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ABSTRACT 

Tree species classification is of importance to various groups of people who manage and protect the forest. 

While some forest managers need this information to undertake the appropriate silvicultural activities, others 

need this information to identify tree species that can be harvested for timber. Tree species information can 

be used to identify and conserve endangered species, indicates biodiversity richness, and is also used to 

identify a species-specific allometric equation to estimate forest biomass and carbon. Although tree species 

information can be obtained at any time, the tree’s phenological changes make it possible to identify certain 

tree species better in a specific season than the others.  

In view of this, this research aimed to compare the results of classification of tree species using seasonal 

UAV-RGB images, summer UAV-MSS images, and its combination in a temperate forest. The object-based 

image analysis and support vector machine classification algorithm was deployed to classify eight tree species 

and a combination of tree species named others. The tree crowns were first identified using multi-resolution 

segmentation (MRS) algorithm in object-based image analysis. The accuracy of the tree crowns was assessed 

by estimating the under segmentation, over-segmentation, and overall segmentation error. The generated 

tree crowns, combined with tree species data collected from the field, were used to classify the seasonal 

UAV-RGB datasets, summer UAV-MSS dataset, and the combination of summer UAV-RGB and MSS 

datasets using a support vector machine classification algorithm. The accuracy of the tree species 

classification was then assessed by generating the confusion matrix.  

The summer MSS dataset produced a segmentation accuracy of 82%, which was the highest among the 

other seasonal dataset. The summer RGB, fall RGB, summer MSS and RGB, spring, and winter RGB 

yielded segmentation accuracy of 76%, 73%, 71%, 57%, and 31%, respectively. The result of the tree species 

classification showed that the summer UAV-RGB dataset resulted in the highest classification accuracy of 

0.77 compared to the winter, fall, and spring UAV-RGB datasets, resulting in the overall accuracy of 0.49, 

0.68, and 0.64, respectively. The summer UAV-MSS dataset yielded an overall accuracy of 0.84, while the 

combination of summer UAV-RGB and MSS yielded the best overall accuracy of 0.88. This research 

suggests that combining UAV-RGB and MSS datasets of the same season can improve tree species 

classification, better estimating species-level above-ground biomass and sustainable management of natural 

resources.   
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1. INTRODUCTION 

1.1. Background 

According to the Food and Agriculture Organization, a forest is an area of more than 0.5 hectares, with 

trees covering more than 10% (FAO, 2020). Forest provides beneficial services to humans and the 

environment. For example, wood obtained from the forest is a source of timber, energy, and fuel. Forest 

also plays a vital role in carbon sequestration, global warming, and biogeochemical cycles (Overpeck et al., 

2005). While a growing forest absorbs carbon dioxide (CO2) from the environment, degradation and 

deforestation of the forest raise the concentration of greenhouse gases (GHG) into the atmosphere. 

Forest aids biodiversity conservation, providing habitat for both plants and animal species (Aerts & Honnay, 

2011). Tropical rainforests are one of the most biodiversity-rich ecosystems globally, accommodating about 

50-90% of all plant species (Angelsen, 2001). However, temperate forests comprising fewer tree species may 

also have high levels of biodiversity, especially when considering the various life forms (birds, plants, fungi, 

etc.). The different seasonality experienced per region influences tree species differently. Some tree species 

in the temperate forest respond differently to seasons by changing their leaf colour from green to yellow 

due to the loss of chlorophyll.  It is also observed that while some trees lose their leaves in some seasons, 

other trees remain green through all the seasons. Seasonality influences biodiversity (Armstrong, 2010) as 

some of the sequential fluxes in the abundance of species are related to seasons (Shimadzu et al., 2013). 

Biodiversity is the variability among life forms, including microorganisms, plants, and animals in different 

ecosystems, such as terrestrial, aquatic, marine, etc. (Schwenk et al., 2012). Various biodiversity hotspots can 

be found worldwide, with unique clustered plant species diversity (Gaston, 2000; (Leyequien et al., 2007). 

Loss of biodiversity reduces species connectivity and damages the ecosystems, leading to the extinction of 

some species in local populations and the disruption of ecological services (Schwenk et al., 2012). On the 

other hand, species diversity often increases productivity, including biomass and carbon storage (Chen et 

al., 2018). 

While biodiversity includes all life forms, tree species diversity at a particular location is a way to estimate 

the richness of tree species. However, acquiring complete information of tree species at a specific geographic 

area can be a complicated process. Although identifying tree species can be complex, it is essential to evaluate 

forest ecosystems and their related services as it helps protect, manage, and assess the resilience and 

vulnerability of the forest (Sheeren et al., 2016). Acquiring the exact location of a tree is essential to carry 

out biomass estimation using species-specific allometric equations. Biomass estimation using species 

information yields a better biomass estim ate than using a generic allometric equation for carbon estimation. 

Tree species data can be obtained through field inventory, species distribution models (SDM’s), or remote 

sensing data.  

Field inventory is the best and accurate way to map tree species. However, field observations are costly in 

time, labour, and resources. Also, some areas may be inaccessible to field workers (Modzelewska et al., 

2020). SDM’s have also been used to derive maps of existing tree species. The maps from SDM’s provide 

the probability of the presence of tree species within a geographic location but not the exact location of tree 

species (Modzelewska et al., 2020). SDM’s forecast the species using habitat indicators and existing species 

data (Brus et al., 2012). The remote sensing approach is an alternative to field inventory and the SDM 

approach to map tree species. The remote sensing approach utilizes the statistical relationship that may exist 
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between the remote sensing data and the trees in the forest (Gibbs & Herold, 2007). Previously, studies that 

mapped tree species investigated the influence of spatial resolution of the remote sensing data (Nagendra, 

2001). However, most of these studies used a pixel-based approach to classify the tree species (Franklin et 

al., 2000; Brandtberg, 2002; Erikson, 2004).  

The traditional classification of satellite imagery is a pixel-based approach based on the probability that a 

particular pixel belongs to a defined class (Mather & Tso, 2016). The pixel-based process examines the image 

pixels spectral characteristics without considering the pixels spatial and contextual properties (Weih & 

Riggan, 2010). Using the traditional classification algorithms for medium and coarse resolution remote 

sensing images yields moderate classification results (Gao & Mas, 2008; Congalton & Green, 2019). 

However, using the traditional classification algorithms to classify very high resolution (VHR) remote 

sensing images results in the “salt and pepper” effects , leading to misclassification. The “salt and pepper” 

effect is due to the high variability implicit in VHR remote sensing images. Object-Based Image Analysis 

(OBIA) is the preferred option for analysing VHR remote sensing images. The OBIA is employed to detect 

individual objects in an image dataset. The object-based approach analyses the images’ spectral, spatial, and 

contextual properties to improve classification accuracy (Weih & Riggan, 2010). After obtaining the image 

objects, a classification algorithm including machine learning algorithms can be used to build a model for 

the classification task. Machine learning algorithms are algorithms that create models without explicit 

programming. The models developed are then used to make predictions. Machine learning algorithms 

identify the trends and patterns within the input data to continuously enhance the output model to improve 

predictions (Data-flair, 2020). Finally, the algorithm developed is used to classify the image objects acquired 

from the object-based approach to avoid the “salt and pepper” effect and improve the classification result. 

This is done by generating features from the input data to be included in the training and classifying of 

images. 

Developments in satellite remote sensing technology led to very high spatial resolution (VHR) images. Also, 

advances made in machine learning resulted in further probes into species classification. Several researchers 

have coupled machine learning and VHR images to identify tree species in many geographical locations. For 

example, Viennois et al. (2016) used eight VHR satellite images (Ikonos, GeoEye, Quickbird, and Worldview 

2) between 2001 and 2014 in a time series analysis to investigate the accuracy of satellite reflectance for tree 

species mapping in Bali, Indonesia and obtained accuracy between 66% and 80%. Wang et al. (2018) also 

used Pléiades-1 satellite images to classify tree species in Lingding Bay of the Pearl River Estuary, China. In 

their research, they combined OBIA and machine learning classification algorithms to classify Pléiades-1 

data. They harnessed the potential of OBIA to extract image objects and compared support vector machine 

(SVM), random forest (RF) and decision tree (DT) machine learning algorithms to classify tree species to 

determine the classification algorithm among the tested algorithms. They reported an overall accuracy of 

82%. Cho et al., (2015) used an SVM classifier for tree species classification using WorldView-2 images and 

identified three dominant tree species in the Dukuduku forest in South Africa, obtaining an accuracy of 

89.3%.  

Recent research uses Unmanned Aerial Vehicles (UAVs) to acquire high spatial and spectral resolution 

satellite images for forest mapping (Näsi et al., 2016; Nevalainen et al., 2017). UAV is a cost-effective way 

for data capturing and operates on user demand. UAV images are processed using a photogrammetric 

approach to produce 3-D point information from 2-D imagery. The 3-D points are used to generate 

orthophoto, Digital Surface Model (DSM), and Digital Terrain Model (DTM). The output of the 

photogrammetric workflow can be deployed to analyse and monitor forest ecosystems at preferred periods. 
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Xu et al. (2020) used a random forest classifier to classify tree species by combining multi-spectral, texture 

and point cloud metrics from the UAV dataset to delineate tree species. Their research resulted in an 

accuracy of 80.2% and identified eight dominant tree species. Eshetae (2020) also classified tree species 

using UAV-RGB images and support vector machine classifier algorithms in a Temperate Forest in the 

Netherlands to develop a model to classify tree species and reported a classification accuracy of 78%. Onishi 

& Ise (2018) also used UAV-RGB images captured in Kyoto, Japan and deep learning to classify seven 

dominant tree types and reported an accuracy of 89.0%.  

UAVs can obtain a multi-spectral and multi-temporal dataset to identify the phenological changes in the 

tree life cycle. UAV-based multi-spectral data are beneficial for tree species discrimination as it includes 

bands such as near infra-red and red edge. Research indicates that near infra-red and red edge bands are 

sensitive to the type of vegetation, the water content, and the tree’s health (Chang-Hua et al., 2010, Glass, 

2013). The benefit of red edge and near infra-red bands for tree species classification is well explained by 

Immitzer et al. (2012) in their research on tree species classification of very high spatial resolution. Their 

research indicates that red and near-infrared reflectance values show higher values for some tree species, as 

shown in Figures 1-1 below. 

Figure 1-1: Mean spectral signatures of 10 tree species (source: https://www.mdpi.com/2072-4292/4/9/2661/htm). 

https://www.mdpi.com/2072-4292/4/9/2661/htm
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Figure 1-1 above shows that the mean of the spectral signature for ten tree species is close in red, green, 

blue and coastal, implying low separability for the ten tree species when the red, green, coastal and blue 

bands are used. However, the near infra-red and red edge bands improve the class separability because the 

spectral signature is very different which helps separate the tree species and, hence, the tree classification. 

As the tree goes through the various phenological changes during the seasons, there is spectral variation, 

and this can also aid in identifying tree species (Sheeren et al., 2016). Natesan et al. (2019) explored the 

benefit of classifying tree species using three-year multi-temporal UAV-RGB images and reported that using 

multi-temporal images improves tree species accuracy compared to using a single seasonal UAV-RGB 

dataset. Their time series analysis for tree species classification resulted in a classification accuracy of 80%. 

Dymond et al. (2002)  and Mickelson et al. (1998) also analysed multi-seasonal Landsat datasets to classify 

tree species. They concluded that multi-temporal seasonal data yields a better result than using a single 

season image. The phenological changes of trees captured by remote sensing help identify the tree in 

different seasons because not all species react the same way and at the same time on different seasons, as 

shown in Figure 1-2 below.  

 
Figure 1-2: A deciduous tree under different seasons (https://www.dkfindout.com/us/earth/seasons/four-
seasons/) 

From Figure 1-2 above, the tree goes through different phenological changes due to the seasons. The colour 

of the leaves of deciduous trees changes in fall, and the leaves shed in winter. The leaves grow again in 

spring, having different colours and in summer become green, unlike evergreen plants that are green through 

all seasons. These influence the reflectance of the images captured at each season, and this difference when 

capture can help improve the classification of the tree species. This is especially useful in identifying 

deciduous trees that change colour and shed their leaves under different seasons. Since the information of 

the tree is stored during both leaf-on and leaf-off seasons, it helps reduce errors when the tree is identical 

in a particular season.  
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Some researchers also utilise textural information to help differentiate between the various  tree species. The 

texture divides images into sections of interest, like species groups, and categorises  those sections. Haralick 

et al. (1973) identified 14 different texture features that are helpful to aid the classification of images. 

However, Hall-Beyer (2017) identified that while some texture features are helpful in the image classification 

task, others are not useful as it creates confusion between some classes.  

Gray Level Co-occurrence Matrix (GLCM) is a statistical method that can describe the texture properties of 

an image using the spatial relationship of the pixels (MathWork, 2020). Gray Level Difference Vector 

(GLDV) evaluates the probability density function for changes observed between image values at positions 

spaced by pixels and angle (Khazenie & Richardson, 1993). GLCM and GLDV have been used to improve 

the classification of tree species. Deur et al. (2020) classified tree species in a mixed deciduous forest and 

used GLCM texture features as input. From the analysis carried out, they concluded that GLCM is the most 

significant texture feature. Abdollahnejad and Panagiotidis (2020) also classified tree species in a mixed 

forest and obtained an overall accuracy of 84% using GLDV features as input.  

Other researchers utilize image integration to improve tree species classification (Sahu & Parsai, 2012; 

Ghassemian, 2016). Image integration is a procedure that utilizes the advantage of one dataset to comple me n t 

the limitation of another dataset to obtain a better result than using a single dataset (Alkem a et al., 2013). Sothe 

et al. (2019) probed the use of hyperspectral images acquired by UAV and photogrammetric point cloud to classify  

12 major tree species using support vector machine classifier in a fragmented subtropical forest in Southern Brazi l. 

From their result, using only hyperspectral bands resulted in an overall accuracy of 57% with a kappa index of 

0.53. However, including the point cloud dataset resulted in an overall accuracy of 72.4% with a kappa index of 

0.70. Nevalainen et al. (2017) also studied UAV-based photogram metry and hyperspectral performance for 

individual tree detection and tree species classification in the boreal forest. Their research yielded an overal l 

accuracy of 95% with an F measure of 0.93 when both random forest and multilayer algorithms were used.  

Tree species information is valuable to various people involved in forest and tree species management. 

Accurately estimating all tree species is the desire of all tree species classification tasks,  yet this remains a 

daunting task that depends mainly on the data available, the complexity of tree species present in the study 

area, and the map’s purpose. For instance, a forest manager who wants to know the distribution of tree 

species and overview the tree species to determine the appropriate silviculture practices to undertake would 

be interested in obtaining a higher overall accuracy. However, a forest manager interested in identifying 

timber tree species would want to identify those tree species with higher accuracy than the other tree species 

present (Duncker et al., 2012). Hence, a compromise must be made to obtain a reasonable overall accuracy 

for all tree species or high accuracy for some tree species of relevance. This decision depends on the user 

of the tree species classification map and the purpose of the map.  

1.2. Problem statement  

Optical remote sensing images provide freely available datasets that can be used to map tree species of both 

small and large areas. However, cloud cover, spatial and spectral resolution of the satellite image influences 
the tree species discrimination. UAV has been used to collect cloud-free, high-spatial-resolution images that 

have improved tree species classification.  

Most research uses UAVs to classify tree species, either the red-green-blue (RGB) or multi-spectral bands. 
Natesan et al. (2019) classified tree species using UAV-RGB images. Their research proposed combining 

multi-spectral and RGB UAV images for tree species classification to classify tree species such as birch, 

beech, pine, fir, and spruce. Combining UAV multi-spectral and RGB datasets for tree species mapping is 
a research area less investigated. Hence, this research was conducted to explore which seasonal dataset is 



 

13 

best for tree species classification and examine the benefit of combining multi-spectral and RGB UAV 

images for tree species classification.  

Forest managers will benefit from such research as it will help them decide when to capture images and 

which tree species can be identified with such datasets. 

1.3. Research objectives 

The overall objective of this research is to assess the performance of multi-seasonal UAV-RGB and UAV-

multispectral (MSS) images and their combination for tree species discrimination in a mixed temperate forest 

using a support vector machine classification algorithm.  

Specific Objectives: 

The specific objectives are: 

1. To assess the tree crown delineation accuracy from seasonal UAV-RGB (winter, spring, summer, 

and autumn) and UAV-MSS (summer) images.  

2. To compare the classification accuracy of seasonal UAV-RGB datasets for tree species 

discrimination in deciduous and coniferous forests.  

3. To assess the classification accuracy of the UAV-multispectral dataset for tree species 

discrimination in deciduous and coniferous forests.  

4. To assess the effect of combining summer UAV-RGB and UAV-MSS datasets on the accuracy of 

tree species discrimination in deciduous and coniferous forests.  

1.4. Research questions 

1a. What are the segmentation accuracies of UAV-RGB seasonal datasets (winter, spring, summer, and 

autumn)? 

1a. What is the segmentation accuracy of the UAV-MSS dataset? 

2.    Which seasonal dataset gives the highest classification accuracy in separating individual tree species  

       in the deciduous and coniferous forest?  

3. What is the tree species classification accuracy for UAV-MSS imagery? 

4. What is the accuracy of the tree species classification when the summer UAV-MSS and RGB dataset 

      are combined? 

1.5. Conceptual diagram  

The boundary of the internal system for this research is Haagse Bos in the Netherlands. The sun is part of 

an external system that emits rays to the forest. While some of the emitted rays are reflected, others are 

absorbed or transmitted by the atmosphere. The atmospheric conditions determine the seasons that affect 

the trees’ photosynthetic activities, which influences the colour of the leaves.  

The transmitted rays from the sun interact with the internal system (forest), which comprises different tree 

species. This interaction can be detected by the sensors on-board the UAV sensor, and this was analysed 

during this research to identify the various tree species in Haagse Bos.  

Figure 1-3 below shows the interaction between the various system in a conceptual diagram. 
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Figure 1-3: Conceptual diagram of system interactions 
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2. STUDY AREA, MATERIALS, AND METHOD 

This section describes the study area for this research, the materials used to gather the relevant information 

required, and the data processing methods.  

2.1. Study area 

The study was carried out at Haagse Bos forest, one of the oldest forests in The Netherlands and located in 

Enschede, Twente Municipality. Haagse Bos forest is about 334 hectares, but the section selected for this 

analysis is about 43 hectares. It is geographically situated between 476500mN to 477700mN and 261000mE 

to 262000mE, as shown in Figure 2-1 below.  

 
Figure 2-1: Map of the study area, Haagse Bos, Enschede. 

This section of the Haagse Bos forest is managed by the NGO “Natuurmonumenten”, which are into nature 

conservation and recreation. Nature is the habitat of animals and plants; hence, not protecting nature may 

lead to the extinction of diverse plants and animals in the Netherlands for years (Natuurmonumenten, 2021). 

Natuurmonumenten protects and preserves the remaining nature and cultural heritage and the future nature 

area in the Netherlands to protect plants and animals. Natuurmonumenten manages the existing nature 

conservation that has diverse tree species and plant trees in other areas. Trees are also planted when there  

is the need to fall a tree due to disease to reduce carbon emissions. Selective thinning is carried out every 

about every six years. Although thinning is carried out, natural regeneration with human silvicultural 

activities is part of the Natuurmonumentent management practices (Tenaw, 2011). The study area has 

broadleaf trees as the dominant tree species.  

Haagse Bos comprises young and matured mixed deciduous and coniferous tree species. Typical examples 

of deciduous and coniferous species to come by in this forest includes Douglas Fir (Pseudotsuga menziesii), 
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Norway spruce (Picea abies), Scot pine (Pinus sylvestris), European Larch (Larix decidua), Oak (Quercus robur), 

European white birch (Betula pendula), European beech (Fagus sylvatic), and Alder (Alnus glutinosa).  

The terrain is relatively flat with a mean annual rainfall of 841mm, mean annual minimum and maximum 

temperature of  6.6oC and 13.5oC. The month of November records the highest rainfall in the year. The 

coldest and warmest months in the year are usually January and August, respectively.  

Haagse Bos was chosen for this study because it was possible to fly the UAV for data collection, although 

there are restrictions for flying the UAV in the Netherlands. Also, the Haagse Bos forest had a good 

composition of different tree species and was easily reachable for fieldwork due to its proximity to the 

University of Twente.  

2.2. Material 

Different types of equipment were used for the data collection. Table 2-1 below shows the equipment that 

was used to acquire the data needed for this research.  

 
    Table 2-1: Field instruments and their use on the field. 

Instrument Use 

Ground Control point (GCP) markers To establish temporary GCP 

Differential Global Navigational Satellite Systems 

(DGNSS) Real-Time Kinematics (RTK) For measuring coordinates of GCPs 

Tablet/Mobile phone For navigation and data collection  

DJI Phantom 4 Pro For acquiring the UAV-RGB images 

Sequoia multi-spectral sensor For acquiring the multi-spectral images 

 

UAV data and tree species information were collected and used for further analysis to answer the research 

questions. The fieldwork was carried out between August and October 2020. The software for data 

collection and processing are shown in 2-2 below.   

     Table 2-2: Software and its uses 

Software  Use 

Pix4D Capture UAV flight planning 

Avenza mobile app For navigation and capture of tree species information 

DJI 4 Go UAV configuration 

yED Graph Editor  Flowchart 

Pix4Dmapper 4.6 Processing UAV images  

eCognition Developer 10.0 Image segmentation, classification, and accuracy assessment 

Google Earth Pro  Extracting coordinate (e.g., location of GCP) 

ArcMap 10.8 Preparing maps 

Python (Scikit learn) Parameter tuning for image classification  

Microsoft word For report writing  

Microsoft excel Making graphs  

Mendeley Desktop  Referencing  
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2.3. Method 

The method deployed in this study involves four main steps. Step 1 was a reconnaissance survey and field 

data gathering which includes observing and identifying tree species present. Also, the optimal location to 

place the ground control points was identified. Step 2 was processing the UAV data that was acquired to 

obtain the UAV outputs (orthophoto, DSM, and DTM). The DSM and DTM were used to estimate the 

canopy height model (CHM), which was also used as input in the machine learning classification algorithm. 

The image segmentation was carried out to determine the tree crown in Step 3. Finally, step 4 involves image 

classification using machine learning and estimation of accuracy of the classified tree species. Figure 2-2 

below shows the flowchart of the method used.  

  
Figure 2-2: Flowchart of method 

2.4. Fieldwork 

2.4.1. Pre-fieldwork desk study  

Before the data collection, an overview of the study area was observed on Google Earth Pro. Using Google 

Earth Pro, the open area to place the temporary GCPs was identified, and the coordinates were recorded 

on an android phone using the Avenza app. A visual inspection was used to identify some tree species in 

the study area, and the data were compared with the information collected by Eshetae (2020).  

After obtaining the relevant information during the pre-fieldwork desk study, the fieldwork was carried out.  
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2.4.2. Reconnaissance survey 

The reconnaissance survey was carried out during the fieldwork to verify the information obtained during 

the desk study. For instance, the location of the GCPs identified during the desk study was confirmed. Also, 

the tree species identified were verified, and some corrections were made to improve the data obtained 

during the desk study. 

It appeared that some tree species were few in numbers (such as red beech, chestnut, etc.), where others 

were many. In addition, broadleaved trees are the dominant tree species compared to coniferous tree species.  

The reconnaissance survey helped to obtain a broader perspective of the study area. After the reconnaissance 

survey, I planned the sampling design for data collection.  

2.4.3. Sampling design 

A purposive sampling scheme was used to collect the field data. A purposive sampling scheme is a sampling 

scheme that is based on the researcher’s judgment. The purposive sampling method was used because of 

prior knowledge of the study area. Purposive sampling enables enough data to be collected in less time.  

2.4.4. UAV data acquisition  

UAV has gained popularity for data collection due to obtaining high spatial and temporal resolution images 

(Yao et al., 2019). The UAV-RGB and multi-spectral datasets were the two different data types used for this 

research. The UAV-RGB and MSS sensors were used to collect the summer dataset.  

DJI Phantom 4 Pro drone with RGB and Sequoia cameras was used for the data collection. Figure 2-3 below 

shows the UAV with RGB and Sequoia camera and AIRINOV target for data collection. 

 
Figure 2-3: Sequoia camera mounted on DJI Phantom 4 Pro and AIRINOV target 

Figure 2-3 above shows that the DJI Phantom 4 Pro UAV was modified to hold the multi-spectral Sequoia 

camera during the data acquisition. The Sequoia camera is a multi-spectral camera used to obtain data in the 
green, red, red-edge, and near infra-red bands compared to the regular Phantom 4 Pro camera used to get 

information red-green-blue (visible) bands. Also, the Sequoia camera has a 16-bit megapixel RGB camera 

enabling it to store an extensive range of values that can help distinguish features compared to the DJI 
Phantom 4 Pro, which has an 8-bit megapixel (senseFly, 2021). The AIRINOV target was used for the 

radiometric calibration of the Sequoia sensor before and after acquisition of the MSS dataset. 

The GCPs were then placed at the optimal location identified during the pre-fieldwork and verified during 

the reconnaissance survey. Fourteen GCPs were distributed over the study area to be used to orient the 

acquired UAV images. Figure 2-4 below is a sample of the GCP.  
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Figure 2-4: Recording 3-D coordinate of GCP with DGNSS RTK in an open space 

The three-dimensional (3-D) coordinate of the GCP placed in an open area, as shown in Figure 2-4 above, 

is collected using a DGNSS RTK instrument.  

Before the commencement of the flight, the compass was tuned, and the home location of the UAV was 

set using DJI Go 4 software. The quality of UAV output generated is dependent on the point clouds 

generated, which is obtained when using high forward and side overlaps, although this increases the data 

acquisition time (Obeng-Manu, 2019). Large forward and side overlaps were used to get quality UAV output 

for the analysis, as shown in Table 2-3 below. 

 

     Table 2-3: UAV flight plan  

UAV flight Parameters Value 

Flight Pattern  Double grid 

Camera angle  90 degrees 

Speed Slow 

Front Overlap 90% 

Side Overlap 80% 

Flight Height 120 m 

Resolution  4.6 cm/pixel 

 

With the flight plan above and GCP placed at the appropriate location, the UAV images were acquired with 

RGB and sequoia multi-spectral cameras.  

The summer UAV-RGB and UAV-MSS datasets were acquired on 4th August 2020. Dataset for September 

2019, February 2020, and May 2020 were available from the previous studies carried out by Eshetae (2020), 

Gaden (2020), Bediako (2020) and this data was collected with the RGB sensor. The details of UAV images 

of earlier seasons are shown in Table 2-4 below.  

Table 2-4: Data from previous studies 
Season Data type Resolution  Date capture  

Fall UAV-RGB images and GCP coordinates 4.6 cm/pixel 12th October 2019 
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Winter UAV-RGB images and GCP coordinates 4.9 cm/pixel 14th February 2020 

Spring UAV-RGB images and GCP coordinates 4.58 cm/pixel 15th May 2020 

 

To guarantee all datasets were consistent and to enable comparison to be carried out for the different seasons 

and datasets, the same flight parameters (flight height and overlaps) as those used by previous studies. The 

output of the UAV data was used as input for the tree species mapping. 

2.4.5. Tree species identification  

The UAV images collected during the UAV image acquisition were processed using Pix4DMapper to obtain 

the orthophoto, DSM, and DTM. The orthophoto was uploaded into the Avenza mobile app for collecting 

the tree species data. Due to the error inherent in mobile phone GPS, the map was printed on A3 paper and 

laminated to identify the tree species in the field.  

The study area has homogeneous parts with clusters of similar tree species, while other regions had a mixture 

of tree species. A minimum of two field points were generated for each tree species class, and plots with a 

radius of 12.62 m per field point were established. The tree species within the sampling radius that were 

identified on both the printed orthophoto and the field were recorded. A total of 238 trees species 

information was collected.  

In addition, 500 random points were created using ArcMap in the areas with homogenous and mixed 

species. This was done to increase the number of samples as some tree species were underrepresented with 

less than 30 trees. The random points that intersect with the trees that were already recorded in the sampling 

radius were deleted to avoid double counting of the same tree. Out of the 500 random points  generated, 

186 were used to collect tree species information.   

Some non-tree species data were gathered to aid the classification. Water, grass, bare ground (soil) and 

undergrowth were merged and labelled as non-tree. A total of 87 non-tree samples were collected. 

Some tree species information from previous studies carried out at the same study area was also available. 

To obtain a good distribution of the field data, 132 tree species information available from previous studies 

was added. A total of 643 field points were used for the analysis, as shown in Table 2-5 below.  

Table 2-5: Tree species and samples collected. 
Category Tree species Scientific name Sample collected  

 

 

Broadleaved 

European white birch  Betula pendula 60 

European red beech Fagus sylvatica 14 

European beech Fagus sylvatic 90 

Chestnut Castanea sativa 8 

Mountain ash Sorbus aucuparia 8 

Oak  Quercus robur 97 

 

Coniferous  

Scot pine  Pinus sylvestris 59 

European larch  Larix decidua 50 

Douglas fir Pseudotsuga menziesii 86 

Norway Spruce Picea abies 84 

Non-tree  -  -  87 

Total    643 

 

The tree species information was acquired between 5th and 23rd October 2020 
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2.5. Data processing  

The data processing was carried out in four different phases, namely:  

• Structure from Motion (SfM): to obtain the orthophoto, DTM, and DSM from the UAV images   

• Object-Based Image Analysis (OBIA): to get the tree crowns from the object segments created 

from the image segmentation process. 

• Tree species classification: the pre-processing and classification of input data to obtain the classified 

tree species. 

• Accuracy assessment and statistical analysis: to analyse the result from the tree species classification. 

2.5.1. UAV-RGB image processing  

The 2-D UAV images obtained during the UAV flight can be processed using structure from motion (SfM) 

technique to 3-D information (Alcantarilla et al., 2012). SfM is possible due to advance made in computer 

visions couple with photogrammetric workflow (Kachamba et al., 2016). The 3-D information are extracted 

by identifying the same features on the overlapping images through stereo vision (Nex & Remondino, 2014). 

For the successful implementation of SfM to identify the features of interest, the images must have overlaps 

and be captured at different location as shown in Figure 2-5 below.  

Figure 2-5: Overlapping images observing the same features at different location (Westoby et al., 2012). 

The features of interest, shown in Figure 2 above, are first identified, traced and matched from one image 

to the other to compute their position using Random Sample Consensus (RANSAC) algorithm (Fischler & 

Bolles, 1987). The features of interest identified are termed as tie points and these are used to estimate the 

initial position of the camera, scene geometry, and the coordinate of the feature (Westoby et al., 2012). The 

number and quality of the tie point generated are dependent on the image resolution, number of overlapping 

images used, and setting used when processing the data (Pix4D, 2021). The initial results are iteratively 

improved using least square minimization (Snavely et al., 2008). The initial results obtained are in a relative 

coordinate system, hence has no scale and orientation in relation to the real world. The initial results are 

converted from relative image space to coordinate system on ground using ground control points through 

Bundle Block Adjustment (BBA) (Westoby et al., 2012). The BBA is also used to evaluate the geo-refencing 

error and decrease the variation between the observed and predicted image locations using a non-linear least 

square approach (Nex & Remondino, 2014). The generated point clouds are classified into points on ground 

and other points. The points on ground are used to determine the DTM using an interpolation algorithm 

while all the points generated are used to generate the DSM. The DSM and image block generated are used 

in an orthorectification process to generate the orthophoto (Nex & Remondino, 2014). According to ESRI 

(2016), the orthorectification process involves eliminating relief effect from an image. 
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The acquired UAV images (four RGB and one MSS) were processed using Pix4D mapper software, which 

works by incorporating the SfM algorithm (Pix4D S.A., 2017). This was carried out in three main steps: 

• Initial processing: the tie points (referred as key points in Pix4D) were detected and matched form 

one image to the other. The camera calibration and point cloud densification were automatically 

executed through the Automatic Aerial Triangulation. The BBA was then used to geo-reference the 

dataset using the GCPs loaded and the control points (CP) used to calculate the georeferencing 

error (Pix4D, 2020). A quality report generated is used to determine if the georeferencing error is 

acceptable before the next phase of the analysis.  

• Point cloud and mesh: this phase increases the density of the 3D points generated at the initial 

processing step to increase the accuracy of DSM, DTM, and orthophoto that will be generated in 

the next phase. The point cloud densification image scale was set to full to utilize the original image 

size. This increases the processing time but yields better results. The point density was set to optimal 

and minimum number of matches set to 7.  

• DSM, DTM and orthophoto: the dense point clouds generated where used for the generation of 

DTM, DEM, and orthophoto. The automatic resolution of 1 GSD was selected, noise filtering and 

use surface smoothing for the DSM selected. The inverse distance weighting algorithm was selected 

for the DSM generation and the merge tile selected for both the DSM and orthophoto.   

The process was repeated for all seasonal UAV-RGB. The RMSE was 0.005 m for the fall dataset, 0.08 for 

the summer dataset, 0.02 for the winter dataset, and 0.04 for the spring dataset. The UAV orthophoto per 

seasonal dataset is shown in Figure 2-6 below.  

 
Figure 2-6: Orthophoto of the summer, spring, fall, and winter dataset. 
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2.5.2. UAV-MSS image processing  

A project was created for the UAV-MSS data processing in Pix4D and all the images, including the image 

of the calibrated targets. Coordinate of the images were then selected. The ‘Ag multispectral’ template was 

chosen for the processing. The Index calculator in the processing option was checked to make sure the 

radiometric calibration target data was automatically detected for all the multispectral bands , then finally , 

the process was started. The workflow for UAV-RGB was repeated for the MSS using the MSS settings 

stated above. The georeferencing error was 0.059m for the UAV-MSS dataset. Figure 2-7 below shows the 

output of the UAV-MSS processing. 

 
Figure 2-7: Green, red, near infra-red, and red edge bands from the summer MSs dataset. 

2.6. Data analysis 

2.6.1. Pre-processing  

The same flight parameters used during the previous study were used during the image acquisition. However, 

the images had slightly different spatial resolutions. To obtain similar image resolution, all the orthophoto 

datasets were filtered with a 3*3 low pass filter to remove eliminate noise and tiny image objects that may 

be created during the segmentation process (Kejriwal & Singh, 2016; Gao et al., 2017).  The orthophotos 

were then resampled to 10 cm using the nearest neighbour algorithm to conserve the spectral properties of 

the pixels. 10 cm was chosen for the resampling because the study comprised of both young and mature 

forests 

2.6.2. Image segmentation  

Object-based image analysis (OBIA) is a procedure that extracts image object from an image. The recent 

availability of very high-resolution images which contain more information that cannot be adequately 

processed with pixel-based analysis brought a shift in image analysis, from pixel-based to object-based (Zhu 

et al., 2016; Wang et al., 2018).  

The input dataset was loaded into eCognition software. The normalised Digital Surface Model (nDSM) layer 

calculation algorithm created the canopy height model (CHM) for all the seasons before initiating the OBIA. 

The nDSM algorithm determines the arithmetic difference between the DSM and DTM. The nDSM output 

is an essential layer that aid to discriminate between elevated and non-elevated datasets, which can be used 

to improve the classification (eCognition, 2020).  Figure 2-8 above shows the CHM for the UAV-RGB 

dataset.  
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Figure 2-8: CHM of the summer, spring, fall, and winter dataset. 

Image segmentation is the primary step when carrying out OBIA. The multi-resolution segmentation (MRS) 

algorithm was used to obtain homogenous objects because the algorithm decreases the object heterogeneity 

while exploiting the object homogeneity as tree crowns are homogenous compared to the surrounding 

shadows and undergrowth (Baatz & Schäpe, 2000). The MRS is a button-up merger method that iteratively 

grows by combining the small segments into a bigger segment until the homogenous threshold of the image 

object is achieved or exceeded.  This homogenous threshold is part of the input parameters (such as scale, 

shape, compactness, image layer) that the user decides. Below is the significance of the parameters used: 

• The scale parameter is a parameter that defines the maximum heterogeneous image segment that 

can be obtained. Scale is the parameter that directly controls the size of the image objects (tree 

crown). When the scale parameter is large, a large image object with high heterogeneity is produced 

and vice versa.  

• Compactness indicates the compactness of the image objects. A high compactness value results in 

creating compact image objects. 

• The shape parameter helps to include the influence of spectral values on the heterogeneity of the 

segment created. Reducing the shape creates image segments that have less spatial homogeneity 

and heterogeneity.  

• Image layer weight determines the influence of the input layer band on the segmentation process 

(Landmap, 2021).  
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Although the relevance of the parameters is known, identifying the optimal parameters requires a lot of 

experimentation which is time-consuming. The Estimator Scale Parameter (ESP) tool was used to determine 

the optimal scale parameter to generate the image segments. It allows the user to define the step size, which 

controls how the segmentation parameters are increased (Drǎguţ et al., 2014).  The ESP tool creates image 

objects into three levels (i.e., from finer segments to courser segments) to calculate the local variance of the 

image objects. The output of the ESP analysis is shown in Figure 2-9 below.  

 
Figure 2-9: ESP result for fall RGB and summer MSS dataset. 

From Figure 2-9 above, the black circles are the scale parameters identified when the ESP plugin was used 

to identify the parameters for the image segmentation. The scale parameters of 24, 32, 44, 55, 57, and 72 for 

Summer RGB dataset (shown in Figure 3-2a) and 32, 43, 50, 62, 74, 83, and 93 (shown in Figure 3-2b) for 

the Summer MSS dataset. These selected scale parameters were used for different segmentation tests in 

eCognition. These scale parameters were chosen because of the rate of change curve, as they represent the 

highest peaks. The high peaks indicate the scale parameters at which the resulting image objects depict a 

homogenous image segment. Figure 3.2 describes the variations in local variance shown in the red curve 

and the rate of change with increasing scale parameter, shown in the blue line. These selected scale 

parameters were used for image segmentation and the procedure repeated for the other datasets. The scale 

parameters that yielded the best segmentation accuracy were selected as the optimal scale parameter from 

the test. The optimal scale parameters were 72 for the summer RGB image, 64 for the fall RGB image, 54 

for the spring RGB, 37 for the winter RGB, and 74 for summer MSS images. The scale parameters such as 

24, 32, 43, 44, 50, 55, 57, and 62 resulted in a lot of under-segmentation while 83 and 93 resulted in over-

segmentation.  

After identifying the optimal parameter for the segmentation, the MRS was used to generate the segment, 

and the result is shown in Figure 2-10 below.  
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Figure 2-10: Ruleset for segmentation (in red) and classification with the resulting segment.  

Figure 2-10 above shows the ruleset used and the image segment created for the fall RGB dataset. A ruleset 

is a group of individual processes used to carry out a specific task (eCognition, 2019). The image segment 

created from the MRS is shown in blue colour.    

2.6.3. Manual digitising of tree crown  

The manual digitising of individual tree crowns was performed after obtaining the output from the UAV 

data processing. The digitising was carried out on the resampled images. The manually digitised tree crown 

was used as a reference to determine the segmentation accuracy by comparing it to the image segment 

created.  

The input for the digitising was the canopy height model and orthophoto. The crowns of tree species that 

were identified on the orthophoto were digitised using ArcMap. However, tree crowns that were difficult 

to determine mainly due to the combination of tree crowns were identified using the swipe tool to view the 

CHM and orthophoto simultaneously. Also, the individual UAV images aided in the manual delineation. 

Figure 2-11 below shows a section of the manually digitised image objects. 

  
Figure 2-11: A mapping showing the manually digitised segments 
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Figure 2-11 above shows the result of manually segmenting about 150 segments for segmentation 

accuracy. 

2.6.4. Segmentation accuracy  

The segments created during the image segmentation process were assessed to determine how the segments 

fit the tree crown. This is essential because the segment represents the tree crown; hence it is vital to get the 

tree crown as accurately as possible to improve the classification.  

The accuracy assessment of image objects was carried out using the area estimation approach proposed by 

Clinton et al. (2010). This approach is based on equations 1-3 below.  

 
The error is determined by estimating the mean of over-segmentation and under-segmentation. After 

evaluating the error, the accuracy was determined using equation four below.  

Segmentation accuracy = 1 − Total detection Error (segmentation error) − − − − − 𝑒𝑞4 

2.6.5. Field data split  

The tree species information captured on the field was exported to excel. The classification task required 

numerical data as input; hence the exported tree species information was recorded as shown in Appendix 1. 

The tree species with samples less than 30 were grouped and classified as other species. Thirty was chosen 

as the threshold because that is the minimum sample required for the sample to be normally distributed.  

The recorded field data was then imported to python. The train test split function in the Scikit-learn package 

was used to split the field data. Seventy percent of the data was used for training and thirty percent for 

validation. The training and validation excel sheet was then converted to shapefile to be used in eCognition 

classification. 

2.6.6. Feature extraction 

Features that have information to separate one tree species from the other are essential when classifying 
image objects using machine learning. A mixture of spectral and textural features was extracted using 

eCognition because research has identified that multiple features based on predefined selection criteria may 

improve classification accuracy (Xie et al., 2019; Cao et al., 2018). While some research reported that GLCM 
helps improve classification (Deur et al., 2020), others reported that GLCM does not improve tree species 

classification (Yang et al., 2019). All the spectral and texture information available in eCognition was utilised 

to determine if it can enhance the tree species classification is shown Appendiz 2.  

The texture features available on eCognition are (Mryka Hall-Beyer, 2017):   
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• The angular second motion is also referred to as energy. It provides the sum of squared elements 

in the statistical method used. A high angular second motion implies the pixels are similar and 

homogenous.  

• Contrast: indicates the local variation existing in an image.  

• Correlation: indicates the linearity of the image. A high correlation indicates a high amount of linear 

structure.   

• Dissimilarity: indicates the local intensity variation defined as the mean of the absolute difference 

between the neighbourhood pairs.  

• Entropy: is a measure of the information content. It indicates the randomness or homogeneity of 

the image intensity.  

• Mean: refers to the mean of the pixel values in a window.  

• Standard deviation: refers to the standard deviation of the pixels in a window.   

• Homogeneity: indicates the uniformity of elements in the image. 

The above texture information can be extracted using many statistical approaches. Gray Level Co-

Occurrence Matrix (GLCM) and Gray Level Difference Vector (GLDV) are the two statistical approaches 

used to estimate the texture features by considering the spatial relationship of the pixels. GLCM calculates 

texture properties by determining how often pixel pairs with specific values and a specific spatial relationship 

occurs in an image (MathWorks, 2020). GLDV is used to determine the probability density function for 

discrepancies between image function values at locations spaced d pixels apart and at an angle.  

All the spectral and textural features available in eCognition were exported for further analysis as shown in 

Appendix 2. Features with high correlation were dropped because features with high correlation have similar 

information. This reduces the processing time. The remaining features were used in a parameter tuning test 

to identify the best features that improve the tree species classification for the seasonal RGB, summer MSS 

and combination of summer MSS and RGB datasets.  

The combination of RGB and MSS datasets was achieved by appending the blue band from the RGB dataset 

to the MSS bands. Although both MSS and RGB datasets have red and green bands, the data range for the 

MSS dataset enables it to improve class separability. Hence the red and green bands from MSS was used.  

To identify the optimal parameters for the classification, the training and validation dataset was loaded into 

the project created for each seasonal dataset in eCognition. The assigned class by thematic layer algorithm 

was used to allocate image objects to the training/validation samples. In so doing, the training/validation 

data, which is point data, is converted to the corresponding image object that overlaps spatially. The updated 

supervised sample statistics algorithm was used to append all the features per dataset. The result was 

converted and exported to CSV using export supervised sample statistics.  

The features that were identified per seasonal dataset to be used for the classification is presented in  

Appendix 3. Figure 2-12 below shows the summer RGB feature used for the tree species classification. 
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Figure 2-12: Features for summer UAV-RGB dataset classification 
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From Table 2-7 above, different features are used for different seasons. Different features are used for each 

seasonal dataset because each seasonal dataset has different spectral and spectral properties per tree type. 

Hence, the features that can help identify trees in summer may not identify tree species in winter or fall.  

It is also possible to use vegetation indices as input during the tree species classification. Vegetation indices 

are sensitive to the tree’s chlorophyll content and have been used as input for the classification task. However, 

these indices cannot be estimated using the UAV-RGB dataset because that sensor can only provide 

information about red, green, and blue bands and not red-edge and near infra-red, which are usually required 

to estimate vegetation indices. The multi-spectral dataset, on the other hand, has the red-edge and near infra-

red band. The MSS dataset was obtained in summer, and in summer, the trees, undergrowth, and grass are 

green. Observing some vegetation indices (normalised difference vegetation indices and difference vegetation 

index) for some tree species and non-tree species (undergrowth and grass) showed little or no variation.  

2.6.7. Tree species classification  

According to Duque et al. (2017), classification can determine the relationship between a set of categorical 

variables using quantitative methods. Classification can be carried out using either the traditional approach 

or machine learning. Advances made in machine learning make it possible to extract hidden information in 

the data, improving the classification result (Carrio et al., 2017).  

Support Vector Machine classification (SVM) algorithm was used to classify the tree species because 

research has found that it results in higher classification accuracy compared to maximum likelihood 

classifier. It can be used for complex modelling and modelling of high dimensional feature spaces 

(Heumann, 2011; Xie et al., 2019). Also Eshetae (2020), who carried out tree species classification research 

on the same study area, recommended that an SVM classifier be used to classify UAV data in Haagse Bos 

as it yields higher classification accuracy than the decision tree and random forest algorithms. The SVM 

classification algorithm separates the number of classes by finding the best hyperplane using support vectors 

from data points obtained from the training dataset (Xie et al., 2019) as shown in Figure 2-13 below.  

 
Figure 2-13: Possible planes that can separate classes (a) and optimal plane that can separate classes (source: 
https://towardsdatascience.com/svm-feature-selection-and-kernels-840781cc1a6c)   

Figure 2-13 above shows two graphs; graph a shows two classes (one in blue circle and the other in red 

square) that can be separated by many lines shown in brown and graph b shows the classes separated by the 

support vectors. In graph a, the lines shown in green are the hyperplanes that are used to separate the classes. 

Although all the hyperplanes in graph a can separate the classes, the optimal hyperplane in graph b separates 

the classes with better accuracy. The optimal hyperplane is identified with the aid of the support vector. The 

support vector determines the maximum margin of each class, which is used to determine the optimal 

hyperplane. The hyperplane is determined by applying an appropriate kernel type.  

a 
b 

https://towardsdatascience.com/svm-feature-selection-and-kernels-840781cc1a6c
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The kernel type can be used to solve both linear and non-linear related problems. By incorporating diverse 

kernel types, both linear and non-linear related problems can be solved. The non-linear associated kernel 

problems are unravelled by projecting the training data into a high-dimensional feature space (Bruzzone & 

Persello, 2009), as shown in Figure 2-14.  

 
Figure 2-14: Projecting the training data into a high-dimensional feature space (source: http://i.imgur.com/WuxyO.png). 

Figure 2-14 above shows an example of projecting training data onto a high dimensional space to improve 

the class separability. This makes the SVM classifier a commonly used algorithm.  

Although many kernel types exist, eCognition utilises only the linear and radial bias function kernel (RBF). 

RBF requires the user to define two (2) inputs, namely cost of constraint (C) and gamma (g), while linear 

kernel requires one input, namely cost (C). The C parameter controls the classification errors associated with 

the training data, g determines the extent of the influence of support vectors on the boundary (Edregosa et 

al., 2011). Hence, high g values imply the support vector and boundary of decision are close. Also, low C 

values suggest a poorly fitted model, while high C values indicate an overfitted model (Bruzzone & Persello, 

2009).  

To determine the optimal C and g parameters to be used for the classification, a parameter tuning 

experimentation was developed in python using the training and validation data created in section 2.6.4. The 

training/validation data was loaded into a python environment. The scikit-learn package, one of the 

packages used for machine learning tasks in python, was used. The SVM classifier was called from the Scikit-

learn package. The input dataset had different ranges; while the red, green, and blue bands are between 0 

and 255, the GLDV contrast is between 1 and 8240. Hence the dataset was normalized to have the same 

range (0 – 1) to optimise the model training (Hsu et al., 2003). After normalizing the data, the parameter 

tuning workflow was designed to consider linear and radial basis function (RBF) kernel types, different 

regularisation (C), and gamma. 

Two kernel types were used in the experimental setup to determine the best kernel type for the input dataset. 

For the C, I tested the following values: 1, 10, 20, 50, 100, 200, 500, 1000; and tested 0.001, 0.01, 0.1, 0.2,  

0.3, 0.4, 0.4, 0.5, 0.5, 0.6, 0.7, 0.8, 0.9 for g.  

The parameter tuning aims to identify the best combination of features and parameters to obtain the best 

classification output. Although different feature combinations can identify a specific species, the study was 

http://i.imgur.com/WuxyO.png
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carried out to determine the best classification accuracy while identifying the individual species that can be 

mapped with high accuracy. The best overall classification output implies most tree species were correctly 

classified. The features were added while observing the overall accuracy produced from the resulting 

parameters to identify the highest classification accuracy resulting from the features used. The best features 

were then recorded to be used for classification in eCognition.  

Appendix 3 shows the features per seasonal dataset used for the tree species classification while the parameter for the 
classification is shown in Table 2-6 below.  

Table 2-6: Parameters per seasonal dataset for SVM classification 

Season  Kernel type C Gamma 

Winter RGB  Radial basis function  0.6 100 

Spring RGB  Radial basis function  0.3 10 

Summer RGB Radial basis function  0.1 10 

Fall RGB Radial basis function  0.1 10 

Summer MSS Radial basis function  0.2 10 

Combination of RGB Summer and MSS Summer  Radial basis function  0.1 10 

 

The parameters per seasonal dataset shown in Table 2-6 above were recorded to be used for the classification 

task. 

A variable was created in eCognition to save all the configurations during the training process. With the best 

parameters per season determined, the supervised classification algorithm was loaded, and the training 

operation was chosen to train the model. The created variable is loaded in the configuration tab. The features 

that resulted in the best classification accuracy during the parameter tuning were selected as the feature to 

use. The features were then normalised, and the SVM classifier was chosen. The kernel type, gamma, and 

C, which were obtained during the parameter tuning to get the best classification accuracy were then entered.  

Based on the configuration, the model was trained, and the configuration was saved. The supervised 

classification algorithm was loaded, and the apply operation was selected. The variable that now has the 

training configuration was loaded and executed to obtain the classified tree species. The algorithm to apply 

the model is shown in the Appendix.    

The tree species classification was carried out for the winter, spring, summer, and fall RGB datasets. The 

summer MSS dataset and a combination of summer MSS and Summer RGB were also classified.  

2.6.8. Classification accuracy assessment 

The classification accuracy was estimated by comparing the classified tree species to the validation samples 

to generate an error matrix. The user accuracy (UA), producer accuracy (PA), overall accuracy (OA), kappa 

statistics (k), and F measure were estimated.  

The OA was estimated by the ratio of the sum of the major diagonal to the total number of samples. The 

UA was estimated by the ratio of the number of correctly classified samples for every class to the total 

number of samples that have been classified as that class, while the PA was estimated by the ratio of the 
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number of rightly classified samples for every class to the total number of samples for that class. The kappa 

statistics and F measure was estimated using equation 4 and 5 below. 

𝑘 =
(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑  𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 −𝑐ℎ𝑎𝑛𝑐𝑒  𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡)

(1−𝑐ℎ𝑎𝑛𝑐𝑒 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡)
                                                                                           eqn 5 

𝐹 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗
(𝑈𝐴∗𝑃𝐴)

(𝑈𝑠𝑒𝑟 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦+𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦)
                                                                               eqn 6           

Each accuracy assessment provides different information. The overall accuracy gives a general overview of 

the classification result but does not give any class information about error or accuracy. However, the user 

accuracy and producer accuracy provide such information. The user accuracy indicates how representative 

the classified map is on the ground, while producer accuracy refers to the accuracy based on the 

classification. The overall accuracy indicates the general classification error. On the other hand, Kappa 

statistics indicate the classification that was in agreement with the validation data and the agreement by 

chance (Congalton & Green, 2019).  F measure also provides a means to combine PA and UA into a single 

measure that depicts both accuracies.   
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3. RESULTS 

This chapter presents the results based on the objectives (i.e., image segmentation, classification, and 

accuracy assessment). 

3.1. Segmentation of images 

3.1.1. Multi-resolution segmentation  

The scale parameters mentioned were used in the multi-resolution segmentation for all input images through 

a trial-and-error approach to determine the best scale parameter per seasonal dataset. A sample set of the 

segment created per scale parameter was compared to the tree crowns manually digitised to determine the 

segmentation accuracy. The best scale parameter produced the lowest segmentation error compared to the 

other parameters when the segmentation accuracy was estimated. The parameters used for the segmentation 

is shown in Table 3-1 below. 

Table 3-1: Segmentation parameters used for all seasonal datasets 

 Summer 

RGB 

Winter 

RGB 

Spring 

RGB  

Fall 

RGB 

Summer 

MSS 

Summer RGB 

and MSS 

scale 72 40 58 65 74 70 

Shape 0.6 0.6 0.6 0.6 0.6 0.6 

compactness 0.8 0.8 0.8 0.8 0.8 0.8 

 

After obtaining the multi-resolution segmentation algorithm parameters, the algorithm was executed to get 

the image segments. Figure 3-1 below shows a sample segmentation for the RGB fall dataset.  

 



 

35 

Figure 3-1: Segmentation output for UAV-RGB fall dataset.  

From Figure 3-1 above, some under-segmentation and over-segmentation can be observed. This research 

was conscious of the fact that there are no flawless parameters when segmenting image objects. Creating 

image segments when using even the optimal parameters will always result in some under-segmentation and 

over-segmentation. However, it is essential to reduce the segmentation error to the minimum possible.  

The other segmentation results are shown in the Appendix. 

3.1.2. Accuracy assessment of segments 

The segments produced from the multi-resolution segmentation were compared to the digitised segments 

using equation 3 (refer to section 2.7.1).  

Due to under segmentation and over-segmentation observed in Figure 3-1, there is the need to estimate the 

overall accuracy of the image segment. The under segmentation (equation 2) and over-segmentation 

(equation 1) was calculated and used as input to determine segmentation error (equation 4). Table 3-2 below 

shows the segmentation error and accuracy per dataset. 

Table 3-2: Segmentation accuracy of all input datasets 

 Winter 

RGB  

Spring 

RGB 

Summer 

RGB 

Fall 

RGB 

Summer 

MSS 

Summer MSS 

and RGB 

Total segmentation error  0.69 0.43 0.24 0.27 0.18 0.29 

Segmentation accuracy  0.31 0.57 0.76 0.73 0.82 0.71 

 

Table 3-2 above shows that the summer UAV-MSS dataset resulted in the lowest segmentation error of 

0.18, while the summer UAV-RGB dataset had the lowest segmentation error of 0.24 among the RGB 

datasets. The Winter dataset had the highest segmentation error of 0.69, while the spring UAV-RGB dataset 

resulted in 0.43. The combination of summer MSS and RGB produced a segmentation error of 0.29. 

3.2. Tree species classification  

Features per seasonal dataset shown in Appendix 3 and parameters from Table 2-16 were used for the 

seasonal tree species classification. 

3.2.1. Summer UAV-RGB tree species classification 

The result of the summer UAV-RGB tree species classification is shown in Figure 3-3 below. 
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Figure 3-2: Summer UAV-RGB tree species classification 

Figure 3-3 above is the summer tree species classification, which shows a good tree species distribution. 

Oak was the major tree species in the study area, as can be seen in Figure 3-3 above. Misclassification can 

be observed between beech and most of the tree species, with the main misclassification between oak and 

beech. The non-trees were mostly misclassified. 

During the field work, larch was identified in the middle and lower right section of the study are and this 

was also classified. Douglas Fir can also be identified in the middle section of the study area. Pine is 

distributed in the lower section of the study area. Birch seems to be over-classified, while most of the other 

tree species were misclassified.  

Comparing the UAV RGB dataset, the summer tree species classification produced the best classification.  

3.2.2. Winter UAV-RGB tree species classification 

The result of the winter UAV-RGB tree species classification is shown in Figure 3-4 below. 
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Figure 3-3: Winter UAV-RGB tree species classification 

Figure 3-4 above is the winter tree species classification, which shows a poor tree species classification. 

Misclassification can be observed between oak and most tree and non-tree species. Some of the non-tree 

identified in the summer was classified predominantly as oak and beech, which was an error. Most of the 

larch at the central part of the area was also not identified in the winter. Figure 3-4 above shows undesirable 

results for the tree species classification. Comparing with the other seasonal dataset, the winter UAV-RGB 

dataset produced the worst tree species classification.  

Although the tree species was mostly misclassified, the birch at the lower-left corner was identified.  

3.2.3. Spring UAV-RGB tree species classification 

The result of the spring UAV-RGB tree species classification is shown in Figure 3-5 below. 
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Figure 3-4: Winter UAV-RGB tree species classification 

From Figure 3-5 above, spring tree species classification shows misclassification of the birch tree species. 

From the field visit and summer RGB classification, oak was the dominant species and not birch as depicted 

by the spring dataset. Other tree species were identified in the spring dataset better than in the summer and 

winter datasets. Oak was under-classified. Non-tree was predicted with a higher degree in the spring dataset 

than in the summer dataset. Pine, Douglas fir, and spruce were also misclassified; however, larch in the 

lower left side was identified.  

3.2.4. Fall UAV-RGB tree species classification 

Figure 3-6 below is the result of the spring tree species classification.  
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Figure 3-5: Fall UAV-RGB tree species classification 

From the fall tree species classifying shown in Figure 3-6 above, oak can be seen taking over most classes 

in the fall classification result. The misclassification is seen more between oak and beech. The non-tree class 

was predicted better when compared to the winter dataset. The prediction of birch was improved in the fall 

dataset when compared to the spring dataset. The larch in the lower left was misclassified.  

3.2.5. Summer UAV-MSS and combination of RGB and MSS tree species classification 

The result of the tree species classification is shown in Figure 3-7 below.  
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Figure 3-6: Summer UAV-MSS tree species classification 

The summer UAV MSS classification shows a better classification of the tree species when compared to the 

other UAV-RGB datasets.  Non-tree was correctly predicted. The distribution and location of larch and 

birch agree to what was observed on the field. The spruce at the lower-left corner was predicted accurately 

by the MSS dataset but not by any of the UAV-RGB datasets.  

The summer UAV-RGB and MSS result does not vary much except for some little change in the distribution 

of the tree species. The result of the tree species based on the combination of UAV-RGB and MSS is also 

shown in Figure 3-8 below.  
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Figure 3-7: Tree species classification of fall UAV-RGB dataset. 

3.3. Accuracy assessment  

The user accuracy, overall accuracy, overall accuracy, and kappa statistics are shown in Table 3-3 below. 

Table 3-3: Tree species classification accuracies for all datasets. 

 

From Table 3-3 above, the overall accuracy (OA) of RGB, spring RGB, summer RGB, fall RGB, summer 

MSS and combination of summer MSS and RGB were 0.49, 0.64, 0.77, 0.68, 0.84, and 0.88 respectively. 

The highest classification accuracy for the RGB dataset was Summer (0.77), with winter showing the lowest 

classification accuracy (0.49). Both MSS datasets (MSS alone and RGB and RGB) show higher accuracy 

than the RGB dataset. However, the combination has higher accuracy than the MSS classification alone. 
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The MSS and RGB dataset combination accurately identified beech and others, while the MSS accurately 

identified spruce and others. 

Oak showed the most misclassification when observing the spring, summer, and summer RGB and MSS 

combination. The highest misclassification for the summer RGB was identified to be between beech and 

oak, with about 15% of oak samples classified as beech and 61% of oak correctly classified. The spring RGB 

accuracy also shows high misclassification between beech and oak, about 15% of the oak was classified as 

beech, and 68% of the oak was correctly classified. The remaining oak misclassification was observed 

between non-tree, other, pine, birch, and larch. About 14% of the oak tree species data was classified as 

beech, and 74% of the oak was correctly classified according to the combination of summer RGB and MSS 

accuracy.  

The winter RGB resulted in the least classification accuracy, hence the most misclassification. Oak, other, 

non-tree, pine, birch, and spruce tree species were observed as the tree species with the highest 

misclassification in the fall RGB, as can be seen from accuracy table. About 46% and 31% of oak and spruce, 

respectively, were correctly classified. Also, about 15% of the oak was classified as beech, and 47% of beech 

was classified as oak. The F measure estimated based on the UA and PA is also shown in Table 3-4 below. 

Table 3-4: F measure per tree species per seasonal dataset 

 

As  shown in Table 3-4 above, the F measure for all tree species in winter was less than 0.5, with oak the best 

classified and other tree species with the lowest F measure. Comparing all the datasets, birch was best 

classified in the spring dataset. According to Table 3-3, the MSS outperformed the RGB dataset while the 

combination of UAV-RGB and MSS also outperformed the MSS. The summer RGB dataset also obtained 

the highest F measure for 5 of the eight tree species.  
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4. DISCUSSION 

The chapter discusses the results of the study. The primary objective of this research is to assess the 

performance of multi-seasonal UAV-RGB and UAV-multispectral (MSS) images and their combination for 

tree species discrimination in a mixed temperate forest using a support vector machine classific ation 

algorithm. The first section (4.1) of this chapter reflects on the finding of the first objective. The second 

section (4.2) reflects on objectives 2, 3, and 4. The limitation of the research is discussed in section 4.3.  

4.1. Segmentation accuracy of the seasonal dataset 

The first research question was to determine the segmentation accuracy of the seasonal UAV datasets. The 

results are discussed in 4.1.1 and 4.1.2. 

4.1.1. Segmentation of images and accuracy assessment 

The MRS accuracy obtained was different per the seasonal dataset. The variation in segmentation accuracy 

may be influenced by the image resolution, scale parameter, shape, compactness, and segmentation 

algorithm used (Möller et al., 2007). The difference in tree crown size, little or no gaps between adjacent 

crowns, lack of ample spectral separation between tree crowns of different species, and variation of spectral 

separation between tree crowns of the same species also influences the segmentation accuracy (Gomes & 

Maillard, 2016; Pu & Landry, 2012). The different segmentation accuracy revealed that the tree crown 

obtained from the image segmentation varies per seasonal dataset.  

To determine the influence of seasonality on the input dataset for the segmentation process, the same tree 

over different seasons was analysed to observe the spectral variation due to phenological changes, as shown 

in Figure 4-1 below. 

Figure 4-1: Pictorial view of some deciduous tree samples in the four seasons. 

Figure 4-1 above shows the different behaviour of deciduous trees in each season. In February, the trees, 

especially deciduous trees, show different reflectance per season since leaves have fallen off. According to 

National Geography, each season has its light, temperature, and weather pattern (National Geography, 
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2021). Winter in the Netherlands is approximately between 21st December to 20th March and is the season 

where the leaves on deciduous trees are gone. The absence of leaves on deciduous trees results in the UAV 

sensor imaging the forest floor instead of the leaves, as seen in Figure 4-1 above because the branches on 

the deciduous trees are empty. This makes it difficult to segment the tree crowns accurately.  

Fall is between 21st September and 20th December, and it is the transition from summer to winter. During 

fall, photosynthetic activities in plants are reduced because daylight becomes shorter, and the temperature 

becomes considerably colder, unlike in summer (National Geography, 2021). This changes leaf colour and 

shedding of deciduous tree leaves, thus affecting the segmentation accuracy because the leaf on a particular 

tree shows different colours, hence different spectral information. Not all leaves on one tree change colour 

the same day or even week, so the leaf on one particular tree may show different colours, hence different 

spectral information. The varying spectral details of the same tree may result in splitting the tree crown into 

different crowns. 

Spring is approximately between 21st March to 20th June, and it is the season where trees that shed their 

leaves start growing their new leaves. In spring, day and night are approximately equally spaced, enabling 

the plants to get enough light and other conditions favourable for photosynthesis (National Geography, 

2021). Fresh leaves come out but not all at the same time, some species start earlier than others. In one 

crown, all the leaves on the branches have the same colour but the colour may not all come at once. Those 

at the end of branches usually come a bit later. The different colours of leaves in each season at different 

phenological stages affect the tree’s spectral signature. Figure 4-2 below shows an example of under 

segmentation and over-segmentation.  

 
Figure 4-2: Comparing MRS segments (blue) and manually digitized segment (red) for under segmentation and over-
segmentation of tree crown.                 

Figure 4-2 above shows under segmentation and over-segmentation caused by the phenological changes of 

the tree species. The spring and fall RGB dataset mostly underestimate tree crown created. 

Summer yields higher segmentation accuracy for the RGB dataset. This can be attributed to the fact that 

the leaves in one tree have mostly regained uniform colour, and different species may have slightly different 

colours. While some tree species are reddish, others are bright green, yellow-green, and dark green, which 

the UAV sensor can detect. Hence, this improves the segmentation process for the summer dataset.  

The UAV-MSS dataset resulted in a higher segmentation accuracy than the UAV-RGB dataset, although 

both datasets were obtained in Summer. The MSS dataset has bands such as red edge and near infra-red, 

which aids the tree crown segmentation by improving the difference between the tree species. Also, the 
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MSS dataset is a 16-bit integer dataset, making it possible to store an extensive range of values compared to 

RGB, which is 8 bits. The bands and storage capacity of the MSS dataset make it possible to represent 

different trees with values unique for each object, hence improving segmentation accuracy.  

Although UAV-MSS data type makes it possible to identify different features, combining it with UAV-RGB 

results in image objects with a higher segmentation error (0.29) than the UAV-MSS segmentation error. The 

high error for the summer MSS and RGB combination may be due to the different values for the same 

feature. While the blue band from the RGB dataset is an 8-bit integer data (storing values between 0 and 

255), the MSS dataset is a 16-bit integer data (storing values between 0 and 65535). The different values per 

band per tree crown may influence the segmentation process as the same tree crown may show different 

value ranges.  

To observe the difference in the digital number (DN) between the MSS and RGB datasets, the DN numbers 

are observed between red and green bands of the RGB and MSS dataset, as shown in Figures 4-3 below. 

 
Figure 4-3: Comparison of Summer RGB and MSS Red and Green dataset for some selected trees 

From Figure 4-3 above, Tree 1 has 77 and 93 for Summer RGB Green and Red respectively, while Summer 

MSS Green and Red values were 23,664 and 19,066. These are DN for the same trees, but the difference in 

data type results in different values for the same trees, which may confuse the segments created.  

All the seasonal datasets were resampled and filtered before the image segmentation to reduce the noise 

inherent in very high-resolution imagery. Resampling the imagery to 10 cm is inconsistent with research 

carried out by Okojie (2017), who reported that 30 cm is suitable for tree crown segmentation. However, 

this research was carried out in a forest comprising both old and young forests. However, this is consistent 

with research carried out by Gaden (2020) on the same study area. Filtering the images reduces under 

segmentation, improving the overall segmentation as the filtering averages the spectral values (ZhiYong et 

al., 2018). This is consistent with Esong Effiom (2018) research, which reported that resampling and filtering 

very high resolution satellite images prior to segmentation improve segmentation accuracy.  
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4.2. Tree species classification of UAV-RGB dataset 

The second research question was to determine which season UAV-RGB yield the highest segmentation 

accuracy in separating the tree species. The results are discussed in 4.2.1 below.  

4.2.1. UAV-RGB tree species classification 

The summer UAV-RGB dataset resulted in the highest overall classification accuracy (0.77) among the 

UAV-RGB dataset. From the F measure, the summer dataset had a high F measure for 5 of the 8 tree 

species, with spring having a high F measure of 2 tree species (oak and beech) and fall with a high F mask 

for birch. 

When looking at the individual species, most of the misclassification was observed between oak and the 

other tree species, however the dominant confusion between oak and beech. This is consistent with research 

carried out by Bjerreskov et al. (2021), who also reported high errors between oak and other tree species. 

The confusion may be related to oak and beech being the two dominant tree species in the study area. Also, 

the colour of beech and oak in summer are similar, as shown in Figure 4-4 below.  

 
Figure 4-4: Oak and beech profile of all features used for summer UAV-RGB dataset. 

From Figure 4-4 above, the colour of oak and beech are very similar; hence both tree species show similar 

spectral reflectance. It is, therefore, difficult to separate oak and beech using spectral features as shown in 

Figure 4-5 below.  

 
Figure 4-5: Oak and beech profile of all features used for summer UAV-RGB dataset. 

From Figure 4-5 above, all the spectral features (mean and standard deviation) used showed little or no 

separability because both trees species have similar colours hence similar spectral reflectance and features. 
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GLDV contrast (especially GLDV contrast blue), a texture feature, shows separability between oak and 

beech. Beech has a fine texture, while oak has a coarse texture (Rocheleau, 2009). The difference in the 

texture of oak and beech is identified by GLDV contrast. GLDV contrast blue shows the highest 

separability, followed by GLDV contrast CHM, GLDV green, and GLDV contrast red. Hence, to classify 

beech and oak only in the study area, a GLDV contrast of blue and CHM could be used.  

However, beech and oak are not the only tree species to classify. Hence features that can identify many tree 

species present and improve the overall classification accuracy was added. Although the spectral features 

could not differentiate oak and beech, they can separate spruce, birch, Douglas fir, larch and pine as shown 

in Figure 4-6 below.  

 
Figure 4-6: Spectral profile of some features and tree species 

Figure 4-6 above shows some tree species class separability using the mean and standard deviation of green, 

blue, CHM, and red. According to Figure 4-6, some level of separability can be observed between larch, 
birch, pine, Douglas fir, and spruce when the mean blue band and CHM are used. However, low separability 

exists when the mean and standard deviation of the red, green, CHM, and blue bands were observed in 

Figure 4-5. To identify the diverse tree species present, a compromise was made such that the features that 

identified most of the tree species with higher overall accuracy were used.  

The summer dataset were inconsistent with research suggesting that the mid and late spring mono-temporal 

dataset yields the best tree species classification accuracy  (Weil et al., 2017;  Grybas & Congalton, 2021). 

The disparity may be attributed to the different tree species under consideration. Also, the different type of 

forest used for the study may contribute to the disparity as the complexity of the forest contribute s to the 

accuracy of the tree species.  

Larch also shows high accuracies (UA, PA, and F measure) for spring and summer seasonal dataset 

indicating that Larch is best classified in spring and summer. Larch is a deciduous tree which looks like an 

evergreen tree in the spring and summer. The needles of larch in spring and summer are green but these 
needles turn to bright yellow in fall and drops in the winter. Larch was expected to yield high accuracy in 

fall due to distinct bright yellow needles, however, the accuracy of larch in spring and summer was higher 

than that in fall as shown in Figure 4-7 below.  
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Figure 4-7: Larch in spring, summer, fall and winter. 

Although Figure 4-7 shows the distinct yellow needles of larch, this was not identified by the UAV probably 

due to the time the image was obtained. The fall image was obtained on 12th October, which is about 3 

weeks in fall season. The distinct bright yellow needles may not have completely turned. Hence this may 

affect the accuracy of larch.  

The F measure accuracy matrix shown in Table 3-3 shows that the deciduous tree species in general shows 

higher accuracy than the evergreen tree species in winter. The result is inconsistent with research carried out 

by Kim et al. (2009), who reported that leaf off (winter) season images improve coniferous tree species 

classification. Persson et al. (2018) also classified tree species using multi-temporal Sentinel 2 and 

commented that coniferous tree species were best classified during the leaf offseason.  

Although oak and beech are the two main dominant species, birch produced the highest user accuracy 

among the winter tree species. This can be attributed to the fact that when birch tree shed their leaves in 

the winter season, the needles on the birch remain and this usually has a distinct white colour. Figures 4-8 

below shows sample of birch trees from the UAV images.  

 
Figure 4-8: Birch trees in winter 

Figure 4-8 above shows a section of birch trees from the winter UAV orthophoto. The distinct colour of 

beech in winter makes it possible to identify them compared to the other tree species. GLCM contrast is 
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the feature that shows the highest separability between birch and the remaining tree species in winter. Figure 

4-9 below shows the spectral profile of GLCM contrast for all three species.  

 
Figure 4-9: GLCM contrast spectral profile for tree species 

Figure 4-9 above shows that the GLCM contrast of blue, green, and red has high separability for birch, 

indicating that birch trees can be classified with high accuracy compared to the other tree species in February  

when GLCM contrast is used.  

4.3. UAV- MSS for tree species classification 

The third and fourth research question is to investigate the accuracy of UAV-MSS and the combination of 

UAV-RGB and MSS.  The results are discussed in 4.3.1 below.  

4.3.1. UAV-MSS tree species classification 

The UAV-MSS tree species classification produced an accuracy of 83% higher than all the seasonal UAV 

datasets. This result is inconsistent with research carried out by Michez et al. (2016) and Lisein et al. (2015), 

who compared RGB and MSS sensors for tree species classification and concluded that RGB outperforms 

the MSS dataset. Both studies commented that the poor performance of the MSS sensor could be attributed 

to the redundant sensitivity to NIR. The disparity can be attributed to the type of sensor used for the 

research. Michez et al. (2016) and Lisein et al. (2015) used a colour infrared (CIR) MSS sensor, which has 

three bands (green, red, and near-infrared). This study used a Sequoia camera that has four bands and does 

not experience the redundant sensitivity problem.  

4.3.2. Combination of UAV-RGB and MSS tree species classification 

The combination of UAV-RGB and UAV-MSS produced the highest overall accuracy of 88%. The accuracy 

obtained is lower than research carried out by Lisein et al. (2015), who classified tree species in a mixed 

forest and obtained an accuracy of 91.2. however, the accuracy is higher than the accuracy obtained by 

Michez et al. (2016), who obtained an accuracy of 84.1% when classifying tree species using the combination 

of UAV-RGB and UAV-MSS. Both studies considered five tree species classes, while this research 

considered eight tree species (7 individual images and the grouping of some tree species. The number of 

classes influences the accuracy of classification. The spectral confusion between classes become greater 

when the number of classes increases, and when some tree species show similar phenological changes over 
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the time period that the research was carried out (Michez et al., 2016). This research opted to identify the 

various tree species in the study area rather than choose a tree species sample that shows the best separation 

(Fassnacht et al., 2016).  

Comparing the UAV-MSS tree species classification and the combination of UAV-RGB and MSS, the 

combination of UAV-RGB and MSS yielded a higher accuracy. Also, the F measure shows that UAV-RGB 

and MSS dataset had higher F measures for 5 of the eight tree species while the UAV-MSS had the highest 

F measure for the one tree species. The only difference between the UAV-MSS and the combination of 

RGB and MSS is the blue band; hence the blue band may be the reason for the increased inaccuracy. 

Research carried out by Grybas & Congalton (2021) to classify tree species remarked that the feature 

importance testing suggested that the blue band is very significant for tree spec ies classification but not 

present in the MSS dataset. In their study, key et al. (2001) also identified the blue to be vital for tree species 

discrimination due to the sensitivity to chlorophyll and insensitivity to shadows (Milas et al., 2017).  
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5. CONCLUSION AND RECOMMENDATION 

5.1. Conclusion 

The research aimed to explore which seasonal dataset is best for tree species classification and examine the 

benefit of combining multi-spectral and RGB UAV images for tree species classification. The method used 

for this research included acquiring seasonal UAV images and tree species information. The UAV images 

were processed to obtain orthophoto, DSM, and DTM. Image segmentation was the applied on the seasonal 

dataset to obtain the segment per seasona dataset. The created image segments were then used to extract 

features to be used for the classification. The field data was also split to training and validation samples. The 

optimal features per seasomnal dataset where then used with the training data to classify the seasonal dataset.  

The accuracy of the seasonal tree species classification was then calculated.  

Below are the conclusions per the research question and recommendations.  

Question 1a. What are the segmentation accuracies of UAV-RGB seasonal datasets (winter, spring, 

summer, and fall)?  

The winter dataset resulted in the highest segmentation error (i.e., 56%) and lowest accuracy of 46%. The 

spring dataset resulted in a segmentation error of 39% and an accuracy of 61%. The fall dataset generated a 

segmentation error of 21% and an accuracy of 79%. The summer dataset yie lded the lowest segmentation 

error (19%) and accuracy of 81%. 

Q1b. What is the segmentation accuracy of the UAV-MSS summer dataset? 

The UAV-MSS dataset used for the image segmentation resulted in a segmentation error of 16% and an 

accuracy of 84%.  

Q2. Which seasonal RGB dataset gives the highest classification accuracy separating individual tree species 

in the deciduous and coniferous forest? 

The summer RGB produced the highest overall classification accuracy of 77% compared to the other 

seasonal RGB datasets. The summer RGB dataset produced the highest user accuracy for larch. The spring 

RGB dataset also produced the highest user accuracy for three tree species: beech, oak, and pine. The fall 

dataset also produced the highest user accuracy for birch and Douglas fir. Summer and fall RGB dataset 

produced equal accuracy for other while spring and summer RGB also produced an equal high accuracy for 

spruce.  

Q3. What is the tree species classification accuracy for UAV-MSS imagery? 

The overall tree species classification accuracy for the UAV-MSS dataset was 83%. However, the UAV-MSS 

dataset identified two tree species, namely pine and spruce, compared to the other dataset for tree species 

identification.  

Q4.  What is the accuracy for tree species classification in the combination of summer UAV-MSS and 

summer UAV-RGB? 
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The overall classification accuracy for the combination of Summer UAV-MSS and Summer UAV-RGB 

yielded the highest overall classification accuracy of 88%. Comparing all the datasets regarding tree species 

identification, the combination of UAV-RGB and UAV-MSS accurately identified five of the seven tree 

species. The tree species identified by the combination of UAV-RGB and UAV-MSS were Beech, Oak, 

Birch, Douglas Fir, and Spruce.    

5.2. Recommendation 

Tree species classification using RGB and MSS dataset for improved tree species classification provides 

further future study prospects. Based on the limitations encountered during this research, the following 

suggestions are recommended. 

One of the most critical steps in this research was tree crown identification. The tree crowns (segments) are 

used to extract features from the input dataset. Hence, when the tree crowns are not correctly mapped, it 

results in extracting undesirable feature values, which affect the classification accuracy. Therefore, research 

should be carried out to map tree crowns (segments) using deep learning.  

This research used the Support Vector Machine (SVM) classification algorithm to classify the tree specie s. 

UAV dataset is a very high-resolution image that can classify tree species using convoluted neural networks 

(CNN). CNN can be used to reduce the misclassification among some tree species. This can be achieved 

by generating sample patches that can improve class separability. Hence, research should be carried out 

using deep learning to classify the tree species.  

Also, some tree species data used in the classification were few, which influences the classification output. 

Hence more field data for tree species such as chestnut, mountain ash, and Norway Marple should be 

collected. The tree species classification output may be influenced by the training and validation data’s 

quality, quantity, and distribution.  

eCognition Developer has some exciting features that may improve class separability, including geometry 

features (such as length/width, rectangular fit, and compactness of the image object) and class -related 

features (such as relation to neighbour objects). These features may help with species differentiation as some 

tree species has a specific crown.  
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APPENDICES 

Appendix 1: Recoded field data for classification 

Category Tree species Scientific name Classification code 

 

 

Broadleaved 

European white birch  Betula pendula 1 

European red beech Fagus sylvatica 8 

European beech Fagus sylvatic 2 

Chestnut Castanea sativa 8 

Mountain ash Sorbus aucuparia 8 

Oak  Quercus robur 3 

 

Coniferous  

Scot pine  Pinus sylvestris 4 

European larch  Larix decidua 5 

Douglas fir Pseudotsuga menziesii 6 

Norway Spruce Picea abies 7 

Non-tree  -  -  9 

 
Appendix 2: Spectral and texture features available in eCognition. 

Data Features 

 

 

 

 

 

RGB seasonal data  

Mean of Red, Green, Blue, and CHM;   

Standard deviation of Red, Green, Blue, and CHM;  

GLCM contrast of Red, Green, Blue, and CHM;   

GLCM correlation of Red, Green, Blue, and CHM;  

GLCM dissimilarity of Red, Green, Blue, and CHM;  

GLCM entropy of Red, Green, Blue, and CHM;  

GLCM mean of Red, Green, Blue, and CHM;  

GLCM standard deviation of Red, Green, Blue, and CHM; 

GLDV contrast of Red, Green, Blue, and CHM;  

GLDV entropy of Red, Green, Blue, and CHM,  

GLDV mean of Red, Green, Blue, CHM 

 
 

 

 

 

 

MSS seasonal data  

Mean of Green, Red, Red edge, NIR, CHM;  

Standard deviation of Green, Red, Red edge, NIR, CHM;  

GLCM contrast of Green, Red, Red edge, NIR, CHM;  

GLCM correlation (Green, Red, Red edge, NIR, CHM),  

GLCM dissimilarity (Green, Red, Red edge, NIR, CHM),  

GLCM entropy (Green, Red, Red edge, NIR, CHM),  

GLCM mean (Green, Red, Red edge, NIR, CHM),  

GLCM standard deviation (Green, Red, Red edge, NIR, CHM),  

GLDV contrast (Green, Red, Red edge, NIR, CHM),  

GLDV entropy (Green, Red, Red edge, NIR, CHM),  

GLDV mean (Green, Red, Red edge, NIR, CHM) 

 



 

60 

 

 

 

MSS and RGB dataset 

combination 

Mean (Blue, Green, Red, Red edge, NIR, CHM),  

standard deviation (Blue, Green, Red, Red edge, NIR, CHM),  

GLCM contrast (Blue, Green, Red, Red edge, NIR, CHM),  

GLCM correlation (Blue, Green, Red, Red edge, NIR, CHM),  

GLCM dissimilarity (Blue, Green, Red, Red edge, NIR, CHM),  

GLCM entropy (Blue, Green, Red, Red edge, NIR, CHM),  

GLCM mean (Blue, Green, Red, Red edge, NIR, CHM),  

GLCM standard deviation (Blue, Green, Red, Red edge, NIR, CHM),  

GLDV contrast (Blue, Green, Red, Red edge, NIR, CHM),  

GLDV entropy (Blue, Green, Red, Red edge, NIR, CHM),  

GLDV mean (Blue, Green, Red, Red edge, NIR, CHM) 

  

Appendix 3: Spectral and texture features per seasonal dataset for classification.  

Data type Dataset Features  

RGB 

 Winter 

Mean (red, green, blue, CHM) 
Standard deviation (red, green, blue, CHM) 

GLCM contrast (blue, red, CHM) 

GLCM mean (red, green, blue) 

CHM), GLDV entropy (red, green, blue, CHM) 
 

  

Spring 

Mean (red, green, blue, CHM) 

Standard deviation (red, green, blue, CHM) 

GLCM dissimilarity (red, green, blue) 
GLCM contrast (red, blue, CHM) 

Summer 

Mean (red, green, blue, CHM) 

Standard deviation (red, green, blue, CHM)  

GLCM entropy (red, green, blue, CHM) 
GLDV contrast (red, green, blue, CHM) 

  

Spring 

Mean (red, green, blue, CHM),  
Standard deviation (red, green, blue, CHM) 

GLCM contrast (blue, red) 

GLCM mean (red, green, blue, CHM), 

GLCM entropy (red, green, blue, CHM) 

GLDV mean (red, green, blue, CHM) 

GLCM standard deviation (red, green, blue, CHM) 
 

MSS Summer 

Mean (red, green, near infra-red, red edge, CHM) 

Standard deviation (red, green, near infra-red, red-edge, CHM) 

GLCM entropy (red, green, CHM) 

GLCM mean (red, green, near infra-red, CHM) 
GLDV contrast (red, green, CHM) 
  

Combination  
Summer MSS and 
RGB  

Mean (blue, red, green, near infra-red, red edge, CHM) 

standard deviation (blue, red, green, near infra-red, red-edge, CHM),  

GLCM entropy (red, near infra-red),  

GLCM mean (blue, CHM),  
GLDV contrast (blue, green, CHM) 
 

 

 

  


