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Abstract

The price of anarchy of a system indicates how bad the system may perform if it is not regulated
and actors act selfishly. In this research, we analyse the price of anarchy of two subclasses of atomic
congestion games: symmetric uniform congestion games, in which all players pick the same number
of resources from a set, and semi-symmetric uniform congestion games, in which the number of
resources that players pick may differ. For the symmetric games, we prove that the price of anarchy
lies between 1.34 and 2.02 if there are affine cost functions. For such games in which every player
picks exactly 2 resources, the price of anarchy lies between 4/3 and 1.81. The results are generalised
for games with cost functions of maximum degree d and for small d improve upon the known upper
bound for the price of anarchy of general atomic congestion games. For semi-symmetric games, we
prove that the price of anarchy is at least 5/3 if there are affine cost functions. For such games in
which every player picks at most 2 resources, the price of anarchy lies between 1.4 and 2. Again,
the results are generalised for games with cost functions of maximum degree d and for small d
improve upon the known upper bound for the price of anarchy of general atomic congestion games.

Keywords: atomic congestion games, price of anarchy, uniform matroid
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Chapter 1

Introduction

1.1 Motivation
In some systems with multiple actors, the actions of one actor may impact others. As an example,
consider the citizens of Berlin that need to get back home after work by car. If one of the citizens,
let us call her Alice, decides to drive on the Friedrichstraße, then this will increase the travel time
of all other car drivers that are using this road. The travel time on this road is thus dependent on
the number of car drivers that use it, which we call load-dependent. The load-dependency for each
road can be described using a latency function. Depending on the system, the term cost function
can be used as well.

Such a system can be considered a game, and more specifically a congestion game. In game theory,
a congestion game is a system with resources that have load-dependent latencies or costs, a set of
players and their valid strategies, as introduced by Rosenthal [1973a]. The individual latency for
some player equals the sum of the latencies of the resources that the player picks. In the previous
example, the roads form the set of resources, the car drivers are the players and their valid strategies
are all routes from their work to their home. For each player, the individual latency is the travel
time from work to home.

For the purpose of fewer cars on the streets of Berlin, it may be desirable to regulate the traffic and
minimise the total or average travel time of the car drivers. However, it is difficult to get actors
in a big system to play according to some strategy if it does not directly benefit themselves, as
shown by Koller [2021], and adapting the system to force actors into some optimal strategy, for
example using tolls or taxes, is difficult and time consuming, as shown by Bilò and Vinci [2019a]
and Nickerl [2021]. It is therefore useful to know whether such regulations can significantly improve
the situation. To that end, it makes sense to analyse what happens to the system if there are
no regulations and all players play selfishly, i.e., all car drivers pick a route that gets them home
quickest, given the routes chosen by the other car drivers. This is called a Nash equilibrium. It was
proved by Rosenthal [1973a] that at least one (pure) Nash equilibrium exists for each congestion
game. However, a Nash equilibrium does not necessarily lead to an optimal outcome of a game, as
showed by Dubey [1986]. For example, the quickest way home leads Alice down the Friedrichstraße,
but in order to minimise the total travel time of all car drivers of Berlin, it may be better for her to
avoid this street.

The total latency of the worst-case Nash equilibrium can be related to the total latency of the
optimal play using the concept of the price of anarchy, which was formulated by Koutsoupias and
Papadimitriou [1999]. The higher the price of anarchy, the worse the system may function if it
is not regulated. Note that the optimal play of a game can be defined in different ways. In the
example, we defined the optimal play as the routing that minimises the total travel time, in order
to decrease the number of cars on the streets. However, we could have defined the optimal play
as the routing that minimises the longest travel time, in order to decrease the number of traffic
incidents caused by fatigue of car drivers.

The example with Alice in Berlin is called a network routing congestion game. For games of this
subclass of congestion games with linear latency functions and unsplittable players, the exact price

2



of anarchy is known to be 5/2, as proved by Christodoulou and Koutsoupias [2005]. In this research,
we consider another subclass of congestion games, namely uniform congestion games, for which the
exact price of anarchy is still unknown. In these games, each player may choose a certain, fixed
number of resources out of the set of resources. In contrast to the routing game example, any
subset of resources that contains the correct number of resources is a valid strategy. We consider
both games in which every player picks the same number of resources and games in which this
number may differ. For this first class of games, the strategy spaces for the players are the bases of
the uniform matroid of the resources. The effect of such a simple matroid structure of the strategy
spaces on the price of anarchy can be very insightful. The second class of games does not have this
property, but what is interesting is that it is a generalisation of the first class.

An example of a uniform congestion game is a group of mathematicians that each need to perform
certain computations. In order to verify the results, they all want their computations to be
performed on several independent machines. However, there is only a limited number of machines
available and the more mathematicians use a machine, the higher its latency. Each mathematician
picks a set of machines to perform their computations such that they experience as little latency
as possible, which results in some Nash equilibrium play of the game. To maximise the average
happiness of the mathematicians, an optimal play could be to minimise the average latency of the
machines.

For uniform congestion games with linear latency functions in which each player picks exactly one
resource (also called singleton congestion games), Fotakis [2007] and Lücking et al. [2008] proved
that the price of anarchy is exactly 4/3. However, for uniform congestion games in which each
player can pick more than one resource, only non-matching upper and lower bounds of the price of
anarchy are known. In this research, we improve upon these bounds, both for games with affine
latency functions and for games with more general polynomial latency functions.

1.2 Overview of our results
We study the price of anarchy (PoA) of uniform congestion games with cost functions that are
polynomials with nonnegative coefficients and real exponents ∈ [0, d] for some d ∈ R and with
unweighted players. As social cost, we consider the total cost.

First, we consider symmetric k-uniform congestion games, in which every player picks exactly k
resources. Our results of the upper and lower bounds of the PoA are summarised in Table 1.1, both
for affine cost functions and for general cost functions of maximum degree d. Our result for affine
cost functions improves upon the upper bound of 2.15 that was proved by de Jong et al. [2016]. For
the special case k = 2, we provide an even better upper bound.

affine

lower bound upper bound

k-uniform 1.34 2.02

2-uniform 4/3 ≈ 1.33 1.81

maximum degree d

lower bound upper bound

k-uniform 4+
√
2(1+2d+1)

4+3
√
2

{
(ρd − d(d+ 1)−(d+1)/d)−1 0 < d ≤ 1.6

(ρd)
−d−1 d > 1.6

with ρd = 2d/2+1
1+2d/2−2d+23d/2

2-uniform 2+2d

3

{
(ρ̃d − d(d+ 1)−(d+1)/d)−1 0 < d ≤ 2.0

(ρ̃d)
−d−1 d > 2.0

with ρ̃d = 4
2d+3

Table 1.1: Bounds for the PoA of symmetric k-uniform congestion games. Results for affine cost
functions and cost functions of maximum degree d. Improved results for the case k = 2.

Second, we consider semi-symmetric k-uniform congestion games, in which every player picks a
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fixed number of resources that is at most k. As far as we are aware, this subclass of congestion
games has not been studied before. Our results of the upper and lower bounds of the PoA are
summarised in Table 1.2, both for affine cost functions and for general cost functions of maximum
degree d, and both for general k and for k = 2.

affine

lower bound upper bound

k-uniform 5/3 ≈ 1.67 -

2-uniform 7/5 = 1.4 2

maximum degree d

lower bound upper bound

k-uniform 1+2d+1

3 -

2-uniform 3+2d+1

5

{
(ρ̂d − d(d+ 1)−(d+1)/d)−1 0 < d ≤ 1.7

(ρ̂d)
−d−1 d > 1.7

with ρ̂ = 3
2d+2

Table 1.2: Bounds for the PoA of semi-symmetric k-uniform congestion games. Results for affine
cost functions and cost functions of maximum degree d. Improved results for the case k = 2.

1.3 Related work
The most important subclasses of congestion games for which the price of anarchy has been studied
can be categorised as atomic/non-atomic and symmetric/asymmetric. Atomic games have infinitely
many players that each have a negligible demand, or players with a splittable demand. Non-atomic
games have players with a non-negligible, unsplittable demand. In symmetric games, a valid strategy
for one player is always a valid strategy for all other players too. In asymmetric games, this may
not be the case. In addition, the price of anarchy may be defined with the social cost being the
total cost or the maximum private cost.

In our research, we analyse atomic games and use the total cost as the social cost. The first subclass
of games that we analyse is symmetric, and the second subclass is asymmetric. However, these
is a certain symmetry in the way the second subclass of games is defined, which is why we call
it ‘semi-symmetric’. In this section, we present an overview of bounds for the price of anarchy of
different subclasses of congestion games. Note that games can be weighted/unweighted, and we
restrict our attention to unweighted games.

Atomic, symmetric, maximum cost

The price of anarchy (PoA) was first studied by Koutsoupias and Papadimitriou [1999], for a simple
network routing congestion game with m parallel links from a source to a target node and linear
latency functions. The PoA of these games is Θ(logm/ log logm) - Koutsoupias and Papadimitriou
[1999] proved the lower bound and Czumaj and Vöcking [2001] proved the upper bound. Czumaj
and Vöcking [2001] extended the analysis to networks with m parallel paths and proved that the
price of anarchy is then Θ(logm/ log log logm). For series-parallel network routing congestion
games with affine latency functions, Hao and Michini [2020] proved an upper bound of 2 for the
PoA.

Non-atomic, asymmetric, total cost

Non-atomic network routing congestion games were studied by Roughgarden and Tardos [2002].
They showed that the PoA is exactly 4/3 when there are linear latency functions. For general
non-atomic congestion games with polynomial cost functions of maximum degree d, Roughgarden
and Tardos [2004] proved the exact value of the PoA, which asymptotically grows as Θ(d/ log d).
For affine cost functions, this PoA equals 4/3, too.
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Atomic, asymmetric, total cost

The PoA of general atomic congestion games was studied by Christodoulou and Koutsoupias [2005].
They proved that the PoA for asymmetric games is at most 5/2 when there are linear latency
functions. When there are at least 3 players and there are no restrictions on the strategy spaces,
they showed that this bound is tight. They also showed that this bound is tight for atomic network
routing congestion games. The tightness of this result for singleton congestion games was proved
by Caragiannis et al. [2011]. For singleton congestion games in which all resources have identical
cost functions, the result is not tight: Suri et al. [2004] proved that the PoA is at most 2.15 for
those games. Bilò and Vinci [2019c] studied asymmetric congestion games in which the strategy
spaces of the players are very similar, both with atomic and with non-atomic players. For these
games, the PoA is strictly smaller than 5/2 too. Congestion games in which players may not have
all information about the other players’ choices were studied by Bilò et al. [2020]. The exact PoA
of congestion games with certain Stackelberg strategies was proven by Bilò and Vinci [2019b].

For general atomic congestion games with polynomial latency functions of maximum degree d,
Christodoulou and Koutsoupias [2005] proved upper and lower bounds for the PoA with a gap of
o(1). These results were improved by Aland et al. [2011], such that the upper and the lower bound
match for general atomic congestion games with polynomial cost functions of any bounded degree.
This exact PoA asymptotically grows as Θ(d/ log d)d+1.

Atomic, symmetric, total cost

For symmetric congestion games with atomic players, Christodoulou and Koutsoupias [2005] proved
that the PoA is exactly 5N−2

2N+1 , where N is the number of players, when there are linear latency
functions and the only restriction on the strategy spaces is the symmetry. The tightness of this
result for atomic network routing congestion games was proved by Correa et al. [2019]. Fotakis
[2007] and Lücking et al. [2008] proved that this result is not tight for singleton congestion games:
for that subclass of congestion games, the PoA is exactly 4/3 when there are affine latency functions.
For singleton congestion games with cost functions of maximum degree d, Fotakis [2007] proved
that the PoA is equals that of general non-atomic congestion games with polynomial cost functions
of maximum degree d.

For symmetric uniform congestion games, the exact PoA remains unknown. For games with affine
cost functions, de Jong et al. [2016] proved an upper bound for the PoA of 2.15, so we know that
the general upper bound of 5N−2

2N+1 is not tight for N > 6. To the best of our knowledge, symmetric
uniform congestion games with polynomial cost functions of maximum degree d have not been
studied before. The work of de Jong et al. [2016] is the main inspiration for our research, and most
of our proof techniques are generalisations of theirs. Note that uniform congestion games are a
generalisation of singleton congestion games, for which we already mentioned that the exact PoA is
known.

Other work that relates to uniform congestion games is the work of Rosenthal [1973b] and Meyers
[2007], which are analyses of integer-splittable congestion games and (integer) k-splittable congestion
games, respectively. The main difference between their work and ours is that players in our games
are not allowed to pick the same resource twice, whereas they are allowed to do so in their games.

1.4 Outline of the report
In Chapter 2, the model that we use for symmetric and semi-symmetric k-uniform congestion games
is explained in detail. Chapter 3 is about the properties of instances of the games that are analysed
in order to bound the PoA. In Chapter 4, the upper and lower bound for the PoA of symmetric
k-uniform games is given. We give bounds for general k and improved bounds for the special case
k = 2. In Chapter 5, the upper and lower bound for the PoA of semi-symmetric k-uniform games is
given. Again, we give bounds for general k and improved bounds for the special case k = 2. The
conclusion and an outlook on future work is given in Chapter 6.
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Chapter 2

Symmetric and semi-symmetric
k-uniform congestion games

In this section, the model used for the symmetric and semi-symmetric uniform congestion games is
explained. Afterwards, an example instance of a semi-symmetric uniform congestion game is shown.

2.1 Preliminaries
An instance I = (N,R, (cr)r∈R, X) of a congestion game is characterised by a finite set N :=
{1, . . . , n} of players, a finite set R of resources and their cost functions (cr)r∈R, and a finite set
X := X1 × . . .×Xn containing the possible strategies for each player. The set of possible strategies
for some player i ∈ N is denoted by Xi ⊆ 2R. A strategy for a player is to pick a certain subset
of resources, so Xi = {Ri,1, . . . , Ri,i′} with Ri,j ⊆ R, for some i′ ∈ N. In general, the available
strategies may differ between players: players might not have access to the same resources in R,
and some subset R′ ⊆ R might be a valid strategy for one player but not for another. Moreover,
valid strategies may contain a different number of resources. Congestion games in which the
available strategies are the same for all players, i.e., Xi = Xj for all i, j ∈ N , are called symmetric.
Congestion games without this property are called asymmetric.

We study a two subclasses of congestion games, which are both related to k-uniform congestion
games. These games are characterised by a specific strategy space X: a valid strategy for each
player i ∈ N is to pick exactly k resources from a set Ri ⊆ R, i.e., for every player i ∈ N there
exists a subset Ri ⊆ R s.t. Xi = {R′ ⊆ Ri : |R′| = k}. An instance of a k-uniform congestion
game is symmetric if Ri = Rj for all i, j ∈ N . The first subclass of congestion games that we
analyse is the class of symmetric k-uniform congestion games. The second subclass of congestion
games that we analyse is a generalisation of symmetric k-uniform congestion games, which we call
semi-symmetric k-uniform congestion games. This class has not been studied before, to the best
of our knowledge. In this class of games, a valid strategy for each player i ∈ N is to pick exactly
ki ≤ k resources from a set Ri ⊆ R, i.e., for every player i ∈ N there exists a subset Ri ⊆ R and
a value ki ∈ {1, . . . , k} such that Xi = {R′ ⊆ Ri : |R′| = ki}. In both classes of games that we
analyse, all resources in R are available to all players, so ∀i ∈ N : Ri = R. We denote these two
subclasses of congestion games by Gk and G≤k, respectively. For convenience, we next present a
summary of these two subclasses of congestion games.

• Symmetric k-uniform congestion games (Gk):
For each player, a valid strategy is to pick exactly k resources from R, so
∀i ∈ N : Xi = {R′ ⊆ R : |R′| = k}.

• Semi-symmetric k-uniform congestion games (G≤k):
For each player, a valid strategy is to pick some fixed number of resources from R that is at
most k, so
∀i ∈ N : Xi = {R′ ⊆ R : |R′| = ki}, with ki ∈ {1, . . . , k}.

Note that G≤k can be reduced to Gk by defining ki = k for all i ∈ N .
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Each strategy vector x ∈ X denotes a possible realisation of an instance, in which each player i ∈ N
plays according to a particular strategy xi ∈ Xi. We denote by xr := |{i ∈ N : r ∈ xi}| the number
of players picking resource r ∈ R according to the strategy vector x. A realisation of the instance
comes with a cost cr(xr) of each resource r ∈ R, a private cost Ci(x) for each player i ∈ N and the
social cost C(x). These costs are explained in detail next.

The cost cr(xr) of a resource r ∈ R depends on the number of players xr picking this resource
according to the strategy vector x. We assume for all resources r ∈ R that the cost function is
a polynomial function in xr with nonnegative coefficients and real exponents. Note that these
exponents need not be integers. We say that a game has cost functions of maximum degree d if the
largest exponent that appears in some cost function cr(xr), r ∈ R, is d. This maximum degree is
made explicit in the notation of the two subclasses of congestion games that we analyse: we use the
notation Gd

k and Gd
≤k for the two subclasses, respectively.

The private cost Ci(x) for a player i ∈ N is defined as the sum of the costs of each resource that
this player picked according to the strategy vector x: Ci(x) :=

∑
r∈xi

cr(xr).

The social cost C(x) is defined as the sum of all private costs: C(x) :=
∑

i∈N Ci(x). We call a
strategy vector optimal for some instance if it minimises the social cost of this instance, and denote
by (I) the set of all optimal strategy vectors in the instance I:

OPT(I) := {x ∈ X : C(x) = min
x∈X

C(x)}.

In this research, we are interested in the relation between optimal strategy vectors and suboptimal
strategy vectors called Nash equilibria, which are explained in more detail. As in standard game
theory notation, let (yi, x−i) ∈ X be the strategy vector in which all players play as in x ∈ X,
except for player i ∈ N who plays yi ∈ Xi. A Nash equilibrium is a strategy vector x ∈ X with

Ci(x) ≤ Ci(yi, x−i) (2.1)

for all yi ∈ Xi, i ∈ N . So in a Nash equilibrium, no player can decrease their private cost by playing
a different strategy if the other players keep their strategies fixed. We denote by NE(I) the set of
Nash equilibria in the instance I:

NE(I) := {x ∈ X : Ci(x) ≤ Ci(yi, x−i) for all yi ∈ Xi, i ∈ N}.

For convenience, we denote by NE∗(I) the set of Nash equilibria in the instance I with maximum
social cost:

NE∗(I) := {xNE ∈ NE(I) : C(xNE) = max
x∈NE(I)

C(x)}.

We want to know how the cost of Nash equilibria relates to the cost of the optimal strategy vectors
in the two subclasses of congestion games that we explained before. To that end, we analyse the
price of anarchy (PoA) of instances of these subclasses (Koutsoupias and Papadimitriou [1999]):

PoA(I) := max
x∈NE(I)

C(x)

C(xOPT)

=
C(xNE)

C(xOPT)

for some xNE ∈ NE∗(I), xOPT ∈ OPT(I). In particular, we are interested in the largest price of
anarchy possible within these two subclasses of congestion games:

PoA(G) := max
I∈G

PoA(I),

where G ∈ {Gd
k ,Gd

≤k} denotes the subclass of congestion games.

An important note is that we are not interested in the price of anarchy for some specific k, but
rather in the price of anarchy if k can be any value. Therefore, for the first class of games, the
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correct notation of the price of anarchy that we seek to find is

PoA∗ := max
k∈N

max
I∈Gd

k

PoA(I)

= max
I∈G∗

PoA(I),

where G∗ :=
⋃

k∈N Gd
k . In the remainder of the report, we abuse notation and use Gd

k to denote G∗.
Similarly, we use Gd

≤k to denote the union over all k of semi-symmetric k-uniform congestion games.
An exception occurs whenever k is given an specific value, e.g. in Gd

3 or Gd
≤2. Then we do not refer

to the union over all k, but rather to the class of games with this specific value of k.

2.2 Example instance
Figure 2.1 shows an instance I = (N,R, (cr)r∈R, X) ∈ G1

≤2 of a semi-symmetric 2-uniform congestion
game, with players N = {1, 2}, resources R = {1, 2, 3} with cost functions c1(x) = x, c2(x) =
1, c3(x) = 2, and valid strategies X = X1 ×X2 in which player 1 picks one resource and player 2
picks two resources. The strategy spaces for the players are

X1 = {R′ ∈ R : |R′| = 1} = {{1}, {2}, {3}}
X2 = {R′ ∈ R : |R′| = 2} = {{1, 2}, {1, 2}, {2, 3}}.

Each column in Figure 2.1 represents a resource, whose cost function is shown at the top. The rows
represent two realisations of the game: the first row shows an optimal strategy vector xOPT and
the second row shows a Nash equilibrium strategy vector xNE. In these two realisations, player 1
and player 2 are represented as 1 and 2 , respectively.

Resources

c1(x) = x c2(x) = 1 c3(x) = 2

xOPT 2 1 2

xNE 1 2 2

Figure 2.1: An instance of a semi-symmetric 2-uniform congestion game.

In the optimal strategy vector xOPT, player 1 picks resource 2, and player 2 picks resources 1 and 2.
We obtain as costs:

resource costs: c1(x
OPT
1 ) = c1(1) = 1, c2(x

OPT
2 ) = c2(2) = 1, c3(x

OPT
3 ) = c3(0) = 2

private costs: C1(x
OPT) = c2(x

OPT
2 ) = 1, C2(x

OPT) = c1(x
OPT
1 ) + c2(x

OPT
2 ) = 2

social cost: C(xOPT) = C1(x
OPT) + C2(x

OPT) = 3.

In the Nash equilibrium strategy vector xNE, player 1 picks resource 1, and player 2 picks resources
2 and 3. We obtain as costs:

resource costs: c1(x
NE
1 ) = c1(1) = 1, c2(x

NE
2 ) = c2(1) = 1, c3(x

NE
3 ) = c3(1) = 2

private costs: C1(x
NE) = c1(x

NE
1 ) = 1, C2(x

NE) = c2(x
NE
2 ) + c3(x

NE
3 ) = 3

social cost: C(xNE) = C1(x
NE) + C2(x

NE) = 4.

In xNE, no player can decrease their private cost by picking other resources. We will show this
explicitly for player 2. In xNE, player 2 plays the strategy {2, 3}, so we will show that if player 2
switches to strategy {1, 2} or {1, 3}, their private cost does not decrease. Let x′NE = ({1, 2}, xNE

−2 )
be the strategy vector in which player 1 plays as in xNE, and player 2 plays the strategy {1, 2}. We
obtain as costs:

resource costs: c1(x
′NE
1 ) = c1(2) = 2, c2(x

′NE
2 ) = c2(1) = 1, c3(x

′NE
3 ) = c3(0) = 2

private cost player 2: C2(x
′NE) = c1(x

′NE
1 ) + c2(x

′NE
2 ) = 3,

8



so C2(x
′NE) = C2(x

NE). Let x′′NE = ({1, 3}, xNE
−2 ) be the strategy vector in which player 1 plays

as in xNE, and player 2 plays the strategy {1, 3}. We obtain as cost:

resource costs: c1(x
′′NE
1 ) = c1(2) = 2, c2(x

′′NE
2 ) = c2(0) = 1, c3(x

′′NE
3 ) = c3(1) = 2

private cost player 2: C2(x
′NE) = c1(x

′NE
2 ) + c3(x

′NE
3 ) = 4,

so C2(x
′′NE) > C2(x

NE). A similar argument can be made for player 1. This proves that xNE is
indeed a Nash equilibrium strategy vector.

The price of anarchy of this instance is

PoA(I) = max
xNE∈NE(I)

C(xNE)

C(xOPT)
=

4

3
.

This proves a lower bound for the price of anarchy of semi-symmetric 2-uniform congestion games
with cost functions of maximum degree 1:

PoA(G1
≤2) = max

I∈G1
≤2

PoA(I) ≥ 4

3
.
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Chapter 3

Properties of symmetric and
semi-symmetric k-uniform congestion
games

In this section, useful properties of symmetric and semi-symmetric uniform congestion games are
discussed. First, properties that hold for all instances of these games are considered. Second, we
elaborate on properties that only hold for worst-case instances.

3.1 Properties of all instances
The games that we described in Chapter 2 have some useful properties that are covered in this
section. In Chapters 4 and 5, these properties are used to perform crucial steps in the proofs to
bound the price of anarchy or to simplify those proofs. Some properties only hold for symmetric
k-uniform congestion games; we elaborate on the properties of semi-symmetric k-uniform congestion
games in Chapter 5.

We start with translating the general Nash inequality (2.1) to an easier to use Nash inequality that
applies to instances of symmetric and semi-symmetric k-uniform congestion games.

Lemma 3.1 (Nash Inequality). Let I = (N,R, (cr)r∈R, X) ∈ Gd
≤k be an instance of a (semi-

)symmetric k-uniform congestion game and let xNE ∈ X be a strategy vector. Then, xNE ∈ NE(I)
if and only if for all resources r1, r2 ∈ R holds: if some player uses resource r1 and not resource r2
in xNE then

cr1(x
NE
r1 ) ≤ cr2(x

NE
r2 + 1).

Proof. First we prove the "only if" part by contradiction. Assume xNE ∈ NE(I). Let player i use
resource r1 and not resource r2 in xNE and assume cr1(x

NE
r1 ) > cr2(x

NE
r2 + 1). Now, let yNE

i ∈ Xi be
the strategy vector for player i that is identical to xNE

i , but with resource r2 instead of resource r1:

yNE
i := (xNE

i \{r1}) ∪ {r2}.

Then we obtain as private cost for player i

Ci(y
NE
i , xNE

−i ) = Ci(x
NE
i )− cr1(x

NE
r1 ) + cr2(x

NE
r2 + 1) < Ci(x

NE
i ).

This contradicts the Nash inequality (2.1).

Now we prove the "if" part. Consider a strategy vector xNE ∈ X. Assume that for all resources
r1, r2 ∈ R holds: if some player uses resource r1 and not resource r2 in xNE then cr1(x

NE
r1 ) ≤

cr2(x
NE
r2 + 1). Let i ∈ N be some player and let yNE

i ∈ Xi be some strategy vector for player

10



i. Let R′ = xNE
i \yNE

i be the set of resources picked by player i in xNE
i but not in yNE

i and let
R′′ = yNE

i \xNE
i be the set of resources picked by player i in yNE

i but not in xNE
i . Then,

cr′(x
NE
r′ ) ≤ cr′′(x

NE
r′′ + 1)

for all r′ ∈ R′, r′′ ∈ R′′, by the assumption. Moreover, we know |R′| = |R′′|, since |xNE
i | = |yNE

i |.
Therefore we obtain for the private cost of player i

Ci(y
NE
i , xNE

−i ) = Ci(x
NE
i )−

∑
r∈R′

cr(x
NE
r ) +

∑
r∈R′′

cr(x
NE
r + 1) ≥ Ci(x

NE
i ).

The Nash inequality (2.1) holds, therefore xNE must be a Nash equilibrium.

The next two lemmas show useful properties of the cost functions of symmetric and semi-symmetric
k-uniform congestion games. The first lemma can be used to relate the cost of a resource to the cost
of this resource if it would be used by one more player. It is a result of the way the cost functions
are defined.

Lemma 3.2. Let I = (N,R, (cr)r∈R, X) ∈ Gd
≤k be an instance of a symmetric or semi-symmetric

k-uniform congestion game with cost functions of maximum degree d. Let x ∈ X be any strategy
vector and let resource r ∈ R be used by some player according to x. Then

cr(xr + 1) ≤ 2dcr(xr).

Proof. By definition, the cost function is of the form

cr(xr) = α1x
d1
r + . . .+ αpx

dp
r ,

for some p ∈ Z≥0, αi ∈ R≥0 and di ∈ [0, d] for i = 1, . . . , p. We then obtain

cr(xr + 1)− 2dcr(xr) = α1

(
(xr + 1)d1 − 2dxd1

r

)
+ . . .+ αp

(
(xr + 1)dp − 2dxdp

r

)
≤ α1

(
(xr + 1)d1 − 2d1xd1

r

)
+ . . .+ αp

(
(xr + 1)dp − 2dpxdp

r

)
≤ α1

(
(2xr)

d1 − 2d1xd1
r

)
+ . . .+ αp

(
(2xr)

dp − 2dpxdp
r

)
= 0,

where the last inequality follows from xr ≥ 1.

The following lemma provides an important insight into the cost of resources in a Nash equilibrium.
It states that the costs of two resources in a Nash equilibrium cannot be too far apart, unless one
of the resources is used by every player or by no player at all.

Lemma 3.3. Let I = (N,R, (cr)r∈R, X) ∈ Gd
k be an instance of a symmetric k-uniform congestion

game with cost functions of maximum degree d and let xNE ∈ NE(I). Then

cr(x
NE
r ) ≤ 2dcs(x

NE
s + 1)

for any r, s ∈ R with xNE
r ≥ 1 and xNE

s < n.

Proof. Let p be a player using resource r in xNE. Let q be a player that does not use resource s in
xNE. If player q uses resource r then

cr(x
NE
r ) ≤ cs(x

NE
s + 1),

by the Nash inequality (Lemma 3.1), and we are done. If player q does not use resource r, then
player q uses some resource t ∈ R that is not used by player p (since both players pick the same
number of resources). We then obtain

ct(x
NE
t ) ≤ cs(x

NE
s + 1),

by the Nash inequality (Lemma 3.1). Since player p uses resources r, and not resource t, we obtain

cr(x
NE
r ) ≤ ct(x

NE
t + 1),

again by the Nash inequality (Lemma 3.1). We can conclude

cr(x
NE
r ) ≤ ct(x

NE
t + 1) ≤ 2dct(x

NE
t ) ≤ 2dcs(x

NE
s + 1),

where the second inequality follows from Lemma 3.2.
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3.2 Properties of worst-case instances
We introduce a subset of the instances of both symmetric and semi-symmetric k-uniform congestion
games, which we call critical instances. These instances have some additional useful properties,
which are covered in this section. The critical instances are defined as follows.

Definition. (critical instance) An instance of a (semi-)symmetric k-uniform congestion game is
called critical if no instance of a (semi-)symmetric k-uniform congestion game has a larger PoA
and if all instances of (semi-)symmetric k′-uniform congestion games with k′ < k have a smaller
PoA.

Clearly, we only need to analyse critical instances in order to bound the PoA of both symmetric
k-uniform congestion games and semi-symmetric k-uniform congestion games.

The cost functions of resources in critical instances can be simplified. To do this, first consider
some critical instance I = (N,R, (cr)r∈R, X) ∈ Gd

≤k of a (semi-)symmetric k-uniform congestion
game and strategy vectors xNE ∈ NE∗(I) and xOPT ∈ OPT(I). Now the set of resources is split
into underloaded (U), balanced (B) and overloaded (O) resources, with respect to the two strategy
vectors:

U = {r ∈ R : xNE
r < xOPT

r }
B = {r ∈ R : xNE

r = xOPT
r }

O = {r ∈ R : xNE
r > xOPT

r }.

For the instance in Figure 2.1, we obtain U = {2}, B = {1}, O = {3}. We will talk about
underloaded, balanced and overloaded resources without adding “with respect to strategy vectors x
and y” whenever the strategy vectors are clear from the context. Lemmas 3.4 and 3.5 present the
simplified cost functions. Lemma 3.4 states that all underloaded resources in critical instances have
a constant cost. This is an important insight, which is used in crucial steps in proofs in Sections 4
and 5. Lemma 3.5 states that we can assume that all balanced and overloaded resources in critical
instances have a linear cost. This lemma is only used to simplify proofs. Both lemmas are based on
similar lemmas for games with affine cost functions by de Jong et al. [2020].

Lemma 3.4. Let I = (N,R, (cr)r∈R, X) ∈ Gd
k be a critical instance of a symmetric k-uniform

congestion game, and let xNE ∈ NE∗(I) and xOPT ∈ OPT(I). Then, all underloaded resources
u ∈ U that are used by some player according to strategy xNE have constant cost cu(x) = βu.

Proof. The proof is by contradiction. We assume the lemma is false for some critical instance I
of a symmetric k-uniform congestion game. Then we construct a new instance Î of a symmetric
k-uniform congestion game to prove the existence of a resource r whose cost function satisfies
certain inequalities. Using what we know about resource r, we construct another instance Ĩ of a
symmetric k-uniform congestion game and we show PoA(Ĩ) > PoA(I). This is the contradiction.

Consider a critical instance I = (N,R, (cr)r∈R, X) ∈ Gd
k of a symmetric k-uniform congestion

game and two strategy vectors xNE ∈ NE∗(I) and xOPT ∈ OPT(I). Let u ∈ U be an underloaded
resource used in xNE with non constant cost

cu(x) = α1x
d1 + . . .+ αpx

dp

for some p ∈ Z≥0, αi ∈ R≥0 and di ∈ [0, p] for i = 1, . . . , p. Since cu(x) is non constant, we know
cu(x

OPT
u ) ≥ cu(x

NE
u + 1) > cu(x

NE
u ) and we know that αi > 0, di > 0 for some 1 ≤ i ≤ p. For small

ε > 0 we now define a new cost function for u:

ĉu(x) := pε+ (α1 −
ε

(xNE
u + 1)d1

)xd1 + . . .+ (αp −
ε

(xNE
u + 1)dp

)xdp

= cu(x) + pε− xd1

(xNE
u + 1)d1

ε− . . .− xdp

(xNE
u + 1)dp

ε.
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This new cost function has the following properties:

ĉu(x
NE
u + 1) = cu(x

NE
u + 1)

ĉu(x
NE
u ) = cu(x

NE
u ) + pε− (xNE

u )d1

(xNE
u + 1)d1

ε− . . .− (xNE
u )dp

(xNE
u + 1)dp

ε

> cu(x
NE
u )

ĉu(x
OPT
u ) = cu(x

OPT
u ) + pε− (xOPT

u )d1

(xNE
u + 1)d1

ε− . . .− (xOPT
u )dp

(xNE
u + 1)dp

ε

≤ cu(x
OPT
u ).

For all other resources r ∈ R\{u}, we define new cost functions ĉr(x) = cr(x) that are the same
as the old cost functions. Let Î = (N,R, (ĉr)r∈R, X) ∈ Gd

k be the same instance as I, except the
new cost functions are used. If there is a small ε > 0 such that xNE ∈ NE(Î) then we obtain
PoA(Î) > PoA(I), which is shown next.

We assume xNE ∈ NE(Î). Let yNE ∈ NE∗(Î) be a Nash equilibrium with the highest social cost.
Then Ĉ(yNE) ≥ Ĉ(xNE) > C(xNE), since resource u is used in xNE. Similarly, let yOPT ∈ OPT(Î)
be an optimal strategy vector. Then Ĉ(yOPT) ≤ Ĉ(xOPT) ≤ C(xOPT). Regarding the PoA of Î,
we obtain

PoA(Î) =
Ĉ(yNE)

Ĉ(yOPT)
>

C(xNE)

C(xOPT)
= PoA(I).

This is not possible, since both I and Î are instances of a symmetric k-uniform congestion game
and I is critical. Therefore, we know that no ε > 0 exists such that xNE ∈ NE(Î). By Lemma 3.1
we know that there exist some player t ∈ N using some resource r1 and not some other resource r
in xNE, with

ĉr1(x
NE
r1 ) > ĉr(x

NE
r + 1)

for all ε > 0. In addition, we know that cNE
t,max ≤ cr(x

NE
r + 1), where

cNE
t,max := max

r∈xt

cr(x
NE
r ),

else player t would already use resource r in xNE, by Lemma 3.1. Next, we will prove that r1 = u.

Firstly, we cannot have r1 ̸= u and r ̸= u, because then

ĉr1(x
NE
r1 ) = cr1(x

NE
r1 ) ≤ cr(x

NE
r + 1) = ĉr(x

NE
r + 1),

by Lemma 3.1 since xNE ∈ NE(I). Secondly, we cannot have r = u, since then

ĉr1(x
NE
r1 ) = cr1(x

NE
r1 ) ≤ cu(x

NE
u + 1) = ĉu(x

NE
u + 1),

again by Lemma 3.1 since xNE ∈ NE(I). Therefore, we must have r1 = u and

ĉu(x
NE
u ) > ĉr(x

NE
r + 1)

for some r ∈ R. Next, we prove that cu(x
NE
u ) = cr(x

NE
r + 1). The first thing to note is that

ĉu(x) = cu(x) whenever ε = 0. Secondly, the function ĉu(x) is continuous in ε. Thirdly, cu(xNE
u ) ≤

cr(x
NE
r +1), by the Nash inequality (Lemma 3.1). Now we can conclude that cu(xNE

u ) = cr(x
NE
r +1).

Using this information about resource r and player t, we will construct another instance Ĩ of a
symmetric k-uniform congestion game with PoA(Ĩ) > PoA(I), to form the final contradiction.

Let Ĩ = (N, R̃, (c̃r)r∈R̃, X̃) ∈ Gd
k be the same instance as I, but with resources R̃ = R ∪ {b} and

cost functions c̃b(x) =
1
2d
cNE
maxx

d, where

cNE
max := max

r∈R: xNE
r ≥1

cr(x
NE
r ),
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c̃u(x) = cu(x+ 1) and c̃r(x) = cr(x) for r ∈ R̃\{b, u}. Let x̃NE be the same strategy vector as xNE,
except that player t uses resource b instead of resource u. Let q ∈ N be a player that uses resource
u in xOPT but not in xNE and let x̃OPT be the same strategy vector as xOPT, except that player q
uses resource b instead of resource u. We obtain the following costs:

c̃b(x̃
NE
b ) =

1

2d
cNE
max

c̃b(x̃
NE
b + 1) = cNE

max

c̃b(x̃
NE
b ) =

1

2d
cNE
max

c̃r(x̃
NE
r ) = cr(x

NE
r )

c̃r(x̃
NE
r + 1) = cr(x

NE
r + 1)

c̃r(x̃
NE
r ) = cr(x

OPT
r ),

for all r ∈ R̃\{b}. We will now prove x̃NE ∈ NE(Ĩ) using Lemma 3.1.

Let some player p use resource r1 and not resource r2 in x̃NE. We need to prove c̃r1(x̃
NE
r1 ) ≤

c̃r2(x̃
NE
r2 + 1). To that end, we distinguish the following cases:

• p ̸= t and r1 ̸= b, r2 ̸= b

• p ̸= t and r1 ̸= b, r2 = b

• p = t and r1, r2 /∈ {b, u}

• p = t and r1 /∈ {b, u}, r2 = u

• p = t and r1 = b, r2 ̸= b.

These cases cover all possibilities, since a player p ̸= t does not use resource b in x̃NE (so then
r1 ̸= b) and player t does not use resource u in x̃NE (so then r1 ̸= u.).

Case 1: p ̸= t and r1 ̸= b, r2 ̸= b. Then,

c̃r1(x̃
NE
r1 ) = cr1(x

NE
r1 ) ≤ cr2(x

NE
r2 + 1) = c̃r2(x̃

NE
r2 + 1),

by the Nash inequality (Lemma 3.1), since player p used resource r1 and not resource r2 in xNE.
Case 2: p ̸= t and r1 ̸= b, r2 = b. Then we know

c̃r1(x̃
NE
r1 ) = cr1(x

NE
r1 ) ≤ cNE

max = c̃b(x̃
NE
b + 1).

Case 3: p = t and r1, r2 /∈ {b, u}. Then,

c̃r1(x̃
NE
r1 ) = cr1(x

NE
r1 ) ≤ cr2(x

NE
r2 + 1) = c̃r2(x̃

NE
r2 + 1),

by the Nash inequality (Lemma 3.1), since player t used resource r1 and not resource r2 in xNE.
Case 4: p = t and r1 /∈ {b, u}, r2 = u. Then,

c̃r1(x̃
NE
r1 ) = cr1(x

NE
r1 ) ≤ cNE

t,max = cu(x
NE
u ) ≤ cu(x

NE
u + 1) = c̃u(x̃

NE
u + 1).

Case 5: p = t and r1 = b, r2 ̸= b. Then,

c̃b(x̃
NE
b ) =

1

2d
cNE
max ≤ cr2(x

NE
r2 + 1) = c̃r2(x

NE
r2 + 1),

where the inequality follows from Lemma 3.3. We covered all cases of player p and resources r1 and
r2, so by the Nash inequality (Lemma 3.1) we know x̃NE ∈ NE(Ĩ).

We proved that x̃NE ∈ NE(Ĩ), but there may be another Nash equilibrium with a higher social
cost. Let yNE ∈ NE∗(Ĩ) be a Nash equilibrium with the highest social cost. Then we obtain
C̃(yNE) ≥ C̃(x̃NE) = C(xNE)− (cu(x

NE
u )− 1

2d
cNE
max). Similarly, there may be a strategy vector with

a lower social cost than x̃OPT. Let yOPT ∈ OPT(Ĩ) be an optimal strategy vector. Then we obtain
C̃(yOPT) ≤ C̃(x̃OPT) = C(xOPT)− (cu(x

OPT
u )− 1

2d
cNE
max).
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Regarding the PoA of Ĩ, we obtain

PoA(Ĩ) =
C(yNE)

C(yOPT)
≥ C(x̃NE)

C(x̃OPT)
=

C(xNE)− (cu(x
NE
u )− 1

2d
cNE
max)

C(xOPT)− (cu(xOPT
u )− 1

2d
cNE
max)

>
C(xNE)− (cu(x

NE
u )− 1

2d
cNE
max)

C(xOPT)− (cu(xNE
u )− 1

2d
cNE
max)

≥ C(xNE)

C(xOPT)
= PoA(I),

where the second inequality follows from cu(x
OPT
u ) > cu(x

NE
u ) (as argued at the start of the proof)

and the last inequality follows from cu(x
NE
u ) = cr(x

NE
r + 1) ≥ 1

2d
cNE
max (by Lemma 3.3).

Since both I and Ĩ are instances of a symmetric k-uniform congestion game, and I is critical, we
must have PoA(I) ≥ PoA(Ĩ). This is a contradiction. We can therefore conclude that a resource
like u cannot exist, so all underloaded resources must have constant cost.

Lemma 3.5. Let I = (N,R, (cr)r∈R, X) ∈ Gd
≤k be a critical instance of a (semi-)symmetric

k-uniform congestion game with cost functions of maximum degree d and let xNE ∈ NE∗(I) and
xOPT ∈ OPT(I). We may assume that all resources r ∈ B ∪ O have a cost function of the form
cr(x) = αrx

d, with αr ∈ R≥0.

Proof. Let I = (N,R, (cr)r∈R, X) ∈ Gd
≤k be some critical instance of a (semi-)symmetric k-

uniform congestion game and let xNE ∈ NE∗(I), xOPT ∈ OPT(I). We will construct an instance
Ĩ = (N,R, (c̃r)r∈R, X) ∈ Gd

≤k of a (semi-)symmetric k-uniform game with ∀r ∈ B∪O : c̃r(x) = αrx
d

for some αr ∈ R≥0 and PoA(Ĩ) = PoA(I). This means that Ĩ is also a critical instance, so we can
focus our attention on instances like Ĩ.

By definition, the cost function of any resource r ∈ R is of the form

cr(x) = α1x
d1 + . . .+ αpx

dp ,

for some p ∈ Z≥0 and d1, . . . , dp ∈ [0, d]. Now we define a new cost function for every resource
r ∈ B ∪O of the form c̃r(x) = αrx

d, namely

c̃r(x) :=
cr(x

NE
r )

(xNE
r )d

xd.

These cost functions are well defined, since xNE
r ≥ 1. If xNE

r = 0, then also xOPT
r = 0 (since

r ∈ B ∪O), so then we can remove the resource from the game. The new cost functions have the
following properties:

c̃r(x
NE
r ) = cr(x

NE
r )

c̃r(x
OPT
r ) = α1

(xOPT
r )d

(xNE
r )d−d1

+ . . .+ αp
(xOPT

r )d

(xNE
r )d−dp

= α1(x
OPT
r )d1

(xOPT
r )d−d1

(xNE
r )d−d1

+ . . .+ αp(x
OPT
r )dp

(xOPT
r )d−dp

(xNE
r )d−dp

≤ α1(x
OPT
r )d1 + . . .+ αp(x

OPT
r )dp

= cr(x
OPT
r ).

c̃r(x
NE
r + 1) = α1(x

NE
r + 1)d1

(xNE
r + 1)d−d1

(xNE
r )d−d1

+ . . .+ αp(x
NE
r + 1)dp

(xNE
r + 1)d−dp

(xNE
r )d−dp

≥ α1(x
NE
r + 1)d1 + . . .+ αp(x

NE
r + 1)dp

= cr(x
NE
r + 1).

For resources u ∈ U we use cost functions that are the same as the old ones: c̃u(x) = cu(x). Let
Ĩ = (N,R, (c̃r)r∈R, X) ∈ Gd

≤k be the same instance as I, except it has the new cost functions. We
will now show that xNE ∈ NE(Ĩ) using Lemma 3.1.
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Take any two resources r1, r2 ∈ R with a player that uses resource r1 and not resource r2 in xNE.
Then cr2(x

NE
r2 + 1) ≥ cr1(x

NE
r1 ) by the Nash inequality (Lemma 3.1), since xNE ∈ NE(I). We obtain

c̃r2(x
NE
r2 + 1) ≥ cr2(x

NE
r2 + 1) ≥ cr1(x

NE
r1 ) = c̃r1(x

NE
r1 ).

So also in I, no player has an incentive to switch to another resource when they play according to
xNE. By the Nash inequality (Lemma 3.1) we know xNE ∈ NE(Ĩ).

We proved that xNE ∈ NE(Ĩ), but there may be another Nash equilibrium with a higher social
cost. Let yNE ∈ NE∗(Ĩ) be a Nash equilibrium with the highest social cost. Then we obtain
C̃(yNE) ≥ C̃(xNE) = C(xNE). Similarly, there may be a strategy vector with a lower social cost
than xOPT. Let yOPT ∈ OPT(Ĩ) be an optimal strategy vector. Then we obtain C̃(yOPT) ≤
C̃(xOPT) ≤ C(xOPT).

Regarding the PoA of Ĩ, we obtain

PoA(Ĩ) =
C̃(yNE)

C̃(yOPT)
≥ C(xNE)

C(xOPT)
= PoA(I).

Given that I is a critical instance and both I and Ĩ are instances of a (semi-)symmetric k-uniform
game, there must hold PoA(I) ≥ PoA(Ĩ). We can conclude PoA(I) = PoA(Ĩ), which makes the
instance Ĩ also critical. We can thus focus our attention on instances like Ĩ.

Lastly, we show that no resource is picked by all players in a Nash equilibrium with maximum
social cost. This result is more general than a similar result by de Jong et al. [2016].

Lemma 3.6. Let I = (N,R, (cr)r∈R, X) ∈ Gd
k be a critical instance of a symmetric k-uniform

congestion game with cost functions of maximum degree d and let xNE ∈ NE∗(I). Then we may
assume that no resource r ∈ R is picked by all players in xNE, unless PoA(I) < 1

1−d(d+1)−(d+1)/d .

Proof. The proof is by contradiction. We consider a critical instance I = (N,R, (cr)r∈R, X) ∈ Gd
k

of a symmetric k-uniform congestion game with PoA(I) ≥ 1
1−d(d+1)−(d+1)/d and strategy vector

xNE ∈ NE∗(I) with xNE
r = |N | = n for some resource r ∈ R. Then we will construct an instance Ĩ

of a symmetric (k − 1)-uniform congestion game with PoA(Ĩ) ≥ PoA(I), which contradicts with I
being critical.

Let I = (N,R, (cr)r∈R, X) ∈ Gd
k be a critical instance of a symmetric k-uniform congestion game

with PoA(I) ≥ 1
1−d(d+1)−(d+1)/d and let xNE ∈ NE∗(I) with xNE

r = |N | = n for some resource r ∈ R.

Let Ĩ = (N, R̃, (cr)r∈R̃, X̃) ∈ Gd
k−1 be an instance of a symmetric (k − 1)-uniform congestion game

that has the same set of players as I, and a set of resources R̃ = R\{r}. Now, let x̃NE be the
strategy vector in which every player plays as in xNE, except they do not pick resource r. We will
prove that x̃NE ∈ NE(Ĩ) using Lemma 3.1.

Let some player p use resource r1 ∈ R̃ and not resource r2 ∈ R̃ in x̃NE. Then

cr1(x̃
NE
r1 ) = cr1(x

NE
r1 ) ≤ cr2(x

NE
r2 + 1) = cr2(x̃

NE
r2 + 1),

where the inequality follows from the Nash inequality (Lemma 3.1), since player p used resource r1
and not resource r2 in xNE ∈ NE(I). By Lemma 3.1 we know x̃NE ∈ NE(Ĩ).

We proved that x̃NE ∈ NE(Ĩ), but there may be another Nash equilibrium with a higher social
cost. Let ỹNE ∈ NE∗(Ĩ) be a Nash equilibrium with the highest social cost. Then we obtain
C(ỹNE) ≥ C(x̃NE) = C(xNE)− ncr(n).

Let x̃OPT be the same strategy vector as xOPT, except the xOPT
r players that pick resource r in

xOPT do not do so in x̃NE and the other n− xOPT
r players all pick one resource u ∈ U less in x̃OPT

than in xOPT. We will now prove that this is always possible or that we can rearrange which player
pick which resources in the strategy vector xNE to make it possible.

If r ∈ B and thus xOPT
r = xNE

r = n, then the strategy vector x̃OPT as described before is well
defined. Otherwise, if r ∈ O and thus xOPT

r < n, the strategy vector x̃OPT may not be well defined
if there exists some player p ∈ N that does not use resource r nor any resource u ∈ U in xNE. We
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will now show how to rearrange which player pick which resources in the strategy vector xNE to
make sure player p picks an underloaded resource u ∈ U . To that end, first we observe∑

u∈U

xOPT
u ≥

∑
u∈U

(xOPT
u − xNE

u ) =
∑
o∈O

(xNE
o − xOPT

o ) ≥ xNE
r − xOPT

r = n− xOPT
r . (3.1)

Inequality (3.1) tells us that if player p does not use resource r nor any underloaded resource, then
there must be some other player q ∈ N using both resource r (which is not underloaded) and at
least one underloaded resource u ∈ U , or at least two underloaded resources u ∈ U . In addition,
player p must use some resource r′ ∈ B ∪O that is not used by player q in xOPT, otherwise player q
would use at least 2 more resources than player p, which is impossible. Now we can rearrange xOPT

such that player p picks one of the underloaded resources that q originally picked instead of resource
r′, and player q picks resource r′ instead of the underloaded resource that player p now picks. This
rearrangement can be done for all players that do not use resource r nor any underloaded resource,
and it does not change the social cost of the strategy vector. In the resulting strategy vector, every
player picks either resource r or some underloaded resource (or both), so then x̃OPT can be formed
using this strategy vector.

There may be another strategy vector that has a lower social cost than x̃OPT. Let ỹOPT ∈ OPT(Ĩ)
be an optimal strategy vector. Then we obtain C(ỹOPT) ≤ C(x̃OPT). To bound the social cost of
x̃OPT, we use an insight into the cost of underloaded resources:

cu(x
OPT
u ) ≥ cr(n) for all u ∈ U.

We now prove this inequality. If for some u ∈ U holds cu(x
NE
u + 1) < cr(x

NE
r ), then all players

picking resource r in xNE must also pick resource u, by the Nash inequality (Lemma 3.1). Then we
obtain xNE

u = xNE
r = n, which is not possible for an underloaded resource. Therefore,

cu(x
OPT
u ) = cu(x

NE
u ) = cu(x

NE
u + 1) ≥ cr(x

NE
r ) = cr(n),

where the first two equalities follow from Lemma 3.4.

Now we obtain for the social cost of ỹOPT:

C(ỹOPT) ≤ C(x̃OPT) ≤ C(xNE)− xOPT
r cr(x

OPT
r )− (n− xOPT

r )cr(n)

≤ C(xOPT)− (1− d(d+ 1)−(d+1)/d)ncr(n).

A proof of the final inequality is shown in Appendix A.1. Regarding the PoA of Ĩ, we obtain

PoA(Ĩ) =
C(ỹNE)

C(ỹOPT)
≥ C(x̃NE)

C(x̃OPT)

≥ C(xNE)− ncr(n)

C(xOPT)− (1− d(d+ 1)−(d+1)/d)ncr(n)
=

C(xNE)− ncr(n)
1

PoA(I)C(xNE)− (1− d(d+ 1)−(d+1)/d)ncr(n)

≥ C(xNE)− ncr(n)
C(xNE)−ncr(n)

PoA(I)

= PoA(I),

where the last inequality follows from PoA(I) ≥ 1
1−d(d+1)−(d+1)/d . Since I is a critical instance of a

symmetric k-uniform congestion game, and Ĩ is an instance of a symmetric (k−1)-uniform congestion
game, it must hold that PoA(I) > PoA(Ĩ). This contradicts our finding of PoA(Ĩ) ≥ PoA(I), so
an instance like I cannot exist.
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Chapter 4

The PoA of symmetric k-uniform
congestion games

In this section, the price of anarchy of symmetric k-uniform congestion games with cost functions of
maximum degree d (Gd

k) is studied. Before diving into technical details, an upper and lower bound
can already be shown. As to the upper bound: PoA(Gd

k) cannot exceed the price of anarchy of general
atomic congestion games with cost functions of maximum degree d. The latter asymptotically grows
as Θ(d/ log d)d+1 (Aland et al. [2011]), so PoA(Gd

k) asymptotically grows as O(d/ log d)d+1. As to
the lower bound: PoA(Gd

k) is larger than the price of anarchy of singleton congestion games with
cost functions of maximum degree d, since Gd

1 ⊂ Gd
k . The price of anarchy of singleton congestion

games asymptotically grows as Θ(d/ log d) (Fotakis [2007]), so PoA(Gd
k) asymptotically grows as

Ω(d/ log d).

First, symmetric k-uniform congestion games with general k are considered. The upper and lower
bound for the price of anarchy that are proven asymptotically grow as Θ(2d(d+1)) and Θ(2d),
respectively. This upper bound leaves room for improvement, since 2d(d+1) ̸= O(d/ log d)d+1.
However, for small d it still improves upon the general bound and for d = 1 it improves upon the
bound that was proved by de Jong et al. [2016]. We also present a conjecture that results in an
improved upper bound that asymptotically grows as Θ(2d(d−1)).

Second, symmetric 2-uniform congestion games are considered. The upper and lower bound that
are proven asymptotically grow as Θ(2d(d−1)) and Θ(2d), respectively. Again, the upper bound
cannot be tight for large d, since 2d(d−1) ̸= O(d/ log d)d+1.

4.1 Games with general k

4.1.1 Upper bound for the PoA
To prove an upper bound for the PoA of symmetric k-uniform congestion games, four lemmas are
needed. Some of these lemmas hold for semi-symmetric k-uniform games as well.

The first lemma shows an insight into a factor that influences the PoA: the difference between the
excess cost of resources in U in xOPT and the excess cost resources in O in xNE. The larger this
difference, the larger the PoA. This difference appears explicitly in the lemma. The lemma is a
generalisation of a similar lemma by Fotakis [2007].

Lemma 4.1. Let I = (N,R, (cr)r∈R, X) ∈ Gd
≤k be an instance of a (semi-)symmetric k-uniform

congestion game with cost functions of maximum degree d and let xNE ∈ NE∗(I) and xOPT ∈
OPT(I). Then we obtain

(1− µd)C(xNE) ≤ νd C(xOPT) +
∑
o∈O

(
xNE
o − xOPT

o

)
co(x

NE
o )−

∑
u∈U

(
xOPT
u − xNE

u

)
cu(x

NE
u + 1)
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where

µd :=

{
d

d+1 (d+ 1)−1/d d ≤ d∗

d
d+1ρd d > d∗

νd :=

{
1 d ≤ d∗

1
d+1 (ρd)

−d d > d∗

ρd :=
2d/2 + 1

1 + 2d/2 − 2d + 23d/2

and d∗ ≈ 1.6 is the unique solution to

(d∗ + 1)−1/d∗
= ρd∗ .

Proof. Let I, xNE and xOPT be as stated in the lemma. We will bound the cost of the underloaded
resources, balanced resources and overloaded resources separately. Using those bounds, we can
bound the social cost of xNE.

For any u ∈ U , we will use

xNE
u cu(x

NE
u ) = xOPT

u cu(x
OPT
u )− xOPT

u cu(x
NE
u ) + xNE

u ca(x
NE
a )

= xOPT
u cu(x

OPT
u )− xOPT

u cu(x
NE
u + 1) + xNE

u cu(x
NE
u + 1)

= xOPT
u cu(x

OPT
u )− (xOPT

u − xNE
u )cu(x

NE
u + 1). (4.1)

For any b ∈ B, we will use

xNE
b cb(x

NE
b ) = xOPT

b cb(x
OPT
b ). (4.2)

For any o ∈ O, we use Lemma 3.5 to obtain

xOPT
o co(x

NE
o ) = αox

OPT
o (xNE

o )d

≤ αoλd(x
OPT
o )d+1 + αoµd(x

NE
o )d+1

= λdx
OPT
o co(x

OPT
o ) + µdx

NE
o co(x

NE
o ),

where µd is as defined in the lemma and

λd :=
1

(µd)d(d+ 1)

( d

d+ 1

)d

.

The validity of the inequality for any µd > 0 is proved in Appendix A.2. The particular value for
µd is picked for optimisation purposes: it minimises the upper bound for the PoA. Now we obtain
for any o ∈ O

xNE
o co(x

NE
o ) ≤ λdx

OPT
o co(x

OPT
o ) + µdx

NE
o co(x

NE
o ) + (xNE

o − xOPT
o )co(x

NE
o ). (4.3)

By combining inequalities (4.1), (4.2) and (4.3), we obtain

C(xNE) =
∑
u∈U

xNE
u cu(x

NE
u ) +

∑
b∈B

xNE
b cb(x

NE
b ) +

∑
o∈O

xNE
o co(x

NE
o )

≤
∑

r∈U∪B

xOPT
r cr(x

OPT
r ) + λd

∑
o∈O

xOPT
o co(x

OPT
o ) + µd

∑
o∈O

xNE
o co(x

NE
o )

+
∑
o∈O

(xNE
o − xOPT

o )co(x
NE
o )−

∑
u∈U

(xOPT
u − xNE

u )cu(x
NE
u + 1)

≤ max{1, λd}C(xOPT) + µdC(xNE)

+
∑
o∈O

(xNE
o − xOPT

o )co(x
NE
o )−

∑
u∈U

(xOPT
u − xNE

u )cu(x
NE
u + 1).

Rearranging this gives

(1− µd)C(xNE) ≤ max{1, λd}C(xOPT)

+
∑
o∈O

(xNE
o − xOPT

o )co(x
NE
o )−

∑
u∈U

(xOPT
u − xNE

u )cu(x
NE
u + 1).
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For µd = d
d+1 (d+ 1)−1/d, we obtain λd = 1. For µd = d

d+1ρd, we obtain λd = (d+ 1)−1(ρd)
−d ≥ 1

for d ≥ d∗. In conclusion:

max{1, λd} =

{
1 if µd = d

d+1 (d+ 1)−1/d

1
d+1 (ρd)

−d if µd = d
d+1ρd.

The uniqueness of d∗ is proven in Appendix B.

The next three lemmas are needed to bound∑
o∈O

(
xNE
o − xOPT

o

)
co(x

NE
o )−

∑
u∈U

(
xOPT
u − xNE

u

)
cu(x

NE
u + 1)

from above. To that end, we consider an instance I of a (semi-)symmetric k-uniform congestion
game, with xNE ∈ NE∗(I) and xOPT ∈ OPT(I). Note that there may be resources u ∈ U, o ∈ O

with co(x
NE
o ) ≤ cu(x

NE
u + 1). If this holds for all such resources, then we obtain

∑
o∈O

(
xNE
o −

xOPT
o

)
co(x

NE
o ) −

∑
u∈U

(
xOPT
u − xNE

u

)
cu(x

NE
u + 1) ≤ 0 and we are done. For singleton games,

this is indeed true, by the Nash inequality (Lemma 3.1). However, for (semi-)symmetric k-
uniform games, this may not be the case. An example is the instance in Table 2.1, where
2 = c3(x

NE
3 ) > c2(x

NE
2 + 1) = 1.

In order to still use this information, we introduce variables x′
r ∈ Z≥0 for all r ∈ U ∪O such that∑

o∈O

x′
oco(x

NE
o )−

∑
u∈U

x′
ucu(x

NE
u + 1) ≤ 0, (4.4)

where x′
u ≤ xOPT

u − xNE
u for u ∈ U and x′

o ≤ xNE
o − xOPT

o for o ∈ O. In particular, we want the
values x′

r to satisfy ∑
o∈O

x′
o =

∑
u∈U

x′
u , and

co(x
NE
o )− cu(x

NE
u + 1) > 0 for all u ∈ U ′, o ∈ O′

where

U ′ := {u ∈ U : x′
u < xOPT

u − xNE
u },

O′ := {o ∈ O : x′
o < xNE

o − xOPT
o }.

Such values x′
r can always be found, for example by using Algorithm 1.

Algorithm 1 Obtaining x′
r for r ∈ U ∪O

1: for r ∈ U ∪O do
2: x′

r = 0
3: end for
4: while ∃u ∈ U ′, o ∈ O′ : co(x

NE
o )− cu(x

NE
u + 1) ≤ 0 do

5: x′
u = x′

u + 1
6: x′

o = x′
o + 1

7: end while

For convenience, we introduce the variables zr := |xOPT
r − xNE

r | − x′
r for r ∈ U ∪O. If we interpret

xr as the part of |xNE
r −xOPT

r | that can be bound using inequality (4.4), then we can interpret zr as
the ‘leftover’ part of |xNE

r − xOPT
r | that we still need to deal with. This is shown in the next lemma.

Lemma 4.2. Let I = (N,R, (cr)r∈R, X) ∈ Gd
≤k be an instance of a (semi-)symmetric k-uniform

congestion game with cost functions of maximum degree d and let xNE ∈ NE∗(I) and xOPT ∈
OPT(I). Then∑
o∈O

(
xNE
o − xOPT

o

)
co(x

NE
o )−

∑
u∈U ′

(
xOPT
u − xNE

u

)
cu(x

NE
u + 1) ≤

∑
o∈O′

zoco(x
NE
o )−

∑
u∈U ′

zucu(x
NE
u + 1).
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Proof. By construction of x′
r, zr, r ∈ U ∪O and U ′, O′, we obtain∑

o∈O

(
xNE
o − xOPT

o

)
co(x

NE
o )−

∑
u∈U

(
xOPT
u − xNE

u

)
cu(x

NE
u + 1)

−
∑
o∈O′

zoco(x
NE
o ) +

∑
u∈U ′

zucu(x
NE
u + 1)

=
∑
o∈O

(
x′
o + zo

)
co(x

NE
o )−

∑
u∈U

(
x′
u + zu

)
cu(x

NE
u + 1)

−
∑
o∈O′

zoco(x
NE
o ) +

∑
u∈U ′

zucu(x
NE
u + 1)

=
∑
o∈O

x′
oco(x

NE
o )−

∑
u∈U

x′
ucu(x

NE
u + 1) +

∑
o∈O

zoco(x
NE
o )−

∑
u∈U

zucu(x
NE
u + 1)

−
∑
o∈O′

zoco(x
NE
o ) +

∑
u∈U ′

zucu(x
NE
u + 1)

≤
∑
o∈O

zoco(x
NE
o )−

∑
u∈U

zucu(x
NE
u + 1)−

∑
o∈O′

zoco(x
NE
o ) +

∑
u∈U ′

zucu(x
NE
u + 1)

=
∑

o∈O\O′

zoco(x
NE
o )−

∑
u∈U\U ′

zucu(x
NE
u + 1)

= 0.

Since xNE
u ≤ n and xNE

o ≥ 1 for all u ∈ U, o ∈ O, we can use Lemma 3.3 to bound
∑

u∈U ′ zucu(x
NE
u +

1) from below with respect to
∑

o∈O′ zoco(x
NE
o ). This results in the following lemma.

Lemma 4.3. Let I = (N,R, (cr)r∈R, X) ∈ Gd
k be a critical instance of a symmetric k-uniform

congestion game with cost functions of maximum degree d and let xNE ∈ NE∗(I) and xOPT ∈
OPT(I). Then ∑

o∈O′

zoco(x
NE
o )−

∑
u∈U ′

zucu(x
NE
u + 1) ≤ (1− 2−d)

∑
o∈O′

zoco(x
NE
o ).

Proof. Firstly, we know
∑

o∈O′ zo =
∑

u∈U ′ zu, since∑
o∈O′

zo −
∑
u∈U ′

zu =
∑
o∈O

zo −
∑
u∈U

zu −
( ∑

o∈O\O′

zo −
∑

u∈U\U ′

zu

)
=

∑
o∈O

zo −
∑
u∈U

zu

=
∑
o∈O

(xNE
o − xOPT

o − x′
o)−

∑
u∈U

(xOPT
u − xNE

u − x′
u)

=
∑
o∈O

(xNE
o − xOPT

o )−
∑
u∈U

(xOPT
u − xNE

u ) +
∑
u∈U

x′
u −

∑
o∈O

x′
o

= 0,

since
∑

o∈O(x
NE
o − xOPT

o ) =
∑

u∈U (x
OPT
u − xNE

u ) and
∑

u∈U x′
u =

∑
o∈O x′

o. Secondly, we know
that the cost of each resource in U ′ can be bounded by the cost of a resource in O′: we know that
for all o ∈ O′ holds xNE

o ≥ xOPT
o + 1 ≥ 1 and for all u ∈ U ′ holds xNE

o ≤ xOPT
o − 1 < n. Therefore,

by Lemma 3.3 we obtain cu(x
NE
u + 1) ≥ 2−dco(x

NE
o ) for all o ∈ O′, u ∈ U ′. We can conclude∑

u∈U ′

zucu(x
NE
u + 1) ≥ 2−d

∑
o∈O′

zoco(x
NE
o ).

Finally, we obtain∑
o∈O′

zoco(x
NE
o )−

∑
u∈U ′

zucu(x
NE
u + 1) ≤

∑
o∈O′

zoco(x
NE
o )− 2−d

∑
o∈O′

zoco(x
NE
o ) = (1− 2−d)

∑
o∈O′

zoco(x
NE
o ).
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Next,
∑

o∈O′ zoco(x
NE
o ) can be bounded from above by some constant times the social cost C(xNE).

To do this, an elaborate argument is needed. The social cost is split into the cost resulting from
resources in U ′, resources in O′ and resources in R\(U ′ ∪O′). Then, these costs are all bounded
from below by a constant times

∑
o∈O′ zoco(x

NE
o ), using insights from the Nash inequality (Lemma

3.1) and from Lemma 3.3. The resulting lemma improves upon a similar lemma for games with
affine cost functions by de Jong et al. [2016].

Lemma 4.4. Let I = (N,R, (cr)r∈R, X) ∈ Gd
k be a critical instance of a symmetric k-uniform

congestion game with cost functions of maximum degree d and PoA(I) ≥ 1
1−d(d+1)−(d+1)/d . Let

xNE ∈ NE∗(I) and xOPT ∈ OPT(I). Then∑
o∈O′

zoco(x
NE
o ) ≤ 1− ρd

1− 2−d
C(xNE).

Proof. Let I, xNE and xOPT be as in the lemma and let PoA(I) ≥ 1
1−d(d+1)−(d+1)/d . We start by

observing

C(xNE) =
∑

r∈R\O′

xNE
r cr(x

NE
r ) +

∑
o∈O′

xNE
o co(x

NE
o )

=
∑

r∈R\O′

xNE
r cr(x

NE
r ) +

∑
o∈O′

(zo + xOPT
o + x′

o)co(x
NE
o )

≥
∑

r∈R\O′

xNE
r cr(x

NE
r ) +

∑
o∈O′

zoco(x
NE
o ).

Next, we will bound
∑

r∈R\O′ xNE
r cr(x

NE
r ) in terms of

∑
o∈O′ zoco(x

NE
o ). To this end, we use∑

r∈R\O′

xNE
r cr(x

NE
r ) =

∑
u∈U ′

xNE
u cu(x

NE
u ) +

∑
r∈R\(U ′∪O′)

xNE
r cr(x

NE
r ). (4.5)

First, we bound the sum over u ∈ U ′ in (4.5). We introduce p as the maximum number of resources
in O′ picked by a single player in xNE, so

p := max
i∈N

|{r ∈ xNE
i : r ∈ O′}|.

We now know that there are at least 1
p

∑
o∈O′ xNE

o different players picking resources in O′ in xNE.
By definition, co(xNE

o ) > cu(x
NE
u + 1) for all o ∈ O′, u ∈ U ′, so for the Nash inequality (Lemma 3.1)

to hold, all players that pick a resource in O′ must also use all resources in U ′ in xNE. This gives∑
u∈U ′

xNE
u ≥ |U ′|

p

∑
o∈O′

xNE
o

=
|U ′|
p

∑
o∈O′

(zo + xOPT
o + x′

o)

≥ |U ′|
p

∑
o∈O′

zo.

Note that this argumentation also implies k ≥ |U ′| + p. By Lemmas 3.4 and 3.3 we obtain
cu(x

NE
u ) = cu(x

NE
u + 1) ≥ 2−dco(x

NE
o ) for all u ∈ U ′, o ∈ O′. We can conclude∑

u∈U ′

xNE
u cu(x

NE
u ) ≥ |U ′|

2dp

∑
o∈O′

zoco(x
NE
u ). (4.6)

Next, we bound the sum over r ∈ R\(U ′ ∪ O′) in (4.5). We do this by arguing that there are
players that cannot pick all their k resources in U ′ and O′ in xNE, so they must pick at least some
resources in R\(U ′ ∪O′) in xNE.

Since the resources in U ′ are underloaded, there must be some set of players N ′ ⊆ N and
qi ∈ {0, . . . , |U ′| − 1}, q′i ∈ {1, . . . , |U ′|} for all i ∈ N ′ such that each player i ∈ N ′ uses qi resources
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in U ′ in xNE and qi + q′i resources in U ′ in xOPT. In xNE, each of these players uses k resources,
and at most |U ′| − 1 of those in U ′. If such a player would use a resource in O′, then they would
have to use all resources in U ′, by the definition of U ′ and O′ and by the Nash inequality (Lemma
3.1). Therefore, in xNE, none of the players in N ′ use a resource in O′. We then obtain that all
remaining resources are picked in R\(U ′ ∪O′). Thus∑

r∈R\(U ′∪O′)

xNE
r ≥

∑
i∈N ′

(k − qi)

≥
∑
i∈N ′

(k + q′i − |U ′|)

= |N ′|(k − |U ′|) +
∑
i∈N ′

q′i,

since qi + q′i ≤ |U ′|. Moreover, we can bound the number of players in N ′ by observing that each
such player cannot pick a resource in U ′ multiple times. We then obtain

|N ′| ≥ 1

|U ′|
∑
u∈U ′

(xOPT
u − xNE

u )

=
1

|U ′|
∑
u∈U ′

(zu + x′
u)

≥ 1

|U ′|
∑
u∈U ′

zu

=
1

|U ′|
∑
o∈O′

zo,

where the last equality was proved within the proof of Lemma 4.3. We thus obtain∑
r∈R\(U ′∪O′)

xNE
r ≥ k − |U ′|

|U ′|
∑
o∈O′

zo +
∑
i∈N ′

q′i.

Next, we observe∑
i∈N ′

q′i =
∑
u∈U ′

(xOPT
u − xNE

u ) =
∑
u∈U ′

(zu + x′
u) ≥

∑
u∈U ′

zu =
∑
o∈O′

zo.

This gives us ∑
r∈R\(U ′∪O′)

xNE
r ≥ k − |U ′|

|U ′|
∑
o∈O′

zo +
∑
o∈O′

zo

=
k

|U ′|
∑
o∈O′

zo

≥ |U ′|+ p

|U ′|
∑
o∈O′

zo

= (1 +
p

|U ′|
)
∑
o∈O′

zo. (4.7)

By Lemmas 3.2 and 3.3 we obtain cr(x
NE
r ) ≥ 2−dcr(x

NE
r + 1) ≥ 2−2dco(x

NE
o ) for all r ∈ R, o ∈ O′ :

xNE
r < n. Since PoA(I) ≥ 1

1−d(d+1)−(d+1)/d , we obtain by Lemma 3.6 that xNE
r < n for all r ∈ R, so

we can conclude ∑
r∈R\(U ′∪O′)

xNE
r cr(x

NE
r ) ≥ 2−2d(1 +

p

|U ′|
)
∑
o∈O′

zoco(x
NE
o ). (4.8)

By inequalities (4.5), (4.6) and (4.8), we obtain∑
r∈R\O′

xNE
r cr(x

NE
r ) ≥ |U ′|

2dp

∑
o∈O′

zoco(x
NE
u ) + 2−2d(1 +

p

|U ′|
)
∑
o∈O′

zoco(x
NE
u )

=
( |U ′|
2dp

+
1

22d
+

p

22d|U ′|

) ∑
o∈O′

zoco(x
NE
u ).
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This inequality could hold for any p, |U ′| ∈ Z≥1, so we obtain∑
r∈R\O′

xNE
r cr(x

NE
r ) ≥ min

p,|U ′|∈Z≥1

( |U ′|
2dp

+
1

22d
+

p

22d|U ′|

) ∑
o∈O′

zoco(x
NE
u )

≥ min
z∈R>0

( z

2d
+

1

22d
+

1

22dz

) ∑
o∈O′

zoco(x
NE
u )

= (21−3d/2 + 2−2d)
∑
o∈O′

zoco(x
NE
u ),

where the minimum is attained at z = 2−d/2. Finally we obtain

C(xNE) ≥
∑

r∈R\O′

xNE
r cr(x

NE
r ) +

∑
o∈O′

zoco(x
NE
o )

≥ (1 + 21−3d/2 + 2−2d)
∑
o∈O′

zoco(x
NE
u ),

or ∑
o∈O′

zoco(x
NE
u ) ≤ 1

1 + 21−3d/2 + 2−2d
C(xNE)

=
1− ρd
1− 2−d

C(xNE),

where ρd is defined as in Lemma 4.1.

We conclude with the main theorem.

Theorem 1. For the class Gd
k of symmetric k-uniform congestion games with cost functions of

maximum degree d holds

PoA(Gd
k) ≤

νd
ρd − µd

,

where νd, ρd and µd are defined as in Lemma 4.1.

Proof. Let Gd
k be the class of symmetric k-uniform congestion games with cost functions of max-

imum degree d and I = (N,R, (cr)r∈R, X) ∈ Gd
k . Now two cases are distinguished: PoA(I) ≥

1
1−d(d+1)−(d+1)/d and PoA(I) < 1

1−d(d+1)−(d+1)/d . In the first case, we obtain an upper bound for
PoA(I) that is larger than 1

1−d(d+1)−(d+1)/d . This upper bound thus also holds in the second case.
Therefore, it can be presented as the upper bound in all cases.

We assume PoA(I) ≥ 1
1−d(d+1)−(d+1)/d . Then

(1− µd)C(xNE) ≤ νd C(xOPT) +
∑
o∈O

(
xNE
o − xOPT

o

)
co(x

NE
o )−

∑
u∈U

(
xOPT
u − xNE

u

)
cu(x

NE
u + 1)

≤ νd C(xOPT) +
∑
o∈O′

zoco(x
NE
o )−

∑
u∈U ′

zucu(x
NE
u + 1)

≤ νd C(xOPT) + (1− 2−d)
∑
o∈O′

zoco(x
NE
o )

≤ νd C(xOPT) + (1− ρd)C(xNE),

where the first inequality follows from Lemma 4.1, the second from Lemma 4.2, the third from
Lemma 4.3 and the fourth from Lemma 4.4. We obtain

PoA(I) ≤ νd
ρd − µd

.

The proof of

νd
ρd − µd

≥ 1

1− d(d+ 1)−(d+1)/d
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Figure 4.1: Upper bound for PoA(Gd
k)

is given in Appendix A.4. Finally we obtain

PoA(Gd
k) = max

I∈Gd
k

PoA(I)

= max
I∈Gd

k

max
xNE∈NE(I)

C(xNE)

C(xOPT)

≤ νd
1− µd − (1− ρd)

=
νd

ρd − µd
.

The upper bound presented in Theorem 1 asymptotically grows as Θ(2d(1+d)), which is proven in
Appendix C. The bound is shown in Figure 4.1 for 0 ≤ d ≤ 2. For some values of d, the approximate
result is given explicitly.

4.1.2 Lower bound for the PoA
In this section, we present a lower bound for the PoA of symmetric k-uniform congestion games
with cost functions of maximum degree d.

Theorem 2. For the class Gd
k of symmetric k-uniform congestion games with cost functions of

maximum degree d holds

PoA(Gd
k) ≥

4 +
√
2(1 + 2d+1)

4 + 3
√
2

.

Proof. For some p, q ∈ N, we will construct an instance I ∈ Gd
p+q of a symmetric (p+ q)-uniform

congestion game with cost functions of maximum degree d and PoA(I) → 4+
√
2(1+2d+1)

4+3
√
2

if p/q →
√
2.

Let the set of players be M ∪ N , with |M | = p and |N | = 2q. Let the set of resources be
R = U ∪ V ∪W , with |U | = q, |V | = pq and |W | = p(p+ q). Resources u ∈ U have cost cu(x) = 1
and resources r ∈ V ∪W have cost cr(x) = xd.

There is a Nash equilibrium xNE that looks as follows. All players in N pick all q resources in U ,
and moreover pick p resources in V , each of those shared with one other player from N . All players
in M pick p+ q resources in W , none of those shared. This results in cu(x

NE
u ) = 1 for all u ∈ U ,

cv(x
NE
v ) = 2d for all v ∈ V and cw(x

NE
w ) = 1 for all w ∈ W . No player can improve their costs by

deviating; the players in M already chose the cheapest resources (with cost 1) and the players in N
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cannot choose more resources in U nor pick a better resource in V ∪W , since choosing another
resource v ∈ V would cost cv(x

NE
u + 1) = 3d and choosing another resource w ∈ W would cost

cw(x
NE
w + 1) = 2d. The cost of this equilibrium is 2dp+ q for players in N and p+ q for players in

M . This results in

C(xNE) = p2 + (2d+1 + 1)pq + 2q2.

A system optimum solution xOPT looks as follows. All players pick all q resources in U and moreover
pick p resources in V ∪W , none of those shared. The cost of this optimum solution is p+ q for all
players. This results in

C(xOPT) = p2 + 3pq + 2q2.

This implies for the price of anarchy of symmetric k-uniform congestion games with cost functions
of maximum degree d that

PoA(Gd
k) ≥ sup

p,q∈N

p2 + (2d+1 + 1)pq + 2q2

p2 + 3pq + 2q2
= sup

p,q∈N

(p/q)2 + (2d+1 + 1)p/q + 2

(p/q)2 + 3p/q + 2

= max
z∈R≥0

z2 + (2d+1 + 1)z + 2

z2 + 3z + 2
=

4 +
√
2(1 + 2d+1)

4 + 3
√
2

,

where the maximum is attained at z =
√
2. For p, q ∈ N we can let p

q get as close to
√
2 as we

want.

A small example of the lower bound presented in Theorem 2, with p = 2, q = 1 and d = 1, is shown
in Figure 4.2.

Resources

c1(x) = 1 c2(x) = x c3(x) = x c4(x) = x

xOPT 1 2 3 4 1 1 2

xNE 1 2 1 2 1 2 3

Resources

c5(x) = x c6(x) = x c7(x) = x c8(x) = x c9(x) = x

xOPT 2 3 3 4 4

xNE 3 3 4 4 4

Figure 4.2: An instance as described in the proof of Theorem 2 with p = 2, q = 1 and d = 1. We
have U = {1}, V = {2, 3}, W = {4, . . . , 9} and N = {1, 2}, M = {3, 4}.

The lower bound presented in Theorem 2 asymptotically grows as Θ(2d), which is proven in
Appendix C. The bound is shown in Figure 4.3 for 0 ≤ d ≤ 2. For some values of d, the approximate
result is given explicitly. For comparison, the upper bound as presented in Theorem 1 is shown in
the plot as well.
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Figure 4.3: Lower bound for PoA(Gd
k)

4.1.3 Conjecture
In this section, we present a conjecture for the cost of resources in a Nash equilibrium of a critical
instance of a symmetric k-uniform congestion game. The conjecture is similar to Lemma 3.3, but
only considers critical instances and is more powerful for these instances. If the conjecture is correct,
then we obtain a better upper bound for PoA(Gd

k). For d = 1, we would obtain PoA(G1
k) ≤ 1.81.

First, we present the conjecture. Second, we present two intuitive arguments as to why the
conjecture may hold. Third, we suggest a proof structure and fourth we present the consequences if
the conjecture is proven to be correct.

Conjecture 4.1. Let I = (N,R, (cr)r∈R, X) ∈ Gd
k be a critical instance of a symmetric k-

uniform congestion game with cost functions of maximum degree d and let xNE ∈ NE∗(I) and
xOPT ∈ OPT(I). Then

cr(x
NE
r ) ≥ 2−dco(x

NE
o )

for all resources r ∈ R, o ∈ O′.

Recall that O′ ⊆ O contains the resources o ∈ O with x′
o < xNE

o − xOPT
o .

We present two intuitive arguments as to why the conjecture may hold. Firstly, the price of anarchy
of instances for which the conjecture does not hold seems to be relatively small, which suggests
that such instances are never critical. To illustrate this, an instance I of a symmetric 3-uniform
congestion game for which the conjecture does not hold is shown in Figure 4.4. In particular,
resources 1 = r and 2 = o do not meet the conjecture. The price of anarchy of this instance is
PoA(I) = 13/11 ≈ 1.18. A different instance Ĩ of a symmetric 3-uniform congestion game with the
same number of resources and players for which the conjecture does hold is shown in Figure 4.5.
The price of anarchy of this instance is PoA(Ĩ) = 4/3 ≈ 1.33. Since PoA(Ĩ) > PoA(I), instance I
cannot be critical.

Resources

c1(x) = x c2(x) = 4x c3(x) = 2 c4(x) = 2x c5(x) = 2x c6(x) = 2x

xOPT 1 1 2 1 2 2

xNE 1 1 1 2 2 2

Figure 4.4: An instance of a non-critical symmetric 3-uniform congestion game for which
Conjecture 4.1 does not hold.
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Resources

c1(x) = x c2(x) = x c3(x) = x c4(x) = 2 c5(x) = 2 c6(x) = 2

xOPT 1 1 1 2 2 2

xNE 1 2 1 2 1 2

Figure 4.5: An instance of a symmetric 3-uniform congestion game for which Conjecture 4.1 holds.

Secondly, we already proved that the conjecture holds for symmetric 2-uniform congestion games in
Lemma 4.5. The properties of symmetric 2-uniform congestion games may of course differ from the
properties of symmetric k-uniform congestion games, but the fact that the conjecture holds for at
least a subclass of symmetric k-uniform congestion games does support the conjecture.

Now we present a proof structure that may be used to prove the conjecture.

Suggested proof structure. By contradiction. Consider a critical instance I = (N,R, (cr)r∈R, X) ∈ Gd
k

of a symmetric k-uniform congestion game with cost functions of maximum degree d and let xNE ∈
NE∗(I) and xOPT ∈ OPT(I). Assume there are resources r ∈ R, o ∈ O′ with cr(x

NE) < 2−dco(x
NE
o ).

• Observe that r ∈ B ∪O (where B is the set of balanced resources), because if r ∈ U then

cr(x
NE
r ) = cr(x

NE
r + 1) ≥ 2−dco(x

NE
o ),

where the equality follows from Lemma 3.4 and the inequality follows from Lemma 3.3.

• It seems likely that r ∈ B, since this resource is relatively cheap. For the instance in Figure 4.4,
this is indeed the case. Then one can make the argument that balanced resources decrease the price
of anarchy of instances. Therefore, it is likely that there is an instance without such a balanced
resource that has a larger price of anarchy. Note that the instance in Figure 4.5 indeed has no
balanced resources. Alternatively, one can look at the following arguments.

• Since o ∈ O′, we know xNE
o ≥ 1. Let player p ∈ N use resource o in xNE, then this player must

also use resource r, by the Nash inequality (Lemma 3.1):

cr(x
NE
r + 1) ≤ 2dcr(x

NE
r ) < cr(x

NE
o ),

where the first inequality follows from Lemma 3.2.

• By Lemma 3.6, we know that there exists a player q ∈ N not using resource r. Let this player
use some resource s ∈ R. Then we obtain

cs(x
NE
s ) ≤ cr(x

NE
r + 1) ≤ 2dcr(x

NE
r ) < co(x

NE
o ),

where the first inequality follows from the Nash inequality (Lemma 3.1) and the second inequality
follows from Lemma 3.2. At least two such resources s1, s2 are not used by player p, since player p
and player q use the same number of resources. For these resources must hold si ∈ B ∪O, i = 1, 2,
since if si ∈ U then

csi(x
NE
si + 1) = csi(x

NE
si ) < co(x

NE
o ),

where the equality follows from Lemma 3.4. By the Nash inequality (Lemma 3.1), player q would
then also use resources s1 and s2.

• It seems likely that for all underloaded resources u ∈ U holds

cu(x
NE
u ) < co(x

NE
o ),

since it would not make sense that the resources that are used more often in the optimal strategy
than in the Nash equilibrium are relatively expensive. It follows that player p uses all underloaded
resources, by the Nash inequality (Lemma 3.1):

cu(x
NE
u + 1) = cu(x

NE
u ) < co(x

NE
o ),
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where the equality follows from Lemma 3.4. Since there must be at least one underloaded resource,
it follows that there must be at least one other resource s3 ∈ B ∪O used by player q and not by
player p. If all these resources s1, s2, s3 are overloaded, then it seems likely that there exists more
than one underloaded resource. This would again result in more resources si ∈ B ∪ O used by
player p and not by player q. Therefore, some resources si ∈ B ∪O are probably balanced. This is
indeed true for the instance in Figure 4.4, for the resources 4 = s1, 5 = s2, 6 = s3. Again, one can
make the argument that balanced resources decrease the price of anarchy of instances. ◀

Lastly, we elaborate on the consequences of Conjecture 4.1, if it were true. The first consequence is
an improvement of Lemma 4.4.

Consequence 4.1.1 (Conjecture 4.1). Let I = (N,R, (cr)r∈R, X) ∈ Gd
k be a critical instance of

a symmetric k-uniform congestion game with cost functions of maximum degree d and PoA(I) ≥
1

1−d(d+1)−(d+1)/d . Let xNE ∈ NE∗(I) and xOPT ∈ OPT(I). Then∑
o∈O′

zoco(x
NE
o ) ≤ 1

1 + 3/2d
C(xNE).

The proof is identical to the proof of Lemma 4.6, which states the same property but for the case
k = 2, for which we are able to prove the validity of Conjecture 4.1. The second consequence is an
upper bound for the PoA that improves upon the upper bound as stated in Theorem 1.

Consequence 4.1.2 (Conjecture 4.1). For the class Gd
k of symmetric k-uniform congestion games

with cost functions of maximum degree d, we obtain

PoA(Gd
k) ≤

ν̂d
ρ̂d − µ̂d

where µ̂d, ν̂d and ρ̂d are as defined in Theorem 3.

Again, the proof is almost identical to the proof of Theorem 3, which states the same property but
for the case k = 2. A visualisation of this result can therefore be found in Figure 4.6. For d = 1 we
obtain PoA(G1

k) ≤ 1.81.

4.2 Games with k = 2

4.2.1 Upper bound for the PoA
For symmetric 2-uniform congestion games with cost functions of maximum degree d (Gd

2 ), we
can improve upon the upper bound for the PoA that was shown for general k. The improved
upper bound is a result of the use of Lemma 4.5. This lemma states that only a limited number of
resources r ∈ R can have a cost cr(x

NE
r ) < 2−dco(x

NE
o ) for some resource o ∈ O′, otherwise players

using o must use more than k resources.

Lemma 4.5. Let I = (N,R, (cr)r∈R, X) ∈ Gd
≤k be an instance of a (semi-)symmetric k-uniform

congestion game and let xNE ∈ NE∗(I) and xOPT ∈ OPT(I). Then there are at most k−2 resources
r ∈ R for which there exists a resource o ∈ O′ with cr(x

NE
r ) < 2−dco(x

NE
o ).

Proof. The proof is by contradiction. Let I, xNE and xOPT be as in the lemma and assume there
are k − 1 distinct resources r1, . . . , rk−1 ∈ R with cri(x

NE
ri ) < 2−dcoi(x

NE
oi ), oi ∈ O′, 1 ≤ i ≤ k − 1.

Let Omax = {o ∈ {o1, . . . , ok−1} : co(x
NE
o ) = maxi coi(x

NE
oi )} and let o ∈ Omax. Then

cri(x
NE
ri + 1) ≤ 2dcri(x

NE
ri ) < coi(x

NE
oi ) ≤ co(x

NE
o ),

where the first inequality follows from Lemma 3.3. By the Nash inequality (Lemma 3.1), players
using resource o must also use all resources r1, . . . , rk−1 in xNE.

Furthermore, since o ∈ O′ we know cu(x
NE
u + 1) < co(x

NE
o ) for all u ∈ U ′. By the Nash inequality

(Lemma 3.1), players using resource o must also use all resources u ∈ U ′ in xNE. We can assume
that there exists at least one such resource u ∈ U ′, because if |U ′| = 0 then |O′| = 0 and the lemma
would be trivial. Moreover,

cu(x
NE
u ) = cu(x

NE
u + 1) ≥ 2−dco(x

NE
o ),
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where the equality follows from Lemma 3.4 and the inequality follows from Lemma 3.3. Therefore,
u ̸= ri for i = 1, . . . , k − 1.

In conclusion, players using o must also use resources r1, . . . , rk−1 and all resources in U ′, which
results in the usage of at least k + 1 resources. This is a contradiction.

For 2-uniform congestion games, Lemma 4.5 simplifies to

cr(x
NE
r ) ≥ 2−dco(x

NE
o )

for all resources r ∈ R, o ∈ O′. This can be used to obtain a lemma that improves upon Lemma 4.4.

Lemma 4.6. Let I = (N,R, (cr)r∈R, X) ∈ Gd
2 be a critical instance of a symmetric 2-uniform

congestion game with cost functions of maximum degree d and PoA(I) ≥ 1
1−d(d+1)−(d+1)/d . Let

xNE ∈ NE∗(I) and xOPT ∈ OPT(I). Then∑
o∈O′

zoco(x
NE
o ) ≤ 1

1 + 3/2d
C(xNE).

Proof. The proof is similar to the proof of Lemma 4.4. Again, we use

C(xNE) ≥
∑

r∈R\O′

xNE
r cr(x

NE
r ) +

∑
o∈O′

zoco(x
NE
o ),

∑
r∈R\O′

xNE
r cr(x

NE
r ) =

∑
u∈U ′

xNE
u cu(x

NE
u ) +

∑
r∈R\(U ′∪O′)

xNE
r cr(x

NE
r ),

∑
u∈U ′

xNE
u cu(x

NE
u ) ≥ |U ′|

2dp

∑
o∈O′

zoco(x
NE
u ), and

∑
r∈R\(U ′∪O′)

xNE
r ≥ (1 +

p

|U ′|
)
∑
o∈O′

zo.

Different than in the proof of Lemma 4.4, we now can use Lemma 4.5 to obtain cr(x
NE
r ) ≥ 2−dco(x

NE
o )

for all r ∈ R\(U ′ ∪O′), o ∈ O′. This gives∑
r∈R\(U ′∪O′)

xNE
r cr(x

NE
r ) ≥ (1 +

p

|U ′|
)
1

2d

∑
o∈O′

zoco(x
NE
o ).

Finally, we can conclude

C(xNE) ≥
(
1 +

|U ′|
2dp

+ (1 +
p

|U ′|
)
1

2d

) ∑
o∈O′

zoco(x
NE
o )

=
(
1 +

1

2d
(1 +

|U ′|
p

+
p

|U ′|
)
) ∑

o∈O′

zoco(x
NE
o )

≥
(
1 +

3

2d

) ∑
o∈O′

zoco(x
NE
o ).

Rearranging this proves the lemma.

Next, Lemma 4.6 can be used to obtain an upper bound for the PoA of symmetric 2-uniform
congestion games that is better than the upper bound for the PoA of symmetric k-uniform congestion
games for general k.

Theorem 3. For the class Gd
2 of symmetric 2-uniform congestion games with cost functions of

maximum degree d holds

PoA(Gd
2 ) ≤

ν̂d
ρ̂d − µ̂d
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where

µ̂d :=

{
d

d+1 (d+ 1)−1/d d ≤ d̂
d

d+1 ρ̂d d > d̂

ν̂d :=

{
1 d ≤ d̂
1

d+1 (ρ̂d)
−d d > d̂

ρ̂d :=
4

2d + 3

and d̂ ≈ 2.0 is the unique solution to

(d̂+ 1)−1/d̂ = ρ̂d̂.

Proof. Different than in the analysis of symmetric k-uniform congestion games with general k,
the existence of a critical instance of a symmetric 2-uniform congestion game is not guaranteed.
Therefore, two cases are distinguished. Case 1: there exists some critical instance I ∈ Gd

2 , so
PoA(Gd

2 ) > PoA(Gd
1 ). Case 2: there exists no critical instance I ∈ Gd

2 , so PoA(Gd
2 ) ≤ PoA(Gd

1 ). For
case 1, we prove an upper bound for PoA(Gd

2 ) that is larger than an upper bound for PoA(Gd
1 ).

Since this upper bound is also valid in case 2, it can be presented as the upper bound for PoA(Gd
2 )

in all cases.

We thus assume that there exists some critical instance I = (N,R, (cr)r∈R, X) ∈ Gd
2 . In addition,

as in the proof of Theorem 1, we assume that PoA(I) ≥ 1
1−d(d+1)−(d+1)/d . Then we obtain an

upper bound for PoA(I) that is larger than 1
1−d(d+1)−(d+1)/d . This upper bound thus also holds

if PoA(I) < 1
1−d(d+1)−(d+1)/d . Therefore, it can be presented as the upper bound in all cases. As

shown in the proof of Lemma 4.1, for any µ > 0 holds

(1− µ)C(xNE) ≤ max{1, λ}C(xOPT) +
∑
o∈O

(xNE
o − xOPT

o )co(x
NE
o )−

∑
u∈U

(xOPT
u − xNE

u )cu(x
NE
u + 1),

where

λd :=
1

(µd)d(d+ 1)

( d

d+ 1

)d

.

Since the result of Theorem 1 is improved using the result of Lemma 4.6, there is a new value
µ̂d ̸= µd that minimises the PoA.

We now obtain for all I = (N,R, (cr)r∈R, X) ∈ Gd
2 :

(1− µ̂d)C(xNE) ≤ ν̂dC(xOPT) +
∑
o∈O

(xNE
o − xOPT

o )co(x
NE
o )−

∑
u∈U

(xOPT
u − xNE

u )cu(x
NE
u + 1)

≤ ν̂d C(xOPT) +
∑
o∈O′

zoco(x
NE
o )−

∑
u∈U ′

zucu(x
NE
u )

≤ ν̂d C(xOPT) + (1− 2−d)
∑
o∈O′

zoco(x
NE
o )

≤ ν̂d C(xOPT) +
2d − 1

2d + 3
C(xNE),

where the first inequality follows from Lemma 4.1, the second from Lemma 4.2, the third from
Lemma 4.3 and the fourth from Lemma 4.6. Finally we obtain

PoA(Gd
2 ) = max

I∈Gd
2

PoA(I)

= max
I∈Gd

2

max
xNE∈NE(I)

C(xNE)

C(xOPT)

≤ ν̂d
ρ̂d − µ̂d

,
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Figure 4.6: Upper bound for PoA(Gd
2 ).

where µ̂d, ν̂d and ρ̂d are defined as in the theorem.

Now, we prove that this upper bound exceeds an upper bound for PoA(Gd
1 ). To that end, we

consider the upper bound that was proven by Fotakis [2007]:

PoA(Gd
1 ) ≤

1

1− d(d+ 1)−(d+1)/d
.

In Appendix A.5 is proven that the general upper bound proven by Fotakis [2007] reduces to this
form for the games that we consider. In Appendix A.4 is proven that

ν̂d
ρ̂d − µ̂d

≥ 1

1− d(d+ 1)−(d+1)/d
.

Note that this is both a proof that the upper bound exceeds an upper bound for PoA(Gd
1 ) and that

the upper bound exceeds 1
1−d(d+1)−(d+1)/d . The uniqueness of d̂ is proven in Appendix B.

The upper bound presented in Theorem 3 asymptotically grows as Θ(2d(d−1)), which is proven in
Appendix C. The bound is shown in Figure 4.6 for 0 ≤ d ≤ 2. For some values of d, the approximate
result is given explicitly.

4.2.2 Lower bound for the PoA
In this section, we present a lower bound for the PoA of symmetric 2-uniform congestion games
with cost functions of maximum degree d.

Theorem 4. For the class Gd
2 of symmetric 2-uniform congestion games with cost functions of

maximum degree d holds

PoA(Gd
2 ) ≥

2 + 2d

3
.

Proof. We will construct an instance I ∈ Gd
2 of a symmetric 2-uniform congestion game with cost

functions of maximum degree d and PoA(I) = 2+2d

3 . The game is explained in more detail next
and is shown in Figure 4.7 for d = 1. Let the set of players be N = {1, 2, 3} and the set of resources
R = {1, 2, 3, 4}. Resource 1 has cost 1 and resources 2, 3 and 4 have cost cr(x) = xd, r = 2, 3, 4.

There is a Nash equilibrium xNE that looks as follows: players 1 and 2 pick resources 1 and 2. Player
3 picks resources 3 and 4. This results in c1(x

NE
1 ) = c3(x

NE
3 ) = c4(x

NE
4 ) = 1 and c2(x

NE
2 ) = 2d. No

32



player can improve their costs by deviating, since c1(xNE
1 +1) = 1 and c3(x

NE
3 +1) = c4(x

NE
4 +1) = 2d.

This results in

C(xNE) = 4 + 2d+1.

A system optimum solution xOPT looks as follows: all players pick resource 1, player 1 picks resource
2, player 2 picks resource 3 and player 3 picks resource 4. This results in

C(xOPT) = 6.

This implies for the price of anarchy of symmetric 2-uniform congestion games with cost functions
of degree d that

PoA(Gd
2 ) ≥

4 + 2d+1

6
=

2 + 2d

3
.

Resources

c1(x) = 1 c2(x) = x c3(x) = x c4(x) = x

xOPT 1 2 3 1 2 3

xNE 1 2 1 2 3 3

Figure 4.7: The instance as described in the proof of Lemma 4 with d = 1.

The lower bound presented in Theorem 4 asymptotically grows as Θ(2d), which is proven in
Appendix C. The bound is shown in Figure 4.8 for 0 ≤ d ≤ 2. For some values of d, the approximate
result is given explicitly. For comparison, the upper bound as presented in Theorem 3 is shown in
the plot as well.

1.32

2.77

1.82

1.14
1.33

1.61

2.00

Figure 4.8: Lower bound for PoA(Gd
2 ).

It it worth mentioning that the lower bound presented in Theorem 4 with d = 1 is 4/3, which
equals the price of anarchy of singleton congestion games with d = 1. It is therefore tempting
to suspect that the price of anarchy of symmetric 2-uniform congestion games equals the price
of anarchy of singleton congestion games. However, the price of anarchy of singleton congestion
asymptotically grows as Θ(d/ log d) and because of Theorem 4 we know that the price of anarchy of
symmetric 2-uniform congestion games asymptotically grows as Ω(2d). Since 2d outgrows d/ log d,
PoA(Gd

2 ) ̸= PoA(Gd
1 ) for large d. In particular, for d > 1, we obtain PoA(Gd

2 ) > PoA(Gd
1 ). For the

case d = 2 holds PoA(G2
2) ≥ 2 and PoA(G2

1) ≤ 1.63 (Fotakis [2007]).
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Chapter 5

The PoA of semi-symmetric
k-uniform congestion games

In this section, the price of anarchy of semi-symmetric k-uniform congestion games with cost
functions of maximum degree d (Gd

≤k) is studied. To the best of our knowledge, this has not
been studied before. The same trivial upper and lower bound that hold for the price of anarchy
of symmetric k-uniform congestion games also hold for the price of anarchy of semi-symmetric
k-uniform congestion games. As to the upper bound: PoA(Gd

≤k) cannot exceed the price of
anarchy of general atomic congestion games with cost functions of maximum degree d. The latter
asymptotically grows as Θ(d/ log d)d+1 (Aland et al. [2011]), so PoA(Gd

≤k) asymptotically grows as
O(d/ log d)d+1. As to the lower bound: PoA(Gd

≤k) is larger than the price of anarchy of singleton
congestion games with cost functions of maximum degree d, since Gd

1 ⊂ Gd
≤k. The price of anarchy

of singleton congestion games asymptotically grows as Θ(d/ log d) (Fotakis [2007]), so PoA(Gd
≤k)

asymptotically grows as Ω(d/ log d).

First, semi-symmetric k-uniform congestion games with general k are considered. We elaborate on
the properties of these games and prove a lower bound for the price of anarchy that asymptotically
grows as Θ(2d). We present a conjecture that results in an upper bound that asymptotically
grows as Θ(3d(d+1)). Moreover, we present a second conjecture that results in an upper bound
that asymptotically grows as Θ(2d

2

). Both upper bounds leave room for improvement, since
3d(d+1) ≠ O(d/ log d)d+1 and 2d

2 ̸= O(d/ log d)d+1. However, for small enough d, both upper
bounds improve upon the general bound.

Second, semi-symmetric 2-uniform congestion games are considered. The upper and lower bound
that are proven asymptotically grow as Θ((2/3)d2d

2

) and Θ(2d), respectively. The upper bound is
not tight, since (2/3)d2d

2 ̸= O(d/ log d)d+1. However, for small d it still improves upon the general
bound.

5.1 Games with general k

5.1.1 Properties
There are some lemmas that we were not able to prove for semi-symmetric k-uniform congestion
games. The most important among these are Lemmas 3.3 and 4.4: all other lemmas that do not
hold for semi-symmetric k-uniform congestion games use these. In this section, we present a lemma
that is similar to a part of Lemma 4.4. We have not proven an upper bound for the price of anarchy
of semi-symmetric k-uniform congestion games with general k, since we have not proven a lemma
similar to Lemma 3.3.

There are two reasons why we cannot prove that Lemma 4.4 holds for semi-symmetric k-uniform
congestion games. Firstly, Lemma 3.3 is used. Secondly, inequality (4.7) used in the proof of
Lemma 4.4 does not hold for semi-symmetric k-uniform congestion games. This inequality states
for a critical instance I ∈ Gd

k of a symmetric k-uniform congestion game with xNE ∈ NE∗(I) and
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xOPT ∈ OPT(I) that ∑
r∈R\(U ′∪O′)

xNE
r ≥ (1 +

p

|U ′|
)
∑
o∈O′

zo,

where

p := max
i∈N

|{r ∈ xNE
i : r ∈ O′}|.

A counterexample of this inequality for semi-symmetric k-uniform games is shown in Figure
5.1. For this instance holds U ′ = {1}, O′ = {3}, p = 1 and thus

∑
r∈R\(U ′∪O′) x

NE
r = 1 < 2 =

(1 + p/|U ′|)
∑

o∈O′ zo.

Resources

c1(x) = 1 c2(x) = x c3(x) = 2x

xOPT 1 2 2

xNE 2 1 2

Figure 5.1: An instance of a semi-symmetric 2-uniform congestion game for which inequality (4.7)
does not hold.

We obtain an inequality similar to inequality (4.7) that does hold for semi-symmetric k-uniform
congestion games.

Lemma 5.1. Let I = (N,R, (cr)r∈R, X) ∈ Gd
≤k be a a critical instance of a semi-symmetric

k-uniform congestion game with cost functions of maximum degree d and let xNE ∈ NE∗(I) and
xOPT ∈ OPT(I). Then ∑

r∈R\(U ′∪O′)

xNE
r ≥

∑
o∈O′

zo.

Proof. Similarly as in the proof of Lemma 4.4, we use∑
r∈R\(U ′∪O′)

xNE
r ≥

∑
i∈N ′

(ki − qi).

However, now that ki depends on i, we can only conclude∑
r∈R\(U ′∪O′)

xNE
r ≥

∑
i∈N ′

(ki − qi)

≥
∑
i∈N ′

q′i

≥
∑
o∈O′

zo,

where we used qi + q′i ≤ ki. For the proof of
∑

i∈N ′ q′i ≥
∑

o∈O′ zo we refer to the proof of Lemma
4.4.

It is worth mentioning that we have not found an instance of a semi-symmetric k-uniform congestion
game that does not meet the property of Lemma 4.4, even though we found a counterexample of an
inequality in the proof. In Section 5.1.3 we present a conjecture that is related to this observation.
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5.1.2 Lower bound for the PoA
In this section, we present a lower bound for the PoA of semi-symmetric k-uniform congestion
games with cost functions of maximum degree d.

Theorem 5. For the class Gd
≤k of semi-symmetric k-uniform congestion game with cost functions

of maximum degree d holds

PoA(Gd
≤k) ≥

1 + 2d+1

3
.

Proof. For some p, q ∈ N, we will construct an instance I ∈ Gd
≤p+q of a semi-symmetric (p + q)-

uniform congestion game with cost functions of maximum degree d and PoA(I) → 1+2d+1

3 if
p/q → ∞.

Let the set of players be M ∪N , with |M | = p and |N | = 2q. The players in M pick q resources
and the players in N pick p + q resources. Let the set of resources be R = U ∪ V ∪ W , with
|U | = q, |V | = pq and |W | = pq. Resources u ∈ U have cost cu(x) = 1 and resources r ∈ V ∪W
have cost cr(x) = xd.

There is a Nash equilibrium xNE that looks as follows. All players in N pick all q resources in U ,
and moreover pick p resources in V , each of those shared with one other player from N . All players
in M pick q resources in W , none of those shared. No player can improve their costs by deviating;
the players in M already chose the cheapest resources (with cost 1) and the players in N cannot
choose more resources in U nor pick a better resource r ∈ V ∪W , since then cr(x

NE
r +1) ≥ 2d. The

cost of this equilibrium is q + 2d+1p for players in N and q for players in M . This results in

C(xNE) = 2q2 + (2d+1 + 1)pq.

A system optimum solution xOPT looks as follows. All players pick all q resources in U and all
players in N pick p resources in V ∪W , none of those shared. The cost of this optimum solution is
p+ q for players in N and q for players in M . This results in

C(xOPT) = 2q2 + 3pq.

This implies for the price of anarchy of semi-symmetric k-uniform congestion games with cost
functions of maximum degree d that

PoA(Gd
≤k) ≥ sup

p,q∈N

2q2 + (2d+1 + 1)pq

2q2 + 3pq
= sup

p,q∈N

2 + (2d+1 + 1)p/q

2 + 3p/q
=

1 + 2d+1

3
,

for p/q → ∞.

A small example of the lower bound presented in Theorem 5, with p = 2, q = 1 and d = 1, is shown
in Figure 5.2.

Resources

c1(x) = 1 c2(x) = x c3(x) = x c4(x) = x c5(x) = x

xOPT 1 2 3 4 1 1 2 2

xNE 1 2 1 2 1 2 3 4

Figure 5.2: An instance as described in the proof of Theorem 5 with p = 2, q = 1 and d = 1. We
have U = {1}, V = {2, 3}, W = {4, 5} and N = {1, 2}, M = {3, 4}.

The lower bound presented in Theorem 5 asymptotically grows as Θ(2d), which is proven in
Appendix C. The bound is shown in Figure 5.3 for 0 ≤ d ≤ 2. For some values of d, the approximate
result is given explicitly.
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Figure 5.3: Lower bound for PoA(Gd
≤k).

5.1.3 Conjectures
In this section, we present two conjectures for semi-symmetric k-uniform congestion games. The
first is a conjecture for the cost of resources in a Nash equilibrium a semi-symmetric k-uniform
congestion game. This conjecture is similar to Lemma 3.3. If the conjecture is correct, then we
obtain a lemma similar to Lemma 4.3 for semi-symmetric k-uniform congestion games and an upper
bound for PoA(Gd

≤k) that is larger than the upper bound 5/2 for general congestion games as proved
by Christodoulou and Koutsoupias [2005]. The second is a conjecture on the ratio of the cost of
the overloaded resources and the social cost of a Nash equilibrium in a semi-symmetric k-uniform
congestion game. This conjecture is similar to Lemma 4.4. It is a conjecture for both symmetric and
semi-symmetric k-uniform congestion games, and we present it in this section because it improves
more on the results that we have for semi-symmetric k-uniform congestion games than on the
results that we have for symmetric k-uniform congestion games. If both conjectures were correct,
then we could obtain a new upper bound for PoA(Gd

≤k). For both conjectures, we suggest a proof
structure and elaborate on the consequences if they were correct.

The first conjecture is similar to Lemma 3.3, which states that

cr(x
NE
r ) ≤ 2dcs(x

NE
s + 1)

for every instance I = (N,R, (cr)r∈R, X) of a symmetric k-uniform congestion game with cost
functions of maximum degree d, xNE ∈ NE∗(I) and xNE

r ≥ 1, xNE
s < n. This lemma does not hold

for semi-symmetric k-uniform congestion games with k ≥ 3: see the instance in Figure 5.4. In this
instance we obtain c2(x

NE
2 ) = 6 > 4 = 2c3(x

NE
3 + 1). In Section 5.2.1, we prove that Lemma 3.3

does hold for instances of semi-symmetric 2-uniform congestion games.

Resources

c1(x) = x c2(x) = 6x c3(x) = 2 c4(x) = 3x

xOPT 2 3 1 2 3 2

xNE 1 2 2 2 3 3

Figure 5.4: An instance of a semi-symmetric 3-uniform congestion game for which Lemma 3.3 does
not hold.
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Conjecture 5.1. Let I = (N,R, (cr)r∈R, X) ∈ Gd
≤k be a critical instance of a semi-symmetric

k-uniform congestion game with cost functions of maximum degree d and let xNE ∈ NE∗(I). Then

cr(x
NE
r ) ≤ 3dcs(x

NE
s + 1)

for any r, s ∈ R with xNE
r ≥ 1 and xNE

s < n.

Now we present a proof structure that may be used to prove the conjecture.

Suggested proof structure. Let I = (N,R, (cr)r∈R, X) ∈ Gd
≤k be an instance of a semi-symmetric

k-uniform congestion game with cost functions of maximum degree d and let xNE ∈ NE∗(I) and
xOPT ∈ OPT(I). Let rmax be the set of most expensive resources in xNE that are used by at least
one player:

rmax := {r ∈ R≥1 : cr(x
NE
r ) ≥ cr′(x

NE
r′ ) ∀r′ ∈ R≥1},

where R≥1 := {r ∈ R : xNE
r ≥ 1}. Similarly, let rmin be the set of least expensive resources in xNE

that are not used by at least one player:

rmin := {r ∈ R<n : cr(x
NE
r ) ≤ cr′(x

NE
r′ ) ∀r′ ∈ R<n},

where R<n := {r ∈ R : xNE
r < n}. Now, let r ∈ rmax and let s ∈ rmin. To prove the conjecture, one

needs to prove that cr(x
NE
r ) ≤ 3dcs(x

NE
s + 1) for these resources r and s.

• Let p ∈ N be a player that uses resource r and let q ∈ N be a player that does not use resource s.
If player q uses resource r, then we obtain

cr(x
NE
r ) ≤ cs(x

NE
s + 1),

by the Nash inequality (Lemma 3.1), and we are done. Otherwise, if player q uses some resource
v ∈ R not used by player p then we obtain

cr(x
NE
r ) ≤ cv(x

NE
v + 1) ≤ 2dcv(x

NE
v ) ≤ 2dcs(x

NE
s + 1),

where the first inequality follows from the Nash inequality (Lemma 3.1) since player p uses resource
r and not resource v, the second inequality follows from Lemma 3.2 and the third inequality follows
from the Nash inequality (Lemma 3.1) since player q uses resource v and not resource s. In this
case, the conjecture is proven as well.

• If player q does not use resource r and all resources that player q uses are also used by player
p then the previous proof does not hold. In symmetric k-uniform congestion games this was not
possible, since players p and q must use the same number of resources there. In semi-symmetric
k-uniform congestion games, it may be possible for player q to pick a subset of the resources of
player p: xNE

q ⊆ xNE
p \{r}. This implies xNE

v ≥ 2.

• It seems likely that player p does not use all resources. Then there must be a resource t ∈ R not
used by player p. We obtain

cr(x
NE
r ) ≤ ct(x

NE
t + 1),

by the Nash inequality (Lemma 3.1). If resource t is not used by any player in xNE then we obtain
t ∈ U and ct(x

OPT
t ) ≥ ct(x

NE
t + 1) ≥ cr(x

NE
r ), which seems unlikely since resource r is relatively

expensive. Therefore, resource t is probably used by some player a ∈ N in xNE.

• If player a uses resource v then this resource is used by at least 3 players. In all instances with
the largest PoA that we have found, no resource is ever picked by more than 2 players in xNE, both
in symmetric and in semi-symmetric k-uniform congestion games. Therefore, we assume that player
a does not use resource v. We obtain

cr(x
NE
r ) ≤ ct(x

NE
t + 1) ≤ 2dct(x

NE
t ) ≤ 2dcv(x

NE
v + 1) ≤ 3dcv(x

NE
v ) ≤ 3dcs(x

NE
s + 1)

and we are done. The first inequality follows from the Nash inequality (Lemma 3.1), since player
p uses resource r and not resource t. The second inequality follows from Lemma 3.2. The third
inequality follows from the Nash inequality (Lemma 3.1), since player a uses resource t and not
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resource v. The fourth inequality follows from a property of resources used by at least two players
that is similar to Lemma 3.2. We prove this property in Appendix A.3. The fifth inequality follows
from the Nash inequality (Lemma 3.1), since player q uses resource v and not resource s. Note that
an important cause of the appearance of the factor 3d is that at least two players are using resource
v. ◀

Lastly, we elaborate on three consequences of Conjecture 5.1, if it were true. The first consequence
is a lemma similar to Lemma 4.3 for semi-symmetric k-uniform congestion games.

Consequence 5.1.1 (Conjecture 5.1). Let I = (N,R, (cr)r∈R, X) ∈ Gd
≤k be a critical instance of a

semi-symmetric k-uniform game with cost functions of maximum degree d and let xNE ∈ NE∗(I)
and xOPT ∈ OPT(I). Then∑

o∈O′

zoco(x
NE
o )−

∑
u∈U ′

zucu(x
NE
u + 1) ≤ (1− 3−d)

∑
o∈O′

zoco(x
NE
o ).

The proof this consequence is very similar to the proof of Lemma 4.3. The only difference is within
the use of Conjecture 5.1 instead of Lemma 3.3. The second consequence is similar to Lemma 4.4
for semi-symmetric k-uniform congestion games.

Consequence 5.1.2 (Conjecture 5.1). Let I = (N,R, (cr)r∈R, X) ∈ Gd
k be a critical instance of

a symmetric k-uniform congestion game with cost functions of maximum degree d and PoA(I) ≥
1

1−d(d+1)−(d+1)/d . Let xNE ∈ NE∗(I) and xOPT ∈ OPT(I). Then

∑
o∈O′

zoco(x
NE
o ) ≤ 1

1 + 3−2d
C(xNE).

Proof. The proof is similar to the proof of Lemma 4.4. Again, we use

C(xNE) ≥
∑

r∈R\O′

xNE
r cr(x

NE
r ) +

∑
o∈O′

zoco(x
NE
o ),

∑
r∈R\O′

xNE
r cr(x

NE
r ) =

∑
u∈U ′

xNE
u cu(x

NE
u ) +

∑
r∈R\(U ′∪O′)

xNE
r cr(x

NE
r ), and

∑
u∈U ′

xNE
u ≥ |U ′|

p

∑
o∈O′

zo.

Different than in the proof of Lemma 4.4, we now use Conjecture 5.1 to obtain cu(x
NE
u ) ≥

3−dcu(x
NE
u + 1) ≥ 3−2dco(x

NE
o ) for all u ∈ U ′, o ∈ O′. This gives∑

u∈U ′

xNE
u cu(x

NE
u ) ≥ |U ′|

33dp

∑
o∈O′

zo.

Next, Conjecture 5.1 is used to obtain cr(x
NE
r ) ≥ 3−dcr(x

NE
r + 1) ≥ 3−2dco(x

NE
o ) for all r ∈

R\(U ′ ∪O′), o ∈ O′. Combined with Lemma 5.1, we obtain∑
r∈R\(U ′∪O′)

xNE
r cr(x

NE
r ) ≥ 1

32d

∑
o∈O′

zoco(x
NE
o ).

Finally, we can conclude

C(xNE) ≥
(
1 +

|U ′|
32dp

+
1

32d

) ∑
o∈O′

zoco(x
NE
o )

=
(
1 +

1

32d

) ∑
o∈O′

zoco(x
NE
o ).

Rearranging this proves the lemma.

The third consequence is an upper bound for the price of anarchy.
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Consequence 5.1.3 (Conjecture 5.1). For the class Gd
≤k of semi-symmetric k-uniform congestion

games with cost functions of maximum degree d holds

PoA(Gd
≤k) ≤

ν′′d
ρ′′d − µ′′

d

,

where

µ′′
d =

{
d

d+1 (d+ 1)−1/d d ≤ d′′

d
d+1ρ

′′
d d > d′′

ν′′d =

{
1 d ≤ d′′

1
d+1 (ρ

′′
d)

−d d > d′′

ρ′′d =
1 + 3d

1 + 9d

and d′′ ≈ 0.9 is the unique solution to

(d′′ + 1)−1/d′′
= ρ′d′′ .

Proof. Let Gd
≤k be the class of semi-symmetric k-uniform congestion games with cost functions

of maximum degree d and I = (N,R, (cr)r∈R, X) ∈ Gd
≤k. Now two cases are distinguished:

PoA(I) ≥ 1
1−d(d+1)−(d+1)/d and PoA(I) < 1

1−d(d+1)−(d+1)/d . In the first case, we obtain an upper
bound for PoA(I) that is larger than 1

1−d(d+1)−(d+1)/d . This upper bound thus also holds in the
second case. Therefore, it can be presented as the upper bound in all cases.

We thus assume PoA(I) ≥ 1
1−d(d+1)−(d+1)/d . Then,

(1− µ′′
d)C(xNE) ≤ ν′′d C(xOPT) +

∑
o∈O

(
xNE
o − xOPT

o

)
co(x

NE
o )−

∑
u∈U

(
xOPT
u − xNE

u

)
cu(x

NE
u + 1)

≤ ν′′d C(xOPT) +
∑
o∈O′

zoco(x
NE
o )−

∑
u∈U ′

zucu(x
NE
u + 1)

≤ ν′′d C(xOPT) + (1− 3−d)
∑
o∈O′

zoco(x
NE
o )

≤ ν′′d C(xOPT) +
1− 3−d

1 + 3−2d
C(xNE)

= ν′′d C(xOPT) + (1− ρ′′d)C(xNE),

where the first inequality follows from Lemma 4.1, the second from Lemma 4.2, the third from the
first consequence of Conjecture 5.1 and the fourth from the second consequence of Conjecture 5.1.
We obtain

PoA(I) ≤ ν′′d
ρ′′d − µ′′

d

.

The proof of

ν′′d
ρ′′d − µ′′

d

≥ 1

1− d(d+ 1)−(d+1)/d

is given in Appendix A.4. Finally we obtain

PoA(Gd
≤k) = max

I∈Gd
≤k

PoA(I)

= max
I∈Gd

≤k

max
xNE∈NE(I)

C(xNE)

C(xOPT)

≤ ν′′d
1− µ′′

d − (1− ρ′′d)

=
ν′′d

ρ′′d − µ′′
d

.

The uniqueness of d′′ is proven in Appendix B.
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The upper bound presented in the Consequence 5.1.3 asymptotically grows as Θ(3d(d+1)), which is
proven in Appendix C.

The second conjecture improves upon Consequence 5.1.2 and is thus also similar to Lemma 4.4,
which states that ∑

o∈O′

zoco(x
NE
o ) ≤ 1− ρd

1− 2−d
C(xNE)

for every instance I = (N,R, (cr)r∈R, X) ∈ Gd
k of a symmetric k-uniform congestion game with cost

functions of maximum degree d, xNE ∈ NE∗(I) and xOPT ∈ OPT(I). As mentioned in Section
5.1.1, we have not found an instance of a semi-symmetric k-uniform congestion game that does not
meet the property of Lemma 4.4. In fact, all (semi-)symmetric k-uniform congestion games seem to
meet an even stronger inequality.

Conjecture 5.2. Let I = (N,R, (cr)r∈R, X) ∈ Gd
≤k be an instance of a (semi-)symmetric k-

uniform congestion game with cost functions of maximum degree d and let xNE ∈ NE∗(I) and
xOPT ∈ OPT(I). Then ∑

o∈O′

zoco(x
NE
o ) ≤ 1

21−d + 1
C(xNE).

We have observed that the property of the conjecture holds for all semi-symmetric k-uniform
congestion games that we could find. An instance with d = 1 for which the inequality is tight is
shown in Figure 5.5. For this instance holds

∑
o∈O′ zoco(x

NE
o ) = 2 = 1

2C(xNE).

Resources

c1(x) = 1 c2(x) = x c3(x) = 2x

xOPT 1 2 2

xNE 2 1 2

Figure 5.5: An instance of a semi-symmetric 2-uniform congestion game for which Conjecture 5.2 is
tight.

Now we present a proof structure that may be used to prove the conjecture.

Suggested proof structure. Let I = (N,R, (cr)r∈R, X) ∈ Gd
≤k be an instance of a semi-symmetric

k-uniform congestion game with cost functions of maximum degree d and let xNE ∈ NE∗(I) and
xOPT ∈ OPT(I).

• Let resource o ∈ O′ be used by player p ∈ N . By definition of O′ and U ′, player p must also use
all resources in U ′. Let u ∈ U ′. Since this resource is underloaded, there must be a player q ∈ N
not using resource u. Let this player use resource r1. Then r1 ∈ R\O′. Moreover,

cr1(x
NE
r1 ) ≤ cu(x

NE
u + 1).

If player p uses resource r1 and there is no such other player q using some resource ri that is not
used by player p then player p uses relatively many resources in R\O′, which makes the conjecture
more likely to hold. Therefore, we assume that player p does not use resource r1. (For symmetric
k-uniform congestion games, this assumption is w.l.o.g.) We obtain

co(x
NE
o ) ≤ cr1(x

NE
r1 + 1) ≤ 2dcr1(x

NE
r1 ),

where the last inequality follows from Lemma 3.2.
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• If we assume that resource u has constant cost, as is the case in symmetric k-uniform congestion
games (Lemma 3.4), then we obtain

C(xNE) ≥ cu(x
NE
u ) + cr1(x

NE
r1 ) + co(x

NE
o )

≥ 2cr1(x
NE
r1 ) + co(x

NE
o )

≥ 2

2d
co(x

NE
o ) + co(x

NE
o )

= (1 + 21−d)co(x
NE
o )

and thus

co(x
NE
o ) ≤ 1

1 + 21−d
C(xNE).

If zo = 1 and O′ = {o} then we obtain∑
o∈O′

zoco(x
NE
o ) = co(x

NE
o ) ≤ 1

1 + 21−d
co(x

NE
o )

and the conjecture holds.

• It remains to analyse what happens if zo ≥ 2 or if O′ ⊃ {o}. We start with analysing the first
case. Assume zo = 2, then xNE

o − xOPT
o = zo + x′

o ≥ zo. Let players p1 and p2 pick resource o in
xNE and not in xOPT. Then in xOPT, these players must pick a resource different from resource o.
If they pick the same resource r1 and in xNE this resource is still only picked by player q, then this
results in this resource r1 being underloaded. We again assume its cost is then constant, and we
obtain

co(x
NE
o ) ≤ cr1(x

NE
r1 + 1) = cr1(x

NE
r1 ) ≤ cu(x

NE
u + 1) = cu(x

NE
u ).

This is impossible, since for o ∈ O′ and u ∈ U ′ must hold co(x
NE
o ) > cu(x

NE
u ). Therefore, we know

that either more players are picking resource r1 in xNE or players p1 and p2 are using different
resources r1 and r2 in xOPT. The first option seems to make the conjecture more likely to hold, so
we assume the latter. Resource r2 also cannot be underloaded, by the same argument, so there
must be some player using this resource in xNE. W.l.o.g. let cr1(x

NE
r1 ) ≥ cr2(x

NE
r2 ). We obtain

C(xNE) ≥ 2cu(x
NE
u ) + cr1(x

NE
r1 ) + cr2(x

NE
r2 ) + 2co(x

NE
o )

≥ 2cu(x
NE
u ) + 2cr1(x

NE
r1 ) + 2co(x

NE
o )

≥ 4cr1(x
NE
r1 ) + 2co(x

NE
o )

=
4

2d
co(x

NE
o ) + 2co(x

NE
o )

= 2(1 + 21−d)co(x
NE
o )

and thus ∑
o∈O′

zoco(x
NE
o ) = 2co(x

NE
o ) ≤ 1

1 + 21−d
co(x

NE
o ).

• Now we analyse the second case. Assume O′ = {o, o2}. If another player p2 ̸= p uses resource
o2 then similar arguments as in the case zo = 2 apply. If player p uses resource o2 then these
arguments apply too. In this case it is trivial that resource r2 must exist. ◀

Lastly, we elaborate on the consequence of Conjectures 5.1 and 5.2, if they were both true.

Consequence 5.2.1 (Conjectures 5.1 and 5.2). For the class Gd
≤k of semi-symmetric k-uniform

congestion games with cost functions of maximum degree d holds

PoA(Gd
≤k) ≤

ν′d
ρ′d − µ′

d

,
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where

µ′
d =

{
d

d+1 (d+ 1)−1/d d ≤ d′

d
d+1ρ

′
d d > d′

ν′d =

{
1 d ≤ d′

1
d+1 (ρ

′
d)

−d d > d′

ρ′d =
21−d + 3−d

1 + 21−d

and d′ ≈ 1.5 is the unique solution to

(d′ + 1)−1/d′
= ρ′d′ .

Proof. Let Gd
≤k be the class of semi-symmetric k-uniform congestion games with cost functions of

degree d. Then we obtain for all instances I = (N,R, (cr)r∈R, X) ∈ Gd
≤k:

(1− µ′
d)C(xNE) ≤ ν′d C(xOPT) +

∑
o∈O

(
xNE
o − xOPT

o

)
co(x

NE
o )−

∑
u∈U

(
xOPT
u − xNE

u

)
cu(x

NE
u + 1)

≤ ν′d C(xOPT) +
∑
o∈O′

zoco(x
NE
o )−

∑
u∈U ′

zucu(x
NE
u + 1)

≤ ν′d C(xOPT) + (1− 3−d)
∑
o∈O′

zoco(x
NE
o )

≤ ν′d C(xOPT) +
1− 3−d

1 + 21−d
C(xNE),

where the first inequality follows from Lemma 4.1, the second from Lemma 4.2, the third from
Conjecture 5.1 and the fourth from Conjecture 5.2. Finally we obtain

PoA(Gd
≤k) = max

I∈Gd
≤k

PoA(I)

= max
I∈Gd

≤k

max
xNE∈NE(I)

C(xNE)

C(xOPT)

≤ ν′d
1− µ′

d − (1− ρ′d)

=
ν′d

ρ′d − µ′
d

.

The uniqueness of d′ is proven in Appendix B.

The upper bound presented in Consequence 5.2.1 asymptotically grows as Θ(2d
2

), which is proven
in Appendix C.

5.2 Games with k = 2

5.2.1 Upper bound for the PoA
In this section, we present an upper bound for the PoA of semi-symmetric 2-uniform congestion
games. We start with proving the general Lemma 3.3 for these games. It follows that Lemmas 3.4,
3.6 and 4.3 also hold for these games. Then, we use Lemma 5.1 to formulate a lemma similar to
Lemma 4.4. Finally, we present the upper bound.

First, we prove that Lemma 3.3 holds for semi-symmetric 2-uniform congestion games.

Lemma 5.2. Let I = (N,R, (cr)r∈R, X) ∈ Gd
≤2 be an instance of a semi-symmetric 2-uniform

congestion game with cost functions of maximum degree d and let xNE ∈ NE∗(I). Then,

cr(x
NE
r ) ≤ 2dcs(x

NE
s + 1)

for any r, s ∈ R with xNE
r ≥ 1 and xNE

s < n.
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Proof. By contradiction. Let I and xNE be as in the lemma and assume there are some resources
r, s ∈ R with xNE

r ≥ 1 and xNE
s < n and cr(x

NE
r ) > 2dcs(x

NE
s + 1). Let player p use resource r in

xNE. By the Nash inequality (Lemma 3.1), player p must also use resource s in xNE.

There must be another player q not using resource s. Let player q use some resource v ∈ R\{r, s}.
Then cv(x

NE
v ) ≤ cs(x

NE
s + 1), by the Nash inequality (Lemma 3.1). We obtain

cv(x
NE
v + 1) ≤ 2dcv(x

NE
v ) ≤ 2dcs(x

NE
s + 1) < cr(x

NE
r ),

where the first inequality follows from Lemma 3.2. By the Nash inequality (Lemma 3.1), players
using resource r must also use resource v. Therefore, player p uses at least 3 resources, which is not
possible.

Combining Lemmas 5.1 and 5.2 allows for a lemma similar to Lemma 4.4.

Lemma 5.3. Let I = (N,R, (cr)r∈R, X) ∈ Gd
≤2 be an instance of a semi-symmetric 2-uniform

congestion game with cost functions of maximum degree d and PoA(I) ≥ 1
1−d(d+1)−(d+1)/d . Let

xNE ∈ NE∗(I) and xOPT ∈ OPT(I). Then∑
o∈O′

zoco(x
NE
o ) ≤ 1

1 + 21−d
C(xNE).

Proof. The proof is similar to the proof of Lemma 4.4. Again, we use

C(xNE) ≥
∑

r∈R\O′

xNE
r cr(x

NE
r ) +

∑
o∈O′

zoco(x
NE
o ),

∑
r∈R\O′

xNE
r cr(x

NE
r ) ≥

∑
u∈U ′

xNE
u cu(x

NE
u ) +

∑
r∈R\(U ′∪O′)

xNE
r cr(x

NE
r ), and

∑
u∈U ′

xNE
u cu(x

NE
u ) ≥ |U ′|

2dp

∑
o∈O′

zoco(x
NE
u ).

Different than in the proof of Lemma 4.4, we now use Lemmas 4.5 and 5.1 to obtain∑
r∈R\(U ′∪O′)

xNE
r cr(x

NE
r ) ≥ 1

2d

∑
o∈O′

zoco(x
NE
o ).

We then obtain

C(xNE) ≥
(
1 +

|U ′|
2dp

+
1

2d

) ∑
o∈O′

zoco(x
NE
o ).

Next, we look into the possible values of |U ′| and p in a semi-symmetric 2-uniform congestion game.
We start with the possible values of |U ′|. By the definition of U ′ and O′ and by the Nash inequality
(Lemma 3.1), players using a resource o ∈ O′ must use all resources u ∈ U ′. We can assume |O′| ≥ 1
and thus |U ′| ≥ 1, otherwise the lemma is trivial. If |U ′| ≥ 2 then players using a resource o ∈ O′

must use at least 3 resources, which is impossible. Therefore, |U ′| = 1. Now we look into possible
values of p. Recall that

p := max
i∈N

|{r ∈ xNE
i : r ∈ O′}|.

Since we can assume |O′| ≥ 1, we obtain p ≥ 1. If p ≥ 2 then the player using p resources in O′

must use at least 3 resources, since they also use all resources in |U ′|. This is impossible, so p = 1.
Finally, we can conclude

C(xNE) ≥
(
1 +

2

2d

) ∑
o∈O′

zoco(x
NE
o )

= (1 + 21−d)
∑
o∈O′

zoco(x
NE
o ).

Rearranging this proves the lemma.
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Finally, we can present an upper bound for the PoA of semi-symmetric 2-uniform congestion games.

Theorem 6. For the class Gd
≤2 of semi-symmetric 2-uniform congestion games with cost functions

of maximum degree d holds

PoA(Gd
≤2) ≤

ν̃d
ρ̃d − µ̃d

,

where

µ̃d :=

{
d

d+1 (d+ 1)−1/d d ≤ d̃
d

d+1 ρ̃d d > d̃

ν̃d :=

{
1 d ≤ d̃
1

d+1 (ρ̃d)
−d d > d̃

ρ̃d :=
3

2d + 2

and d̃ ≈ 1.7 is the unique solution to

(d̃+ 1)−1/d̃ = ρ̃d̃.

Proof. Different than in the analysis of semi-symmetric k-uniform congestion games with general k,
the existence of a critical instance of a semi-symmetric 2-uniform congestion game is not guaranteed.
For d ≥ 0.7, the lower bound for PoA(Gd

≤2) as presented in Lemma 7 exceeds an upper bound
for PoA(Gd

≤1), namely the bound presented by Fotakis [2007] for PoA(Gd
1 ). Note that Gd

≤1 = Gd
1 .

Therefore, for d ≥ 0.7, critical instances of semi-symmetric 2-uniform congestion games with cost
functions of maximum degree d are proven to exist. Since such an argument cannot be made for
d < 0.7, it is required to distinguish two cases. Case 1: there exists some critical instance I ∈ Gd

≤2, so
PoA(Gd

≤2) > PoA(Gd
1 ). Case 2: there exists no critical instance I ∈ Gd

≤2, so PoA(Gd
≤2) ≤ PoA(Gd

1 ).
For case 1, we prove an upper bound for PoA(Gd

≤2) that is larger than an upper bound for PoA(Gd
1 ).

Since this upper bound is also valid in case 2, we can present it as the upper bound for PoA(Gd
≤2)

in all cases.

We thus assume that there exists some critical instance I = (N,R, (cr)r∈R, X) ∈ Gd
≤2. In addition,

as in the proof of Theorem 1, we assume that PoA(I) ≥ 1
1−d(d+1)−(d+1)/d . Then we obtain an

upper bound for PoA(I) that is larger than 1
1−d(d+1)−(d+1)/d . This upper bound thus also holds

if PoA(I) < 1
1−d(d+1)−(d+1)/d . Therefore, it can be presented as the upper bound in all cases. As

shown in the proof of Lemma 4.1, for any µ > 0 holds

(1− µ)C(xNE) ≤ max{1, λ}C(xOPT) +
∑
o∈O

(xNE
o − xOPT

o )co(x
NE
o )−

∑
u∈U

(xOPT
u − xNE

u )cu(x
NE
u + 1),

for any µ > 0, where

λd :=
1

(µd)d(d+ 1)

( d

d+ 1

)d

.

Since Lemma 5.1 has to be used instead of Lemma 4.4 and Lemma 4.5 is used, there is a new value
µ̃d ̸= µd that minimises the PoA.

We now obtain for all I = (N,R, (cr)r∈R, X) ∈ Gd
≤2:

(1− µ̃d)C(xNE) ≤ ν̃dC(xOPT) +
∑
o∈O

(xNE
o − xOPT

o )co(x
NE
o )−

∑
u∈U

(xOPT
u − xNE

u )cu(x
NE
u + 1)

≤ ν̃d C(xOPT) +
∑
o∈O′

zoco(x
NE
o )−

∑
u∈U ′

zucu(x
NE
u + 1)

≤ ν̃d C(xOPT) + (1− 2−d)
∑
o∈O′

zoco(x
NE
o )

≤ ν̃d C(xOPT) +
2d − 1

2d + 2
C(xNE),
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Figure 5.6: Upper bound for PoA(Gd
≤2)

where the first inequality follows from Lemma 4.1, the second from Lemma 4.2, the third from
Lemma 4.3 (which we can use because of Lemma 5.2) and the fourth from Lemma 5.3. Finally we
obtain

PoA(Gd
≤2) = max

I∈Gd
2

PoA(I)

= max
I∈Gd

≤k

max
xNE∈NE(I)

C(xNE)

C(xOPT)

≤ ν̃d
ρ̃d − µ̃d

,

where µ̃d, ν̃d and ρ̃d are defined as in the theorem.

Now, we prove that this upper bound exceeds an upper bound for PoA(Gd
1 ). To that end, we

consider the upper bound that was proven by Fotakis [2007]:

PoA(Gd
1 ) ≤

1

1− d(d+ 1)−(d+1)/d
.

In Appendix A.5 is proven that the general upper bound proven by Fotakis [2007] reduces to this
form for the games that we consider. In Appendix A.4 is proven that

ν̃d
ρ̃d − µ̃d

≥ 1

1− d(d+ 1)−(d+1)/d
.

Note that this is both a proof that the upper bound exceeds an upper bound for PoA(Gd
1 ) and that

the upper bound exceeds 1
1−d(d+1)−(d+1)/d . The uniqueness of d̃ is proven in Appendix B.

The upper bound presented in Theorem 3 asymptotically grows as Θ((2/3)d2d
2

), which is proven in
Appendix C. The bound is shown in Figure 5.6 for 0 ≤ d ≤ 2. For some values of d, the approximate
result is given explicitly.

5.2.2 Lower bound for the PoA
In this section, we present a lower bound for the PoA of semi-symmetric 2-uniform congestion
games with cost functions of maximum degree d.

Theorem 7. For the class Gd
≤2 of semi-symmetric 2-uniform congestion games with cost functions

of maximum degree d holds

PoA(Gd
≤2) ≥

3 + 2d+1

5
.
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Proof. We will construct an instance I ∈ Gd
≤2 of a semi-symmetric 2-uniform congestion game with

cost functions of maximum degree d and PoA(I) = 3+2d+1

5 . The instance is shown in Figure 5.7
and is explained in more detail next. Let the set of players be N = {1, 2, 3} and the set of resources
R = {1, 2, 3}. Resources 1 and 2 have cost cr(x) = xd, r = 1, 2, and resource 3 has cost c3(x) = 1.

There is a Nash equilibrium xNE that looks as follows: players 1 and 2 pick resources 1 and 3 and
player 3 picks resource 2. This results in c1(x

NE
1 ) = 2d, c2(x

NE
2 ) = 1, c3(x

NE
3 ) = 1. No player can

improve their costs by deviating, since c1(x
NE
1 + 1) = 3d and c2(x

NE
2 + 1) = 2d. This results in

C(xNE) = 3 + 2d+1.

A system optimum solution xOPT looks as follows: all players pick resource 3, player 1 picks resource
1 and player 2 picks resource 2. This results in

C(xOPT) = 5.

This implies for the price of anarchy of semi-symmetric 2-uniform congestion games with cost
functions of maximum degree d that

PoA(Gd
≤2) ≥

3 + 2d+1

5
.

Resources

c1(x) = x c2(x) = x c3(x) = 1

xOPT 1 2 1 2 3

xNE 1 2 3 1 2

Figure 5.7: The instance as described in the proof of Lemma 7 with d = 1.

The lower bound presented in Theorem 7 asymptotically grows as Θ(2d), which is proven in
Appendix C. The bound is shown in Figure 5.8 for 0 ≤ d ≤ 2. For some values of d, the approximate
result is given explicitly. For comparison, the upper bound as presented in Theorem 6 is shown in
the plot as well.
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1.73
1.40

2.20

1.37

3.38

2.00

Figure 5.8: Lower bound for PoA(Gd
≤2)
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Chapter 6

Conclusion and discussion

In this research, the price of anarchy of symmetric and semi-symmetric k-uniform congestion games
was studied, both for games with general k and for games with k = 2. For the price of anarchy of
symmetric k-uniform congestion games with cost functions of maximum degree d, we obtained an
upper bound that improves upon the result for general congestion games by Aland et al. [2011]
if d is not too large. For d = 1, this bound improves upon the result by de Jong et al. [2016] as
well. Our results are improved for games with k = 2. For the price of anarchy of semi-symmetric
k-uniform congestion games, we could not prove an upper bound. For games with k = 2, we did
obtain an upper bound that improves upon the result for general congestion games by Aland et al.
[2011] if d is not too large.

None of the upper bounds that we proved match the corresponding lower bounds, which means that
the exact price of anarchy of any of the games that were analysed remain unknown. As mentioned
at the start of Chapters 4 and 5, the upper bounds that we obtained asymptotically outgrow the
result for general congestion games, so for large d the upper bounds cannot be tight. For all d,
we can prove that no instance of a symmetric or semi-symmetric k-uniform congestion game with
the price of anarchy presented as upper bounds in Theorems 1, 3 and 6 can exist (Lemma 6.1).
This suggests that the upper bounds are not tight for small d either, as is also suggested in an
unpublished paper by de Jong et al. [2017]. This paper contains a proof (which contains some bugs)
of an upper bound of 1.41 for the price of anarchy of symmetric k-uniform congestion games with
affine cost functions, which is significantly lower than our bound of 2.02. The conjectures that we
present result in improved upper bounds, but they are not equal to the corresponding lower bounds.

The proof below can be modified for Theorems 3 and 6.

Lemma 6.1. No instance I ∈ Gd
k of a symmetric k-uniform congestion games with a price of

anarchy as presented in Theorem 1 can exist.

Proof. The upper bound in Theorem 1 is proved using Lemmas 4.1, 4.3 and 4.4. We first show some
requirements for these lemmas to be tight. Then, we show where these requirements contradict.

Let I = (N,R, (cr)r∈R, X) and xNE ∈ NE∗(I), xOPT ∈ OPT(I). Lemma 4.1 can only be tight if
the following holds:

•
∑

o∈O xNE
o co(x

NE
o ) = λd

∑
o∈O xOPT

o co(x
NE
o )+µd

∑
o∈O xNE

o co(x
NE
o )+

∑
o∈O(x

NE
o −xOPT

o )co(x
NE
o )

•
∑

o∈O xNE
o co(x

NE
o ) = C(xNE),

which leads to the following requirements:

1. ∀o ∈ O : xNE
o = (d+ 1)1/dxOPT

o

2. ∀r ∈ U ∪B : xNE
r = 0.

Lemma 4.3 can only be tight if the following holds:

•
∑

u∈U ′ zucu(x
NE
u + 1) = 2−d

∑
o∈O′ zoco(x

NE
o ),

which leads to the following requirement:
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1. ∀u ∈ U ′, o ∈ O′ : cu(x
NE
u + 1) = 2−dco(x

NE
o ).

Lemma 4.4 can only be tight if the following holds:

•
∑

o∈O′(xOPT
o + x′

o)co(x
NE
o ) = 0,

•
∑

u∈U ′ xNE
u cu(x

NE
u ) = |U ′|

2dp

∑
o∈O′ zoco(x

NE
o )

•
∑

r∈R\(U ′∪O′) x
NE
r cr(x

NE
r ) = 2−2d(1 + p

|U ′| )
∑

o∈O′ zoco(x
NE
u )

which leads to the following requirements:

1. ∀o ∈ O′ : xOPT
o = x′

o = 0,

2. ∀u ∈ U ′, o ∈ O′ : cu(x
NE
u ) = 2−dco(x

NE
o ), and

3. ∀r ∈ R\(U ′ ∪O′), o ∈ O′ : cr(x
NE
r ) = 2−2dco(x

NE
o ).

The instance I cannot meet all these requirements. In particular, 3 contradictions occur.

Firstly, if ∀o ∈ O : xNE
o = (d+ 1)1/dxOPT

o holds, as is required for tightness of Lemma 4.1, then we
obtain xOPT

o ≥ 1 for all o ∈ O, so the first requirement for Lemma 4.4 does not hold.

Secondly, if ∀r ∈ U ∪B : xNE
r = 0 holds, as is required for tightness of Lemma 4.1, then we obtain

cu(x
NE
u + 1) ≥ co(x

NE
o ) for all u ∈ U, o ∈ O by the Nash inequality (Lemma 3.1). This results in an

upper bound for the price of anarchy of

1

1− d(d+ 1)−(d+1)/d
,

which is significantly lower than the upper bound presented in Theorem 1 (as proven in Appendix
A.4).

Thirdly, if ∀u ∈ U ′, o ∈ O′ holds cu(x
NE
u + 1) = 2−dco(x

NE
o ), as is required for tightness of Lemmas

4.3 and 4.4, and ∀r ∈ R\(U ′ ∪ O′) holds cr(x
NE
r ) = 2−2dco(x

NE
o ), as is required for tightness of

Lemma 4.4, then all players using resources in O′ must use all resources in U ′, by the Nash inequality
(Lemma 3.1). In addition, these players must also use all resources r ∈ R\(U ′ ∪O′), again by the
Nash inequality (Lemma 3.1):

cr(x
NE
r + 1) ≤ 2dcr(x

NE
r ) = 2−dco(x

NE
o ),

where the first inequality follows from Lemma 3.2. Players using resources in O′ thus use all
resources in U ′ ∪ (R\(U ′ ∪O′)) = R\O′, so they use at least 1 + |R\O′| resources. Therefore,

k ≥ 1 + |R\O′|.

Since every player picks k resources, every player must pick at least one resource in O′. In
conclusion, every player picks all resources in R\O′. This contradicts with Lemma 3.6. Note that
this contradiction does not occur if O′ = ∅, but in that case we obtain cu(x

NE
u + 1) ≥ co(x

NE
o ) for

all u ∈ U, o ∈ O, and the second contradiction occurs again.
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Appendix A

Omitted proofs

A.1 Addition to the proof of Lemma 3.6
In this section, we prove the inequality

xOPT
r cr(x

OPT
r ) + (n− xOPT

r )cr(n) ≥ (1− d(d+ 1)−(d+1)/d)ncr(n).

Proof. Firstly, we know cr(x) = αrx
d for some αr ∈ R≥0 by Lemma 3.5. If αr = 0 then the

inequality that we want to prove holds. Therefore, it remains to prove that the inequality holds for
αr > 0. We know

xOPT
r cr(x

OPT
r ) + (xNE

r − xOPT
r )cr(x

NE
r )− (1− d(d+ 1)−(d+1)/d)ncr(n) ≥ 0

⇐⇒ αr

(
(xOPT

r )d+1 + nd+1 − xOPT
r nd − (1− d(d+ 1)−(d+1)/d)nd+1

)
≥ 0

⇐⇒ (xOPT
r )d+1 + nd+1 − xOPT

r nd − (1− d(d+ 1)−(d+1)/d)nd+1 ≥ 0

for all xOPT
r . We will prove that the final inequality holds. To that end, let z = xOPT

r /n, which is
well-defined, since n > 0. Then

(xOPT
r )d+1 + nd+1 − xOPT

r nd − (1− d(d+ 1)−(d+1)/d)nd+1 ≥ 0

⇐⇒ zd+1 + 1− z − (1− d(d+ 1)−(d+1)/d) ≥ 0

⇐⇒ zd+1 − z + d(d+ 1)−(d+1)/d ≥ 0.

This final inequality is true, since

d
dz

[zd+1 − z + d(d+ 1)−(d+1)/d] = 0 ⇐⇒ z =
1

(d+ 1)1/d

and

zd+1 − z + d(d+ 1)−(d+1)/d|z=(d+1)−1/d = 0

d2

dz2
[zd+1 − z + d(d+ 1)−(d+1)/d]|z=(d+1)−1/d = d(d+ 1)1/d > 0.

A.2 Addition to the proof of Lemma 4.1
In this section, the inequality

xOPT
o (xNE

o )d ≤ λd(x
OPT
o )d+1 + µd(x

NE
o )d+1

is proven for any µd > 0, where

λd :=
1

(µd)d(d+ 1)

( d

d+ 1

)d

.
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Proof. Let z = (xOPT
o )/(xNE

o ), which is well-defined, since xNE
o ≥ xOPT

o + 1 ≥ 1. Then

xOPT
o (xNE

o )d − λd(x
OPT
o )d+1 − µd(x

NE
o )d+1 ≤ 0

⇐⇒ z − λdz
d+1 − µd ≤ 0.

The final inequality is true, since

d
dz

[z − λdz
d+1 − µd] = 0 ⇐⇒ z = ((d+ 1)λd)

−1/d

and

z − λdz
d+1 − µd |z=((d+1)λd)−1/d = 0

d2

dz2
[z − λdz

d+1 − µd] |z=((d+1)λd)−1/d =
−d

d
√

λd(d+ 1)
< 0.

A.3 Addition to the proof of Conjecture 5.1
In this section, we prove the inequality

cv(xv + 1) ≤
(3
2

)d

cv(xv)

for any cost function cv(x) of maximum degree d and xv ∈ N≥2.

Proof. Let cv(x) and xv be as presented before. By definition, the cost function is of the form

cv(xv) = α1x
d1
v + . . .+ αpx

dp
v ,

for some p ∈ Z≥0, αi ∈ R≥0 and di ∈ [0, d] for i = 1, . . . , p. We then obtain

cv(xv + 1)−
(3
2

)d

cv(xv) = α1

(
(xv + 1)d1 −

(3
2

)d

xd1
v

)
+ . . .+ αp

(
(xv + 1)dp −

(3
2

)d

xdp
v

)
≤ α1

(
(xv + 1)d1 −

(3
2

)d1

xd1
v

)
+ . . .+ αp

(
(xv + 1)dp −

(3
2

)dp

xdp
v

)
≤ α1

(
(
3

2
xv)

d1 −
(3
2

)d1

xd1
v

)
+ . . .+ αp

(
(
3

2
xv)

dp −
(3
2

)dp

xdp
v

)
= 0,

where the last inequality follows from xv ≥ 2.

A.4 Upper bounds exceed PoA(Gd
1)

In this section, we prove the inequalities

νd
ρd − µd

≥ 1

1− d(d+ 1)−(d+1)/d
,

ν̂d
ρ̂d − µ̂d

≥ 1

1− d(d+ 1)−(d+1)/d
,

ν′′d
ρ′′d − µ′′

d

≥ 1

1− d(d+ 1)−(d+1)/d
, and

ν̃d
ρ̃d − µ̃d

≥ 1

1− d(d+ 1)−(d+1)/d
,

for all d ≥ 0. To that end, we prove that each side of the inequalities is a solution to a minimisation
problem. Then, for each inequality we prove that the solution to the first minimisation problem
must be larger than the solution to the second minimisation problem.

First, three general lemmas are presented. Then, each inequality is presented in a lemma. The first
general lemma is a simple fact which will be used in the proof of the second general lemma.
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Lemma A.1. For any rd with 0 < rd ≤ 1 for all d ≥ 0 holds

(rd)
d+1 − rd + (d+ 1)−1/d d

d+ 1
≥ 0.

Proof. Let p := d+ 1 and q := d+1
d . Then 1

p + 1
q = 1 and

(rd)
d+1 − rd + (d+ 1)−1/d d

d+ 1
≥ 0 ⇐⇒ (rd)

p − rd +
p−q+1

q
≥ 0

⇐⇒ (rd)
p

p
− rd

p
+

1

q

(1
p

)q

≥ 0.

Let a := rd and b := 1
p . Then a ≥ 0, b ≥ 0 and

(rd)
p

p
− rd

p
+

1

q

(1
p

)q

=
ap

p
+

bq

q
− ab.

By Young’s inequality (Young [1912]), the latter is nonnegative.

The second general lemma shows the solution to a minimisation problem.

Lemma A.2. For any rd with 0 < rd ≤ 1 and Fd = 1
d+1

(
d

d+1

)d

, the minimisation problem

min
m∈R>0

max{1,m−dFd}
rd −m

s.t. m < rd,

has the solution
n

rd −m
,

where

m :=

{
d

d+1 (d+ 1)−1/d if (Fd)
1/d < d

d+1rd
d

d+1rd if (Fd)
1/d ≥ d

d+1rd.

n :=

{
1 if (Fd)

1/d < d
d+1rd

1
d+1 (rd)

−d if (Fd)
1/d ≥ d

d+1rd.

Proof. To solve the minimisation problem, two cases are distinguished: m−dFd ≤ 1 and m−dFd ≥ 1.

Case 1: m−dFd ≤ 1. We obtain m ≥ (Fd)
1/d and

min
m∈R>0

max{1,m−dFd}
rd −m

= min
m∈R>0

1

rd −m

s.t. m < rd s.t. (Fd)
1/d ≤ m < rd.

For d with (Fd)
1/d < rd, the minimisation problem may be solved by m = (Fd)

1/d. For d with
(Fd)

1/d ≥ rd, there exists no m s.t. m−dFd ≥ 1, so case 2 should be considered.

Case 2: m−dFd ≥ 1. We obtain m ≤ (Fd)
1/d and

min
m∈R>0

max{1,m−dFd}
rd −m

= min
m∈R>0

m−dFd

rd −m
= min

m∈R>0

Fd

rdmd −md+1

s.t. m < rd s.t. m < rd s.t. m < rd

m ≤ (Fd)
1/d m ≤ (Fd)

1/d.

Basic calculus shows rdm
d −md+1 is maximised for m = d

d+1rd. Trivially, d
d+1rd < rd. Therefore,

for d with d
d+1rd ≤ (Fd)

1/d, the minimisation problem may be solved by m = d
d+1rd. For d with

d
d+1rd > (Fd)

1/d, the minimisation problem may be solved by m = (Fd)
1/d.

In conclusion,
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• for d with (Fd)
1/d < d

d+1rd, the problem is solved by m = (Fd)
1/d,

• for d with d
d+1rd ≤ (Fd)

1/d < rd, the problem is solved by m = d
d+1rd (or by m = (Fd)

1/d),

• for d with rd ≤ (Fd)
1/d, the problem is solved by m = d

d+1rd.

If d
d+1rd ≤ (Fd)

1/d < rd then the solution with m = d
d+1rd (case 2) is smaller than the solution

with m = (Fd)
1/d (case 1), so the former should be used. We now prove that this solution is indeed

the smallest of the two. To that end, we need to prove(
d

d+1rd

)−d

Fd

rd − d
d+1rd

≤ 1

rd − (Fd)1/d
.

First, observe (
d

d+1rd

)−d

Fd

rd − d
d+1rd

=

(
d

d+1rd

)−d
1

d+1

(
d

d+1

)d

rd
d+1

=
1

(rd)d+1
.

Therefore, (
d

d+1rd

)−d

Fd

rd − d
d+1rd

≤ 1

rd − (Fd)1/d
⇐⇒ (rd)

d+1 ≥ rd − (Fd)
1/d.

The latter inequality is true by Lemma A.1. Substituting the correct values for m into the
minimisation problem yields the result.

The third general lemma shows the minimisation problem that the right hand sides of the inequalities
that need to be proven are the solution to.

Lemma A.3. For d ≥ 0 holds

1

1− d(d+ 1)−(d+1)/d
= min

m∈R>0

max{1,m−dFd}
1−m

s.t. m < 1,

where Fd = 1
d+1

(
d

d+1

)d

.

Proof. Let rd = 1. Then 0 < rd ≤ 1. By Lemma A.2,

min
m∈R>0

max{1,m−dFd}
rd −m

=
n

rd −m

s.t. m < rd,

where

m :=

{
d

d+1 (d+ 1)−1/d if (Fd)
1/d < d

d+1rd
d

d+1rd if (Fd)
1/d ≥ d

d+1rd.

n :=

{
1 if (Fd)

1/d < d
d+1rd

1
d+1 (rd)

−d if (Fd)
1/d ≥ d

d+1rd.

Next, we prove (Fd)
1/d < d

d+1rd for all d > 0. We obtain

(Fd)
1/d <

d

d+ 1
rd ⇐⇒ (d+ 1)−1/d < 1.

Note that there is no solution d > 0 to (d+ 1)−1/d = 1, since

(d+ 1)−1/d = 1 ⇐⇒ d+ 1 = 1

⇐⇒ d = 0.
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In addition, (d + 1)−1/d is continuous for d > 0 and (d + 1)−1/d|d=1 = 1
2 < 1. We thus obtain

(d+ 1)−1/d < 1 for all d > 0. Therefore, the solution to the minimisation problem is

1

1− d(d+ 1)−(d+1)/d
.

This concludes the proof.

The next three lemmas conclude the proofs of the three inequalities.

Lemma A.4. For d ≥ 0 holds
νd

ρd − µd
≥ 1

1− d(d+ 1)−(d+1)/d
.

Proof. To prove the inequality, first we show that the left hand side is the solution to a minimisation
problem. Lemma A.3 gives that the right hand side is the solution to another minimisation problem.
Then, we show that the solution to the first minimisation problem must be larger than the solution
to the second minimisation problem.

First we prove

νd
ρd −md

= min
m∈R>0

max{1,m−dFd}
ρd −m

s.t. m < ρd

where Fd = 1
d+1

(
d

d+1

)d

. To that end, let rd = ρd = 2d/2+1
1+2d/2−2d+23d/2

. Then 0 < rd ≤ 1, since

−2d + 23d/2 ≥ 0. By Lemma A.2,

min
m∈R>0

max{1,m−dFd}
rd −m

=
n

rd −m

s.t. m < rd,

where

m :=

{
d

d+1 (d+ 1)−1/d if (Fd)
1/d < d

d+1rd
d

d+1rd if (Fd)
1/d ≥ d

d+1rd.

n :=

{
1 if (Fd)

1/d < d
d+1rd

1
d+1 (rd)

−d if (Fd)
1/d ≥ d

d+1rd.

It remains to prove that n = νd and m = µd. To that end, we need to prove that

(Fd)
1/d ≥ d

d+ 1
rd ⇐⇒ d ≥ d∗,

or

(d+ 1)−1/d ≥ rd ⇐⇒ d ≥ d∗.

The uniqueness of d∗ is proven in Appendix B. In addition, rd and (d+ 1)−1/d are continuous for
d > 0 and

lim
d→0

rd − (d+ 1)−1/d = 1− 1

e
> 0

lim
d→∞

rd − (d+ 1)−1/d = 0− 1 < 0.

Therefore, we obtain (d+ 1)−1/d ≥ rd ⇐⇒ d ≥ d∗ and the proof is complete.

By Lemma A.3, it remains to prove that

min
m∈R>0

max{1,m−dFd}
rd −m

≥ min
m∈R>0

max{1,m−dFd}
1−m

s.t. m < rd s.t. m < 1.

Since rd ≤ 1, this is trivial.
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Lemma A.5. For d ≥ 0 holds

ν̂d
ρ̂d − µ̂d

≥ 1

1− d(d+ 1)−(d+1)/d
.

Proof. To prove the inequality, first we show that the left hand side is the solution to a minimisation
problem. Lemma A.3 gives that the right hand side is the solution to another minimisation problem.
Then, we show that the solution to the first minimisation problem must be larger than the solution
to the second minimisation problem.

First we prove

ν̂d
ρ̂d − µ̂d

= min
m∈R>0

max{1,m−dFd}
ρ̂d −m

s.t. m < ρ̂d

where Fd = 1
d+1

(
d

d+1

)d

. To that end, let rd = ρ̂d = 4
2d+3

. Then 0 < rd ≤ 1. By Lemma A.2,

min
m∈R>0

max{1,m−dFd}
rd −m

=
n

rd −m

s.t. m < rd,

where

m :=

{
d

d+1 (d+ 1)−1/d if (Fd)
1/d < d

d+1rd
d

d+1rd if (Fd)
1/d ≥ d

d+1rd.

n :=

{
1 if (Fd)

1/d < d
d+1rd

1
d+1 (rd)

−d if (Fd)
1/d ≥ d

d+1rd.

It remains to prove that n = ν̂d and m = µ̂d. To that end, we need to prove that

(Fd)
1/d ≥ d

d+ 1
rd ⇐⇒ d ≥ d̂,

or

(d+ 1)−1/d ≥ rd ⇐⇒ d ≥ d̂.

The uniqueness of d̂ is proven in Appendix B. In addition, rd and (d+ 1)−1/d are continuous for
d > 0 and

lim
d→0

rd − (d+ 1)−1/d = 1− 1

e
> 0

lim
d→∞

rd − (d+ 1)−1/d = 0− 1 < 0.

Therefore, we obtain (d+ 1)−1/d ≥ rd ⇐⇒ d ≥ d̂ and the proof is complete.

By Lemma A.3, it remains to prove that

min
m∈R>0

max{1,m−dFd}
rd −m

≥ min
m∈R>0

max{1,m−dFd}
1−m

s.t. m < rd s.t. m < 1.

Since rd ≤ 1, this is trivial.

Lemma A.6. For d ≥ 0 holds

ν′′d
ρ′′d − µ′′

d

≥ 1

1− d(d+ 1)−(d+1)/d
.
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Proof. To prove the inequality, first we show that the left hand side is the solution to a minimisation
problem. Lemma A.3 gives that the right hand side is the solution to another minimisation problem.
Then, we show that the solution to the first minimisation problem must be larger than the solution
to the second minimisation problem.

First we prove

ν′′d
ρ′′d −md

= min
m∈R>0

max{1,m−dFd}
ρ′′d −m

s.t. m < ρ′′d

where Fd = 1
d+1

(
d

d+1

)d

. To that end, let rd = ρ′′d = 1+3d

1+9d
. Then 0 < rd ≤ 1. By Lemma A.2,

min
m∈R>0

max{1,m−dFd}
rd −m

=
n

rd −m

s.t. m < rd,

where

m :=

{
d

d+1 (d+ 1)−1/d if (Fd)
1/d < d

d+1rd
d

d+1rd if (Fd)
1/d ≥ d

d+1rd.

n :=

{
1 if (Fd)

1/d < d
d+1rd

1
d+1 (rd)

−d if (Fd)
1/d ≥ d

d+1rd.

It remains to prove that n = νd and m = µd. To that end, we need to prove that

(Fd)
1/d ≥ d

d+ 1
rd ⇐⇒ d ≥ d′′,

or

(d+ 1)−1/d ≥ rd ⇐⇒ d ≥ d′′.

The uniqueness of d′′ is proven in Appendix B. In addition, rd and (d+ 1)−1/d are continuous for
d > 0 and

lim
d→0

rd − (d+ 1)−1/d = 1− 1

e
> 0

lim
d→∞

rd − (d+ 1)−1/d = 0− 1 < 0.

Therefore, we obtain (d+ 1)−1/d ≥ rd ⇐⇒ d ≥ d′′ and the proof is complete.

By Lemma A.3, it remains to prove that

min
m∈R>0

max{1,m−dFd}
rd −m

≥ min
m∈R>0

max{1,m−dFd}
1−m

s.t. m < rd s.t. m < 1.

Since rd ≤ 1, this is trivial.

Lemma A.7. For d ≥ 0 holds

ν̃d
ρ̃d − µ̃d

≥ 1

1− d(d+ 1)−(d+1)/d
.

Proof. To prove the inequality, first we show that the left hand side is the solution to a minimisation
problem. Lemma A.3 gives that the right hand side is the solution to another minimisation problem.
Then, we show that the solution to the first minimisation problem must be larger than the solution
to the second minimisation problem.
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First we prove

ν̃d
ρ̃d − µ̃d

= min
m∈R>0

max{1,m−dFd}
ρ̃d −m

s.t. m < ρ̃d

where Fd = 1
d+1

(
d

d+1

)d

. To that end, let rd = ρ̃d = 3
2d+2

. Then 0 < rd ≤ 1. By Lemma A.2,

min
m∈R>0

max{1,m−dFd}
rd −m

=
n

rd −m

s.t. m < rd,

where

m :=

{
d

d+1 (d+ 1)−1/d if (Fd)
1/d < d

d+1rd
d

d+1rd if (Fd)
1/d ≥ d

d+1rd.

n :=

{
1 if (Fd)

1/d < d
d+1rd

1
d+1 (rd)

−d if (Fd)
1/d ≥ d

d+1rd.

It remains to prove that n = ν̃d and m = µ̃d. To that end, we need to prove that

(Fd)
1/d ≥ d

d+ 1
rd ⇐⇒ d ≥ d̃,

or

(d+ 1)−1/d ≥ rd ⇐⇒ d ≥ d̃.

The uniqueness of d̃ is proven in Appendix B. In addition, rd and (d+ 1)−1/d are continuous for
d > 0 and

lim
d→0

rd − (d+ 1)−1/d = 1− 1

e
> 0

lim
d→∞

rd − (d+ 1)−1/d = 0− 1 < 0.

Therefore, we obtain (d+ 1)−1/d ≥ rd ⇐⇒ d ≥ d̃ and the proof is complete.

By Lemma A.3, it remains to prove that

min
m∈R>0

max{1,m−dFd}
rd −m

≥ min
m∈R>0

max{1,m−dFd}
1−m

s.t. m < rd s.t. m < 1.

Since rd ≤ 1, this is trivial.

A.5 Upper bound for PoA(Gd
1)

In this section, we show that the upper bound for PoA(Gd
1 ) proved by Fotakis [2007] equals

1

1− d(d+ 1)−(d+1)/d

for the classes of games that we consider. The bound proved by Fotakis [2007] is

PoA(Gd
1 ) ≤ sup

f∈F
sup

x,y∈R: x≥y≥0

xf(x)

yf(y) + (x− y)f(x)
,

where F is the class of cost functions that appear in Gd
1 . By Lemmas 3.4 and 3.5, we know that

there are two types of cost functions that appear in Gd
1 , namely
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1. cr(x) = βr for r ∈ U and

2. cr(x) = αd
r for r ∈ B ∪O.

If we only consider the first type of cost functions, then we obtain

PoA(Gd
1 ) ≤ sup

βr∈R≥0

sup
x,y∈R: x≥y≥0

βrx

βry + βr(x− y)

= sup
x,y∈R: x≥y≥0

x

y + (x− y)

= sup
x∈R: x≥0

x

x

= 1.

If we only consider the second type of cost functions, then we obtain

PoA(Gd
1 ) ≤ sup

αr∈R≥0

sup
x,y∈R: x≥y≥0

αrx
d+1

αryd+1 + αrxd(x− y)

= sup
x,y∈R: x≥y≥0

xd+1

yd+1 + xd+1 − xdy

= sup
x,y∈R: x≥y≥0

1

(y/x)d+1 + 1− y/x

= max
z∈[0,1]

1

zd+1 + 1− z

=
1

1− d(d+ 1)−(d+1)/d
,

where the maximum is attained for z = (d+ 1)−1/d. Note that we may divide by xd+1 because we
may assume x > 0. If x = 0 then we obtain y = 0 and

lim
x,y→0

xd+1

yd+1 + xd+1 − xdy
= lim

x→0

xd+1

xd+1 + xd+1 − xd+1
= lim

x→0

xd+1

xd+1
= 1.

Since this result is smaller than the result when we assume x > 0, we must use the latter.

Finally we can conclude that

max
{
1,

1

1− d(d+ 1)−(d+1)/d

}
=

1

1− d(d+ 1)−(d+1)/d
,

so the bound by Fotakis [2007] is

PoA(Gd
1 ) ≤

1

1− d(d+ 1)−(d+1)/d
.
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Appendix B

Uniqueness of d∗, d̂, d′, d′′ and d̃

In this section, the uniqueness of d∗, d̂, d′, d′′ and d̃ is proven. To that end, first we prove that the
function (d+ 1)−1/d is a strictly increasing function.

Lemma B.1. The function (d+ 1)−1/d is strictly increasing for d > 0.

Proof. To prove that (d + 1)−1/d is a strictly increasing function, we use that the function is
continuous for d > 0 and that

d
dd

(d+ 1)−1/d > 0

for all d > 0. To prove the latter, observe that

d
dd

(d+ 1)−1/d = (d+ 1)−1/d
(
− 1

d(d+ 1)
+

log(d+ 1)

d2

)
.

Then,

(d+ 1)−1/d
(
− 1

d(d+ 1)
+

log(d+ 1)

d2

)
> 0 ⇐⇒ − 1

d(d+ 1)
+

log(d+ 1)

d2
> 0

⇐⇒ −d+ (1 + d) log(d+ 1)

d2(d+ 1)
> 0

⇐⇒ −d+ (1 + d) log(d+ 1) > 0.

Moreover, −d+ (1 + d) log(d+ 1)|d=0 = 0 and

d
dd

(−d+ (1 + d) log(d+ 1)) = log(d+ 1) > 0.

Since −d+ (1 + d) log(d+ 1) is continuous for d > 0, we obtain that −d+ (1 + d) log(d+ 1) > 0
for all d > 0. Since (d + 1)−1/d is continuous for d > 0, we obtain that (d + 1)−1/d is a strictly
increasing function.

Lemma B.2. There is a unique solution d = d∗ ∈ R>0 to

(d+ 1)−1/d = ρd.

Proof. We first prove that ρd is a strictly decreasing function. Using Lemma B.1, we conclude that
the functions can intersect at most once. Then we show that the functions intersect exactly once.

To prove that ρd is a strictly decreasing function, we use that the function is continuous for d > 0
and that

d
dd

ρd < 0
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for all d > 0. To prove the latter, observe that

d
dd

ρd =
d
dd

1 + 2d/2

1 + 2d/2 − 2d + 23d/2

=
(1 + 2d/2 − 2d + 23d/2)(2d/2−1 log(2))− (1 + 2d/2)(2d/2−1 log(2)− 2d log(2) + 3

22
3d/2 log(2))

(1 + 2d/2 − 2d + 23d/2)2

=
−23d/2−1 log(2) + 22d−1 log(2) + 2d log(2) + 23d/2 log(2)− 3

22
3d/2 log(2)− 3

22
2d log(2)

(1 + 2d/2 − 2d + 23d/2)2

=
2d log(2)(−2d/2−1 + 2d−1 + 1 + 2d/2 − 3

22
d/2 − 3

22
d)

(1 + 2d/2 − 2d + 23d/2)2

=
2d log(2)(−2d/2 − 2d + 1)

(1 + 2d/2 − 2d + 23d/2)2
.

Then we obtain

d
dd

ρd < 0 ⇐⇒ 2d log(2)(−2d/2 − 2d + 1)

(1 + 2d/2 − 2d + 23d/2)2
< 0

⇐⇒ 2d log(2)(−2d/2 − 2d + 1) < 0

⇐⇒ −2d/2 − 2d + 1 < 0.

The final inequality is true, since 2d ≥ 20 = 1. Since ρd is continuous for d > 0, we obtain that ρd
is a strictly decreasing function. Combining this with Lemma B.1 yields that there is at most one
solution to (d+ 1)−1/d = ρd.

To prove that a solution exists, observe that

lim
d→0

(d+ 1)−1/d =
1

e
,

ρ0 = 1,

ρ4 =
5

53
.

Since 1 > 1
e and 5

53 < 1
e , we know that (d + 1)−1/d and ρd intersect at least once for d > 0. In

conclusion, there is a unique solution d = d∗ to (d+ 1)−1/d = ρd.

Lemma B.3. There is a unique solution d = d̂ ∈ R>0 to

(d+ 1)−1/d = ρ̂d.

Proof. We first prove that ρ̂d is a strictly decreasing function. Using Lemma B.1, we conclude that
the functions can intersect at most once.

To prove that ρ̂d is a strictly decreasing function, we prove

d
dd

ρ̂d < 0

for all d > 0. To that end, observe

d
dd

ρd =
−2d+2 log(2)

(2d + 3)2
< 0.

Since ρ̂d is continuous for d > 0, we obtain that ρ̂d is a strictly decreasing function. Combining this
with Lemma B.1 yields that there is at most one solution to (d+ 1)−1/d = ρ̂d.

To prove that a solution exists, we observe

lim
d→0

(d+ 1)−1/d =
1

e
,

ρ̂0 = 1,

ρ̂3 =
4

11
.
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Since 1 > 1
e and 4

11 < 1
e , we know that (d + 1)−1/d and ρ̂d intersect at least once for d > 0. In

conclusion, there is a unique solution d = d∗ to (d+ 1)−1/d = ρ̂d.

Lemma B.4. There is a unique solution d = d′ ∈ R>0 to

(d+ 1)−1/d = ρ′d.

Proof. We first prove that ρ′d is a strictly decreasing function. Using Lemma B.1, we conclude that
the functions can intersect at most once. Then we show that the functions intersect exactly once.

To prove that ρ′d is a strictly decreasing function, we use that the function is continuous for d > 0
and that

d
dd

ρ′d < 0

for all d > 0. To prove the latter, observe that

d
dd

ρ′d =
d
dd

21−d + 3−d

1 + 21−d

=
(1 + 21−d)(−21−d log(2)− 3d log(3))− (21−d + 3−d)(−21−d log(2))

(1 + 21−d)2

=
−22−2d log(2)− 3d log(3)− 2(3/2)d log(3) + 2/(6d) log(2)

(1 + 21−d)2

=
2d+1 log(2)(−2 · 3d + 2d)− 3d log(3)− 2(3/2)d log(3)

(1 + 21−d)2

< 0

Since ρ′d is continuous for d > 0, we obtain that ρ′d is a strictly decreasing function. Combining this
with Lemma B.1 yields that there is at most one solution to (d+ 1)−1/d = ρ′d.

To prove that a solution exists, observe that

lim
d→0

(d+ 1)−1/d =
1

e
,

ρ̂0 = 1,

ρ̂3 =
31

135
.

Since 1 > 1
e and 31

135 < 1
e , we know that (d+ 1)−1/d and ρ′d intersect at least once for d > 0. In

conclusion, there is a unique solution d = d′ to (d+ 1)−1/d = ρ′d.

Lemma B.5. There is a unique solution d = d′′ ∈ R>0 to

(d+ 1)−1/d = ρ′′d .

Proof. We first prove that ρ′′d is a strictly decreasing function. Using Lemma B.1, we conclude that
the functions can intersect at most once. Then we show that the functions intersect exactly once.

To prove that ρ′′d is a strictly decreasing function, we use that the function is continuous for d > 0
and that

d
dd

ρ′′d < 0

for all d > 0. To prove the latter, observe that

d
dd

ρ′′d =
d
dd

1 + 3d

1 + 9d

=
(1 + 9d)(3d log(3))− (1 + 3d)(9d log(9)

(1 + 9d)2

=
3d log(3) + 27d log(3)− 9d log(9)− 27d log(9)

(1 + 9d)2

< 0.
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Since ρ′′d is continuous for d > 0, we obtain that ρ′′d is a strictly decreasing function. Combining
this with Lemma B.1 yields that there is at most one solution to (d+ 1)−1/d = ρ′′d .

To prove that a solution exists, we observe

lim
d→0

(d+ 1)−1/d =
1

e
,

ρ̂0 = 1,

ρ̂2 =
5

41
.

Since 1 > 1
e and 5

41 < 1
e , we know that (d + 1)−1/d and ρ′′d intersect at least once for d > 0. In

conclusion, there is a unique solution d = d′′ to (d+ 1)−1/d = ρ′′d .

Lemma B.6. There is a unique solution d = d̃ ∈ R>0 to

(d+ 1)−1/d = ρ̃d.

Proof. We first prove that ρ̃d is a strictly decreasing function. Using Lemma B.1, we conclude that
the functions can intersect at most once. Then we show that the functions intersect exactly once.

To prove that ρ̃d is a strictly decreasing function, we use that the function is continuous for d > 0
and that

d
dd

ρ̃d < 0

for all d > 0. To prove the latter, observe that

d
dd

ρ̃d =
d
dd

3

2d + 2

−3 · 2d log(2)
(2d + 2)2

< 0.

Since ρ̃d is continuous for d > 0, we obtain that ρ̃d is a strictly decreasing function. Combining this
with Lemma B.1 yields that there is at most one solution to (d+ 1)−1/d = ρ̃d.

To prove that a solution exists, observe that

lim
d→0

(d+ 1)−1/d =
1

e
,

ρ̂0 = 1,

ρ̂3 =
3

10
.

Since 1 > 1
e and 3

10 < 1
e , we know that (d + 1)−1/d and ρ̃d intersect at least once for d > 0. In

conclusion, there is a unique solution d = d′ to (d+ 1)−1/d = ρ̃d.
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Appendix C

Asymptotic growth of the price of
anarchy

In this section we prove that

• the upper bound for the price of anarchy of symmetric k-uniform congestion games as presented
in Theorem 1 asymptotically grows as Θ(2d(1+d)),

• the lower bound for the price of anarchy of symmetric k-uniform congestion games as presented
in Theorem 2 asymptotically grows as Θ(2d),

• the upper bound for the price of anarchy of symmetric 2-uniform congestion games as presented
in Theorem 3 asymptotically grows as Θ(2d(d−1)),

• the lower bound for the price of anarchy of symmetric 2-uniform congestion games as presented
in Theorem 4 asymptotically grows as Θ(2d),

• the lower bound for the price of anarchy of semi-symmetric k-uniform congestion games as
presented in Theorem 5 asymptotically grows as Θ(2d),

• the upper bound for the price of anarchy of semi-symmetric k-uniform congestion games as
presented in Consequence 5.1.3 asymptotically grows as Θ(3d(d+1)),

• the upper bound for the price of anarchy of semi-symmetric k-uniform congestion games as
presented in Consequence 5.2.1 asymptotically grows as Θ(2d

2

),

• the upper bound for the price of anarchy of semi-symmetric 2-uniform congestion games as
presented in Theorem 6 asymptotically grows as Θ((2/3)d2d

2

),

• the lower bound for the price of anarchy of semi-symmetric 2-uniform congestion games as
presented in Theorem 7 asymptotically grows as Θ(2d).

Lemma C.1. The upper bound for the price of anarchy of symmetric k-uniform congestion games
as presented in Theorem 1 asymptotically grows as Θ(2d(1+d)).

Proof. For d > d∗, the upper bound for PoA(Gd
k) is

PoA(Gd
k) ≤ (ρd)

−1−d =
(1 + 2d/2 − 2d + 23d/2

1 + 2d/2

)1+d

.

It is thus needed to prove that

lim
d→∞

(1 + 2d/2 − 2d + 23d/2

1 + 2d/2

)1+d 1

2d(1+d)
= c
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for some finite c ∈ R>0. We obtain

lim
d→∞

(1 + 2d/2 − 2d + 23d/2

1 + 2d/2

)1+d 1

2d(1+d)
= lim

d→∞

(1 + 2d/2 − 2d + 23d/2

(1 + 2d/2)2d

)1+d

= lim
d→∞

(1 + 2d/2 − 2d + 23d/2

2d + 23d/2

)1+d

= lim
d→∞

(2−3d/2 + 2−d − 2−d/2 + 1

2−d/2 + 1

)1+d

= 1.

Lemma C.2. The lower bound for the price of anarchy of symmetric k-uniform congestion games
as presented in Theorem 2 asymptotically grows as Θ(2d).

Proof. The lower bound for PoA(Gd
k) is

PoA(Gd
k) ≥

4 +
√
2(1 + 2d+1)

4 + 3
√
2

.

It is thus needed to prove that

lim
d→∞

4 +
√
2(1 + 2d+1)

4 + 3
√
2

1

2d
= c

for some finite c ∈ R>0. We obtain

lim
d→∞

4 +
√
2(1 + 2d+1)

4 + 3
√
2

1

2d
= lim

d→∞

22−d +
√
2(2−d + 2)

4 + 3
√
2

=
2
√
2

4 + 3
√
2
.

Lemma C.3. The upper bound for the price of anarchy of symmetric 2-uniform congestion games
as presented in Theorem 3 asymptotically grows as Θ(2d(d−1)).

Proof. For d > d̂, the upper bound for PoA(Gd
2 ) is

PoA(Gd
2 ) ≤ (ρ̂d)

−1−d =
(2d + 3

4

)1+d

.

It is thus needed to prove that

lim
d→∞

(2d + 3

4

)1+d 1

2d(d−1)
= c

for some finite c ∈ R>0. We obtain

lim
d→∞

(2d + 3

4

)1+d 1

2d(d−1)
= lim

d→∞
(2d + 3)1+d2−d(d−1)4−(d+1)

= lim
d→∞

(2d)1+d2−d(d−1)−2(d+1)

=
1

4
.

Lemma C.4. The lower bound for the price of anarchy of symmetric 2-uniform congestion games
as presented in Theorem 4 asymptotically grows as Θ(2d).
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Proof. The lower bound for PoA(Gd
2 ) is

PoA(Gd
2 ) ≥

2 + 2d

3
.

It is thus needed to prove that

lim
d→∞

2 + 2d

3

1

2d
= c

for some finite c ∈ R>0. We obtain

lim
d→∞

2 + 2d

3

1

2d
= lim

d→∞

21−d + 1

3
=

1

3
.

Lemma C.5. The lower bound for the price of anarchy of semi-symmetric k-uniform congestion
games as presented in Theorem 5 asymptotically grows as Θ(2d).

Proof. The lower bound for PoA(Gd
≤k) is

PoA(Gd
≤k) ≥

1 + 2d+1

3
.

It is thus needed to prove that

lim
d→∞

1 + 2d+1

3

1

2d
= c

for some finite c ∈ R>0. We obtain

lim
d→∞

1 + 2d+1

3

1

2d
= lim

d→∞

2−d + 2

3
=

2

3
.

Lemma C.6. The upper bound for the price of anarchy of semi-symmetric k-uniform congestion
games as presented in Consequence 5.1.3 asymptotically grows as Θ(3d(d+1)).

Proof. For d > d′′, the conjecture gives

PoA(Gd
≤k) ≤ (ρ′′d)

−1−d =
(1 + 9d

1 + 3d

)1+d

.

It is thus needed to prove that

lim
d→∞

(1 + 9d

1 + 3d

)1+d 1

3d(d+1)
= c

for some finite c ∈ R>0. We obtain

lim
d→∞

(1 + 9d

1 + 3d

)1+d 1

3d(d+1)
= lim

d→∞
(1 + 9d)1+d(1 + 3d)−1−d3−d(d+1)

= lim
d→∞

(9d)1+d(1 + 3d)−1−d3−d(d+1)

= lim
d→∞

32d+2d2

(3d(3−d + 1))−1−d3−d(d+1)

= lim
d→∞

3d+d2

3−d−d2

(3−d + 1)−1−d

= 1.
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Lemma C.7. The upper bound for the price of anarchy of semi-symmetric k-uniform congestion
games as presented in Consequence 5.2.1 asymptotically grows as Θ(2d

2

).

Proof. For d > d′, the conjecture gives

PoA(Gd
≤k) ≤ (ρ′d)

−1−d =
( 1 + 21−d

21−d + 3−d

)1+d

.

It is thus needed to prove that

lim
d→∞

( 1 + 21−d

21−d + 3−d

)1+d 1

2d2 = c

for some finite c ∈ R>0. We obtain

lim
d→∞

( 1 + 21−d

21−d + 3−d

)1+d 1

2d2 = lim
d→∞

( 2d + 2

2 + (2/3)d

)1+d 1

2d2

= lim
d→∞

(2d + 2)1+d(2 + (2/3)d)−1−d2−d2

= lim
d→∞

(2d)1+d(2 + (2/3)d)−1−d2−d2

= lim
d→∞

2d(2 + (2/3)d)−1−d

= lim
d→∞

2d(2(1 +
1

2
(2/3)d))−1−d

= lim
d→∞

2d2−1−d(1 +
1

2
(2/3)d)−1−d

=
1

2
lim
d→∞

(1 +
1

2
(2/3)d)−1−d

=
1

2
.

Lemma C.8. The upper bound for the price of anarchy of semi-symmetric 2-uniform congestion
games as presented in Theorem 6 asymptotically grows as Θ((2/3)d2d

2

).

Proof. For d > d̃, the upper bound for PoA(Gd
≤2) is

PoA(Gd
≤2) ≤ (ρ̃d)

−1−d =
(2d + 2

3

)1+d

.

It is thus needed to prove that

lim
d→∞

(2d + 2

3

)1+d 1

(2/3)d2d2 = c

for some finite c ∈ R>0. We obtain

lim
d→∞

(2d + 2

3

)1+d 1

(2/3)d2d2 = lim
d→∞

(2d + 2)1+d3−1−d(2/3)−d2−d2

= lim
d→∞

(2d)1+d3−1−d(2/3)−d2−d2

=
1

3
.

Lemma C.9. The lower bound for the price of anarchy of semi-symmetric 2-uniform congestion
games as presented in Theorem 7 asymptotically grows as Θ(2d).
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Proof. The lower bound for PoA(Gd
≤2) is

PoA(Gd
≤2) ≥

3 + 2d+1

5
.

It is thus needed to prove that

lim
d→∞

3 + 2d+1

5

1

2d
= c

for some finite c ∈ R>0. We obtain

lim
d→∞

3 + 2d+1

5

1

2d
= lim

d→∞

3 · 2−d + 2

5
=

2

5
.

69


	Introduction
	Motivation
	Overview of our results
	Related work
	Outline of the report

	Symmetric and semi-symmetric k-uniform congestion games
	Preliminaries
	Example instance

	Properties of symmetric and semi-symmetric k-uniform congestion games
	Properties of all instances
	Properties of worst-case instances

	The PoA of symmetric k-uniform congestion games
	Games with general k
	Upper bound for the PoA
	Lower bound for the PoA
	Conjecture

	Games with k=2
	Upper bound for the PoA
	Lower bound for the PoA


	The PoA of semi-symmetric k-uniform congestion games
	Games with general k
	Properties
	Lower bound for the PoA
	Conjectures

	Games with k=2
	Upper bound for the PoA
	Lower bound for the PoA


	Conclusion and discussion
	Omitted proofs
	Addition to the proof of Lemma 3.6
	Addition to the proof of Lemma 4.1
	Addition to the proof of Conjecture 5.1
	Upper bounds exceed  PoA (G1d)
	Upper bound for  PoA (G1d)

	Uniqueness of d*, , d', d'' and 
	Asymptotic growth of the price of anarchy

