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Abstract

Awareness of surrounding traffic is crucial for safety. Nowadays warning and infor-
mation technology in cars is often used to supplement people’s awareness of their
surroundings. This thesis presents such a warning system, but designed for bicycles
instead. An end-to-end, low budget system was developed, that warns cyclists of
upcoming traffic. The only sensor input to the system is a monocular camera, and
the processing is done on a cheap 100$ computer. For processing the choice was
made to use the Yolov4 neural network, in combination with custom algorithms for
tracking and finding the direction of travel. Additionally, a survey was performed to
explore people’s acceptance of such a system, and find the necessary performance
such a system must have. The survey indicated such a system must have warning
times of at least 3-4 seconds, which in practice was only reached less in less than
50% of cases. Additionally parked cars often created false warnings. The main ob-
stacle in having a faster warning time or less false positives was the performance of
the tracking algorithm.
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List of acronyms

ADAS Advanced driver assistance systems
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Chapter 1

Introduction

Cycling has many advantages. It keeps people healthy, reducing healthcare costs
and sickness absence [2]–[5]. It prevents emissions of CO2 and reduces air and
noise pollution [6]–[8]. It also leads to more efficient use of infrastructure (i.e. less
parking space and traffic jams) [9]. In order to encourage more people to take up
cycling, and to reduce injuries and deaths, improving cycling safety is important.
Especially since a perceived lack of safety has been found to be a deterrent for
cycling [10], [11]. The Netherlands is already performing very well in this area. To-
gether with Denmark, it is the safest country to cycle with the lowest amounts of
deaths per km biked [12]. This is in fact a surprisingly recent evolution. Since the
1970s, the Netherlands has achieved an 80% reduction in cyclists’ fatality, in spite
of elderly people becoming a much bigger percentage of all cyclists [13]. However,
in the last two decades, these numbers have stabilized, while car fatalities are still
decreasing [14]. This while the Netherlands still have big ambitions regarding cy-
cling safety and promotion. The Dutch government has as goal to halve all traffic
deaths in 2030, and even aim for 0 deaths in 2050 [15]. With 203 cycling deaths
in 2019, clearly cycling safety has to be improved further to reach these goals [14].
The previous safety improvements have mostly been achieved by focusing on safe
infrastructure and traffic regulations in favor of the cyclist [13]. This shows a clear
difference with cars, where technological advances regarding the car itself (such as
the inclusion of seat belts and airbags) have played a big part in the increased safety
the last few decades. To improve biking safety, it might be good to draw inspiration
from cars and look at the bicycle itself, instead of the environment around it.

While airbags and seat belts do not naturally translate to a cycling context, a new
generation of technology provides more opportunities. Advanced driver assistance
systems (ADAS) are already commonplace in cars, such as automatic lighting, park-
ing assistance and cruise control. More advanced technologies are also migrating
from high-end cars to the cheaper models, such as forward collision warning and
autonomous emergency braking systems. What defines an ADAS is that it has ac-
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2 CHAPTER 1. INTRODUCTION

cess to outside information through sensors in the car, and uses this information
to aid the user. On bikes, there is only one ADAS commercially available. This is
the Garmin Varia. It is a warning system that warns bikers of approaching traffic
from behind. Such rear-warning systems might become more important with quiet
electric vehicles becoming more mainstream.

The e-bike has been steadily increasing in popularity. In 2019 a fifth of all bicy-
cle trips in the Netherlands were done by e-bike [16] and half (45%) of all people
aged 65-75 owned an e-bike [17]. The recent Corona pandemic seems to be giving
an extra boost to this already growing industry [18]. The current high rise in e-bike
numbers consists mostly out of elderly users who want to keep cycling, since the
age group 65+ is responsible for half of all kilometers ridden on an e-bike [19]. A
second potential future market is people using the e-bike for their commute instead
of a car. The government is actively creating more opportunities to lease a bike from
your company, and several municipalities offer subsidies to promote e-bikes as a
commute alternative [20]. The current rise of e-bikes could be the perfect opportu-
nity for bringing smart technology to the bike, as has already been done in cars. The
e-bikes battery can supply power for smart electronics. The e-bike also has a higher
selling price than a conventional bike, meaning that smart electronics build into the
bike will have a relatively smaller impact on the price.

1.1 Problem Statement

Despite the potential benefit for improving cycling safety, very little academic work
has been done regarding incorporating an ADAS on a bicycle. One cannot simply
copy the ADAS as is from the car to the bicycle, since the bicycle has its own set of
unique issues. First of all there is the power consumption issue. Although the rise of
e-bikes reduces the severity of the issue, power consumption still is a major limit on
introducing technology to the bicycle. Coupled to this is the issue of weight. Current
e-bikes are still quite heavy, while bicycles ideally should be easy to move around
and transport. Because of this limit one cannot simply add more battery capacity.
There is also the matter of cost. Bicycles are much cheaper than cars. Expensive
technology will be a proportionally smaller part of the cost for cars than for bicycles.
One cannot simply put a high-end processor in a bicycle, because the cost increase
would likely be too high. Another difference between cars and bicycles is the choice
of output type. Cars have their own private ‘audio space‘, making sound a natural
choice. But this choice might not transfer well to the cycling environment.

The three scientific papers that have worked on ADAS for bicycles mostly fo-
cus on the technological requirements [21]–[23]. The question of how and when to
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provide this information to the user hasn’t been investigated at all. The typical out-
put methods for a ADAS in a car are often not appropriate for the bicycle since the
environment of the bicycle is distinctly different from the car. In a car the enclosed
environment makes auditory feedback a much more straightforward solution. In con-
trast, bicycles are open to the world. Noises can be heard everywhere. Sound from
the environment might cover up the sound of the ADAS. Additionally, the sound
from the ADAS can be heard by everyone around the bicycle, possibly leading to
frustration and confusion. Many cyclists also listen to music on their earphones,
making it harder to hear the sounds from the ADAS. Running the sound through
their headphones could be a possible solution, but cycling while listening to music is
also dangerous ( [24], [25]) and should probably not be encouraged. Finally, most
current users of the e-bike will be elderly, and might suffer from hearing impairment.
It is this target group that could especially benefit from a warning system since they
cannot hear the cars approaching. Making the warning also auditory is not helpful
for this target group. The solution used most commonly for bicycles is by displaying
the output on a small screen attached to the handlebar. Although more functional,
this also comes with its own problems. Looking at the screen could distract from
traffic, and again could be harder to read for the elderly. Additionally, many screens
can be hard to read during sunny weather.

1.2 Goal(s) of the assignment/Research question(s)

The proposed project is to implement an ADAS that warns cyclists of passing traffic
from the rear. It will be a monocular camera system, inspired by the Hindsight paper
(which will be discussed later on). However unlike the Hindsight prototype it will run
on limited embedded hardware with limited power consumption. This will give an
indication whether the mono-camera approach using neural networks is feasible in
a resource-constrained environment. Output will be done through vibrating handle-
bars. It will also be tested in real traffic situations, and a detailed analysis will be
done on the performance of such a system. Additionally, the desired performance
of the system and potential acceptance will be investigated through a survey.
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Chapter 2

State of the Art

An ADAS needs three different steps to function - acquiring the sensor data, pro-
cessing the sensor data, and providing output to the user. Most papers focus either
on the first two steps, or only on the last one. Therefore the choice was made to
have a similar structure while discussing these papers. First the work done on ac-
quiring and processing the data will be discussed, and then the work on outputting
information to cyclists. Finally, the findings of both sections will shortly be summa-
rized.

2.1 Sensors and processing

Using sensors to aid and enhance the driving experience is already a very common
practice in the automotive industry. Parking aid technology is very common, and
advanced emergency braking systems, which automatically brake when a collision
is predicted, will become obligatory for new cars in the EU and Japan from 2022
[26]. It is safe to say that in the automotive world ADAS are a mature and common
technology.

While electronics have become commonplace in car (to the disgruntlement of
some car enthusiasts, who derisively refer to modern cars as ’driving computers’),
the same cannot be said for bicycles. The current bicycle is in almost all aspects
similar to the bicycle of more than a 100 years ago, as can be seen in an adver-
tisement from 1897 (figure 2.1). The bicycle has stayed a mostly mechanical affair
avoiding the impact of computerization which has changed so many other aspects
of our life in a fundamental way. However, in recent years several companies have
tried to bring smart technology to the biking context. One such product is VanMoof’s
smart bike. It has built in anti-theft alarms, automatic gears and will track the bike
through GPS so it can be located when stolen. Another common product are the
various ’smart helmets’ that have popped up ( [27], [28] and [29]).

5
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Most of these commercial products have only limited access to information from
the outside world. This means the products cannot respond flexibly to, or inform
the user about the environment around them. The exception is the Garmin Varia,
which warns the biker of upcoming traffic using radar technology. However, In the
unique biking context of the Netherlands where many cycling lanes are separated
from cars, a lot of the warnings of the Varia are not useful since the cyclist and car
are not on the same road. A user of the Garmin Varia in the Netherlands noticed
that from the 27 cars the system picked up, only 10 were actually on the same road
as him [30].

In [21] they developed a driving assistance system for bikes. They used a radar-
camera fusion system. In addition, they used an accelerometer to determine the
bike’s speed, and a camera facing the biker to determine where the biker was look-
ing. ’You only look once’ object detection (YOLO) was used to classify the camera
objects, while MATLAB multi object tracking was used for the sensor fusion. They
found that complex convolutional networks, as are used in object detection for cars,
draw too much power for a bike. To work around this, they created two separate
modes, an accurate one with high power needs, and a less accurate one with lower
power needs. Depending on the risk-level of the situation, different sections of the
view are assigned to a particular mode. The risk-level of a situation is determined
based on current sensor data and navigational data. In [22] they also used two dif-
ferent modes, but in that case it was regarding the radar settings. In rural mode
they used radar with a narrow beam to detect other road users earlier, while in city
mode they used a wide radar to also recognize danger from the side. In [23] A 360-
degree video camera was attached to a helmet. No radar was used. Classification
was done using the YOLO v2 framework. The speed of an approaching vehicle was
approximated by looking at the increase or decrease of the bounding box around a
vehicle, and the distance is approximated by using assumptions on the typical size
and relative velocity.

2.2 Feedback to bikers

The warning system developed by Garmin warns the user either visually on an led-
matrix or screen (compatible with many bike-computers and can be developed for
by third parties), or through audio. Both of these outputs have limitations. Sound
might be hard to hear in the open context of a bike and it could pose problems for
elderly with hearing disabilities. Screens on the other hand can distract from the
traffic around the cyclist, are often hard to read in sunlight and again could pose
problems for elderly with vision issues. To bring the visual information closer to the
natural line-of-sight of a biker, a possible solution could be using projection on the
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road or on a transparent screen in front of the bike. The projection could inform the
biker, but it could also aid in providing information to others around you as is done
with Beryl’s laserlight [31]. Their product projects a green bike in front of the bike,
so that other traffic participants are aware of the bike even when it is in their blind
spot. In [32] they projected a map on the road for navigation, as well as on a plastic
screen in front of the bike, creating so a head-up display (HUD). They found that the
HUD was preferred over the road projection because it was closer to the natural line
of sight. A more elegant approach would be a HUD integrated into the helmet, such
as the skully motorcycle helmet [33]. However, as the technology exists today, it is
not suitable for the cycling context since it requires a full helmet, while most bikers
in the Netherlands don’t even wear a standard biking helmet. It could be revisited
when AR glasses become more mature. Another method would be peripheral lights,
as presented in [34]. However, this suffers from the same downside as the heads
up display making it less suitable to biking.

Figure 2.1: Old advertisement dating from 1897,
showing how little the bicycle has changed over
the last hundred years [1]

.

A completely novel manner of alert-
ing the user is through sonification. Rel-
evant objects outside of the field of
view, are transformed into audio cues.
This was used in the Hindsight project
to warn bikers of oncoming vehicles
[23]. Bone conduction headphones
were used, so that normal hearing was
preserved.

Another approach could be to use
wearables that provide haptic feedback
to the user. This could be implemented
in the smartwatch, where the intensity of
the vibrations could slowly be increased.
The advantage of this is that it is a piece
of hardware many consumers already
posses. However, the disadvantage is
that it can be hard to represent complex
or multiple sources of information, be-
cause only the intensity and frequency
of vibration can be used. In most situ-
ations it would be a welcome addition
to have an added dimension by hav-
ing haptic feedback on both the left and
right sides. This could be done with multiple wearables, such as developed in [35].
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However, another solution would be to provide tactile feedback through the han-
dlebars. This would prevent users from having to worry about bringing an extra
accessory with them. In [36] a navigation system was developed that relied on giv-
ing directions through vibration motors inside the handlebars. This concept has also
been implemented in a commercial application called smrtGRiPs [37].

2.3 Summary and choice of System input and output

Only limited work has been done on developing an ADAS suitable for bikes. All of
the work found focuses on warning the user of upcoming traffic from the back. Us-
ing radar is a proven method of doing this, used in both [21], [22] and in the Garmin
Varia. While radar is robust, camera has the advantage that it tends to give higher-
resolution information, as well as colour and texture data. Therefore it is used either
in sensor-fusion with radar in [21], or stand-alone in [23]. The disadvantage of in-
cluding camera is that you need more processing power for either the sensor fusion
or the object detection algorithms. This increases the systems complexity and en-
ergy usage. However, without camera it becomes very hard to get information on
traffic signs, road markings, and type of environment (rural or city). When looking
to new, imaginative applications it seems camera processing is essential. The work
done in [23] shows that a monocular camera is all you need to create an effective
warning system. However, their work was done on a high-performance laptop, which
was to be carried in a back-pack. It is therefore unknown if such an approach is also
possible for a limited embedded system. This is one of the research questions of
this project, and therefore the choice was made to use a monocular camera.
More work has been done on designing new output methods of information for cy-
clists. The current standard solution in smart tech for bikes is through screens, but
this distracts the user from the traffic around them. Therefore the goal has been to
design a new output method that keep the users sight on the traffic. This is done
either by moving the visual information closer to the natural field of view, or by using
different sensory modes such as hearing or touch. Since both vision and hearing
are already used by the cyclist to react to traffic, it might be a good idea not to
use these modes to avoid distraction. Additionally, those who have impaired vision
or hearing could especially benefit from a artificial warning system. Reusing those
same senses for the warning output would make it less useful for the most important
target group. Taking all this into consideration, the choice was made to use vibrating
handlebars for the system’s output.



Chapter 3

Background

This section gives some background on the neural network used. This information
is however not necessary to understand the work done and can be skipped.

3.1 YOLO Neural network

Neural networks are a subset of machine learning. They are comprised of various
node layers, which are connected together. The number of layers, and various ar-
chitectures of connections can vary immensely, as well as the purposes for which
the neural network is trained. All of these differences mean nowadays there is a
large amount of neural networks available. Object detection is a very classical use
for neural networks. It consists of identifying one or more objects in an image, by
drawing a bounding box around the object, and giving it a label (making it a more
complex problem than simply image classification). Various trained neural networks
are available for object detection. During the inference stage, there is often a trade-
off between speed, accuracy and computing power needed. Neural networks that
are especially fast (between 10 and 45 images per second) without needing ex-
cessive computing power are labeled as ’real-time’, because they are often used
in (embedded) applications that have strict real time requirements. Three real-time
neural networks that are often used are YOLO, MobileNet and SSD. For this project
the choice was made to use YOLO (this choice is explained in section 4.1.3).

Object detection algorithms can generally be divided into two-stage or one-stage
networks. The first stage in a two-stage network is to detect regions of interest
that might contain an object. In the second stage this region is then labeled or
classified as a certain object. This means there are multiple passes through the
classification network. One-stage networks only require one pass through the entire
neural network. These one-stage networks are much faster as a result. YOLO, as
suggested by its name (You only look once) is such a one-stage network. YOLO has

9



10 CHAPTER 3. BACKGROUND

several network sizes. The choice of the network size is a trade-off between speed
and accuracy.

In this project the choice was made for a version of YOLO that implements scaling
cross stage partial network (csp). Csp splits the base feature map at the beginning of
a stage into two paths. One of these paths is linked directly to the end of the stage,
where the two paths are fused. This reduces the computations needed, without
reducing accuracy [38].

3.2 Neural network optimization

TensorRT is developed by NVIDIA (which is the same company that has created
the hardware used for this project: the Jetson Nano). It is an optimization library
for neural networks. It does this optimization through various methods, including
adjusting the data types and data representation, fusing nodes and layers, as well
as hardware-specific adjustments.



Chapter 4

Methods

In the following chapters, the abbreviation FOV will be used to indicate the area that
is visible to the camera. The camera is mounted at the back of the bike, looking
towards the rear. ‘Approaching the cyclist‘ or ‘forward direction‘ are used to indicate
a vehicle coming from the back of the cyclist, which will slowly increase in size in
the camera’s FOV until it leaves the FOV to pass the cyclist. ‘Moving away from
the cyclist’ and ’backwards direction‘ are used to indicate a vehicle that comes from
the front of the cyclist and passes the cyclist before entering the FOV in large size,
and then slowly decreasing in size as it moves away from the cyclist. This chapter is
divided into three sections. The first section describes how the approaching vehicles
are detected. The second section describes the vibrating handlebars, and the third
section describes the survey that was developed. The code can be found on the
utwente gitlab repository. The precise link is found in appendix A.

4.1 Approaching vehicle detection

4.1.1 Overview of the System

An overview of the detection system can be found in figure 4.1. The only sensor
input is the video frames collected from a camera. A neural network is used to
detect cars in the frame. The cyclist should only be warned about vehicles in the
forward direction. Because of the monocular camera, we do not have the velocity
information, in contrast to systems that use radar or stereo camera input. Instead the
increase or decrease in size is used to determine whether the vehicle is approaching
or moving away from the cyclist. To find this difference in size we need to be able
to id and track a vehicle for multiple frames. For this a simple matching algorithm is
used based on a cost matrix. An estimate of how close the vehicle is to the cyclist
is based on the width of the bounding box. This works because nearly all cars,
vans and trucks have a very similar width and because we can assume the camera

11
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Figure 4.1: System flowchart
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position is fixed. The program was developed with Python.

4.1.2 Computing Hardware

The hardware platform chosen was the Jetson Nano (4GB version) developer kit.
This hardware platform is a good choice because it is cheap (around 100 euros),
while still providing enough computational power to run neural networks. Maybe
even more important is the fact that the product is also targeted at the hobbyist target
group, and therefore has a lot of documentation, tutorials and hardware-specific
libraries. This significantly reduces the development time of the prototype. Given
that a bicycle is a power-limited environment, the Jetson was always run at the
lower power consumption mode of 10W. For general setup, the blog by JK Jung was
very helpful [39]. The camera used is the raspberry pi camera module (Verson 2).

4.1.3 Neural network

The choice of neural network to use was important. It must be able to perform in
real-time on limited hardware. JK Jung has created code for several neural networks
to be optimized for the Jetson Nano. He has also provided a table with the FPS and
mAP values. I estimated that for good performance, a minimum fps rate of 6 was
needed. Because the neural network would not be the only code running, and a
lower power mode is used, an additional margin was used, leading to a minimum
of 9 fps. Given that requirement, the chosen network was yolov4-csp-256 [40]. In
implementing the neural network on the Jetson Nano I used the work of JK Jung,
which optimizes the YOLO network using Nvidia’s TensorRT inference optimizer [41].
For future work it should be noted that a reasonable accuracy in the placement of
the bounding boxes is important for the direction detection algorithm. I also tried the
system out with tinyYolo, but found that the box placement was too inaccurate to get
a good estimate of direction of travel.

4.1.4 Tracking Algorithm

Most current tracking algorithms use neural networks, feature detection or a Kalman
filter. The Kalman filter is often used for radar-based tracking. However, typically a
Kalman filter makes use of (noisy) velocity information for its updates. Since a cam-
era does not provide this information, it was decided not to try this approach. Run-
ning one neural network for object detection is already a big load on the computing
power available, so it was preferable to not do this for tracking too. There are sev-
eral tracking algorithms that work with finding ‘points of interests‘, such as SIFT or
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SURF. However, during early experiments it was noted that such methods performed
very poorly when objects were far away (that is, low resolution). Finally, a custom
algorithm was developed. Given M detected objects in the current frame, and N pre-
viously tracked objects. A NxM matrix was created with dissimilarity scores. These
scores were based on three different metrics. The first, most important metric, was
the euclidean distance between the detected and tracked vehicle. This on its own
already performed quite well, but suffered from occlusion issues. To solve this the
next two metrics were added. The second metric was the difference between the
average color in the bounding boxes. (In a first approach the dominant color was ex-
tracted instead of the average color. However, this took significant extra computing
time, and average color seems to perform just as well). The third metric is a combi-
nation of direction of travel and size difference. It checks whether the size difference
between the detected and tracked vehicle, matches with the expected size differ-
ence given the direction of travel. The pseudo code this third metric can be seen
in listing 4.1. This is helpful since most occlusions in traffic situation occur because
two cars with opposite directions of travel pass each other.

1 size_diff = absolute(size_tracked - size_detected)

2 if direction_tracked is unknown:

3 score = size_diff

4 else if direction_tracked is coming_from_back:

5 if size_detected > size_tracked:

6 score = - size_diff

7 else if size_detected < size_tracked:

8 score = size_diff

9 else if direction_tracked is coming_from_front:

10 if size_detected > size_tracked

11 score = size_diff

12 else if size_detected < size_tracked:

13 score = - size_diff

Listing 4.1: Pseudocode for the size/direction metric of the tracking algorithm

4.1.5 Direction detection algorithm

To find the direction two different counters are used. One for the forward direction
(approaching the cyclist), and one for the backwards direction (moving away from
the cyclist). These counters are incremented if the increase or decrease of the size
between frames is bigger than a predetermined constant. When the counter is not
incremented, it is always decremented, which acts as the extinction function. The
counters are also limited on both sides to preserve responsiveness of the system.
When the counter reaches a certain threshold (in this case the same as the maxi-
mum threshold, but this does not necessarily have to be so), the tracked vehicle will
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be assigned the appropriate direction. The pseudocode of the code can be seen in
pseudocode listing 4.2. Despite using the word ’size’, in practice only the width of
the vehicle is used. This is because the width of most major vehicles (cars, vans,
busses and trucks) are similar, as a direct consequence of the traffic infrastructure.
In contrast, the height can differ a lot between these various types. The reader might
notice that the pseudocode contains three different kinds of directions: forward, un-
known and backwards. Unknown and backwards are treated the same by the rest
of the system, but are differentiated in the code for ease of debugging and for flex-
ibility of future extension. Two variables have the most impact on the balance of
the system. The first is the amount of frames between the new size and old size.
More frames means that smaller changes in size can be detected, and therefore that
warnings can be given earlier. However, it also means the system is less responsive
to changes of direction. Additionally, if a mismatch occurs between a tracked and
detected vehicle, this often results in an incorrectly assigned orientation, because of
the big jump in sizes. Having fewer frames between the old and new sizes means
the system can recover more quickly from these kind of mismatches. The second
important variable is the threshold the counters must reach before a direction is de-
fined. Here a similar balance exists. A lower threshold means quicker assignment
of direction, and therefore earlier warnings. However, a threshold that is too low can
lead to reduced accuracy because of a higher susceptibility to noise. On the other
hand, if the threshold is set too high, the system will respond slow to changes in
directions of travel, and will recover slower from inaccurate direction assignments.

1 if newSize > SIZE_DELTA + oldSize:

2 forwardDirectionCounter += 1

3 else:

4 forwardDirectionCounter -= 1

5

6 if newSize + SIZE_DELTA < oldSize:

7 backwardDirectionCounter += 1

8 else:

9 backwardDirectionCounter -= 1

10

11

12 if forwardDirectionCounter >= MAX_COUNT_DIRECTION:

13 forwardDirectionCounter = MAX_COUNT_DIRECTION

14 direction = FORWARD

15 else if forwardDirectionCounter <= 0:

16 forwardDirectionCounter = 0

17 if direction is FORWARD:

18 direction = UNKNOWN

19

20 if backwardDirectionCounter >= MAX_COUNT_DIRECTION:
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Figure 4.2: Sequence of frames that shows how a car entering the FOV will intially increase in width,
before it will be decreasing again as it drives further away.

21 backwardDirectionCounter = MAX_COUNT_DIRECTION

22 direction = BACKWARD

23 else if backwardDirectionCounter <= 0:

24 backwardDirectionCounter = 0

25 if direction is BACKWARD:

26 direction = UNKNOWN

Listing 4.2: Pseudocode for direction detection algorithm

4.1.6 Vehicles entering and leaving the FOV

The above direction detection algorithm assumes a car will increase in size as it
approaches the cyclist. However, there is another common occurrence in which the
size will increase. When a vehicle enters the FOV, at first it will only be partially
visible. In the next couple of frames more of the vehicle will be revealed, which to
the system reads as an increase in size. This can be seen in figure 4.2. A small
addition to the system was made to account for this case. It was noted that when
vehicles entered or left the FOV, the YOLO network actually returned bounding box
coordinates that were slightly outside of the image. The exact reason for this is
unknown, but it proved useful. When the coordinates were outside of the image,
it was added to either a list of leaving or entering vehicles. The correct list was
determined by seeing on which side of the image the vehicles were. (This has to
be flipped if the system was used in a place where vehicle drive on the left of the
road, such as the UK). If the vehicles are on the entering list, the direction detection
algorithm will be skipped. If the vehicles were on the leaving list, the tracked vehicle
will be deregistered from the tracking algorithm in the next iteration.

4.1.7 Warning system evaluation

The dataset needed for finetuning the system and evaluation has some difficult re-
quirements. Because the tracking and direction algorithm requires multiple subse-
quent frames, the dataset has to consist of videos, not images. Additionally, it has
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to be from the viewpoint of the back of the bicycle. Additionally, although not neces-
sary, it is strongly preferred that the video images are taken in The Netherlands. The
Netherlands has a unique cycling infrastructure, which could impact the functioning
of the system. No dataset was found which fulfilled all these requirements, so in-
stead the video material was gathered as part of this project. Initially the idea was
to process the images on the go, and save the processed images to analyze later.
However, it was noted that saving the images severely impacted the systems perfor-
mance, dropping the fps below 5. Instead the choice was made to record videos at
6 fps, and then process these videos later. The disadvantage of this method is that
the effect of lag spikes is not taken into account in this evaluation. Additionally, it was
decided that annotating the taken videos with the ground truth, and writing code that
includes the wanted parameters, would be more time consuming than simply finding
these parameters manually. In a spreadsheet the following parameters were noted:
when the vehicle was first seen with the eye, when was the first the neural network
detected it, when it was marked as coming towards the user, and when it passed the
user. Additionally a record was kept of errors such as when cars were incorrectly
evaluated as coming towards the user, or when a car coming towards the user lost
that designation for multiple frames. The choice was made to not include bicyclers,
scooters or motors. This is because they were far less common in the video mate-
rial, making it hard to correctly fine-tune the code for them and evaluate them. In
future iterations controlled experiments will probably have to be done to successfully
include these in the software. Additionally, cars that were on a different road than
the cyclist were not included in the spreadsheet until they turned on the same road
as the user (unless their direction was incorrectly classified).

4.2 Vibrating Handlebars

For this project a pair of bicycle handlebars was used, which were made of quite
flexible rubber. This allowed them to be partly cut open, and a small vibration motor
(275 mW) was embedded inside the rubber. These motors are controlled by pulse-
width modulation (PWM) signals. Although the Jetson Nano should be able to output
a PWM, the process is fairly complicated [42]. To avoid delays an Arduino Uno
was used to drive the motor, which was interfaced with the Jetson Nano through
serial communication. The Arduino could most likely be replaced by a small and
inexpensive PWM driver.
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Figure 4.3: Prototype

4.3 Integration in prototype

The prototype can be seen in figure 4.3. The Jetson Nano was placed in a metal
case for protection, correct camera angle and ease of fastening. This was attached
to a bicycle carrier using plant twist tie. The handlebar with vibration motor was put
on the bike. A layer of duct tape was used to waterproof the vibration motor. Two
wires run from the vibration motor to the Arduino. This is duct taped on some places
as necessary. The arduino is fastened using a tie wrap.

4.4 Evaluation metrics

4.4.1 Questionnaire

Normally a user study using the actual prototype would be the best way to obtain
user feedback on a system such as this, but because of time limitations and the
Corona pandemic, this was not possible. Instead, a questionnaire was used to elicit
feedback from a distance. Because access to the prototype itself was not possi-
ble, demo videos were used to demonstrate the system. The questionnaire itself
consisted of four parts:

• Questions about demographics and bicycle usage.

• Investigation in desired timing of warning.
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• Question about preferred vibration warning pattern.

• Investigation into vibrating handlebars and system acceptance

Figure 4.4: flow chart of questionnaire passage

In the second part the user was pre-
sented 8 demo video, taken from the
point of view of a cyclist. A vibra-
tion noise was used to simulate the vi-
brating handlebars. Users were asked
about the timing of the vibration us-
ing a 5-point Likert scale. Four sep-
arate clips were used. These were
taken from the video ”Fietsen van Heer-
hugowaard naar Alkmaar” posted by the
Youtube user wierpmesch under a Cre-
ative Commons license [43]. Four differ-
ent vibration timings were used. 2,3,4,
and 6 seconds before the car starts
passing the user. The first video for ev-
eryone uses a 4 second warning. The
next video is then based on the user’s answer. A flowchart of this can be seen in
4.4. This method is used for the following 2 clips too. In this way the first cycle of
four clips is finished. Then a second cycle of another four clips is started, using
the same method. This time the cycle starts with a video with a timing of 3 sec-
onds. In this way the preferred timing of the respondent is found with as few videos
as possible, while at the same time evaluating their consistency. In the third part
a demo video is shown with five different vibration patterns, and respondents are
asked about their preferences. The intensity of the vibration was mapped to volume
of the buzzing sound in the questionnaire. The first the vibration patterns consisted
of constant buzzing, which slowly increased in volume as the vehicle neared. The
second pattern consisted of short pulses, which increased in frequency as the vehi-
cle neared. The third pattern consisted of longer pulses, that increased in frequency
and became shorter as the vehicle neared. The last two were simply the two pulse
patterns, but with increasing volume too. Finally in the last part some more ques-
tions are asked about their opinion on the system and its usefulness, as well as
their experiences with bicycle computers. The survey has a combination of multiple-
choice questions for numerical analysis, as well as open-ended questions for a more
qualitative evaluation. The open-ended questions act as a replacement for the semi-
structured interviews I would normally hold before designing a survey or while doing
a user study, but which was not really practical because of the corona pandemic.
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The links to the questionnaires can be found in appendix A.



Chapter 5

Results

5.1 Video Analysis

First an analysis of the attainable fps was made. This was done using 5214 mea-
surements of how long it takes to analyze a video frame. 3 different test-videos were
used, 1 with low traffic density and two with high traffic density. The videos were
projected on the wall, filmed with the camera and processed by the Jetson Nano.
80% of all measured values are higher than 6 fps. Therefore 6 fps was chosen as a
good value to run the further tests on. The distribution of fps values reached can be
seen in figure 5.1.

35 minutes of video were analyzed. This included 58 cars approaching the cy-
clist and 65 cars moving away from the cyclist, as well as an unknown number of
parked cars. For the analysis of the time between the warning and the car passing
the cyclist, the data was cleaned up. Of the 58 cars approaching the cyclist, 9 never
passed the cyclist, and 1 slowed down for a long time behind the cyclist. These were
removed from the dataset. Additionally there was one car that was never marked as
approaching the cyclist. 2 cars were marked as approaching very early as a tracking
error. This initial marking was ignored in the analysis. The final distribution of warn-
ing time can be seen in figure 5.2. The median value is 3.2 seconds. 12.5% of all
warnings are less than 2 seconds, and 44% is less than 3 seconds. The cars were
generally detected very early, but were only marked as approaching significantly
later. The median time between a car being detected and marked as approaching
was 9 seconds.

These measurements were derived from real-life traffic situations. Traffic can
be complex and unexpected. Therefore an attempt was made to remove the traffic
cases that are ’not standard’, to see how this would affect the timings. Of the 48 cars,
another 14 were removed. 2 cars that entered the road closely behind the cyclist, 6
cars that were occluded while close behind the cyclist, and 6 cars that slowed down
before passing the cyclist. The new total of 36 cars was again analyzed, and can
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Figure 5.1: Distribution of fps values attained when running the system in real-time

Figure 5.2: Time between warning and car passing. A total of 48 cars was analyzed
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Figure 5.3: Time between warning and car passing. Non-standard traffic situations that could impair
the detection and/or tracking were removed. A total of 36 cars was analyzed

be seen in figure 5.3. The removal of non-standard situations did not impact the
median, which stayed at 3.2. It did lower the standard deviation from 2.8 to 2, but
this could be explained by the reduced sample size. Therefore no conclusions can
be drawn without more advanced statistical analysis.

The next step was looking at false positives, that is, cars that are not approach-
ing the cyclist, yet are marked so by the system. Of the 65 cars that were driving in
the opposite direction of the bicycle, 5 cars were marked incorrectly in such a way.
4 of these were marked so for a little less than a second, and 1 for a bit more. All
of these were caused by an incorrect assignment from the tracker. Additionally, 2
cars that were moving laterally to the cyclist were marked incorrectly. One because
of a tracker error, and one because it slowly entered the camera’s FoV. The results
are much worse for parked cars. In the 20 minutes of video that had a more ur-
ban environment with parked cars along the road, 41 parked vehicles were marked
incorrectly as approaching the cyclist. In figure 5.4 can be seen how long the in-
correct marking remained, and therefore how long the user was wrongly warned of
an upcoming car. 85% was marked incorrectly for less than a second. Additionally,
an analysis was made what regarding the cause of the incorrect marking. This was
done by observing the bounding boxes and assigned tracking number. The results
can be seen in 5.5. It is clear that the majority of false positives are caused by wrong
assignments by the tracker.

5.2 Questionnaire
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Figure 5.5: Causes of the incorrect marking. In a couple of cases there were multiple causes, so the
bars do not add up to a 100%

A total of 41 responses had been recorded in the questionnaire. Most responses
had beeng gathered by solliciting friends and family. Special attention had been
paid to gather a larger percentage of elderly respondents, since they are probably
the target group most likely to suffer from impaired hearing or vision. Because of
this a peculiar age distribution occurred, where most respondents are either young
adults or elderly, as can be seen in figure 5.6. For each respondent it was noted
which of the four timing options (2,3,4 and 6) they had selected ’just right’, either
once or multiple times. In figure 5.7 the distribution of this can be seen. It is clear
that 3 or 4 seconds is the preferred timing for the majority of respondents.

Figure 5.4: Duration that parked cars were incorrectly
marked as approaching the cyclist. n = 41

For the vibration pattern, a
small problem occurred. Be-
cause testers had problems
hearing the videos on phones,
the volume of the videos was in-
creased. However, this had as
a result that the gradual volume
increase of the pulse videos
was barely noticeable. This has
probably impacted the results.
The preferred vibration pattern
can be seen in figure 5.8.
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Figure 5.8: Vibration pattern preferred by respondents. n = 41

Figure 5.6: Age distribution of the respondents.
When it comes to the analysis of the expected acceptance of the system. 14 re-

spondents had used a cycling computer before. These respondents were presented
with questions regarding the vibrating handlebars as a replacement or addition to a
cycling computer. Generally these respondents found the cycling computers easy to
read, though 4 mentioned it was difficult to read in sunlight, and 5 respondents said
it could sometimes distract from traffic. The alternative of the vibrating handlebars
was received positively by the majority. 5 mentioned it would generally be a good
addition, and another 5 mentioned it would be helpful in certain circumstances. Wor-
ries were voiced that an excess of vibrations could be annoying to the cyclist (n=2).
One respondent felt that improving cycling safety should not be put upon the cyclists
themselves, but instead put upon car drivers giving cyclists more space and being
more aware of the cyclists. Another respondent mentioned:

”I think it would be great for places with no dedicated bike paths. I think



26 CHAPTER 5. RESULTS

in the Netherlands traffic coming from behind is not often a problem.
However this could be great for use in other countries.”

Figure 5.7: Amount of respondents that
marked a timing as ’just right’ at least
once. Respondent could do this for mul-
tiple timings, so the total is not equal to
number of respondents. n = 41

Multiple people mentioned how they valued
the additional modality to the existing ones of
sound/sight (n=4).

Regarding the general acceptance of the
system, 21 respondents felt that the system
could be useful for themselves, and 37 respon-
dents felt that the system could be useful for oth-
ers. The explanations for why it would be use-
ful was to reduce the startle response in elderly
cyclists (n=3). Others mentioned how it would
mostly be useful for those with reduced hearing
and/or vision (n=9).

6 respondents had hearing and vision issues,
and these will be investigated more closely. All
of them were older than 55, 3 male and 3 female, and all of them biked at least once
a week, four even cycled 4-6 times a week. 5 had hearing problems, and one had
vision problems. 5 of the 6 felt that their impairments negatively affected their safety
while cycling. 2 of these had rear mirrors on their bicycles, and were satisfied with
the solution, though one of them would be open to trying out the new system. Of the
other four, one man did not feel that his impairments negatively affected his safety,
and therefore did not think the system was useful for him. The other three all thought
the system would be useful for themselves. One user said (translated from Dutch):

”I think it would be very nice for the hearing impaired, because now you
often startle and make unexpected movements that can lead to a fall.”

And another said:

”I am sometimes caught off guard by a passing car, especially if it does
not keep enough distance.”

5.3 Personal experience prototype

Ideally in this section a user study would be presented. However, due to time con-
straints as well as the Covid pandemic this was not possible. However, I believe
that a description of my personal experiences is still useful as an indication and
inspiration for future work.
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Figure 5.9: Testing out the prototype

The false positive warnings were quite noticeable, although they were usually
quite short, while the ’true’ warnings were of a longer duration. No cars passed
without a warning. Usually I could hear the car coming before the warning. The
vibration mapping was troublesome. At first, a mapping was made with increasing
vibration intensity. However, with the rubber and duct tape on top of the vibration
motor, differences in intensity were hard to detect. Pulses were used next, but this
made it harder to tell the difference between true warnings and the false positives.
Finally I just settled on not using any mapping for the distance, and always output
a warning at full vibration. An interesting observation was that even though the
vibration was of a moderate intensity, it could still be felt in the other handlebar
(which didn’t have any vibration motor embedded) and even in the bicycle seat. I
was very surprised such a small vibration motor, attached to the handlebar, resulted
in me being able to feel the vibration all the way in the saddle. This could be seen
as an undesirable side-effect, but maybe vibrations in the saddle could also be used
to provide a higher complexity of feedback.
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Chapter 6

Discussion

Although the current system is functional, it is not reliable enough. The warning time
is shorter than people prefer, and the false positives, although short, are numer-
ous. Both issues can be traced back to tracker failures. When the tracker makes a
wrong association between a tracked and detected vehicle, the direction detection
algorithm is likely to give the wrong results. This results in the false positives. The
reason that this happens more to parked vehicles is not entirely clear, but most likely
it is simply because there much more parked vehicles in the video than moving ve-
hicles, and because they are closer together, often parked headlight to tailpipe. To
recover quickly from these errors, the direction detection algorithm is designed to be
very responsive, but this also results in having less time to warn the cyclist, as was
explained in section 4.1.5.

Improving the tracking algorithm should be the first step taken. The tracking algo-
rithm currently has similarities to the commonly used combination of the Hungarian
algorithm and Kalman filter. Using the Hungarian algorithm will probably increase
the efficiency of the algorithm, although the tracking consitutes only a small part of
the computing time. A Kalman filter could be attempted to improve accuracy, but
the disadvantage is that we don’t have access to information about the velocity or
external forces, meaning multiple assumptions will have to be used. Training the
object detection algorithm to differentiate between different orientations of the cars
is possible, but since the problem mostly arises with parked cars, this will most likely
not solve the issue. A more fruitful approach might be detecting the road - a com-
mon computer vision problem for which much work is already done - and filtering out
the cars that are not situated on this road, but instead to the side. A similar train of
though would be using the width/height ratio to estimate how lateral the car was to
us, although varying road-widths will probably not make this reliable. Increasing the
reliability threshold of the neural network also seemed to give some small improve-
ments, but not enough time was available to check the quantitative results. More
advanced tracking algorithms might also be explored, though this could cause is-
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sues with a lower frame rate, and leaves less computational room for new features.
Another approach could be making the direction-detection algorithm more robust
to tracking failures. One might be able to take a larger window frame when all the
data indicates a constant direction/velocity, yet discard past data when sudden or
unexpected changes are found. In this way the system might be able to mark ap-
proaching cars faster, without losing robustness when dealing with tracker errors or
sudden direction changes from the cars. The hindsight paper seem to benefit from
a significantly higher fps (around 30), which means there is more data available to
determine the increase in size, and makes it easier to track vehicles since there is
less change between frames. Increasing the fps could be another way to improve
the performance of the system. However, they also report an average warning time
of only 1.89 seconds, though with significantly less false positives.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

A survey indicates that a warning system for upcoming traffic on a bicycle interests
a large proportion of people, with 51% of respondents indicating such a system
would be useful for themselves, and 90% indicating it could be useful for others.
The majority of respondents preferred that the warning would be felt around 3 or 4
seconds before the car passes. Most people preferred a type of pulse over constant
vibration. No real difference was found in the preference between short or longer
pulses.

A functioning prototype has been created. It uses a monocular camera system.
However, the prototype has a warning of less than 3 seconds in 44% of the cases.
Results from the survey indicated that at minimum a warning should be given 4
seconds before the car passes. This means that the current performance of the
system is not sufficient. The biggest choke-point is the inaccuracy of the tracking
algorithm. This generates a lot of false positives. To get around this the direction
detection algorithm responds very quick by only looking at a small amount of frames
in the past. However, the consequence of this is that the subtle size changes in cars
far away are not adequately detected.

7.2 Future Work

An important question that is not yet resolved is why choose for a mono-camera
approach, instead of a stereo-camera or radar-camera fusion approach. Having
access to the velocity information from the radar eliminates the weak point in this
project - the tracker. This suggests that for an embedded system in the bicycle -
as envisioned in this project - a radar-camera fusion approach could be much more
viable. Looking at reviews from the Garmin Varia, as well as conversations with
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a peer who worked on a similar system using radar, suggests that using radar for
this application is very robust and reliable. However, the work done here might still
be valuable in an environment that has by default only one camera and no radar -
the modern mobile phone. This has as advantage that no additional hardware has
to be created or installed, and could massively bring down costs for the consumer,
potentially even free. Investigating whether the modern mobile phone has enough
computing power and battery life to run such a system would be an interesting new
step. Finally, a more hands-on approach, potentially even in virtual reality, in testing
the different cyclist behaviours and user experience between auditory, visual and
haptic warnings in a cycling environment could provide a lot more information. This
also permits for modeling a future traffic situation where the majority of vehicles
are electric, as well as representing more complex traffic situations. The personal
struggle with mapping distance in the prototype makes clear that future user studies
need to use a physical bicycle handle with vibration. Additionally, to have more infor-
mation from the relevant target group, future user studies should target specifically
those with impaired hearing or vision. Finally, the Netherlands also has a unique bik-
ing infrastructure which neither academic work nor the existing Garmin Varia takes
into account. Biking paths are often separated from vehicles through grass and/or
trees. When biking on such paths, nearing cars on the separate road are not very
interesting for the biker, but nearing scooters on the bike-path should still be picked
up. A user of the Garmin Varia in the Netherlands noticed that from the 27 cars the
system picked up, only 10 were actually on the same road as him [30]. Creating
a system that detects the difference between separated cycling lanes and shared
space with cars could be very useful in adjusting the warning system. I had done
some work in this topic too, but due to disappointing results it is not included in this
report.
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[22] M. Hägelen, R. Jetten, J. Kassner, and R. Kulke, “Safety and comfort enhance-
ment with radar for a bicycle assistance system,” in 2019 20th International
Radar Symposium (IRS). IEEE, 2019, pp. 1–7.

[23] E. Schoop, J. Smith, and B. Hartmann, “Hindsight: enhancing spatial aware-
ness by sonifying detected objects in real-time 360-degree video,” in Proceed-
ings of the 2018 CHI Conference on Human Factors in Computing Systems,
2018, pp. 1–12.

[24] D. de Waard, K. Edlinger, and K. Brookhuis, “Effects of listening to music, and
of using a handheld and handsfree telephone on cycling behaviour,” Trans-
portation research part F: traffic psychology and behaviour, vol. 14, no. 6, pp.
626–637, 2011.

[25] K. Terzano, “Bicycling safety and distracted behavior in the hague, the nether-
lands,” Accident Analysis & Prevention, vol. 57, pp. 87–90, 2013.

[26] “Un regulation on advanced emergency braking systems for cars to signifi-
cantly reduce crashes,” Feb 2019. [Online]. Available: https://unece.org/press/
un-regulation-advanced-emergency-braking-systems-cars-significantly-reduce-crashes

[27] “Smart helmet.” [Online]. Available: http://livall.com/

[28] “Lumos helmet - a next generation bicycle helmet.” [Online]. Available:
https://lumoshelmet.co/

[29] “R1 - smart road cycling helmet.” [Online]. Available: https://www.sena.com/
product/r1

[30] “Garmin varia rtl515 and rvr315 cycling radar in-depth review,”
Nov 2020. [Online]. Available: https://www.dcrainmaker.com/2020/05/
garmin-rtl515-rvr315-cycling-radar-review.html

[31] Www.thingsthat.com, “Laserlight core.” [Online]. Available: https://beryl.cc/
shop/laserlight-core
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Appendix A

Links to various resources

The code developed in this thesis can be found at:
https://git.snt.utwente.nl/smart.cycling/vision.based.warning

The survey can be viewed at:
Dutch: link
English: link
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https://git.snt.utwente.nl/smart.cycling/vision.based.warning
https://docs.google.com/forms/d/1wgUjP5m2Im4ioO1x8ncJmeYuIm6TBpvR7Dxsor9PW4s/edit?usp=sharing
https://docs.google.com/forms/d/1wNVH-2Y1qwG2vaUmNXpriW2vy0A9ZwgfXIF4VzB-NBU/edit?usp=sharing
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