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ABSTRACT 

Drought impacts in different regions in the world have been affected natural ecosystems and people's 

properties negatively. As it progresses in every region specifically, there is no universal definition for this 

hazard. In the Netherlands, in recent years, the drought caused damages to many stakeholders' properties, 

so governmental budgets were allocated to alleviate the impacts as the current drought indicator has 

limitations. Twente region is located in the east of the Netherlands in higher elevation areas with sandy soil 

material. Drainage has made the groundwater resources of the Twente more vulnerable to drought impacts. 

Also, this region is far from the main surface water storage, so the high-quality primary water is the 

groundwater.  

To decrease the wickedness, this study focuses on the permanent largest grasslands in the Twente region 

and assesses drought impact on the groundwater using global models in Google Earth Engine (GEE). 

Actual climate variables of precipitation and evaporation were derived from global models' of ERA5 and 

GLDAS 2.1, available in Google Earth Engine (GEE). The timeseries of daily mean precipitation deficit 

(PD) over 20 years (2001-2021), cumulative PD, and driest year with the highest PD and lowest surplus of 

2018-2019 were analyzed for the two models and KNMI data.  

Daily mean values over 20 years of the models were evaluated separately with the reference data of KNMI 

using performance metrics of R coefficient, RMSError, and Mean Absolute Error(MAE). The precipitation 

ERA5 shows a stronger correlation with KNMI than the GLDAS2.1, respectively correlation coefficient R 

0.683, 0.532. However, for the evaporation, especially GLDAS 2.1 indicates a very strong 0.988 and ERA5 

a bit lower 0.959. The actual evaporation from the models is strongly in accordance with the reference 

evaporation in KNMI.  

Finally, the time series of the groundwater wells from different places in the Twente region and cumulative 

PD (2001-2021) were analyzed using in-situ measurements data in DINOloket. The groundwater 

measurements and cumulative PD from ERA5 data were correlated. All three groundwater wells data show 

that groundwater fluctuations persistently decline (Sep2005-Dec2019). The standard anomalies derived 

from groundwater show that drought propagation in the region is different. For instance, the B34G0251 in 

the southern part where the groundwater is shallowest than two others; the groundwater table is more 

vulnerable to drought impacts. In the first years of the study, this well has the highest inverse correlation 

that responds with a lag compared to other wells to PD. It probably happened due to the natural flow 

direction of groundwater towards that area. Again, in the well B34G0251, anomalies near the end of the 

study period and some years before 2018 became more intensive, and the lowest groundwater table occurred 

earlier than the highest PD. The earlier response reflects non-climatic factors that caused higher anomaly 

intensity in this area. The results indicate that drought progressed to the shallow groundwater area in the 

southern part of the Twente. For future research, the possibility of artificial groundwater recharge using an 

annual surplus is recommended to prevent more progress of drought to the deeper groundwater table.  
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1. INTRODUCTION 

This chapter will outline the general background that motivated this thesis to start. It begins with 

a short motivation, drought concept, and causes that are followed by the problem statement and 

research gaps. Later, the research questions were defined and subsequently their objectives. In the 

end, a framework was designed to describe the research objectives conceptually and concisely.  

  

 Motivation 
Studies indicate that the Netherlands, during the dry years in 2003 and 2011experianced drought (Van Loon, 

2015), where the drinking water demand, river discharge, and navigation affected negatively(UNISDR, 

2011). Again in 2018, this country faced a drought but an extreme event that hasn’t been experienced since 

1976 (Weijers, 2020). Drought is not happening only in the Netherlands; climate change and humans impact 

the environment on a global scale. Based on the IPCC 2014, there is low confidence in global scale drought 

trends observation because of less direct measurements, geographical inconsistencies, and dependencies of 

inferred trends to the definition that is selected for drought (Pachauri et al., 2014). Different continents have 

different impacts; for instance, the southern part of Europe is becoming drier, while the northern part 

receives more rainfall (Mishra & Singh, 2010). These fluctuations caused a failure in Spain’s 40% agricultural 

products in 2005. This failure was basically due to the imbalances between demand and supply (Sepulcre-

Canto, Horion, Singleton, Carrao, & Vogt, 2012). Besides human life, drought can threaten the natural 

ecosystem; for instance, 35% of the indigenous plant species in the Netherlands rely on the groundwater, 

and any management practices or extreme event can affect their ecosystem adversely (NHV, 2004). After 

the extreme event in 2018 in the Netherlands, a committee of Beleidstafel Droogte by the Minister of 

Infrastructure and Water Management was established to study drought and represent management 

recommendations. To make the country more resilient, one task of the committee was introducing a new 

drought indicator without having limitations of the current. This indicator is precipitation deficit, and one 

limitation is using reference evaporation as an input (Weijers, 2020) that cannot make the indicator an actual 

representative. At the same time, free gridded datasets generated from global models are accessible and used 

for different purposes (Schumacher et al., 2020).  

So the sentences above show that drought hazard can affect many ecosystems and consequently many 

stakeholders. The Netherlands experienced drought in recent years, and the government allocated a budget 

to quantify it for future policies.  

This research aims to investigate global models' applicability and also in-situ measurements as different 

drought indicators to study it comprehensively. The global models represent actual parameters, not the 

theoretical. Also, non-climatic causes can be investigated using local in-situ measurements like groundwater 

tables. To do that, this research continues with elaborating in drought concept and definitions in the 

following. 
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 Drought Concept  

However, there is no universal definition for drought (Lloyd-Hughes, 2014); some well-known organizations 

tried to define it as the below (Table 1).  

Table 1 General definitions of drought 

Organization Definition 

World Meteorological Organization (WMO) 

https://public.wmo.int/ 

a slow creeping natural hazard that occurs due to the natural climatic 

variability 

Intergovernmental Panel on Climate Change (IPCC) 

Report 2019  https://www.ipcc.ch/ 

A period of abnormally dry weather long enough to cause a serious 

hydrological imbalance. 

Food and Agriculture Organization (FAO ( 

http://www.fao.org/ 

It is a complex natural phenomenon with varying levels of intensity, 

duration, spatial extent, and impacts. 

Emergency Events Database (EM-DAT) 

 https://www.emdat.be/ 

A Natural-Climatological hazard caused by long-lived, meso- to 

macro-scale atmospheric processes ranging from intra-seasonal to 

multi-decadal climate variability 

World Health Organization (WHO) 

 https://www.who.int/ 

Drought is a prolonged dry period in the natural climate cycle that 

can occur anywhere in the world. 

 

In another approach, drought is defined conceptually by considering the main stages of progress in a 

region (Malik, Kumar, & Salih, 2020), which means meteorological, agricultural, hydrological, and socio-

economic drought stages (Wilhite & Glantz, 1985). Figure 1 shows the drought propagation 

conceptually (Van Loon, 2015).  

 

Figure 1 Drought stages (Van Loon, 2015) 

 

• As indicated in Figure 1, anomalies in precipitation trigger meteorological drought, which is defined 

as less precipitation than the normal amount (Van Loon, 2015). Some references relate the 

anomalies in temperature to the precipitation deficiencies, which are caused by higher global surface 

temperatures (West, Quinn, & Horswell, 2019).  It is worth saying that this short stage of drought 

( 1 to 3 months deficiency in precipitation) due to the global atmospheric behavior has potential 

https://public.wmo.int/
https://www.ipcc.ch/
http://www.fao.org/
https://www.emdat.be/
https://www.who.int/
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long-lasting and spatial impacts on water availability (Zaniolo, Giuliani, Castelletti, & Pulido-

Velazquez, 2018). 

• Once meteorological drought occurs, less-than-normal soil moisture is probable that directly affects 

vegetation coverage and consequently agricultural productivity, which is called agricultural drought 

(Mishra & Singh, 2011).  

• Meteorological deficiencies affect water availability, so water resources, either surface or 

groundwater, are influenced if drought progresses. The negative influence of these hydrological 

resources, like streamflow and groundwater resources, is identified as hydrological drought. This 

stage of drought can persist longer than the meteorological drought (Wilhite & Glantz, 1985).  

• Finally, good demand exceeds supplies when society and the human population are affected by the 

drought stages (West et al., 2019), which is called a socio-economic drought (Mishra & Singh, 2010). 

 

Drought assessment is part of proper water resources management and planning (Malik et al., 2020). There 

is not a universal definition for this disaster, but it is received that this is a dynamic and slow hazard that 

lack of universal definition have made it wicked for organizations as defining the relevant affected 

stakeholders is not easy according to their definitions. The above conceptual definition decreases the 

wickedness as it looks at this hazard dynamically by defining the stages that each has different characteristics. 

Therefore, the drought concept in this research is based on the conceptual definition, which represents a 

comprehensive view of drought and can also be used for administrative purposes who establish policies.  

 Drought Causes 

Precipitation deficiency is the primary driver for drought hazard occurrence; however, drought can be 

computed spatial-temporally based on the impact context  (Sepulcre-Canto, Horion, Singleton, Carrao, & 

Vogt, 2012). This section discusses a general background of the reasons for drought occurrence or 

worsening the impacts. By these items, drought in a region can attribute to the climate or humans. 

1.3.1. Climate  

Average global Earth's surface temperatures have increased globally over the last 157 years based on IPCC 

report 2014 (from 1880 to 2012), estimated to be near 0.55 oC since 1970s. Global warming can exacerbate 

drought hazards, and half of the terrestrial lands that are fertile or suitable for agricultural production on the 

Earth are susceptible to droughts impacts (Mishra & Singh, 2010). Depending on the regional characteristics, 

drought impacts can last for some months or years (Balti et al., 2020) on a large area (Nagarajan, 2010). 

Based on the climate scenarios, the middle part of Europe, where the Netherlands is located, will become 

drier but is still a less certain region to forecast than other parts of Europe (KNMI, 2019). Since before, 

there are different programs in the Netherlands to analyze long-term surface or subsurface freshwater 

resources on a national scale due to climate change  like the Dutch Delta Programme (Prinsen, Sperna 

Weiland, & Ruijgh, 2015). Climate scenarios in KNMI’14 show a shorter drought return period in the future, 

which means this hazard is more probable to occur (Ibrahim & Usman, 2020). Also, Rhine and Meuse rivers' 
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mean discharge increases, but there is a general drier tendency towards more discharge in spring and less 

discharge in late summer (Weiland, Bouaziz, & Beersma, 2014). 

1.3.2. Anthropogenic Drought Causes 

Two-thirds of the Netherlands is under sea level. In 900 to 1300 AD, a warm climate period in Europe 

caused lands desiccation and groundwater table decline in the Netherlands, together with significant 

agricultural activities on peatlands. These activities caused land oxidation and irreversible subsidence, leading 

to a relatively low land that is vulnerable to sea-level rise (Weijers, 2020). There are also extreme events from 

high rainfall, storm surges, and river flood in the history of the Netherlands year 1916, 1926, 1953,1995, 

1998, 2000 that threaten society or cause inconvenience and led to many intervention constructions against 

flood. These events caused more collaboration among stakeholders from other countries. For instance, 

water management policies, in the year 1995, after peak discharges on Rhine and Meuse rivers, motivated 

to build integrated transboundary water management, rehabilitate the water system, improve water quality, 

and protect indigenous plant life in the basins. Besides, at the national level, in 2001, the Government and 

Parliament adopted “A Different Approach to Water” that enforces to retain and confirm enough space for 

rivers that. Though many efforts are made to improve water management and planning, the term drought 

has not yet been defined in the hydrology dictionary of the Netherlands (Moors, Ellen, Mol, & Swart, 2002). 

In the Netherlands, water consumptions of drinking water and industry are negligible compared to 

groundwater flushing and agricultural activities (Haasnoot, Van Deursen, Middelkoop, Van Beek, & 

Wijermans, 2012). Evidence indicates IJsselmeer and Markermeer lakes, as the main water reservoirs located 

in the Lower Rhine Delta, cannot supply the entire freshwater demands in the dry periods (Prinsen et al., 

2015). So, it can make a long-lasting footprint on the hydrological resources during droughts. For instance, 

some industrial sectors need high water quality for their products. During drought periods, they can extract 

more that depending on the drought duration; persisting peak demand will happen while the water supply 

is the same or low. In this period, the industrial company can increase their groundwater extraction, and a 

persistent decline will occur on groundwater resources. This stress is applied to the groundwater resources 

because the regulated policies enforce the supply company to exceed the allowed groundwater extraction 

amount due to compensation for the peak demand, and this consequently enables the industrial sector to 

extract more (Weijers, 2020). Therefore, water management practices and policies still need to be examined 

since these are tools for water allocation or distribution among different sectors and can alleviate drought 

in a region. 

 Problem Statement 

As mentioned in the previous sections, the Dutch approach towards integrated water management in the 

transboundary river basins, Rhine and Meuse, focuses more on flood prevention. It is mainly tried to drain 

water from lands to remove excess water. However, in the years 2003 and 2011, the Netherlands faced water 

scarcity problems (Van Loon, 2015)and (Prinsen et al., 2015), which is not comparable with the year 2018, 

when an extreme event had very different records. The summer of 2018 in the Netherlands is characterized 
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by low precipitation and high temperatures. It caused damages to the property of various stakeholders with 

an estimated amount of 450-2080 million Euros (Hekman, Läkamp, van der Kooij, van de Velde, & van 

Hussen, 2019). By qualitatively and quantitively influencing the agriculture, drinking water, industrial and 

navigation sectors (Haasnoot et al., 2012) besides natural ecosystems like indigenous plant life, which relies 

on the groundwater resources suffered  (NHV, 2004). It happened because demands increase during dry 

periods, and the main water reservoirs supplies are not sufficient. Some freshwater resources are in danger 

of salt intrusion, so during drought periods (Prinsen et al., 2015) high amount of water is flushed to maintain 

adverse impacts of groundwater extraction, as the freshwater resources are at risk of rising sea levels and 

being salty(Haasnoot et al., 2012). Although drinking and industrial water consumptions are negligible 

compared to flushing, some only extract high water quality that, consequently, during dry periods, makes 

these resources more vulnerable (Weijers, 2020).   

In the Netherlands, the precipitation deficit is currently used as a drought indicator. It has limitations due 

to using theoretical assumptions to derive the indicator, which will not accurately estimate the situation. 

Besides, the theoretical background using only climate variables will not be helpful in catchments where 

many human interventions increasingly apply to water management. So, drought quantification or further 

policy regulation doesn’t seem to be useful enough to utilize this indicator by itself. On the other hand, 

different areas in the Netherlands don’t suffer similarly. To understand it, the current map visualized by 

KNMI using 13 stations data of precipitation and reference evaporation is provided in Figure 2. 

 .  

 
Figure 2 Spatial precipitation deficit in 2020 over the Netherlands b) Temporal precipitation deficit over 

the Netherlands in dry years and mean conditions. 

After the recent years, the damages to various stakeholders indicate current methods no longer respond to 

future droughts. Based on the reasons above, water management planning in the Netherlands needs to be 

improved or integrated with drought assessment, especially for vulnerable regions far from main water 

storages where groundwater is the primary water resource. So, in one statement, the problem is: in the 

Netherlands, the drought stage is not yet clear, and the current quantification methods were not 

efficient in recent drought years.  
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 Justification and Research Gap 

To analyse drought, some challenges have made it wicked and considered a research gap for the previous 

studies and are explained one by one in the following.  

First, as drought impacts are specific for a region, choosing an appropriate index might be wicked. After an 

event, many indicators and indices are already being introduced by authorities and stakeholders to explain 

drought hazard, monitor the impacts, and examine the applicability of current drought policies for future 

events (Lloyd-Hughes, 2014). World Meteorological Organization (WMO) and Global Water Partnership 

(GWP) categorized them into four groups of meteorological, hydrological, soil moisture, spectral or remote 

sensing, and composite based on indices i) ease of use, ii) their input indicators, and iii) the study purpose 

(WMO handbook 2016). Normalized Difference Vegetation Index (NDVI) is the most frequent spectral 

indices to monitor agricultural drought or vegetation stress (West et al., 2019); however, this index cannot 

be representative to estimate vegetation health caused by water stress because it is not clear whether the 

stress happened by drought or diseases (Sepulcre-Canto et al., 2012). In the Netherlands, the current drought 

indicator faced some deficiencies that the committee of Beleidstafel Droogte established to introduce an 

indicator without the previous limitation. This study still sees an opportunity to evaluate this current 

indicator using actual input data and also in combination with other variables. 

Secondly, which dataset to be used is another challenge for drought assessment in a region. Land surface 

indicators such as precipitation or soil moisture can be derived from Land Surface Models (LSMs) 

(Spennemann, Rivera, Celeste Saulo, & Penalba, 2015).  For instance, Global Land Data Assimilation System 

(GLDAS), as one of the most widely used models (Rodell et al., 2004), represents variables such as 

precipitation, evaporation, and soil moisture (Islam & Mamun, 2015). Another global model is ECMWF 

Reanalysis 5th Generation (ERA5) that presents actual climate variables and can be used in the 

meteorological analysis. The reanalysis of precipitation products is more reliable data in humid and tropical 

regions (Kolluru, Kolluru, & Konkathi, 2020). It is important to note that the reliability of the models is not 

the same in different areas and changes with altitudes, latitude, or climate conditions. For instance, GLDAS 

model variables are less reliable in the arid region or mountainous areas (Bi, Ma, Zheng, & Zeng, 2016). The 

model's performance can be evaluated by comparing them with the in-situ measurements in different regions 

(Liu, Gu, Xie, & Xu, 2020).  

Finally, in drought analysis, accessible data and having a good platform to derive datasets or doing the 

analysis might be wicked. With a cloud-based platform, Google Earth Engine (GEE) accelerates geospatial 

analysis worldwide (Noi Phan, Kuch, & Lehnert, 2020) in various applications like vegetation monitoring, 

landcover mapping, and disaster management. The data can be uploaded from the archive that stores 

massive datasets from different satellites (Mutanga & Kumar, 2019). Different functions are available in the 

GEE that makes the analysis possible. The interactive and user-friendly environment provided more 

understanding of the data analysis for the users (Tamiminia et al., 2020). Therefore, to comprehensively 

assess drought impacts, the cloud-based user-friendly environment of the GEE accelerates the computation 

and decreases wicked data analysis, especially for beginners users. 
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So, to overcome drought impacts in the Netherlands, the use of the actual evaporation and global models 

simulation has not been investigated for regional drought analyses. Moreover, the drought's conceptual 

definition and comprehensive analysis show drought propagation in every region develop differently. By 

considering local in-situ measurements and comparing different indicators, someone can interpret drought 

progress or the stage in one area aimed in this study. In the Netherlands, observational data is freely 

accessible and has a good density; it is an opportunity to observe the models' capability in a perfect place 

regarding in-situ measurements.  

So in one statement, the solution that will assess in this study is the integrated use of global models and 

in-situ measurements to analyze the drought stage in the Netherlands and improve the current 

quantification methods are the research innovation that approaches drought in the region.  

 Research Objectives and Questions 

According to the importance of drought events and the impacts on the groundwater, this research's main 

objective can be formulated to assess the drought impact on groundwater in the Netherlands using 

climate data that derived from long term gridded datasets from GLDAS and ERA5 repositories in 

Google Earth Engine (GEE).  

The sub-objectives are defined as follows:  

- Derive 20 years precipitation deficit from global model simulations (GLDAS and ERA5) 

available in GEE on the study area 

- Assess the performance of global models simulations (GLDAS and ERA5) compared to 

the observational data from KNMI in the study area 

- Interpret drought impacts in groundwater table from DINOloket in-situ measurements 

over the datasets overlapped period 

So the research questions that will be answered from the above-derived sub-objectives can be formulated 

as follows:  

1. How does precipitation deficit derived from GLDAS and ERA5 change temporally over 

the Netherlands?  

2. How is gridded datasets' performance from models of GLDAS and ERA5 compared to 

the observational datasets from KNMI over the study area?  

3. Is it possible to define a relationship between the precipitation deficit and groundwater 

table in the study area? 

 Conceptual Research Framework  

 

In Figure 3, the datasets, including gridded and in-situ measurements, different processes, and main steps, 

are shown as a conceptual model for this research. For this study, the Twente region in the Netherlands was 

selected due to the more vulnerability to drought impacts over the recent years. This is a region in the east 

of the Netherlands far from coastal areas and lakes storages. So during dry periods, as it has a higher 

elevation, the sandy slopes faster drain, and groundwater resources are the main high-quality water to be 
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extracted. All these factors motivated this research to choose this region as a study area. It is worth 

mentioning that the largest grassland in the Twente are the exact areas to study in this research that are 

explained in more detail in the next chapter.  

 

 

Figure 3 Conceptual Model for the Research 
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2. STUDY AREA AND DATA 

This chapter focuses on the study area and data background of this research. The previous chapter 

(Introduction) provided details about the problem, research questions, and conceptual model for 

the entire research. Further information concerning the study area, characterization based on the 

in-situ measurements, and literature are discussed here.  

 The Netherlands’ Geography 

The Netherlands, with an area of 41543 km2 has four main river basins of Ems, Rhine, Meuse, and Scheldt 

(Rijkswaterstaat, 2016). Annual precipitation computed based on six stations De Kooy, De Bilt, 

Leeuwarden, Eelde, Twenthe, and Eindhoven KNMI station data over 35 years timespan, which varies from 

740 mm to 840 mm spatially.  

During glacial periods landscape of the Netherlands, particularly the northern half, is strongly influenced. 

Deep valleys, which present the stream patterns for today, were scoured, and the sandy material pushed into 

ridges and led to low hills, which are important groundwater recharge areas. These hills are not suitable for 

agriculture due to a coarse soil material textured and also deep groundwater table. Their cover is mostly 

planted areas like forests, nature reserves, or recreational areas. Three significant zones are characterized in 

the Netherlands in terms of their topsoil elevated sandy areas, clayey soils, and peaty soils. The drainage 

system in the lowlands areas is artificial almost entirely (NHV, 2004). 

Also, based on MODIS/Terra+Aqua landcover (V006MCD12Q1) data from NASA Earth Data tool, from 

Jan 1st, 2019 to Jan 1st, 2020, the main landcovers are water bodies, small cultivated areas, croplands, and 

urban landcovers with near 90% of the entire area (Figure 4). 

 

Figure 4 Netherlands landcover derived from product V006MCD12Q1 
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Croplands and grasslands cover more than 60% of the Netherlands, 13% are built-up areas, and other 

landcovers near 25%. It is good to mention that the landcover named savannas in Figure 4 is based on the 

International Geosphere-Biosphere Programme (IGBP) manual, and Woody Savanna or Savanna implies 

for tree covers 30-60% and tree cover 10-30% (canopy >2m). Besides, it was checked within Google Map 

by visual interpretation, and these are grasslands with disperse trees. 

 The Netherlands’ Water Governance 

 

This country is a decentralized unitary state with three main administrative levels for water management that 

change hierarchically at the national, provincial, and regional levels. Each of these levels has its particular 

responsibilities (Table 2). 

Table 2 The Netherlands Administrative Levels (NHV, 2004) 

National Level 

Legislative Parliament 

Executive Cabinet 

Provincial Level 

Legislative 12 Provincial Boards 

Executive Queen’s Commissioner and Provincial Executives 

Regional and Local Level 

Legislative 37 Regional Water Authorities, 489 Municipal Councils 

Executive Dike-reeve and Aldermen, Mayer and Alderman 

 

This institutional level was built through time; water legitimacy is still an important issue in the Netherlands. 

In the 20th century, as the participation level increased, many stakeholders like house owners, tenant 

farmers, and residents asked for flood protection methods and regional management. In 1798 national 

agency of Rijkswaterstaat was created to administer all water affairs at a national level. In the 19th century, 

provincial water authorities were established to supervise water boards. Regional Water Authorities consist 

of water bodies that are part of the main water system, of which Rijkswaterstaat is responsible (NHV, 2004). 

The water board is authorized at the third in regional level and can reject planning permission by the 

municipal or even appeal to a higher authority; if the municipality ignores their recommendations of the 

water board in the Netherlands (NHV, 2004). 

Governmental legislative and executive responsibilities are defined in the mentioned three levels highlighted 

to overcome the socio-economic drought impacts and financial problems. For instance, as mentioned 

before, the remarkable drought damage to the country in 2018 caused many decisions and budgets to study 

and prevent further consequences. 

 Twente Region 

In this region study area is the Twente region, which is part of the Overijssel province and is located in the 

east of the Netherlands on a border with Germany and an area of 1504 km2 (Wikipedia, 2021) (Figure 4). 

The climate in this region is influenced by the mixture of moist air from the sea and west regions and cold 
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air from lands towards the east. Extreme events of warm and cold weather fairly depend on the wind 

direction and temperatures well out of -10 to 30-degree centigrade. An example of the extreme is the year 

2018 that temperature, evaporation, and precipitation records indicate an exceptional situation (van der 

Velde et al., 2021). This region is highlighted for the drought hazard as mentioned the main drinking water 

resource especially in the dry season are groundwater resources, at the same time, this region is far from 

surface water reservoirs and due to the higher slopes transportation is not possible with the current 

infrastructures (Weijers, 2020). Furthermore, the soil type in this region is dominantly sand or loamy sand 

near the surface. Together with the shallow groundwater table, higher elevation, and slopy areas, the region’s 

fresh groundwater resources are vulnerable to drought impacts and water fluctuations (van der Velde et al., 

2021). It is worth mentioning that the Netherlands has six ‘Regionale Droogteoverleggen (RDO)’ 

boundaries to allocate water during drought periods (Weijers, 2020), and the Twente region is part of RDO 

Twentekanalen.  

So, due to the geographical situation, land surface, and groundwater resources, the Twente region is 

considered a vulnerable area with priority to study drought impacts. In addition, the boundary is within the 

provincial Overijssel border and almost within the same water board and RDO boundaries. These same 

boundaries make consistent administrative legislation and execution at the region that decreases the 

governance wickedness.   

 Observational Data or In-situ Measurements 

Climate data from KNMI and groundwater measurements from DINOloket tools are the observational 

data derived for the Twente region to assess the drought stage and propagation there. The Royal Dutch 

Meteorological Institute (KNMI) also provides ground-based monthly precipitation amounts from 1974 for 

different regions and daily precipitations for different stations (‘KNMI precipitation,’ 2021). 

Subsurface data can be viewed and requested freely at the DINOloket application of TNO, the Geological 

Survey of the Netherlands. It was generated from the DINO database and the BRO or Basisregistratie 

Ondergrond in Dutch. The groundwater monitoring stations are over the entire Netherlands, and the in-

situ measurements are available on the DINOloket platform. More details about the largest Dutch 

subsurface database and the instruction for using the application are available on the website with the link: 

https://www.dinoloket.nl/help-ondergrondgegevens  (‘Ondergrondgegevens | DINOloket,’ 2021).   

Groundwater wells data are available in the DINOloket database. There are various data available in the 

BRO data database, such as Soil and soil investigation, Groundwater monitoring and Other research. The 

dataset includes two data of ‘Put met onderzoeksgegevens’ and ‘Grondwatermonitoringput (BRO)’ for 

groundwater monitoring wells. The BRO provided as txt format and didn’t have groundwater tables data 

but measurements of water quality. The Put met onderzoeksgegevens, however, contains daily or weekly 

measurements, which is provided in a folder named “Grondwaterstanden_Put.” By requesting the data in 

DINOloket, downloading is possible. First of all, a polygon for a region can be drawn manually from the 

https://www.dinoloket.nl/help-ondergrondgegevens
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available tools in the database. Also, it is possible to download data for a defined border, like a province, 

but if the data amount contains more than 5000 wells, it is required to manage it manually. 

For this research, an estimated boundary of the Twente region by the polygon tool in the DINOloket was 

initially drawn. In the ArcMap environment, the CSV point data opened and intersected with the Twente 

boundary. The data include groundwater tables in centimeters, and it is represented based on three different 

references of MP (Meetpunt), MV (Maaiveld), and NAP (Nieuw Amsterdams Peil) which are respectively 

referred to a measuring point, a surface level, and the new Amsterdam level (DINOloket, 2021). 

 Gridded Datasets 

In this study, global models of GLDAS and ERA5 represent gridded datasets. The model output of ERA-

5 and GLDAS-2.1 on a regional scale can provide detailed information needed to estimate the precipitation 

deficit. 

2.5.1. GLDAS 

GLDAS drives multiple offline land surface models. Offline means the model doesn’t couple to the 

atmosphere model. GLDAS integrates huge observational datasets and executes data at high resolutions of 

2.5° to 1 km globally (Rui & Beaudoing, 2020). It has been developed to produce reliable, available, high 

resolution, and near real-time land surface fields. These optimal states and fluxes are valuable information 

for climate and weather forecast models because terrestrial water and energy stores modulate land and 

atmosphere fluxes. Some techniques are used in the GLDAS modelling procedure to generate an accurate 

model results, like land surface states reinitialization technique to alleviate the accumulated errors for 

integrated states like snow or temperature, or a combination of ground-based or space-based data to 

constrain the states. In more detail, the physical states and fluxes apply to the model by forcing two boundary 

conditions. First, different Land Surface Models (LSMs), as shown in Table 3Table 3 GLDAS-2 data 

characteristics (Rui & Beaudoing, 2020), are forced with the observational meteorological variables like 

precipitation, temperature, wind, pressure, and radiation from GPCC which is a gridded gauge data analysis 

product and AGRMET which is an agricultural meteorological model that simulate input variables used in 

agricultural systems, so the atmospheric biases will be avoided. Second, assimilation techniques help the 

land surface models’ states to be more realistic. The global models evolve to estimate better surface energy 

and water exchange amounts by improving the physical process understanding (Rodell et al., 2004).  

Table 3 GLDAS-2 data characteristics (Rui & Beaudoing, 2020) 

Contents  LSMs outputs  

format NetCDF 

Latitude and Longitude 

extends 

-60º to 90 º N and  -180 º to 180 ºE 

Spatial resolution 0.25 º, 1 º 

Temporal resolution 3-hourly and monthly 

Temporal coverage GLDAS-2.1: 1st of January 2000 to Present 

Land Surface Models Noah-3.6, CLSM-F2.5, VIC-4.1.2 
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Input data in NASA GLDAS-2 with three components of GLDAS-2.0, GLDAS-2.1, and GLDAS-2.2. 

GLDAS-2.0 is forced completely with Princeton meteorological data. In version 2.1 or GLDAS-2.1, the 

models are forced with both modelled and observational data from 2000 to present using the conditional 

boundaries from the GLDAS-2.0 simulation. In this version, no assimilation data is done, which is referred 

to as “open-loop” simulations (Rui & Beaudoing, 2020). GLDAS-2.0 simulation was forced with climate 

data and radiation fields of NOAA and Global Data Assimilation System (GDAS), Global Precipitation 

Climatology Project (GPCP), and AGRicultural METeorological modeling system (AGRMET) (Google 

earth engine, GLDAS-2.1, 2021). Since GLDAS-2.0 is only available to 2010 in GEE, so GLDAS-2.1 is 

used for the climate data.  

2.5.2. ERA-5 

Atmospheric reanalysis began in 1979, and ERA5 reanalysis is the fifth generation of ECMWF reanalysis 

with records from the 1950s. Compared to the previous generations, this version presents higher spatial and 

temporal data resolutions. This higher resolution permits analyzing weather systems (Hersbach et al., 2020) 

like the daily total precipitation with 31 km spatial resolution, which outperforms the ERA-interim (Xu et 

al., 2019). Also, errors estimation and hourly outputs instead of 3 or 6-hourly analysis have been improved 

(Hersbach et al., 2019). ERA5, an integral component of an assimilation (land data and ocean wave 

assimilation) system, can also forecast using the improved analysis (Hersbach et al., 2019). ERA5-Land will 

cover the same period as ERA5 (from Jan 1950 to near present) now covers from 1980 to the near real-

time. This dataset is applicable for land studies and is available in GEE as a reanalysis dataset that provided 

evolved land variables over several decades at an enhanced resolution compared to ERA5 (ECMWF 

Confluence 2021). It has been produced by replaying the ECMWF ERA5 climate reanalysis land 

component. Reanalysis is a statistical procedure that using physics laws applied to the various models in 

ECMWF and together with observational datasets from worldwide build one global, complete, and 

consistent dataset (Google earth engine, ERA5-Land, 2021).  

 Permanent Grasslands 

To identify the study area, landcover data derived from Basisregistratie Gewaspercelen (BRP) or crop parcels 

precisely indicate croplands' boundaries as GIS sheet files for the entire Netherlands. The boundaries of the 

agricultural plots are based on Agrarisch Areaal Nederland (AAN) or agricultural area (BRP, 2021). 
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 Data Management Plan 

Based on the justification of the hydro-climate variables, spectral indices, and GEE platform, the data 

management plan can be summarized as below:  

 

Table 4 Data management plan 

D
a
ta

 T
y
p

e
 

Dataset Agency 
Variable 

(Name) 

Temporal 

Coverage 

And Resolution 

Spatial 

Coverage and 

Resolution 

Update 

Frequency 

G
ri

d
d

e
d

 d
a
ta

se
t 

in
 G

E
E

 

GLDAS-

2.1: Global 

Land Data 

Assimilati

on System 

NASA GES 

DISC at 

NASA 

Goddard 

Space Flight 

Centre 

Precipitation 

(Rainf_f_tavg) 2000 to Present 3-

hourly 

-180.0,-

60.0,180.0,90.0 

0.25 ° 

Monthly 
Evapotranspiration 

(Evap_tavg) 

https://developers.google.com/earth-

engine/datasets/catalog/NASA_GLDAS_V021_NOAH_G025_T3H#image-

properties 

ERA5-

Land 

hourly - 

ECMWF 

climate 

reanalysis 

Climate Data 

Store 

Precipitation 

(total_precipitation) 1981 to present 

Hourly 
0.25° Daily 

Evaporation 

(total_evaporation) 

https://developers.google.com/earth-

engine/datasets/catalog/ECMWF_ERA5_LAND_HOURLY 

MOD13Q1

.006 Terra 

Vegetation 

Indices 

 

NASA LP 

DAAC at the 

USGS EROS 

Center 

NDVI 
2000 to present 16-

day 
250 m 

https://developers.google.com/earth-

engine/datasets/catalog/MODIS_006_MOD13Q1?hl=en 

AHN 

Netherlan

ds 0.5m 

DEM, 

Interpolat

ed 

AHN 

DEM 

data taken in 

springs from 2007 

to 2012. 

0.5 m 

https://developers.google.com/earth-

engine/datasets/catalog/AHN_AHN2_05M_INT 

In
-s

it
u

 m
e
a
su

re
m

e
n

ts
 

DINOloket 

Groundwater Table 

(Put met 

onderzoeksgegevens) 

1971 to present 

https://www.dinoloket.nl/ondergrondgegevens 

KNMI 

Precipitation 

(RH) and Potential 

evaporation (EV24) 

1951 to present 

https://www.knmi.nl/nederland-nu/klimatologie/daggegevens 

 

 

More information about the NDVI data is available in page 41. 

 

 

https://developers.google.com/earth-engine/datasets/catalog/NASA_GLDAS_V021_NOAH_G025_T3H#image-properties
https://developers.google.com/earth-engine/datasets/catalog/NASA_GLDAS_V021_NOAH_G025_T3H#image-properties
https://developers.google.com/earth-engine/datasets/catalog/NASA_GLDAS_V021_NOAH_G025_T3H#image-properties
https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_HOURLY
https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_HOURLY
https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD13Q1?hl=en
https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD13Q1?hl=en
https://developers.google.com/earth-engine/datasets/catalog/AHN_AHN2_05M_INT
https://developers.google.com/earth-engine/datasets/catalog/AHN_AHN2_05M_INT
https://www.dinoloket.nl/ondergrondgegevens
https://www.knmi.nl/nederland-nu/klimatologie/daggegevens
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3. METHODS 

To study drought, quantify or only qualitatively assess the hazard, someone might be confused 

about many indices and indicators defined in different pieces of literature; so this chapter starts 

with looking at the hydrological cycle and water budget in a small watershed. After a description 

of the physical process, the entire methodology used to answer research questions is presented in 

the following.  

 Hydrologic Cycle 

Water moves in a hydrologic cycle along many complicated pathways and over different time scales. For 

humans monitoring geographical features of interest like a watershed, a dam or reservoir, or an aquifer, the 

hydrological cycle can be a challenge. A water budget mentions that inflow and outflow water rates are 

balanced by water storage change (Healy, Winter, LaBaugh, & Franke, 2007) (Equation 1).  

 

 

Flow in – Flow out = Change in Storage Equation 1 

 

The water budget equation with making a relationship between the input and outputs of a system shows the 

water transfer. Then a basic Equation 1 can be rewritten as: 

 

P +Qin- Qout =  ΔS/ ΔT Equation 2 

Where the components are P as precipitation (mm), E as the total evaporation from soils, water bodies Qin 

the water flow in the watershed, Qout as outflow out of the watershed, ΔS is water storage changes either 

the surface baseflow or the groundwater reservoir storages. Depending on the study purpose the Equation 

2 is customized. For instance, precipitation can be a summation of rain, hail, snow, rime, or hoarfrost. Water 

inflows and outflows could be natural and human-induced surface water or subsurface flow. 

Evapotranspiration can be separated into evaporation and transpiration from other plant surfaces. Water 

storage within all three land surface atmosphere compartments of the hydrologic cycle occurs. Further 

refinement could be written as the bellow equation, which is appropriate for many studies. 

 

P + (Qswin +Qgwin )–( ETsw + ETgw + ETuz+RO +Qbf +Qgwout)= Δ(Ssw + Ssnow + Suz + Sgw )/ ΔT  

 

Equation 3 

 

Where sw is surface water, gw is groundwater, uz  is unsaturated zone; RO is surface runoff, Qgwout is both 

groundwater flow out of the site and any extractions by pumping, and Qbf is baseflow (groundwater 

discharge to streams).  

The units of all components are the same in mm, and storage changes as computed in a time period of ΔT 

is mm/unit of time if the annual water budget computes mm/year. 
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According to the hydrological situation in a region and the study purpose, water budget components can be 

defined, removed, or added. For this study, the assumptions are the study area is a small watershed with a 

shallow groundwater system that the boundaries are well defined and ensure no surface water flows into or 

out except a stream channel that the discharge amount can be measured readily by the methods. If the 

boundaries correspond to the groundwater boundaries, there is no subsurface inflow as well. So, in this 

simplified form of water budget Qout is 0 and Qin is a total of R (surface runoff plus baseflow) or ground-

water discharge to streams (Qbf), plus the amounts are extracted by humans (QGW
out ). In the Netherlands, 

the annual changes of storage are measured, and it is on average 300 mm (250 mm to 350 mm). If ΔSsw , 

ΔSsnow , and ΔSuz  consider to be negligible and the only change of storage assume to be on the groundwater, 

then the above equation can be written as bellow: 

 to compute storage changes in groundwater evaporation can be estimated by the differences of precipitation 

and streamflow out of the watershed. 

 

 
P –(E +R +QGW

out)=  (ΔStotal - ΔSgw)/ ΔT  Equation 4 

 

In Equation 4, total evaporation and precipitation influence climate factors, while R and QGW
out are affected 

by human interventions. QGW
out changes by pumping and extractions. The water movement porosity 

coefficient needs to be considered for the groundwater water table changes as the soil limits.  

Typically water budgets are arranged in spreadsheets or tables (Healy et al., 2007) 

For sandy areas of the Netherlands, the porosity coefficient is between 0.36 to 0.42, meaning every mm of 

water table change that is measured needs to be multiplied on average by 0.4. The influences and R by a 

surface runoff if the baseflow is assumed to be constant. In surface runoff generation, the landcover is the 

main influential factor that is changed by human urban development, and the natural infiltration and water 

movement and conveyance changes by changing of landcover. There are theoretical methods that relate the 

runoff volume to the cover and catchment characteristics out of this thesis concept (Naeimi & Safavi, 2019).  

In this study, as the landcover of the study area is permanent grasslands, the R is assumed to be constant. 

These assumptions only provided to build a more comprehensive knowledge background for this research; 

however, the closure of water budget is out of the scope of this research. 

 

 Google Earth Engine (GEE)  

Google Earth Engine (GEE) combines a data catalogue of satellite imagery and geospatial datasets to 

analyze the datasets and is beneficial for scientists, developers, and researchers. The main section to code is 

code editor, which is accessible via the link code.earthengine.google.com for writing javaScript codes. Other 

elements of the GEE environment are illustrated in Figure 5. Description of the processing steps used for 

this research is provided (‘Earth Engine Code Editor  |  Google Earth Engine  |  Google Developers’). 
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Figure 5 Earth Engine components diagram at code.earthengine.google.com (Earth Engine Code Editor) 

 

3.2.1. Preprocessing 

Objects classes in GEE are images, image collection, geometry, features, feature collection, reducer, joint, 

array, and chart representing the type of data like raster, vector, numbers, or strings.  

Each object belongs to a particular class; for instance, an ImageCollection as one object class in GEE 

includes a stack of images, and each ImageCollection has a specific ID in GEE’s data catalog and can be 

loaded by applying specific function depending on dataset type or ImageCollection constructor. It’s good 

to mention that a complete function list is available in the GEE Docs tab in the JavaScript Code Editor 

window. For uploading an image collection, it is first necessary to upload the study area in the assets formats 

shp, zip, dbf, prj, shx, cpg, fix, qix, sbn or shp.xml are acceptable. Then after uploading the dataset, as it is 

a collection for clipping to the study area needs to do map or shapefile from ee.ImageCollection. To visualize 

a single day, the day range or to filter for a region, an image collection can be reduced by the commands of 

.filterDate .filter, or .filterBounds. 

 

3.2.2. Analysis 

By taking an input dataset, a reducer produces a single output that is replicated reducer argument 

automatically to each band by Earth Engine. For example, ee.Reducer.Mean() returns a reducer that is 

computed using the weighted mean of the inputs and ee.Reducer.First() returns the first of the inputs. 

To derive timeseries and download as a CSV excel file, it is better to visualize the dataset because it makes 

it more understandable. So, after filtering the dataset, using ui.Chart.image.series argument the chart can be 

visualized in the console tab. ui.Chart.image.series arguments use two inputs, first defining the input image 

collection and second the border of the study area. The second input reduces the computation to the 
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boundaries, like geometries uploaded to the Asset tab in Figure 5, as a .shp file of the study area. Finally, 

this function returns a chart. 

To download the dataset from task tab of the GEE from (task manager in Figure 5), as it is part of the 

output process, it will be explained in the next section, but before getting output, it is required to convert 

an ImageCollection to a FeatureCollection. It is done using the map(function) for mapping the function to 

all the ImageCollection, .reduceRegion to reduce the computation for the study area, and ee.Feature to 

convert the prepared ImageCollection to a FeatureCollection. 

3.2.3. Output 

The output arguments are mainly related to visualization or downloading the data. For visualization, one 

need is to center or zoom the maps to see the preprocessing or processing. This is done using 

Map.centerObject(object, zoom) command. The object is the study area and the zoom means a number in 

this argument from 1 to 24; higher numbers zoom in more at the ends; this command returns a map. 

To download or derive timeseries the command written in the code editor to get the time series table can 

be as a csv file in a desired folder of the google derive the command is Export.table.toDrive which needs to 

define the input timeseries for that and select the value and date. 

 Drought Indicator 

(WMO, 2016) defines indices as a representative to represent drought severity numerically using climate 

indicators. In the following, the drought indicator and an index that is used for this research are described.  

3.3.1. Precipitation Deficit (PD) 

Precipitation deficit is used by the KNMI as a drought indicator in the Netherlands. So, to make this research 

consistent with the study area's drought background, this indicator is used for the research. It is defined as 

total evaporation minus precipitation in a period of time (Equation 5). 

 

PD(τ) = ∫ 𝐸(𝜏) 𝑑𝜏
𝜏

0

− ∫ 𝑃(𝜏)𝑑𝜏
𝜏

0

 
Equation 5 

Precipitation and evaporation are both given in millimeters and change during 𝜏, which is the time, and it 

starts from 1st of April (τ 0). As in the Netherlands, annual precipitation evenly distributes over seasons, 

but evaporation is highest during summer. This indicator is more applicable during dry months that even 

more water evaporates in a given period than the amounts precipitated. Due to high temperatures and low 

precipitation, it is greatest during the summer months. In global models depend on their agreement, E is 

presented as negative or positive; for this research, the absolute values are considered for E in Equation 5. 

It is worth mentioning that KNMI uses reference evaporation that is computed theoretically based on a 

given landcover, climate, and soil condition, which is always more than actual evaporation; for more 

information, refer to the FAO definition (FAO, 2021). Also, on an average year, water surplus occurs during 

the winter months and deficit during the summer months. 
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 Statistical Analysis 

To identify anomalies and errors of the datasets or find any relationship by correlation among timeseries, it 

is required to analyze long-term datasets, which are limited to the period overlapped of different datasets in 

this research. These statistical analyses and computations are explained in more detail in the following. 

3.4.1. Spatio-temporal Standardization and Standardized Anomaly 

To compare Spatial-temporal data changes of a variable through time and location, first, it is required to 

make them comparable. So the standard deviation from long data and for each location is computed as 

bellow (Gidey, Dikinya, Sebego, Segosebe, & Zenebe, 2018):  

 

𝑆𝑖  = √
∑ (𝑋𝑖𝑗 − 𝑋�̅�)

2𝑁𝑗

𝑗=1
𝑁𝑗

⁄  
Equation 6 

 

Where i is the time period, j is the location, 𝑁𝑗 is the population or data number, and Si is standard deviation 

of anomalies at each location of i which is computed for spatial-temporal variables of X in the period of j. 

𝑋�̅� is the mean that computes for a location as Equation 7: 

𝑋�̅�  =
1

𝑁𝑖
∑ 𝑋𝑖

𝑁𝑖

𝑖=1

 
Equation 7 

 

In the end, zij score as a unitless parameter is obtained each observation xij after subtracting the mean of 

the variable (𝑋𝑖𝑗), and dividing by the value from the last equation, mean anomaly standard deviation, as 

bellow: 

𝑍𝑖𝑗  =
𝑋𝑖𝑗 − �̅�

𝑆𝑖
 

Equation 8 

 

 

This 𝑍𝑖𝑗  is a standardized anomaly that makes a comparison of absolute variables possible. All of the 

variables should have the same units and 𝑍𝑖𝑗 is a unitless index. 

 

3.4.2. Performance metrics 

The performance metrics used in this study include the RMSE, the MAE, and the correlation coefficient 

(R), which are explained in the following: 

• Root Mean Squared Error (RMSE): 

The models' performances in different studies were evaluated using different methods such as RMSE, which 

is defined as the below: 

 

RMSE =√
∑ (𝑋𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 −𝑋𝑚𝑒𝑎𝑠𝑢𝑟𝑚𝑒𝑛𝑡)2𝑛

𝑖

𝑛
   

Equation 9 
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X estimation is from the models, and the X measurements is from observations or the reference data that can be 

considered an actual situation for the model's accuracy. N is the number of data pairs. It needs to put some 

error bounds on RMSE verification errors. In this study the less RMSE indicates a better stimation for the 

model, in other words, RMSE closer to 0 (Łabędzki, 2017). 

The observational data in this study is considered as KNMI, the reference of the models' variable evaluation. 

• Mean Absolute Error (MAE): 

Another metric is MAE that is computed as below:  

 

MAE  =  �̅�𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − �̅�𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑎𝑙 Equation 10 

�̅� and �̅� are the averages of predicted values by the models and observational values from the reference that 

can be station measurements. 

 

• Pearson Correlation (R): 

Another metric is R that can compute using 𝐶𝑜𝑟𝑟𝑒𝑙 command in Microsoft Excel, and it needs some inputs, 

as explained in the  

R =𝐶𝑜𝑟𝑟𝑒𝑙 (𝑋, 𝑌) =
∑(𝑋−�̅�)∗(𝑌−�̅�)

√∑(𝑋−�̅�)2∗∑(𝑌−�̅�)2
   Equation 11 

 

Where �̅� and �̅�and are each timeseries mean value or an array average in Excel. 

There is a strong correlation if the coefficient is closer to +1 or -1—the negative correlation between the 

arrays. A positive correlation means an inverse relationship among timeseries. R equals 0 means there is no 

correlation. Outliers can cause misleading values and decrease robustness. 

This function is also used to identify drought stages relationship. As described in the chapter of the 

Introduction, drought is a dynamic disaster that progresses in a region, so three different drought stages do 

not necessarily happen at the same time and might have a lag-time due to the hydrological balance. So, in 

this research, the timeseries of correlation coefficient with a daily lag is introduced, and the results are 

provided in the next chapter.  
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 Groundwater Analysis 

All the groundwater wells manually intersected with an estimated Twente boundary in DINOloket and then, 

after registration on the website, were downloaded via the email address. The visualized map was created 

for the study area together with all the Twente permanent grasslands provided by pdok in ArcMap (Figure 

6).  

 
Figure 6 Groundwater wells with research data (Put met onderzoeksgegevens) in the study area 

Among lots of fields, the largest fields with an area of at least 6 ha were derived. In some cases, there were 

two choices: having groundwater well inside the field or closest to the field was given priority. In the Table 

5 below, the ten groundwater wells' characteristics that satisfied the criteria are listed. 

 
Table 5 Groundwater wells within ten largest permanent grasslands 

NO ID Data Availability  X-coordinate Y-coordinate 

1 B34G0251 28/03/1973 22/06/2020 248690 461380 

2 B34B0294 29/10/1985 31/12/2019 236362 471788 

3 B29C0228 13/09/1985 21/09/2020 264966 477977 

4 B29A0158 14/10/1991 31/12/2019 269750 488200 

5 B28F0214 15/02/1999 31/12/2019 252567 495878 

6 B28D0349 28/09/1979 31/12/2019 235480 483453 

7 B28C0180 28/04/1978 31/12/2019 220412 478851 

8 B28C0115 07/03/1973 31/12/2019 223423 475932 

9 B28B0056 22/02/1971 31/12/2019 231226 494446 

10 B28A0063 15/02/1973 31/12/2019 225000 493330 

 

As one part of the results is manually analyzing groundwater tables data in excel, it has been tried to limit 

the computation by selecting only three of these wells, spreading over the region, as representatives. To do 

that, from GEE, DEM 0.5 meter of AHN, TIF file derived by coding and the digital elevation model for 

Twente region visualized in the ArcMap (Figure 7). Then by visual interpretation, three of the wells 

spreading over the region chose. These are wells located in a different part of the Twente with different 

elevations, so the geohydrology of these can be different (light blue selected wells in Figure 7 or highlighted 

box in Table 5). 
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Figure 7 Groundwater wells within larges permanent grasslands in Twente, the Netherlands 

 
Further studies on groundwater tables and fluctuations will be done in the next chapter on the light blue 

in Figure 7. 
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4. RESULTS AND DISCUSSION 

In this chapter, all the results computed from the mentioned datasets in the second chapter are 

presented and will be discussed after each result in the same chapter.  

The results were derived and analyzed in the GEE, Microsoft Excel, and ArcGIS 10.7.1. The GEE 

codes are available via the respiratory in https://github.com/GolnarNaeimi/. 

 KNMI Precipitation Deficit 

For the computation of precipitation deficit (PD) from reference data, the P and ET were downloaded from 

the KNMI, and after considering outliers az 0 the PD was computed according to Equation 5 for daily 

values as are shown in Figure 8. Outliers are values less than 0.05 mm written -1 in datasheets that need to 

be replaced by 0 to refuse influences of -1 into the computations. The potential daily evaporation and 

precipitation amounts in 0.1 mm are presented in KNM, so these values were converted to mm for the PD. 

The mean daily values are shown in Figure 8. The driest year is 2018-2019 with a maximum PD of 333 mm 

and lowes cumulative PD 40 mm (The gray curve ends with +40 mm). As mentioned in the Methods, in 

the Netherlands, the precipitation is almost evenly divided among different months in a normal year, but 

evaporation during the summer is higher. However, the year 2018-2019 as the KNMI shows that this year 

was a very dry year that daily surpluses during winters even couldn’t compensate for the entire annual deficit. 

 

 

 
Figure 8 Mean precipitation deficit based on daily data over 20 years data of KNMI (2001-2021) 

 

Figure 8 indicates the maximum and minimum differences in the driest year (in gray), and the mean PD (in 

orange) almost differentiates are the same September afterward. It also indicates that maximum PD in 2018 

occurred more intensively than the normal of the 20 years. It nearly occurred in October. Also, the positive 

cumulative PD at the end of 2018 shows the evaporation from KNMI during the whole hydrological year 

was higher than precipitation, but daily values indicate mainly from October. As Equation 5 is used for PD 

and is about differences in evaporation and precipitation, the positive cumulative PD at the end of 2018 

shows that total evaporation by KNMI was higher than total precipitation this year.  
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 GLDAS Precipitation Deficit 

From the GLDAS imagery dataset in GEE’s data catalog, 3-hourly data as a CSV file was derived by coding. 

All the subsequent computation was done in the Microsoft Excel environment. GLDAS data includes 

precipitation and evapotranspiration as fluxes rates with the unit of kg/m^2/s. So, the first step to compute 

precipitation deficit was converting the derived rates at each time step to mm/day. As shown with a red 

circle in Figure 9, the forecast time contains eight time steps of 3-hourly. So, each climate variable's rates 

are computed in each time step, and then to derive daily values, all the eight computed rates are summed. 

The computation coefficient that multiplied climate variables at each 3-hours was 3hr*60 min*60 s * 0.5. In 

fact, a daily value in mm is computed from a summation of 8 areas under the curve based on the eight 

trapezium areas of 3 hours. In more detail, 0.5 is the average rate for an interval as the rate is not the same 

for different intervals. Finally, daily precipitation deficits are computed by a summation of all time steps rate 

values in mm. The explained step has been repeated for all the hydrological years from 2001 to 2021, starting 

from April to the end of next March. To understand the rates clearly, in a shorter interval and for one day, 

the beginning and end of a typical forecast time and the general form of the visualized chart in GEE are 

shown in Figure 9, the values in the vertical axis of this figure as seen are fluxes of GLDAS in kg/m2/s. 

 

 
Figure 9 Forecast time in GLDAS and the form of variable rates for a typical ET interval, in GEE console 

 

The computation process repeated to derive annual summations of precipitation deficit to identify the mean 

and driest year precipitation deficit. The year has the maximum PD of 151 mm and lowes PD of -148mm 

in the year 2018-2019, the driest hydrological year over these 20 years. So, the mean and driest daily values 

from GLDAS is shown together in the curve below (Figure 10):  
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Figure 10 Mean precipitation deficit 3-hourly data over 20 years (2001-2021) derived from GLDAS 

 

To compare two cumulative curves and daily PD inFigure 10, their maximums, differences, and daily values 

are discussed. Firstly, it is concluded that the high differences between the two cumulative curves started to 

increase mainly from June. Before that, the PD of the two curves are almost close together. The maximum 

PD indicates the driest situation, so it is a critical situation from climate. This peak shows the most vulnerable 

situation. By referring to Figure 8, we can see that the peaks of the curves don’t occur simultaneously. 

Besides the intensive peak, it is showing there was a late summer as the peak in the year 2018-2019 has a 

shift towards the right. In addition, the driest last 20 years hydrological year based on the PD indicator ends 

with lower absolute PD compared to the normal situation. It might happen due to the higher potential 

evaporation than the actual; it is out of this thesis scope, separately looking at precipitation or evaporation. 

However, from daily values (blue timeseries in Figure 10), GLDAS estimated less evaporation during 

summer and more precipitation during winter than KNMI.  This data station measures rainfall and melted 

snow; some types of precipitation might have been considered there, so it underestimated the precipitation 

as it can be other different water types like hail or drizzle. Also, KNMI uses potential evaporation, which 

has a higher estimation of actual evaporation. The evaporation can be overestimated in KNMI, so these can 

influence the last cumulative PD amount. In 2018-2019,  P from GLDAS by 717.4 mm showed a lower 

value than normal situation (KNMI: 762 mm and GLDAS: 896mm). Also, the KNMI overestimates the E 

by 597 mm instead of 569mm.  

Figure 10 shows the difference between the two curves is almost the same after October, but their time is 

not the same. Actually, the curve of dry year vertically stretched and horizontally shifted to the right side, 

bringing drier late summer that its impacts expand to the winter.  

 ERA5 Precipitation Deficit 

ERA5 dataset presents hourly data in meters, so there are 24-time steps for each variable. The precipitation 

and evaporation in this dataset are the total or accumulated amounts in every time step. So, daily values are 

the last step and the first step differences on a given day.  

To understand the general form of accumulated hourly data in ERA5, the hourly data of a typical day within 

a forecast time is shown in Figure 11below. 
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Figure 11 Forecast time in ERA5 and the accumulated variable for a typical interval 

The computation process is repeated for all the years, and based on the annual summation of precipitation 

deficit, the year 2018-2019 has the maximum PD of 191mm on 22 October of 2018 and ends with a value 

of 56 mm is identified as the driest hydrological year. It has been illustrated with the mean daily values and 

average comulative PD as the below Figure 12:  

 
Figure 12 Mean precipitation deficit hourly data over 20 years (2001-2021) derived from ERA5 

 

The differences in ERA5 at the end of the hydrological year are less than GLDAS. Maximum PD, which is 

a critical situation, is estimating higher in ERA5 than GLDAS.  

Interestingly, all three models almost show the same trends and also amount for the normal and dry years 

differences at the endpoint (around 200 mm). 
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 Gridded Datasets Comparison 

As GLDAS is an offline land surface model and ERA5 is a model coupled with a climate model and some 

techniques like reanalysis statistical procedures are applied to the ERA5, it seems to be important to check 

their relationship with in-situ measurements. These datasets, mean annual values for each year computed to 

show the general differences between the three datasets. For precipitation and evaporation, Figure 13 and 

Figure 14 show the total mean annual amounts in mm for 20 hydrological years. 

 
Figure 13 Annual mean precipitation based on average daily data from three datasets over the study area 

 

 
Figure 14 Annual mean evaporation based on average daily data from three datasets over the study area 

Then for these values, different RMSE, R, and MAE tests were applied to evaluate the relationship between 

the model that estimates values and reference data as the KNMI, which is observational values for 

precipitation and reference data for evaporation. Using Equation 9, Equation 10, and Equation 11, the 

performance metrics computed and the results of the error tests and correlation between 20 years mean of 

climate variables from simulated models and KNMI are provided in Figure 15. 
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Figure 15 Gridded datasets correlation to the in-situ measurements, P is precipitation, E is Evaporation and ET is 

Evapotranspiration 

 

The MAE was computed based on the differences of the mean annual of the model variable with the KNMI. 

The CORREL function in excel is applied to the cell ranges of KNMI and models output to determine the 

strength of the relationship among two properties.  

As mentioned in the Introduction chapter, the gridded datasets can be evaluated using the station data in a 

region. On the other hand, due to the limitation of station data in PD indicator, which used reference 

evaporation, it was motivated to use global models to examine their capability. So, the evaporation derived 

from global models does not correlate with station data, while Figure 15 indicates a very strong relationship 

between models and KNMI evaporation values. On the other hand, the precipitation data doesn’t have that 

strong relationship with the station data. So, the actual evaporation from the models is very in accordance 

with the reference evaporation. It might be reliable only for the study area and for other regions can be 

evaluated since in the Netherlands, as discussed in chapter 2  (Figure 4), near 60% of the area is landcover 

like croplands, grasslands, and these areas are in accordance with the theoretical assumptions that are used 

to compute reference evaporation. So, the reference evaporation by KNMI is very correlated with GLDAS 

and then ERA5 in the Netherlands. But for precipitation, the stronger correlation belongs to ERA5, which 

estimates total rainfall and frozen water (snow and rain) like the KNMI. GLDAS hasn't been coupled with 

a climate model, so that might increase the precipitation estimation uncertainty. 

Besides the discussion above, some uncertainties need to attention. First, the gridded datasets give one value 

for a large pixel with different landcovers, not a point or one landcover; for instance, the pixel is here 11.1 
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km, and comparing that with station data increases the inconsistency and uncertainty. Also, the model's 

capability to estimate precipitation and evaporation by combining with a climate model and considering 

boundary conditions in a 3D system for climate variables is increased. As mentioned, ERA5 is coupled with 

a climate model, so local differences like elevation impacts on the precipitation amount on a regional scale 

can be improved through the atmospheric estimations. Finally, some other factors like the accuracy of 

observational data gauge intensity and gauge network coverage affect the uncertainty of working with 

datasets. As KNMI mentioned in their datasets sheets representing old 70 years old data, the daily time 

series are not homogeneous due to the station's relocations or changes in observation techniques, which can 

cause uncertainty.  

 Groundwater Analysis 

As mentioned in the Methods chapter, three of the wells spreading over the region were chosen (Figure 7). 

So, in Excel, daily groundwater tables data were organized, and the timeseries were computed. It is good to 

mention that from 2005 to 2019, only daily values were available (Figure 16).  
 

 
Figure 16 Daily groundwater table from surface 

 

Three wells in Figure 16 indicate different groundwater table fluctuations. The B28F0214, with an elevation 

of 3100 cm above sea level, has a naturally lower water surface than two other wells. This water table in this 

well is on average 622 cm below the surface.  Two other wells naturally are shallower; the B28D0349 is 172 

cm with an elevation of 900 cm above mean sea level, and B34G0251, with an average of 105 cm, is located 

in a point with 2800 cm height. All the wells' fluctuations indicate a declining trend in groundwater resources 

of the Twente region. 

Figure 16 are absolute values, so standard anomalies are computed instead to make the groundwater table 

fluctuations comparable across the region. So, the daily groundwater levels below the surface were 

considered as an input to compute the anomalies (Equation 6 to Equation 8 and presented in Figure 17. 

Mean values in black represent an average view for the groundwater table for the period, which shows a 

persistent drought. The decline is also observable through the decreasing trend in the yearly moving average 

of their mean presented (the green curve).  

As mentioned before, the data after Sept 2005 was only daily, so the computation was limited to after that. 

Also, the annual moving average considers the 365 days before, so for the first 365 days period, the moving 

average obviously has not been computed.  
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Figure 17 Standardized Anomalies of the Groundwater Wells 

 

Figure 17 shows, the groundwater table in some periods increases like October, and some periods decrease 

like near April. In general, the trend is a decline in the water table, indicating a persistent hydrological 

drought in groundwater over the study area. The yearly moving average also marks it, and it is indicated 

after 2016, there is a faster decline. In recent years, in 2016, there is a turning change in the general trend 

that anomalies are mostly negative under the baseline or the average, which means the groundwater table in 

all the wells was below their 14 years. From Figure 17, drought propagation receives differently in the area; 

for instance, the B34G0251 in the southern part of the study area has faster and more intense drought. As 

the main soil cover is sandy, this is probably due to the groundwater depth factor in the region in B34G0251 

being comparatively shallower. This area is on a high elevation and, consequently, more drainage, making 

the groundwater resources more vulnerable to drought hazards. So, besides the permanent hydrological 

drought in the region that indicates the stage of this hazard the southern part of Twente suffering intensively 

and needs more attention. 

 Groundwater Table and Precipitation Deficit Relationships 

Two time series of groundwater wells and cumulative precipitation deficits were organized and derived to 

analyze the Twente region's meteorological and hydrological drought relationships. Regarding a stronger 

correlation of precipitation derived from ERA5 with KNMI than the GLDAS 2.1 (discussed in section 4.6), 

the ERA5 was used as a meteorological input for this section.  

To select a period to do the analysis, four-time series of groundwater and ERA5 daily means times were 

overlapped. The period from Sept 2005 to Jan 2020 contains all the meteorological and hydrological daily 

data. So, over this period, and with an assumption of a linear trend, their linear regression equations were 

derived for each groundwater measurements (Figure 18). It is good to mention that the precipitation deficit 

starts from -80.71 cm because the previous main origin was the year 2001. It is good to mention that if these 

results use for a water budget closure, then the -80.71 value needs to be considered zero for the ease of 

entering other components on the water budget equation. 
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Figure 18 Groundwater table and cumulative daily precipitation deficit 

Figure 18 shows a linear equation represented for all the wells and also the PD. Regarding the linear 

equations in this figure, the groundwater table is naturally deeper in the B28F02014 (the gray timeseries) 

than other wells.  

The next step is detrending or removing the linear trends from these timeseries for easier comparison. So, 

new values were derived using the linear regression equations, represented in Figure 18, which are named 

trend values and were decreased from the real groundwater (Figure 19). A negative relationship between 

precipitation deficit and groundwater tables fluctuation caused to show the secondary axis inversely. For the 

deeper groundwater table area, the fluctuation to the deficit is not as fast as shallower tables in the well 

B34G0251. The year 2018-2019 has the max PD of 191 mm on the 22 Oct, which is labeled in the timeseries. 

Mean water level and elevation in the groundwater wells points are also provided. 

 

 
Figure 19 Detrended groundwater table and precipitation deficit 

Figure 19 indicates that the well B34G0251 earlier than other wells experience drought. The critical climate 

situation (max PD) in the year 2018 has been illustrated, and at that moment, almost all the wells were in 

their lowest amounts. However, the severities started some years before (around three years), first in 
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B34G0251, then B28D0349, and at the end, B28F0214. In other words, drought impacts started from 

shallow wells and progressed to the deeper well. The shallowest well experienced drought earlier, so this 

area needs more attention to prevent drought progress to other deep groundwater tables.  

Figure 19, besides the time, shows the drought intensity that in the shallower groundwater, an earlier 

response accompanies higher negative anomalies intensity; however, in the deeper groundwater, the 

intensity is lower. It indicates shallower groundwater wells in the Netherlands can experience drought with 

more severity. Previously based on the PD computation, it is computed that the dries year is 2018-2019; 

however, in Figure 19, the negative anomalies started some years before, like 2015-2016 to 2017 that 

intensified in 2018. It reflects that previous groundwater decline did not recharge or the non-climatic triggers 

like groundwater extractions intensified the groundwater decline before the extreme climatic drought in 

2018. 

As mentioned, anomalies didn’t occur at the same time, which indicates the meteorological and hydrological 

relationships are not consistent during the time. To illustrate their relationship, the correlation of three 

detrended wells and the detrend PD timeseries are derived as below in Figure 20a. As drought is the main 

objective of this research, highest negative correlations are the critical points that are illustrated with arrows 

in Figure 20b. 

 
Figure 20 Hydrological and meteorological drought correlation over the complete period b) over the first two 

hydrological years (line arrows show the highest correlation) 

 

A negative correlation in Figure 20a indicates a negative relationship between the wells table and the 

precipitation deficits. It demonstrates that when the meteorological deficit is in the highest amount (E>P) 
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during the summer with the highest evaporation, the groundwater level should be at the lowest level and 

the same for the period with less evaporation when the groundwater level is in the highest level. Also, 

spatially, the arrows do not overlap each other. It shows different reactions of groundwater tables to the 

climate or non-climate changes.  

Focusing on two years of hydrological years from April 2006 to April 2008 (Figure 20b), there is a good 

correlation between PD and groundwater fluctuations (0.5). The highest negative correlations occur when 

the PD is highest, but it changes through time. The shallowest groundwater well indicates the highest 

correlation (B34G0251), but with a lag compared to others, it means this well, although was shallower, 

responds later to PD. It can reflect other non-climate variables that influenced the groundwater table. For 

this research, water budget closure is not an objective; however, the groundwater decline persistently occurs 

while there is an annual water surplus or P-E for the Netherlands. The annual amounts computed and a 

summary are shown in Table 6. This table shows the annual water budget component derived from this 

study.  

 

Table 6 Water budget components 

 
 

In Table 6, the water surplus (P-E) based on KNMI is on average 165 mm, and ERA5 and 261 mm. The 

groundwater table changes are always constant and negative (from each groundwater table fluctuation trend 

in Figure 1(Figure 18). Also, as mentioned before, to compute water height, the groundwater table changes 

need to be multiplied by the coefficient of 0.4  to get the net water height. The R  and QGWout are more 

non-climatic and human influential components that affect the groundwater's natural recharge and 

extractions. The persistent groundwater decline or hydrological drought roots in non-climate factors in the 

Netherlands that can be over drainage of water from the lands or groundwater extractions by humans. 

 

Data KNMI ERA5 B34G0251 B28D0349 B28F0214 B34G0251 B28D0349 B28F0214

Date P-E (mm) P-E (mm) ΔG (mm) ΔG (mm)
ΔG 

(mm)

ΔSgw (mm 

of water)

ΔSgw (mm 

of water)

ΔSgw (mm 

of water)

2001-2002 300 308 -54.4 -95.6 -19.0 -21.8 -38.3 -7.6

2002-2003 27 250 -54.4 -95.6 -19.0 -21.8 -38.3 -7.6

2003-2004 172 154 -54.4 -95.6 -19.0 -21.8 -38.3 -7.6

2004-2005 204 203 -54.4 -95.6 -19.0 -21.8 -38.3 -7.6

2005-2006 177 133 -54.4 -95.6 -19.0 -21.8 -38.3 -7.6

2006-2007 300 232 -54.4 -95.6 -19.0 -21.8 -38.3 -7.6

2007-2008 297 735 -54.4 -95.6 -19.0 -21.8 -38.3 -7.6

2008-2009 57 187 -54.4 -95.6 -19.0 -21.8 -38.3 -7.6

2009-2010 158 180 -54.4 -95.6 -19.0 -21.8 -38.3 -7.6

2010-2011 135 190 -54.4 -95.6 -19.0 -21.8 -38.3 -7.6

2011-2012 146 204 -54.4 -95.6 -19.0 -21.8 -38.3 -7.6

2012-2013 173 916 -54.4 -95.6 -19.0 -21.8 -38.3 -7.6

2013-2014 167 207 -54.4 -95.6 -19.0 -21.8 -38.3 -7.6

2014-2015 307 310 -54.4 -95.6 -19.0 -21.8 -38.3 -7.6

2015-2016 259 260 -54.4 -95.6 -19.0 -21.8 -38.3 -7.6

2016-2017 116 93 -54.4 -95.6 -19.0 -21.8 -38.3 -7.6

2017-2018 156 285 -54.4 -95.6 -19.0 -21.8 -38.3 -7.6

2018-2019 5 38

2019-2020 125 252

2020-2021 10 85

Average 165 261 -21.8 -38.3 -7.6
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5. CONCLUSIONS AND RECOMMENDATION  

 Conclusions 

The research questions are answered as follows: 

 

 
RQ1: How  precipitation deficit derived from GLDAS and ERA5 is changing temporally over the 

Netherlands? 

For computation of precipitation deficit or PD input data downloaded from the KNMI, GLDAS and 

ERA5.The in-situ measurements outliers were replaced as 0 and for the models, daily values were computed 

from in GLDAS, 3hourly data and in ERA5 hourly data. Cumulative mean daily PD over 20 years (2001-

2021), mean daily PD, and mean cumulative PD of driest year were computed for all three datasets using 

GEE codes and datasets. Driest hydrological year for all the three models was 2018-2019, which is illustrated 

from April to the end of next March. The highest PD is the most critical situation in terms of precipitation 

deficit, which is for these three datasets KNMI, GLDAS2.1, and ERA5, respectively 333,152, and 191 mm. 

Also, the end point where the highest absolute cumulative PD was computed and was different for all of 

them; +40, -148, and -56 mm in KNMI,GLDAS and ERA5. The KNMI curve for the entire 2018-2019 

was positive which means very high evaporation and very low precipitation, the water surplus in this year 

was only 5mm based on the annual KNMI reference evaporation and precipitation differences. By focusing 

on the year 2018-2019, it seems that there was a late summer as the peak in the year 2018-2019 has a shift 

towards the right, which occurred later in all the datasets. Interestingly, all three datasets almost show the 

same for the normal and dry years differences (around 200 mm), but not at the same time or with the same 

values. The KNMI cumulative PD is always positive and ends positively in March 2019, so this dataset 

overestimates the evaporation using the reference evaporation compared to others.  

 

 

RQ2:  How is gridded datasets' performance from models of GLDAS and ERA5 compared to the 

observational datasets from KNMI over the study area?   

As discussed in the Introduction chapter, the gridded datasets can be evaluated using the station data in a 

region. On the other hand, due to the limitation of the current PD indicators in the Netherlands, global 

models applicability was studied for this research. One part of the evaluation is defined to examine their 

capability. So, KNMI has been considered reference data, and the metrics of RMSE, R, and MAE are used 

to evaluate their performance.  There is a very strong correlation among models GLDAS2.1, ERA5 actual 

evaporation, and KNMI reference evaporation values. On the other hand, the precipitation data doesn’t 

have that strong relationship with the station data. It might be due to the more complicated precipitation 

measurement as water has different phases. So, the actual evaporation from the models is very in accordance 

with the reference evaporation. It might be reliable only for the study area, for other regions need to be 

examined, since in the Netherlands, as discussed in chapter 2  (Figure 4), near 60% of the area is landcover 

like croplands, grasslands, and these areas are in accordance with the theoretical assumptions that are used 

to compute reference evaporation. So, the reference evaporation by KNMI is very correlated with GLDAS 

and then ERA5 in the Netherlands. For precipitation, the stronger correlation is ERA5, which estimates 

total rainfall and frozen water (snow and rain) like the KNMI. GLDAS hasn't been coupled with a climate 

model, so that might increase the precipitation estimation uncertainty. 

Besides the discussion above, some uncertainties need to attention. First, the gridded datasets give one value 

for a large pixel with different landcovers, not a point or one landcover; for instance, the pixel is here 11.1 

km, and comparing that with station data increases the inconsistency and uncertainty. Also, the model's 
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capability to estimate precipitation and evaporation by combining with a climate model and considering 

boundary conditions in a 3D system for climate variables is increased. As mentioned, ERA5 is coupled with 

a climate model, so local differences like elevation impacts on the precipitation amount on a regional scale 

can be improved through the atmospheric estimations. Finally, some other factors like the accuracy of 

observational data gauge intensity and gauge network coverage affect the uncertainty of working with 

datasets. As KNMI mentioned in their datasets sheets representing old 70 years old data, the daily time 

series are not homogeneous due to the station's relocations or changes in observation techniques, which can 

cause uncertainty.  

 

 
RQ3:  Is it possible to define a relationship between the precipitation deficit and groundwater table 

in the study area? 

To analyze meteorological and hydrological drought relationships, the time series of the groundwater wells 

from different places in the Twente region and cumulative PD (2001-2021) were analyzed using in-situ 

measurements data DINOloket.  

The ERA-5 model’s variables correlated with the meteorological drought indicator from Sept 2005 to the 

end of Dec 2019, with groundwater fluctuations as a hydrological drought representative. The linear 

equation of each of the timeseries was derived using linear regression and to observe the anomalies better, 

standard anomalies were computed when the timeseries detrended (the differences of real values and trend 

values from linear trend line give a better overview of timeseries to the users). PD and groundwater daily 

tables fluctuation are inversely strongly correlated. It means when the meteorological deficit is in the highest 

amount (E>P) during the summer with the highest evaporation; the groundwater level is at the lowest level 

and the same for the period with less evaporation when the groundwater level is at the highest level. Also, 

spatially, the correlation peaks (minimums due to the inverse relationships) do not overlap with each other. 

It shows different reactions of groundwater wells to the PD. The shallowest groundwater well (B34G0251) 

indicates the highest correlation but responds with a lag than others. It probably happens due to the natural 

flow of groundwater and the streams that recharge this well. The faster and more intensive reaction of this 

well to the drought in 2018 started some years before. It happened before the time when the PD was at the 

highest level, which can prove the shallow groundwater in the southern part of Twente (B34G0251) was 

affected by non-climatic causes. These can be extractions by humans that exaggerated climate deficiencies, 

and as the entire Netherlands aquifers are shallow in many parts, drought impacts can spread and influence 

other areas as well. However, the wells of B28F0214 and B28D0349 are more in accordance with the PD 

changes, and they have lower anomalies. So, the drought stage in the study area is in the shallow groundwater 

systems due to climatic and con-climate causes and in deeper groundwater table areas at the stage of climate 

causes. These impacts can spread to the adjacent areas, so to prevent drought impacts progress; it is 

recommended to prioritize areas with shallower groundwater table near the well B34G0251. Also, to 

alleviate drought impacts, it is recommended to investigate artificial recharge methods as the water surplus 

(P-E) based on KNMI is on average 165 mm or based on ERA5 261 mm. 
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 Recommendations 

In this section, the results and the influential factors that affect uncertainty will be discussed.  

5.2.1. Global Models 

• As for this study, the landcover was only grasslands, which motivates to consider different 

landcovers with various behaviors for future works. Figure 21 can give a good understanding of 

this research study area NDVI, computed using GEE data over 20 years. Regardless of the spatial 

location, there is consistency among these grasslands; Appendix A for more details. 
 

 
Figure 21 NDVI in three of the largest fields that have a groundwater well inside 

 

5.2.2. Local Patterns 

• Datasets perform better globally than on a regional scale that needs to be improved by considering 

local patterns and influential climatic features (Angélil et al., 2016). Each gridded dataset follows 

specific input data, algorithms, and specifications that make it prioritized in one region more than 

others. Also, one dataset depending on the characterization can be more efficient and reliable on 

one temporal scale. So, choosing different catchments is recommended to evaluate datasets' 

reliability in other areas as well. 

• Moreover, non-climatic factors like human demands in one region or cultural, economic, political 

background in societies affect water management strategies and decisions. In transboundary 

catchments where water storage needs to be managed among stakeholders from different countries, 

a consensus is more wicked, and non-climatic parameters are highlighted—the Twente region part 

of the Rhine basin recharge from a transboundary river.  

5.2.3. Boundaries 

• Also, surface water resources boundaries are different from groundwater resources or aquifers. For 

this study, local wells were analyzed that might increase uncertainty if they are not representative of 

the same hydrological interaction or have the same water budget components interaction 

 

• It is recommended to integrate future water management scenarios with drought analysis. For 

instance, the average highest groundwater table or Gemiddelde Hoogste Grondwaterstand - huidig 

(GHG) provided by Klimaateffectatlas (Figure 22(b)) as a national water model for decreasing 

damages to agricultural or urban areas due to the high groundwater levels. Figure 22(a) shows 

average highest groundwater table spatially changes from 0.2 m from the surface to more than 2 

meters.  
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Figure 22 Average highest groundwater table from the surface (left) Average Highest Groundwater Level - 2050 

High (right) 

• Another recommendation for future works is to identify water boundaries based on the 

hydrological patterns in the study area. The administrative boundaries for the water allocation are 

an important border in drought analysis. For instance, RDO responsible for water allocation have 

an essential responsibility. However, the RDO boundaries seem to include the surface water 

movements in the Netherlands that need to integrate groundwater areas. It is recommended due to 

the high tendency of groundwater extraction, especially in areas far from lake storage like the 

Twente region. In this research, groundwater wells were all in the Twente boundary, but one 

(B34G0251) was in the southern part of the region with different water allocation regions or RDO 

that might increase wickedness in applying administrative decisions or water allocations.  

• The industrial sector can extract more groundwater during peak demands, such as drought periods 

when groundwater resources are more vulnerable. It is a gap in their policy and water supply 

company agreements that need to be modified.  

 

5.2.4. Artificial Recharge 

• As the water budget components in Table 6 show, there is an annual water surplus, but there is 

persistent groundwater decline according to the results of this thesis. Therefore, the extra water can 

recharge the groundwater artificially using management practices and plans, especially in some 

vulnerable areas like where the well is located B34G0251. It is required to define the hydrological 

boundaries initially. 
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6.  APPENDIX A: VEGETATION DATA NDVI 

For deriving NDVI from MODIS data in GEE, the following background is useful:  

The Moderate Resolution Imaging Spectroradiometer (MODIS) provides spectral products, including 

NDVI, that are widely used for drought assessment and monitoring (West et al., 2019) and can be derived 

from the Google Earth Engine dataset (GEE) data catalog (Aksoy, Gorucu, & Sertel, 2019). The available 

vegetation satellite imagery in the Google Earth Engine which is helpful to interpret NDVI in the study area 

is MODIS (Aqua and Terra), with spatial resolution of 250, 500, and 1000 meters covers the temporal span 

from the year 2000 to the near real time in a daily temporal resolution (Kumar & Mutanga, 2018).  

NDVI is an index that uses red and near-infrared bands and provides information about the vegetation's 

health and condition by this assumption that healthy vegetation reflects the green bands and contains more 

water in the signature. This index has often been used for agricultural drought monitoring (Zhang & Jia, 

2013). 

NDVI =
NIR−RED

NIR+RED
                                                                  Equation 12 

 

   

NDVI globally has been accepted as an index to identify agricultural drought in regions with different 

ecological conditions. It can estimate the best and worst vegetation status over a time scale (Dutta, Kundu, 

Patel, Saha, & Siddiqui, 2015).  

AVHRR and MODIS products have been used to study vegetation conditions, and the 16-days NDVI 

products from two sensors generate data (Gallo, Ji, Reed, Dwyer, & Eidenshink, 2004). The moderate 

resolution MODIS has a large swath width and daily revisit intervals (Ogilvie et al., 2015). Drought indices 

from MODIS satellites also are used in drought monitoring; the sensors with a spatial resolution of 250 m 

are used to derive NDVI. Spectral products are available in the Google Earth Engine to monitor vegetation 

health (Kumar & Mutanga, 2018). NDVI equation based on MODIS bands can be derived in equation 12.1 

and (McFeeters, 1996) and (Kogan, 1995) 

NDVI =
B2 − B1

B2 + B1
 

Equation 12.1 

 

As mentioned before, the written codes are available via the respiratory in:  

https://github.com/GolnarNaeimi/ 


