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Abstract

Landslides are frequently occurring hazards and pose a signi�cant threat to people and property. Especially in mountainous
regions, landslide risk is prominent. Both earthquakes and rainfall are important triggers of landslides. This research com-
bines these two triggers by assessing whether dynamic landslide susceptibility analysis based on a combination of post-seismic
and rainfall-induced increases in landslide susceptibility in northern Pakistan can inform early action to reduce the impact of
those landslides. More speci�cally, this study examines whether it would have been possible to utilise the time between the
2005 Kashmir earthquake and the �rst western monsoon season after the earthquake to have predicted where the landslides oc-
curred. Therefore, this study explores a new approach to landslide risk reduction by assessing the possibility of using earthquake
parameters to predict the spatial variability of landslides in hopes of reducing the impacts of landslides.

This is done using Bayesian versions of a Generalised Additive Model (GAM) to estimate landslide susceptibility before, during
and after the 2005 Kashmir earthquake. To do so, a pre-seismic, a co-seismic and a post-seismic landslide inventory were de-
veloped using ASTER satellite images. These were used to assess whether including ground motion parameters in the GAMs
show elevated landslide susceptibility in areas and could potentially be applied for early action in the study area to reduce land-
slide risk during upcoming western monsoon seasons. Contrary to regular landslide predictive modelling, no separate training
and validation data sets were used to assess the predictive capacity of the landslide models. Instead, the explanatory models
are based on the same parameters per slope unit. For the post-seismic landslide models, the only di�erence is the inclusion or
exclusion of the ground motion parameters. This was done to merely examine the possible bene�ts of earthquake information
on the identi�cation of locations prone to post-seismic landslides.

Three post-seismic GAMs were conducted, one including earthquake ground motion parameters, one excluding them and
one with merely the earthquake parameters. The last one was done to evaluate to what extent the earthquake parameters
could accurately predict land sliding. For each of the GAMs, the in�uence of the landslide controlling parameters on landslide
occurrence was analysed and compared to assess whether the e�ects of the earthquake parameters could potentially inform
early action to reduce landslide risk. Surprisingly, the �xed and random e�ects of the earthquake parameters in the GAMs
showed no signi�cant in�uence on landslide occurrence. The post-seismic GAMs including and excluding the earthquake
parameters were very similar, and both were similarly accurate. The resulting susceptibility maps for the study area showed
only minor di�erences in susceptibility. Because of minor susceptibility di�erences, this approach has not been adequate to
develop e�ective early action strategies. Therefore, the focus should be on other landslide risk reduction strategies to reduce the
impacts of landslide risk in the study area and elsewhere.

Keywords: 2005 Kashmir earthquake, Post-seismic landslides, Earthquake legacy e�ect, Western monsoon season, Generalized
Additive Model (GAMs), Landslide susceptibility

ii



Acknowledgements

Throughout the thesis process, I have been assisted by professionals who helped and supported me on a topic I had limited
knowledge of prior to starting my thesis. Therefore, I had to face a steep learning curve. It has been a challenging but educational
year, and I am grateful to have had the supervision and support.

First and foremost, I would like to extend my gratitude to my supervisors, Maarten van Aalst, and Mark van der Meijde. They
have been incredibly supportive with weekly meetings to help me get to this end goal. Additionally, I want to thank Muhammad
Aufaristama for helping me with the landslide inventories after my initial methodology did not work out. Also, Luigi Lombardo
for his additional support with the landslide models. Last but not least, Saad Khan and Muhammed Sha�que for providing
me with much-needed data and inspiration.

Last year would have been an academically challenging year, even without the global pandemic. Now, most of this year was
spent at home. In light of this, I also want to thank my family and friends who provided additional support and have made me
realize how important such a comprehensive support system is.

iii



Contents

Abstract ii

Acknowledgements iii

List of Abbreviations v

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Early Warning & Early Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Forecast-based Financing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Societal relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Landslides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3.1 Post-seismic and rainfall-induced landslides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Research aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5.1 2005 Kashmir Earthquake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5.2 Study area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5.3 Western monsoon season . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Research objectives and research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.7 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Literature Review 7
2.1 Landslide hazard and susceptibility assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Post-seismic and rainfall-induced landslides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Seismic hazard analysis of the 2005 Kashmir earthquake . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Forecast-based Action & Forecast-based Financing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Early warning early action landslides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Early Warning Systems for rainfall-induced landslides . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Research Design 13
3.1 Landslide inventories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Landslide controlling parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Data matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Generalized Additive Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.1 Assessment of the landslide controlling parameters to include in the models . . . . . . . . . . . . . 23
3.5 Landslide susceptibility maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Results & Discussions 25
4.1 Generalized Additive Models preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

iv



The Legacy E�ect of the 2005 Kashmir Earthquake on Post-Seismic Landslide Susceptibility

4.1.1 Correlations and associations parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.2 Multicollinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Fixed and random e�ects Generalized Additive Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.1 Fixed e�ects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.2 Random e�ects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.3 Fixed and random e�ects of the 2005 Kashmir earthquake parameters . . . . . . . . . . . . . . . . 34
4.2.4 Earthquake’s legacy e�ect on landslide occurrence . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Performance Generalized Additive Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 Susceptibility maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4.1 Susceptibility di�erence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4.1.1 Di�erence post-seismic and pre-seismic . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4.1.2 Di�erence post-seismic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 Applicability of methodology to Forecast based Financing . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Conclusions 40

6 Re�ection 42
6.1 Landslide inventories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2 Generalized Additive Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Appendix 49
Appendix 1: Processing steps parameters in the data matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Appendix 3: Intercorrelation of parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Appendix 4: Names geology and land cover types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Appendix 5: Spatial overlay of landslide susceptibility and landslide inventories . . . . . . . . . . . . . . . . . . . 54

v



List of Abbreviations

AUC Area under the Curve

BSI Barren Soil Index

CMT Centroid Moment Tensor

DEM Digital Elevation Model

DREF Disaster Relief Emergency Fund

EAP Early Action Protocol

EWEA Early Warning Early Action

EWS Early Warning System

FBA Forecast-based Action

FBF Forecast-based Financing

FPR False Positive Rate

GAM Generalized Additive Model

IDW Inverse Distance Weighting

IFRC International Federation of Red Cross and Red Crescent Societies

NDV I Normalized Di�erence Vegetation Index

NDWI Normalized Di�erence Water Index

PGA Peak Ground Acceleration

PGD Peak Ground Displacement

PGV Peak Ground Velocity

RBR Relativized Burn Ratio

ROC Receiver Operating Characteristic (curve)

TPR True Positive Rate

V IF Variance In�ation Factor

vi



List of Figures

1.1 Study Area in Northern Pakistan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Debris Flow near the town Balakot (Google Earth, 2020) . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1

"Comparisons of the temporal mean monthly rainfall with landslide dynamics. The bar graph represents the
mean monthly rainfall, and the line represents the landslides area."

(Sha�que, 2020) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Step by step development process for Early Action Protocols (IFRC, nda) . . . . . . . . . . . . . . . . . . 10

3.1 Maps of landslides in the pre-seismic, co-seismic and post-seismic landslide inventories . . . . . . . . . . . . 15
3.2 Study area of this study and study area used by Sha�que (2020) showing the overlap to justify the use of rainfall

data from the Pakistan Meteorological Department. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Maps of the elevation, slope, slope curvature and slope aspect parameters . . . . . . . . . . . . . . . . . . 18
3.4 Maps of the CMT direction, faults, road network and drainage and geology parameters . . . . . . . . . . . 19
3.5 Maps of the land cover, PGV, PGA and PGD parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.6 Flowchart of the methodology for the data matrix, indicating the processing steps to derive data on the param-

eters for each of the slope units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 ROC curves of the pre-seismic, co-seismic, and the three post-seismic models with corresponding AUC values 35
4.2 Susceptibility & susceptibility uncertainty maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Susceptibility di�erences between the post-seismic models and the pre- and post-seismic model excluding the

earthquake parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

vii



List of Tables

1.1 Most prominent geological formation, including the corresponding lithology and formation age, after (Hus-
sain et al., 2004), (Latif et al., 2008), and (Sha�que, 2020). . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 Landslide identi�cation criteria for the pre-, co-, and post-seismic inventories. Pre-processing features for the
pre-seismic inventory and change criteria for establishing co- and post-seismic inventories. . . . . . . . . . . 14

3.2 Landslide count, total landslide area and average landslide size for the pre-seismic, co-seismic and post-seismic
inventories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Mean Monthly Rainfall in mm Sha�que (2020) (Pakistan Meteorological Department). The number of as-
terisks (*) indicate the date of satellite imagery that was used for the pre- (*), co- (**), and post-seismic (***)
inventories. Based on the dates of the satellite imagery, the 30 day rainfall average for each of the inventories
was calculated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 An overview of the parameters in the three data matrices. The pre-seismic GAM uses data matrix 1, the co-
seismic GAM uses data matrix 2, and the three post-seismic GAMs use data matrices 1, 2 and 3. . . . . . . . 22

4.1 Intercorrelation table, showing the Spearmann’s correlation coe�cients of the fault bu�ers of 100, 200, 300
and 400 meters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Intercorrelation table showing the Spearmann’s correlations coe�cients of the ground motion parameters
PGV, PGA and PGD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Variance In�ator Factors (VIFs) of the continuous variables in the datasets. VIFs indicate the presence or
absence of multicollinearity in the pre-seismic, co-seismic and the two post-seismic data matrices. The new
VIFs after adjustment of the data sets are also provided. The VIF values greater than 10 are indicated with two
asterisks (**), one asterisk (*) indicates VIF values close to 10. . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4 Means of the posterior marginal densities of the �xed and random e�ects in the GAMs. The mean �xed e�ects
re�ect the in�uence of the continuous variables on landslide occurrence in the GAMs. The mean random
values re�ect the e�ect of the categorical variables and ordinal variable (fault distance) on landslide occurrence.
Fixed or random e�ects that are signi�cant on a 95% con�dence interval are highlighted using an asterisk (*). . 29

viii



Chapter 1

Introduction

1.1 Background
Natural disasters can have severe impacts on both individuals and communities. Between 2005 and 2015, over 700 thousand lives
were lost, disasters injured over 1.4 million people, and in total, over 1.5 billion a�ected people were reported. Moreover, over 1.3
trillion US dollars in economic losses were estimated (United Nations of Disaster Risk Reduction, 2015, hereafter UNDRR).
On top of that, the severity and frequency of these impacts are likely to increase in the future. Contributing factors to the ex-
pected increase in impacts are climate change, rapid urbanization, technological hazards, public health emergencies and con�ict
(International Federation of Red Cross and Red Crescent Societies, 2020, hereafter IFRC). Furthermore, in recent decades, a
striking number of countries have su�ered from consecutive disasters. Consecutive disasters are events whose impacts overlap
both spatially and temporally. The risk of consecutive disasters will increase due to growing exposure, the interconnectedness
of human society, and the increased frequency and intensity of non-tectonic hazards (de Ruiter et al., 2020).

1.1.1 Early Warning & Early Action
Over the years, it has become apparent that taking action before a disaster has occurred is generally far more e�ective than
merely acting after the fact. By doing so, it can reduce the impact of disasters by saving more lives, livelihoods, and further
reducing damages (Asia Regional Resilience to a Changing ClimateMet O�ce, International Federation of Red Cross and Red
Cresent SocietiesUKaidAnticipation HubRisk Informed Early Action Partnership, 2020). Considering that disaster forecasts
have become increasingly reliable over the years, it is not surprising that many humanitarian aid organizations have opted to
implement Early Warning and Early Action (EWEA). EWEA is an e�cient way to reduce the impacts of disasters. Typically,
early action is implemented between an early warning trigger and when the disaster occurs (IFRC, nda). Early warning triggers
are pre-established thresholds that are believed to trigger a disaster. EWEA is also referred to as Forecast-based Action (FbA)
and anticipatory action. These terms are used interchangeably in this study, depending on the conducted sources.

1.1.2 Forecast-based Financing
The International Federation of Red Cross and Red Crescent Societies (IFRC) and their local partners refer to early action as
FbA. FbA aims to minimize the consequences of disasters by acting on forecasts beforehand. It includes prediction, reduction,
and prevention of the impact of disasters. Forecast-based Financing (FbF) is the �nancing system for such early actions. FbF
can be funded by the Disaster Relief Emergency Fund (DREF) (International Federation of the Red Cross and German Red
Cross, n.d.).
Overall, the IFRC’s FbF system consists of three main parts. As discussed prior, there are the thresholds values or triggers. These
are determined based on risk analyses and impact assessments. The second part of FbF is the early actions taken when these
threshold values are reached to reduce the impacts of the disasters. Finally, the �nancing aspect of FbF automatically assigns
funds when these trigger values are reached. For speci�c hazards and locations, these aspects are summarized in Early Action
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Protocols (EAPs). An EAP acts as a guide but also presents responsibilities for when a threshold is reached (IFRC, ndb). EAPs
have been established for many types of hazards, including droughts, �oods and cyclones (IFRC, ndb).

EAPs have not yet been established for landslides, potentially due to lead time constraints and the complex nature of these
events. Furthermore, landslides are very localized events, which complicates the implementation of EWEA on a large scale.
However, following that EWEA for landslides is currently lacking, there is an opportunity to reduce the impacts of disasters
through research focusing on circumvention of these di�culties. The overall aim would be to apply FbF to landslides and
ultimately mitigate the impacts of landslides.

1.2 Societal relevance
In 2015, the Sendai Framework for Disaster Risk Reduction 2015-2030 was established. Four priorities were set, namely;

(i) Understanding disaster risk; (ii) Strengthening disaster risk governance to manage disaster risk; (iii) Investing
in disaster reduction for resilience and; (iv) Enhancing disaster preparedness for e�ective response, and to "Build
Back Better" in recovery, rehabilitation, and reconstruction (UNDRR, 2015, p.14).

Thus, research focusing on understanding and minimization of landslide risk could be of great societal bene�t. More specif-
ically, an improved comprehension of increased landslide risk in speci�c periods or locations can be used to inform FbA and
trigger FbF to reduce risk. As previously mentioned, despite the great e�orts of the IFRC, no EAPs are currently available for
landslides.

1.3 Landslides
Landslides are large masses of soil debris or rocks moving down a slope, which can have destructive consequences. They are
frequently occurring hazards, especially in mountainous regions. Landslides are either caused by natural phenomena or human
activity, and they form a signi�cant threat to people and property (Gorum et al., 2013; Owen et al., 2008). Between 1998 and
2017, an estimated 4.8 million people were a�ected by landslides worldwide, and over 18,000 people lost their lives (World
Health Organization, nd).

1.3.1 Post-seismic and rainfall-induced landslides
Both earthquakes and rainfall are two major mechanisms that often trigger landslides (Crosta, 2004). In the literature, this phe-
nomenon is also referred to as triggering or cascading hazards, where a primary hazard can potentially trigger a secondary hazard
(Tsiplakidis and Photis, 2019). Ground shaking induced by earthquakes reduces the shear strength of slopes and subsequently
increases the susceptibility of the slopes to landslides. The risk of landslides further increases when consecutive seismic events
and rainfall occur (Tang et al., 2016). Moreover, successive earthquakes can cause ground cracks, which can act as conduits for
rainfall. Over time, this further weakens the ground (Bhandari, nd). Many factors in�uence the intensity and distribution of
co- and post-seismic landslides. These include the earthquake’s magnitude, fault characteristics, depth of the epicentre, ampli-
�cation patterns, and variation in physical features (Gorum et al., 2013; Sha�que, 2020; Sha�que et al., 2016). In this research,
co-seismic landslides are de�ned as landslides directly triggered by the earthquake and happen during or shortly after the seismic
event. Post-seismic landslides are not directly triggered by earthquakes but can occur up to years after the seismic event.

Following a large earthquake, an increased risk of seismic landslides can last up to years after the initial seismic event (Sha�que,
2020). The duration of this increase in landslide risk is a�ected by many di�erent parameters. These include rainfall intensity,
cumulative rainfall, changes in soil properties, self-stabilization processes of slopes, and re-vegetation (Huang and Fan, 2013).
Other factors that in�uence increased landslide risk are the development of regional topography through erosion, tectonics,
and incision of valleys (Huang and Fan, 2013). The increased susceptibility of the slopes caused by the seismic event combined
with other triggers can eventually lead to a landslide. Rainfall-induced landslides are generally caused during periods of heavy
rainfall due to an increase in pore pressure and seepage forces (Anderson and Sitar, 1995; Sidle and Swanston, 1982; Sitar, 1992;
Terzaghi, 1950, cited by Wang and Sassa, 2003). Increased pore pressure leads to a reduction of e�ective stress in the soil and,
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subsequently, reduced soil shear strength. Eventually, this can lead to slope failure, and thus landslides (Brand, 1981; Brenner
and Brand, 1985, cited by Wang and Sassa, 2003).

Landslide risk further increases when triggers are combined. Increased landslide risk following an earthquake further intensi�es
during periods of heavy rainfall, posing a more signi�cant threat to people and property. Therefore, the focus of this study is
on post-seismic landslides that occur during periods of heavy rain. Such landslides are caused by a combination of triggers and
are thus complex of nature.

1.4 Research aim
As previously mentioned, increased susceptibility to landslides after seismic activity combined with rainfall results in elevated
landslide risk. It is then a combination of triggers that lead to the hazard event. This research aims to utilize the time between
an earthquake and a rainfall season to determine elevated landslide risk, with the purpose that early action strategies can be
implemented to reduce the impacts of those landslides in the upcoming rainy season. To be more speci�c, the intent of this
study is to assess the earthquake’s legacy e�ect on the occurrence and spatial variability of landslides during rainfall seasons.
The emphasis is placed on whether the characteristics of an earthquake can tell us where landslides are likely to occur.

By doing so, this study aims to reduce the wickedness of the problem. Wicked problems or unstructured problems are character-
ized by complexity and their interconnected nature. Furthermore, stakeholders view these problems di�erently, and there is no
single solution to a wicked problem (Elia and Margherita, 2018). The wicked problem framework states that wicked problems
arise when dissensus among stakeholders and uncertain knowledge are combined (Georgiadou, 2018). This study reduces the
wickedness by improving the understanding of post-seismic landslides during western monsoon seasons in Northern Pakistan
and aims to reduce the impacts and risks by evaluating the options of early action.

1.5 Case study
A past earthquake has been selected to determine whether it is possible to utilize the time between an earthquake and an upcom-
ing rainfall season to implement early action strategies. A historic earthquake was chosen because the landslides can validate
the predicted elevated landslide risk in the rainfall season after the earthquake. Thus, by establishing an inventory of the e�ect
of the earthquake, it can be assessed whether spatial variability of landslide occurrence during the rainfall season could have
been predicted based on the earthquake parameters. Because of available data and previously conducted research on both the
earthquake and post-seismic landslides, this study focuses on the 2005 Kashmir earthquake in northern Pakistan.

1.5.1 2005 Kashmir Earthquake
On the 8th of October 2005, the 2005 Kashmir earthquake struck the north of Pakistan and the Kashmir region with a mag-
nitude of 7.6 Mw. The epicentre of the earthquake was located close to the city of Muza�arabad at a depth of 26 kilometres
(Earthquake Engineering Research Institute, 2005). There were an estimated 87,350 fatalities in Pakistan and 10,300 in India
(Hussain et al., 2006). The earthquake injured another 69,000 people (United States Geological Survey, nd). Furthermore, the
event triggered thousands of landslides, mainly debris �ows and rockfalls (Owen et al., 2008).

This study focuses on post-seismic landslides during the �rst western monsoon seasons after the 2005 Kashmir earthquake.
More speci�cally, the 2005 Kashmir earthquake’s legacy e�ect on landslide occurrence during the western monsoon season is
studied. Furthermore, possible mitigation measures to reduce the impacts and occurrence of post-seismic landslides during the
western monsoon seasons will be examined.
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1.5.2 Study area
The study area’s location is in northern Pakistan, which is part of the total area a�ected by the 2005 Kashmir Earthquake. It
includes the towns Balakot and Muza�arabad, which were severely a�ected by the 2005 Kashmir earthquake and subsequent
landslides (Sha�que, 2020). The study area of this research is similar to the area used by Sha�que (2020). Figure 1.1 shows the
study area, which covers 253.54 km2 and has an elevation between 631 and 2697 meters above sea level.

Figure 1.1: Study Area in Northern Pakistan

The study area has been prone to landslides even before the 2005 Kashmir earthquake. However, ever since the earthquake,
landslide frequency has drastically increased. The main tectonic structure in the area is the Hazara Kashmir Syntaxis (Sana and
Nath, 2016). Several major thrust faults are located in the study area. The fault ruptures in the study area are the Main Boundary
Thrust (MBT), the Panjal Fault, the Kaghan Fault and a small part of the Bagh Blind Fault (Khan et al., 2020).

Several geological formations are found in the study area. The most prominent ones are the Muza�arabad formation, Hazara
formation, Murree formation, and Quaternary deposits. A map of the geologic formations in the study area is provided in �gure
3.4-d. Table 1.1 provides an overview of the most important geological formations in the study area, as well as the corresponding
lithology and the age of the formation. The Murree formation consists of mudstone, sandstone, siltstone, and shale and was
formed in the Miocene epoch. The Cambrian Muza�arabad formation is comprised chie�y of dolomite, quartzite limestone,
and sandstone. The Hazara formation consists of slate, limestone, siltstone, and shale. It stems from the pre-Cambrian era,
making it the oldest formation present in the study area (Sha�que, 2020). According to Owen et al. (2008), after the 2005
Kashmir earthquake, most landslides occurred in the Muza�arabad formation.

Table 1.1: Most prominent geological formation, including the corresponding lithology and formation age, after
(Hussain et al., 2004), (Latif et al., 2008), and (Sha�que, 2020).

.

Geological Formation Lithology Age

Murree Formation Mudstone, sandstone, siltstone, shale Miocene

Muza�arabad Formation Dolomite, quartzite limestone, sandstone Cambrian

Quaternary Deposits Gravel, clay, sand Quaternary to present

Hazara Formation Slate, siltstone, limestone, shale Pre-cambrian
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Figure 1.2 shows an example of a large landslide (debris �ow) that occurred near Balakot. Debris �ows are moving masses of
loose mud, rock, soil, water, sand, and air that move down a slope. They are among the most dangerous landslide types (Jakob
and Hungr, 2005). An inhabited area is located at the foot of the slope. As a result, people and assets are exposed to further
danger if another landslide occurs, illustrating this research’s importance.

Figure 1.2: Debris Flow near the town Balakot (Google Earth, 2020)

1.5.3 Western monsoon season
The western monsoonal season generally occurs from late June through September, with the retreating monsoon period until
November (Weather & Climate, nd). Based on a 30-year average, Muza�arabad receives over 1500 mm precipitation a year, of
which about a third during the western monsoon season (World Meteorological Organization, nd). Balakot receives over 1700
mm of rainfall a year, of which over 40% falls during the western monsoon season (Weather Atlas, n.d.). During these months,
heavy precipitation often results in landslides and �ooding (Khattak et al., 2010).

1.6 Research objectives and research questions
This research’s main objective is to investigate whether dynamic landslide risk analysis based on earthquake parameters of the
2005 Kashmir earthquake could have informed early action to reduce the impacts of landslides during the �rst western monsoon
season after the earthquake. To reach this objective, the research objectives (RO) and associated research questions (RQ) are as
follows:

RO1: To develop pre-seismic, co-seismic and post-seismic landslide inventories for the study area and to deter-
mine the increased landslide intensity during the western monsoon season after the 2005 Kashmir earthquake.

RO2: To develop pre-seismic, co-seismic and post-seismic explanatory hazard models for the study area.

RO3: To determine where and to what extent landslide susceptibility increased in the post-seismic inventory
compared to pre-earthquake landslide susceptibility.

RQ1: What have been the e�ects of the 2005 Kashmir earthquake on post-seismic landslides in northern Pakistan,
speci�cally during the western monsoon season in the �rst year after the earthquake?
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RO4: To assess what parameters a�ect pre-seismic, co-seismic and post-seismic landslide distribution.

RO5: To determine whether the earthquake parameters have a clear in�uence on landslide distribution in the
post-seismic landslide model.

RQ2: Compared to pre-seismic landslide distribution, what parameters in�uence the spatial distribution of post-
seismic landslides during monsoon seasons?

RO6: To assess the possibilities of risk reduction in the future based on the in�uence of earthquake parameters
on landslide occurrence.

RQ4: Is the earthquake legacy e�ect of the 2005 Kashmir earthquake on landslide risk in combination with
exposure information signi�cant enough to allow for early actions in time until the �rst monsoon season after a
possible earthquake?

1.7 Thesis outline
The subsequent chapters are organized as follows. Chapter 2 presents a literature review on landslide hazard, landslide suscep-
tibility assessment, and landslide EWEA. Chapter 3 focuses on the research design, where the applied methods are discussed.
The results and discussion are provided in chapter 4, followed by the conclusions in chapter 5. A re�ection on the study is given
in chapter 6, and the �nal chapter is the appendix.
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Chapter 2

Literature Review

This chapter provides an overview of the available literature and methods that are relevant to this research. To start, section
2.1 discusses landslide hazard and susceptibility assessment methodologies. Section 2.2 provides an overview of the literature
that has studied post-seismic and rainfall-induced landslides. Section 2.3 discusses a study that has conducted a seismic hazard
analysis of the 2005 Kashmir earthquake. Section 2.4 explores what has already been done by the IFRC in terms of FbA and
FbF. Section 2.5 then discusses the challenges with EWEA for landslides, and section 2.6 discusses what Early Warning Systems
(EWS) have been established for rainfall-induced landslides.

2.1 Landslide hazard and susceptibility assessment
For a long time, research institutions and governments have focused on landslide hazard, hazard zoning, and risk assessment.
Over the years, multiple landslide hazard assessment methodologies have been used. The distinction can be made between
quantitative or qualitative methods and direct or indirect methods. Generally, qualitative methods make use of descriptive
terms to assess landslide hazard. As a result, they are subjective to the researcher’s input. On the other hand, quantitative
methods calculate the probabilities of landslide occurrence (Guzzetti et al., 1999). Direct methods are based on the knowledge
of the researcher(s) of the geomorphological conditions of the area and its relations to landslide occurrence (Chauhan et al.,
2010; Guzzetti et al., 1999; Thiery et al., 2014; Verstappen, 1983). Indirect methods aim to determine landslide-prone areas by
assessing mathematical relationships between landslide occurrence (or response variable) and a set of explanatory or predictive
variables. In other words, the direct or indirect correlations between a set of predetermined physical factors and slope instability.
By use of a statistical function, each explanatory variable is assigned a certain “weight” (Guzzetti et al., 1999; Thiery et al., 2014).
Based on this, landslide susceptibility zonation can be done. In landslide susceptibility research, several types of mapping units
are commonly used. These are grid-cells, slope units, topographic units, terrain units, and unique-condition units. Which type
of mapping unit is best applicable to a study depends on the data and the tools used (Guzzetti et al., 1999).

The most important methods applied in landslide susceptibility fall into �ve categories. First, geomorphological landslide haz-
ard mapping, which is essentially a qualitative method, based on the researcher’s ability to estimate the potential and actual
slope failures (Bosi et al., 1985; Godefroy and Humbert, 1983; Hansen et al., 1995; Humbert, 1977; Kienholz et al., 1983, 1984;
Seeley and West, 1990; Zimmermann et al., 1986, cited by Guzzetti et al., 1999). A second approach is the heuristic or index-
based approach. This method is based on prior knowledge of the causes of landslide occurrence in the studied area. Thus, it
depends on the researcher’s understanding of the e�ects of geomorphological processes on the studied area. The factors are
weighted based on their expected in�uence on landslide occurrence. Another methodology category is landslide distribution
analysis, where landslide density maps of past and present landslide deposits are compared to predict future landslide distri-
bution. Landslide distribution analysis is an indirect quantitative approach. The fourth method, also an indirect quantitative
approach, is the use of geotechnical or physically-based models. It is based on physical laws that a�ect slope instability. The
last landslide susceptibility approach makes use of statistical-based models. This approach relies on analysing functional rela-
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tionships between landslide distribution in the past and present and a set of instability factors. Various multivariate statistical
techniques have been applied in this approach. The most commonly used methods are linear and logistic regression, discrimi-
nant analysis and neural networks (Carrara, 1983; Carrara et al., 1991, 1995; Chung et al., 1995; Mark, 1992; Neely and Rice, 1990;
Neuland, 1976; Roth, 1983; Van Westen, 1993, 1994; Yin and Yan, 1988, cited by Guzzetti et al., 1999). These types of methods
are often intertwined with machine learning, where the majority of the data set is used as training data. The remaining data is
used for validation to assess the predictive capacity of the model (Althuwaynee et al., 2012; Pourghasemi et al., 2013; Pradhan
et al., 2010; Yang et al., 2019).

2.2 Post-seismic and rainfall-induced landslides
This study focuses on a combination of earthquake and rainfall-induced landslides. Over the years, several studies have been
conducted on the e�ects of earthquakes on landslide activity, also in relation to rainfall. These will be discussed in this section.

Lin et al. (2006) studied the link between the Chi-Chi earthquake and rainfall-induced landslides that occurred after the earth-
quake. This was done by comparing eight SPOT images from 1996 until 2001 of landslides in the Choushui River watershed.
They found that not only the frequency of subsequent landslides increased but also the spatial distribution of landslides had
changed compared to before the Chi-Chi earthquake (Lin et al., 2006).

Furthermore, Yang et al. (2018) studied the e�ect of the 2008 Wenchuan earthquake on landslide activity. This was done by
comparing multi-year high spatial resolution and high temporal remote sensing images from before and after the earthquake.
According to their results, the Wenchuan earthquake signi�cantly damaged vegetation, which as a result, triggered landslides.
Over the years, vegetation in the area has been recovering, and post-seismic landslide activity has decreased accordingly (Yang
et al., 2018).

Many researchers have examined both co-seismic and post-seismic landslides caused by the 2005 Kashmir earthquake. Several
studies indicated stabilizing trends of slopes in the area (Khan et al., 2013; Khattak et al., 2010; Saba et al., 2010). However, as
indicated by Sha�que (2020), there were limitations to these studies. They were conducted using either part of the area a�ected
by the earthquake or used a limited set of co- or post-seismic landslides.

Therefore, according to Sha�que (2020), these studies might have underestimated landslide risk. Sha�que (2020) then analysed
pre-earthquake and post-earthquake landslide datasets to estimate the spatial and temporal unfolding of landslides, which were
induced by the 2005 Kashmir earthquake. A decline in post-seismic landslides was indicated through visual image interpreta-
tion, with an acceleration from 2010 to 2018. However, the rate of decline is slower than for post-seismic landslides of other
large earthquakes. Furthermore, he studied the relationship between landslides and rainfall in the area. Mean monthly rain-
fall data was obtained from the Pakistan Meteorological Department. Data from 2004-2018 was used and compared with the
post-seismic landslide inventory. Figure 2.1 shows the landslide area in square kilometres and the mean monthly rainfall data in
millimetres. Despite periods with hefty rainfall and monsoon seasons, the landslide areas show a continual decline. This reveals
the temporal decay of post-seismic landslides in the area (Sha�que, 2020).

Although Sha�que (2020) studied the relations of rainfall with post-seismic landslides of the 2005 Kashmir earthquake, this has
not been done in detail for monsoon seasons speci�cally, and it has not been compared to land sliding during monsoon seasons
before the 2005 Kashmir earthquake. Furthermore, this study is unique in exploring a new landslide susceptibility approach to
detect an apparent spatial earthquake legacy e�ect on landslide susceptibility.

Because a lot of research has been conducted focusing on post-seismic landslides after the 2005 Kashmir Earthquake, extensive
data is available, allowing for further research. Therefore, the 2005 Kashmir earthquake has been selected as a base for this
research. Many researchers have studied post-seismic landslides after the 2005 Kashmir Earthquake. However, an analysis of
elevated landslide risk caused by the earthquake during the western monsoon season has not yet been conducted. This study
is progressive and unique by studying whether the time between the 2005 Kashmir earthquake and the �rst western monsoon
season could have been used to reduce the impacts of those landslides. Gaining insight into the earthquake’s legacy e�ect on
the extent and spatial variability of landslide risk could greatly bene�t the IFRC for disaster risk reduction.
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Figure 2.1:
"Comparisons of the temporal mean monthly rainfall with landslide dynamics. The bar graph repre-
sents the mean monthly rainfall, and the line represents the landslides area."

(Sha�que, 2020)

2.3 Seismic hazard analysis of the 2005 Kashmir earthquake
Khan et al. (2020) have conducted a seismic hazard analysis in Muza�arabad, Pakistan, with the moment tensor solution of
the Kashmir earthquake. The moment tensor solution is the mathematical representation of the fault rupture. The output is a
seismic hazard map for the study area. They found that ridges and slopes facing away from the centroid moment tensor (CMT)
generally led to ampli�cation of the seismic response, and de-ampli�cation generally occurs in valleys and on the lower end of
slopes that are faced towards the fault. Furthermore, they evaluated the e�ect of topography on co-seismic landslides. This was
done by correlation of the ampli�cation pattern with data on co-seismic landslides. This showed that over half of the landslides
occurred on slopes facing away from the CMT, while a little over a quarter of landslides were recorded on slopes facing towards
the CMT. As cited in Khan et al. (2020), this is in line with previous research (Ashford et al., 1997; Ashford and Sitar, 1997).
As indicated in the article, the seismic hazard map, the methodology, and the results can be used to identify potential landslide
zones when combined with other factors, such as local geology and anthropogenic factors (Khan et al., 2020). Furthermore, the
model could be combined with rainfall forecasts to predict where the risk of both post-seismic and rainfall-induced landslides
will increase.

2.4 Forecast-based Action & Forecast-based Financing
As discussed in the introduction, the IFRC refers to early actions as FbA. These are summarized in EAPs. To apply for funding
through FbF, a national society needs to develop an EAP while adhering to a set of guidelines (IFRC, nda). Figure 2.2 provides
the process for establishing a new EAP. Starting with risk assessment of the hazard, then identi�cation of forecasts, then estab-
lishing threshold levels and selecting the early actions that will be used. Based on these aspects, the national society can develop
an EAP. The EAP needs to be approved by the National Society management and the National Technical Committee. Upon
approval, the EAP comes into force. Once a danger level is exceeded, funding is released, and the pre-established early actions
are enforced (IFRC, nda).
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Figure 2.2: Step by step development process for Early Action Protocols (IFRC, nda)

EAPs that are currently in operation focus on several types of hazards, such as �oods, droughts, dzuds, heat waves, volcanic ash
and cyclones. The funding is also discussed in these EAPs. To further elaborate, some EAPs will brie�y be discussed.

The EAP for cyclones in Mozambique �rst states the actors that have prepared and are responsible for implementation. These
include the Mozambique Red Cross, the German Red Cross and the National Institute of Disaster Management. The thresh-
old value at which early actions will be initiated was based on a 30-year analysis focused on historical data and impacts of past
cyclones in Mozambique. The danger level was set at expected wind speeds of 120 km/h at landfall. The lead time for cyclones
in Mozambique is 72 hours (IFRC, 2019a,b). According to the EAP, the main impacts of cyclones are damages to buildings
and infrastructure, crops and agricultural tree losses, losses of critical assets and increases in waterborne diseases. Several early
actions were established based on the available time between the trigger and the predicted cyclone, the Mozambican Red Cross
ability to act with partners, and the identi�ed impacts. The prioritized impacts are increases in diseases and the destruction
of houses and classrooms. First of all, the EAP suggests supplying the communities with basic materials and essential tools to
strengthen their rooftops and mud walls against wind and rains. Another measure aims to reduce waterborne diseases by dis-
tributing chlorine (Certeza) and buckets to communities before the cyclone hits. By doing so, people have clean water available
in the days after the cyclone, which will reduce the number of disease cases (IFRC, 2019a,b).

In 2019, an EAP for cold waves in Peru was approved. Cold waves have a lead time of �ve days. The impacts that are prioritized
in the EAP are morbidity and mortality of livestock and acute respiratory infections. The proposed early actions are the pro-
vision of materials for house insulation, temporary shelters for alpacas, veterinary kits, and warm clothes for young children.
Furthermore, the focus will be on raising health promotion and disease prevention awareness (IFRC, 2019a).

Another EAP for Peru that was approved in 2019 focuses on �ooding. The lead time is ten days. The prioritised impacts are safe
water access, damages to assets, infrastructure and livelihoods, hygiene conditions and health risks. Some of the early actions
discussed in the EAP include promotion of hygiene, prevention of diseases, provision of water �lters and cash grants (IFRC,
2019a).

As previously discussed, currently, no EAPs have been established for landslides. This research could contribute to the EAP
development process by providing information for the �rst four stages of an EAP development, namely risk assessments, iden-
ti�cation of forecasts, de�nition of impact levels and early actions selection. Thus, in the longer run, this study’s results could
help establish an EAP for landslides in the study area and, consequently, help reduce the impacts of landslides.
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2.5 Early warning early action landslides
EWEA is applied less for landslides than many other hazards. Most likely, this is due to the complex nature of landslides and fail-
ure mechanisms (Xu et al., 2020). Furthermore, landslides are very localized events, making e�ective EWEA strategies far more
challenging. Because of this, relatively high increases in risk are needed to trigger a warning accurately. Lead time constraints
could be another possible reason. In this study, the focus is on a combination of earthquake and rainfall-induced landslides.
Major earthquakes have never been accurately predicted in the past, and it is not expected to be possible anytime soon. Only
the probability that an earthquake will occur can be calculated (USGS, nd). Considering that earthquake-induced landslides
happen during or very shortly after a seismic event, this leaves little to no room for the implementation of early action. For
rainfall-induced landslides, some EWS have been applied. Typically, they use rainfall intensity duration thresholds, as well as
meteorological modelling to derive rainfall forecasts that could trigger a warning if the threshold is exceeded (Piciullo et al.,
2018). However, although also a concern with other hazard types, de�ning these thresholds is an issue. Thresholds that are too
high result in lead times too short for emergency plans or could even miss the event. On the other side, lower thresholds values
could lead to false warnings (Coughlan de Perez et al., 2015; Intrieri et al., 2013; Nadim and Intrieri, 2011).

2.6 Early Warning Systems for rainfall-induced landslides
Even though prediction of landslides is challenging, several studies have developed Early Warning Systems (EWS) for rainfall-
induced landslides. Some of them are discussed in this section.

Xu et al. (2020) observed over a hundred landslides in Western China. They found that landslides typically undergo an evolution
period from deformation until slope failure, in three clear phases. These creep slope failure phases have been referred to as
initial, constant and accelerated deformation (Saito, 1961; Xu et al., 2011, cited by Xu et al., 2020). In the study, they developed
an EWS for landslides, as well as a warning model. This is done using the rate of deformation and the improved tangent angle
as early warning indicators (Xu et al., 2020). A four-level warning system is used based on the creep slope failure phases. Where
initial deformation leads to no warning, constant deformation equals attention. When initial acceleration is reached, a caution
warning is given, a vigilance warning is issued when a slope is in the medium-term acceleration phase and when eminent sliding
is reached, an alarm warning is given (Xu et al., 2020). By the time the study was published in December 2020, the EWS had
successfully predicted landslides 11 times (Xu et al., 2020).

Another study focusing on landslide EWS was conducted by Greco et al. (2013). They created a stochastic real-time landslide
predictor for rainfall-induced landslides. They have combined the FlaIR model with a point rainfall stochastic model. The
FLaIR model uses a slope mobility function that links landslide occurrence with antecedent rainfall characteristics. When a
storm occurs, the expected value of the mobility function is based on empirical evaluation of only the historical storms that are
characteristically similar to the occurring one (Greco et al., 2013). The predictor for rainfall-induced landslides was calibrated by
using almost 48 years of hourly rainfall data collected by the rain gauge of Lanzo, located near the Pessinetto slope in Northern
Italy. During the 48 year observation period, six earth �ows had occurred. After calibration and validation, the model provided
reliable predictions of the slope mobility function up until a lead time of six hours. It was then tested as part of an EWS for
earth �ows at the slope of Pessinetto. Two threshold values were determined, one for alert and one as an alarming level. They
found that it is possible to gain some lead time hours for risk mitigation procedures if the threshold levels were accurately set
(Greco et al., 2013).

Segoni et al. (2014) also focused on an EWS for rainfall-induced landslides. In this case for Tuscany, with a focus on a larger
area of 23.000 km2. The EWS uses intensity duration rainfall thresholds, real-time rainfall data, as well as rainfall forecasts. It
was produced in a WebGIS, where it is possible to focus on real-time rainfall data and forecasts at di�erent lead times, with a
maximum lead time of 48 hours. Furthermore, it is possible to focus on the entire area or zoom in on smaller areas. Because
Tuscany has high variability in physical features, 25 subdivided alert zones were used. Each of these alert zones has a di�erent
threshold to account for the di�erences in physical characteristics. Each alert zone is monitored separately by making use of 332
rain gauges. As a result, warnings can be given for each of the alert zones separately. Thresholds may vary in time depending on
the rainfall paths provided by the rain gauges (Segoni et al., 2014).
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Even though these studies have been successful on local and regional scales, they are typically far more challenging to apply to
larger areas. The risk of false alarms is much higher. Furthermore, they merely account for rainfall-induced landslides. This
study aims to utilize the time between the 2005 Kashmir earthquake and the �rst western monsoon season after the earthquake
to determine which early actions can be used to reduce the impacts of landslides during the rainy season. This approach has not
yet been explored in FbF literature and thus could provide an exciting opportunity for landslide risk reduction by increasing
the lead time for early action. Besides the study area, it could help reduce impacts of landslides during wet seasons after major
earthquakes in other places.
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Chapter 3

Research Design

The research design chapter outlines the methods and data used to achieve the research objectives. First, section 3.1 focuses
on the establishment of the pre-seismic, co-seismic and post-seismic landslide inventories. Section 3.2 discusses the landslide
controlling parameters that have been included in this study and explains the reasons to include each parameter. Section 3.3
outlines the methods applied to obtain the data matrices. Section 3.4 focuses on the landslide explanatory models, in this case,
Generalized Additive Models (GAMs). Lastly, section 3.5 described the applied methodology for the landslide susceptibility
maps.

3.1 Landslide inventories
To compare landslide activity before and after the 2005 Kashmir earthquake, several landslide inventories were established. A
pre-seismic inventory for 2005 based on ASTER satellite imagery taken on the 9th of September 2005, a co-seismic inventory
for 2005 based on ASTER satellite imagery taken on the 27th of October 2005, and a post-seismic inventory for 2007 taken
on the 24th of April 2007. The pre-seismic and co-seismic inventories are based on satellite images taken before and right after
the 2005 Kashmir earthquake on the 8th of October. For the post-seismic inventory, it was essential to include the monsoon
seasons of 2006, which lasted from June through September, with the retreating monsoon period until November (Weather &
Climate, nd). Suitable satellite imagery of right after the monsoon season was not available, and thus an image was selected from
2007. The satellite image used was taken before the start of the monsoon season of that year to make sure that the inventory
only includes the monsoon season of 2006.

An overview of the landslide identi�cation criteria can be found in table 3.1. The landslides for the pre-seismic inventory were ex-
tracted based on Normalized Di�erence Vegetation Index (NDVI), Normalized Di�erence Water Index (NDWI), cloud bands
and slope threshold values. The landslides for the co- and post-seismic inventories were based on change detection using satel-
lite imagery from the previous year. In the co-seismic and post-seismic inventory, an area was categorized as a landslide if the
Barren Soil Index (BSI) increased by at least 20%, the NDVI with a negative change of at least 35% and if the Relativized Burn
Ratio (RBR) showed an increase of 20%. Furthermore, the identi�ed area was only classi�ed as a landslide if it consisted of at
least 5 connected pixels.

The co-seismic inventory was compared to the inventory of Sato et al. (2007) to test the landslide criteria that were applied.
Sato et al. (2007) developed a landslide inventory for 2005 using SPOT-5 images. They mainly were identical, so it was assumed
that the criteria used were su�ciently accurate to conduct the three inventories. The assumption was made because there was
no opportunity to validate the results in the study area. It should be noted that the derived inventories are notably di�erent
from the inventories of Sha�que (2020). Sha�que (2020) established landslide inventories using ASTER and SPOT satellite
images for 2004, 2005, 2010, 2014, 2016 and 2018. Thus, in theory, the 2004 and 2005 inventories could be used to validate this
study’s pre-seismic and co-seismic inventories. Sha�que (2020) used a combination of visual interpretation of satellite images
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and �eld observations to derive the inventories, thus using a di�erent method. Furthermore, the landslide polygons seem to be
included manually instead of through image classi�cation, reducing the preciseness of the inventories. Due to the di�erences
in methods, the inventories cannot be precisely compared to the inventories of this study. Nevertheless, the spatial distribution
of landslides in the 2004 and 2005 inventories is similar to this study’s inventories. However, landslide count and size are very
di�erent, but this is expected as the inventories in this study were derived through change detection. In contrast, the inventories
of Sha�que (2020) re�ect the aggregated number of landslides. Moreover, in this study, the landslides smaller than 900 m2 are
not included. In light of the major di�erences in the construction of the inventories, the decision was made to compare the
co-seismic inventory to the inventory established by Sato et al. (2007), as it is a more reliable comparison.

Table 3.1: Landslide identi�cation criteria for the pre-, co-, and post-seismic inventories. Pre-processing features
for the pre-seismic inventory and change criteria for establishing co- and post-seismic inventories.

Pre-seismic inventory Co-, and post-seimic inventories

Pre-Processing Feature for Masking Landslide Criteria

Type Feature Rule Type Feature Rule

Spectral Normalized Di�er-
ence Snow Index
(NDSI)

Mask Snow Spectral
and Tempo-
ral

Barren Soil Index
(BSI) Di�erence

> +20%

Spectral
and Vector

Normalized Di�er-
ence Water Index
(NDWI)

Mask Water Spectral
and Tempo-
ral

Normalized Dif-
ference Vegetation
Index (NDVI)
Di�erence

> -35%

Spectral Cloud Band Mask Cloud Spectral
and Tempo-
ral

Relativized Burn
Ratio (RBR)
Di�erence

> +20%

Spatial Slope Mask < 10 de-
grees

Spatial Size > 5 con-
nected
pixels

The Digital Elevation Model (DEM) used in this research has a resolution of 30m. Therefore, only landslides larger than 900 m2

have been selected. Furthermore, their impact is also signi�cantly larger than smaller landslides. However, if polygons covering
an area of fewer than 900 m2 are located within a 15-meter proximity of nearby landslides, they were merged to the nearest
landslide polygon and treated as a single landslide. They were kept in the data set because it is likely that they occurred at the
same time. Note that this was merely done for the landslides smaller than 900 m2, landslides within 15-meter proximity of other
landslides that are larger than 900 m2 were not merged and kept as separate landslides.

The polygons of the landslide inventories were transferred to points by selecting the point with the highest elevation. This
was done to select the most likely initiation point of the landslide. The nearest DEM value was used if there was no point
DEM value within the landslide polygon. It is important to note that in some cases a landslide polygon represents two separate
landslides that appear to be one. However, part of this problem was eliminated after comparing the landslide polygons of the
inventories with the ones from the previous year(s).The spatial distribution and landslide size of the three landslide inventories
are displayed in �gure 3.1, and the corresponding information on landslide count, size and total landslide area is provided in
table 3.2.
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Figure 3.1: Maps of landslides in the pre-seismic, co-seismic and post-seismic landslide inventories

Table 3.2: Landslide count, total landslide area and average landslide size for the pre-seismic, co-seismic and post-
seismic inventories

Year Pre-Seismic Co-Seismic Post-Seismic

Number of landslides 242 411 2922

Total landslide area 1.36 km2 4.93 km2 13.86 km2

Average landslide size 5619.31 m2 11998.94 m2 4745.00 m2

3.2 Landslide controlling parameters
After developing the landslide inventories, a subsequent step was to determine the parameters that in�uence landslide activity.
In total, 14 landslide controlling factors were used in this study that were selected based on a literature review of prior landslide
studies. These parameters are elevation, slope, slope aspect, CMT angle, slope curvature, distance to fault, geology, land cover,
road network, drainages, and mean monthly rainfall. The Peak Ground Velocity (PGV), Peak Ground Acceleration (PGA),
and the Peak Ground Displacement (PGD) of the 2005 Kashmir earthquake, developed by Khan et al. (2020), were also used.
Figures 3.3, 3.4, and 3.5 display the maps of each of these parameters. The mean monthly rainfall data from the Pakistan Meteo-
rological Department that was used by Sha�que (2020) is used to compare the rainfall records with the pre-, co- and post-seismic
landslide variation.

The parameters were chosen for several reasons. The geology of the a�ected area determines landslide factors, including material
and magnitude. The elevation, slope, slope curvature, and slope aspect a�ect the frequency of landslides as well as their spatial
attribution (Gorum et al., 2011; Kamp et al., 2008; Korup, 2010, cited by Sha�que et al., 2016). Steep slopes and land cover are
considered major factors of landslides initiation (Basharat et al., 2016). The road network and drainages are also considered in
this study as they could a�ect slope stability due to possible undercutting action (Basharat et al., 2016). Besides slope aspect,
the CMT direction or angle was also included. CMT angle was chosen because Khan et al. (2020) found that ridges and slopes
facing away from the centroid moment tensor generally led to ampli�cation of the seismic response, and de- ampli�cation
generally occurs in valleys and on the lower end of slopes that are faced towards the fault. Furthermore, the study showed that
more than half of the landslides occurred on slopes facing away from the CMT, while a little over a quarter of landslides were
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recorded on slopes facing towards the CMT. As cited in Khan et al. (2020) this is in line with previous research Ashford et al.
(1997); Ashford and Sitar (1997). The CMT angle was categorized into three categories; 1. Slopes facing towards fault rupture,
2. Slopes facing away from fault rupture, and 3. Slopes facing in other directions.

The DEM of the study area was used to visualize the elevation. The DEM of the study area was then used to derive the slope,
slope aspect, and slope curvature in QGIS. The geology of the study area was derived from the geology map of Sha�que (2020),
which was based on prior maps created by Hussain et al. (2004), and Latif et al. (2008). The geology information was georef-
erenced in QGIS and covers most of the study area. Figures 3.3, 3.4, and 3.5 show maps of each of the parameters for the study
area. The Copernicus Dynamic Global Land Cover Layer was used to determine the study area’s land cover types (Buchhorn
et al., 2019). The classi�ed land cover data is from 2015. Although 2015 is roughly a decade later than the dates of the landslide
inventories, it was determined that the land cover has hardly changed through google earth observations of these years. Thus the
data will be accurate enough for this study. The road network was obtained through extraction of OpenStreetMap and checked
with Google Earth for any changes over the years. The PGV, PGA, PGD of the 2005 Kashmir earthquake were developed by
Khan et al. (2020), and cut to the extent of the study area in QGIS. The fault rupture was derived by Khan et al. (2020) and
was used to calculate the distance to a fault rupture. The maps of the di�erent parameters are displayed below.

Mean monthly rainfall data from the Pakistan Meteorological Department was used to re�ect on the rainfall factor for landslide
occurrence. The rainfall data in millimetres for 2004, 2005, and 2006 is displayed in table 3.3. The rainfall data is for the study
area used by Sha�que (2020). However, since the area is very similar to the study area of this study, it was decided that the data
will be su�ciently accurate to use. To justify, a study area comparison is shown in �gure 3.2, which shows that the study area is
almost identical. Initially, identical study areas were selected. Due to some data constraints, slight alterations were made to the
study area to accommodate the available data.

Figure 3.2: Study area of this study and study area used by Sha�que (2020) showing the overlap to justify the use
of rainfall data from the Pakistan Meteorological Department.

The pre-seismic inventory contains detectable landslides also from before 2004, and thus the rainfall of 2004 is not a com-
pletely accurate representation. However, because the rainfall parameter for the pre-seismic inventory is somewhat of an aver-
age of multiple years, it is thus considered a constant. Furthermore, it is assumed that the rainfall parameter remains constant
throughout the inventories. The spatial variability of the rainfall is therefore not considered in this research. This was done
because this study aims to assess the earthquake’s legacy e�ect on landslide occurrence. Therefore, although many of the land-
slides are triggered by seismic activity and rainfall, the focus is on the earthquake parameters. In other words, the focus is on
identifying landslide-prone slopes that are likely to fail when heavy rainfall occurs. Including spatial variability in rainfall would

16



The Legacy E�ect of the 2005 Kashmir Earthquake on Post-Seismic Landslide Susceptibility

overcomplicate the study and deviate from focusing on the earthquake’s legacy e�ect. Therefore, to e�ectively assess, the rainfall
parameter is assumed to be constant throughout.

Table 3.3 shows the monthly rainfall data. The number of asterisks indicates the month the satellite image was taken to derive
each of the inventories. One asterisk (*) is used for the pre-seismic inventory, two asterisks (**) for the co-seismic inventory and
the post-seismic inventory is indicated by three asterisks (***). As shown in table 3.3, the mean monthly rainfall of the pre-seismic
inventory is 131.60 mm and 143.02 in the post-seismic inventory, which further indicates the rainfall remained rather constant.
The 30-day rainfall average of the co-seismic inventory is a lot lower, with merely 66.70 mm. However, satellite images of the
pre-seismic and co-seismic inventories are only 48 days apart. Therefore, the 30-day average is not a valid representation.

Table 3.3: Mean Monthly Rainfall in mm Sha�que (2020) (Pakistan Meteorological Department). The number
of asterisks (*) indicate the date of satellite imagery that was used for the pre- (*), co- (**), and post-seismic (***)
inventories. Based on the dates of the satellite imagery, the 30 day rainfall average for each of the inventories was
calculated.

2004 2005 2006 2007

January 201.1 175.1 171.9 6.2

February 89.2 270.1 101.6 107.1

March 8.8 145.6 100.1 256.5

April 112.6 61.9 68.1 63***

May 67 63.9 74 125.8

June 88.1 40.6 223 165.4

July 278.1 197.4 613.8 227.9

August 282.3 226.4 374.9 108.5

September 132.3 143* 70.8 72

October 132.8 7.6** 62.3 0

November 29.7 19.1 105.3 18.5

December 65 0 187.4 29

Total 1487 1350.7 2153.2 1179.9

Monthly Average 123.9 112.6 179.4 98.3

Date Image Up until Image date 30 day average

* 01/01/2004 - 09/09/2005 2710.9 131.6

** 09/09/2005 - 27/10/2005 106.7 66.7

*** 27/10/2005 - 24/04/2007 2593.5 143
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(a) Elevation (m) (b) Slope

(c) Slope curvature (d) Slope aspect

Figure 3.3: Maps of the elevation, slope, slope curvature and slope aspect parameters
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(a) Centroid Moment Tensor direction (b) Faults

(c) Road network and drainage (d) Geology

Figure 3.4: Maps of the CMT direction, faults, road network and drainage and geology parameters
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(a) Land cover (b) Peak Ground Velocity (cm)

(c) Peak Ground Acceleration (cm/s2) (d) Peak Ground Displacement (cm)

Figure 3.5: Maps of the land cover, PGV, PGA and PGD parameters

20



The Legacy E�ect of the 2005 Kashmir Earthquake on Post-Seismic Landslide Susceptibility

3.3 Data matrix
After collecting the data on each parameter, a data matrix was created to incorporate landslide occurrence and the landslide
parameters in the explanatory models. To obtain the data matrix, the study area was divided into mapping units, in this case,
slope units. For landslide occurrence, the most likely initiation points of the landslides were then used to count the number of
landslides within each slope unit. Subsequently, the landslide occurrence was determined, using a presence-absence structure,
categorised as ’landslide’ or ’no landslide’. The programme QGIS was used to establish the data matrix. The slope units were
used to link all information of the di�erent parameters, as well as landslide occurrence for 2005 (pre-seismic), 2005 (co-seismic)
and 2007 (post-seismic). This was done in a variety of ways. The mean of each slope unit’s elevation, slope, slope aspect, and
slope curvature was used. The ground motion parameters PGV, PGA and PGD, have a resolution of 270 meters. The PGD was
already obtained in a raster format. PGV and PGA were interpolated using Inverse Distance Weighting (IDW) interpolation,
with the same cell size as the PGD. Due to the limited precision of the data, in many cases, only one value for PGV, PGA and
PGD were located in a slope unit. Therefore, only the mean value of the ground motion parameters PGV, PGA and PGD
was used. The percentage of land cover and geology type that cover each slope unit was calculated. Distance to fault, road
network and drainage was done using bu�ers. For fault, bu�ers of 100, 200, 300 and 400 meters were calculated, and for the
road network and drainage, a 50-meter bu�er zone was used. Similar to geology and land cover, the percentage of each slope
unit that falls within these bu�ers was calculated. Figure 3.6 provides an overview of the steps taken to derive the data matrix,
including the input data used for the parameters and the processing steps for the data matrix. For reproducibility purposes, the
exact QGIS processing steps are discussed in appendix 1.

Figure 3.6: Flowchart of the methodology for the data matrix, indicating the processing steps to derive data on the
parameters for each of the slope units.
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3.4 Generalized Additive Models
To derive the explanatory hazard models, a Bayesian version of the Generalized Additive Models (GAMs) (3.1) has been used.
GAMs are regression models that are more capable of deriving non-linear �ttings than traditional statistical models. Non-linear
explanatory variables can be �tted using various functions to reveal their complex relationships. In other words, a binomial
GAM can model both linear (�xed) and non-linear (random) e�ects. The random-e�ects can include categorical, ordinal and
continuous variables with discrete or ordinal classes. These can be modelled as independent and identically distributed e�ects
(Lombardo et al., 2020). Moreover, GAMs are �exible, as they can be applied to various distribution types (Ma et al., 2020).
The GAMs were �rst introduced by Hastie and Tibshirani (1990). The advantages of GAMs are that explanatory variables
can be added by function and their capacity to deal with non-linear relationships between numerous response and explanatory
variables.

In total, �ve explanatory GAMs have been conducted. One pre-seismic model, based on the pre-seismic inventory and all
parameters, excluding the earthquake parameters. A co-seismic model, based on the co-seismic inventory and all the parameters.
Three post-seismic models, based on the post-seismic inventory. One of the post-seismic models includes all parameters. One
post-seismic GAM uses the parameters without the earthquake inputs and one with just the earthquake parameters. To clarify,
table 3.4 provides an overview of the three data matrices used for the GAMs. The pre-seismic GAM uses data matrix 1, the
co-seismic GAM uses data matrix 2, and for the post-seismic GAMs, all three data matrices are applied.

Table 3.4: An overview of the parameters in the three data matrices. The pre-seismic GAM uses data matrix 1, the
co-seismic GAM uses data matrix 2, and the three post-seismic GAMs use data matrices 1, 2 and 3.

Pre-seismic & Post-seismic Co-seismic & Post-seismic Post-seismic

Data matrix 1 Data matrix 2 Data matrix 3

Elevation D. to drainage Elevation D. to drainage

Slope D. to roads Slope D. to roads

Curvature Curvature PGV* PGV*

Aspect Aspect PGA* PGA*

Land cover Land cover PGD* PGD*

Geology Geology CMT angle* CMT angle*

*Earthquake parameter

It is important to note that a common approach for landslide susceptibility mapping is to split the data set in both training and
validation data to examine the model’s predictive capacity. However, contrary to many other studies, the entire dataset is used
to train and validate the models in this study. This method has been chosen because the post-seismic models aim to assess the
potential e�ects of the earthquake parameters on landslide susceptibility. The aspect that has been changed is either inclusion
or exclusion of the earthquake parameters. The traditional training and validation datasets are typically used to train a model
to predict landslides, whereas the GAMs in this study are explanatory models. The validation data in prediction models is used
to determine the performance of the model. But, in this study, the primary purpose is to compare the models. Therefore, all
other elements are kept constant. Before modelling, slope units with incomplete data were removed from the data matrix.

Furthermore, all remaining covariates (parameters) were rescaled using mean zero-unit variance rescaling. Mean zero-unit vari-
ance rescaling is done by subtracting each covariate by its mean and subsequently divided by its standard deviation. The models
are set up using a binary presence-absence variable. In other words, each slope unit is categorized in either landside(s), or no
landslide(s), which corresponds to a Bernoulli probability distribution.
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The Integrated Nested Laplace Approximation (INLA) package was used to derive the explanatory GAMs in the software
environment R. The INLA package in R was used to approximate Bayesian inference in Latent Gaussian Models (R-INLA
Project, nd). Equation 3.1 provides the equation used for the Bayesian version of the GAM used in this research.

η(P ) = βo +

J∑
j=1

βjZj(s) + fgeology + flandcover + froads + fdrainage + fcmt + ffaults (3.1)

Where:

η = Logit link

P = Landslide susceptibility

βj = Estimated regression coe�cients for each of the covariates (zj)

zj = Covariate

fgeology = Categorical properties

flandcover =

froads =

fdrainage =

fcmt =

ffaults =

Moreover, the INLA package allows the use of hidden data, in this case, landslide occurrence, which allows for prediction and
validation of the model’s capacity. By suppressing the variable landslide occurrence, Receiver Operating Curves (ROC) and
the corresponding Area Under the Curve (AUC) could be derived. The ROC curves and corresponding AUCs were used to
determine the performance and accuracy of each of the GAMs could be determined. However, as explained priorly, in this case,
the validation of the model’s performance is done on the same data. The ROC curves were calculated to compare the overall
performance of the models with varying data matrices. Still, the primary focus is on the relative e�ect of the covariates within
each of the �ve explanatory GAMs.

3.4.1 Assessment of the landslide controlling parameters to include in the models
After establishing the data matrix, it was essential to determine whether all 13 parameters needed to be included in the explana-
tory GAMs. As discussed priorly, the parameter rainfall will not be included in the GAMs, because it is assumed to remain
constant throughout the studied timespan. The parameters were reevaluated to avoid inter-factor dependencies in the dataset.

To detect inter-factor dependencies, intercorrelations were calculated. Strong intercorrelations in the dataset can be problem-
atic as the variables overly a�ect the model’s output. Di�erent methods have been applied to �nd these inter-factor dependen-
cies, all of which were done using a 95% con�dence interval. For most combinations of variables, the Spearman correlation
coe�cients were calculated. Spearman’s correlation was used because not all data is normally distributed. Spearman’s correla-
tion is a rank-based correlation method for continuous variables. It is non-parametric and therefore does not require a normally
distributed dataset. It is also more robust to outliers. The association between CMT angle (categorical variable) and the other
continuous variables is calculated using Eta squared.

Besides intercorrelations in the dataset, detecting multicollinearity in the data was essential. Multicollinearity is a linear rela-
tionship between one or more variables. Although similar, it is not the same as correlation. Correlation is a linear relationship
between two variables. Multicollinearity can also exist between a single variable and a linear combination of other variables
(Alin, 2010). In a regression model between a response variable and explanatory variables, multicollinearity can become an
issue as the coe�cients are hard to interpret (Alin, 2010). In this case, landslide occurrence is the response variable, and the
various parameters are the explanatory variables. In GAMs, multicollinearity could lead to unstable results (Ma et al., 2020).
However, merely looking at correlation is insu�cient to determine multicollinearity, as it could still exist when all correlations
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are low. To determine multicollinearity between variables and the linear combination of other variables in the data set, the Vari-
ance In�ation Factor (VIF) has been calculated. The VIF measures how much the interaction with other independent variables
in�uences the variance of an independent variable. In other words, it is a measure of multicollinearity. VIF is calculated for
each independent variable separately.

3.5 Landslide susceptibility maps
Besides a comparison of the relative e�ects of the covariates in each of the �ve GAMs, it is important to assess the spatial variabil-
ity and intensity of landslide susceptibility among the �ve GAMs. This was done to determine whether the earthquake’s legacy
e�ect of the 2005 Kashmir earthquake a�ects the spatial variability of landslide susceptibility in the study area. And ultimately
determine whether the elevated landslide susceptibility is signi�cant enough to apply to early action. Therefore, four landslide
susceptibility maps were created. A pre-seismic, a co-seismic map and two post-seismic susceptibility maps. The post-seismic
GAM, which includes only the earthquake parameters, was excluded from this part of the analysis because it was merely meant
to evaluate the in�uence of the earthquake parameters on landslide occurrence.

Apart from the landslide susceptibility, the susceptibility uncertainty was also determined to re�ect on the certainty of the
landslide susceptibility in each slope unit. Based on the GAMs of each inventory, the mean of the probabilities is used to de�ne
the susceptibilities of each slope unit. The susceptibility uncertainty is the di�erence between the 97.5 percentile and the 2.5
percentile of the same probability. Maps were made of the landslide susceptibility and susceptibility uncertainty to re�ect on
the changes in landslide susceptibility in the pre-seismic, co-seismic and post-seismic models.
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Chapter 4

Results & Discussions

This chapter presents the results and discussion of the conducted study. Section 4.1 provides the reasoning behind the exclusion
of some of the parameters in the GAMs. Where subsection 4.1.1 discusses the correlations and associations of the parameters
in the data matrix. Subsection 4.1.2 examines the multicollinearity of the parameters and the reasoning behind altering data
matrices. Section 4.2 provides the �xed and random e�ects of the �ve GAMs and provides an analysis of the parameters that
in�uence landslide occurrence in the GAMs. Furthermore, the e�ect of the earthquake parameters on landslide occurrence is
analyzed. Section 4.3 sheds light on the accuracy of each of the GAMs, followed by section 4.4, which provides the susceptibility
maps of the pre-seismic, co-seismic and the two post-seismic GAMs. Subsection 4.4.1 then re�ects on the di�erences between
these susceptibility maps. The �nal section, section 4.5, discusses the applicability to FbF.

4.1 Generalized Additive Models preparation
As described in chapter 3, before conducting the GAMs, the data was re-evaluated to avoid inter-factor dependencies in the
data. First, intercorrelations were calculated. This was done to avoid over-representation of data in the GAMs. The correlation
and association matrix is displayed in appendix 3, and the important intercorrelations are described in section 4.1.1. Besides in-
tercorrelations in the data, VIFs of the parameters were calculated to determine whether any multicollinearity could be detected
in the data. The multicollinearity is described in section 4.1.2.

4.1.1 Correlations and associations parameters
Although somewhat arbitrary limits, the correlations in this study have been categorized as follows. The correlations of (-)0.0
– (-)0.19 are seen as neglectable correlations, (-)0.20 – (-)0.39 are low correlations, (-)0.40 – (-)0.59 are considered moderate,
(-)0.60 – (-)0.79 as moderately high, and (-)0.8 – (-)1 as a very strong correlation (Sinscov and Campbell, 2002). In the appendix,
the di�erent strengths of the correlations are indicated using colours. The moderate and moderately high correlations are
not directly relevant and are therefore not discussed in this section, but explanations for the correlations are provided in the
appendix. In this section, only the strong correlations will be discussed that need to be assessed before conducting the GAMs.
Strong intercorrelations in the dataset are problematic when conducting a GAM because they can overly in�uence the model’s
outcome.

There are two groups of parameters that need to be reassessed considering their intercorrelations. Very strong intercorrelations
are found between the fault bu�ers. The ground motion parameters PGV, PGA, and PGD also show very strong intercorrela-
tions. Table 4.1 shows the intercorrelations of the fault bu�ers, and table 4.2 provides the very strong correlations found among
the ground motion parameters.
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Table 4.1: Intercorrelation table, showing the Spearmann’s correlation coe�cients of the fault bu�ers of 100, 200,
300 and 400 meters.

Fault 100m Fault 200m Fault 300m Fault 400m

Fault 100m NA 0.919 0.865 0.825

Fault 200m 0.919 NA 0.949 0.912

Fault 300m 0.865 0.949 NA 0.965

Fault 400m 0.825 0.912 0.965 NA

All fault bu�ers show very high correlations among them. Fault distance 100-meters and fault distance 200-meters correlate with
a value of 0.919. This means that almost all slope units containing a fault 100-meter bu�er also include a 200-meter fault bu�er.
The correlation of faults 200-meters and 300-meters is 0.949. The 300 and 400-meters fault bu�ers are correlated with a value of
0.965. 100 and 300-meters fault distances are correlated with a value of 0.865. Fault distances 100 and 400-meters are correlated
with a value of 0.825, and fault distances 200 and 400-meters show a correlation of 0.912. The very strong correlations can easily
be explained by the locations of these bu�ers. The fault distance parameters are adjacent bu�ers, and thus it is highly expected
that slope units fall within multiple of these bu�ers. Considering the adjacent features of the fault bu�ers, the intercorrelations
of the fault bu�ers directly adjacent to each other are expected to be higher, which is re�ected in the correlations.

Table 4.2: Intercorrelation table showing the Spearmann’s correlations coe�cients of the ground motion param-
eters PGV, PGA and PGD.

PGV PGA PGD

PGV NA 0.960 0.952

PGA 0.960 NA 0.905

PGD 0.952 0.905 NA

The ground motion parameters are also strongly correlated. PGV and PGA show a correlation of 0.960, PGA and PGD show
a correlation of 0.905 and PGV and PGD correlate with a value of 0.952. Thus, the values of ground motion parameters can
quite accurately be de�ned through the value of the other. Because the ground motion parameters re�ect the ampli�cation
pattern of the earthquake, the velocity, acceleration and displacement are expected to show strong correlations. However, as
priorly mentioned, this is problematic when applying a GAM due to the overrepresentation of data.

The very strong correlations of the ground motion parameters and the fault bu�ers can lead to unreliable results. Therefore,
they are cause for concern, and need to be altered before conducting the GAMs.

4.1.2 Multicollinearity
Another important reason to focus on the strong correlations between ground motion parameters and the fault bu�ers is the
risk of multicollinearity in the model. Multicollinearity is a linear relationship between one or more variables. Although simi-
lar, it is not the same as correlation. Correlation is a linear relationship between two variables. Multicollinearity can also exist
between a single variable and a linear combination of other variables (Alin, 2010). In a regression model between a response
variable and explanatory variables, multicollinearity can become an issue as the coe�cients are hard to interpret (Alin, 2010).
In this case, landslide occurrence is the response variable, and the various parameters are the explanatory variables. In GAMs,
multicollinearity could lead to unstable results (Ma et al., 2020). However, merely looking at correlation is insu�cient to de-
termine multicollinearity, as it could still exist when all correlations are low. To determine multicollinearity between variables
and the linear combination of other variables in the data set, the Variance In�ation Factor (VIF) has been calculated. The VIF
measures how much the interaction with other independent variables in�uences the variance of an independent variable. In
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other words, it is a measure of multicollinearity. VIF is calculated for each individual independent variable.

The VIFs have been calculated separately for each of the models. As priorly determined, the pre-seismic model does not include
the ground motion parameters and fault bu�ers. The co-seismic model includes all parameters. One post-seismic model in-
cludes all parameters, while the other excludes the ground motion parameters and fault bu�er data. Table 4.3 displays the VIFs
for the pre-seismic, co-seismic and the two post-seismic landslide data sets. Note that VIFs cannot be calculated for categorical
variables, and therefore the CMT angle has been left out. Any VIF above 10 indicates serious multicollinearity. VIF values
higher than 10 are marked with two asterisks (**), VIF values close to 10 are highlighted with one asterisk (*). Due to limited
space, the geology and land cover types have been numbered in the table. The corresponding names are less relevant in this part
of the analysis considering the aim is to detect multicollinearity in the data, but the land cover names are provided in appendix
3.

Many land cover types (percentages per slope unit) show extremely high VIF values, which is cause for concern because they
indicate multicollinearity in the models. Basically, each land cover type can be accurately predicted based on other parameters,
in this case, land cover types. The multicollinearity can be explained by that certain landcover types are almost always present
together, and others are hardly ever present in the proximity of each other. For example, closed forest types are not found in
built-up areas, and thus if one or more closed forest land cover types are present in a slope unit, it is evident that no built-up
will be present. On the contrary, as was already indicated by the correlations, when various closed forest types are present, it is
a mixed forest, and other tree species are typically present.

Furthermore, as already indicated by the correlation matrix, PGV, PGA, PGD, and the fault bu�er variables show high VIFs.
If one ground motion parameter has a relatively high or low value, the other ground motion parameters typically showcase that
as well. Moreover, the fault distances also have high VIFs, and thus multicollinearity is present. As already indicated by the
correlations in the previous subsection, the bu�ers are adjacent to each other. Therefore the presence of one fault bu�er can
imply the presence of the other.

To �x the multicollinearity in the data, some adjusting has been done to the data set. Instead of using percentages for land cover
type, the land cover type that covers the majority of the slope unit is selected. Thus, land cover type will be included as a cate-
gorical variable in the dataset. The same is done for geology type to assure consistency within the data set. The multicollinearity
of the fault bu�ers is a simple �x by merely using a categorical variable, where slope units will be categorized by the smallest
fault bu�er that falls within the slope unit. It has also been decided to exclude PGV, and PGA from the model, because the
PGV and PGD information is already provided by other variables (mainly PGA). Table 4.3 also provides the new VIFs after
adjustment of the data sets. There are no VIFs for fault distance, geology, and land cover since they have been transferred to
categorical variables. After adjustment of the data set, no multicollinearity was detected, and thus these data matrices were used
for the �ve explanatory landslide GAMs.

Table 4.3: Variance In�ator Factors (VIFs) of the continuous variables in the datasets. VIFs indicate the presence
or absence of multicollinearity in the pre-seismic, co-seismic and the two post-seismic data matrices. The new VIFs
after adjustment of the data sets are also provided. The VIF values greater than 10 are indicated with two asterisks
(**), one asterisk (*) indicates VIF values close to 10.

VIF pre-
seismic

New
VIF

VIF co-
seismic

New
VIF

VIF post-
seismic excl
EQ

New
VIF

VIF post-
seismic incl
EQ

New
VIF

SUArea 1.07 1.01 1.08 1.01 1.07 1.01 1.08 1.01

DEM 2.12 1.01 2.33 1.01 2.12 1.33 2.33 1.01

Slope 1.02 1.00 1.03 1.01 1.02 1.01 1.03 1.01

Aspect 1.15 1.01 1.17 1.01 1.15 1.01 1.17 1.01

Curvature 1.08 1.02 1.09 1.02 1.08 1.02 1.09 1.02
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PGV 19.82** 19.82**

PGA 10.14** 1.00 10.14** 1.00

PGD 9.71* 9.71*

Geo 1 3.76 3.90 3.76 3.90

Geo 2 1.05 1.06 1.05 1.06

Geo 3 1.27 1.30 1.27 1.30

Geo 4 4.29 4.40 4.29 4.40

Geo 5 3.61 3.80 3.61 3.80

Geo 6 1.90 2.02 1.90 2.02

Geo 7 4.27 4.40 4.27 4.40

Geo 8 1.15 1.18 1.15 1.18

Geo 9 1.147 1.16 l.147 1.16

LC 1 769.15** 771.21** *769.15 *771.21

LC 2 149731.67** 150157.86** 149731.67** 150157.86**

LC 3 38932.54** 39041.79** 38932.54** 39041.79**

LC 4 6.37 6.39 6.37 6.39

LC 5 19.96** 20.01** *19.96 *20.01

LC 6 12.84** 12.87** 12.84** 12.87**

LC 7 212221.42** 212818.69** 212221.42** 212818.69**

LC 8 93886.61** 94151.50** 93886.61** 94151.50**

LC 9 192712.33** 193255.57** 192712.33** 193255.57**

LC 10 1998.72** 2004.44** 1998.72** 2004.44**

LC 11 1869.59** 1875.11** 1869.59** 1875.11**

LC 12 83592.56** 83827.68** 83592.56** 83827.68**

LC 13 22640.20** 22704.35** 22640.20** 22704.35**

LC 14 296528.68** 297366.06** 296528.68** 297366.06**

Roads 50m 1.70 1.28 l.731 1.30 1.70 1.28 1.73 1.30

Drainage 50m 1.31 1.14 1.34 1.15 1.31 1.14 1.34 1.15

Faults 100m 25.65** 25.65**

Faults 200m 109.35** 109.35**

Faults 300m 134.41** 134.41**

Faults 400m 40.07** 40.07**

**VIF value over 10

*VIF value close to 10
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4.2 Fixed and random e�ects Generalized Additive Models
Table 4.4 shows the �xed (linear) and random (non-linear) e�ects of each model. These represent the relation between the ex-
planatory variables (landslide controlling parameters) and the dependent variable (landslide occurrence). Therefore, the �xed
and random e�ects indicate the explanatory variable’s strength and direction on landslide occurrence. Thus, the e�ects indicate
the relative in�uence of each parameter on landslide occurrence. By comparing the �xed and random e�ects, it can be assessed
which parameters in�uence landslide occurrence in the pre-seismic co-seismic and post-seismic GAMs. Ultimately, the in�u-
ence of the earthquake parameters can be evaluated to determine a potential earthquake legacy e�ect on landslide occurrence.

The values in the table show the posterior mean values of each parameter’s �xed and random e�ects. They also indicate whether
there are positive or negative relations to landslide susceptibility. Whether the parameters are signi�cant on a 95% con�dence
interval and thus a�ect landslide occurrence in the model is indicated with an asterisk (*). As can be seen in table 4.4, there
are many insigni�cant e�ects. However, essentially the accuracy of the models is more important than the signi�cance of the
posterior means. Furthermore, the insigni�cant e�ects still a�ect the landslide occurrence, but their in�uence cannot be signif-
icantly proven. Considering the purpose is to compare the covariates and to determine which covariates signi�cantly impact
landslide occurrence, no parameters have been excluded from the models.

Both the �xed and random e�ects contain information about the posterior distributions. However, for the categorical covariates
(geology, land cover, roads, drainage and CMT angle) and the ordinal variable (fault bu�ers), this is done for each category
separately. They are separate data points instead of a line as for the �xed e�ects. Therefore, a posterior mean is provided for
each class. This means that the random e�ects are more complex to interpret than the linear e�ects. Therefore, they are merely
compared to each other, focusing on the relative di�erences. For clari�cation, it should be noted that the posterior means can
be greater than one because they are posterior distribution density means instead of probabilities.

Table 4.4: Means of the posterior marginal densities of the �xed and random e�ects in the GAMs. The mean �xed
e�ects re�ect the in�uence of the continuous variables on landslide occurrence in the GAMs. The mean random
values re�ect the e�ect of the categorical variables and ordinal variable (fault distance) on landslide occurrence.
Fixed or random e�ects that are signi�cant on a 95% con�dence interval are highlighted using an asterisk (*).

Mean �xed and random e�ects

Pre-Seismic Co-Seismic Post-Seismic Post-Seismic Post-Seismic

Parameters
excl EQ

All parame-
ters

Parameters
excl EQ

All parame-
ters

Only EQ pa-
rameters

Parameters Fixed e�ects

intercept -3.20* -2.56* 0.11 0.10 0.14

DEM -0.74* 0.24* 0.46* 0.45* NA

Slope 0.15* 0.47 0.02 0.02 NA

Aspect -0.12 0.04 -0.11 -0.11 NA

Curvature 0.07 0.29* 0.18* 0.18* NA

SU area 0.36* 0.48* 0.80* 0.80* NA

PGA NA 0.41* NA -0.05 0.00

Random e�ects

Geology type:

Abbottabad Formation -0.11 -0.09 -0.32 0.33 NA

Hazara Formation 0.16 -0.20 -0.17 -0.15 NA

Manki Formation 0.12 -0.03 0.13 0.14 NA
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Mansehra Formation -0.18 0.09 0.23 0.20 NA

Murree Formation 0.52* 0.01 -0.47* -0.47* NA

Muza�arabad Formation 0.30 0.68* 0.37* 0.38* NA

Paleocence Rocks -0.05 0.13 0.59* 0.61* NA

Quaternary Deposits -0.55* -0.50* -0.63* -0.65* NA

Salkhala Formation -0.16 -0.06 0.27 0.27 NA

Land cover type:

Bare/sparse vegetation -0.02 0.03 -0.07 -0.07 NA

Built-up -0.24 0.49 -0.42 -0.42 NA

Cropland -0.61 -0.81 -0.47 0.48 NA

Deciduous needle-leaved
(closed forest)

-0.45 -1.89* -1.16* -1.15* NA

Deciduous needle-leaved
(open forest)

-0.38 -1.65* -0.58* -0.58* NA

Herbaceous vegetation 1.65* 2.26* 1.32* 1.32* NA

Permanent water bodies -0.06 0.02 -0.17 -0.17 NA

Shrubland 0.77* 2.37* 1.43* 1.43* NA

Unknown type (closed
forest)

-0.44 -0.94 -0.45 -0.43 NA

Unknown type (open for-
est)

-0.02 0.64* 0.62* 0.62* NA

Roads:

No 0.00 0.10 0.03 0.03 NA

Yes 0.00 -0.10 -0.03 -0.03 NA

Drainage:

No 0.20* 0.05 0.07 0.07 NA

Yes 0.20* -0.05 -0.07 -0.07 NA

CMT angle:

Away NA 0.07 NA 0.09 0.18*

Towards NA -0.11 NA -0.11 -0.21*

Other directions NA 0.05 NA 0.02 0.03

Faults:

100m NA -0.94* NA -0.36* -0.09

200m NA 0.46* NA 0.01 -0.06

300m NA 0.25 NA 0.09 0.02

400m NA 0.20 NA 0.12 0.05

>400m NA 0.05 NA 0.16 0.08

*Signi�cant on a 95% con�dence interval
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4.2.1 Fixed e�ects
As priorly mentioned, the �xed or linear e�ects represent the relation between the explanatory variables and the dependent
variable. In this case, the �xed e�ects re�ect the in�uence of the continuous variables in the data matrix on landslide occurrences
in the GAMs. This study aims to determine the impact of the earthquake parameters on landslide susceptibility. However, it
will be important to evaluate all �xed e�ects to assess the overall shift in in�uence of the parameters across the models.

When looking at elevation, the parameter shows signi�cant �xed values for the GAMs. Landslide occurrence was generally more
in�uenced by elevation before the 2005 Kashmir earthquake, with a �xed e�ect of -0.74. Thus, indicating a strong negative
relation in the pre-seismic model. In the co-seismic, the �xed e�ect is 0.24. Therefore the in�uence of elevation on landslide
occurrence has become reversed, meaning that compared to pre-earthquake conditions, slopes at higher elevations are now
more prone to landslides. This trend continues in the post-seismic GAMs. The �xed e�ects in the post-seismic GAMs are 0.46
in the post-seismic GAM, excluding the earthquake parameters and 0.45 in the GAM, including the earthquake parameters.
Including the earthquake parameters hardly changes the e�ect of elevation on landslide occurrences. Nevertheless, the 2005
Kashmir earthquake clearly a�ected slopes at higher elevations and increased their susceptibility to landslides. If it were to be
that slopes at lower elevations already failed, then this would be signi�cantly re�ected in the co-seismic GAM. Instead, the �xed
e�ects of the GAMs show that the 2005 Kashmir earthquake destabilized slopes at higher elevations and consequently increased
landslide occurrence at these altitudes.

Although only signi�cant in the pre-seismic model, the e�ect of the slope parameter on landslide occurrence slightly changes
over the GAMs. In the pre-seismic model, the slope has a signi�cant �xed e�ect of 0.15, indicating that steeper slopes were
slightly more prone to failure than more gradual slopes. The parameter has the most in�uence in the co-seismic model, with
a �xed value of 0.47, indicating that the earthquake a�ected steeper slopes more. Even though the co-seismic �xed e�ect is
insigni�cant, it is notable, especially because the �xed values in the post-seismic models are both 0.02. The insigni�cant �xed
e�ects of 0.02 indicates that the parameter slope does not in�uence landslide occurrence in the post-seismic GAMs. In many
cases, this was because slopes had already failed during or shortly after the earthquake and thus were relatively stable in the
post-seismic model.

The �xed e�ects of the slope aspect are insigni�cant in each of the GAMs. In the pre-seismic, co-seismic and post-seismic
models, the �xed e�ects are similar, respectively -0.12, -0.11, and -0.11. In the co-seismic model, it has a very low positive e�ect
of 0.04. Furthermore, there is no di�erence in the mean �xed e�ects between the post-seismic models including and excluding
the earthquake parameters. Considering the �xed e�ects in the GAMs are low and insigni�cant, it can be said that slope aspect
does not signi�cantly impact landslide occurrence.

In the pre-seismic GAM, slope curvature had an insigni�cant �xed e�ect of 0.07. However, this notably changes in the co-
seismic and post-seismic GAMs. The curvature of the slope had signi�cantly more in�uence on landslide occurrence in the
co-seismic landslide inventory with a �xed e�ect of 0.29. This shows that slopes with higher curvature were more a�ected by
the earthquake. After the 2005 Kashmir earthquake, this e�ect decreased slightly but remained present with positive �xed e�ects
of 0.18. In the post-seismic models, there is no di�erence when the earthquake parameters are left out or included. However,
during and after the earthquake, slope curvature does signi�cantly a�ect landslide occurrence. Although speculating, a possible
explanation could be that due to the curvature of the slopes, the ampli�cation pattern of the earthquake had a more varied
impact on the slope, contributing to the destabilization and failure of the curved slopes.

The slope unit area signi�cantly a�ected landslide occurrence in each of the models. This is expected, considering that a larger
area statistically has a greater chance of landslide occurrence. The pre-seismic inventory consists of 242 landslides; there are 411
landslides in the co-seismic inventory and 2922 landslides in the post-seismic inventory. This is also re�ected in the �xed e�ects
of each of the models. An increase in the total landslides leads to a higher �xed e�ect, with 0.36 in the pre-seismic GAM, 0.48
in the co-seismic GAM and 0.80 in the post-seismic models. These numbers are not completely in proportion. However, as
previously mentioned, in this study, landslide count and landslide size have not been included in the models. Instead, a presence-
absence landslide structure was applied. Furthermore, the highest elevation point of the landslide polygon was selected as the
likely initiation point of the landslide. In some cases, this means that the majority of a landslide falls within one slope unit, but
the landslide has been appointed to another slope unit in which the likely initiation point is located.
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4.2.2 Random e�ects
Similar to the �xed e�ects, the random or non-linear e�ects of the GAMs represent the relation between the explanatory vari-
ables and the dependent variable. In this case, the random e�ects re�ect the in�uence of the categorical variables (geology, land
cover, roads, drainage and CMT angle) and the ordinal variable (fault bu�ers) on landslide occurrences in the GAMs.

In the four GAMs, the random e�ects of the geology types vary quite a bit. The most notable and in�uential di�erences in
random e�ects are discussed. The geology type Muza�arabad Formation shows a substantial increase in the co-seismic model,
from an insigni�cant e�ect of 0.30 in the pre-seismic model to a signi�cant e�ect of 0.68 in the co-seismic model. This is in line
with the results of Owen et al. (2008), which found that after the 2005 Kashmir earthquake, most landslides occurred in the
Muza�arabad formation. The signi�cant random e�ects in the post-seismic models are 0.37 and 0.38. Thus, landsliding became
more prominent in the Muza�arabad formation during and after the 2005 Kashmir earthquake. Besides the Muza�arabad
formation, the random e�ects of Abbottabad formation, Palaeocene rocks and the Salkhala formation also increased in the co-
seismic GAM. However, the corresponding lithology of these formations do have some common features. The Muza�arabad
formation mainly consists of dolomite, quartzite limestone, and sandstone. Quaternary deposits are comprised of gravel, clay,
and sand. The corresponding lithology of the Hazara formation is slate, siltstone, limestone, and shale (Table 1.1). Palaeocene
rocks are mostly comprised of sandstone, shale, and limestone (Sha�que, 2020). The Abbottabad formation is predominantly
comprised of dolomite with subordinate quartzite, conglomerate, and siltstone (Qasim et al., 2014). Overall, the earthquake
signi�cantly impacted these geology types, causing landslides to be more prominent.

What stands out for the post-seismic model is the major di�erence in random e�ects of the Abbotabad formation, respectively
-0.32 and 0.33. However, these are insigni�cant. As shown in the map in �gure 3.4-d, the geology type only covers a minor
part in the southwest of the study area. There are only 10 slope units out of the 1843 slope units with dominant geology type
Abbottabad formation. Out of these 10 slope units, two experienced slope failure in the post-seismic model. These slopes faced
away from the CMT angle, fall within the shortest fault bu�er of 100 meters, and had relatively low PGA values. Considering,
the low negative PGA e�ect of -0.05, the low random e�ect of 0.09 of the CMT angle and the larger signi�cant random e�ect
of -0.36 of the shortest fault bu�er, the model has classi�ed the geology type Abbottabad formation as a positive e�ect, because
these two slopes did experience slope failure. Logically, this e�ect would be insigni�cant considering the small number of slope
units.

For land cover types, the changes in random e�ects will be explained separately for each of the classes. Vegetation typically
stabilizes slopes, and as a result, reduces a slope’s susceptibility to landslides (Huang and Fan, 2013). Earthquakes can damage
vegetation, and thus it is expected to see this re�ected in the random e�ects of the land cover types.

The �rst landcover type is bare/sparse vegetation. The random e�ect of bare/sparse vegetation in the pre-seismic GAM is -0.02.
The e�ect is 0.03 in the co-seismic GAM and -0.07 in both the post-seismic models, all of which are insigni�cant. Considering
that a lack of vegetation would make a slope more prone to landslides, a stronger positive e�ect would be expected. However,
only one slope unit has bare/sparse vegetation as the dominant land cover type. For that slope unit, there is no landslide oc-
currence in either of the three models. Considering there is only one slope unit, this is merely a coincidence. Therefore, the
random e�ects are not a good indication of the e�ects of bare/sparse vegetation on landslide occurrence.

For land cover type built-up, all random e�ects are insigni�cant. The random e�ect is -0.24 in the pre-seismic model, 0.49 in the
co-seismic model and -0.42 in the post-seismic models. Thus, typically landslide occurrence would be less present on built-up
land. This is expected, considering that settlements are less often present on slopes, although often near slopes. However, even
though an insigni�cant e�ect, in the co-seismic model, the random e�ect is positive. Each of the slope units with land cover
type built-up that experienced slope failure in the co-seismic model were either stand-alone built-up areas or located at the edge
of built-up areas. Therefore, it makes sense that the random e�ect was positive. There were only 11 slope units with landslides in
the co-seismic GAM, which explains the insu�cient evidence to reject the null hypothesis for the random e�ect. Nevertheless,
it does re�ect the impact of landslides the 2005 Kashmir earthquake had on the region.

The random e�ects of cropland are -0.61 in the pre-seismic model, -0.81 in the co-seismic model, -0.47 in the post-seismic model
excluding the earthquake parameters and 0.48 in the post-seismic model, including the earthquake parameters. There were no
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landslides in slope units with major land cover type cropland in the pre-seismic and co-seismic inventory. Thus the negative
random e�ects are expected. On the contrary, there were nine landslides in the post-seismic inventory with dominant land cover
type cropland. Eight out of the nine slope units fall within the 100-meter fault bu�er, and the average PGA was a little over half
of the mean PGA of all the slope units. Five slopes faced in other directions than toward or away from the CMT location. The
remaining slopes faced away from the CMT. The low impacts of the earthquake parameters on the slope units explain why the
random e�ect of cropland is positive. Especially the signi�cant negative e�ect of -0.36 of the 100-meter fault bu�er explains the
positive in�uence of cropland on landslide occurrence. However, considering there are only nine failed slopes, an insigni�cant
e�ect is not surprising.

Deciduous needle-leaved (closed forest) is dense vegetation. Thus adverse random e�ects are expected. The random e�ect is
-0.45 in the pres-seismic GAM, although insigni�cant. In the co-seismic GAM, the random e�ect is signi�cant and strongly
negative with a value of -1.89. Thus, considering the dense vegetation, the earthquake did not a�ect slope units with decidu-
ous needle-leaved closed forest. In the post-seismic GAMs, this e�ect remains strong and signi�cant with -1.16 in the model
excluding the earthquake parameters and -1.15 in the model including the earthquake parameters. The relatively weak random
e�ect in the pre-seismic GAM can simply be explained by the much lower landslide occurrence in that inventory. For decideous
needle-leaved (open forest), it is still expected to see negative e�ects, considering the stabilizing e�ects of vegetation. However,
since open forest is less dense than closed forest, the e�ects should be less strong. This is exactly what can be observed from the
random e�ects of deciduous needle-leaved (open forest). In the pre-seismic model, the insigni�cant random e�ect is -0.38. The
random e�ects are signi�cant in the co-seismic and post-seismic GAMs, with -1.65 in the co-seismic model and -0.58 in both
the post-seismic GAMs.

The random e�ects of herbaceous vegetation are signi�cant and strongly positive throughout the GAMs. In the pre-seismic
model the random e�ect is 1.65, the e�ect is 2.26 in the co-seismic model and 1.32 in both the post-seismic models. Herbaceous
vegetation consists of plants such as grasses, sedges and ferns. Their non-woody stems will not stabilize slopes and will therefore
show higher positive random e�ects throughout the models. Especially in the co-seismic model, the 2005 Kashmir earthquake
strongly a�ected slope units with predominantly herbaceous vegetation.

Slope units that are mostly covered by water bodies should show negative random e�ects. However, since the dominant land
cover type classi�es slope units, many will not be covered entirely by permanent water bodies. This is also re�ected in the
random e�ects, which are insigni�cant in all GAMs. The random e�ect of permanent water bodies is -0.06 in the pre-seismic
model, 0.02 in the co-seismic model, and -0.17 in both the post-seismic models.

Shrublands are dominated by low dense shrub vegetation. The random e�ects of shrubland are signi�cant and positive through-
out the GAMs. In the pre-seismic model, the random e�ect of shrubland is 0.77, in the co-seismic GAM, the e�ect is 2.37, and
in the post-seismic models, the random e�ects of shrubland are 1.43. Similar to the land cover type herbaceous vegetation, the
random e�ects of shrubland clearly show that shrubland is highly prone to landslides compared to other vegetation types that
help stabilize slopes. The 2005 Kashmir earthquake also signi�cantly impacted slopes with shrubland causing large numbers of
landslides.

The �nal two land cover types are unknown type open forest, and unknown type closed forest. Similar to the other closed and
open forest types, it is expected that the unknown type closed forest will show stronger negative random e�ects than the open
forest land cover type. As expected, the unknown type closed forest has negative random e�ects of -0.44 in the pre-seismic
model, -0.94 in the co-seismic model, -0.45 in the post-seismic model, excluding and -0.43 in the post-seismic model, including
the earthquake parameters. All these random e�ects are insigni�cant, but considering they are unknown types of forest, this
land cover class most likely includes various tree species, and their exact e�ects are di�cult to determine. The random e�ects
of the unknown type open forest in the pre-seismic GAM is insigni�cant and -0.02. The random e�ects are signi�cant and
positive in the co-seismic and post-seismic models, with 0.64 in the co-seismic GAM and 0.62 in both the post-seismic models.
This means that the open forest is likely not very dense considering the positive random e�ects. If the open forest were dense,
the tree’s roots would stabilize the slopes and show negative random e�ects.

As discussed in chapter 3, the presence or absence of roads and drainage in a slope unit was included due to their possible
undercutting actions (Basharat et al., 2016). The random e�ects of road and drainage were compared to assess whether any
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undercutting action of roads or drainage was observed in the GAMs.

Whether a road is located in a slope unit or not has little e�ect on landslide occurrence in any of the models. Only in the co-
seismic model, there is a slight negative relationship between roads and landslide occurrence, meaning that the absence of a
road increases the susceptibility in the co-seismic GAM. However, the random e�ects in all the GAMs are almost 0, ranging
between -0.10 and 0.10. They are also insigni�cant.

The presence or absence of drainage in a slope unit does not di�er in landslide susceptibility in the pre-seismic model. The
signi�cant posterior means of presence and absence are both 0.20. This is possible because the categorical covariates are separate
data points. In the co- and post-seismic models, the numbers are close to 0 and insigni�cant. Therefore, the initial theory that
the undercutting action of roads and drainage could lead to landslides has not been observed.

4.2.3 Fixed and random e�ects of the 2005 Kashmir earthquake parameters
As expected, PGA in�uences landslide occurrence much more in the co-seismic model compared to the post-seismic model.
The signi�cant e�ect in the co-seismic model is 0.48. This re�ects the immediate e�ect of the 2005 Kashmir earthquake on
landslide occurrence, leading to the 411 landslides in the co-seismic inventory. The e�ect is insigni�cant and merely -0.05 in the
post-seismic model, which indicates that slopes highly a�ected by PGA had already experienced slope failure during or shortly
after the earthquake. However, the �xed e�ect of 0.48 in the co-seismic model is not extremely strong, instead the e�ects of
other parameters such as the slope curvature, Muza�arabad Formation, herbaceous vegetation, open forest types and shrubland
are signi�cantly stronger. They became more impactful on landslide occurrence due to the e�ects of the earthquake on these
parameters. They are more prone to landsliding anyway, but due to the ground shaking of the 2005 Kashmir earthquake they
are signi�cantly more susceptible to landslides. Considering the neglectable �xed e�ect of PGA in the post-seismic model and
the lower e�ects of many other covariates that were a�ected by the earthquake, it is clear that no lasting signi�cant e�ect of
PGA on landslide occurrence was observed.

Nevertheless, other earthquake parameters, such as fault distance and CMT angle, still signi�cantly a�ect slope stability in 2007.
Especially slopes located within 100 meters of a fault had a signi�cant e�ect. Unexpectedly, this was a strong negative relation
of -0.36, even though almost around half of the slopes within a 100-meter bu�er failed, the other fault distances experienced
relatively more landslides in relation to the number of slope units. This explains the negative e�ect. In the co-seismic model,
this was -0.94. The 200-meter fault bu�er had a signi�cant �xed e�ect of 0.46 in the co-seismic GAM. However, this could be
explained by the fact that all faults were included in this analysis. The proximity to the CMT location would have likely shown
something di�erent. However, in this study the decision was made to incorporate the angle to the CMT location, based on the
results of a previous study by Khan et al. (2020).

The only parameter that seems to have a signi�cant e�ect in the post-seismic model with only the earthquake parameters is the
CMT angle. More speci�cally, slopes facing away and towards the CMT location. In the study conducted by Khan et al. (2020),
half of the landslides were reported on slopes facing away from the CMT, and a little over a quarter on slopes facing towards
the CMT. The random e�ect in the GAMs for slopes facing towards the CMT location are negative relations, respectively -0.11,
-0.11, -0.21. For slopes facing away from the CMT, these are 0.07, 0.09 and 0.18. The positive random e�ects of the slopes facing
away from the CMT show that most of the landslides occurred on slopes facing away from the CMT location. This is in line
with the results of Khan et al. (2020). The negative e�ects of the slopes facing towards the CMT show that signi�cantly fewer
landslides occurred on these slopes. The random e�ects of slopes facing in other directions are close to zero and insigni�cant.
Thus, the results in this study di�er slightly. However, it should be noted that Khan et al. (2020) categorized the slopes slightly
di�erent. They used a 60◦ set of aspect to its angle towards the CMT. This study has used a 45◦ angle, which makes the results
less comparable to the study conducted by Khan et al. (2020) than if the same categorization was used. Nevertheless, the major
�nding that slopes facing away from the CMT experienced most slope failures is compatible with the results of this study.

4.2.4 Earthquake’s legacy e�ect on landslide occurrence
The �ve GAMs with varying parameters were compared to see if this approach could identify an apparent earthquake legacy ef-
fect on landslide susceptibility or occurrence. As discussed in the previous sections, some evident changes in posterior means of
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the �xed and random e�ects were observed. However, these observations were primarily found in non-earthquake parameters,
such as slope, elevation, geology and land cover types. To determine a clear earthquake legacy e�ect on landslide susceptibil-
ity, the earthquake parameters need to a�ect landslide occurrence in the post-seismic GAMs signi�cantly. In the post-seismic
model, including the earthquake parameters, only the smallest fault distance had a relatively strong signi�cant in�uence on
slope failure, but this observed random e�ect is negative. A GAM was conducted with only the earthquake parameters to
assess the relative e�ects of the covariates. Here, landslide occurrence mainly was in�uenced by the CMT angle, which is in
line with previous research (Khan et al., 2020). The results show that the CMT angle is the only earthquake parameter that
signi�cantly a�ects landslide occurrence and distribution. For the other earthquake parameters, no earthquake legacy e�ect on
landslide occurrence was observed. To conclude, after comparing the mean �xed and random e�ects, no clear in�uence of the
2005 Kashmir earthquake was observed. Instead, non-earthquake parameters seem to a�ect landslide occurrence in the model
signi�cantly more. Even though, in many cases this is due to the e�ects of the 2005 Kashmir earthquake on the stability of the
slopes.

4.3 Performance Generalized Additive Models

Figure 4.1: ROC curves of the pre-seismic, co-seismic, and the three post-seismic models with corresponding AUC
values

The model performances of the GAMs are examined through Receiver Operating Characteristic (ROC) curves. ROC curves
are used to show the diagnostic ability of binary classi�ers. ROC curves show the trade-o� between True Positive Rates (TPR, or
sensitivity) and False Positive Rate (FPR, or 1-speci�city). Curves closer to the top left of the graph indicate better performances,
while curves closer to the centre show less accuracy in landslide prediction. In this case, the model performance has been tested
by hiding the models’ landslide occurrences or the response variables. In other words, the performance of the GAMs is tested on
the dataset that is also used for the training. As previously discussed in chapter 3, this was done because the focus is to assess the
potential e�ects of the earthquake parameters on landslide susceptibility. Accurate landslide prediction is less of a concern. The
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ROC curves are displayed in �gure 4.1. The performance of the models is summarized by calculating the Area Under the Curve
(AUC), which provides the probability that a random positive outcome is ranked higher than a random negative outcome.

The pre-seismic model has the least accuracy, with an AUC of 0.806. The co-seismic model has the best performance with
an AUC of 0.862. This is re�ected by the strong signi�cant �xed and random e�ects in the co-seismic model. The �xed and
random e�ects of the post-seismic GAMs remain quite equal between both post-seismic models. Only the Abbattobad For-
mation, cropland and the 100-meter fault bu�ers show apparent di�erences in the random e�ects. All other non-earthquake
parameters remain almost equal after the inclusion of the earthquake parameters. The remaining earthquake parameters have
low, insigni�cant e�ects. Considering the minor di�erences in �xed and random e�ect, the ROC curves unsurprisingly follow
almost identical paths. The post-seismic model, including the earthquake parameters and excluding the earthquake parame-
ters, have an AUC of 0.816. Therefore, the ROC curves and corresponding AUC further substantiate the observations drawn
from the �xed and random e�ects that it makes little di�erence when the earthquake parameters are included in the model to
predict post-seismic landslide occurrence. This is re�ected by the low AUC of 0.547 of the post-seismic models with only the
earthquake parameters. The graph is very close to the centre and thus indicates a low accuracy. This is expected, considering
only a few parameters have been used. However, a di�erence of 0.047 from the centre line further indicates that the earthquake
parameters have little e�ect on the outcomes of the GAMs. To conclude, in the case of the 2005 Kashmir earthquake, including
earthquake parameters has little to no impact on the performance and accuracy of the GAMs.

4.4 Susceptibility maps
Susceptibility maps have been made to examine the spatial distribution of the susceptibilities to landslides. No susceptibility
map has been made of the model with only the earthquake parameters because it was merely meant to evaluate the e�ects of the
earthquake parameters on the models more thoroughly. The susceptibility maps have been derived by taking the mean of the
�tted values per slope unit. The susceptibility uncertainty is the 0.975 and 0.025 quantiles of the �tted values. The susceptibility
uncertainties of the maps have been displayed below the susceptibility maps. Not all data was available for the entire study area,
and therefore some slope units at the sides of the study area have been left out of the susceptibility analysis. The susceptibility
maps and corresponding susceptibility uncertainty maps are displayed in �gure 4.2.

The susceptibility maps in �gure 4.2 show a slight increase in overall landslide susceptibility in the co-seismic model and a drastic
overall increase in susceptibility in the post-seismic models. This is expected, considering the overall stronger �xed and random
e�ects in the co-seismic and post-seismic models. Furthermore, the pre-seismic inventory consists of 242 landslides, the co-
seismic inventory of 411 and the post-seismic inventory consists of 2922 landslides. Logically, this is re�ected in the susceptibility
maps. When comparing it to �gure 3.1, the patterns are easily explained. Most of the slope units with high landslide susceptibility
correspond with the landslide distribution in the corresponding inventories. To illustrate, an overlay of the susceptibility maps
with the landslide inventories can be found in appendix 5.

However, acknowledge that for the dependent variable landslide occurrence, the slope units were categorized as either ’land-
slide’ or ’no landslide’, thus not including landslide size and landslide count. Therefore, it should be noted that including
landslide count or landslide size would have altered the results of the GAMs and landslide susceptibility maps. Recently, land-
slide approaches have been introduced that include landslide count instead of merely a landslide presence or absence approach.
Thus, focusing on the landslide intensity, which provides more detailed information (Lombardo et al., 2018a).
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4.4.1 Susceptibility di�erence

4.4.1.1 Di�erence post-seismic and pre-seismic

The di�erence in susceptibility between the two post-seismic models and the pre-seismic model and the post-seismic model,
excluding the earthquake parameters, have been mapped. These are displayed in �gure 4.3. As shown in �gure 4.3, there are
signi�cant susceptibility di�erences between the post-seismic and pre-seismic models. Even though the 2005 Kashmir earth-
quake has caused a tremendous increase in post-seismic landslides, the �xed and random e�ects of the GAMs showed that the
earthquake parameters themselves have little e�ect on the spatial distribution of these landslides. Instead, geomorphological
parameters become more important after the seismic activity. Thus, even though the 2005 Kashmir earthquake signi�cantly
impacted landslide intensity both during and after the event, this is mostly due to the increased e�ects of other parameters. A
clear spatial e�ect of the Kashmir earthquake is not observed. Furthermore, slope curvature and slope unit size become more
in�uential. Slope unit size is simply because of the increase in landslide activity.

4.4.1.2 Di�erence post-seismic models

As shown in the second map in �gure 4.3, susceptibility hardly changes after including the earthquake parameters in the post-
seismic models. The landslide susceptibility is determined based on the mean of the �tted values. Thus, susceptibility di�erences
between the post-seismic models are logically really minor, as the �xed and random e�ects in the models are also very similar.

There seems to be a spatial pattern in the susceptibility di�erences between the models. However, the dark orange and purple
slope units merely represent an increase or decrease of 0.1-0.15%, which is far too low to draw any conclusions on the presence
of an earthquake legacy’s e�ect on landslide occurrence and spatial variability. Thus, besides a lack of signi�cant changes in
the �xed and random e�ects, no signi�cant di�erence in the spatial variability of landslide susceptibility after including the
earthquake parameters in the GAM is detected.

Figure 4.3: Susceptibility di�erences between the post-seismic models and the pre- and post-seismic model exclud-
ing the earthquake parameters
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4.5 Applicability of methodology to Forecast based Financing
After comparing the mean �xed and random e�ects and the spatial variability in landslide susceptibility among the GAMs,
this study shows no signi�cant elevated landslide susceptibility when earthquake parameters are included in the GAMs. Be-
tween the post-seismic GAMs, including and excluding the earthquake parameters, only slopes facing away from the CMT
were signi�cantly more susceptible to landslides after the 2005 Kashmir earthquake. Furthermore, the spatial distribution of
landslide susceptibility also stays almost equal after including earthquake parameters. Only a few slopes show elevated landslide
susceptibility. However, these susceptibility di�erences are extremely small. A signi�cantly elevated susceptibility is necessary
for successful application to early action. Otherwise, the risk of false and missed landslide alarms is too high.

However, although the earthquake parameters do not show an apparent earthquake legacy e�ect on landslide occurrence in
the GAMs, many other parameters show that the earthquake did signi�cantly a�ect landslide occurrence in the study area.
Parameters such as shrubland, herbaceous vegetation, elevation, slope curvature, and the Muza�arabad Formation were more
susceptible to landslides due to the 2005 Kashmir earthquake. This was concluded from the increases in �xed and random
e�ects of these parameters in the co-seismic and post-seismic models.

Nevertheless, it is impossible to use the earthquake parameters to determine areas at increased risk of landslides, considering
the e�ects of the earthquake parameters themselves do not show signi�cant spatial variance in landslide susceptibility. Unfor-
tunately, this means that the proposed approach to improve lead times for FbF of landslides is not successful. In other words,
the time between an earthquake and an upcoming rainfall season cannot be utilized to solve the lead time constraints of land-
slides. Therefore, it is essential to remain inquisitive about new approaches to overcome the di�culties of FbF and EWEA for
landslides. In the meantime, the focus should be on existing EWEA strategies to minimize the impact of landslides.
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Chapter 5

Conclusions

This research aimed to investigate whether dynamic landslide risk analysis based on the earthquake parameters of the 2005
Kashmir earthquake could have informed early action to reduce the impacts of landslides during the �rst western monsoon
season after the earthquake. In this chapter, the research results are evaluated to determine whether the main objective has been
reached. This will be done according to the six sub-objectives of this research.

To start, the study aimed to develop pre-seismic, co-seismic and post-seismic landslide inventories for the study area and to
determine and evaluate the increased intensity of landslides during the �rst monsoon season after the 2005 Kashmir earthquake.
This was done through a comparison of landslide inventories from before, during and after the earthquake. The pre-seismic
landslide inventory was extracted based on NDVI, NDWI, cloud bands and slope threshold values. The co- and post-seismic
inventories were developed using change detection compared to the previous satellite image. The pre-seismic inventory consists
of 242 landslides, with a total landslide area of 1.36 km2, and an average landslide size of 5619.31 m2. The co-seismic inventory
includes 411 landslides, with a total landslide area of 4.93km2 and an average landslide size of 11998.94m2. The post-seismic
landslide inventory consists of 2922 landslides, with a total landslide area of 13.86 km2, and an average landslide area of 4745.00
m2. According to these inventories, there was a massive increase in landslide occurrence after the 2005 Kashmir earthquake.
The e�ects of the earthquake clearly increased landslide activity. However, the average size of landslides decreased by 15.56%
compared to the pre-seismic inventory.

The second sub-objective was to develop pre-seismic, co-seismic and post-seismic explanatory hazard models for the study area
based on the 2005 Kashmir earthquake. In total, �ve explanatory landslide models were conducted; a pre-seismic model, a co-
seismic model, and three post-seismic models. A Bayesian version of a GAM was used. The post-seismic models were performed
using varying parameters to determine the e�ects of the 2005 Kashmir earthquake on landslide susceptibility. One post-seismic
model includes all parameters, one without the earthquake parameters and one only using the earthquake parameters as input.
The response variable ‘landslide occurrence’ was then concealed from the model to evaluate the accuracy. The ROC curves of
the post-seismic GAMs, including and excluding the earthquake parameters, had almost identical ROC curves. The AUCs of
the ROC curves were both 0.816. The GAM with only the earthquake parameters showed a low performance and an extremely
low accuracy with an AUC of 0.547. To conclude, the inclusion or exclusion of earthquake parameters does not a�ect the
performance and accuracy of the landslide models.

The next step was to determine the extent to which susceptibility to post-seismic landslides had increased during the monsoon
season in the �rst year after the earthquake. Four susceptibility maps were created; one pre-seismic map, one co-seismic and
two post-seismic susceptibility maps. The GAM using only the earthquake parameters was not included because this was
merely done to more accurately assess the interaction and in�uence of the earthquake parameters. As expected, there was a
drastic increase in susceptibility between the pre-seismic model and the post-seismic landslide models. The spatial susceptibility
patterns were in line with the spatial patterns of landslides in the inventories, considering that landslide occurrence was used as
the dependent variable and not landslide count or size. Contrary to to initial expectations, including the earthquake parameters
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in the seismic model had limited e�ects on the susceptibility in the study area. As expected from the ROC curves, there were
only minor di�erences between the post-seismic susceptibility maps. This was further re�ected in the susceptibility di�erence
map.

The fourth sub-objective was to assess what parameters a�ect pre-seismic, co-seismic and post-seismic landslide distribution.
This was done by comparing the posterior mean �xed and random e�ects of the covariates in the GAMs. Most notable changes
were found in the e�ects of the parameters slope, curvature, geology and the land cover types, CMT angle and the nearest fault
distance.

The �xed e�ects of slope show that in the co-seismic model, the in�uence of slope on landslide occurrence is signi�cantly more
substantial. However, in both the post-seismic models, the �xed values are almost zero. The low �xed e�ects indicate that steeper
slopes stabilized after the 2005 Kashmir earthquake. Similar to the parameter slope, the curvature of the slope had a signi�cantly
higher e�ect on landslide occurrence in the co-seismic model than the pre-seismic one. This indicates that slopes with higher
curvature were more a�ected by the earthquake. After the earthquake, the e�ect decreased but remained higher than before the
earthquake. The geology type Muza�arabad Formation shows a substantial increase in the co-seismic model. This is in line with
a previous study that found that most landslides occurred on slopes within the Muza�arabad Formation after the 2005 Kashmir
earthquake (Owen et al., 2008). After the earthquake, the geology type Palaeocene rocks had a much larger positive e�ect on
landslide occurrence than before. The corresponding lithology of Palaeocene rocks is sandstone, shale, and limestone. This is
interesting as some of the other geology types that had a greater impact on landslide occurrence share some similar lithological
features. These are the Muza�arabad formation, the Hazara formation and Quaternary deposits. The Muza�arabad formation
mainly consists of dolomite, quartzite limestone, and sandstone. Quaternary deposits are comprised of gravel, clay, and sand.
The corresponding lithology of the Hazara formation is slate, siltstone, limestone, and shale. The main conclusion for land
cover types is that dense vegetation with deeper roots has stabilized the slopes and show strong negative random e�ects in each
of the GAMs. The earthquake did not a�ect these slopes. On the contrary, sparse vegetation and vegetation with non-wooded
or shallow roots showed strong positive e�ects and were highly in�uenced by the 2005 Kashmir earthquake.

The �fth sub-objective was to determine whether the earthquake parameters clearly in�uence landslide distribution in the post-
seismic landslide model. To determine an earthquake legacy e�ect on landslide susceptibility, this was a vital step. However,
contrary to initial expectations, the earthquake parameters have little in�uence on landslide occurrence. This is re�ected by the
�xed and random e�ects, the ROC curve of the post-seismic GAM with only the earthquake parameters and the post-seismic
susceptibility di�erence map. As already indicated in the previous paragraph, CMT angle and fault distance were the only
random e�ects that were notable. The random e�ect in the GAMs for slopes facing towards the CMT location are negative re-
lations with a slight negative increase in the post-seismic model. For slopes facing away from the CMT, the opposite is observed.
Slopes located within 100 meters of a fault had a signi�cant negative relation of -0.36 in the post-seismic model, including the
earthquake parameters. However, the contrary would be expected, that they would be more prone to landslides. This negative
relation is also visible in the co-seismic model with -0.94. Overall, the earthquake parameters did not clearly in�uence landslide
susceptibility and therefore no apparent earthquake legacy e�ect on landslide susceptibility was observed. However, the study
did show clear e�ects on the �xed and random e�ects of other parameters. Although, no clear earthquake legacy e�ect was
detected from the earthquake parameters, parameters such as land cover types shrubland and herbaceous vegetation, geology
type Muza�arabad formation, and elevation were a�ected by the 2005 Kashmir earthquake. The �xed and random e�ects were
signi�cantly stronger in the co-seismic and post-seismic GAMs.

The �nal sub-objective was to assess the possibilities of risk reduction in the future based on the predictive capacity of the
models. The study’s result shows that it is not bene�cial to include earthquake parameters in the case of the 2005 Kashmir
earthquake. Even though the e�ects of several other parameters became stronger in the co- and post-seismic models due to
the earthquake’s impact, this was not re�ected by the earthquake parameters. Thus, using parameters of the 2005 Kashmir
earthquake cannot inform early action. In other words, this study shows no evidence that the time between an earthquake
and an upcoming rainfall season can be utilized to determine locations where early action strategies can be applied to reduce
the impact of landslides. Therefore, including earthquake parameters does not provide further possibilities for landslide risk
reduction in the study area.

41



Chapter 6

Re�ection

As previously discussed, including earthquake parameters did not have enough e�ect in the GAMs for increasing lead times for
early action strategies. There are some limitations to the applied methodology that could have partially in�uenced the results of
this study. These will be discussed in this section. However, considering the extremely minor observations of elevated landslide
susceptibility after the inclusion of earthquake parameters, it is inevitable that in the case of the 2005 Kashmir earthquake, the
proposed new approach would not have been successful in reducing the impacts of landslides.

The re�ection is split up into three sections. Section 6.1 re�ects on the establishment of the landslide inventories. Section 6.2
provides a discussion on the GAMs, and section 6.3 provides recommendations on further research.

6.1 Landslide inventories
First of all, the establishment of the landslide inventories was done using satellite imagery and change detection. The landslide
inventories were established with the most precision possible, considering the possibilities within this study. Furthermore, the
landslide inventories were tested to a previous co-seismic inventory established by Sato et al. (2007). No �eld validation was
done, and thus the accuracy of the landslide inventories could have been further improved. It was also surprising that the
inventories were notably di�erent than the inventories established by Sha�que (2020). However, the landslide polygons were
signi�cantly larger and established using a di�erent method, making comparison and validation di�cult. Nevertheless, the
overall spatial distribution of the landslides in the inventories was similar.

Then, the likely initiation points of the landslides were determined by extracting the highest elevation point for each polygon.
This is an estimation, and thus for some landslides, the location of initiation is likely di�erent. In some cases, it could be
that polygons in the inventories that represent one landslide could have been two separate landslides in real life. Furthermore,
landslides smaller than 900m2 that were located within 15-meter proximity of nearby landslides were merged to the nearest
landslide polygon and were treated as a single landslide. They were kept in the data set as it is likely they occurred at the same
time. However, this cannot be completely validated. The landslide inventories’ assumptions and corresponding adjustments
were selected carefully but could have led to some inaccuracy in the landslide inventories.

6.2 Generalized Additive Models
To derive the explanatory pre-, co-, and post-seismic landslide models, GAMs were applied. The parameters for the GAMs
were carefully selected based on prior landslide models and conducted literature. However, it should be noted that it cannot be
undoubtedly stated that the parameters used in this study accurately re�ect reality. There will always be a level of uncertainty
in landslide modelling. There is a possibility that the data was somewhat oversimpli�ed in the derived GAMs. Furthermore,
factors not considered in this research could have a�ected other parameters or landslide occurrence.
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In this study, the decision was made not to split the data into a testing and validation dataset, as the goal was to assess the in-
�uence of the available earthquake data on landslide occurrence. As stated previously, this is contradictory to other landslide
studies. Thus, the AUC is logically quite high for each model, as both testing and validation are done on the same data. How-
ever, this allows for a better comparison between the variables, which was the main objective. Landslide prediction was not the
main goal.

Furthermore, a Bayesian version of a GAM was applied in this research. The models are thus set up using a binary presence-
absence variable. In this case, landslide occurrence, categorized as either landslide(s) or no landslide(s) for every slope unit. This
corresponds to a Bernoulli probability distribution. However, landslide count, as well as landslide size, was not incorporated in
the model. It could have been bene�cial to use an approach based on landslide counts, which estimates the landslide intensity
instead of landslide occurrence, as is proposed by (Lombardo et al., 2018b). This would have provided more information per
slope unit than the susceptibility calculated in this research.

As indicated in the results, the Receiver Operating Characteristic (ROC) curves of the GAMs were almost identical for the
post-seismic GAMs, including and excluding the earthquake parameters. The corresponding AUC of the two ROC curves
was 0.816. To re�ect on the decision to include PGA instead of PGV and PGD, the models have also been conducted using
the other two ground motion parameters to ensure the correct parameter had been chosen. Including PGV or PGD instead of
PGA barely a�ects the ROC curves. In both cases, the AUC for both models remains 0.816.

6.3 Recommendations
This research was conducted under the assumption that rainfall follows a homogenous pattern. The pre-seismic inventory
covers previous monsoon seasons, and the monsoon seasons of 2005 and 2006 are assumed not to be spatially di�erent. There
is a possibility that a heterogeneous rainfall pattern has a�ected the location and occurrence of post-seismic landslides in the
study area. This aspect has been excluded from this research. However, studying rainfall patterns and their e�ect on landslide
occurrence would be interesting. This can be done using a similar approach but include the rainfall patterns instead of the
earthquake parameters. Thus, merely focusing on rainfall-induced landslides and using rainfall predictions to identify a spatial
pattern of landslide risk. However, this does not provide the same lead time opportunity and relies on the accuracy of rainfall
forecasts. Nevertheless, further studying options of landslide risk reduction and improvements of EWEA for landslides are
vital.

However, using the earthquake’s legacy e�ect on landslide occurrence is going to be challenging. The results of this study have
not led to any new information or potential strategy for FbF. In this case, it is not possible to use the time frame between the
earthquake and the �rst western monsoon season to reduce the landslide risk. Considering the low di�erences in susceptibility,
it is not expected that an adjusted method and di�erent choice of landslide controlling parameters would drastically change the
results. However, it could be scienti�cally interesting to examine whether a similar study in a di�erent area would give similar
or completely di�erent results. The results of this study, however, do not indicate that this would be the case. The in�uence of
the earthquake parameters needs to show a clear spatial e�ect on landslide susceptibility for early action strategies to work and
be e�ective. Otherwise, false alarms or missed landslides could have drastic consequences.

As previously discussed, unfortunately, the study’s results provide no new opportunities to reduce landslide risk. But, elim-
inating the possibility of new early action approaches will increase the focus on existing e�ective strategies or potential new
methods. Research should especially focus on combatting lead time constraints and the localized nature of landslides. How-
ever, it is often already known which areas are prone to landslides, and we should approach risk by reducing exposure and
vulnerability, even before landslide risk drastically increases during and after seismic activity.
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Appendix

Appendix 1: Processing steps parameters in the data matrix

Parameters Methodology

Elevation The DEM was converted to a point �le. It was then joined to the slope units, using ‘join attributes

by location (summary)’, by calculating the mean of the DEM values for each slope unit.

Slope The DEM layer was used to calculate slope in QGIS and the slope �le was subsequently converted
to a point �le. It was then joined to the slope units, using ‘join attributes by location (summary)’,

by calculating the mean of the slope for each slope unit.

Slope Curva-
ture

Slope curvature was derived from the DEM. The slope curvature �le was then converted to a point
�le. Next, it was joined to the slope unit, using ‘join attributes by location (summary)’, by calculat-

ing the mean of the slope curvature values for each slope unit.

Slope Aspect The DEM was used to calculate slope aspect. The slope aspect �le was converted to a point �le. It
was then joined to the slope units, using ‘join attributes by location (summary)’, by calculating the

mean of the slope aspect values for each slope unit.

CMT angle The angle between the slope unit and the CMT location was calculated in QGIS using the bearing
of the slope unit and the bearing of the CMT location. These were then characterized into facing

towards the CMT, facing away and in other directions based on angles of 45 degrees.

Distance to
Fault

Distance to faults was determined by using a 100-, 200-, 300- and 400-meter bu�ers. The percentage

of each slope units that cover each of these bu�er zones was then calculated.

Geology The percentage of all the geology types that cover each slope unit was calculated using the tool’

spatial join by location (summary)’ in QGIS.

Land Cover The percentage of all the land cover types that cover each slope unit was calculated using the tool’

spatial join by location (summary)’ in QGIS.

Distance
to Road
Network

A 50-meter bu�er zone was created for the road network. The percentage of each slope unit that

fall within the 50-meter bu�er was incorporated in the data matrix, using the ‘overlap analysis’ tool.

Distance to
Drainage

A 50-meter bu�er zone was created for drainages. The percentage of each slope unit that fall within

the bu�er zone was incorporated in the data matrix.

PGV The PGV �le was converted to a raster by applying IDW interpolation, using 12 variable radius and

a power of 2. Using the Zonal Statistics tool in QGIS the mean value per slope unit was calculated

PGA The PGA �le was converted to a raster by applying IDW interpolation, using 12 variable radius and

a power of 2. Using the Zonal Statistics tool in QGIS the mean PGA per slope unit was calculated

PGD The PGD �le was already in raster format. Using the Zonal Statistics tool in QGIS the mean PGD

value per slope unit was calculateds

49



The Legacy E�ect of the 2005 Kashmir Earthquake on Post-Seismic Landslide Susceptibility

Appendix 2: Intercorrelation of parameters
To �nd the inter-factor dependencies in the data matrix, di�erent methods have been applied. All of which were done using a
95% con�dence interval. For most combinations of variables, the Spearman correlation coe�cients were calculated. Spearman’s
correlation was used because not all data is normally distributed. The association between CMT angle (categorical variable)
and the other continuous variables is calculated using Eta squared. The correlations of (-)0.0 – (-)0.19 are seen as neglectable
correlations, (-)0.20 – (-)0.39 are low correlations, (-)0.40 – (-)0.59 are considered moderate, (-)0.60 – (-)0.79 as moderately
high, and (-)0.8 – (-)1 as a very strong correlation. These are highlighted in the data matrix. The land cover and geology types
are named in the correlation matrix, but their corresponding names are discussed if relevant. The remaining land cover and
geology names are provided in appendix 3.

Most correlations and associations are neglectable to low. The moderate and moderately high correlations will be discussed in
this section to re�ect on the possible causes of the observed correlations and associations. The very strong correlations that are
important to consider before conducting a GAM have been discussed in section 4.1.1.

Elevation has a moderate correlation of -0.570 with geology type 7 (paleocence rocks), a moderate correlation of -0.561 with land
cover type 2 (built-up), and a moderate correlation of -0.462 with drainage. All moderate correlations are negative, meaning
that paleocence rocks, built-up and drainage are more frequently found at higher elevations. For built-up and drainage, this
is expected since built-up areas, and rivers and water bodies are typically located at lower elevations, in between mountains.
The moderate negative correlation of elevation with paleocence rocks indicates that paleocence rocks in the study area are more
frequently found at higher elevations. Furthermore, elevation is moderately highly correlated with roads, with a correlation of
-0.596. Similar to the land cover type built-up and drainage, this is expected because roads are usually located at lower elevations
and in and around built-up areas.

Several geology and land cover types show moderate correlations. These are geology type 7 (paleocence rocks) and land cover
type 2 (built-up) with a correlation of 0.556, indicating that paleocence rocks and built-up are often present in the same slope
unit. A correlation of 0.408 for land cover type 1 (bare/sparse vegetation) and type 11 (permanent water bodies) shows that
permanent water bodies are often accompanied by bare vegetation. Land cover type 7 (evergreen broadleaved closed forest) and
8 (decideous needle-leaved closed forest) correlate with 0.429, showing that closed forests often have mixed tree species. Land
cover types 7 (evergreen broadleaved closed forest) and 9 (deciduous needle-leaved open forest) are negatively correlated with a
value of -0.401. Thus evergreen broadleaved closed forest and open deciduous forest are typically not found in proximity to each
other within the same slope units. Land cover types 9 (deciduous needle-leaved open forest) and 12 (shrubland) is correlated
with a value of 0.406, which indicates that shrubland and deciduous needle-leaved open forest are frequently found within the
same slope unit.

Road and drainage proximity parameters are also correlated, with a correlation of 0.425, indicating that roads and drainage are
regularly found within the same slope unit. Furthermore, the parameter roads correlate with land cover type 2 (built-up) with a
correlation of 0.529 and 0.426 with geology type 7 (paleocence rocks). As described priorly, land cover type 2 and geology type
7 are also moderately correlated.

Moreover, geology type 7 is correlated with the parameters fault proximity of 300 meters and 400 meters, with correlations
of respectively 0.402 and 0.431. This could be a coincidence, and the correlations are only moderate and thus no cause for
concern. The correlations with both 300 and 400 meters is most likely due to the slope units located on the edge of the 300 and
400 meters.
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Appendix 3: Names geology and land cover types
The names of the geology and land cover types have been left out of table 4.3 ad the table in appendix 2 to safe space. Before
the adjustment of the data set, there were 14 land cover types and 9 geology types. The corresponding names are provided in
the table below.

Landcover Geology

1 Bare/sparse vegetation 1 Abbottabad Formation

2 Built-up 2 Hazara formation

3 Cropland 3 Manki Formation

4 Deciduous broadleaved (closed forest) 4 Mansehra Orthogenisis

5 Deciduous broadleaved (open forest) 5 Murree Formation

6 Evergreen broadleaved (closed forest) 6 Muza�arabad Formation

7 Evergreen broadleaved (closed forest) 7 Paleocence rocks

8 Deciduous needle-leaved (closed forest) 8 Quaternary Deposits

9 Deciduous needle-leaved (open forest) 9 Salkhala Formation

10 Herbaceous vegetation

11 Permanent water bodies

12 Shrubland

13 Unknown type (closed forest)

14 Unknown type (open forest)
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Appendix 4: Spatial overlay of landslide susceptibility with the landslide
inventories
The map shows the landslide susceptibility maps of the pre-, co-, and post-seismic models overlaid with the corresponding
landslide inventories. This was done to illustrate the similar spatial variability’s of the landslide susceptibilities and the landslide
inventories of the same years. Therefore, demonstrating the accuracy of the GAMs.

54


