillera Occidental) has a volcanic/volcanoclastic origin evidenced by the presence of basalts, gabbros, 

and Late Cretaceous sedimentary rocks. The middle-range (Cordillera Central) is more characterized by a 

low-grade metamorphic Triassic basement with plutonic intrusions and volcanic rocks produced by the 

subduction of the Nazca under the South American plate. Finally, the Eastern range (Cordillera Oriental) 

consists of a high-grade metamorphic basement followed by thick successions of Cretaceous marine and 

continental sedimentary rocks (Gómez Tapias et al., 2020). 

 

Towards the north coast, the Caribbean region is dominated by Triassic and Cretaceous marine and 

Jurassic continental sedimentary rocks with some Jurassic plutons in most of the Sierra Nevada de Santa 

Marta (Cardona et al., 2010). It is also remarkable the presence of Paleogene sedimentary rocks and 

significant extensions of Quaternary alluvial deposits. On the other hand, the Pacific coast in the west is 

mainly composed of cretaceous basalts and volcanoclastic sequences derived from an island arc accreted 

to the continental margin. (Gómez Tapias et al., 2020). 

 

The largest regions (~50% of the country) are located on the east side and consist of the Amazon and 

Orinoco basins. A Paleoproterozoic basement characterizes these regions with Mesoproterozoic granitic 

intrusions, which form part of the Guiana shield. Finally, the insular regions in the Caribbean are 

composed of Pleistocene limestone rocks and alkaline Miocene volcanic rocks (Castillo & Vargas, 2013). 

 

Carvajal-Perico (2012) proposed a framework to standardize the geomorphological cartography in 

Colombia. This framework establishes an entire hierarchy to account for the systematic classification and 

analysis of geoforms efficiently. The first level of the hierarchy (scales 1:2,500,000) is the 

geomorphostructures (GMS). This category refers to broad continental spaces characterized by regional 

geological structures and where the rocks have suffered deformation, metamorphism, or igneous 

intrusions. Plateaus, extensive sedimentary basins, rift valleys, and orogenic belts are some examples of 

GMSs. Furthermore, the GMSs are further divided into geomorphological provinces (scales 1:1,000,000). 

The provinces consist of groups of regions with similar geoforms that exhibit a similar geological genesis. 

For instance, mountainous belts, peneplains, and continental platforms, as Figure 2 shows. 

 

The region of interest is defined based on the geomorphological map. The peneplains, the Guiana shield, 

the cratonic plateau are not included in the analysis. In other words, the east side of the country is 

excluded because it corresponds to the extensive Amazonian and Orinoquia flatlands, where due to their 

geomorphological conditions, the processes are flooding-type rather than torrential flow type. 

3.3. Administrative context 

With a continental area of almost 1.2 million km2, Colombia is administratively divided into 32 

departments and further divided into 1,128 municipalities. Each municipality's responsibility is to 

formulate its Land Use Plan (in Spanish Plan de Ordenamiento Territorial or POT) every 12 years. The 

POTs are technical tools to manage urban planning at municipal scales. The land-use planning policies 

state that hazards assessments for landslides, floods, and torrential flows are basic information 

requirements within the POT frame. 

 

The land use regulation establishes two levels of hazards assessments at different scales. The first one 

corresponds to the basic hazard studies. In these studies, the landslides, floods, and torrential flows hazard 
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must be evaluated at scales 1:25,000 and 1:5,000 for rural and urban/urban expansion areas, respectively. 

Thereby, areas under hazardous conditions, consisting of un-populated areas classified with a high or 

medium hazard level, are mapped. Areas under risky conditions, i.e., populated areas classified as high 

hazard, are as well delimitated. Consequently, detailed hazard studies must be conducted whenever a 

municipality plans to develop or grow in areas under risky or hazardous conditions. The scales for the 

detailed studies are 1:5,000 and 1:2,000 for rural and urban/urban expansion areas, respectively. Based on 

these results, mitigation measures must be included as part of the POT. 

 

Standard landslide and flood guidelines for hazard assessment in Colombia have been clearly described by 

SGC (2015) and IDEAM (2017), respectively. However, there had not been any consensus regarding 

standard methods for the hazard assessment of torrential flows. In recent years, the SGC, in association 

with Pontificia Universidad Javeriana (PUJ), started building the guidelines for torrential flow hazards, 

which are not finalized yet (SGC & PUJ, 2020). 

 

The proposed methodology consists of two stages. In the first stage, a hazard assessment at a scale of 

1:25,000 is conducted. First, the Digital Elevation Model (ALOS PALSAR 12.5) must be topographically 

corrected using road intersections, ground control points, and drainages. This is proposed as an alternative 

for obtaining a fair cartographic representation for the torrential flows, given that most of the 

municipalities do not count with detailed cartographic products. Then, base on the corrected DEM, the 

municipality is divided into watersheds. Each watershed needs to be individually characterized in terms of 

torrentiality. This is done through detailed geomorphological mapping of torrential deposits and the 

compilation of historical torrential flow records. Afterward, rainfall return periods are established based 

on a statistical analysis of the national rain gauge network or local rain gauges. If there are no rain gauges 

in the proximities, satellite rainfall data can be considered an alternative. The consider return periods are 

2.33, 5, 10, 25, 50, 100, 300 and 500 years (SGC & PUJ, 2020).  

 

The initiation process for every watershed in the municipality is assessed using empirical hydrological 

models; besides, the solid volume is calculated based on geometric and geological factors. Geotechnical 

properties of the materials and physically-based methods are always suggested whenever the information is 

available. The transport and deposition processes are carried out using runout models such as Flod-2D, 

RAMMS, RiverFlow2D, and TITAN2D. As a result, the maximum flow depths and velocities for each 

return period are obtained and combined in integration matrices to calculate the hazard level.  

 

The second analysis stage at a 1:2,000 scale focuses on medium and high hazard areas classified by the 

1:25,000-scale assessment. The proposed physically-based methods involve highly detailed information, 

such as granulometry, friction angles, cohesion, densities that need to be sampled at the determined 

watersheds. Unlike at the previous scale, the detailed assessment includes the calculation of sediments 

produced from the lateral erosion of the channel by using physically-based slope stability models. The 

recommended physically-based models are r.avaflow, D-Claw iRIC, among others. The hazard 

classification is based on the flow intensity index and the determination of its exceedance probability. 
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Figure 2. On the left side, the geological map of Colombia at a scale 1:1,000,000. The colors follow the International Chronostratigraphic Chart, and the detailed map and legend 

are available in the interactive application provided by SGC. On the right side, the geomorphological provinces describe by Carvajal-Perico (2012). The boundary in red 
corresponds to the region of interest. 

 

https://www2.sgc.gov.co/MGC/Paginas/gmc_1M2020.aspx
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4. DATA 

This chapters depicts data collection and prepossessing for (1) the inventories, (2) the digital elevation 

model, (3) the thematic predisposing factors, (4) the triggering factor, (5) the cartographic database and (6) 

the reference level watersheds. 

 

This research uses and integrates data from multiples sources (see Table 2). All data are freely available 

and can be retrieved through web resources. Besides, all data were handled in official cartographic 

reference system MAGNA-SIRGAS/Colombia Bogota ZOne - EPSG:3116. Below, an overview of the 

data sources and ata preparations is given. 

 
Table 2. Summary of the different datasets used during this research. The symbol (-) indicates that the information 

was not available and therefore could not be retrieved. 

Dataset Resolution Geometry Source Purpose 

SRTM 90m x 90m Raster TIFF The National Aeronautics 

and Space Administration 

NASA Terrain derivatives 

Lithology 1:1,000,000 Vector 

polygon 

Servicio Geológico 

Colombiano 

SGC Static predisposing 

factor 

Land cover 1:100,000 Vector 

polygon 

Instituto de Hidrología, 

Meteorología y Estudios 

Ambientales 

IDEAM Semi-static 

predisposing factor 

Land use 1:100,000 Vector 

polygon 

Instituto Geográfico Agustín 

Codazzi 

IGAC Semi-static 

predisposing factor 

Rainfall 5 km x 5 

km 

Raster 

TIFF 

Climate Hazard Center, UC 

Santa Barbara 

CHIRPS Triggering factor 

Cartographic 

base 

1:100,000 Vector 

point/polyli

ne/polygon 

Instituto Geográfico Agustín 

Codazzi 

IGAC Prioritization of 

areas 

Watershed N.A. Vector 

polygon 

Instituto de Hidrología, 

Meteorología y Estudios 

Ambientales 

IDEAM Reference level for 

watershed 

delineation 

SIMMA 

inventory 

N.A. Vector point Servicio Geológico 

Colombiano 

SIMMA Susceptibility model 

DesInventar 

inventory 

N.A. Vector point United Nations Office for 

Disaster Risk Reduction 

DesInventar Susceptibility model 

 

4.1. Inventory 

Three different point-based inventories were applied to model the torrential flow susceptibility. 

 

4.1.1. SIMMA 

The Sistema de Información de Movimientos en Masa (SIMMA, http://simma.sgc.gov.co/) is a web 

system supported by the SGC that allows loading, storing, searching, and downloading records of mass 

https://developers.google.com/earth-engine/datasets/catalog/CGIAR_SRTM90_V4
https://www2.sgc.gov.co/MGC/Paginas/inicio.aspx
http://www.siac.gov.co/
https://geoportal.igac.gov.co/contenido/datos-abiertos-agrologia
https://developers.google.com/earth-engine/datasets/catalog/UCSB-CHG_CHIRPS_DAILY
https://geoportal.igac.gov.co/contenido/datos-abiertos-cartografia-y-geografia
http://geoapps.ideam.gov.co:8080/geovisor/index.jsf
http://simma.sgc.gov.co/
https://www.desinventar.net/
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movements in Colombia. Also, it gives access to reports, projects, and information regarding studies for 

landslide susceptibility and hazard carried out by the Geohazard division in the SGC. Each record is 

represented geometrically as a point and classified into slide, flow, rockfall, toppling, and creeping. From 

the SIMMA platform, two main products can be obtained: 

 

• Catalog (3,425 events): It is a database of mass movement historical records obtained from 

secondary sources such as the news, Red Cross reports, and Civil Defense. Despite the 

uncertainty limitations, this product gives an overall understanding of the qualitative and 

quantitative impacts of landslides. Every event contains a limited number of attributes in which 

for this research, it is essential to highlight the coordinates, status, type, subtype, deaths/injured 

people, uncertainty, economic damage, and environmental damage. In this study, only events with 

low uncertainty were considered for susceptibility modeling. 

 

 

Figure 3. Location of the study area showing the three considered inventories and the region of interest (red 
boundary) based on the proposed standardization for the geomorphological cartography in Colombia. 
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• Geomorphological inventory (1,086 events): This type of inventory is based on geomorphological 

interpretation and digital imagery processing supported by fieldwork. It combines historical 

records and event-based records, which refer to the landslides related to a specific triggering 

event, e.g., a rainfall event or an earthquake (Guzzetti et al., 2012). Compared to the catalog, this 

product has a much more complete description and classification of the events. In fact, since the 

mapping of the events is supported by fieldwork, low uncertainties may be reasonably assumed. 

 

4.1.2. DesInventar 

The Sistema de Inventario de Desastres (DesInventar, https://www.desinventar.net/) is a tool for 

the generation and standardization of national disaster inventories focusing on the different types 

of losses and impacts due to disasters. DesInventar in Colombia was initially developed by La Red 

de Estudios Sociales en Prevención de Desastres (LA RED), Corporación Observatorio 

Sismológico del Suroccidente Colombiano (OSSO) and United Nations Office for Disaster Risk 

Reduction (UNISDR).  

 

DesInventar contains records (1,363 events) of small, medium, and greater impact by torrential 

flows based on pre-existing data, newspapers, academic studies, and institutional records. 

Important attributes relate to the number of casualties, injuries, destroyed houses, damaged 

houses, etc. However, there is no information regarding the type of torrential flow. Moreover, the 

data do not have a spatial location or coordinates but descriptions of the potential locations. To 

overcome this issue, every single event was manually georeferenced based on the description 

provided in the inventory. The location of events (point-based) was supported by Google Earth, 

and land use features taken from the official cartographic database of Colombia. 

 

For the georeferentiation, since the location of the events does not follow any systematic 

description (i.e., poor, or detailed descriptions of the locations were found), an indicator to 

measure the uncertainty of location was used as shown in Table 3. 

 
Table 3. Uncertainty level estimation for the spatial location of the DesInventar inventory. 

Uncertainty 

level 

Meaning Number of torrential 

flows 

N.A. 

It contains location errors. For example, the 

river/stream where the event occurred is not located in 

the stated municipality. In some cases, the mentioned 

municipality is not even in the stated department. 

2 

Very high 
The stated location is not specific at all, e.g., only the 

municipality's name is mentioned in the description. 
433 

High 

Very few reference elements are described. For 

instance, description of events based on small mine’s 

name that can be hardly found or may not exist 

nowadays. (Common for events prior 2000) 

97 

Moderate 

Broad description with almost no reference elements, 

i.e., only the municipality and the name of the 

river/stream are described. 

106 

Low 

Good description with some basic reference elements 

such as the municipality, the river/stream, veredas, and 

affected areas. 

193 

https://www.desinventar.net/
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Very low 

The description is well done with plenty of details of 

reference elements. For example, the municipality, the 

river/stream, the affected area, and other elements 

such as relative location to school, hospital, police 

stations, and bridges are clearly described. 

 

591 

 

For further analysis, the Catalog and Inventory from SIMMA were combined and treated as single 

SIMMA since, in principle, they refer to the torrential flow source areas. On the other hand, DesInventar 

remains as an independent inventory since it depicts the areas impacted by torrential flows. Table 4 

indicates the distribution of events according to the three processed inventories. Recall that only events 

with low uncertainties are considered for further analysis. Figure 4 shows an example of how SIMMA (in 

white) tends to be located toward the mountainous areas and DesInventar toward the flatlands. 

 

 

Figure 4. Visual comparison between SIMMA (magenta tringles) and DesInventar (white dots) 

 
Table 4. Summary of the used inventories according to the type of torrential flow. The numbers shown correspond 

to the filtered data (by uncertainty) used for the susceptibility model. 

Type of event Catalog - SIMAA Inventory - SIMMA DesInventar 

Debris flow 16 467 * 

Debris flood 4 249 * 

Mudflow 21 256 * 

NULL 317 114 * 

Total 358 1,086 784 

* Note that DesInventar does not contain information regarding the classification of the event. All the 

events are classified as torrential flows. 

4.2. Digital Elevation Model (DEM) 

DEMs are essential input data since it allows deriving important terrain and morphometric features of an 

area. The Shuttle Radar Topography Mission (SRTM) is a digital elevation dataset that provides high-

quality elevation data for over 80% of the globe (Farr et al., 2007). For this thesis, the main product 
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considered is the SRTM Digital Elevation Data Version 4 3 Arc-Second. This version of the SRTM digital 

elevation (90m cell size) data has been processed to fill voids and facilitate its use. The data were searched, 

clipped, and download through the geospatial processing service Google Earth Engine (GEE). Terrain 

derivatives such as slope, relief, curvatures, and topographic wetness index were generated from the DEM 

for further analysis (The code can be found in the Appendix 10.6) 
 

4.3. Thematic predisposing factors 

The set of environmental predisposing and triggering factors is composed of data regarding the geological, 

land cover, land use, and rainfall conditions: Other predisposing factors, i.e., the morphometric indices, 

are introduced later on. 
 

4.3.1. Lithology 

It consists of the geological and structural information of Colombia at a scale of 1:1,000,000. For its 

design, previous 1:100,000 scale geological maps issued by SGC were integrated into a single cartographic 

product. The harmonization was controlled using Landsat T.M, radar imagery, and the relief map 

produced with a 30-m-resolution DEM.  

 

The geological units were defined according to a chronostratigraphic classification system and grouped by 

age and material type. The age classification followed the International Chronostratigraphic Chart 2020. 

Rocks and deposits were the primary division in terms of material. Moreover, rocks were subdivided 

following the rock type, i.e., igneous, sedimentary, metamorphic, and volcanoclastic. These subdivisions 

were further divided until they reached the rock-name level, i.e., granites, marbles, and conglomerates. On 

the other hand, deposits were grouped according to their geomorphological environment, e.g., alluvial, 

alluvial fan, alluvial terraces, paludal, glacial, coastal, and eolean and volcanic ahh deposits. Faults, folds, 

and other structural attributes are also included in this dataset. 

 

To ensure an adequate interpretation and reduce the complexity of the model results, it was necessary to 

decrease the number of classes in the geological map. Twenty-five base classes were proposed to describe 

each lithological unit. The proposed base classes are the generic rock types that are used to disaggregate or 

parametrize the geological units. Table 5 depicts examples of the parametrization process. As a result, the 

original 279 classes in the geological map are translated into 25 base classes, later used as static 

predisposing factors in the susceptibility model. 

 
Table 5. Example of the disaggregation procedure for the lithological map. On the left side, the original lithological 
units, on the top, eight of the twenty-five base classes. 1/0 is used to represent the presence/absence of the base 

class in the respective lithological unit. 

Original 

lithological 

unit 

Conglomerate Sandstone Claystone Coal Basalt Andesite Schist Amphibolite 

Conglomeratic 

sandstones, 

sandstones, 

claystones and 

coal 

1 1 1 1 0 0 0 0 

Basalts and 

andesites 
0 0 0 0 1 1 0 0 
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Quartz schist 

and 

amphibolite 

with garnets 

0 0 0 0 0 0 1 1 

Basalts, 

andesites, 

claystones and 

sandstones 

0 1 1 0 1 1 0 0 

 

The final twenty-five lithological classes are surface deposit, conglomerate, sandstone, siltstone, claystone, 

mudstone, shale, coal, limestone, rhyolite, andesite, basalt, granite, diorite, gabbro, peridotite, breccias, 

tuff, serpentinite, phyllite, schist, quartzite, marble, amphibolite, and gneiss. Since the complete tables in 

which the disaggregation was done, were too long to be included even in the appendix, they were not 

reported. 

 

4.3.2. Land cover  

This cartographic product was developed by IDEAM using an adaptation of the CORINE Land Cover 

methodology for Colombia. The map describes land cover features (up to level 3) derived from mid 

resolution (30 m) Landsat 5 and Landsat 7 for the period 2010-2012 (IDEAM, 2010). In some areas, due 

to clouds, SPOT, CBERS1, and ASTER imagery were used to guarantee full coverage. The processing of 

the satellites images was carried out using semi-automatic classification techniques in GIS software. Also, 

depending on the complexity of the area, the classification was supported by manual delineation using 

aerial photos. As a final step and to check the quality control, fieldwork was conducted in specific areas 

selected according to their potential land cover diversity and the accessibility of the terrain. 

 

The land cover map initially contained 60 different classes, so an aggregation process was done to reduce 

the complexity of the data and guarantee the interpretability of the results. Land cover classes were 

grouped according to their similarity with other classes and their potential relevance to torrential flows. 

Moreover, new class names and levels are proposed following the CORINE Land Cover methodology for 

Colombia developed by IDEAM (2010) to maintain consistency and coherence. Table 6 illustrates 

examples of the reclassification carried out. Consequently, the initial 60 classes were reduced to 23 new 

classes, as shown in Figure 5. 

 
Table 6. Example of the reclassification for the land cover map. In the original level, the number of digits 

corresponds to the detail of the level. Therefore, three digits represent level 3. 

Original class Original level New class New level 

Urban areas 111 
Artificial surfaces 1 

Airports 124 

Grassland 231 

Grasslands 23 Grassland with bushes 232 

Grassland with trees 233 

Shrubby permanent 

croplands 

222 

Permanent croplands 22 

Permanent crops with trees 223 

 
1 China-Brazil Earth Resources Satellite program 
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Cereals 212 

Lakes and lagoons 512 
Inland waters 41 

Artificial water bodies 514 

Bushes 321 Shrub/herbaceous 

vegetation 
32 

Shrubs 322 

A more detailed description of the reclassification can be found in Appendix 10.1. 

 

4.3.3. Soil and potential Land use 

IGAC in 2014 generated the soil map through fieldwork and laboratory analysis of different biophysical 

parameters such as climatic factors, geomorphology, type of material, soil wetness, soil depth, fertility, 

salinity content, and carbon content. Based on these parameters, the taxonomic classification of soils was 

carried out with national coverage. Despite the relevant information contained in the soil maps, they were 

not used during this research due to the lack of standardization. Each of the 32 departments in Colombia 

has soil maps with attributes that are not necessarily homogeneous among departments. Thus, the soil 

map had to be discarded due to the extensive clean-up process required for using the data. 

 

In 2018, IGAC generated the map of potential land use for Colombia at a 1:100.000 scale. This product is 

derived from the national soil map issued in 2017. In line with the biophysical features previously 

described for the soil map, IGAC estimated indices to check land status. These indices quantify and 

distinguish the state of every land mapping unit, including their degree of deterioration. Besides, by 

analyzing these indices and soil potentialities, the primary potential land use was determined for each land 

mapping unit in the national territory. Since the original map soil could not be included in the analysis, the 

potential land use map, which can reflect features of the soil map is adopted instead. The potential strong 

relationships with the land cover map were later considered. 
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Figure 5. Land cover map (left side) and potential land use map (right side). 
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As in the land cover case, the potential land use map initially contained many classes that could lead to a 

misinterpretation of the model results. Hence, following the same idea (see Table 7) as for the land cover 

map, a reclassification is carried out to reduce the number of classes in the land use map. Consequently, 

the initial 48 classes are reduced to 9 new classes. Results can be seen in Figure 5. 

 
Table 7. Example of the reclassification of the land use map. 

Original class New class 

Semi-intensive permanent crops 
Agriculture 

Intensive permanent crops 

Extensive pasture areas 
Animal husbandry 

Intensive pasture areas 

Conservation of hydrological resources 
Conservation 

Conservation of hydrogeological resources 

The complete reclassification table is included in Appendix 10.2. 

4.4. Triggering factors 

4.4.1. Rainfall 

Rainfall information was extracted from the Climate Hazards Group 

InfraRed Precipitation with Station data (CHIRPS). “CHIRPS is a +35-

year quasi-global and high-resolution rainfall dataset that uses the 

Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis 

version 7  to calibrate global Cold Cloud Duration rainfall estimates." 

(Funk et al., 2015, p. 2). The dataset is considered quasi-global since it 

covers the area from 50°N to 50°S on a 0.05° grid (~5 x 5 km in the 

study area) at a daily temporal resolution. Comparing to other global or 

quasi-global satellite rainfall datasets such as TRMM 2  and GPM 3 , 

CHIRPS has information available for a more extended period. And, due 

to the scale of analysis (national scale), its spatial resolution represents 

and advantage when pre-processing the data. 

 

The processing of the CHIRPS rainfall data for this study was handled in 

GEE. Since CHIRPS contains available rainfall data from January 1981 

until December 2020, it is fundamental to consider aggregation methods 

through the temporal component. To achieve that, reducer functions 

(ee.Reducer) were applied in GEE. The reducer functions allow reducing 

an image collection to an individual image (see example in Figure 6) by applying statistical operations.  

 

Resultantly, individual pixels contain the temporal aggregation using statistical descriptors, i.e., mean, 

median, min, and max estimated of all the images in the collection at that location. For the particular case 

of this research, rainfall was aggregated using the average and the maximum statistics. As a result, the 

average daily and maximum daily rainfall for each pixel in a time window from 1981 to 2020 were 

estimated in the entire study area. 

 
2 The Tropical Rainfall Measuring Mission 
3  Global Precipitation Measurement 

Figure 6. ImageCollection 
reduction functions (ee.Reducer) 

in GEE. Modified from 
https://developers.google.com/

earth-engine. 

https://developers.google.com/earth-engine
https://developers.google.com/earth-engine
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Another approach was implemented to capture the temporal variation of the precipitation in Colombia. 

For that, the daily rainfall was first aggregated into yearly rainfall, as Figure 7 shows. Then, for the period 

1980-2020, the year with the maximum precipitation, 2011, was selected as a representation of an extreme 

precipitation scenario. Finally, for that particular year 2011, the total annual rainfall was computed for 

every pixel and later used it in the rainfall set for the susceptibility modeling. 

 

An overview of the scripts used for the rainfall processing can be found in Appendix 10.3 and 10.4 

 

 

 

Figure 7. Total annual rainfall for a time window from 1980 to 2020. The bar in green represents the year with the 
maximum total annual precipitation. 

4.5. Cartographic base 

Instituto Geográfico Agustín Codazzi (IGAC) is the official institution responsible for producing the 

official and basic cartographic products in Colombia. IGAC has essential cartographic information at scale 

1:100,000 and 1:500,000 at the national level freely available on their website. The data contain elevation 

curves, water bodies, drainages, artificial features such as roads, urban areas, etc. To generate these 

products, IGAC implemented the manual interpretation of aerial photos, optical and radar satellite images, 

i.e., Landsat, SPOT, RapidEye, TerraSAR-X, and GeoSAR, with fieldwork campaigns that have been 

doing since 1953. Furthermore, the database is under a continuous process of maintenance and update. 

Therefore, the information may have changes daily. For this research, information regarding the urban 

centers and the drainage network were considered. 

 

4.6. Watersheds 

The watersheds were extracted from the "Zoning and coding of hydrographic units and hydrogeological 

of Colombia" proposed by the Institute of Hydrology, Meteorology, and Environmental Studies (IDEAM, 

2013). IDEAM proposed a hierarchical system that allows classifying Colombia according to its 

hydrographic characteristics. The entire country is divided into five main hydrographic areas, which are 

later subdivided into 316 catchments. These 316 subzones were assumed as the reference level for the 

mapping unit delimitation. 
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Figure 8. Temporal aggregation of the rainfall. From left to right, the total rainfall for the year with the maximum annual rainfall (2011), maximum daily rainfall, and mean daily 
rainfall. 
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5. METHODS 

This chapter addresses considered methods for (1) watershed generation, (2) the role of the predisposing 

and triggering factors, (3) the selection of a suitable mapping unit to represent torrential flows and (4) the 

prioritization of watersheds according to the historical records, the susceptibility and the EaR. 

 

Figure 9 illustrates the flowchart of the methods followed during this research. Firstly, as detailed in 

chapter 4, the data referring to the predisposing and triggering factors, and the inventories were generated 

and cleaned up. Secondly, morphometric indices were calculated using the DEM, the different levels of 

watersheds, and the stream network. These indices served as predictor variables together with the 

lithology, land cover, land use, and rainfall. The latter ones were also spatially aggregated in the 

watersheds, using the average, standard deviation, and proportions for the case of categorical covariates. 

Afterward, a multi-collinearity test was taken to ensure consistency and optimal interpretability of the 

covariate’s effects. As a third step, exploratory models to account for the variable significance were 

implemented through R-INLA. Once the significant variables were selected, susceptibility and uncertainty 

were computed for the different mapping units. Results were validated using k-fold cross-validation and 

the respective Area Under the Receiver Operator Curve (AUROC). The final steps refer to the 

classification of the susceptibility map and the combination with the Elements at Risk (EaR) to prioritize 

areas prone to torrential flows. 

 

 

Figure 9. General overview of the methods. 
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5.1. Watershed generation 

Choosing the basic unit mapping was crucial since it determined how the torrential flows were going to be 

represented, and how the descriptive variables were going to be aggregated (Rossi & Reichenbach, 2016). 

Reichenbach et al. (2018) found that pixels and slope units are the most common mapping units used for 

landslide susceptibility estimation in the geomorphological literature. However, an important characteristic 

of torrential flows is that the displaced material can travel from tens of meters up to several km along pre-

existing channels. This creates the need to look at the process from a larger landscape partition, such as 

watersheds. Also, the use of watersheds can be seen as a way to integrate slope stability with transport and 

deposition processes since they all can take place in a watershed unit. 

 

A watershed can be defined at several levels depending on the outlet point position. In other words, a 

watershed can be subdivided into sub-watersheds, and the sub-watershed can be further subdivided. For 

this analysis, five watershed levels were considered as mapping units in the susceptibility model. The five 

landscape partitions were assessed independently with the two torrential flow inventories to find a suitable 

representation for torrential flows. 

5.2. Role of the predisposing and triggering factors in the occurrence of torrential flow events 

5.2.1. Generation of morphometric indices 

Once the mapping units were delineated, a new set of variables was computed. Several authors have 

identified the so-called morphometric parameters as good predictors to differentiate torrential from non-

torrential watersheds (Welsh, 2007). These indicators indirectly give information about peak flow (see 

Figure 10) discharge, structural control of the watershed, potential infiltration, and sediment loss, as briefly 

explained in Table 8. According to the type of morphometric indices, they were grouped into areal 

features, linear, and topographic features. Then, the variables used for the susceptibility model were 

grouped into five categories: morphometric indices, lithology, land cover, land use, and rainfall. Terrain 

derivatives and rainfall were aggregated into the watershed through the average (μ) and standard deviation 

(σ). For the categorical variables, the proportion of each class within every watershed was calculated. That 

way, representative values were incorporated into the mapping units, in this case, the watersheds. 

 

 

Figure 10. Influence of watershed geometry in the hydrograph. Modified of echo2.epfl.ch 

 

5.2.2. Multi-collinearity test 

The multi-collinearity analysis was carried out to avoid redundancy among the different sets of 

predisposing and triggering factors. Accounting for multi-collinearity becomes a critical step in the process 

since the results are highly influenced when there are strong relationships among the variables 

(Reichenbach et al., 2018). Consequently, this may potentially lead to misinterpretation of the predisposing 

factor significance, which is one of the goals of this research. Multi-collinearity was assessed using the 
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Person correlation coefficient, as known as Pearson’s r. This metric does pair-wise comparisons for all the 

variables, determining a correlation coefficient for each pair of covariates. Pearson’s r depicts strong 

relationships when its value is close to 1 or -1. Based on the results of this analysis, some variables were 

discarded. Moreover, the selection of these variables was not purely quantitative but also supported by a 

critical assessment of the information that the variable introduces to the model. 

 

5.2.3. Covariate effects 

Based on the region of interest size (~550.000 km2), the available information, and this research's goals, 

GAMs were chosen as a framework to model torrential flow susceptibility. The two sets of inventories, 

SIMMA (further referred to as Mod1) and DesInventar (further referred to as Mod2), were independently 

modeled. All continuous variables were rescaled by subtracting their mean and dividing by their standard 

deviation. That way, the comparison among covariates is simplified since they are expressed on an equal 

unit-less scale. 

 

The first step included the execution of exploratory models. The exploratory models used the total 

amount of data for training the GAM. Its purpose was to pre-screen the relationships between covariates-

response and explore the gains and losses of modeling covariates as fixed or random effects. 

 

The effects of the covariates were then determined by plotting their Regression Coefficients (RC). In the 

plot, the RC’s magnitude and sign are used to draw the initial interpretation of the covariates. Also, the 

95% Credible Intervals (CI) of the RC posterior distributions were calculated to assess the significance of 

the covariates. 
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Table 8. Summary of morphometrical indices included in the analysis. WL* stands for the watershed length. P* refers to the watershed perimeter. SN* is the number of streams. 
SL* stands for stream length. Μ stands for the average, and σ stands for the standard deviation. 

Group Factor Estimation Importance Reference 

Areal 

Watershed area (A) 
A The wider the watershed, the larger the amount of water it can collect, diluting the 

flood and reducing the chance of having torrential flows. 
(Schumm, 1956) 

Form factor (F) 
F = A/WL* 

It relates to the flow peak discharge and the debris flow occurrence. (Wohl et al., 1991) 

Elongation ratio (ER) 
ER = 2√(A/π)/WL* Watersheds with elongated shapes have a hydrological response to rainfall events 

with flat peaks of a long duration. 
(Rogelis & Werner, 2014) 

Circularity ratio (CR) 
CR = 4π.A/P2* 

Circular watersheds have sharper hydrographs, which means higher flashiness. (Matauco, 2004) 

Compactness coefficient (CC) 
CC = 0.282.P*/√A Watersheds with higher compactness coefficients are more elongated. Therefore, the 

hydrological response shows flat peaks of long duration. 
(Islam et al., 2020) 

Linear 

Bifurcation ratio (BR) BR = SN/SN+1 It depicts the influence of structural controls in the watershed. (Islam et al., 2020) 

Stream length ratio (SLR) SLR = SL/SL+1 It gives information regarding the geomorphological maturity of the watershed.  

Stream frequency (SF) SF = SN*/A It relates the number of streams per unit area, and therefore, the infiltration potential. (Horton, 1945) 

Drainage density (D) 
D = SL*/A 

It gives a general understanding of the base flow and peak flow. (Horton, 1945) 

Constant of channel maintenance 

(CCM) 

CCM = 1/D 
It relates to the drainage area required to maintain one unit of channel length. (Schumm, 1956) 

Infiltration number (IN) IN = SF*D It reflects the infiltration potential in a watershed (Schumm, 1956) 

Length of overland flow (LO) LO = A/(2*SL) It represents the rainfall run length on the surface before reaching a defined channel. (Choudhari et al., 2018) 

Topographic 

Relief (R) 
R = Zmax - Zmin 

It relates the maximum and minimum elevation inside the mapping unit. (Mark, 1975) 

Relief ratio (RR) RR = R/WL* It gives an idea of the sediment loss per unit area. (Rogelis & Werner, 2014) 

Melton index (M)  
M 

Higher Melton indices tend to be associated with torrential watersheds. (Wilford et al., 2004) 

Slope (S) Sμ/Sσ It provides an understanding of the flow velocity, erosion, and instability potential. (Matauco, 2004) 

Profile curvature (PCR) PCRμ/PCRσ It indirectly depicts the landscape's roughness and instability. (Schumm, 1956) 

Tangential curvature (TCR) TCRμ/TCRσ It controls the convergence of sediment material and water direction. (Schumm, 1956) 

Topographic wetness index (TWI) 
TWIμ/TWIσ Accounts for topographic effect on location and size of source areas for runoff 

generation. 
(Sevgen et al., 2019) 
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5.3. Suitable basic mapping unit to represent torrential flow susceptibility 

5.3.1. Model validation and performance 

Validating the susceptibility models allows accounting for its generalization capabilities and predictive 

power. Validation schemes mainly consist of susceptibility evaluation using an independent set of data. 

Several conceptions for generating the independent test are found in the literature. For example, 

Reichenbach et al. (2018) mentioned that cross-validation comprises splitting the data into training and 

testing sets in proportions of 70/30, respectively. Temporal partitions, where the data are split into 

independent time windows, are considered an optimal choice but heavily constraint for the data 

availability. Furthermore, k-fold cross-validation techniques can be seen as iterative processes where the 

data is subset into multiple independent folds used for training and validating the models at different 

steps(Petschko, Brenning, Bell, Goetz, & Glade, 2014). K-fold cross-validation allows using the entire 

data, and therefore it results in a much more detailed assessment of the model. The mentioned validation 

schemes are commonly implemented with the Receiver Operating Characteristics (ROC) curve and the 

Area Under the ROC curve (AUROC). These well-established metrics show the performance of a model 

at all classification thresholds. 

 

For this research, the torrential flow susceptibility models were validated using non-spatial 10-fold cross-

validation (CV). The 10-fold CV implies fitting the susceptibility model with 90% of the data and leaving 

the remaining 10% for testing. This procedure is repeated ten times with randomly distributed and non-

overlapping folds. 10 folds can be seen as a fair value to allow the model to learn about the spatial 

structure from the training data (Lombardo, Opitz, Ardizzone, Guzzetti, & Huser, 2020). The ROC curve 

and AUROC were estimated in every iteration by comparing the fitted values with observed data to 

evaluate the model's predictive power. 

 

Any susceptibility model should be spatially validated. This is since by adopting spatial CVs, one can 

ensure that the model estimates respect the independency assumption of the logistic regression. By 

spatially partitioning subsets of the study area, one then ensures that any spatial dependency is broken and 

does not propagate into the estimated probability values. This is particularly true for small-scale mapping 

units such as grid-cells, where a single grid behaves “similarly” or is statistically dependent on the adjacent 

ones. However, watersheds are sufficiently large mapping units to assume that the binary status and the 

associated covariates do not exhibit strong dependencies from the neighboring catchments. Therefore, a 

non-spatial cross-validation is deemed sufficient in this study. 

5.4. Prioritization of areas prone to torrential flows 

5.4.1. Classification of the susceptibility map 

For urban planning purposes, the integration of susceptibility models can be improved by adopting user-

defined classification schemes. Commonly, these schemes are developed in collaboration with decision-

makers and stakeholders, which was not considered in the framework of this research. To achieve a 

meaningful classification, five categories were proposed based on the success rate. The success rate allows 

to classify a continuous spectrum of susceptibility in classes that contained a predefined percentage of the 

total of events. 

 
Table 9. Susceptibility ranges based on the analysis of the success rates. 

Susceptibility class Number of events (%) 

Very high 40 
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High 30 

Moderate 15 

Low 10 

Very low 5 

 

5.4.2. Integration with land-use features 

The integration of land use features was done once the torrential flow susceptibility map was classified. 

This integration was proposed as an attempt to generate a prioritization of areas (watersheds) prone to 

torrential flows.  

 

First, the watersheds with the high and very high torrential flow susceptibility classes were selected, leaving 

the remaining classes out of the analysis. In these two classes, 70% of the torrential flows were 

accumulated. Moreover, the watersheds that already evidence torrential flow events were also considered, 

even if classified as moderate, low, or very low susceptible areas. Secondly, from the national cartographic 

database, the urban centers, administrative areas such as corregimientos 4 , veredas 5 , police stations, 

indigenous reservations, and other EaR were extracted to assess their exposure with the susceptibility 

models. 

 

Because of the mapping units, an EaR located in high or very high susceptible areas does not guarantee 

that the EaR is exposed to torrential flow events. For instance, this EaR can be located towards the 

boundaries of the watersheds, where the influence of a potentially damaging event could be absent. That is 

why only the EaR located within the Euclidean distance of 100 meters to the drainages were considered 

for further analysis. 

 

To summarize, a watershed with historical torrential flow events or located in high or very high 

susceptible areas and whose EaR (urban centers and other administrative units) are within 100 meters 

from drainages are considered priority areas. Therefore, a more detailed analysis should be carried out. 

  

 
4 Administrative subdivision of the rural areas of municipalities. 
5 Administrative subdivision of the corregimientos. 
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6. RESULTS 

The results for this section are indicated following the same order as the methods chapter. (1) watershed 

generation, (2) role of the predisposing and triggering factors, (3) the suitable basic mapping unit and (4) 

the prioritization of the watersheds. 

6.1. Watershed generation 

Different algorithms for watershed automatic delineation were tested to get an accurate representation of 

the watersheds. For example, Arc Hydro, SAGA GIS, QGIS, WhiteboxTools, HydroSHEDS (in GEE), 

and GRASS GIS. Initially, the algorithms were tested in relatively small areas and in a local machine 

(Intel® Core™ i7-5500U CPU 2.4GHz, 12GB) to check the difference between the outcomes. The 

delineated watersheds were visually compared against the watersheds from IDEAM (reference level, refer 

to section 4.6 and medium resolution watershed available in the POT of a specific municipality, Medellín.  

 

Once the test for the small areas was completed, the algorithms were 

applied for the entire study area. For this purpose, two virtual machines 

owned by the Center of Expertise in Big Geodata Science at the ITC 

Faculty were used (Jetson AGX (8-core ARMv8.2, 32 GB GPU and 

PowerEdge R730xd 2 x 8-core Intel E5-2640 v3, 768 GB). However, 

the processing time played an essential role since several of the tested 

algorithms were not able to process the entire study area at once, and in 

fact, failed after some time of processing.  

 

GRASS GIS was chosen to delineate the watersheds since it provided 

consistent watersheds polygons and allowed the aggregation of the 

drainage network in the watershed (stream length, number of streams, 

Strahler order). 

 

A brief overview of the step sequence implemented in GRASS GIS for 

the watershed and drainage network generation is provided in Figure 11. 

The watersheds and the stream network were generated from the DEM 

using the same flow accumulation thresholds. After that, the watersheds were filtered using the region of 

interest, and the streams were clipped to the selected watersheds. The streams were exported as point 

geometries, in which later the accumulation flow was extracted per point. The lowest accumulation flow 

value in every watershed was extracted as the outlet point associated with a watershed polygon. Using the 

point outlets, the watershed polygon, and the DEM, the Watershed Length (WL) was estimated as the 

distance between the outlet point and the point with the highest elevation within every watershed. Recall 

in Table 8 that the WL was used to calculate several of the morphometric indices. Furthermore, 

information regarding the number of streams, stream length, and Strahler order were extracted into the 

watersheds to calculate the remaining morphometric indices. 

 

This procedure was carried out to delineate the different watershed levels and aggregated their stream 

network characteristics. The results of the watershed generation are summarized in Table 10 and shown in 

Figure 12. Moreover, the scripts used to generate the watersheds can be found in Appendix 10.5. 

 

 
 

Figure 11. Scheme of the 
watershed generation process 
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Table 10. Compilation of the generated watersheds. The number in the first columns corresponds to the minimum 
size of the exterior watershed basin. 

Level Number of watersheds Average area 

0 - IDEAM 223 2,750 km2 

1 - 50,000 713 750 km2 

2 - 25,000 1,445 360 km2 

3 - 10,000 3,598 145 km2 

4 - 5,000 6,906 75 km2 

5 - 1,000 32,293 15 km2 

Note that the number of watersheds is only summarized for the region of interest, not the entire country. 

 

 

 

Figure 12. Overview of the different levels of delineated watersheds. From left to right and from top to bottom, 
watershed level 50,000, 25,000, 10,000, 5,000 and 1,000. 
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6.2. Role of the predisposing and triggering factors in the occurrence of torrential flow events 

6.2.1. Multi-collinearity 

Figure 13 shows the results of the multi-collinearity test for the morphometric indices. The test was 

initially computed for all the pairs of covariates. However, since there were not strong relationships 

between covariates from different groups, and for illustration purposes, the Pearson matrix was divided 

into the groups of predisposing factors (morphometric indices, geology, land cover-land use, and rainfall). 

The remaining matrices can be found in appendix 10.5.  

 

The circularity ratio (CR) and the compactness coefficient (CC) show a solid negative relationship in the 

areal indices. Therefore, CC was discarded considering the information that the two indices can add to the 

susceptibility model. For the linear indices, stream frequency (SF) showed a moderately high relationship 

with the drainage density (DD) and the infiltration number (IN), which are the reasons why SF was not 

considered for further analysis. Following the same idea, constant of channel maintenance (CCM) and 

infiltration number (IN) were left out due to their strong relations with drainage density (DD) and length 

of overland flow (LO), respectively. In the group of the topographic factors, the vast majority presented 

collinearity issues. This behavior is most likely explained by the dependence of the morphometric indices 

on the slope angle (elevation differences or relief). The mean basin slope (Sμ), the mean tangential 

curvature, and the mean topographic wetness index were preserved from this group. The remaining 

indices were discarded.  

 

 

 

Figure 13. Multi-collinearity test for morphometric indices. Abbreviations according to Table 8. >0.75 or >-0.75 
were taken as thresholds to indicate whether the pair of covariates show strong relations or not. 
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Serpentinite, phyllite, schist, and marble were excluded from the geology since they present strong 

relationships with quartzite. These five lithological types appear to be strongly associated since they are 

often found in the same lithological units, especially in the Andean mid-range. Refer to the Appendix 10.8 

 

Although significant correlations were expected in the proportions of land cover and land use, the Pearson 

matrix showed that only the pairs of artificial land/residential areas and inland water/water bodies 

presented strong correlations. Besides, classes such as clouds, coastal and inland wetlands, and marine 

waters were not further considered since, from an interpretative viewpoint, they are not relevant for 

explaining torrential flows. Refer to the Appendix 10.10. 

 

Finally, the total annual rainfall (μ) and total annual rainfall (σ) show strong correlations with the average 

daily rainfall (μ) and average daily rainfall (σ) respectively. Therefore, to represent general rainfall 

conditions, the average daily rainfall (μ, σ) was selected over the total annual values. Recall (μ) refers to the 

average per watershed and (σ)represents the standard deviation per watershed 10.9 

 

6.2.2. Covariate effects 

Linear effects 

Figure 14 depicts the posterior distribution of the covariates estimated to be significant for Mod1 

(SIMMA inventory) and Mod2 (DesInventar inventory). Recall that SIMMA represents source areas and 

DesInventar impacted areas. In general terms, Mod1 is explained by the covariates related to land cover 

and land use, while the morphometric indices and land use explain Mod2. Recall that Mod1 is representing 

watersheds where torrential flows are generated, and Mod2 watersheds impacted by them. 

 

For Mod1, it is observed that positive values are shown for morphometric indices and the land cover 

classes. In contrast, the negative contributions are observed for the lithological and land-use factors 

Covariates such as area, PRCμ, the proportions of conglomerates, tuff, artificial land, forest plantation, 

and badlands appear to have the narrowest credible intervals even if their RCs are not necessarily the 

highest ones (in absolute values). Conversely, the remaining covariates show strong positive and negative 

influences, but the CIs are relatively wider than the mentioned covariates, making it difficult to build solid 

interpretations other than their positive/negative contributions.  

 

Remarkably, while land cover classes such as arable land and permanent crops positively explain the 

source areas for torrential flows, the agriculture (potential) land use reflects the opposite. Recall that the 

land use map refers to the potential land use that a land mapping unit could have, which in principle does 

not imply a match with the land cover maps. Besides, the two products were produced by different 

institutions in Colombia in different time periods. This behaviour is also found between forest plantation 

and forest production. 

 

In Mod2, covariates with relatively narrow CIs are Area, Circularity Ratio, Bifurcation Ratio, PCRμ, TWIσ, 

and the proportion of surface deposits, conglomerate, artificial land, arable land, and forest plantation. At 

the same time, most of the covariates present a positive contribution to the susceptibility model except for 

drainage density, circularity ratio, and the proportion of andesite. 

 

Unexpectedly, the Circularity Ratio (CR) and Drainage Density (DD) depicted a negative influence, which 

means that elongated watersheds (low CR) with permeable materials (low DD) can increase the chance of 

a watershed being impacted by a torrential flow. Also, the Bifurcation Ratio and the proportion of 



SPATIAL PREDICTING MODELING FOR OUTLINING TORRENTIAL FLOW PRONE AREAS IN THE COLOMBIAN ANDES 

43 

deposits positively influenced the model, meaning highly dissected watersheds with significant deposits 

have higher chances of being impacted by a torrential flow. 

 

 

Figure 14. Linear effects (significant) for Mod1 and Mod2. The y-axis reports the covariates with the respective 
regression coefficients in the x-axis. Diamonds depict the mean of the posterior distribution for each RC. Triangles 
show the 95 credible intervals of the RC posterior distribution. In red, the negative mean RCs, in blue, the positive 
ones. The grey boxes divide the covariates into the previously established groups (morphometric indices, lithology, 

land cover-land use, and rainfall). 

 

Non-linear effects 

Initially, all the covariates were modeled as linear effects, but based on the significance plots and the 

geomorphological importance, four covariates were modeled using a random walk structure defined over 

20 quantile classes to capture potential nonlinearities. Figure 15 reports the random effects of ordinal non-

linear covariates for Mod1. Since the plots for non-linear effects in Mod2 were almost the same as Mod1, 

they are not shown here.  

 

For the form factor, the mean contribution to the model is positive, except for the values below ~0.5, 

although the effect is primarily non-significant. The Slope(μ), as expected, has the most substantial 

contribution to the model with very a narrow CI in its entire distribution. It is positive for values higher 

than approximately 10°, and overall, it shows linearity.  

 

Average daily rainfallμ has, in general, a mean negative influence on the model excluding rainfall values 

lower than ~7 mm. After ~7 mm, the CI becomes even more uncertain due to the lack of observations 

for that range. Overall, it does not seem to be significant. Lastly, the maximum daily rainfall showed 

negative contributions for rainfall measures lower than 130 mm. After that, it depicted positive influences 

that become significantly step after values of 200 mm 
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Figure 15. Non-linear effects in the susceptibility models. The blue line summarizes the mean of the posterior 
distribution for the RC, and the black lines are the 95% credible interval. 

 

6.3. Suitable basic mapping unit to represent torrential flow susceptibility 

6.3.1. Model validation and performance 

After concluding the exploratory model based on the significance of the linear and non-linear effects, the 10-fold 
cross-validation and ROC curves were implemented to evaluate the susceptibility models' performance quantitatively.  

Figure 16 shows the ROC curves obtained for the 10-fold cross-validation of Mod1 and Mod2. The 

results for all the watershed levels and the two models are summarized in Table 11. 

 

The median values of the AUROCs for all the models are considered as excellent discriminations 

according to Hosmer and Lemeshow (2013). Overall, it is clear that the AUROCs tend to decrease as the 

resolution of the watershed increases, although not to large extents. Also, Mod1 shows in all the 

watershed levels slightly better performances as compared to Mod2. Recall that Mod1 was built upon the 

SIMMA inventory, which is mapped with fieldwork support, whereas Mod2 is built upon the DesInventar 

database, in which the author manually georeferenced the events. Therefore, the results could be strongly 

influenced by the spatial errors in the location of events. 

 

The applicability of a susceptibility model relies to some extent on how certain the estimated mean 

susceptibilities are (see Figure 17). The CI, in principle, should be narrow and exhibit minor uncertainties 

towards the extreme values, i.e., stable and unstable areas, and follow a bell shape (Lombardo & Tanyas, 

2020). However, this appears to be the case neither for Mod1 nor Mod2. The mean susceptibilities do not 

show relatively high values, and they seem to be almost constrained to probabilities below 0.5. This could 

be strongly influenced by the imbalanced nature of the dataset, especially for level 1,000. In other words, 
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the dataset contains a lot more stable than unstable watersheds, which results in right-skewed posterior 

mean susceptibility distribution.  

 

 

 

Figure 16. Illustration of the ROC curves (Mod1). Every solid line represents the ROC curve associated with each 
one of the ten folds. The dashed line shows a theoretical random model (with AUROC = 0.5). 

 
Table 11. Report of the performance results. Median AUROC values are shown for Mod1 and Mod2 for all levels of 

watersheds. 

Level Mod1 Mod2 

50,000 0.87 0.86 

25,000 0.86 0.83 

10,000 0.86 0.82 

5,000 0.85 0.82 

1,000 0.85 0.82 

 

Remarkably, Mod2 reports very high uncertainties for low mean susceptibilities. Indeed, this is not an 

optimal situation since, for low mean susceptibilities, the model ideally should depict low uncertainties. 

Once again, this behavior could be a reflection of the positional errors and incompleteness in the 

DesInventar inventory. Therefore, a new modeling option was introduced to deal with that. The new 

model is further referred to as Mod3.  

 

Mod3 is built under the assumption that torrential flows can be generated (source areas) and impact the 

same mapping unit, i.e., the same watershed. In that sense, the inventories corresponding to the source 

points (SIMMA) and impacted areas (DesInventar) were combined into a single inventory. In principle, 

there should be an overlapping between the two inventories; every event should have a source and an 

impacted area. Nevertheless, due to the spatial and temporal uncertainties in the information, checking 

whether two points represent the same torrential flow event was not possible. 

 

Based on the results presented in Figure 17 for Mod2, the watersheds with low susceptibility but high 

uncertainty values were manually removed from the combined inventory. This approach was taken to 

account for those potential errors in the spatial location of the DesInventar inventory. 
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Figure 17. Posterior 95% CI vs. posterior mean susceptibility for the watersheds at level 1,000. Blue corresponds to 
Mod1 and red to Mod2. 

 

All the previous analyses were repeated using the new combined inventory (SIMMA + corrected 

DesInventar inventories). Table 12 depicts the performance results, and Figure 18 the error plot related to 

the posterior mean susceptibility and the 95% CI. Compared to Mod1 and Mod2, there were no 

significant differences in terms of performance. On the other hand, the error plot has a more defined bell-

shaped distribution, with very few watersheds showing high uncertainties in the distribution's tails. 

Illustrations of the spatial realizations and uncertainties for the torrential flow susceptibility at each 

watershed level are shown in Figure 20, Figure 21, and Figure 22. Furthermore, the complete error plot 

for the three models and all the watershed levels can be found in appendix 10.11. 

 
Table 12. Report of the performance results. Median AUROC values are shown for Mod3 for all levels of 

watersheds. 

Level Mod3 

50,000 0.87 

25,000 0.86 

10,000 0.85 

5,000 0.84 

1,000 0.84 

 

Results indicate that performance-wise, the coarser 

resolutions show higher performances, and overall, 

for the three models, the coarser the watershed levels, 

the higher the performances. However, in terms of 

the error plots, the more detailed watershed levels 

show lower uncertainties. 

 

Although the five models have a wide variety of 

resolutions, they all can generate, quantitatively 

speaking, good predictions for the torrential flow 

susceptible watersheds. Besides, since this study 

focuses on prioritizing areas based on their torrential 

flow susceptibility, the more detailed levels of 

watersheds such as 5,000 and 1,000 may represent Figure 18. Posterior 95% CI vs. posterior mean 
susceptibility for Mod3. 
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better options for this goal. Finer watersheds can provide more spatial details, which appears to be more 

meaningful for urban planning applications at municipal levels. Consequently, the prioritization 

assessment was carried out only for the two most detailed levels of watersheds (5,000 and 1,000). 
 

6.4. Prioritization of areas prone to torrential flows 

6.4.1. Classification of the susceptibility map 

The results of the susceptibility map were then classified using the success rate. Due to the lack of 

information regarding the area of the events, the success rates for every watershed level were computed 

using the number of torrential flows events. Figure 19 illustrates an example of the calculated success rate 

for level 10,000 in Mod3.  

 

 

Figure 19. Success rate for Mod3. The color palette represents the previously established classes in Table 9. 

 

Table 13 depicts the distribution of percentages for every susceptible class and every watershed level. The 

percentages of susceptible classes show consistency among the different evaluated levels. Larger 

watersheds have higher percentages of very high and high susceptible areas compared to the finer 

watersheds. In contrast, finer watershed levels present higher low and low susceptible proportions than 

larger watersheds. Overall, the proportions for different levels seem to follow a trend except the level 

5,000, where the reported percentages slightly deviate from the rest. 

 
Table 13. Percentage of susceptibility classes for each watershed level (Mod3). 

Proportion of susceptibility classes (%) 

Level Very low Low Medium High Very high 

50,000 35 16 18 14 17 

25,000 35 17 18 15 14 

10,000 34 16 20 16 13 

5,000 47 20 16 7 11 

1,000 42 16 23 11 9 
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Below, the torrential flow susceptibility and uncertainty for all the watershed levels. Note that the 

uncertainty was classified using the quantiles of each distribution. Even if the same color style was used, 

every watershed level has independent uncertainty classes 
 

The torrential flow susceptible maps show consistency among the different watershed levels. A visual 

inspection gives the idea that the susceptibility follows a potential hierarchical structure among 

watersheds. For example, the watersheds with high or very high susceptibility in level 50,000 match groups 

of watersheds with high or very high susceptibility in level 25,000. Also, similar behavior is seen for the 

remaining levels, although with some exceptions, especially evidenced in flat areas. 

 
 

 

Figure 20. Results for the watersheds in Level 1-50,000. The map on the left side shows the torrential flow 
susceptibility classes for Mod3, whereas the map on the right indicates the corresponding 95% credible interval. 
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Figure 21. Results for the watersheds in Level 2-25,000 (top) and Level 3-10,000 (bottom). The map on the left side 
shows the torrential flow susceptibility classes for Mod3, whereas the map on the right indicates the corresponding 

95% credible interval. 
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Figure 22. Results for the watersheds in Level 4-5,000 (top) and Level 5-1,000 (bottom). The map on the left side 
shows the torrential flow susceptibility classes for Mod3, whereas the map on the right indicates the corresponding 

95% credible interval. 
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Figure 23. Comparative overview of the different watershed levels. Note that since the levels 50,000 and 25,000 were 
equal (particularly for this area), they refer to the same panel. 

 

Figure 23 shows the susceptibility in the different levels of watersheds (hierarchical structure). As seen, 

very high susceptible watersheds in the coarse levels seem to be classified as high or very high 

susceptibility areas by the remaining levels. 

 

6.4.2. Integration with land-use features 

The incorporation of EaR is done once the susceptibility maps are generated and classified. The 

prioritization was done by selecting watersheds with (1) high or very high susceptibility class, (2) historical 

events (3) presence of urban centers or small settlements. 

  

Figure 24 shows the results of the prioritization procedure using the previously described EaR, and the 

high and very high susceptible watersheds. As shown, most of the prioritized watersheds are clustered in 

the central part of the country with, some cases, although very few, towards the north and western coasts.  
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Results show 871 and 429 prioritized watersheds with an estimated area of 21,600 km2 and 51,900 km2 for 

the levels 1,000 and 5,000, respectively. At the same time, these prioritized watersheds are located in 671 

and 709 municipalities, representing 60% and 63% of the total number of municipalities in Colombia, 

respectively. 

 

 

 

Figure 24. Prioritized watersheds for levels 1,000 (left side) and 5,000 (right side) for Mod3. 
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7. DISCUSSION 

The discussion will address the issues in the same order as presented in the results chapter. 

7.1. Covariate effects 

The morphometric indices did not seem to play a relevant role as explanatory covariates. As a matter of 

fact, only 5 out of 25 indices were significant for at least one of the models. Among those five significant 

indices, Drainage Density (DD) and Circularity Ratio (CR) appeared to influence the susceptibility 

negatively. Hence, torrential watersheds in Colombia would have low drainage densities as well as low 

circularity ratios, which following the interpretation of the indices, could be translated into watersheds 

with permeable materials and elongated shapes. In principle, it is contradictory since watersheds with 

permeable materials imply slow hydrological responses and less runoff generation. Also, elongated 

watersheds have hydrographs with flat peaks of long duration in response to rainfall events. These results 

are consistent with the previous research done in Colombia by Arango et al. (2020), suggesting that 

torrential watersheds in Colombia are effectively elongated and contain relatively permeable materials. 

Conversely, the Bifurcation Ratio (BF) shows a positive effect, meaning that highly dissected watersheds 

in mountainous areas tend to be more prone to torrential flows. Nevertheless, these geomorphic 

inferences should be avoided as long as the models were produced with highly incomplete data (Steger et 

al., 2016). Moreover, the strange role of the DD and BF could be potentially showing collinearity issues 

that were not detected during the analysis, and therefore, it would be valuable to consider other methods 

to assess the selection of the variables. 

 

An important aspect is also the incompleteness of the historical inventories. In this research, a relatively 

large area in Colombia could be modeled with highly incomplete inventories. When referring to the 

performance, the obtained results were considered as excellent discriminations (Hosmer et al., 2013). 

However, this was not the case for the interpretation and understanding of the role of the covariates. 

Concluding or linking between covariates and torrential flows could not be done appropriately within this 

research. A potential reason for those strange relations found might be the incompleteness of the 

inventories. For instance, looking at Figure 3, especially for the SIMMA inventory, it is easy to identify 

areas where mapping campaigns have been conducted. Those areas are relatively more complete since, in 

the same mapping unit, they have more events. When this is the case, High data incompleteness can 

wrongly lead to having over or underrepresentation of the data. Therefore, before analyzing geomorphic 

influences with highly incomplete inventories, other sets of approaches should be considered, i.e., the 

mixed effected models (S. Steger, Brenning, Bell, & Glade, 2017). 

 

According to the results, the lithology did not show important contributions to the susceptibility 

estimation. A potential reason could be the disaggregation procedure during the data preparation. 

Although the conducted process provides a general parametrization of the lithological compositions, it 

does not reflect the local conditions of the geological units, which could add relevant information for the 

analysis. Another drawback is that the described procedure treats every lithological class as an 

“independent class”, while perhaps the torrential flows could be better explained by the combination of 

lithologies in the same geological unit. In that sense, a combination of a detailed exploration of the 

lithological classes and the incorporation of in-depth local expertise to determine specific geological units 

of interest could provide more helpful information to the model and potentially improve the analysis. 

Also, another perspective will be the determination of physiographical regions of analysis (Wang et al., 

2021). These regions could be built upon geological and geomorphological information that would 

potentially allow accounting for the differences in the local geological conditions 
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Another critical point to be addressed is the aggregation of the covariates into the mapping units. Whereas 

continuous covariates were aggregated using mean and standard deviation, categorical covariates were 

aggregated through the proportions (percentage cover) of each class in every mapping unit. This type of 

aggregation technique has shown successful results when it is done in slope units (Lombardo et al., 2020). 

For the case of watersheds, geomorphologically speaking, they include larger areas and a much more 

heterogeneous landscape diversity, making the use of mean and standard deviation perhaps not the best 

representation. This was evidenced, especially in the coarser levels, where homogenous values with a 

limited number of observations were produced by the aggregation process and increased the model's 

global uncertainties. 

 

During this research, only rainfall was included as a triggering factor. However, the author considers it 

strongly important to explore the role of other initiation mechanisms such as earthquakes, volcanoes, 

glacial and anthropogenic ones related to mining activities and dam breaks. For instance, in 1994, about 

3,000 landslides, triggered by a 6.4-magnitude earthquake, reached the Páez river generating a debris flow 

event that caused severe losses. Also, another well-known case is the Amero tragedy in 1985, in which a 

torrential flow (lahar) was triggered by the eruption of the Nevado del Ruiz volcano. 

 

The temporal effects of the rainfall as a triggering factor could be potentially improved if different rainfall 

variables were integrated based on the dates in which the torrential flows occurred instead of using only a 

single rainfall representation. However, this analysis would have three main difficulties: (i) some of the 

events occurred on dates where the rainfall information was not yet available (before 1980), which might 

lead to potentially lose part of the information. (ii) when analyzing rainfall measures, especially for intense 

events (which are likely associated with the occurrence of torrential flows), minor inaccuracies in the date 

of the torrential flow might lead to a wrong interpretation of the results; therefore, a more robust 

preparation and temporal uncertainty of the inventories is crucial. (iii) aggregating the rainfall information 

into the mapping units, watersheds, in this case, would represent a challenge since the stable watersheds 

(where there are no torrential flow events) could not have the same representative rainfall value. An 

average or maximum rainfall value could be used for the specific case of those (stable) watersheds. 

7.2. Suitable mapping unit to model to represent torrential flow susceptibility 

In this research, several sources of information with different spatial resolutions and time periods were 

integrated to estimate torrential flow susceptibility. In this procedure, it is essential to highlight all the 

potential uncertainty sources involved. For example, Guzzetti et al. (2006) mentioned four primary 

sources of uncertainty: the errors in the inventory and thematic information available, lack of 

understanding of the phenomenon of interest, limitations in the techniques used to estimate susceptibility, 

and the natural variability of the phenomena. In this particular case, substantial uncertainties regarding the 

inventories and thematic information are identified. 

 

Performance-wise the susceptibility results did not depict significant differences among the five watershed 

levels. Even, after its reclassification was done according to the success rates, the different watershed 

levels showed consistency under visual inspection. However, remarkable differences were found in terms 

of uncertainties. The larger the watersheds, the higher the associated uncertainties, which was an 

important consideration when selecting the suitable mapping units for the prioritization step. Also, 

choosing the best watershed level should consider the goal of the potential application of the maps. For 

this research, the watershed levels with the lowest relative performances were selected because of their low 

uncertainty values and the more meaningful information they could provide for prioritizing areas. 
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A watershed, as a landscape unit, comprises a variety of geomorphological processes. The top parts are 

dominated by erosion processes, the middle by transport processes, and the lowest by deposition 

processes (see Figure 25). In that sense, it is expected that the torrential flows are originated in the erosion 

zones, flow through the transport zones and finally reach the deposition zones. Hence, subdividing a 

watershed according to its dominant process (at least erosion and deposition) would better represent the 

torrential flow modeling. At a national scale, this analysis would be challenging. A not-so-complex 

approach would be establishing thresholds; for example, based on topographical factors such as slope, 

relief, and their numerical distribution for each watershed (by quantiles or natural breaks), define at least 

two classes. One class would correspond with the Zone 1 and the other one with Zone 2 + Zone 3. 

Rerunning the entire analysis with these new mapping units would potentially provide better results. 

 

 

Figure 25. Watershed subdivisions. Modified from https://www.nps.gov/subjects/geology/fluvial-landforms.htm 

  

https://www.nps.gov/subjects/geology/fluvial-landforms.htm
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8. CONCLUSIONS 

In the current climate change scenario, frequencies and intensities of extreme events are expected to 

increase in the upcoming years, likely leading to an increase in torrential flow events. When there are 

exposed EaR, the society tries to respond by implementing different risk reduction measures, for which 

hazard or at least susceptibility models should be analyzed as important components within the urban 

planning regulations.  

 

During this research, an innovative data-driven approach, GAM in a Bayesian framework, was exploited 

to provide a first attempt at a torrential flow susceptibility model at a national scale in Colombia. 

Afterward, the susceptibility was analyzed in combination with several EaRs to prioritize areas prone to 

torrential flows. 

 

The susceptibility modeling involved a vast data processing component on the integration and 

parametrization of multiple data sources. For example, two torrential flow inventories were considered to 

carry out the assessment. 1363 torrential flow events of the DesInventar inventory were manually 

georeferenced based on each event’s description. Furthermore, several levels of watersheds were 

considered and compared during the analysis to find a suitable landscape partition to represent the 

torrential flows. In terms of the variables, morphometric indices, lithology, land cover-land use, and 

rainfall were retrieved, pre-processed, parametrized, and aggregated into the considered watershed levels 

as part of the dataset construction. 

 

As part of the modeling settings, a multi-collinearity assessment was conducted to leave out of the analysis 

potential variables in conflict. Mainly, substantial collinearity issues were detected among the 

morphometric indices. Then, initial exploratory models for each of the inventories were conducted to 

understand the influence and significance of the predisposing and triggering factors related to torrential 

flow susceptibility. Results highlighted variables such as slope and maximum daily rainfall for having the 

strongest influences in the model. Due to the inconsistency, it was questionable whether the role of some 

morphometric indices such as Circularity Ratio, Drainage Density, and Bifurcation Ratio could explain 

logical relations regarding the torrential flow events. Besides, the lithological variables did not show the 

expected tendencies, so it is recommended to incorporate other parametrization and aggregation 

techniques. 

 

K-fold cross-validation and AUROC metrics were implemented to address the validation and 

performance of the susceptibility model in the different levels of watersheds. Results were consistent and 

did not depict substantial differences in terms of the performances; however, they did indicate differences 

when analyzing the uncertainties. Therefore, the selected suitable watersheds were based not only on 

performance metrics but also on uncertainty and noticeably the study’s goal, which was prioritizing areas 

for spatial planning purposes. 

 

Due to the scale of the analysis, the prioritization of watersheds was done considering elements at risk, 

such as urban centers and smaller settlements within a 100-m distance from the main streams. The results 

showed that 871 and 429 watersheds for the levels 1,000 and 5,000 respectively should be prioritized. 

Therefore, detailed studies should be conducted on those areas. 
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9. ETHICAL CONSIDERATIONS 

As stated during the previous sections, the data used to develop this study is freely available on the 

internet and adequately referenced. During this research, there were no personal data or interviews 

involved at any point in the process.  

 

Two meetings with the SGC and Pontificia Universidad Javeriana took place between September and 

October 2020. Several aspects regarding their project for the torrential flow hazard at medium and detailed 

scale were discussed. However, they provided no data, and the discussed details are not treated in this 

document. 
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10. APPENDIX 

10.1. Land cover parametrization 

 
Original data New data 

Level Legend New level Name 

111 Continuous urban fabric 1 Artificial land 

112 Discontinuos urban fabric 1 Artificial land 

121 Industrial and commercial units 1 Artificial land 

122 Road and rail networks 122 Roads and railroads 

123 Ports 1 Artificial surfaces 

124 Airports 1 Artificial surfaces 

125 Obras hidraulicas 1 Artificial surfaces 

131 Mineral extraction zones 13 Mine, dump and construction sites 

132 Dump sites 13 Mine, dump and construction sites 

141 Green urban areas 1 Artificial surfaces 

142 Sport and leisure facilities 1 Artificial surfaces 

211 Non-irrigated arable land 21 Arable land 

212 Cereals 21 Arable land 

213 Oliseeds and legumes 21 Arable land 

214 Vegetables 21 Arable land 

215 Tubers 21 Arable land 

221 Herbaceous permanent crops 22 Permanent crops 

222 Bushy permanent crops 22 Permanent crops 

223 Arboreal permanent crops 22 Permanent crops 

224 Agroforestry crops 22 Permanent crops 

225 Confined crops 22 Permanent crops 

231 Pastures 23 Grassland 

232 Arboreal pastures 23 Grassland 

233 Bushy pastures 23 Grassland 

241 Annual crops associated with 
permanent crops 

24 Heterogeneous agricultural areas 

242 Annual crops associated with 
permanent pastures 

24 Heterogeneous agricultural areas 

243 Crops, pastures and natural spaces 24 Heterogeneous agricultural areas 

244 Pastures and natural spaces 24 Heterogeneous agricultural areas 

245 Crops with natural spaces 24 Heterogeneous agricultural areas 

311 Dense forest 311 Dense forest 

312 Open forest 312 Open forest 

313 Fragmented forest 313 Fragmented forest 

314 Riparian forest 314 Riparian forest 

315 Forest plantation 315 Forest plantation 

321 Herbaceous vegetation 32 Shrub/herbaceous vegetation 
associations 

322 Bushes 32 Shrub/herbaceous vegetation 
associations 

323 Transitional wooland-shrubs 32 Shrub/herbaceous vegetation 
associations 

331 Beaches, dune, sands 331 Beaches, dunes, sands 

332 Bare rocks 332 Bare rock 

333 Badlands 333 Badlands 
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334 Burnt areas 334 Burned areas 

335 Glaciers and perpetual snow 335 Glaciers and perpetual snow 

411 Inland marshes 41 Inland wetlands 

412 Peat bogs 41 Inland wetlands 

413 Aquatic vegetation 41 Inland wetlands 

421 Salt marshes 42 Coastal wetlands 

422 Salines 42 Coastal wetlands 

423 Intertidal flats 42 Coastal wetlands 

511 Water courses 51 Inland waters 

512 Water bodies 51 Inland waters 

513 Waterways 51 Inland waters 

514 Artificial water bodies 51 Inland waters 

521 Coastal lagoons 52 Marine waters 

522 Sea and oceans 52 Marine waters 

523 Estuaries 52 Marine waters 

999 Clouds 9 Clouds 

 

10.2. Potential land use 

 
Potential use New class 

Permanent intensive crops in warm weather Agriculture 

Permanent intensive crops in cold weather Agriculture 

Permanent intensive crops in semi-warm weather Agriculture 

Permanent semi-intensive crops in warm weather Agriculture 

Permanent semi-intensive crops in cold weather Agriculture 

Permanent semi-intensive crops in semi-warm weather Agriculture 

Transitory intensive crops in warm weather Agriculture 

Transitory intensive crops in cold weather Agriculture 

Transitory intensive crops in warm weather Agriculture 

Transitory semi-intensive crops in wamr weather Agriculture 

Transitory semi-intensive crops in cold weather Agriculture 

Transitory semi-intensive crops in semi-warm weather Agriculture 

Agrosilvícola con cultivos permanentes Agroforestry 

Agrosilvícola con cultivos transitorios Agroforestry 

Agrosilvopastoril con cultivos permanentes Agroforestry 

Agrosilvopastoril con cultivos transitorios Agroforestry 

Extensive pasture in warm weather Animal husbandry 

Extensive pasture in cold weather Animal husbandry 

Extensive pasture in semi-warm weather Animal husbandry 

Intensive pasture in warm weather Animal husbandry 

Intensive pasture in cold weather Animal husbandry 

Intensive pasture in semi-warm weather Animal husbandry 

Semi-intensive pasture in warm weather Animal husbandry 

Semi-intensive pasture in cold weather Animal husbandry 

Semi-intensive pasture in semi-warm weather Animal husbandry 

Dunes Conservation 

Hydrological resources conservation Conservation 

Hydrobiological respurces conservation Conservation 

Conservation and erosion recovery Conservation 
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Conservation and salinity recovery Conservation 

Salines Conservation 

Forest production warm weather Forest production 

Forest production cold weather Forest production 

Forest production semi-warm weather Forest production 

Forest production very cold weather Forest production 

Forestal protection Forest protection 

Protection - production Forest protection 

Dump Infrastructure 

Quarry Infrastructure 

Coal mine Infrastructure 

Dam Infrastructure 

Coal tailings Infrastructure 

Airport Residential areas 

Military base Residential areas 

Building Residential areas 

Urban fabric Residential areas 

Silvopasture Silvopasture 

Water body Water body 

 

10.3. Daily rainfall data preparation 

// Import boundary 

var Colombia = table2.filter(ee.Filter.inList("COUNTRY_NA", ["Colombia"])) 

Map.addLayer(Colombia) 

var lng = -75.57370054106894;  

var lat = 6.256322268469186; 

var point = ee.Geometry.Point([lng, lat]); 

 

// Import, filter and apply reducer function 

var rainfall_mean = ee.ImageCollection("UCSB-CHG/CHIRPS/DAILY") 

.select('precipitation') 

.filterDate('1981-01-01', '2020-12-31') 

.mean(); 

 

var rainfall_max = ee.ImageCollection("UCSB-CHG/CHIRPS/DAILY") 

.select('precipitation') 

.filterDate('1981-01-01', '2020-12-31') 

.max(); 

 

var rainfall_sum = ee.ImageCollection("UCSB-CHG/CHIRPS/DAILY") 

.select('precipitation') 

.filterDate('2011-01-01', '2011-12-31') 

.sum(); 

 

//Display rainfall data 

var rainfall_palette = 'ff0000, ffffff, 0000ff'; 

//Map.addLayer(rainfall_mean.clip(Colombia), {'min':2, 'max':22, 'palette':rainfall_palette}, 'Rainfall 

mean'); 
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Map.addLayer(rainfall_sum.clip(Colombia), {'min':321, 'max':9253, 'palette':rainfall_palette}, 'Rainfall 

sum') 

//Map.addLayer(rainfall_max.clip(Colombia),  {'min':2, 'max':22, 'palette':rainfall_palette}, 'Rainfall max'); 

 

// Define scale to export rainfall data 

var NomScale = rainfall_mean.projection().nominalScale() 

print('Scale in meters:', NomScale); 

//print(ui.Chart.image.series(rainfall_mean, point), ee.Reducer.mean()); 

//print(Chart.image.series(rainfall_mean, Colombia), ee.Reducer.mean()); 

//print(ui.Chart.image.series(rainfall_mean, Colombia, ee.Reducer.mean(), 1)); 

 

// Export the TIFF file, specifying resolution 

  Export.image.toDrive({ 

  image: rainfall_mean, 

  region: Colombia, 

  description: 'CHIRPS_mean_Colombia_1981_2020_5km', 

  scale:  (NomScale.getInfo()*0.05), 

  maxPixels: 10000000000000, 

  folder : 'CHIRPS' 

}); 

 

10.4. Annual rainfall data preparation 

// Get boundary 

var Colombia = table2.filter(ee.Filter.inList("country_na", ["Colombia"])) 

Map.addLayer(Colombia) 

Map.centerObject(Colombia, 5) 

 

// Import CHIRPS and boundary 

var CHIRPS = ee.ImageCollection("UCSB-CHG/CHIRPS/DAILY"); 

 

// Set start and end year 

var start_year = 1981; 

var end_year = 2020; 

  

// Make a date object 

var start_date = ee.Date.fromYMD(start_year, 1, 1); 

var end_date = ee.Date.fromYMD(end_year + 1, 1, 1); 

  

// Make a list with years 

var years = ee.List.sequence(start_year, end_year); 

 

// Calculate yearly precipitation 

var annualPrecip = ee.ImageCollection.fromImages(years.map(function (year) { 

    var annual = CHIRPS.filter(ee.Filter.calendarRange(year, year, 'year')).sum(); 

    return annual 

        .set('year', year) 

        .set('system:time_start', ee.Date.fromYMD(year, 1, 1)); 
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})); 

var title = {title: 'Annual precipitation', hAxis: {title: 'Time'}, vAxis: {title: 'Precipitation (mm)'},}; 

 

// Print the chart with the annual precipitation 

var chart = ui.Chart.image.seriesByRegion({ 

  imageCollection: annualPrecip, 

  regions: Colombia, 

  reducer: ee.Reducer.sum(), 

  band: 'precipitation', 

  scale: 5000, 

  xProperty: 'system:time_start', 

  seriesProperty: 'SITE' 

}).setOptions(title) 

  .setChartType('ColumnChart'); 

print(chart); 

   

// Calculate mean   

var annualMean = annualPrecip.mean().clip(Colombia); 

var annualMax = annualPrecip.max().clip(Colombia); 

   

// Show map 

var pViz = {min: 2000,  max: 5500,  palette: '000000, 0000FF, FDFF92, FF2700, FF00E7'}; 

  

//Map.centerObject(Colombia, 5); 

Map.addLayer(annualMean, pViz, 'mean yearly P'); 

Map.addLayer(annualMax, pViz, 'max yearly P'); 

var NomScale = annualMean.projection().nominalScale(); 

print('Scale in meters:', NomScale); 

 

//Export the image, specifying scale and region. 

  Export.image.toDrive({ 

  image: annualMean, 

  region: Colombia2, 

  description: 'annualMean_Colombia_CHIRPS', 

  scale:  (NomScale.getInfo()*0.05), 

  maxPixels: 10000000000000, 

  folder : 'CHIRPS' 

}); 

 

//Export the image, specifying scale and region. 

  Export.image.toDrive({ 

  image: annualMax, 

  region: Colombia, 

  description: 'annualMax_Colombia_CHIRPS', 

  scale:  (NomScale.getInfo()*0.05), 

  maxPixels: 10000000000000, 

  folder : 'CHIRPS' 

}); 
  



SPATIAL PREDICTING MODELING FOR OUTLINING TORRENTIAL FLOW PRONE AREAS IN THE COLOMBIAN ANDES 

68 

10.5. Watershed generation 

# Initialize with archives elevation, provincias, stream_100_raster, streamv_100_vector 

#set region 

g.region -p raster=elevation@PERMANENT 

 

#define watershed threshold/ define memory to be used 

r.watershed -s -4 -a --overwrite elevation=elevation@PERMANENT threshold=50000 

accumulation=accumulation basin=basins_50000 memory=1000 

 

#convert basins to vector 

r.to.vect input=basins_50000@PERMANENT output=basins_50000 type=area  

 

#select basins inside provincias 

v.select ainput=basins_50000@PERMANENT binput=provincias@PERMANENT 

output=basinspoly_50000 operator=intersects 

 

#set mask 

r.mask vector=basinspoly_50000@PERMANENT 

 

#clip drainages to the selected basins 

v.clip input=streamv_100r@PERMANENT clip=basinspoly_50000@PERMANENT 

output=streamv_100r_50000 

 

#export points 

v.out.ogr input=streamatt_100@PERMANENT type=point 

output=D:\ITC\0_Thesis\Watershed\Colombia\streamatt_100.gpkg format=GPKG 

v.in.ogr input=D:\ITC\0_Thesis\Watershed\Colombia\streamatt_100.gpkg 

output=streamatt_100_point 

v.clip input=streamatt_100_point@PERMANENT clip=basinspoly_50000@PERMANENT 

output=streamatt_100_point_50000 

 

#attributes to the new points 

v.db.addcolumn map=streamatt_100_point_50000@PERMANENT columns= "xcoor double precision, 

ycoor double precision, accum double precision, height integer, basinID integer" 

v.to.db map=streamatt_100_point_50000@PERMANENT option=coor columns=xcoor,ycoor  --

overwrite  

 

# extract values per points 

v.what.rast -i map=streamatt_100_point_50000@PERMANENT raster=accumulation@PERMANENT 

column=accum 

v.what.rast -i map=streamatt_100_point_50000@PERMANENT raster=elevation@PERMANENT 

column=height 

v.what.rast  map=streamatt_100_point_50000@PERMANENT raster=basins_50000@PERMANENT 

column=basinID 

 

# export points 

v.out.ogr input=streamatt_100_point_50000@PERMANENT type=point 

output=D:\ITC\0_Thesis\Watershed\Colombia\streamatt_100_point_50000.gpkg 



SPATIAL PREDICTING MODELING FOR OUTLINING TORRENTIAL FLOW PRONE AREAS IN THE COLOMBIAN ANDES 

69 

 

# filter by max accumulation in QGIS 

"accum" = maximum("accum","basinID") 

 

#check unique values with 'group stats' and 'mmqgis'-plugin to remove duplicated data 

 

# import back 

v.in.ogr input=D:\ITC\0_Thesis\Watershed\Colombia\streamatt_100_point_50000_accum.shp 

output=streamatt_100_point_50000_accum_dup 

 

#convert to raster 

v.to.rast input=streamatt_100_point_50000_accum_dup@PERMANENT 

output=streamatt_100_point_50000_accum_dupr use=attr attribute_column=basinID 

 

# stream distance 

r.stream.distance -o -s stream_rast=streamatt_100_point_50000_accum_dupr@PERMANENT 

direction=direction@PERMANENT elevation=elevation@PERMANENT method=downstream 

distance=distance difference=diffelevation 

 

# Aggregate stream information per watershed 

v.vect.stats points=streamatt_100_point_50000@PERMANENT 

areas=basinspoly_50000@PERMANENT method=maximum points_column=strahler 

count_column=strahler_count stats_column=strahler_order 

 

10.6. Terrain derivatives calculation and aggregation procedure 

#Slope 

v.rast.stats map=basinspoly_1000@PERMANENT raster=slope@PERMANENT column_prefix=slope 

method=average,stddev 

 

#Profile curvature 

v.rast.stats map=basinspoly_1000@PERMANENT raster=profile_curv@PERMANENT 

column_prefix=profile_curv method=average,stddev 

 

#Tangential curvature 

v.rast.stats map=basinspoly_1000@PERMANENT raster=tangential_curv@PERMANENT 

column_prefix=tangential_curv method=average,stddev 

 

#Relief  

v.rast.stats map=basinspoly_1000@PERMANENT raster=elevation@PERMANENT 

column_prefix=relief method=range 

 

#Rainfall 

v.rast.stats map=basinspoly_1000@PERMANENT raster=Rainfall_daily_mean@PERMANENT 

column_prefix=Rainfall_daily_mean method=average,stddev -c 

v.rast.stats map=basinspoly_1000@PERMANENT raster=Rainfall_daily_max@PERMANENT 

column_prefix=Rainfall_daily_max method=maximum,average,stddev -c 
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v.rast.stats map=basinspoly_1000@PERMANENT raster=Rainfall_annual_sum@PERMANENT 

column_prefix=Rainfall_annual_sum method=average,stddev 

10.7. Multi-collinearity test 

10.8. Multi-collinearity test for Geology 

 

10.9. Multi-collinearity test for rainfall 
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10.10. Multi-collinearity test for land cover and land use 
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10.11. Posterior 95% CI vs. posterior mean susceptibilities for all the watershed levels and models 
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