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Abstract 

Flash floods are one of the most dangerous types of natural disasters. High velocities and the often 

short time between rainfall and flood occurrence make them hard to predict, especially in an early 

warning context.  

For this, flash flood events can be modelled using a hydrodynamic flood model, but these are often 

complex and take a long time to develop. Moreover, simulations, depending on the study area, can 

take up to hours to complete. Therefore, machine learning (ML) is a good option, with significantly 

shorter runtimes and a less complex development process. Predicting flood extent with ML is 

currently being done in the form of (flash) flood susceptibility analyses. However, current methods 

are limited in the information they can provide, mainly due to limitations of the input data. The 

speed at which these flash floods occur and disappear can it difficult to collect detailed flood extent 

data. Therefore this research, in the Kyungu river basin in Malawi, assesses the feasibility of 

predicting maximum waterheight of flash floods with machine learning. This is done by developing a 

hydrodynamic flood model of the study area, after which the generated maximum waterheight 

maps of different return period events are used to train a Random Forest (RF), an Extreme 

Randomized Forest (EXRF) and an Extreme Gradient Boost algorithm (XGB). The ML model was 

based on a selection of thirteen fundamental for hydrodynamic modelling, predictors and was 

validated using 10 fold cross-validated R2, MAE and RMSE. The training consisted of 10 year, 50 year 

and 100 year return period events, after which a separate 20 year and an 80 year return period 

event were predicted. 

This research results show that the five most important features in predicting maximum waterheight 

were the DEM, Wetting front suction head (PSI), upstream cumulative (ups), saturated hydraulic 

conductivity (ksat) and mannings’ N (n). Using these predictors, the EXRF algorithm was the most 

accurate for the training dataset, with an R2 of 0.68. However, when predicting the 20 year return 

period and 80 year return period events, the accuracy decreased to an R2 0.58 and 0.91, 

respectively. Evaluation of the results suggests that higher accuracy is caused by the significant 

similarity between trained and predicted events. Therefore this study shows that it is feasible to 

predict maximum waterheight with ML but also concludes that it has not been proven to be feasible 

for use in an early warning and early action context yet. 
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1. Introduction 
 

According to the United Nations Office for Disaster Risk Reduction, a hazard is defined as: "A 

process, phenomenon or human activity that may cause loss of life, injury or other health impacts, 

property damage, social and economic disruption or environmental degradation.", of which natural 

hazards are generally associated with natural processes (UNDRR, n.d.). These natural hazards are 

divided into five main subgroups: geophysical, climatological, biological, meteorological and 

hydrological. Geophysical referring to hazards such as earthquakes or volcanic activity, climatological 

hazards include extreme heatwaves or drought, biological referring to hazards such as plagues or 

epidemics (such as the current COVID-19 epidemic), meteorological consists of disasters such as 

cyclones or storms and lastly, hydrological hazards (IFRC, n.d.). 

 

Hydrological hazards are defined as hazards or deviations in the water cycle caused by the 

occurrence, movement and distribution of surface and subsurface water (Guha-sapir et al., 2011; 

EM-DAT, 2020). These hydrological hazards include floods, wave-action and wet mass movements or 

avalanches and account for 36.9% of weather-related disaster response triggers between 2008 and 

2017. Floods, in general, are and have been the type of hazard to most frequently trigger emergency 

responses (IFRC, 2018). Floods contributed to a total of 385 disaster response triggers in the same 

decade. The previous decade (1998-2007), in comparison, had 230 emergency response triggers. 

Moreover, in 2017, worldwide a total of 18 million people were displaced due to weather-related 

disasters, of which the majority was caused by floods, displacing 8.6 million people (IDMC, 2018). In 

2019 this number rose to 10 million people, with a total of 23,9 million people displaced due to 

weather-related disasters (IDMC, 2020). Ruiter et al. (2020) describe that it is likely that the 

frequency of, primarily, non-tectonic disasters is going to increase due to climate change.  

These numbers show an increase in natural disasters in general and, more specifically, hydrological 

disasters such as flooding (Hoeppe, 2016; Douben, 2003). With the potential for an increase in 

frequency, flood forecasting capability becomes more important.  

Historically, protection from flooding and the monitoring of potential flood hazards has become 

more prevalent with the desire of governments and authorities to understand hazards better and be 

better prepared for them (Cloke, 2009; Douben, 2003).  

 

Floods are generally divided into four types: Coastal, Riverine, Flash and Ice Jam flooding (EM-DAT, 

n.d), with each of them having different characteristics. Currently, the majority of flood forecasting 

research focuses on riverine floods, a type of flood characterised by larger flood extents and time 

scales (Bucherie, 2019; Douben, 2003). Flash floods, however, can be extremely destructive and 

deadly, but knowledge and data availability about this type of flood is and are limited (Gaume, 2009; 

Shresthra & Takara, 2008).  

Flash floods are caused by excessive rainfall in one location. However, contrary to riverine floods, 

flash floods generally occur within several hours after the rain has fallen. This is because the location 

of the rainfall and the location of (flash)flooding are close in space. This, combined with relief in the 

surrounding area, where runoff flows quickly downhill into low-lying areas such as rivers or 

depressions, can cause rapid flooding (Marchi et al., 2010; Borga et al., 2014; Borga et al., 2008; 

Jonkman, 2005).  

The definition of flash floods can be broad. However, the primary identifier of flash floods should be 
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the short time between rainfall and flooding. Considering this definition, this includes flash flooding 

in an urban context after exceeding the capacity of artificial drainage structures such as sewers. 

However, whether to separate flooding from artificial drainage structures from the flash flooding 

definition is a subject of debate (van Milligen de Wit, 2021). 

 

While flash floods are, as mentioned above, caused by excessive rainfall, sediment can mix with the 

water and turn flash floods into mudflows and debris flows. Especially debris flows, which contain 

coarse sediment, can be extensively more destructive (van den Bout, 2020). 

The short temporal footprint of flash floods makes predictability of location and size particularly 

difficult, which is why 510 Global, an initiative of The Netherlands Red Cross, is currently organizing 

and partaking in various research projects concerning the impact and predictability of flash floods in 

Northern Malawi (Bucherie, 2019; Broeken, 2018).  

510 Global is an organisation that focuses on using and creating data and digital products that aid 

workers, decision-makers and victims can use to help them prepare and cope with disasters and 

crises on various scales. They focus on digital risk assessment before a disaster strikes, early warning 

and early action with predictive impact analysis when a disaster is imminent, offer products for 

predictive impact analytics during a disaster and offer products that can be used in all phases in 

terms of recovery to complete the disaster risk management cycle: preparedness, early warning, 

response and recovery (UNOCHA, 2013; 510 GLOBAL, n.d.).  

Current research by 510 Global in Malawi is primarily focused on risk assessment and impact 

analysis, also known in disaster policy as “early warning action”. The focus here is on saving more 

lives and reducing possible damage by acting before a disaster strikes instead of only focussing on 

disaster relief after a disaster happens. This is in line with The International Federation of Red Cross 

and Red Crescent Societies (IFRC, 2008). 

 

1.1 Flooding in Malawi 

Flooding in Malawi due to heavy rainfall is generally a yearly occurrence. The month of January 2015 

saw floods caused by extreme rainfall heavily influencing life in the country, with estimations of over 

one million people being affected (Malawi Government, 2015). This 1 in 500-year rainfall event 

displaced 230,000 people, killed approximately 200 people, destroyed infrastructure, buildings, 

cropland, and swept away livestock. This 

extreme event caused over $400 million in 

damages, and emergencies were declared in 

15 separate districts. One was Karonga, one 

of the Northern districts where 510 Global is 

currently doing research (Simpson et al., 

2019). At the beginning of 2020, more heavy 

rainfall caused flooding in Karonga and led to 

450 households being displaced (Floodlist 

News, 2020). 

Moreover, impacts due to flooding have 

increased in the last decade, with a 40% 

increase in affected households (Bucherie, 

2019). Malawi, in general, is highly susceptible to 

Figure 1: Flooding in Malawi early 2015. Photo: George Ntonya/UNDP 
(Floodlist news, 2015) 
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weather-related disasters, as most of Malawi's economy is based on agriculture. Extreme weather 

could, therefore, not only be damaging to the population but also to the country's economy 

(DoDMA, 2019). 

 

Disaster risk management in Malawi is organised in a hierarchical structure. The Department of 

Disaster Management Affairs (DoDMA) is nationally oriented and focuses on directing and 

coordinating the implementation of disaster risk programs. The District Executive Committee (DEC) 

or District Civil Protection Committee (DCPC) is oriented on a district scale. The Area Civil Protection 

Committee (ACPC) is focused on a local scale, and Village Civil Protection Committees (VCPC) attend 

to the smallest, village size, scale.   

 

The early warning system in Malawi can be separated on three scales (Teule, 2019):  

1. The national Operational Decision Support System (ODSS), an early warning system created 

in 2016 that includes multiple components, such as weather forecasts, drought monitors 

and crop calendars 

2. Community-based forecasting, where the ACPC’s actively participate in risk identification, 

solution selection, solution implementation, monitoring and operation.  

3. Indigenous knowledge-based forecasts, where the experience and knowledge of the local 

area and local weather patterns of residents is used in the forecasting and mitigation of 

hazards. 

Most of the disaster risk reduction and early warning systems are the responsibility of the 

DEC/DCPC. However, often there is limited Disaster risk management or no early warning system in 

place (DoDMA, 2019; National Resilience Taskforce, 2018). For example, due to a lack of funding, 

only 15 disaster-prone districts out of 28 are monitored by the DoDMA. In 2018, a national multi-

hazard risk assessment was yet to be developed (National Resilience Taskforce, 2018). 

The early warning systems in place for flooding are hindered by outdated equipment, a limiting focus 

on only major rivers, communication problems, misunderstandings over early warning needs, and a 

lack of understanding of early warning by communities (National Resilience Taskforce, 2018). 

Regarding the data on flood hazards and the extent of these hazards, the National Resilience 

Taskforce describes that the database for flood hazard and impact data is incomprehensive and 

often only provides limited information, with no hazard specific information and a general lack of 

detail needed to do impact analyses. Progress is being made with disaster risk management and 

early warning systems. The progress, however, is slow and requires international funding and 

knowledge sharing with organisations such as 510 Global (DoDMA, 2019). One way to generate data 

and create insights on the impacts of floods with different return period events is a susceptibility 

analysis.  
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1.2 Susceptibility analysis 
 

Susceptibility analyses are a way of evaluating the susceptibility of specific areas regarding disasters. 

They display how likely it is for an area to flood, often described as low to high susceptibility. This 

susceptibility is a subset of risk, which can be used to create hypothetical impact data. A 

susceptibility analysis regards historical evidence for different hazard types and analyses these with 

a set of independent landscape and climatic variables. If correlations can be found, they can be used 

to predict the susceptibility of a given location to a hazard. The field of susceptibility analyses gained 

popularity in the 1980s after the characteristics of a natural hazard were conceptualised in the 

context of landslides (Varnes, 1984). After which, in the following decades, efforts were made to 

understand, classify and possibly predict landslides with various quantitative and qualitative 

methods (Aleotti & Chowdhury, 1999; Corominas et al., 2003). On the contrary, the field of flood 

susceptibility mapping is relatively new, with an increase in research starting around 2010 in parallel 

with the increase in popularity of Machine Learning (ML) for various research applications (Chapi et 

al., 2017; Molnar et al., 2020).  

The difference and difficulty of flood susceptibility mapping, compared to landslide susceptibility 

mapping, is the increase in uncertainty and complexity that comes with the upstream area of a 

catchment (Pappenberger et al., 2006; Chapi et al., 2017; Tehrany et al., 2015). The characteristics of 

the upstream area determine the severity of a flood and thus the amount of runoff generated 

because water flows from high to low (Murray-Hudson et al., 2006; Mati et al., 2008). 

Nowadays, many different types of methods are used to perform susceptibility analyses for both 

landslides and floods. Examples are Multi-Criteria analysis frameworks (MCA), the Analytic hierarchy 

process (AHP) or ML methods. The common factor in all the different methods used is the 

conversion of all the input variables or features into one output: susceptibility. 

From the more statistical oriented models, ML is a popular approach, whereas, with the multi-

criteria (decision) analyses, the AHP method is most widely used (Khosravi et al., 2018; Brito & Evers, 

2016; Muñoz et al., 2018). Generally, the ML approach provides more accurate results for flood 

susceptibility modelling compared to multi-criteria decision frameworks due to the option to use 

algorithms that prevent overfitting and distraction by noise in the datasets (Khosravi et al., 2019; 

Shafizadeh-Moghadam et al., 2018, Pham et al., 2016; Pham et al., 2017). For this reason and the 

fact that, generally, ML can produce results faster (Pourghasemi et al., 2020; Janizadeh et al., 2019), 

ML will be chosen as the method to create susceptibility maps. The speed at which a specific method 

can produce results is essential for the overarching context of this research project: early warning, 

early action for flash floods in Northern Malawi.  

 

Within ML, many different algorithms and models are used for (flash)flood susceptibility mapping, 

popular examples are tree-based methods such as Classification And Regression Trees (CART) or 

Random Forest (RF), or even more complicated methods such as the Boosted Regression Tree (BRT) 

or Support Vector Machines (SVM) (Tehrany et al., 2015; Khosravi, 2018; Khosravi, 2019; Pham, 

2017; Pourghasemi, 2020; Shafizadeh-Moghadam, 2018; Chapi et al., 2017).  

ML algorithms mainly differ in the way they predict values, what each parameter represents and 

how they relate to the input. An important factor that is equal for all ML algorithms and approaches 

is that the importance of the selection of predictors for ML model performance is equal for all 

methods. Because in ML, the input data determines the quality of the output and, therefore, 
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determines the model's performance. 

For ML flash flood susceptibility analyses, these predictors are usually selected via a literature review 

of historical floods, flood-related geospatial databases, via previous flood susceptibility modelling 

literature or by using local knowledge (Janizadeh, 2019; Khosravi et al., 2019; Shafizadeh-

Moghadam, 2018; Khosravi et al., 2019; Samanta et al., 2018; Bucherie et al., 2021; Tehrany et al., 

2015; Lin et al., 2019). For most of the current literature, however, the study area size is large. With 

catchments often being thousands or tens of thousands square kilometres in size, flood locations are 

reduced to points in a vast area. Researching on a smaller catchment scale can give insights on how 

terrain features directly influence flood extent, where subtle differences in characteristics of the 

upstream area can be seen downstream (Hu et al., 2015). Considering this, having a smaller scale 

stimulates the selection of predictors that directly influence the hydraulic flow process on a 

fundamental level. Key hydrodynamic modelling parameters such as saturated hydraulic 

conductivity or the capillary suction of a soil directly determine the amount of water that runs off 

over the surface (Hu et al., 2015). The literature overall has shown a lack of inclusion of key 

hydrodynamic modelling parameters in ML susceptibility analyses. Considering the large scale of the 

study areas, the possible variation in landscape characteristics and the fact that flood susceptibility is 

reduced to points makes it hard to determine the accuracy of the prediction in the context of the 

hydraulic processes that take place in the real world to flood that pixel/point. 

Literature has shown that, generally, the flood inventory databases created to train and test the ML 

models consist of historical flood events that all occurred within a broad timespan. Having such a 

mix of different events with possible different flood extents and rainfall patterns that caused them, 

leaves no possibility to do a susceptibility analysis for a specific event. In this way, the only thing to 

generally predict is whether an area can/will flood. A susceptibility analysis can be made more 

informative by adding population density or building information. It then becomes more of an 

impact analysis (Lin et al., 2019). 

 

 

1.3 Problem statement 

With an increase in disasters and, more specifically, weather-related disasters such as flash flooding, 

it is evident that the consequences for people living in risk areas will worsen. The nature of flash 

floods makes it hard to predict when it is happening, where it is happening, and what the impact of 

the flash flood will be. Current (flash) flood susceptibility analyses are, in this regard, limited in the 

information they can provide decision-makers on specific rainfall events and their flood extent. With 

limited resources, current risk management programs in Malawi are restricted, especially for flash 

flooding.  

This leads to the following research question:  

 

What is the feasibility of using machine learning to predict the maximum waterheight of flash 

floods in the context of early warning and early action in Northern Malawi? 

 

This research will introduce key hydrodynamic modelling parameters into ML susceptibility analyses 

for flash floods by first simulating the study area in flash flood scenarios in openLISEM, a flood 

modelling software. Then the hydrodynamic modelling parameters will be selected based on their 

role and importance in openLISEM and flood modelling in general, which will then be added as 
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features to the ML models. After which, an ML susceptibility analysis will be done with several 

algorithms. With the addition of hydrodynamic modelling parameters in the susceptibility analysis, 

the aim is to improve a susceptibility analysis' flood extent prediction capability for Northern Malawi 

by predicting waterheight for different return period events. Additionally, the overarching goal is to 

create and explore a method that can give as much relevant flood extent information as possible in a 

short time, assisting early warning, early action and improve impact data. 

 

1.4 Objectives and research questions 

Main research objective: 

To create a method to improve Machine Learning flash flood susceptibility analysis’ accuracy and 

informative capability by predicting maximum waterheight in an early warning and early action 

context in Northern Malawi. 

Main research question 

What is the feasibility of using Machine Learning to predict the maximum waterheight of flash floods 

in the context of early warning and early action in Northern Malawi? 

1. Sub-objective 1 

To develop a realistic flash flood model of the study area in openLISEM, due to a lack of flood extent 

data, to establish a ground truth on which the Machine Learning algorithms can be trained. 

Research questions sub-objective 1: 

1. What are the different amounts of rainfall for different return period events for the study area? 

2. What is the maximum waterheight and flood extent for different return period events in the study 

area? 

 

2.  Sub-objective 2 

To develop a Machine Learning model for the study area using predictors created from a 

hydrodynamic modelling perspective to predict waterheight. 

 

Research questions sub-objective 2: 

1. Which combination of predictors is selected, and what is their importance in predicting maximum 

waterheight? 

2. What is the performance during the training of the different machine learning algorithms 

 

3. Sub-objective 3 

To generate a predicted flash flood maximum waterheight for different return period events in the 

study area 

Research questions sub-objective 3: 

1. What is the prediction accuracy? 

2. How does the ML prediction compare in flood extent? 
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Figure 2:  Flowchart of the different methods used for this research 
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2. Methodology 

2.1 Case study area: Karonga, Malawi 

Malawi is a country located in the south-eastern part of the African continent. The country is 

landlocked and surrounded by Mozambique, Tanzania and Zambia. Lake Malawi, also known as Lake 

Nyasa, is the main waterbody that borders the east side of Malawi, stretching about 580 kilometres 

long. The country has a total surface area of 118.484 km2  and a population of 17.563.800 in 2019, 

with most people living in rural areas. Malawi has an agriculture-focused economy with a GDP per 

capita of $1200 in 2017, producing products such as tea, tobacco, cotton and sugar (National 

Statistical Office, 2019; Central Intelligence Agency, 2020).  

Malawi's climate can be classified as sub-tropical, with warm wet seasons typically lasting from 

October to April and the dry cold season from May to September.  

The study area is located in Northern Karonga in the Karonga and Chitipa districts and near the 

Tanzanian border, as shown in figure 3. The districts of Karonga and Chitipa have quite a broad range 

of average annual rainfall, as can be seen in figure 5. The town of Karonga itself annually receives 

about 1201 to 1400 mm, while the more elevated parts of the district northwest of the town receive 

up 2400 mm or more.  

Figure 3: Study area of the Kyungu river catchment in the Karonga and Chitipa districts in Northern Malawi 
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These rain patterns have caused various types of floods in Karonga town, such as flash floods and 

riverine floods of the North Rukuru River and Lake Malawi itself (Manda et al., 2016). The specific 

catchment is selected out of the PCA based catchment susceptibility analysis done by Bucherie 

(2019), as shown in figure 5.  

 

  

 

The catchment has been selected later via two main criteria. The first and primary criterium is size. 

The size of the catchment in the study area is important concerning flood modelling. A bigger 

catchment means more calculations in openLISEM, which increases the time needed to do an entire 

simulation run. The second criterium is soil composition. The goal is to select a catchment with as 

much soil heterogeneity as possible in the context of potential further applicability and validity. 

Based on these criteria, the Kyungu river catchment has been chosen, as shown in figure 3, south of 

the border with Tanzania. The study area size is 159.20 km2. A bigger study area was chosen to add 

more diversity and heterogeneity, which can aid in representability. Furthermore, the study area is 

located in an area that has received one of the most amounts of rain in 2020, as can be seen in 

figure 4. The selection of the study area made it possible to continue to the next step: creating a 

map database.  

  

Figure 4: Malawi Annual average 
rainfall (DCCMS, 2020) 

Figure 5:PCA based catchment susceptibility analysis (Bucherie, 2019) 
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2.2 Development of the hydrodynamic flood model 

To develop a flood model for a study area, a database of maps needs to be created in order for the 

model to be able to make its calculations. For the creation of a map database, five primary layers are 

needed, of which the rest of the maps or parameters will be calculated: a Digital Elevation Map, a 

soil layer, a land-use layer, a river network layer and a buildings/infrastructure layer. Some of these 

base layers need to be created or adjusted, for which pre-processing is needed. 

 

2.2.1 openLISEM 

The Limburg Soil Erosion Model (LISEM) is a physically-based numerical capable of simulating runoff, 

sediment dynamics and shallow floods on a catchment scale. The model was initially developed in 

1994 to model soil erosion in Limburg, a province in The Netherlands (De Roo et al., 1994). The 

vision of openLISEM is “To improve the understanding, to help analyse, and to predict the behaviour 

of land surface processes, our vision is the development of an integrated, holistic and fundamental 

modelling tool for the numerical simulation of land surface processes.” (Jetten, 2018). Included in 

their vision is to allow for as much societal benefit as possible, which is why the decision was made 

to make it open-source and freely available. The LISEM model is based on work done by the original 

developers and scientific literature (Jetten, 2018; Jetten & De Roo et al., 2001). 

Multiple hydrodynamic models exist to simulate floods in openLISEM: 1D, 2D and 1D+2D (Teng et al., 

2017; van de Bout, 2020). One-dimensional models simulate flow in one dimension, which can be 

used where higher dimension modelling is unnecessary, for instance, with a pipe or a canal. Two-

dimensional modelling is the most used method for flood simulations. It provides the possibility to 

model a flood plain in another dimension: horizontal velocity of water averaged across a vertical 

column. Three-dimensional models have been developed to model the potentially dangerous spiral 

flows that occur at dam breaks or tsunamis. The combination of a 1D and 2D model works in the way 

that a 1D kinematic wave is used for the runoff and the 2D dynamic wave is used for flooding, where 

only the water overflowing from the channel is classified as flood. 

Further details on the underlying physical principles of openLISEM can be found in Baartman et al. 

(2012) and Jetten & De Roo (2001). 

 

Figure 6: Simplified flowchart of openLISEM process (van den Bout, 2020) 
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2.2.2 Pre-processing 

 

Digital elevation model 

Two sources for the DEM were used for this research: ALOS-PALSAR AW3D30 version 3.1 (12.5-

meter resolution) and SRTM (30-meter resolution). Both DEM’s were clipped, reprojected and then 

resampled to a 20-meter resolution. The ALOS-PALSAR DEM proved to be challenging to work with 

due to irregularities. Water was not flowing correctly over de DEM, which is why the decision was 

made to use the SRTM DEM. Results were better but still not optimal. Therefore all pixels below 505 

meters were processed with a 3x3 averaging filter to smooth the floodplain. 

 A higher resolution or better quality DEM is usually required for proper use of the 2D dynamic wave 

and overland flow simulation. This is why the 1D + 2D hydrodynamic model was chosen for this 

research, as the 1D aspect in this model negates depressions in the DEM. This choice was made 

under the assumption that pits or depressions in the DEM are caused by errors in the DEM itself. 

 

Mask 

Using the DEM, a surface flow network can be created. This was done by first eliminating small 

depressions in the DEM, after which the local drain direction (ldd) network was used to create the 

channel network. The outlet point was determined manually at the end of this channel network, 

after which all pixels that flow into this outlet point were determined and thus, the entire catchment 

was delineated. The catchment was then used as a mask to clip all input maps, including the ldd. The 

masked ldd was then used to create the river/channel network of only the catchment  

 

Soil 

Soil characteristics contribute to some of the essential flood modelling parameters, such as 

saturated hydraulic conductivity, porosity, initial moisture and suction. The following soil maps were 

downloaded from soilgrids.org (De Sousa et al., 2020; Batjes et al., 2019): 

- Sand content 

- Clay content 

- Silt content 

- Organic Carbon content 

- Gravel content 

- Bulk density content 

 

Soilgrids.org is a publicly accessible database that maps soil properties globally with ML methods on 

a 250-meter resolution using the soil profile observations of the World Soil Information system 

(WoSIS) to verify their maps (Sousa et al., 2020). 

All these soil maps were downloaded for two different depths: top soil (5-15cm) and subsoil (60-100 

cm) because openLISEM has the ability to work with the two levels of soil depths.  

These maps are in fractions, and for this research, these fractions were converted to g/kg. All these 

soil maps were used in pedotransferfuctions (Saxton & Rawls, 2006) to calculate the following 

maps/variables for two different soil depths:  
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- Porosity 

- Saturated hydraulic conductivity 

- Initial moisture 

- PSI 

- Density 

- Organic Matter 

- Wilting point 

- Field capacity 

- Plant available water content 

 

Land-use and Coverage 

Not only subsurface characteristics are influencing waterheight in the flood model, but also surface 

elements—for example, land-use. The land-use type determines how much water can be 

intercepted before it infiltrates into the ground and how high the resistance is when water flows 

over the surface (manning’s N and micro-relief). The assumptions made for the resistance of 

different land-use types will be highlighted in paragraph 2.3.4. 

The land cover map from the European Union’s Copernicus program from 2019 was used for this 

research. This is an already classified land-cover map with a 100m resolution, which was chosen 

because real-life validation was not possible due to COVID-19 restrictions.  

To calculate the amount of intercepted water and the specific amount of vegetation per pixel, an 

NDVI was also needed. The NDVI used for this research was retrieved from Sentinel 2 images from 

10-24-2016, as this was the earliest date with close to cloudless conditions. 

Pre-processing for the NDVI included: calculating the Normalized Difference Vegetation Index and 

removing all the negative values because they are not vegetation. 

A bare soil map was not made because the Copernicus land-use map has a bare/sparse vegetation 

class. 

Buildings were added using Openstreetmap (OSM). Because the model's resolution is 20x20 meters, 

the buildings are added as a fraction of the pixel. This means that the manning’s N of that pixel is 

going to be higher. The roads were added via OSM as well. 

 

Basemap Resolution Version/Date Source 

DEM 30 meters V2.0: 12-11-

2020 

SRTM Nasa 

Landuse 100 meters 2019 Copernicus Global Land Cover (Buchorn 

et al., 2020) 

NDVI  20 meters 24-10-2016 Sentinel 2  

Soilmaps 250 meters V2.0: 05-2020 Soilgrids.org (De Sousa et al., 2020) 

Roads and buildings -  26-01-2021 OpenStreetMap 

Rainfall CHIRPS 0.05°×0.05°  

GSMAP 0.1°x0.1° 

01-01-2001 to 

31-12-2020 

CHIRPS (Funk et al., 2015) 

GSMaP (Kubota et al., 2020) 

Table 1: An overview of the different characteristics of the base layers 
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2.3 Assumptions and uncertainty 

Flood models are built on assumptions and for event-based models, such as openLISEM, these 

assumptions influence the output even more. The state at the initialisation of a catchment is 

important for even-based models, with factors such as soil saturation due to antecedent rainfall, the 

state of vegetation and crops at the time the flood occurs, the exact size of the channels and the 

accuracy of the DEM. Many choices need to be made with the creation of the model, which brings 

uncertainty. Normally, this uncertainty can be decreased by calibrating the model by doing 

fieldwork. However, not having the ability to do fieldwork due to the COVID-19 pandemic or not 

having a measured river discharge made calibration difficult. 

Nonetheless, it is important to mention that flood models are not meant to represent reality 

perfectly. Models should always be viewed as a method to assist in water governance decision 

making. However, an attempt to make the model flood model as realistic as possible should always 

be made. This section will highlight the parts of the model where the most significant assumptions 

were made and why.  

 

2.3.1 Reference floods 

The problem lies mainly in the fact that real-life data is exceptionally scarce and, while the ECHO III 

project provided accurate and specific data for various locations in the flood area, it was not possible 

to connect these damage numbers to specific events. The European Civil Protection and 

Humanitarian aid Operations (ECHO) III project focuses on the preparedness for response and early 

action in, among other countries, Malawi. For this, questionnaires were conducted in Malawi for 

local knowledge on historical flood events.  

In order to accurately compare the flood model to real-life, it is imperative to know the amount of 

precipitation that fell during an event, which in turn requires the exact date to be known. 

Unfortunately, this is not present in the ECHO III dataset and is, in general, hard to determine if 

there is not extensive flash flood research and a database present. Attempts have been made to 

make this model as accurate as possible by looking at average flooding in an area determined as the 

floodplain in the study area (see figure 7). This area was determined by classifying every pixel below 

a height of 505 meters in the DEM. 
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By marking the floodplain within the study area with value 1, it became possible to calculate the 

average waterheight within the floodplain area. This function was then used to calibrate the model 

as best as possible according to the average waterheight calculated from the ECHO III dataset. 

However, the ECHO III dataset describes flooding from events from multiple years. In order to have 

the highest chance of finding the right event,  2018 is the year with the highest chance. When 

looking for representable rain events, 2018 had significantly fewer extreme rain events than other 

years. So this, in combination with the fact that in the ECHO III dataset, there was a limited amount 

of people mentioning 2018 events, provided the highest chance of finding the rain event the 

interviewees were referring to. However, unfortunately, the waterheight of the flood model using 

the 2018 rain event did not match the waterheights described by the interviewees. This discrepancy 

can be attributed to two possible reasons and will be explained in the following paragraphs: 

1. Rainfall data uncertainty 

2. openLISEM flood model assumptions and uncertainty 

 

 

2.3.2 Rainfall data  

The primary possibility is that the events described in the ECHO III dataset are not the same events 

as the ones chosen and downloaded from JAXA Global Rainfall Watch. The Global Rainfall Map 

(GSMaP) by JAXA Global Rainfall Watch' was produced and distributed by the Earth Observation 

Research Center, Japan Aerospace Exploration Agency (Kubota et al., 2020). 

Additionally, when GSMaP data was compared with rain-gauge data, daily summaries for two of the 

events did not match up. Only for the 2018 event, the rainfall measured with both methods was 

similar (see table 2), which is why the attempt was made to use this event for calibration. However, 

only the first event caused flooding in the openLISEM model mainly due to the intensity. While the 

other two scenarios had comparable amounts of rainfall, the timespan in which this fell was much 

larger, leading to almost no flooding. This is normal, as rainfall has more time to infiltrate into the 

Figure 7: The classified floodplain marked in red, with the sample point for the CHIRPS 
data in the middle for the study area 
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soil instead of becoming runoff. However, the problem is that these events were found based on 

new articles and red cross documents published describing extensive flooding, while the openLISEM 

simulations showed no flooding. 

 

Songwe border station GSMaP Raingauge 

Event 1 (01-04-2017) 160 mm 18.2 mm 

Event 2 (16-04-2017  
to 21-04 2017) 

174.6 mm 383.6 mm 

Event 3 (12-04-2018) 132 mm 139 mm 

Table 2: Table showing the differences between GSMaP and Rain gauge data at Songwe Border Station 

 

Due to the inconsistent accuracy of the GSMaP satellite data when compared to rain gauge data, the 

decision was made to run the model with design storms based on return periods of 2, 5, 10, 20, 50, 

80 and 100 years, which were created with a GUMBEL analysis. However, rain-gauge stations in 

Malawi are relatively scarce, but more importantly, inconsistent. With the aim to continue to use 

publicly available datasets, the Global Historical Climatology Network (GHNC) daily dataset was 

chosen, with Karonga Airport as rain gauge. This rain gauge was chosen due to its proximity to the 

study area and temporal coverage. The dataset ranged from 1950-08-01 until 1990-06-30 but only 

had a data coverage of 67%, leaving significant gaps in the datasets. 

Moreover, the days and months missing were primarily in the rain season, which led to 18 years 

having no rainfall/rainfall data and skewed results of the GUMBEL analysis. So these years had to be 

omitted from the dataset, which created a dataset that span 22 years where even the usable years 

had considerable amounts of missing data. The results from the GUMBEL analysis can be seen in 

Appendix B. 

With the unreliability of rain gauge data and satellite data, the decision was made to use data from  

Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) rainfall data. CHIRPS is a 

quasi-global rainfall data set panning 50°S-50°N (and all longitudes) that was created to account for 

the underestimation of extreme rainfall event intensity by satellite measurements and the often 

scarce ground-station coverage in rural areas since 1981. CHIRPS blends ground station rain gauge 

and satellite to produce daily, pentadal, and monthly datasets with a high resolution of 0.05° (Funk 

et al., 2015; Climate Hazard Centre, n.d.). 

 

 

2.3.3 Bias correction 

The CHIRPS dataset for the GUMBEL analysis ranged from 01-01-1981 to 31-12-2020. It was 

obtained via Google Earth Engine, where a CSV file of the daily rainfall was downloaded that is 

extracted from the raster images for one designated point, see figure 7. The coverage percentage of 

this dataset is 100%. In order to generate proper IDF curves for the study area, the hourly GSMaP 

data was multiplicatively bias-corrected using chirps data. 
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The GSMaP hourly dataset ranged from 01-03-2000 to 01-03-2021, which means that the CHIRPS 

dataset used for correction has also been cut to the same range. While a period of 21 years is 

enough to predict return periods of events, multidecadal oscillations occur in extreme precipitation 

trends (Fadhel et al., 2017). However, disaggregation of the 40 year period CHIRPS dataset was not 

within the scope of this research. 

The bias correction was done in two different ways, with an 

R package called ‘biascorrection  (Malek, 2020) and 

manually in Excel. The biascorrection R package first 

aggregates the daily data of both datasets to monthly 

quantiles, after which the bias is corrected for each month. 

Then, the monthly data is disaggregated to daily data using 

a scaling coefficient that bias corrects the raw daily GSMaP 

input data to match the previously calculated monthly bias-

corrected values 

For the bias correction that was done in excel, no monthly 

aggregation was done. Instead, the bias correction was 

done on a daily scale, where each day of the GSMaP dataset 

was corrected with the CHIRPS dataset. For every day, the 

ratio of the difference between the Chirps and the GSMaP 

dataset was calculated, after which every hour of the 

GSMaP dataset was multiplied by the ratio that was 

calculated for the day that hour belonged to. However, this 

also means that for days where the GSMaP dataset 

recorded no data, and the CHIRPS did, the GSMaP now has 

the same multiplication factor for every hour to come to 

the daily CHIRPS value. This is the case for 290 days out of 

7613 days and skews the frequency distribution for 24-hour 

duration storms.  

 

With the hourly bias-corrected GSMaP data, the intensity-

duration-frequency curves were calculated based on an 

annual maxima series, where a GUMBEL analysis was done 

for every time interval for every return period (See 

appendix C). These curves combine rainfall event intensity 

over time (duration) and the return period of said event 

(Bougadis & Adamowksi, 2006; Rudari et al., 2016). The curve 

provides a rainfall pattern over time for a specific return 

period event, of which the equation can be extracted to create 

synthetic rainfall events. These events were calculated with a duration of 24 hours and designed 

with an alternating block method to make the events symmetrical for better and clearer discharge 

(Duka et al., 2018; Chow et al., 1988). 

 

  

Figure 8: Flowchart of the biascorrection, annual maxima 
ranking and GUMBEL analysis on which the IDF curves are 
based 
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2.3.4 openLISEM Flood model assumptions  

As previously mentioned, lack of calibration leads to certain assumptions being made on the 

following variables. 

 

Channel depth and width 

The channel depth is one factor where assumptions were made. It has proven to be challenging to 

estimate the channel depth precisely. This is due to the fact that no actual concrete data is available. 

The ongoing COVID-19 crisis makes it difficult to gather data and the resolution of the DEM is not 

high enough to assess channel depth accurately. So channel depth has been based on the channel 

width, where the channel depth is 0.21*times the channel width. The channel width has been 

estimated using google earth as a reference, mainly in the downstream floodplain area. However, it 

has not been possible to model the inversion of the width of the channel as it transitions into the 

floodplain. 

Another problem was that the catchment in the study area ends in a floodplain, as previously 

explained. Therefore the depth of the channel at a certain point starts to decrease. However, it is 

not known when this exactly starts and how shallow the channel becomes.  

 

Manning’s N and micro-roughness 

Manning’s N and the micro-roughness of the surface were partly determined from literature and 

partly estimated. The manning’s N is also known as a descriptor of the density of vegetation. The 

higher the density and manning’s N, the slower water can move through that vegetation. The 

Copernicus classified land-use map shows nine different land-use types in the study area: 

 

Land-use type Manning’s N values 

Cropland 0.04 

Herbaceous vegetation 0.035 

Built-up 0.02 

Shrub land 0.05 

Deciduous broadleaved open 0.15 

Deciduous broadleaved closed 0.15 

Unknow type closed forest 0.15 

Unkown type open forest 0.15 

Herbaceous wetland 0.1825 

Table 3: The different manning’s N values for the different land-use types. The Manning’s N values were taken from 
literature (Hessel et al., 2003; Chow, 1959, Liu et al., 2019). 

 

Soil Erosion 

The openLISEM software was initially developed in 1989 to provide detailed data to help mitigate 

runoff and soil erosion in The Netherlands. Soil erosion encompasses the process of soil detaching, 

transportation and deposition downstream by wind or water (Jetten, 2016). 

For this research, erosion was not considered when the specific events selected were modelled, as 

the erosion process understanding in the study area is not the goal of this research. However, in the 
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study area, erosion does occur and has affected the flood extent greatly, as sedimentation was 

occurring in channels and culverts (Bucherie, 2019). However, the influence of erosion for the 

developed hydrological model and thus different return period events is outside of the scope of this 

research. 

 

Interception 

Depending on the study area, most of the rain falling during a rain-driven event will be intercepted 

by other surfaces than the soil (Linsley, 1982; Jetten, 2018). This interception can be calculated for 

different types of vegetation, buildings and rain drums in LISEM.  

The maximum canopy storage is different for different vegetation types and is primarily determined 

by the Leaf Area Index (LAI). Within LISEM, this canopy storage is modelled as fixed storage and thus 

takes away from the rainfall. Because the Copernicus land-use map showed mainly broadleaved 

vegetation, the broadleaved forest setting was selected.  

 

Infiltration 

Infiltration is one of the most essential processes of openLISEM. It describes the transport of water 

downwards into and through the soil, from the surface into the subsurface (Jetten, 2018). The 

infiltration is determined by the hydraulic conductivity and soil moisture content.  

Within openLISEM, there is the option to choose between three different infiltration models: 

Green and Ampt (1911), Smith and Parlange (1978) and SWATRE (Bastiaansen et al., 1996). 

For the openLISEM model created for this research, the Green and Ampt model was selected, as it 

provides the option of 2 layer infiltration. Additionally, an impermeable lower soil boundary was 

implemented. Flow and advanced settings were left at their default settings. 

 

Baseflow 

Because openLISEM does not model groundwater, thus baseflow needs to be assumed because 

baseflow is coming from groundwater. The baseflow was assumed to be at half the channel width.  
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2.4 Machine learning materials and methods 

 

Language Python 

Platform Google Colab 

Main packages Sklearn 

Numpy 

Matplotlib 

Table 4: The main tools for the ML model development 

 

2.4.1 Features 

The features have been selected and created based on their importance in the hydrological model in 

openLISEM and their importance seen from a hydrological modelling perspective. It is important to 

mention that the majority of the features chosen for the ML model did not need any further pre-

processing than what was done for their creation for the openLISEM flood model.  

The goal is to select features that do not need an extensive GIS analysis for their creation because 

not having features that need a significant amount of time to create is essential when considering 

the ML model in the context of using it as a potential method for early warning. 

Figure 9: Simplified flowchart of the ML model development process for this research. Where the training data was used for the 
cross validation, which was used for baseline model evaluation, feature selection and post hyperparameter tuning evaluation. 
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1. Relative DEM (DEM) 

The DEM has been included as it lies at the core of a hydrodynamic model, as can be read in 

paragraph 2.2.2.  It has been made relative to account for possible future uses in other study areas. 

 

2. Mannings’  N (n) 

Mannings’ N is a descriptor of the density of vegetation. The higher the density and manning’s N, the 

slower water can move through that vegetation and over the surface (Arcement & Schneider, 1989). 

 

3. Leaf area index (lai) 

The maximum canopy storage is different for different vegetation types and is primarily determined 

by the Leaf Area Index (lai).  Because canopy storage Is fixed in openLISEM, it decreases the amount 

of rainfall that hits the ground and thus infiltrates. 

 

4. Saturated hydraulic conductivity (ksat1) 

Ksat or the saturated hydraulic conductivity of the soil is one of the most essential variables in 

hydrodynamic modelling, as it explains how fast water can move through the soil when saturated. 

The higher the Ksat, the less runoff is generated because water can infiltrate quicker. The saturated 

hydraulic conductivity can be calculated using the Saxton and Rawls (2006) pedotransfer functions 

(Jetten, 2018). 

 

5. Roads (roads) 

Roads were included as they can influence infiltration rates greatly. More road means more area 

with poor infiltration, which could have a more significant influence in urban areas. 

 

6. Porosity (thetas1) 

The porosity of the soil is the amount of voids or empty spaces present in a material, or in this case, 

soil type.  

 

7. Initial moisture (Thetai1) 

Theta is a measure for how wet the soil is and is calculated for openLISEM by multiplying the initial 

moisture content with the porosity of the soil. A higher theta means a wetter soil, thus less 

infiltration and thus more runoff (Jetten, 2018). 

 

8. Wetting front suction head (PSI) 

PSI defines the average suction wetting front of a soil or the capillary suction of a soil. The capillary 

suction is the transportation of water or a liquid through porous solids such as a soil by the surface 

tension of the liquid (Jetten, 2018; Uzoegbo, 2020). A higher PSI means a drier soil with more suction 

and thus less run-off. 
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9. Landuse (landunit) 

Land-use can significantly impact runoff and infiltration rate. In this regard, it can be considered as 

redundant, as the manning’s N, ksat, PSI and theta are also included. Nevertheless, this redundancy 

remains to be analysed.   

 

10. Gradient (grad) 

Gradient is the local slope of the cells, which impacts overland flow. The higher the gradient, the 

steeper the slopes 

 

11. Flow accumulation (ups) 

The ups is a map that is a cumulative map that adds all the upstream cells to take the upstream area 

into account. This map is derived from the ldd and has higher values in the channel the further you 

go downstream because of its cumulative nature.  

 

12. Saturated hydraulic conductivity of dirt roads (ksatcomp) 

Ksat comp describes the saturated hydraulic conductivity on dirt roads. The study area has more dirt 

roads than tarmac, potentially influencing the general infiltration rate and thus the amount of runoff 

generated. Ksat for dirt roads is often lower because the dirt is compacted by vehicles driving over it. 

This was calculated by multiplying the ksat values on dirt roads by 0.1. 

 

13. Rainfall (rainfall) 

Rainfall is one of the most important variables in hydrodynamic flood modelling, and to distinguish 

between different events, rainfall is also included as a feature. This is the only feature that changes 

between different events, which is crucial in predicting the difference in waterheight per return 

period event. For this research, every pixel has the same amount of rainfall. 

 

14. Averaged slope length (slopelength) 

While ups is a good feature for showing the entire upstream area, it can create bias due to the high 

values in the channel, specifically downstream in the floodplain. 

To consider the quantity of upstream area for the pixels in the river channel (more upstream area 

means more runoff that flows down the slope), slope length was used. Using the ldd, it accumulates 

friction through each cell until the outflow cell is reached with the following formula in PCRaster: 

 

distance x ((friction(sourcecell)+friction(destinationcell))/2 

 

However, this means that the channel cells will accumulate as well, which will still create bias. To 

correct this, all channel pixels were replaced with an average of six surrounding pixels.  
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Figure 10: Maps of all predictors selected for the ML model with a) DEM, b) manning’s N, c) LAI, d) Saturated hydraulic 
Conductivity, e) Roads, f) initial moisture, g) thetai, h) wetting front suction head, i) Slopelength, j) Gradient, k) upstream 
cumulative, l) ksat of dirt roads, m) *Rainfall and n) land-use 
*Rainfall amount is the same for all pixels 
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Table 3: The descriptive statistics for all features and the target variable of the buffer (figure 11).  
*The features roads and land-use are both classified, so descriptive statistics for these two features can be disregarded 

 

 

  

Feature Mean Std Min Max 

1. DEM (m) 216.69 164.55 0.00 707.30 

2. n  0.12 0.05 0.02 0.18 

3. lai  0.76 0.20 0.13 2.45 

4. ksat  52.44 9.34 27.28 96.14 

5. roads* 0.06 0.24 0.00 2.00 

6. thetas 0.56 0.01 0.53 0.60 

7. thetai 0.45 0.01 0.43 0.48 

8. PSI 14.51 3.94 2.73 26.62 

9. landuse* 102.80 36.36 20.00 126.00 

10. grad 0.12 0.09 0.01 0.62 

11. ups 5419.13 33688.23 1.00 397750.00 

12. ksatcomp 0.28 1.21 0.00 8.74 

13. rainfall (mm) 228.28 36.32 179.13 265.76 

14. slopelength 8.67E+27 2.94E+29 0 1.00E+31 

15. whmax (10, 50, 

100) (m) 

0.17 0.56 0 16.79 
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2.4.2 Algorithms 

For this research, tree-based ensemble algorithms have been chosen. As in literature, the random 

forest or similar ensemble decision tree algorithms have often proven to generate the most accurate 

results for flash flood and landslide susceptibility mapping (Pourghasemi, 2020; Pham et al., 2017; 

Shafizadeh-Moghadam, 2018; Khosravi et al., 2018).  Support vector machines were also considered, 

but they have been excluded because of their increased computational time, especially with larger 

datasets like the one used for this research (Pourghasemi, 2020).  

 

Random Forest 

The core of the random forest algorithm (RF) starts at individual decision trees, as described in 

Breiman (2001). A decision tree is grown by choosing between features or predictors to get the most 

significant reduction in error or impurity (node impurity) at each split. This continues until the end of 

the branch is reached. The end of the branch of a tree, also known as the terminal node or leaf, is 

reached when another split cannot happen without going under the user-specified minimum 

amount of samples per node. RF is different compared to a standard single decision tree method as 

it generates a user-specified number of trees (n_tree), after which the algorithm selects random 

features of a user-specified amount per node split (m_try). Each tree then provides a predicted 

value, and the values of all the trees are averaged in one single value. This random sampling of 

features and data points gives the RF algorithm its strength, as it does not rely on a single tree that 

only has one combination of samples of features, but many trees all grown with random samples 

and features. The averaging of all tree predictions allows for the growth of decision trees with a high 

variance while not having to take as big of a bias penalty. This means that overfitting is less of a 

problem with RF algorithms. Additionally, because decisions in each node can be tracked, it is also 

possible to find feature importances. Here, the most important feature is the feature that reduces 

the amount of error the most in each split, which provides further valuable insight and possibilities 

for feature selection. 

Lastly, RF has shown flexibility regarding input data, often needing limited pre-processing and being 

able to train and predict with big datasets in a relatively short timeframe. 

There are, however, disadvantages as well. For instance, depending on the use case, RF might not be 

useful as the algorithm cannot extrapolate. This means that a trained random forest model is not 

able to predict beyond the minimum and maximum target variable value it has been trained on 

(Zurita-Milla, 2020, Muñoz et al., 2018; Pourghasemi, 2020). For the application of the random forest 

algorithms in this research, this is not an issue. As return period events and the maximum and 

minimum amount of rainfall coupled to said events can be calculated beforehand. With this data 

available and the events that will be predicted, extrapolation is not needed. 

 

Extra Randomized Trees 

The extra randomized trees (EXRF) algorithm is nearly identical to the standard random forest 

algorithm. There is, however, one main difference. EXRF is similar to RF in sampling random features 

for splitting the parent node into two children nodes. However, where RF picks a feature to split the 

node based on the greatest reduction in error, EXRF splits a node randomly without looking at which 

feature has a more significant reduction. This increases the randomness and, therefore, the variance 

but slightly increases bias. EXRF has been shown to deal better with noise in datasets (Geurts et al., 
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2006; Pedregosa et al., 2011; The Kerneltrip, 2018; Lawson et al., 2017). 

 

Extreme Gradient Boost 

Gradient boosting algorithms are also similar to RF in the way that both methods generate a forest 

of decision trees. However, the main differences can be found in how the trees are built and how 

the prediction results are combined. With gradient boosting, the forest is built each tree one at a 

time, compared to the more random and independent tree building in RF. By building one tree at a 

time, it is possible to evaluate and identify weak learners or observations that are difficult to predict. 

Like RF, the individual trees are grown by minimizing the loss or error at each split, the main 

difference with the RF algorithms is that gradient boosting reduces error by reducing bias and RF 

reduces error by reducing variance. 

The goal is then that the next tree that is built improves upon the predictions of the first tree, which 

means that the predictions of the final gradient boosting model is the weighted sum of the 

predictions of the previously grown trees (Brownlee, 2020; Harshdeep, 2018; Morde, 2019; XGBoost, 

n.d.). 

Extreme Gradient Boost (XGB) is an optimized gradient boosting algorithm that was created for 

maximum speed and performance by optimizing software and hardware usage (Morde, 2019; 

Brownlee, 2016; Chen & Guestrin, 2016).  

 

2.4.3 ML model performance 

The performance of each ML algorithm will be monitored and validated by splitting the training 

dataset set into training and validating sets, of which 70% of the data is used for training and the 

remaining 30% is used for validating. The performance will be tested for the baseline, feature 

selection and post hyperparameter tuning with 10 fold cross-validation, shown in figure 10. When 

validating the trained algorithm, three metrics will be considered: the R-squared (R2), the mean 

absolute error (MAE) and the root-mean-square-error (RMSE). Generally, to have a high prediction 

accuracy, the R2 should be as close as possible to 1, and both the MAE and RMSE are as low as 

possible. 

 

2.4.4 Feature selection and hyperparameter tuning 

The feature selection has been made using sci-kit’s Recursive feature elimination with built-in cross-

validation (RFECV) to select the best feature set automatically. The function automatically ranks the 

features according to their importance, after which it starts eliminating the least important feature 

from the feature set sequentially. RFECV then evaluates the cross-validated scores and highlights the 

best performing feature set. 

Machine learning algorithms and their performance can be improved by tuning hyperparameters. 

These parameters define the thresholds and boundaries within which the algorithms operate. 

Because each ML algorithm is different in the way they operate, they all have different 

hyperparameters. For example, previously mentioned hyperparameters for ensemble methods such 

as RF or EXRF are the m_try and n_tree. XGBoost, because of the different way of operating, also has 

essential hyperparameters such as learning_rate and gamma to tune the minimum amount of loss to 

split a node. 
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This hyperparameter tuning was done by running the model and looking at the ML performance 

metrics and using the gridsearchCV function of sci-kit learns python package. 

A buffer was made on which the algorithms were trained to cut down on processing time, shown in 

figure 11 below. The buffer was made using slope gradient as a constriction and referenced to the 

maximum waterheight of the highest return period event to make sure all or most of the flooding for 

every event was inside of the buffer.  

  

Figure 11: The created buffer of the channel in the study area to include maximum return period event flood extent 
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2.5 ML model output and openLISEM output comparison 
 

This research aims to evaluate and compare the maximum flood height maps from both the 

openLISEM and the ML model.  First, the prediction performance for both a 20 and an 80 year return 

period event was calculated. Consecutively, the difference between the openLISEM flood model and 

ML prediction was quantified and visualized by calculating the difference between the two models, 

which shows where the different ML algorithms are underestimating and overestimating compared 

to the openLISEM flood model. Furthermore, the maximum flooded area, percentage of flooded 

pixels, and maximum flood volume were calculated for the openLISEM and ML models and 

compared. 
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3. Gumbel analysis and synthetic event creation results 
 

The differences between the bias correction methods to correct the hourly data for the CHIRPS 

rainfall dataset can be seen in the cumulative distribution function curves (CDF) in figure 12, with the 

R package and manual excel bias correction named GSMaP_monthly_daily_corrected and 

GSMaP_daily_corrected, respectively. The closer to chirps, the better, as CHIRPS already contains 

ground station corrected satellite data, leading to the choice of the manual excel bias_correction 

method to generate hourly bias-corrected GSMaP data as it matches the Chirps dataset exactly. 

 

 
Figure 12: CDF curves showing the differences between the two different bias correction methods 

 

The bias-corrected data was then used to calculate the IDF curves (see figure 12), which was done, 

as explained previously in paragraph 2.3.3, with a GUMBEL analysis for every time interval and every 

return period. The results of this GUMBEL analysis can be seen in table 6. 

IDF curves were created with the bias-corrected data for 2, 5, 10, 20, 50, 80 and 100 year return 

periods, with intervals of 2, 4, 8, 12 and 24 hours. 
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Return 

period T 

Duration in hours Formula 

 1h 2h 4h 8h 12h 24h  

2y 30.20 21.61 14.93 9.89 6.99 4.15 y = 32.810x-0.621 

R² = 0.989 

5y 42.41 28.50 20.25 13.48 9.69 5.81 y = 44.582x-0.616 

R² = 0.9921 

10y 50.50 33.07 23.77 15.86 11.48 6.91 y = 52.364x-0.613 

R² = 0.9929 

20y 58.26 37.45 27.15 18.15 13.20 7.96 y = 59.824x-0.611 

R² = 0.9932 

50y 68.30 43.12 31.52 21.10 15.43 9.33 y = 69.476x-0.61 

R² = 0.9934 

80y 73.41 
 

46.00 
 

33.74 
 

22.61 
 

16.56 
 

10.02 
 

y = 74.382x-0.609 

R² = 0.9956 

100y 75.83 47.36 34.79 23.32 17.09 10.35 y = 76.706x-0.609 

R² = 0.9934 

Table 4: The results of the GUMBEL analysis done per time interval with the individual curve formulas 
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Figure 13: IDF curves for the 7 different return periods for a maximum of 24 hours. 
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The curve formulas displayed in the last column of table 6 made it possible to create the 24 hour 

long synthetic events. Using the previously described (see paragraph 2.3.2) alternating block 

method, they become as symmetrical as possible, as shown in figure 14. The total rainfall per return 

period event can be found in table 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5: Total rainfall per synthetic  return period event in millimetres 

  

Return period 

(Years) 

Total (mm) 

2 109.4 

5 151.0 

10 179.1 

20 205.9 

50 239.9 

80 257.7 

100 265.8 

Figure 14: The synthetically created return period events 
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4. openLISEM results 
 

 

The Kyungu river catchment has many branches, as shown in figure 15, with an approximate total 

length of 95 km. This length can be seen in the different hydrographs, where, for all events, the 

discharge at the outlet point increases and decreases after the initial peak rainfall has fallen and 

water from the immediate vicinity of the outlet point starts to collect and flow towards it. Then after 

23.6 hours for the 10 year, 20.5 hours for the 50 year and 20 hours for the 100 year return period 

events, peak discharge occurs, which can be seen in figure 16a, 17a and 18a, respectively. With the 

peak rainfall happening between the 10th and 11th hour for every event, it can be seen that the lag 

time between the peak rainfall and peak discharge decreases as the return period increases with a 

lag time of 13.5, 10.5 and 10 hours for 10, 50 and 100 year return period events respectively. After 

calibration in openLISEM, the simulations for all events were run for 2200 minutes or about 37 hours 

(simulated time) as that was when the discharge returned to normal. 

Peak discharge, max flood volume and max flood area all increased when the return period 

increased, as seen in table 8 below: 

Figure 15: The delineated Kyungu river network calculated from the SRTM based ldd flow network 
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Table 6: The flood characteristics of the openLISEM simulations of different return period events 

 

Maximum waterheight and the flood pattern of the 50 and 100 year return period events are similar. 

In comparison, a relatively low amount of flood volume and flood area can be observed in table 8 for 

the 10 year return period event. The results for the 2 and 5 year return period were not used, as 

near-zero flooding occurred. Hydrographs and flood maps for the 2 and 5 year return period events 

can be found in Appendix D. 

In the maximum waterheight maps, clusters of pixels with extremely high waterheight values can be 

observed, which can be a result of pits in the DEM. These pits are partly a consequence of the 20x20 

meter resolution but are primarily caused by inaccuracies in the DEM, which prevents the water 

from flowing out of the pit resulting in pools. 

 

  

Return period Peak discharge l/s  Max flood volume m3 Max flooded area m2 

2 33771.64 24 400 

5 45816.23 131.864 900.800 

10 95578.92 922.304 2.537.600 

50 166339.17 6.108.668 7.576.000 

100 190057.76 8.019.072 9.264.800 
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4.1 10 Year return period event 
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Figure 16a: Hydrograph for a 10 year return period event 

Figure 16b: Maximum waterheight map generated for a 10 year return period event using openLISEM 
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4.2 50 year return period event 
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Figure 17a: Hydrograph for a 50 year return period event 

Figure 17b: Maximum waterheight map generated for a 50 year return period event using openLISEM 
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4.3 100 year return period event  
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Figure 18a: Hydrograph for a 100 year return period event 

Figure 18b: Maximum waterheight map generated for a 100 year return period event using openLISEM 
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5. ML model training and validation 
 

5.1. Baseline performance 

As shown in figure 9, the first step in tuning and generating the results is establishing a baseline of 

the performance of the different algorithms only using default settings, which can be seen in table 9 

below: 

Table 7: The 10 fold cross-validated baseline performance results for LM, DT, RF, EXRF and XGB algorithms 

 

 

 

 

10 fold cross-validated Baseline performance 

Algorithm R2 mean R2 std MAE mean MAE std RMSE mean RMSE std 

LM 0.001 0.001 0.248 0.004 0.304 0.018 

DT 0.436 0.061 0.096 0.004 0.177 0.023 

RF 0.681 0.025 0.094 0.002 0.099 0.014 

EXRF 0.684 0.016 0.104 0.003 0.099 0.013 

XGB 0.255 0.017 0.188 0.003 0.222 0.018 

Baseline

Figure 19: Baseline feature importance ranking from most important to least important for the  RF, EXRF and XGB algorithms 
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The ML models have been trained on a dataset containing all features mentioned in paragraph 2.4.1 

and with the target variable (maximum waterheight) of a 10 year, 50 year and 100 year return 

period event. Table 9 above shows what the performance is for the raw algorithms. 

RF and EXRF show similar feature importance ranking, with DEM in both being the most important 

feature, as well as the least important feature, roads, being the same.  

The XGB algorithm shows a different initial ranking than the other two ensemble algorithms, with 

gradient, rainfall, land-use, ups and DEM as the top 5 most important features. Additionally, 

compared to the RF and EXRF algorithms, XGB shows a more significant standard deviation for every 

feature.  

 

5.2. Feature selection 

The feature selection was based on the best performing algorithm, which was the EXRF algorithm. 

However, the RF algorithm is also quite similar in performance, with the RF and EXRF often switching 

positions of the best performing algorithm by small margins. Figure 20 below shows the sequential 

cross-validated recursive feature selection results, where the feature with the lowest importance is 

eliminated from the training set each iteration. The first run has all fourteen features selected and 

the last run only has zero features.  

As shown in figures 20 and 19, after the fourth feature, land-use, has been eliminated from the 

dataset, the model's accuracy decreases significantly, indicating that land-use and all features 

ranked above are important in predicting waterheight. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: The 10 fold cross-validated Recursive Feature Selection results, showing the 10 fold average R2 score per run and 
with the first run including all features (14) and the last run none. 
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5.3 Post hyperparameter tuning performance 
 

Hyperparameter tuning has not significantly increased the performance for EXRF and RF. Instead, it 

has increased the R2 standard deviation, as seen in table 10 below, while hyperparameter tuning 

showed more significant model performance improvement in non-cross validated models. This is not 

reflected here. Hyperparameter tuning mainly focused on m_try and n_tree, where for all 

algorithms, an increase in n_tree provided an increase in performance, especially for the XGB 

algorithm. 
 

Table 8: Results of the 10 fold cross-validated performance post hyperparameters tuning for the RF, EXRF and XGB 

algorithms 

*RF was cross-validated with 8 folds due to hardware limitations 

 

 

10 fold cross-validated Post hyperparameter tuning performance 

Algorithm R2 mean R2 std MAE 

mean 

MAE std RMSE 

mean 

RMSE std Fit time 

(sec) 

RF* 0.682 0.03 0.095 0.002 0.097 0.012 335 

EXRF 0.685 0.03 0.103 0.002 0.097 0.013 107 

XGB 0.722 0.024 0.103 0.003 0.087 0.014 51 

Post hyperparameter tuning

Figure 21: The post hyperparameter tuning feature importance ranking from most important to least important for the  RF, EXRF and XGB 
algorithms 
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Besides a significant increase in accuracy, the XGB algorithm also is the fastest, which can be 

attributed to the focus on decreasing memory usage and calculation time when the algorithm was 

developed. 

The feature importance ranking after hyperparameter tuning generally remains the same, with the 

main changes in ranking happening for the XGB algorithm. However, similarly to the baseline cross-

validated feature importances, the features have a high standard deviation which could lead to 

different rankings for different runs.  
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6. ML maximum waterheight prediction results 
 

The ML algorithms have been trained on 10, 50 and 100 year return period events of which the 

water height maps can be seen in chapter 4, and the performance of the trained models in chapter 

5. To predict the maximum waterheight, two different return period events, a 20 and 80 year return 

period event, were created and used. Because these events have not been used in training, data 

leakage has been prevented as much as possible. Because these events were also run in openLISEM, 

it is possible to see the prediction performance for these two events.  

 

6.1 20 year return period event prediction 

 

Table 9: 20 year return period prediction performance for the RF, EXRF and XGB algorithms 

 

 

 

 

20 Year return period prediction performance 

Algorithm R2 MAE RMSE 

RF 0.353 0.07 0.27 

EXRF 0.599 0.056 0.213 

XGB 0.482 0.079 0.244 

Figure 22:The maximum waterheight prediction performance for the 20 year return period event, showing the difference between the true/observed 
values (red) and the predicted values (green) for the RF, EXRF and XGB algorithms 
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Table 10: Quantitative comparison of the openLISEM simulation and the ML model EXRF predicted maximum waterheight 
maps for the 20 year return period event. Flooded pixels are pixels with a maximum waterheight of >=0.05m 

 

For the 20 year return period prediction, the EXRF algorithm performs the best and the resulting 

maximum waterheight map can be seen in figure 23b. When compared with the openLISEM 

maximum waterheight map, the flood patterns are relatively similar with water collecting in areas 

where, according to the true openLISEM values, water is supposed to collect. However, when 

visually compared, there are more flooded pixels, and more flooding seems to occur midstream and 

upstream for the ML prediction. This is supported by the calculated area that is flooded, where the 

flooded amount of square meters is significantly higher. Overall the ML prediction is 

underestimating, as shown in figure 22. 

As displayed in figure 24, most of the pixels in the study area fall within the MAE. However, 

downstream in the floodplain, the ML model is generally underestimating. Further upstream, 

there is an area that is severely overestimated with a maximum overestimation (positive) of 6.90 

meters and a maximum underestimation (negative) of 3.90 meters. 

 

Comparison of flood characteristics for 20 year return period event 

 Max flood area m2 

(Buffer) 

% of flooded (Buffer) Max flood volume 

m3 (Buffer) 

openLISEM 4.206.000 14.25% 2.459.363 

ML EXRF 7.056.000 
 

23.90% 
 

2.705.309 
 

Difference 2.850.000 9.65% 245.946 

 

Figure 23a: 20 year return period maximum waterheight map simulated by 
openLISEM 

Figure 23b: 20 year return period maximum waterheight map predicted by the 
ML model using the EXRF algorithm 
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Figure 24: Difference in waterheight between the ML EXRF prediction and the openLISEM simulation for a 20 year return period event. With the ML model 
overestimating compared to openLISEM for the positive numbers (blue) and underestimating for the negative numbers (red) 
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6.2 80 year return period  event prediction 

Table 11: 80 year return period prediction performance for the RF, EXRF and XGB algorithms 

 

 

 

  

80 Year return period prediction performance 

Algorithm R2 MAE RMSE 

RF 0.892 0.070 0.214 

EXRF 0.914 0.050 0.190 

XGB 0.913 0.075 0.192 

8 

Figure 25: The maximum waterheight prediction performance for the 80 year return period event, showing the difference between the true/observed values 
(red) and the predicted values (green) for the RF, EXRF and XGB algorithms 
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Table 12: Quantitative comparison of the openLISEM simulation and the ML model EXRF predicted maximum waterheight 
maps for the 80 year return period event. Flooded pixels are pixels with a maximum waterheight of >=0.05m 

 

For the 80 year return period prediction, the EXRF algorithm performs the best and the resulting 

maximum waterheight map can be seen in figure 26b. The accuracy for the 80 year return period 

event prediction is high, with an R2  0.91, an MAE of 0.05 and RMSE of 0.19, as shown in table 13. 

The high accuracy results in a prediction that is decidedly similar to the true openLISEM simulation, 

especially in the floodplain downstream.  

Similarly to the 20 year return period prediction, the amount of flooded square meters for the 80 

year return period prediction is significantly higher compared to openLISEM simulation for the same 

event, with an almost equal overestimation of flooded pixels for both return period predictions.  

The 80 year prediction is overestimating slightly, as can be seen in figure 25.  

As shown in figure 27, the maximum overestimation and underestimation maximum waterheight 

values are 8.20  and 11.7 meters, respectively. 

Similarly to the 20 year prediction, the same upstream area proves challenging to predict, with near 

maximum overestimation and underestimation values occurring within the same area.  

Contrary to the 20 year prediction, the floodplain has been more accurately predicted for the 80 

Comparison of flood characteristics for 80 year return period event 

 Max flood area m2 

(Buffer) 

% of pixels flooded 

(Buffer) 

Max flood volume m3 

(Buffer) 

openLISEM 7.687.600 
 

26.04% 
 

6.554.384 

ML EXRF 10.358.400 
 

35.09% 
 

6.577.111 
 
 

Difference 2.670.800 9.05% 22.727 

Figure 26a: 80 year return period maximum waterheight map simulated by 
openLISEM 

Figure 26b: 80 year return period maximum waterheight map predicted by the 
ML model using the EXRF algorithm 
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year prediction, with overestimated and underestimated pixels being mixed and differences rarely 

exceeding the 1-meter category. 

 

  
Figure 27: Difference in waterheight between the ML EXRF prediction and the openLISEM simulation for an 80 year return period event. With the ML model 
overestimating compared to openLISEM for the positive numbers (blue) and underestimating for the negative numbers (red) 
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7. Discussion 

This research aimed to analyze the feasibility of using machine learning to predict the waterheight of 

flash floods in the context of early warning and early action in Northern Malawi. Additionally, the 

utilized tools and data needed to be easily accessible and usable. 

This research proposed the conceptual method of using a hydrodynamic flood model to train an ML 

model to estimate maximum waterheight for flash floods and to do this by selecting predictors that 

are important in hydrodynamic flood modelling itself.  

 

7.1 Sub-objective 1 

To develop a realistic flash flood model of the study area in openLISEM to establish a ground truth 

on which the Machine Learning algorithms can be trained. 

 

7.1.1 Gumbel analysis and synthetic rainfall event creation 

The purpose of this analysis was to create synthetic rainfall events that could be used for the 

hydrodynamic modelling in openLISEM as the next step in the methodology outlined in this research. 

This purpose was achieved by creating seven different synthetic rainfall events based on 20 years of 

hourly bias-corrected CHIRPS data for the study area, therefore answering the sub-research 

question:  What are the different amounts of rainfall for different return period events for the 

study area? The first approach of using historical events that caused significant flooding that could 

be found via news articles or red-cross disaster response trigger documents proved to be 

unachievable. The underestimation of events caused close to no flooding, which could prove 

problematic when training the ML model. There was too much uncertainty with the underestimating 

GSMaP data and the information available on the flooding the selected events caused, which will be 

highlighted in the next paragraph. This is why the decision was made to 1. Use CHIRPS data, and 2. 

Create synthetic rainfall events. Using synthetic events also allowed for more flexibility in the 

creation of additional events.  

 

7.1.2 Hydrodynamic flood model 

The purpose of the openLISEM hydrodynamic flood model was to serve as the first step in the 

methodology pipeline proposed in this research, to generate maximum waterheight maps for 

different return period events. The openLISEM flood model showed that the time between peak 

rainfall and peak discharge decreased for this study area with higher return period events. The 

maximum waterheight maps generated by openLISEM were then used to predict maximum 

waterheight using different machine learning algorithms. 

 

While the sub-research question: ‘what is the maximum waterheight and flood extent in the study 

area for different return period events?’ has been answered, this cannot be confidently said about 

the sub-objective. The output generated by openLISEM was what had been expected and provided 

what was needed for the next step. However, validating the maximum waterheight maps and the 

overall accuracy of the hydrodynamic flood model was not possible due to several factors. 

First of all, hydrodynamic flood models are usually calibrated with fieldwork data. For example, river 
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widths can be measured, river bed types can be analyzed and a general view of the study area can 

be obtained. This was, however, not possible due to the COVID-19 epidemic. Moreover, local 

knowledge has been proven to provide precious insights into the operation of river networks and 

the history of such a river network (Bucherie, 2019). It has remained an untapped resource for this 

research.     

Second of all, the amount of historical flood data availability is minimal and often not detailed 

enough to verify the accuracy of the flood model.  

Consequently, there is the possibility that the maximum waterheight maps generated by the 

openLISEM hydrodynamic flood model are not entirely accurate. However, this does not completely 

invalidate the flood model, as it has been calibrated as best as possible and is developed with 

publicly available and reasonably accurate data.  

 

7.2  Sub-objective 2 

To develop a Machine Learning model for the study area using predictors created from a 

hydrodynamic modelling perspective to predict waterheight. 

 

7.2.1 Machine learning model development 

This objective aimed to create a working ML model and analyze its performance for different ML 

algorithms. Following this, the goal was to analyze the importance of the selection of predictors, 

which was made to represent the foundation on which hydrodynamic flood models operate.  

 

Which combination of predictors is selected and what is their importance in predicting maximum 

waterheight? 

The development of the model was done using a combination of 13 different predictors that were 

chosen based on their importance in the openLISEM hydrological model and created based on 

important aspects of a physically based and driven flood model that cannot be simulated with 

machine learning. Examples of the latter type of predictors are the ‘slopelength’ and ‘ups’ features.  

The eventual combination of features that were selected through recursive feature elimination was 

all of them. When the features: ‘roads’, ‘ksatcomp’ and ‘n’ are taken out of the dataset, the cross-

validated score does not decrease significantly. So regarding optimal run time, these predictors 

could all be eliminated from the dataset. However, these eliminated features could have a significant 

effect on flooding in other study areas. The study area does not have any major dense vegetation, 

such as dense agricultural fields or forests. This can be seen in the land-use map (figure 10n) and the 

Leaf area index map (figure 10c). Study areas in other biomes could see the mannings’ N ranking 

higher in feature importance. The same goes for more urban areas with more hard roads, which, for 

instance, have significantly lower ksat values, affecting local infiltration speed and capacity (Schmidt 

et al., 2020). So considering the applicability to other study areas, these features were not removed 

from the dataset. 

 

When looking at the feature importance between the different algorithms (figures 19 and 21), the 

RF and EXRF algorithms show a similar ranking with a low standard deviation for both pre and post 

hyperparameter tuning. In contrast, the XGB algorithm shows a different ranking, with most features 

having large standard deviations. This can be attributed to the correlation between features, as the 
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XGB algorithm will not (try to) focus on a feature once a link to the target variable has been 

established. This means that if there are two correlated features, all the importance will be on one 

of the features and not both. This leads to a less diluted importance scoring and possibly cause some 

features to have high standard deviations (Chen et al., 2018). It is important to mention that, while 

having a correlation between features is generally considered flawed in machine learning, decision 

trees and decision tree ensemble methods such as RF, EXRF and XGBoost are largely unaffected due 

to their random feature sampling at each split. However, as previously mentioned, it can dilute the 

importance of features when they are correlated, as their specific importance in predicting the 

target variable is similar. Thus both can be chosen when looking for the feature with the least 

amount of loss in a split. 

 

When analyzing the feature importance in figure 21, all algorithms determined the DEM as the most 

important feature. This can likely be explained by the fact that, when looking at the openLISEM 

maximum waterheight maps, most flooding is generally and logically occurring in areas with a lower 

elevation. Additionally, it is evident that two of the most crucial parameters for hydrological 

modelling are represented in the top five most important features for all three algorithms: saturated 

hydraulic conductivity (Ksat) and the suction of the wetting front (PSI) of a soil. Both features are 

part of the foundation on which infiltration speed and capacity are based, which are essential in 

determining how much runoff is generated and thus how much water flows into the channel. 

Consequently, these features ranking high in importance might explain the relatively high accuracy 

in predicting the maximum flood volume for both events (see tables 12 and 14). 

Seen from a hydrological modelling perspective and the way XGB deals with correlated features, the 

feature importance ranking of the XGB algorithm can be considered the most accurate one. With 

features such as PSI, Ksat, rainfall, mannings’ N, gradient and land-use all having a similar 

importance and being able to switch positions due to their standard deviations, it signifies that the 

ML model is close to matching what the openLISEM model is doing when seen from the hydrological 

modelling parameter perspective.  

Considering these features ranking high for the XGB algorithm, it is interesting that the only non-

static feature, rainfall, does not rank very high in importance. Especially for the RF and EXRF 

algorithms. This can be explained, however. Because rainfall, just like in hydrological modelling, 

rainfall generally is not important for influencing where flood is going to occur, but rather how 

much. 

 

What is the performance during the training of the different machine learning algorithms? 

When developing the ML model showed that it can predict maximum waterheight with reasonable 

accuracy for all algorithms, with a mean validation R2 of approximately 0.7 for RF, EXRF and XGB and 

MAE of approximately 10 cm depending on the algorithm. Overall, the XGB algorithm performed the 

best with the highest R2 of 0.72, an MAE of 0.103 and an RMSE of 0.078. When looking at the 

performance metrics before and after hyperparameter tuning, the XGB algorithm is displaying 

interesting behaviour once more, with a significant increase in prediction accuracy, which can be 

attributed to the sequential way the XGB algorithm builds its decision trees. This suggests that the 

default n_tree value is inadequate to predict maximum waterheight for flash floods accurately. 

Regarding the training and validation data, the XGB algorithm can be regarded as the most 
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favourable algorithm, specifically because of the possibly less diluted feature importance and 

because the mean calculation time is significantly lower than the other algorithms.  

This shorter calculation time also allowed for more extensive hyperparameter tuning. As for the RF 

and EXRF algorithms, the cross-validated grid search was limited to n_tree and m_try tuning due to 

runtimes of over 12 hours to complete the grid search. 

 

Subobjective 7.3  

To generate a predicted flash flood maximum waterheight map for different return period events 

in the study area 

 

7.3.1 Machine learning maximum waterheight prediction 

 

What is the prediction accuracy? 

When predicting a 20 and an 80 year return period event, the R2 decreased to 0.59 and increased to 

0.91 outside of the validation standard deviation, respectively, with an MAE of approximately 5 cm 

for both events. The RMSE varied slightly with 0.21 for the 20 year and 0.19 for the 80 year return 

period events. The ML model consistently overestimates the amount of flooded square meters by 

the same relative amount compared to the openLISEM simulations but seems to predict the total 

flood volume relatively accurately. For both events, the overall flood pattern is accurate compared 

to the openLISEM simulations, with major flooding occurring in the same locations.  

One of the main differences, when looking at the over and underestimation patterns, is that for 80 

year return period event, the model is significantly less inaccurate in predicting waterheight for the 

floodplain than for the 20 year return period event. While the maximum and minimum waterheights  

 

The difference in R2 between the 20 year return period and the 80 year return period is interesting, 

mainly because the differences lie far out of the standard deviation observed in the 10 fold cross-

validation. Moreover, this difference in accuracy is not reflected in the MAE and RMSE, as they are 

quite similar for both events.  

One of the possible causes could be attributed to the training dataset. When observing the 

maximum waterheight of the 10 year return period event in table 8 and figure 16b, relatively minor 

flooding occurs compared to the 50 year and 100 year maximum waterheight maps. Moreover, the 

50 and 100 year events are similar in their flooding patterns. They have a significantly smaller 

relative difference in total flood volume between each other than between the 10 and 50 year 

events. The same applies to the total flood area. Considering this, there is likely considerable overlap 

in the flood extent patterns and flood heights of the 80 year predicted event and the 50 and 100 

year trained events. This would make it easier to predict higher flood heights with higher return 

period events because of a higher representation of similar data in the dataset.  

Additionally, the 80 year prediction is close between the lower 50 year and a higher 100 year return 

period events, which means it is rather clear what lower and upper boundaries there are in flood 

height prediction. This could explain why the model is primarily underestimating the 20 year event, 

as seen in figures 22 and 24, because the closest event and thus closest matching data is of an event 

with a lower return period than the event being predicted. 
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How does the ML prediction compare in flood extent? 

The EXRF predictions for both events are accurate in predicting the flood patterns. With water 

pooling in areas where, according to the openLISEM flood models, it is supposed to. The ML model 

seems to overestimate the maximum flooded area by nearly the same amount for both events, with 

9.65% for the 20 year and 9.05% for the 80 year (see tables 12 and 14). The main difference between 

the two events is in maximum flood volume. This suggests that most of the difference in the 

accuracy of the 20 year return period event, compared to the 80 year return period event, expresses 

itself in the flood volume. This is confirmed by the residual plots, where for the 20 year event 

predictions are moderately underestimated (See figure 22), and the 80 year event only slightly 

overestimated (See figure 25).  

This is shown in the difference maps as well. In figure 24, there is significant underestimation 

occurring in the floodplain. This is likely due to, the in the previous section mentioned reason, that 

the 10 year return period event the closest event is to the 20 year. When looking at figure 16b and 

23a, there is a significant difference between flood extent. This also suggests that for the openLISEM 

flood model, a threshold is exceeded between the 10 and 20 year return period events, causing 

much more flooding. Evidently, this underestimation of the floodplain is not happening (figure 27) 

for the 50, 100 and 80 year return period events because there is no significant difference. However, 

despite this apparent threshold, the ML model still managed to predict the 20 year return period 

flood extent with reasonable accuracy. 

Therefore, the overestimation of the area upstream for the 20 year event seems curious, as the 10 

year return period event shows no flooding in that region (figure 24). A combination of training data 

and feature importances could explain this, as this area is signified by high gradients (figure 10j). 

More importantly, both openLISEM simulations that did have flooding in this area (50 and 100 year) 

show very high levels of flooding, leading the ML model to overestimate.  

 

A solution to this accuracy difference problem could be to train, validate and test only on a single 

event. This would mean that the ML model would be split into, for example, 80% training, 10% 

validating and 10% testing to prevent data leakage. While this could improve accuracy and, more 

importantly, stability of performance, this was not possible for the objectives of this research. When 

only 10% of randomly sampled pixels can be used for testing/predicting, it is impossible to accurately 

compare the prediction to the openLISEM flood model.  

Additionally, because openLISEM simulations are needed to train the algorithm, the benefit, in an 

early warning application context, of the faster ML model compared to the openLISEM flood model 

is nullified when a simulation needs to be run for every different forecasted return period event to 

get an accurate result.  

Considering this, a different combination of events could be used to train the algorithm. However, 

training on events similar to the event you are trying to predict could impact the flexibility of 

application when a forecasted rainfall event falls outside of the minimum or maximum return period 

events it has been trained on. While the XGB algorithm is capable of extrapolation, the RF and EXRF 

algorithms are not. This extrapolation ability has not been tested for this research. 

 

Additional measures that could improve the accuracy is data scaling, a method used to improve ML 

model accuracy by decreasing the absolute difference of values between different variables. For this 
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research, there are significant absolute differences in values between features (see table 5). 

However, tree-based algorithms, such as those used for this research, are unaffected by significant 

data scale differences due to how they operate (Brownlee, 2019; Praveen, 2020; Bhushan; 2020). 

Additionally, most data scaling methods normalize the data between 0 and 1, which would produce 

useless maximum waterheight maps. 

Lastly, different training dataset creation methods could be used. For this research, the decision was 

made to create a buffer that included the full flood extent for the maximum (100 year) return period 

event to include the same pixels for every event in the training dataset. There are other options, 

however. For instance, only selecting pixels with a waterheight equal to or bigger than 0.05m. This 

would reduce the row count of the dataset and removes most of the as non-flooded classified pixels. 

This would also improve the class imbalance of the target variable, as most pixels within the buffer 

are non-flooded pixels (<0.05 m) and could therefore improve accuracy. However, it has not been 

proven that non-flooded pixels are useless in accurately predicting flood patterns. They might 

present an overrepresentation of high return period event pixel count and thus maximum 

waterheight values compared to low return period events. Limited experimentation with primarily 

buffer size was done early on in the ML development, which can be found in appendix F. These 

results have not been cross-validated. 

 

7.4 Proof-of-concept 

The concept of using a hydrodynamic flood model to train an ML model to predict flash flood 

susceptibility is in its infancy.  As described in the introduction, most flood susceptibility analysis 

literature uses a historical database, which means no return period events, predicting by 

classification and possibilities in variation in accuracy with limited validation options available. This 

limits comparable literature severely.  

A recent paper by Mahato et al. (2021) dives into the use of the HEC-RAS hydrological flood model 

for validation. However, they use this to predict flood susceptibility and not waterheight. 

Additionally,  the hydrodynamic flood model was only being used for validation, not training. The 

training was done on a database of historical flood events and predictors were selected based on 

existing literature. Using the calibrated 2D HEC-RAS flood model for validation, they confirmed that 

the correlation between the flood model and the ML susceptibility model for flooded area varied 

between 0.62 and 0.69 for different algorithms. In this regard, it is comparable to the R2 of 0.68 for 

the training dataset. However, it is hard to compare with fundamental differences such as 

classification versus regression and maximum waterheight versus susceptibility. 

Hosseiny et al.’s (2020) research did use a hydrodynamic flood model to create the training set for 

the ML model. The ML approach was more complex, however, using RF classification to identify 

flooded and non-flooded pixels and then an artificial neural network (ANN) regression to predict 

river depth together with elevation data. This was done for different discharges, suggesting a return 

period event-based approach. The flooded and non-flooded pixels were predicted with an accuracy 

of 0,985. After this, the ANN predicted flood depth with an accuracy of 0.88 and an RMSE of 0.02m. 

Additionally, the error in predicted depth increased with higher discharges. It was trained on the 

following discharges: 10, 50, 95, 120, 150, 300 and 400 m3/s. It predicted on the following discharges 

20, 30, 45, 225, and 350 m3/s. While Hosseiny et al. (2020) do not clarify the higher inaccuracy for 
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higher discharges, the cause could be the same as the one proposed in the chapter above. It could 

be easier to predict with more similar data for lower discharges (for this research, the higher return 

period events). 

 

 

7.5 Strengths and limitations 

Most importantly, being able to predict water height using ML can provide a significant increase of 

information that can be used for impact analyses in a short time frame. This, in comparison with 

previous ML flash flood susceptibility analyses, only providing susceptibility of an area to flooding. 

Additionally, using a hydrological flood model provides a significant amount of precise data that the 

ML model can be trained, which can be helpful in areas with poor or no flood extent data 

availability. With this detailed training data, the ML model has proven that it is capable of predicting 

waterheight with reasonable accuracy for different return period events and doing this fast. With a 

minimum training time of approximately one minute and a prediction time of approximately 10 

seconds, it has proven to be significantly faster than a hydrological flood model. 

Furthermore, it is flexible. With the tree-based ensemble methods being able to handle all the 

selected predictors, it shows it is easy to adapt, work with and does not need extensive computing 

power. 

However, with the current state of the method proposed and the knowledge gained in this research, 

it has not been proven yet to function without a hydrological flood model providing training data. 

This means that to utilize the fast calculation times of the ML model in an early warning scenario, 

flood model simulations should have been run in advance with different return period events for a 

specific study area. In this case, the ML model is there to give an accurate flood extent map of a 

forecasted event that has not been simulated with a hydrological flood model. Moreover, 

developing a hydrological flood model for a study area can be a complex task that can cost a 

significant amount of time. Additionally, depending on the size of the study area and the resolution 

of the data, hydrological modelling simulations can take a long time to complete and require 

significant computational power. 

 

 

8. Conclusion  
This research has looked at the feasibility of using machine learning to predict the maximum 

waterheight of flash floods in the context of early warning and early action in Northern Malawi.  

The important first step was to develop a hydrodynamic flood model for the Kyungu river catchment 

and this objective has been fulfilled. The reason for using a hydrodynamic flood model for the 

proposed method as a foundation stems from the common problem of not having a sufficient flood 

event database in place. The importance of having a good database has been proven for this 

research, as it was impossible to calibrate the model to real-world data. Having calibration data was 

not crucial for this research, however, as the primary goal of this research was to compare ML 

maximum waterheight predictions to that of a hydrodynamic flood model. 

To make the flood model work, an annual maxima (GUMBEL analysis) on bias-corrected rainfall data 



63 

has been done, resulting in the creation of seven IDF curves and seven synthetic return period 

events. 

 

The results of training the ML model showed that the different ensemble algorithms perform 

similarly. Additionally, the feature importance of the ML model has shown that fundamental 

hydrological modelling parameters that have been used as predictors are important for predicting 

maximum waterheight. 

The waterheight predictions on a 20 year return period and an 80 year return period have shown 

different performance compared to the training, with lower accuracy for the 20 year return period 

and higher accuracy for the 80 year return period events. Both event predictions show similar trends 

in maximum flooded area overestimation, with the primary accuracy difference between the two 

events being in maximum flood volume. This suggests dependability on the similarity of training 

events to the predicted event to get a high accuracy prediction. However, both ML models can 

sufficiently predict flood patterns similar to those simulated by the openLISEM flood model for both 

events.  

To answer the main research question:  

What is the feasibility of using machine learning to predict the maximum waterheight of flash 

floods in the context of early warning and early action in Northern Malawi? 

 

This research has proven that with the selection of predictors, it is feasible to predict maximum 

waterheight with ML. However, the proposed method of using hydrodynamic flood modelling 

output to train the ML model and the possible dependability on the similarity of training events to 

get a very accurate prediction influences the method's applicability in an early warning context. 

There are many things on the method proposed in this research, that can still be researched and 

improved upon in the future. This could result in higher accuracy and/or a more stable performance, 

which can make it more feasible for use in an early warning context. 
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9. Recommendation 
Most importantly, future research should focus on the applicability of this method to other study 

areas. Whether the ML model with the, in this research proposed combination of predictors, can 

reproduce similar results in other study areas with different geological and climatological features. 

Additionally, it can be valuable to gain more knowledge on and, primarily, confirm the link between 

the variance in the ML maximum water height prediction accuracy and the specific return period 

events the ML model has been trained on. 

Furthermore, future research should consider whether this method needs to be trained on 

hydrological modelling simulations run on the specific study area or not and if different hydrological 

modelling software packages affect the ML maximum waterheight prediction accuracy. 

It is also relevant to research the impact of the buffer size used to generate the training dataset. 

Possible improvements could be made here in regards to calculation time and prediction accuracy. 

Lastly, while waterheight is important in estimating the flood extent and potential impact, the flow 

velocity is equally important, especially for flash floods. With often high flow velocities being one of 

the more dangerous characteristics of flash floods, it would be useful to see whether this can be 

predicted with this method as well. 
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Appendix A: initial event rainfall event selection candidates 
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Appendix B: GUMBEL analysis results for GSMaP and Rain gauge datasets 
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Appendix C: Biascorrected CHIRPS GUMBEL analysis 
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Appendix D: Hydrographs and maximum waterheight maps for 2 and 5 year 

return period events
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Appendix E: Hydrographs for the 20 and 80 year return period events 
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Appendix F: initial input data experimentation  

Results waterheight threshold y>0.05=0 

lm:  0.021 

rmse_lm:  0.3 

DT:  0.207 

rmse_dt:  0.27 

RFR2:  0.586 

rmse_rf:  0.195 

EXRFR2:  0.631 

rmse_exrf:  0.184 

 

ml results river buffer 

lm:  0.017 

rmse_lm:  0.668 

DT:  0.355 

rmse_dt:  0.541 

RFR2:  0.653 

rmse_rf:  0.397 

EXRFR2:  0.639 

rmse_exrf:  0.405 

 

ml results extra features + buffer 

lm:  0.098 

rmse_lm:  0.633 

DT:  0.173 

rmse_dt:  0.606 

RFR2:  0.533 

rmse_rf:  0.456 

EXRFR2:  0.527 

rmse_exrf:  0.459 
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ml results all features + buffer+ coordinates 

lm:  0.104 

rmse_lm:  0.641 

DT:  0.308 

rmse_dt:  0.564 

RFR2:  0.64 

rmse_rf:  0.407 

EXRFR2:  0.617 

rmse_exrf:  0.42 

 

ml results all features, flooded pixels (=>0.05 only), no buffer 

lm:  0.101 

rmse_lm:  0.879 

DT:  0.362 

rmse_dt:  0.74 

RFR2:  0.676 

rmse_rf:  0.527 

EXRFR2:  0.66 

rmse_exrf:  0.541 

 

ml results all features, flooded pixels only + rainfall and 100y + 50y + 10y events 

lm:  0.112 

rmse_lm:  0.797 

DT:  0.366 

rmse_dt:  0.674 

RFR2:  0.683 

rmse_rf:  0.476 

EXRFR2:  0.675 

rmse_exrf:  0.482 
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ml results all features, buffer + rainfall and 100y + 50 + 10y events  

lm:  0.086 

rmse_lm:  0.536 

DT:  0.622 

rmse_dt:  0.345 

RFR2:  0.753 

rmse_rf:  0.279 

EXRFR2:  0.693 

rmse_exrf:  0.311  
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Appendix G: ML algorithms Hyperparameter settings 

 RF EXRF 

n_tree 200 200 

m_try ‘auto’ ‘auto’ 

 

 

 XGB 

Objective ‘Squarederror’ 

n_tree 1000 

max_depth 8 

tree_method ‘hist’ 

learning_rate 0.2 

m_try 1 
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Appendix H: Maximum waterheight predictions 20 and 80 year return period 

events for RF and XGB algorithms 
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