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Abstract

Sustainable and smart mobility strategies are now starting to be adopted to reduce the
CO2 emission as well as take advantage of digitalization and automation to achieve
seamless, safe and efficient transportation. Bicycles and e-bikes are considered to be
the leaders of this transition, as they are cost-effective and have a positive impact on
health. With the growing popularity and usage of bicycles, cycling safety becomes
more critical. Lateral maneuver of bicycles is a typically apprehended maneuver on the
roads and improper assessment of the surroundings during this typically causes various
accidents. Although, this action is highly similar to the lane change maneuver performed
in cars, the assistance systems developed for cars will not be effective for bicycles, due
to the characteristics traits of bicycles such as limited size/space, low cost, low weight,
vehicle dynamics, and their road infrastructure. This brings many challenges to the
system design. The solutions for bicycles are required to be cost effective, less complex in
terms of hardware and software design, efficiently provide maximum utility with minimal
resources, and provide a relatively good accuracy across different environments at the
same time.

In this work, we design and demonstrate a novel multi-modal early warning system to
assist cyclists in identifying dangerous situations during lateral maneuvers. To the best
our knowledge, this is the first work that addresses the constraints, designs a complete
system for lateral maneuver of bicycles and validates it using extensive experiments in
real-road scenarios. It consists of a 76GHz millimeter wave (mmWave) radar sensor and
two ultrasonic sensors to detect targets such as cars, trucks, bicycles and pedestrians in the
rear-side blind spot regions as well as approaching from behind; and using the combination
of Time-to-Collision (TTC) and Minimum-Safe-Distance (MSD) metrics to assess and
generate warnings about potential danger at an early stage. The warnings generated by
the system include two distinct information and provide improved utility towards the
safety of bicycles. The warnings indicate the side of potential maneuvering hazard to
host cyclist and of a dangerously approaching vehicle right behind the host bicycle. This
additional information can be used to alert the cyclist of the approaching bicycle to be
aware of the host bicycle to mitigate collision. From the extensive experiments in real-
road scenarios, the method is deemed feasible and can identify threats and warns the
rider about 5 seconds in advance with an accuracy of 95.2%.
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Chapter 1

Introduction

In the current era, the world is moving towards a smarter and sustainable tomorrow.
According to the United Nations Regional Information Centre (Western Europe), mobility
is considered to be one of the most essential elements of the development strategies that
aim to achieve the sustainable development goals [1]. While mobility offers its users many
benefits, it does not come without consequences to our society. Negative effects such as
greenhouse gas emissions, air and water pollution, noise pollution, congestion, along with
road accidents, affect our health and well-being. The transportation sector is seen to be
responsible for 24% of the global CO2 emissions [2]. Thus, new sustainable and smart
mobility strategies are now starting to be adopted to reduce the CO2 emission as well as
take advantage of digitalization and automation to achieve seamless, safe, and efficient
transportation. This has resulted in conventional vehicles becoming more advanced and
the rise in popularity of non-emitting transportation such as bicycles, electric cars, and
Electric Bikes (e-bikes). Bicycles and e-bikes are considered to be the leaders of this
transition as they are cost-effective and have a positive impact on health. The bicycle
industry is transforming, significant growth is being seen in both sales and production of
bicycles especially e-bikes and is forecast to grow up to 30 million sales per year across
Europe by 2030 [3].

Figure 1.1: Fatal and Serious Injuries by Mode of Travel [4]
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The increase in the number of bicycles with higher speeds might also increase the
number of accidents that may occur. In 2016, 30% of the road accident deaths involved
cyclists and e-cyclists as shown in Fig. 1.1. According to the analysis conducted by
Statistics Netherlands, the number of traffic accident deaths over the past two decades
(1999 to 2019) in car occupants is seen to have dropped by 60%, while it is only 11%
among cyclists [5]. Despite extensive cycling infrastructure in The Netherlands, it has the
second most cyclists death rate in Europe due to the commonness of cycling [6]. These
data support the fact that there is a lot of focus on the safety of high-end automobiles
with the implementation of many advanced technologies. There is ongoing work in the
direction of ADAS technologies that are focused towards coordinated and autonomous
driving. Whereas very minimal attention has been directed towards the safety of bicycles.
The number of accidents involving bicycles is very high, which demands more research
attention due to their increasing popularity and their capability to become the major
mode of transportation for a smart and sustainable future.

Figure 1.2: Driver Responsibility in ADAS[7]

According to statistical reports, human errors are seen to account for 90% of traffic
accidents [8]. The main goal of ADAS is to mitigate human errors during driving by
assisting the driver in a variety of ways. These systems interact with the driver and require
the engagement of the driver. Simple ADAS only provide vital monitoring information of
the surroundings to the driver, whereas with advancements they can also provide guidance
and take control during certain simple scenarios in some class of vehicles as shown in
Fig. 1.2. ADAS is a term that originated from automobile driving and is focused on high-
end vehicles [7], with currently increasing ADAS features and built towards automated
driving. A wide range of assistance systems has been implemented for different vehicles
such as cars, trucks, and bicycles with different technologies and functionalities. Each
system is found to contribute to safety through different means with its own benefits and
drawbacks. The increased scientific attention of such systems for cars has also led to
significant commercialization.
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The most important ADAS features that have been implemented in cars are inferred
to be:

• Forward collision warning and mitigation.

• Closing vehicle warning.

• Blind-spot warning.

• Lane change assistance.

Lane changing is a typically apprehended maneuver on the roads and requires careful
assessment of the surrounding vehicles to preclude any risk of the maneuver to other
road users before execution. It has a high error potential and is one of the main causes
of various severe crash accidents [9]. The Lane Change Decision Aid Systems (LCDAS)
combines the functioning of blind-spot and closing vehicle warning systems. There is a
wide range of ADAS for lane change assistance available and are developed for cars. Some
of these systems only aid in the better decision of the driver during lane change, while
others execute the maneuver end-to-end [10][11][12][13][14][15]. The focus on cars has
resulted in complex and expensive systems. The assistance system developed for bicycles
is very minimal and is mostly focused on providing closing vehicle warnings [16][17][18].
Despite the lack of clear lane separation in most scenarios, lateral maneuvers similar to
lane changing are performed by cyclists, within the dedicated bicycle lane or in a shared
road infrastructure without a dedicated bicycle lane. The cyclists are required to perform
a similar kind of action performed by drivers in cars during lane change maneuvers during
the process of lateral maneuvers. The cyclist must turn back and look for any vehicle
on the adjacent side as well as approaching from behind and assess its attributes such as
speed and distance to make the decision of performing the maneuver in that direction.
This action may have a detrimental influence on safety since the cyclist will be unable to
focus on the path in front during the scanning process. It may also cause the cyclist to
drift to the side, which may result in an accident. In addition, the tendency of the cyclist
to improperly assess the surroundings and underestimate the speed of distant approach
vehicles from behind is also common. These factors contribute to the reduction of safety
and increase the possibility of collision during lateral maneuvers. The Fig. 1.3 depicts
some scenarios in which the lateral maneuvers are inferred to be dangerous.

(i) (ii) (iii)

Host 
Bicycle

Host 
Bicycle

Host 
Bicycle

Figure 1.3: High-risk Lateral Maneuver Scenarios
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1.1 Objective

Bicycles are very different from high-end automobiles such as cars, in several aspects.
They are a low-end transportation mode with a long, narrow, and lightweight body with
a different road infrastructure from cars. These characteristics traits have a very crucial
role in the type of technological solutions that are designed for them. The solutions
are required to be cost-effective, less complex in terms of hardware and software design,
efficiently provide maximum utility with minimal resources, and provide relatively good
accuracy at the same time. Thus, solutions that have been developed for cars and other
high-end vehicles will not be effective for bicycles. Considering all these factors the goal
of this thesis is to ‘Design an early warning system for safe lateral maneuver of
bicycles’.

The key sub-questions that are addressed in this thesis are:

• What is the suitable sensor technology for bicycles to effectively collect the surround-
ing vehicle information?

• How to design a simple and effective warning algorithm suitable for bicycles using
the suitable sensors?

• What is the performance of the designed warning system under real-road scenarios?

1.2 Contribution

In this chapter, the brief background information on the trend of bicycle usage was
provided to highlight the importance of the current research domain which is focused on
the safety of bicycles. Then a detailed motivation was provided for deciding to design a
warning system for safe lateral maneuver of bicycles followed by the objectives and the
goals of the research. The solutions of the sub-questions listed above are then covered
in chapters 3 to 5, as indicated in Section 1.1 . Finally, the conclusion and future work
of this project are presented in Chapter 7. The main contribution of this work can be
summarized as follows:

• A complete system for lateral maneuver of bicycles addressing the constraints using
low-cost off-the-shelf components, including a mmWave radar sensor, two ultrasonic
sensors, and a Raspberry Pi, to detect both short-range and long-range hazards is
designed.

• By carefully configuring the TX signal in the front-end and removing redundant
reflection points using the back-end processing, the mmWave radar achieves maxim-
um range and velocity detection of each interested target with minimal power and
computational complexity. This guarantees the system is feasible for a low-end
vehicle and can generate on-time warnings.

• An improved deterministic-based algorithm is proposed for bicycles to assess the
lateral maneuver threat in a human-like manner using a combination of Time-
to-Collision (TTC) and Minimum Safe Distance (MSD) metrics. It reduces false
positives with low computational complexity.

13



• An improved warning algorithm for bicycles that includes two information, one for
the sides and one for the straight is designed. This functionality is expected to
improve safety by also preventing possible rear collisions even in an environment
where the other bicycles are not equipped with the same assistance system. This is
inferred to improve the utility of the system and contribute more to the safety of
bicycles.

• Extensive field tests are carried out to evaluate the performance and accuracy of
sensors in real outdoor environments. The warning system accuracy of 95.2% and an
early warning time of 5 secs for different real road scenarios and lighting conditions
was achieved. This proves the effectiveness and robustness of the system.
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Chapter 2

System Requirements

In this chapter, a general introduction to understanding the main functional blocks
of the assistance system along with their requirements is given. The requirements of
each functional block based on the system requirements mentioned in Section 1.1 is
provided to help correspond to the comparison metrics used for analysis in Chapter 3.
The system consists of three main functional blocks namely surrounding information
extraction, threat assessment, and response as shown in Fig. 2.1.

Surrounding Information  
Extraction Threat Assessment Response

Figure 2.1: System Functional Blocks

2.1 Surrounding Information Extraction

This block is responsible for detecting other road users rapidly approaching from behind
as well as present in close proximity around the host bicycle. The required information
such as distance, position, and relative speed of desired detected targets such as bicycles,
cars, and trucks need to be extracted for threat assessment. It has a direct impact on the
overall performance of the system, as it acts as a bridge between the environment and
the system. An error in the interpretation of the surroundings itself affects the accuracy
of the assistance provided by the system significantly. The different sensing methods
available for the implementation of this block are analyzed and evaluated in Section 3.1.
The criteria that are considered critical for this block along with their requirements are
as follows:

• Range: The range is defined as the maximum distance at which the sensor can
detect targets. The increase in the range of the sensor enables the detection of
distant vehicles in advance. The earlier the vehicles are detected more processing
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time is available to process the information and deliver on-time warnings. Consider-
ing the speed of different vehicles on road, it was concluded that a minimum of 20m
range is required for detecting closing vehicles in-order to provide warnings with
minimum reaction time. However, the greater the range, the better.

• External Sensitivity: External Sensitivity is defined as the impact of external
environmental factors on the performance of the sensor. The system requires a
sensor with the least sensitivity that provides stable performance across adverse
environmental conditions. This requirement is because the bicycle will be driven
in all weather conditions and cyclists will depend more on the system during
unfavorable environmental conditions such as fog, rain, etc. This reliance is caused
by the reduction in the capacity of the cyclists to be aware of the surroundings
under these difficult circumstances.

• Estimation Capability: Estimation capability is defined as the ability of the
sensor to estimate characteristic features of the detected targets. This project
requires a sensor that can estimate the speed, distance, and position of the detected
targets. These features are considered vital for evaluating the safety of the lateral
maneuver effectively.

• Multi-Target Detectability: Multi-target detectability is defined as the ability
of the sensor to detect multiple targets in the scene. This capability is considered
vital for the system as there will be multiple road users and each of them must be
detected in order to evaluate the safety of the lateral maneuver effectively.

• Field of View (FoV): FoV is defined as the detection coverage of the sensor.
This project requires a sensor with a considerable wide field of view as there is a
need to monitor targets in the adjacent sides to determine the safety of the lateral
maneuver. The increased FoV will enable the system to provide support for wider
lateral maneuvers.

• Accuracy: Accuracy is defined as the ability of the sensor to detect targets
correctly and estimate their characteristic features, as close to the original ground-
truth value. This project requires a good accuracy rather than very high accuracy,
as the system only assists the cyclists rather than executing the maneuver itself as
in autonomous vehicles. The more accurate, the better.

• Cost: Cost is defined as the amount of money required to purchase the hardware
components and build the system. This project requires a low cost sensor as it
developed for a low-end vehicle. The increase in cost will restrict the feasibility of
the system.

• Complexity: Complexity is defined as the amount of difficulty in implementing
the sensor to detect targets and extract their characteristic features. This project
requires a sensor with minimal complexity as the rise in complexity may result
in higher hardware requirements, increased energy usage, mounting difficulty, and
higher cost.

16



2.2 Threat Assessment

This block is responsible for evaluating the risk factor held by each detected road user
from the information extraction block, to discover hazards that may impair the safety
of the lateral maneuver. There are existing methods and algorithms to carry out this
assessment and each of them have a performance level associated with them. Some of the
most used methods and algorithms in existing systems are analyzed to find the challenges
in implementing them for bicycles in Section 3.2. The criteria that are considered critical
for the threat assessment block along with their requirements are as follows:

• Complexity: Complexity is defined as the amount of difficulty in obtaining the
necessary information and implementing the assessment algorithm, to detect threats
in the surrounding environment. This project requires an algorithm with minimal
complexity as the rise in complexity may result in increased computation, energy
usage, number of sensors for obtaining necessary information, and hardware require-
ments.

• Accuracy: Accuracy is defined as the ability of the algorithm to correctly estimate
the threat possessed by the detected targets in the safe execution of the lateral
maneuver. This project requires a relatively good accuracy as the system only
assists the cyclist rather than very high accuracy, as in systems executing the
maneuver itself.

• Acceptability: Acceptability is defined as the ability of the algorithm to estimate
threats in a human-like manner to be acceptable by cyclists. This project requires
a highly acceptable algorithm, as the utility of the system will only be obtained if
the cyclists accept the system and make their decision based on the information
provided.

2.3 Response

This block is ultimately responsible for providing the utility of the system to cyclists. It
utilizes the position information of the threats assessed in the threat assessment block to
provide timely assistance for cyclists during potentially dangerous maneuvers and enable
safe maneuvers. The criteria that are considered critical for the response block along
with their requirements are as follows:

• Complexity: Complexity is defined as the amount of difficulty in implementing
the response mechanism to provide assistance to cyclists. This project requires a
response mechanism with minimal complexity due to the restricted cost.

• Utility: The utility is defined as the usefulness of the assistance provided by
the response block to improve cycling safety. This project requires a response
mechanism that provides maximum utility based on the obtained information of
the threats.
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Chapter 3

State-of-the-Art and Critical
Analysis

In this chapter, the available methods used in cars and bicycles for the implementation
of each functional block are introduced. The methods used in cars are also studied due
to the limited available systems implemented for bicycles and the feasibility of adapting
methods used in cars is investigated. The feasibility of each method is analyzed using
the criteria mentioned for each functional block as mentioned in Chapter 2.

3.1 Surrounding Information Extraction

There is a wide range of sensor technologies that are available for the extraction of
surrounding information in ADAS. These technologies are broadly classified into three
major categories vision-based, non-vision-based, and vehicular communication methods.
They will be reviewed in this section.

3.1.1 Vision Based Sensors

This category includes sensors that capture the surrounding environment using different
types of cameras and various image processing algorithms are then applied to detect
road users and extract their information such as speed and distance. These sensors are
versatile and are capable of producing higher-resolution information, as well as color and
texture data, but their detection range is relatively low and is easily affected by poor
weather conditions. The two main types of vision-based systems employed in road safety
assistance systems are Monocular and Stereo systems.

1. Monocular System: These type of systems use a single camera sensor to capture
the surrounding video. It is the popular system type used in on-board road safety
systems and is capable of detecting vehicles, lane marks, traffic signs, and pedestrians
reasonably well. The shortcoming of the system is its inability to calculate a robust
and reliable 3-D view of the world from the planar 2-D frame that is received from
the camera sensor.

2. Stereo System: These type of systems use two camera sensors separated from each
other to capture the surrounding video. They provide a 3D image by combining
the images from two cameras sensors, which results in easier obstacle detection.
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The distance to the detected objects can also be measured accurately through
triangulation. The shortcomings of these systems are their increased cost and
complexity.

This technology has been widely used in cars with very limited work in bicycles. They
have been mostly used in ADAS that aid in lane change detection and lane change decision
on car [15][19][20][21] and to monitor closing vehicles on bicycles [16]. They are seen to
have high performance under certain ideal conditions with the capability to provide rich
information of the surroundings for identification and classification requirements. But,
require high-level indirect computation algorithms for the extraction of information such
as speed and distance of vehicles which are crucial for ADAS that aid in lane change
assistance or lateral maneuver to compute the safety of the maneuver effectively. They
are also highly sensitive to illumination and weather conditions. Despite work to overcome
these drawbacks through different image processing methods [20][21], sufficient progress
has not been made to match the performance of some non-vision-based technologies.

3.1.2 Non-Vision Based Sensors

This category includes sensors that capture the surrounding environment using different
wave propagation-based sensing technologies. This category of sensors is growing in
prominence with the advancements in wave propagation-based technologies. The key
benefit of these technologies is their ability to immediately offer valuable information
like speed and distance, making them simple to integrate into the road-safety assistance
systems. Some of the common sensing technologies of this category that have been used
in road-safety assistance systems are ultrasonic sensors, acoustic detectors, radars, and
lidars. These methods will be explained and reviewed.

1. Ultrasonic Sensor: Ultrasonic sensors are one of the oldest sensor technologies
that have been used in road-safety applications. They use reflected sound waves to
calculate the distance to targets. The sensor transmits short bursts of ultrasonic
sound waves and measures the time taken for the sound to travel to a target, be
reflected, and return to the receiver as shown in Fig. 3.1. The distance to the
object is estimated based on the travel time and the speed of sound in the air.
Their detection range is limited to around 4m, due to their atmospheric attenuation
properties. The speed of sound in air is also influenced by temperature, humidity,
and wind which may affect its performance in extreme outdoor conditions. Overall
they are a cost-effective, relatively robust, and reliable sensing technology for short-
range detection. They have been used mostly in blind-spot warning systems for cars
and bicycles [17][22]. They are cost-effective and relatively robust, but their short
sensing range and their inability to estimate the speed and position of vehicles have
restricted their usage in ADAS with other complex functionalities.
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Figure 3.1: Ultrasonic Sensor Working [23]

2. Acoustic Detector: Acoustic detectors are passive sensor technology that has
been used for vehicle detection. They use an array of microphones to capture
the sound signals from the surrounding environment as shown in Fig. 3.2. These
signals are then processed and correlated using machine learning algorithms to
obtain information about the vehicle passage. The FoV and the directionality
of the detector depends on the microphone array design. These types of sensors
have been used in some road-safety applications. They have been used for closing
vehicle detection in bicycles [18], but their performance has not been thoroughly
investigated. The accuracy of the systems is seen to be high, but the range of
detection and complex processing algorithms are a constraint. The ability of these
sensors to detect road users such as bicycles and pedestrians that do not emit
significant sound during their movement is still an open challenge that has not
been addressed.

Sound Waves

Microphone 
Array

Target

Figure 3.2: Acoustic Detector Working

3. Radio Detection and Ranging (RADAR): Radars are an electromagnetic-
based sensor technology used for detecting, and recognizing targets at considerably
long distances. They operate by transmitting electromagnetic waves toward objects
and observe the echoes returned from them to determine their presence, location,
and velocity as shown in Fig. 3.3. Their ability to detect faraway targets under
adverse weather conditions and determine their range and distance with precision
distinguishes them from optical and infrared sensing methods.
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Figure 3.3: Radar Sensor Working

Radars are broadly classified based on the frequency of their operation as shown in
Fig. 3.4. Each frequency band has its own performance capabilities. The factors
such as physical size, transmitted power, antenna beamwidth, and atmospheric
attenuation vary with frequency.
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UHF L S C X Ku K Ka Mm

100 - 30 30 - 15 15 - 7.5 7.5 - 3.75 3.75 - 2.4 2.4 - 1.7 1.7 - 1.1 1.1 - 0.75 0.75 - 0.30

Wavelength (cm)

Frequency (GHz)

Figure 3.4: Radar Operation Bands

Physical Size: The size of the radar hardware is directly proportional to the
wavelength of each band. The wavelengths are shorter for higher frequency bands,
resulting in small hardware that can be housed in smaller packages.

Transmitted Power: The ability to transmit larger amounts of power is indirectly
dependent on the wavelength of the band due to its impact on the hardware size.
Thus, larger the wavelength, higher the transmitted power.

Beamwidth: The ratio of the wavelength to the width of the antenna determines
the width of the radar’s antenna beam. To create acceptable narrow beams at
low frequencies, huge antennas are usually required. Small antennas will suffice at
higher frequencies.

Atmospheric Attenuation: The atmospheric attenuation increases with frequency.
It is negligible up to 100 MHz, above which it becomes increasingly important.

The millimeter (Mm) band uses the shortest wavelength among the electromagnetic
waves that are in the millimeter range. These short wavelengths are considered to
be one of the major advantages, as it results in smaller system components such as
antennas and higher detection accuracy. The radars that operate in this band are
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known as mmWave radar. The modern mmWave radars exhibit distinct advantages
over lower band (L, C, X, Ku, K, Ka) radars such as:

• Lower Radar Cross Section (RCS).

• Longer detection range.

• Enhanced spatial resolution.

• Agile maneuverability.

• Superior survivability.

• All weather capabilities and greater reliability.

• Increased accuracy.

• Reduced size, weight, power and cost.

Radars have been increasingly used in automotive and industrial applications over
the last decade. The 24GHz frequency band has been used in legacy radars that
are widely implemented in cars with very limited implementation in bicycles. They
have been implemented in applications such as forward collision warning, blind-spot
warning, autonomous emergency braking, and adaptive cruise control in cars [24][25]
[26][27][28]. Their implementation on bicycles for closing vehicle warning and
forward obstacle detection systems are in development stages [29][30]. This band
has a few shortcomings with respect to power, size, and accuracy as mentioned
above. But, the spectrum regulation and standards developed by the European
Telecommunications Standards Institute (ETSI) and Federal Communications Com-
mission (FCC) has mainly lead to the shift towards the higher 77GHz-81GHz
band (mmWave). The mmWave radars are emerging as a key technology in cars
with increased implementation, but there has been no known implementation in
bicycles. They have been used in ADAS that provide automatic emergency braking,
blind-spot detection, pre-collision warning, automatic cruise control, pedestrian
identification, and autonomous driving [31][32][33][34][35]. Angular resolution and
target classification capabilities are mainly known to be their current limitations.

4. Light Detection and Ranging (LIDAR): Lidars essentially work on the same
principle as radar but swap electromagnetic waves for lasers. They operate by
projecting an optical pulse at a target and analyzing the properties of the reflected
return signal as shown in Fig. 3.5. They can detect faraway objects similar to
radars but have difficulty detecting close objects. They are capable of providing an
extremely high-resolution 3D characterization of targets without significant back-
end processing and their high spatial resolution in the order of 0.1 degrees different-
iates them from radars. Their performance is affected by ambient light conditions
and degrades in adverse weather conditions. They are also seen to be increasingly
gaining their way into ADAS systems in cars with very minimal usage in bicycles.
They are used in collision warning and avoidance systems, blind-spot monitors,
lane-keeping assistance, adaptive cruise control and focused towards autonomous
driving in cars [36][37][38][39][40]. They have been used for front obstacle detection
and avoidance in bicycles [41]. Their performance is similar to radars apart from the
improved spatial resolution. But their high cost and sensitivity to adverse weather
conditions have limited their usage.
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Figure 3.5: Lidar Sensor Working

3.1.3 Vehicular Communication

Vehicular communication is one the emerging research field and can be viewed as the new
generation of automotive sensor technology for road-safety applications. They felicitate
the exchange of information between the vehicles and surrounding environment as shown
in Fig. 3.6 and enable to design the next generation of ADAS. The communication
network includes Vehicle-to-Vehicle (V2V), Vehicle-to-Road Infrastructure (V2I), and
Vehicle-to-Pedestrians, where the road infrastructure and the users are equipped with
wireless communication devices and exchange information between them. These interacti-
ons enhance the situational awareness of vehicles and provide drivers with an information-
rich travel environment. Further, connected vehicles are considered as the building blocks
of the emerging Internet of Vehicles, a dynamic mobile communication system that
features gathering, sharing, processing, computing, and secure release of information
and enables the evolution to next generation Intelligent Transportation Systems [42].
The development and deployment of fully connected vehicles requires a combination of
various off-the-shelf and emerging technologies, and great uncertainty remains as to the
feasibility of each technology. Thus, there are still a lot of uncertainties and challenges
to be addressed for the deployment of connected vehicles on a large scale. There is
extensive research on V2V and V2I communication networks [43], with researchers also
attempting to include bicycles into the network using Bicycle-to-Vehicle (B2V) and
Vehicle-to-Bicycle (V2B) communication systems [44]. Lane change assistance systems
have also been implemented using this technology in cars [45][46]. The researches in
this domain only aim to develop basic system framework and test its performance under
limited test scenarios. Implementation of these systems at scale require a new infrastruct-
ure which will be expensive and time consuming.
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Figure 3.6: Vehicular Communication Working [47]

3.1.4 Sensor Fusion

Sensor fusion is the method of bringing together inputs from multiple sensors such as
radar, lidar and camera to improve the accuracy of resulting information by balancing the
strengths of different sensors. It enables to provide the most comprehensive, and therefore
accurate, surrounding environmental model possible. Most of the existing ADAS adapt
sensor fusion to achieve high level accuracy of object identification and tracking to
meet the requirements of autonomous driving. This method is mostly implemented in
cars [7][48][49][50][51][52], with limited adaptation in bicycles [53]. Almost all the existing
fusion methods have resulted in the increased system complexity and cost as only high
performance sensors such as lidar, camera, and radar are used together.

3.1.5 Comparison of SoA methods

The selection of suitable sensor technology for obtaining the surrounding vehicle informat-
ion is one of the important design decision that needs to be taken. The vision based
methods are popularly used in LCDAS with significant work also being done using
vehicular commu-nication in cars. The popularity of vision based sensors are inferred
to be mainly due to their capability to identify the lane separation markings on the road,
which is not the case in bicycles. We assume a approximate common lateral displacement
of the maneuver, as there are no clear lane separation in most scenarios. The vehicular
communication method is still evolving and will assure safety only in an infrastructure,
where other bicycles and vehicles are also equipped with the same system, which is not
the case in the current scenario. Thus, the methods of these two categories are concluded
not be suitable for the project due to their increased cost, computational complexity,
sensitivity to adverse weather conditions, and futureness. The existing fusion methods
are also concluded not be suitable for the project due to their cost and complexity. The
non-vision based methods are the only remaining category and concluded to be most
suitable for the project, mainly due to their ability to provide useful information such as
speed and distance of targets without the need of complex algorithms. There are several
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sensor methods in this category and each method is inferred to have its own benefits.
The best suited technology for this project, from this category is selected by comparing
the methods based on the criteria that were identified to be the crucial for project in
Section 2.1.

Ultrasonic Acoustic 24GHz
Radar

mmWave
Radar

Lidar

Range <4m <10m <150m >200m >200m
External

Sensitivity
High High Low Low High

Estimation
Capability

Distance Distance Distance,
Speed,
Angle

Distance,
Speed, and

Angle

Distance,
Speed,
Angle

Multi-target
Detectability

No No Yes Yes Yes

FoV Less than 15◦ - Up to 120◦ Up to 120◦ Up to 360◦

Accuracy Moderate High High Very High Very High
Complexity Very low High Moderate Moderate Moderate

Cost Very low Low Moderate Low Very High

Table 3.1: Non-Vision Based Information Extraction SoA Methods Comparison

The Table 3.1 shows the comparison of the methods, and it is evident that lidar
and mmWave radar are the methods that align the most with the requirements. The
major difference between these methods is the ability of the lidar to provide an enhanced
coverage to detect targets in the rear-side blind-spot regions as well as approaching from
the rear. But its increased external sensitivity and cost are the major shortcomings. The
mmWave radar method has been gaining popularity in cars, but its benefits are yet to
be explored in bicycles. The only drawback of this method is the restricted FoV, which
limits the detection of targets on the rear-side blind-spot regions.

3.2 Threat Assessment Methods

The threat assessment methods allow to estimate the risk of collision possessed by a target
with the host bicycle, that enable to evaluate the safety of the lateral maneuver. The
deterministic and probabilistic approaches are the two most popular methods of threat
assessment.

3.2.1 Deterministic Method

The deterministic method offer a binary prediction, that only estimate whether a potential
collision will happen or not. It is a rule-based method that computes the output prediction
by comparing a conservative estimate of prospective exposure to the threshold risk value.
It is simple and computationally efficient and has been deployed in various collision
mitigation systems. One of the drawback of this approach is the inability to explicitly
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model the uncertainties of its input data. The common metrics used to estimate the risk
of a collision as a binary prediction are as follows:

• TTC: It is the most well-known time-based safety indication. It represents the time
until a collision between two objects occurs. The most frequently used computation
formula is the relative distance to the target object divided by the relative velocity [54].

• Time-to-Brake (TTB): It is also a time-based safety indicator that is derived
from the TTC metric. TTB denotes the remaining time until an emergency braking
at maximum deceleration must be applied to avoid the collision by braking [55].

• Time-Headway (THW): It is a measure of the temporal space between two
vehicles. It is defined as the inter-arrival time difference between the leading vehicle
and the following vehicle at a designated test point on a traffic lane [56].

• Deceleration-to-Safety-Time (DST): It is a safety indication that is dependent
on acceleration. It calculates the amount of deceleration necessary for a vehicle to
achieve a non-negative gap time when compared to another road user [57].

• MSD: It is a distance-based safety indicator. It is defined as the minimum distance
to be kept between the host and the obstacle [54]. This metric is aimed for situations
where spatial margins are important.

This approach has not been widely used for assessing threats in a lane change assistance
ADAS. Only one research was found to use this method for providing adaptive cruise
control with lane change assistance in cars [10]. The negligence of the speed of the
surrounding vehicles and the vehicles in the blind spots parallel to the host vehicle is one
of the major shortcomings of the algorithm that restricts its performance. This approach
is simple and computationally efficient, its inability to explicitly model the uncertainties
of its input data is one of the major shortcomings.

3.2.2 Probabilistic Method

The probabilistic method utilizes a probabilistic description to model the risk level by
using the temporal and spatial relationships between vehicles. The risk is defined using
the severity of the potential negative outcomes and the likelihood of each consequence
occurring. It also incorporates the uncertainties of input data into the threat assessment.
The most common models used in this method are as follows:.

• Bayesian Networks: It is a probabilistic graphical model that represents a set of
variables and their conditional dependencies via a Directed Acyclic Graph.

• Fuzzy Logic: It is a new mathematical tool to model inaccuracy and uncertainty of
the real world and human thinking. It is computed based on the ”degrees of truth”
rather than the standard Boolean logic used by the modern day computers [58].

• Markov Processes: It is a process that involves the prediction of the likelihood
of a future action, given the current state of a variable. The likelihood of a result
is determined by drawing a decision tree based on the determined probabilities of
future actions at each state.
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This approach is increasingly becoming the standard for threat assessment in lane
change assistance systems in cars and are mostly focused towards autonomous vehicles [11]
[12][13][14]. It is a comprehensive approach that enables to make more informed decisions
and adapt appropriate strategies for different scenarios. It also incorporates input data
uncertainties into a threat assessment uncertainties of input data. The disadvantage of
this approach is its computing complexity, which stems from the large number of input
elements to consider.

3.2.3 Comparison of SoA Methods

An assessment algorithm is required to calculate and compute the safety of a maneuver
based on the surrounding information obtained from the information extraction block.
The concentration of existing lane change assistance systems on cars, has resulted in
complicated probabilistic approach based assessment algorithms geared towards autonom-
ous driving. They are not suitable for the project due to their complexity and superfluous
performance. Some of the few systems that adapt deterministic approach based algorithms
are use metrics only based on the spatial relationships between vehicles. They are
simple but not acceptable enough, with a lot of scope for performance improvement.
The common threat assessment metrics available for deterministic based approach are
compared based on the requirements mentioned in Section 2.2.

Criteria TTC TTB THW DST MSD
Complexity Low High Moderate High Low

Acceptability High Low Moderate Low Moderate

Table 3.2: Deterministic Approach Metrics Comparison

The Table 3.2 shows the comparison of the commonly available metrics. The TTB and
DST are similar time based metrics that are inferred to be highly complex due to their
additional parameter consideration such as acceleration and braking capacity apart from
distance and speed. These additional information are not readily available and require
additional sensing hardware. They are also more correlated to avoid forward collisions,
as it not practically possible to obtain the required additional data of the targets. The
THW metric has a relatively better acceptability at lower complexity, but it only takes the
speed of the approaching vehicle, which is also a challenge to obtain using the available
methods of the information extraction block. Thus, these metrics are deemed not to be
suitable for the project. The remaining two metric MSD and TTC are inferred to align
the most for the current project. The MSD is a distance based metric, and gives the
minimum spatial distance that must be maintained around the host bicycle. It is used
to provide minimal reaction time to the following vehicle in the case of speed reduction
of the leading vehicle, in-order to avoid collision and can also be used to detect obstacles
within the lateral displacement of the maneuver on the sides. The TTC metric physically
presents the difference in speed and spatial proximity and was inferred that the decision of
drivers to perform the lane change maneuver which also incorporates lateral maneuver, is
highly correlated to this metric [59]. The major shortcoming of this metric is its inability
to cover situations, where an observed vehicle is at close proximity to the host bicycle
and is travelling at a similar speed. In this situation, the value of the TTC will be much
higher and the situation will be assessed as low risk. However, a lateral maneuver under
this situation will be dangerous and the maneuver must not performed.

27



3.3 Response

This block can have two types of implementation based on the type of the assistance
system. The two types of system are warning type and intervening type.

3.3.1 Intervening Type

These systems directly intervene in the actual movement of the vehicle by taking over
vehicle control from the driver during certain tasks. This type of lane change assistance
system perform the maneuver task end to end. The system collects the surrounding
information, plans the change trajectory and follows the planned trajectory to complete
the maneuver. They are more complex and require powerful hardware to implement the
control mechanism in real-time.

3.3.2 Warning Type

These systems warn the driver/cyclist of any potential danger via the optical, acoustic, or
tactile sensory channels of human beings. These warning systems focus more on providing
supporting information to the driver/cyclist to enable better control decision making for
safer maneuvers. The responsibility still lies with the driver/cyclist for making use of the
information to improve the overall safety. The advantage of warning type is their reduced
complexity of implementation.

3.3.3 Comparison of SoA Methods

This block is ultimately responsible for providing the utility of the assistance system
to the driver. The intervening type implementation is seen to be more popular in lane
change assistance systems on cars [10][11][12][13]. These systems directly intervene in
the actual movement of the vehicle by taking over control, they collect the surrounding
information, plan the change trajectory and follow the planned trajectory to complete the
maneuver. There are also a few systems that have a warning type implementation [20][21].
These systems focus more on providing supporting information to the driver to enable
better control decision making for safer maneuvers. The warning type implementation is
suitable for current project due to the unstable vehicle dynamics of bicycles, where active
intervention may be dangerous for cyclists. The challenge of this implementation is to
decide on the information that is conveyed to cyclist in order to be useful and acceptable,
and the mode of communication of the information to the cyclist.

3.4 Summary

• Vision-based sensors have been widely used for LCDAS in cars, mainly due to their
capability to identify the lane separation markings on the road, which is not the
case for bicycle road infrastructure.

• Most of the existing ADAS solutions that adapt sensor fusion are expensive and
complex, as they aim to achieve very high level accuracy of object identification
and tracking to meet the requirements of autonomous driving.
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• The sensors used by existing ADAS in bicycles suffer from drawbacks such as
sensitivity to weather, reduced detection range, and minimal information estimation
capabilities.

• The mmWave radar method has been gaining popularity in cars, but its benefits
are yet to be explored in bicycles. The restricted FoV, that limits the detection of
targets on the rear-side blind-spot regions is their major shortcoming.

• The threat assessment algorithms used in existing lane change assistance systems
are either only based on the spatial relationships between vehicles and, do not
provide sufficient performance to be acceptable by the user or are too complex and
focused towards autonomous vehicles.

• Intervening type implementation is seem to be common among existing lane change
assistance system in cars and is deemed unsuitable for bicycles, as their balance for
optimal motion is entirely dependent on the cyclist, due to their vehicle dynamics.
Active intervention may results to be dangerous for cyclists.
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Chapter 4

Theory and Background

In this chapter, a general introduction to understand the functioning of the mmWave
FMCW radar used in the project is provided. This information will help to understand
the radar configuration trade-off mentioned in Section 5.2.1.

4.1 Fundamentals of FMCW Radar

CHIRP GENERATOR

SIGNAL 
PROCESSING

IF mixer

Tx antenna

Rx antenna

Information 
extraction

Figure 4.1: FMCW Radar Working

The Fig. 4.1 shows the basic working principle of a mmWave FMCW radar, that is
used in the project. It transmits a sinusoidal signal whose frequency increases linearly
with time (chirp) through the Transmitter (TX) antenna and the chirp reflected by a
target is received through the Receiver (RX) antenna, and mixed with the transmitted
chirp. The mixer combines these two signals and produces an output signal known as
the Intermediate Frequency (IF) signal, which has an instantaneous frequency and phase
equal to the difference of the two input chirp signals according to Eq. (4.1), where xout
is the output IF signal, w1 and w2 are the frequencies of the input signals, and φ1 and
φ2 are the phase of the input signals. This IF signal is further processed to obtain the
range, velocity, and angle information of the target.

xout = sin[(w1 − w2)t+ (φ1 − φ2)] (4.1)
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4.2 Range Estimation

(a) Time Domain (b) Frequency Domain

Figure 4.2: Range Estimation Principle [60]

The chirps reflected by objects are the time delayed versions of the TX chirp that can
be expressed as in Eq. (4.2), where τ is the time delay, d is the distance of the reflected
target, and c is the speed of light. The IF signal consists of multiple tones, respective
to each object and is given by Eq. (4.3), where S is the slope of the chirp. The Fast
Fourier Transform (FFT) processing of this IF signal, results in frequency spectrum with
peaks corresponding to different tones that are proportional to the range of a target.
This process can be seen in Fig. 4.2. The ability of two reflections to show up as separate
peaks is known as the range resolution, and depends on the chirp bandwidth according
to Eq. (4.4), where dres is the range resolution, c is the speed of light, and B is the
bandwidth of the chirp.

τ =
2d

c
(4.2)

fIF = Sτ (4.3)

dres =
c

2B
(4.4)
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4.3 Velocity Estimation

(a) Radar Frame (b) Doppler FFT

Figure 4.3: Velocity Estimation Principle

A minimum of two chirps separated by a time interval Tc are required for the velocity
estimation of targets. The signals in the frequency domain are in complex form with
amplitude and phase. The range FFT of each reflected chirp results in a peak on the
same location but with different phase. This phase difference is due to the motion of the
target and its relation is given by Eq. (4.5), where v is the velocity of the target, λ is
the wavelength of the chirp, and ∆φ is the phase difference between the two chirps. The
phase of the IF signal is highly sensitive to very small range difference in the factor of
1 millimeter. However, two chirps would not be enough to estimate the velocity of two
objects at the same distance from the radar and travelling at different velocities. The
range FFT in this case will result in a single peak, which is the combined signal of both
the targets. Thus, to overcome this the radar transmits a frame with N number of chirps.
The range FFT of the RX chirps in the frame result in N identical peaks with different
phase corresponding to both the targets. The second-FFT known as Doppler FFT is
performed on these N chirps to resolve them as separate targets and their respective phase
difference is used to estimate their velocity using Eq. (4.5). The ability of two difference
velocities to be resolved as two peaks in Doppler FFT is known as the velocity resolution.
It enables to resolve targets that were not resolved separately in range direction. It is
given by Eq. (4.6), where Tf is the total frame time and is given by Eq. (4.7). The
velocity measurement denotes the absolute velocity of the targets only when the radar
is stationary. When the radar is mobile, the velocity measurement denotes the relative
velocity of the targets with respect to the radar.

v =
λ∆φ

4πTc
(4.5)

v =
λ

2πTf
(4.6)

Tf = NTc (4.7)
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4.4 Angle Estimation
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Figure 4.4: Angle Estimation Principle
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Figure 4.5: Angle Estimation Accuracy

The angle information of the targets denote the positional angle of targets with respect
to the horizontal plane. This is an important information apart from range, that enables
the localisation of the targets with respect to the radar. It is estimated using the similar
principle used for velocity estimation and is based on the phase difference of the RX
chirps. The only key difference is that the phase change across chirps separated in space
are used for angle estimation, whereas chirps separated in time are used for velocity
estimation. The RX chirps are separated in space by placing the RX antennas apart and
a minimum of two RX antennas are required for angle estimation as shown in Fig. 4.4.
The high sensitivity of the reflected signal phase to small range, requires only a very small
distance between RX antennas. The phase difference ∆φ between the chirps received in
each RX antenna are used to estimate the angle of the target θ according to Eq. (4.8),
where l is the distance between the antennas. The angle estimation accuracy is higher
when θ is small and decreases as θ approaches 90◦ as shown in Fig. 4.5 due to the non-
linear dependency of sinθ for larger θ values. The angular resolution of the radar depends
on the number of receiving antennas Nrx according to Eq. (4.9). The maximum angular
FoV depends on the spacing between the RX antennas according to Eq. (4.10).

θ = sin−1(
λ∆φ

2πl
) (4.8)

θres =
2

Nrx

(4.9)

θmax = sin−1(
λ

2l
) (4.10)
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Chapter 5

Proposed Early Warning System For
Safe Lateral Maneuver of Bicycles

In this chapter, a general introduction to understand the functioning of the early warning
system for safe lateral maneuver of bicycles, developed in this project is provided.

Power Off

Power On

ON

No
Warning

 
 

Warning requirements  

not met

Warning requirements 

 met

Left Right Straight

Warning

Figure 5.1: System State Diagram

The state diagram of the system is shown in Fig. 5.1. The system is initially in
power off state and switches to power on state or ready state when power supply is
provided. In ready state, the system continuously detects targets in the rear-side blind-
spot regions and the targets approaching rapidly from behind. The violation of safety
conditions by the detected targets is checked twice every second. If targets that violate
these conditions are detected, then the system transits to the warning state, else it will
be in no warning state. The warning state has sub-states based on the direction of the
potentially dangerous maneuver.
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5.1 System Overview
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Figure 5.2: System Overview

The composition of the three main functional blocks of the system is shown in Fig. 5.2.
The information extraction block is capable of detecting the distance of road users present
in the rear-blind spot regions present close to the rear wheel of the bicycle users as well as
position, and velocity of targets approaching from behind using the sensor combination of
ultrasonic and mmWave radar sensors. This combination complements their drawbacks
with increased sensing coverage and enables stable detection across various weather
and road conditions at reduced cost and complexity. The threat assessment block is
implemented as a function in the Raspberry pi. It discovers hazards that may impair
the safety of the lateral maneuver, using an improved deterministic based algorithm that
evaluates safety in a human-like manner utilising the TTC and MSD metrics. It is much
simpler and effective by also taking the speed metric into consideration. The algorithm
evaluates safety in a human-like manner in order to reduce false positives and also be
acceptable by the users. Its complexity is also kept to minimum in order to provide
on-time alerts with less computing power and software. The response block utilises
the position information of the threats assessed in the previous block and generates a
timely warning of a potentially dangerous maneuver based on the direction. It also
contains information to alert the driver of a dangerously approaching target right behind
the host bicycle to avoid collision. This algorithm is implemented as a function in
Raspberry pi. The warning information can be delivered to rider through a variety
of means such as optical, acoustic, or tactile sensory channels of human beings. Haptic
sensors on the handle bars of the bicycle is inferred as an ideal option, but it is not
implemented in this project. The scope is restricted only till generation of useful warning
information and evaluating its performance with an easy interface option to extend it
through any communication means via the General Purpose Input Output (GPIO) pins
of the Raspberry pi controller.
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5.1.1 Hardware Overview
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Figure 5.3: Hardware Implementation Block Diagram

The overall representation of the hardware components used for the implementation
of all the functional blocks of the system with their interconnections is shown in Fig. 5.3.
The mmWave radar sensor and two ultrasonic sensors used for the implementation
of the information extraction block are connected to the Raspberry pi4 controller via
USB-Universal Asynchronous Receiver Transmitter (UART) interface and GPIO pins
respectively. A voltage divider circuit is used as an level shifter to bridge the GPIO
connections between the ultrasonic sensors and the Raspberry pi 4 controller. This is
necessary as the GPIO pins of the Raspberry pi only tolerate a voltage of 3.3v and
the high level output of the ultrasonic sensors are 5v. The Raspberry pi4 is a low cost
mobile computer with several peripherals for easy interface and is used as the main
controller of the system. The threat assessment and the response block of the system
are implemented on this controller. The computation capability of this controller is
much higher than the system requirement, but is used to enable easier integration of
further system functionalities in the future. It also has in-built Bluetooth and WiFi
communication interfaces that can also be used to extend for Bicycle to Everything (B2X)
applications. The system was powered using two mobile 5v powerbanks, one to power the
Raspberry pi controller and the other to power the radar module. The system is inferred
to consume only a minimal amount of power, as the single charge of a powerbanks lasted
for multiple days of testing with 2 to 4 hours usage per day.

5.1.2 Software Overview

The software implementation of the system on the Raspberry pi controller is done using
the python language and its flow is given in Fig. 5.4. The functions are implemented
as individual threads, and queues are used for communicating between them. The main
threads responsible for the functionality of the system are ultrasonic thread, radar thread,
and the warning thread. The serial read and serial write threads are used as sub-threads
for the functioning of the radar thread.
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Figure 5.4: Software Flow Chart

• Serial Write Thread: This thread is responsible for sending out control instructions
via the UART interface to the radar module. It is used to send the start command
to the radar module on system bootup.

• Serial Read Thread: This thread is responsible for receiving the output frames
from the radar module. It is used to listen to the UART port and store the received
radar frame in the serial receive queue. This queue length is kept to one, to ensure
that the latest frame is always made available for the radar thread.

• Radar Thread: This thread is responsible for parsing the latest frame received
from the radar and determining the side and straight warning status information.
The output of the evaluation is stored to the radar status queue in tuple form. The
length of the radar status queue is kept to one, to ensure that the latest radar status
is always made available for the warning thread.

• Ultrasonic Thread: This thread is responsible for controlling both the ultrasonic
sensors, obtaining their respective detection information, and determining their
warning information. The output of the evaluation is stored to the ultrasonic status
queue as a single digit number. The length of the ultrasonic status queue is kept
to one, to ensure that the latest ultrasonic status is always made available for the
warning thread.
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• Warning Thread: This thread is responsible for obtaining the warning status
information from the radar and ultrasonic status queue to determine the warning
status information of the overall system. The output of the evaluation is in tuple
form and is printed on the serial monitor and also stored in a csv file with the
timestamp. The serial monitor was viewed via a mobile phone with remote connection
to the Raspberry pi while testing, and the csv file was used for ground truth
verification.

5.2 Functional Blocks Realization

In this section, the design specifications and procedures carried out in this work for the
implementation of each functional block are described in detail.

5.2.1 Surrounding Vehicle Information Extraction
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Figure 5.5: System sensor coverage

The IWR1642 mmWave radar sensor from Texas Instruments and two HC- SR04
ultrasonic ranging modules are used for the implementation of this block. The integration
of these sensors is inferred to improve the performance of the system by improving the
sensing coverage and complementing their drawbacks, without increasing the cost and
complexity. The region behind the cyclist is only assumed to be the coverage requirement
of the system and the region in front is inferred to be the responsibility of the cyclist. This
separation is based on the fact that it is easier for cyclists to monitor the surroundings
in front, without major difficulty than in the rear. The Fig. 5.5a shows the coverage of
the system only with the mmWave radar in the rear. It can be seen that the coverage
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is limited to the rear and introduces the inability to monitor blind-spot regions close to
the rear wheel of the bicycle on either side, that is also out of the coverage area the
cyclist due to the restricted FoV of cyclist vision. The inability of the system to be
aware of obstacles present in this region will affect the system performance in assessing
the safety of the lateral maneuver significantly, as a vehicle or obstacle in these regions
within close proximity of the bicycle will restrict the maneuver. Thus, ultrasonic sensors
are integrated on either sides in the rear to extend the system detection coverage and
improve the system performance as shown in Fig. 5.5b. Ultrasonic sensors are inferred
to be the ideal low cost solution to improve the system coverage, as only close by targets
need to be detected on the sides considering the width of the possible lateral maneuvers in
real-road scenarios. The distance information of the obstacles in this region was inferred
to be sufficient for threat assessment. This inference was based on the fact that the
presence of an obstacle, within the displacement width of the lateral maneuver alone
restricts the maneuver.

HC-SR04 Configuration and Processing

Figure 5.6: HC-SR04 Ultrasonic Sensor [61]

The HC-SR04 sensor consists of two ultrasonic transmitters, a receiver, and a control
circuit and is shown in Fig. 5.6. Ultrasonic sound pulses at 40KHz are transmitted by
the transmitters and the receiver listens for their reflection from a target in its path. The
distance (d) of the target is measured based on the time delay (t) for the reception of the
transmitted sound pulse with speed (s) according to Eq. (5.1). It is a four pin sensor that
has an easy Micro Controller Unit (MCU) interface. It is powered using a regulated 5v
supply through the Power (Vcc) and Ground (GND) pins of the sensor. The trigger and
the echo pins are connected to the GPIO pins of the Raspberry pi and used to control
the sensor. A high signal at the trigger pin for a minimum duration of 10µs initiates the
sensor to transmit eight ultrasonic pulses and a high signal is generated at the echo pin,
when a reflection is received. The time difference between high signal generated at the
trigger pin and the time at which a high signal was received at the echo pin is used to
calculated the distance of the target. The distance is calculated based on Eq. (5.1) but
the result is divided by two in-order to obtain the correct distance of the target. This is
because the time delay calculated is for the signal to travel back and forth. The sensor
has a resolution of about 0.3cm.
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d = s ∗ t (5.1)

IWR1642 Configuration and Processing

(a) Front-View (b) Rear-View

Figure 5.7: IWR1642 BOOST EVM [62]

The IWR1642 is a single chip mmWave sensor based on FMCW radar technology
that can operate in the 76 to 81GHz band to determine the range, velocity, and angle
of targets within its FoV. The sensor simplifies the implementation of a mmWave
radar system by integrating Radio Frequency (RF) radios, clocking, Analog-to-Digital
Converter (ADC), ARM R4F-based MCU and C674x Digital Signal Processor (DSP)
and solves the challenge of discretely implementing the required components of radar
system. This results in reduced power consumption and cost. The MCU and the DSP
with integrated peripherals such as UART, and Controller Area Network (CAN), enable
flexibility of the sensor to be tailored for real-time applications. The sensor belongs to
the industrial range and it is used over the automotive range as it is cheaper. They are
similar in hardware specifications apart from the lack of additional qualifications, for use
in commercial automobile and additional fast CAN interfaces that are not required in
bicycles. The IWR1642 boost module is used in this project and is shown in Fig. 5.7. It
is an IWR1642 sensor evaluation board with a small form factor, that contains everything
required to start developing applications along with a Software Development Kit (SDK)
that enables faster and easier prototyping.

The configuration and setup of the radar according to the project requirements using
the SDK involves two main tasks namely front-end radio configuration and back-end
signal processing responsible for the radar functioning. The front-end configuration
involves the tuning of the RF radio and the analog sub-system for the transmission
and the reception of the radar frames. The back-end processing encapsulates all the
data processing of the RX signal to extract useful information of the reflected targets.
It consists of taking ADC samples post analog filtering from the radar front-end as
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input and producing the necessary information of interested targets to reduce redundant
computation and data transfer to the threat assessment block implemented in the Raspber-
ry pi controller. The RF front-end configuration and the data transfer to the Raspberry pi
controller for threat assessment is implemented in the ARM R4F MCU integrated in the
sensor. The back-end processing of the raw RX signals is implemented in the integrated
C674x DSP. The construction of the TX frames using FMCW chirps and tuning of the
analog RX signal processing chain, define the detection capability of the radar.

Front-end Configuration: The front-end block is shown in Fig. 5.8. The configuration
of the TX signal can be categorised into three steps namely profile, chirp, and frame. The
profile is a template for a chirp and consists of various parameters that are associated
with the transmission and reception of the chirp. A chirp type is associated with a profile
and inherits all the properties of the profile and additionally includes information on the
TX antennas on which it should be transmitted. The Frame is constructed by defining a
sequence of chirps using the previously defined chirp types. The TX frame for the project,
is configured to achieve maximum detection range and velocity with minimal power and
computational complexity. This was considered according to the system requirements
mentioned in Section 2.1. The higher detection range of faster vehicles enables the system
to generate on-time warnings on a wider range of scenarios.
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Figure 5.8: Radar Front-end

1. Maximum Range: The maximum range of detection depends on the Signal
to Noise Ratio (SNR) of the reflected signals from targets and the maximum IF
Bandwidth IFBW supported by the radar. The relation of maximum range (R)
with the IFBW is considered for configuring the parameters of the FMCW chirps
used in the construction of the TX frames according to Eq. (5.2), where S is the
slope of chirp and c is the speed of light.

Rmax =
IFmax ∗ c

2 ∗ S
(5.2)

IFBW = 0.9 ∗ ADCSampling (5.3)
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The configuration used in the project theoretically enables a maximum range of
120m in complex 1x operation mode and is shown in Table 5.1. The imaginary part
of the RX signals that contains the interference information are filtered using the
front-end filters in complex 1x operation mode. This results in twice the useful IF
frequency and maximum range as only the real IF spectrum is sent to the ADC.
The IFmax is fixed to 4.5 MHz, slight under the maximum available bandwidth
of the sensor used, which is 5MHz due to the limited on-chip memory of 1.5MB.
This fixing of the IFmax results in an ADC sampling rate of 5000ksps according
to Eq. (5.3). Which in turn results in the chirp frequency slope of 5.6MHz/µs to
achieve a theoretical range of 120m according to Eq. (5.2). This slope reduces the
chirp bandwidth (B) and enables a reduced range resolution of 36cm according to
Eq. (4.4). This range resolution is inferred to be more than enough for the project, as
the targets of interest are mainly vehicles like cars and bicycles that are practically
not expected to be more closer to each other due to their size. Even if they are in
some rare scenarios, they are expected to be resolved in the velocity direction due
to their difference in speed. Furthermore, the disability to resolve them as separate
targets is also inferred not to affect the performance of the warning system, and the
longer detection ability is considered more important to generate early warnings.
The one shortcoming of the reduced resolution is the disability to provide rich point
cloud of objects in closer range, as it is also important for the warning system to
be aware of objects that are present below the MSD. It is possible to work around
this trade-off by having another configuration tailored for high resolution targeting
a shorter distance and including it in the TX frame. This will enable multi-mode
capability and improve the detection performance, but will also result in increased
number of chirps, increased power, and increased back-end processing as separate
processing paths must be defined for each configuration. Thus, it is inferred not to
be suitable for the current project. The effect of this shortcoming on the system
performance is not expected to be significant and is addressed in Section 6.3.2. The
frames are also configured to transmit on both the TX antennas available in the
sensor simultaneously to achieve an improved SNR of target reflections within 120m
in the main focused FoV of the radar. This is inferred to enable easier removal of
noise and better detection of desired targets in the back-end processing.

Parameter Value
Start Frequency (GHz) 76.01
ADC start time (µs) 4.8
Ramp end time (µs) 56

Number of ADC samples 256
Frequency slope (MHz/µs) 5.6

ADC sampling frequency (MHz) 5
Bandwidth (MHz) 409

Table 5.1: Radar front-end configuration
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2. Maximum Velocity: The maximum detectable velocity of targets depends on the
time between the start of two consecutive chirps in the TX frame, which includes
the chirp time and the idle time. The idle time is the time between the end of a chirp
and the beginning of the next chirp, this constitutes the time for the synthesizer
to ramp down. The chirp parameters configured to achieve a long detection range
of 120m limits the maximum detectable target velocity to approximately 14m/s
for 128 chirps, according to Eq. (5.4), where Tc is the total chirp time and λ is the
wavelength of the chirp. This is because the velocity estimation is dependent on the
phase difference as described in Section 4.3 and is unambiguous only if the difference
is within ±180◦. The maximum detectable velocity extension enabled configuration
is used for the project. This extension results in the construction of the TX frame
with two different idle times 3µs and 14µs respectively as in Fig. 5.9 for 128 chirps.
The chirps with the lower idle time will have lower chirp repeat periodicity which
results in higher maximum unambiguous velocity as compared to the slow chirps
according to Eq. (5.4). The target velocity is estimated from both the chirps along
with the Chinese remainder theorem in the back-end processing and enables upto
3 times higher maximum velocity than the native maximum velocity [63]. This
is done to improve the capability of the warning system to also perform well and
provide on-time warnings in highway traffic scenarios, where the velocity of target
vehicles are high. It is considered to be important for the system due to the reduced
speed of bicycles with respect to the speed of interested targets such as cars.

Vmax =
λ

4Tc
(5.4)

Fast Chirps Slow Chirps

Idle time Idle time

N=64 N=64

Figure 5.9: Radar Tx Frame

Back-end Processing: The block diagram of the back-end radar processing chain
used in the project is shown in Fig. 5.10. The input from the front-end channels are
obtained in the DSP and range FFT followed by Doppler FFT is performed on the RX
chirps corresponding to the chirping pattern on the TX antenna, to obtain the range and
velocity estimates as mentioned in Section 4.2 and Section 4.3. This results in discrete
reflection points that are separated in range and velocity. These points are then pruned by
CFAR detection and peak grouping for the range and velocity estimates. The CFAR is an
adaptive detection algorithm used to remove interference, ground clutter and redundant
reflections from actual target reflections, and minimise further computation [64]. The
configurations used for CFAR detection are shown in Table 5.2.

A detected reflection has to have a power more than the threshold computed by
the CFAR algorithm, in both the range and velocity direction, in order to become a
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Figure 5.10: Radar Back-end Processing Chain

Parameter Range Doppler
Average Mode CASO - CFAR CA - CFAR

Window Length 8 8
Guard Length 4 4

Threshold Scale 12 dB 12 dB

Table 5.2: CFAR - Configuration

valid detection point for further processing. The Cell Averaging Smallest Of (CASO)-
CFAR uses the smallest noise-floor of the bins higher and lower than the bin under test
for computing the power threshold and is used in the range direction. This is done to
minimise the over-filtration of reflections from desired targets, as it is the initial stage
of filtration, which may result in reduced detectability of the radar. This is followed by
Cell Averaging (CA)- CFAR in the velocity direction. It uses the average noise-floor of
the bins higher and lower to the bin under test to compute the power threshold. The
determined noise power is multiplied by a threshold scaling factor for determining the
detection threshold. The threshold scaling factor is one the key parameter that affects the
detectabilty of desired targets from background clutter and needs to be carefully assigned
for the CFAR algorithms in both the range and velocity directions. This factor is set
by taking the RCS of the desired targets and the operating environments of the warning
system into account, using the SNR based radar range equation given in Eq. (5.5). The
RCS is the measure of the ability of a target to reflect radar signals in the direction of the
radar receiver and depends on various factors such as physical dimensions of the target,
electrical properties of the target surface, and the frequency of the radar transmitter.
The computational determination of the RCS is possible only for simple targets. The
other parameters of the radar taken for the calculation based on the configuration used
are given in Table 5.3.

Rmax,SNR = 4

√
PtxGtxGrx(λ)2σTcNcNtxrx

(4π)3KTeηL SNR
(5.5)
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Parameter Value Parameter Value
Tx Power ptx -12.5 dBm Ambient Temperature Te 290 K
Tx Antenna Gain Gtx 44 dB Chirp Time Tc 75.89µs
Rx Antenna Gain Grx 44 dB Bandwidth Br 4.5 MHz
Total Antennas NtxNrx 4 dB Number of Chirps Nc 128
Wavelength λ 0.0038961 m Noise Figure η 15dB
Boltzmann’s Constant k 1.38 * 10−23 System Loss L 12dB

Table 5.3: Maximum Range Parameters

The variation of the minimum SNR of the reflected chirps with respect to range for
different RCS values corresponding to the desired targets such as pedestrians, bicycles,
cars, and trucks in an environment with minimal loss is shown in Fig. 5.11. Cars and
trucks have a relatively higher RCS for the mmWave radar, which is approximately
standardised to be 5 sq.m and 100 sq.m respectively. Where as, the approximation of the
RCS value of bicycles has not been standardised with on-going research [65]. Thus, the
RCS of bicycles was assumed to be in the range of 1.5 sq.m, based on the inference that
it is not as high as cars but higher than human adults which is 1 sq.m due to the presence
of the cyclist while riding. Bicycles have the least RCS among the desired targets that
have a relatively higher maximum speed and require a longer detection range for on-time
warnings. It can seen that they theoretically have a SNR of 12 dB at 70m beyond which
it detiorates further. This detection range of bicycles was considered more than enough
for the warning system to provide on-time warnings, even if there is a decrease in actual
road environments, where the loss is higher. This inference was based on considering the
maximum relative speed of bicycles. Thus, the threshold value of 12dB is concluded to
be ideal to minimise the low confident false detections and provide maximum detection
range.

Figure 5.11: Range Vs SNR
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The peaks in range and Doppler direction are grouped together and represented by
the highest one, after the CFAR- detection to reduce the number of points from a single
target. This reduces the computation per frame and enables processing of points only
with strong unambiguous peaks that have the higher signal strength. The detected peaks
are further pruned based on their range and SNR to eliminate nearby clutter that may
have resulted due to the lower CFAR threshold for distant detection of bicycle targets.
The SNR thresholds are set for three range groups with higher requirement for close by
detections as shown in Table 5.4. The thresholds were determined based on the inference
from Fig. 5.11 and a few field trials. The minimum range group was set only from
0.4m, due to the range resolution of the front-end configuration used. The angle of the
pruned points are then estimated as described in Section 4.4 and the position of each
points are mapped as X and Y locations in metres with the radar position as the origin,
based on their range and angle information. This mapping makes further processing and
interpretation of the radar output data frames simpler.

Range groups SNR threshold
0.4 to 10 m 16 dB
10 to 30 m 15 dB
Above 30 m 12 dB

Table 5.4: Range Based Pruning

Clustering is performed on the positioned point data using the Density Based Spatial
Clustering of Applications with Noise (DBSCAN) algorithm [66] to essentially reduce the
number of points provided to the tracking algorithm and introduce hysteresis, so that only
track one point from a target is tracked, and does not switch between adjacent targets.
The algorithm groups together a minimal number of points separated by a minimum
distance and speed. It was considered critical for the project, as the desired targets such
as cars have a relatively high RCS, which increases the probability of multiple strong
points reflected from the same target. The tracking of each point will result in redundant
computation and reduced tracker performance. The output of the clustering algorithm is
a mean location of the clustered points and its margin locations assuming the shape to
be a rectangle. The used configuration of the algorithm is shown in Table 5.5. The key
parameters in the configuration are the maximum distance between the points epsilon
and the minimum number of points in a cluster. Epsilon is fixed at 2.5m considering the
dimension and size of cars, as they are assumed to be the most common desired targets.
A higher value considering the properties of trucks will result the majority of objects to
be grouped in the same cluster when they are located close to each other. The minimum
number of points is fixed at 1 and the maximum points in a cluster is set to 4. This was
done to enable the detection of the weaker targets such as bicycles at higher ranges, as
their detection points may reduce with increase in their distance from the radar. This
is due to the reduced range resolution of the chirp configuration and peak grouping.
The strongest point in the cluster is provided as the representative point to the tracking
algorithm.
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Parameter Value
Epsilon 2.5 m
vFactor 3 m/s

MinimumPointsInCluster 1
Neighbours Limit 4

Maximum Clusters 32

Table 5.5: DBSCAN - Configuration

The tracking algorithm is a standard Extended Kalman Filter with four states X-
position, Y-position, relative velocity along X direction, and relative velocity along Y-
direction. It was used to improve the stability of the target detection at longer distances,
which translates to a improved performance of the warning system. It enables to eradicate
false detections caused by other targets that are out of interest and noise present on real
road scenarios. These signals will cause the warning system to misinterpret them as
interested targets and result in higher false warnings. In addition to this, further pruning
is done by only tracking targets that are within the longitudinal range of 2m or is moving
towards the host bicycle in the longitudinal direction. This was done as only these targets
contribute to the rear-warning detection of the radar. The objects that are moving away
from the bicycle or travelling with the same relative velocity are eliminated as they will
have a very high TTC value and detecting them introduces redundancy. The movement of
the target towards the bicycle is detected by the negative sign of the target velocity, which
resulted due to the anti-clockwise movement of the IF signal phasor for positive target
velocity relative to the bicycle. This pruning enables to reduce the false detections of the
radar due to external noises significantly and provides a stable detection of targets with
reduced redundant computational load. The TTC of the tracked objects is calculated
using their longitudinal range and the relative velocity. The properties such as position
in lateral and longitudinal direction with reference to the radar, along with its TTC is
populated on the output frame that is shipped to the external Raspberry pi controller of
the warning system. The format of the output frame of the radar is shown in Fig. 5.12
and its size depends on the number of useful targets detected to enable fast and reliable
communication to the external Raspberry pi controller through the UART peripheral.
The amount of time needed by radar chain to process input point cloud and deliver
target information is a function of number of targets currently tracked, and number of
radar front-end measurements received. Since the number of targets tracked are pruned
significantly, the controller was able to process and deliver information faster across a
wide range of noisy road scenarios.
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Figure 5.12: Radar Output Frame

5.2.2 Threat Assessment
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Figure 5.13: Threat Assessment Method

The designed algorithm is a deterministic based approach utilising two metrics, namely
TTC and MSD for threat assessment. TTC is used as the metric to estimate the hazard of
distant closing targets that are approaching from behind and the MSD is used to evaluate
the hazard of targets present in close proximity on the rear and the side surroundings
of the host bicycle. This enables to utilise the high correlation of TTC metric to the
human-decision of performing the lateral maneuver and also compensate its shortcoming
mentioned in Section 3.2.3, for the assessment of closing targets from behind. This is
inferred to enable an accurate and acceptable threat estimation. The TTC metric enables
to evaluate a threat based on the the reaction time that the vehicle in target side has
to avoid collision, if it travels in the same path and the host bicycle interfered in it as a
result of the lateral maneuver. The MSD metric enables to evaluate a threat based on
the minimum longitudinal distance to be maintained to provide minimal reaction time
for the vehicle in target side has to avoid collision and to detect targets that restrict the
lateral displacement of the maneuver on the sides. The mathematical representation of
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these metrics are shown in Eq. (5.6) and Eq. (5.7), where (D) is the minimum spatial
distance, ∆x is the spatial distance between the bicycle and the target, and ∆v is the
relative speed of target with respect to the host bicycle.

TTC =
∆x

−∆v
=
xl − xf
vf − vl

< TTCthreshold (5.6)

D < MSD (5.7)

The threat assessment is carried out in one fold for the targets in the rear-side blind-
spots and in two fold for the closing targets from behind as shown in Fig. 5.13. A detected
target on the rear-side blind-spots is only checked for its presence within the characterized
MSD and is assessed as a threat if it is, else it is assessed to be safe. This is not the case
for a closing target from behind. A target from behind is initially checked for its presence
within the characterized MSD, it is directly assessed as a threat if it is, else its TTC is
also compared to the TTCThreshold before assessing it to be safe. The TTCThreshold of 6sec
was set based on the experimental results obtained for a LCDAS in cars [59] and the MSD
was set to 2m in the rear based on the inference from few related literature. The lateral
distance of 3m on either sides was considered as the region of interest and only targets
violating the characterised MSD and TTCThreshold within this region are evaluated as
threats in the rear. This region is specified considering the average lateral displacement
possible during lateral maneuvers across different road-scenarios. The specification of this
region of interest is done to minimize the false positives generated from targets that are
not considered to affect the lateral maneuver. The MSD for the rear-side blind-spot sides
also need to be set to 3m according to the specified region of interest in the rear. But
this increased distance resulted in increased false warnings in some road scenarios and
was deemed not to be ideal. This inference was obtained by mounting the setup on the
bicycle and testing it on real road scenarios as shown in Fig. 6.2. From the test results,
it was inferred that the value of the MSD for the sides, needs to varied for different road
scenarios. For example, in a road with small bicycle lane that has cars parked throughout
the sides, the value of MSD must be low to prevent unnecessary warnings resulting due
to the cars parked in the sides. Similarly in a wide bicycle lane scenario, a higher MSD is
needed, as higher lateral displacement is possible during the maneuver. To address this
trade-off the MSD was set according to the scenarios with minimal lateral displacement
possibility to keep the false warnings minimal across all road scenarios. The effect of this
trade-off on the system performance is described in Section 6.4. These configured values
for the threat assessment provide acceptable performance with some limitations and can
be tuned based on further investigation if necessary.

5.2.3 Warning Algorithm

The warning algorithm defines how and when warnings are generated by the system
based on the threats assessed in the surrounding environment as shown in Fig. 5.14.
The warnings generated by the system is a tuple containing two information. The first
information denotes the direction of a potentially dangerous maneuver that must be
indicated to the host cyclist, based on which the cyclist can avoid the maneuver. The
direction of the warnings are determined by the ultrasonic sensor direction and the lateral
position information of targets obtained from the mmWave radar. The Fig. 5.15 shows
how the warning direction is determined based on the position of the closing target from
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Figure 5.14: Warning Algorithm

behind. As mentioned in Section 5.2.2, the region of interest for closing targets is specified
to be a lateral distance of 3m on either sides. This region of interest is classified into
three direction as shown in Fig. 5.15, based sub-regions based on the lateral distance from
the bicycle, which constitute the virtual adjacent lanes. The second information denotes
that a hazardous vehicle is approaching right behind the bicycle and can be used to alert
the driver of the approaching vehicle to be aware of the host bicycle to avoid collision.
This may conveyed through the means of a light signal present in the rear of the bicycle.
This additional information is expected to enable improved cycling safety by preventing
possible rear collisions even in an environment, where not all vehicles are equipped with
the same type of assistance systems.
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Figure 5.15: Closing Target Virtual Direction Separation
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Chapter 6

Testing and Results

The testing procedures that were carried out along with their results are mentioned in
this section. The mounting of the system along with the sensors on the bicycle is shown
in Fig. 6.1. The radar module is mounted firmly on the rear carrier of the bicycle using
nylon cable ties, the Raspberry pi is stuck to carrier using a double side tape, and the
ultrasonic sensors are also stuck to sides using the double side tape. The ultrasonic
sensors are mounted at a height from the ground, to minimise ground reflections. Their
performance of detection is inferred not to be affected by this as the targets of interest
are taller than this height.

(a) Rear view (b) Side view

Figure 6.1: System Mounting on Bicycle

6.1 Ultrasonic Sensor Performance

The ultrasonic sensors were installed on both the sides of the bicycle rear wheel as shown
in Fig. 6.2b with an arduino MCU, and a LCD display in the front handlebar as shown
in Fig. 6.2a to view the measured distance on both the sides in real-time. The bicycle
with this setup was ridden around in different road scenarios and measured distances on
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the sides in different scenarios was analysed to decide on the suitable MSD as mentioned
in Section 5.2.2.

(a) LCD Display Mounting (b) Ultrasonic Sensor Mounting

Figure 6.2: Ultrasonic Sensor Field Trial Setup

Their accuracy and capability of detection was also analysed. They were observed
to detect with a good accuracy and stability at different distances. A variety of tests
were conducted in indoor and outdoor conditions. It was inferred that they have a good
sensing capability but are highly restricted to their line of sight, which is not seen to
affect the warning system performance. Tests were also conducted by placing a target at
different known distance from the sensor, ranging from 0.05m to 1m and its estimation was
observed over time. This resulted in highly stable performance with minimal deviation
as shown in Fig. 6.3.

Figure 6.3: Ultrasonic Sensor Measurement Analysis
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6.2 mmWave Radar Performance

The performance of the mmWave radar was evaluated with respect to maximum range
of detection, and accuracy of detection in different real road scenarios and lighting
conditions. The tests were carried out by mounting the radar sensor in the rear of
the bicycle and connecting it to a laptop using USB-UART interface, which stored the
received radar frames and also plotted the values in real-time using a matlab Graphical
User Interface (GUI). The GUI was provided by Texas Instruments, and was modified
to receive and plot frames according to the project configuration. The laptop screen was
mirrored to a mobile phone mounted on the handle bar of the bicycle using team-viewer
remote connection application which enabled to evaluate the detection capability of the
radar sensor to an extent in real-time. The screen seen in the mobile phone is shown in
Fig. 6.4. In addition to this, another mobile camera was mounted on the rear to record
the rear-environment to be aware of the ground truth.

Figure 6.4: mmWave Radar Visualization Screen

6.2.1 Detection Range in Different Road Scenarios:

The range of detecting the targets of interest such as bicycles, cars, and scooters is
an important parameter that influences the performance the warning system. Thus it
is important to evaluate this parameter in different real-road scenarios. The detection
capability of the radar sensor was evaluated in three common road scenarios including
dedicated bicycle lane, shared road with bicycle lane marking, and shared road without
lane marking.
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(a) Shared Road Without
Lane Marking

(b) Dedicated Bicycle Lane (c) Shared Road With Bicycle
Lane Marking

Figure 6.5: Road Scenarios

1. Shared Road Without Lane Marking Scenario: This scenario is referred to
scenarios, where there is no dedicated bicycle lane and all road users share the
same space. These scenarios are commonly found in interior streets. The test was
conducted in such scenarios with multiple non-interested targets present as shown
in Fig. 6.5a. This was done as this scenario is inferred to have the most possibilities
of highly noisy environments. The Fig. 6.6a shows the range in which 15 bicycles
were detected in this road scenario. The average range of detection is around 36.3
m. Most of the bicycles were detected around 37 - 40 m with three exemption. Two
of which were detected at a maximum distance of 43 m and one with the minimum
distance of 21 m. These results are seen to be encouraging for the warning system
as the detection ranges are quite high under noisy scenarios and would be more than
sufficient for the warning system to detect threats under 6 sec as the speed of the
targets are not expected to be very high in these scenarios. Cars were not considered
in this scenario as only a few of them were present during testing and further they
are inferred to have much higher ranges due to their higher RCS properties.

2. Dedicated Bicycle Lane Scenario: This scenario is referred to scenarios, where
there is a dedicated bicycle lane which is physically separated from the road infrastr-
ucture of other users such as cars and trucks. These scenarios are commonly found
in highways and in some main roads. The test was conducted in one such scenarios
as shown in Fig. 6.5b. The Fig. 6.6b shows the range in which 10 bicycles were
detected in this scenario. The average range of detection is around 42.6m. Most of
the bicycles were detected around 40 and 45m with three exemptions. Two of which
were detected at a maximum distance of 54m and 50m and one with the minimum
distance of 28m. These results are seen to be encouraging for the warning system
and have a relatively higher detection range as the number of non-interested targets
are minimal which reduces the noise in the environment.

3. Shared Road With Bicycle Lane Marking Scenario: This scenario is referred
to scenarios, where there is a bicycle lane separated with lane markings and not
physically separated from the road infrastructure of other users such as cars and
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trucks. These scenarios are commonly found in cities. The test was conducted in
one such scenarios as shown in Fig. 6.5c. The Fig. 6.6c shows the range in which
15 bicycles and cars were detected in this scenario. The average range of detection
is around 27 m for bicycles and 60 m for cars. Most of the bicycles were detected
around 28 and 33 m with five exemptions that were detected at a minimum distance
of 21 and 22m. The majority of the cars were detected around 60 to 70m with few
exemptions around 40 to 55m with 40m being the minimum distance. These results
are seen to be relatively lower than the other scenarios as the test position was on a
slightly curved path as seen in Fig. 6.5c. In-spite of this restriction of the TX frames
to travel longer as they travel in a straight line, the results still show a good range
for cars but a reduced range for bicycles. The only drawback of this reduction is the
restriction to only provide timely warnings for bicycles with a maximum relative
speed of 6.5 m/s, which is very high and not inferred to occur commonly.

(a) Shared Road Without Lane
Marking

(b) Dedicated Bicycle Lane (c) Shared Road With Bicycle
Lane Marking

Figure 6.6: Detection Range Plot

6.2.2 Accuracy of the mmWave Radar:

The accuracy of the range and velocity estimated by the radar was verified using the
Matlab GUI, a mobile phone with apple measure application [67], and Walfort wireless
bicycle computer [68]. The range was initially measured using the mobile application
and the radar was used later to estimate the range of a bicycle target placed at the
same point. The radar estimate and the measured range were compared and verified to
be almost similar as in Fig. 6.7a. Similarly, a target bicycle was installed with mobile
computer and was ridden towards the stationary radar at different velocities and their
corresponding radar estimates were compared. The radar estimate and the velocities
measured by the bicycle computer are comparable as the radar is stationary and the
relative velocity estimated is equal to the target velocity. The estimates and the measured
values were verified to be almost similar as shown in Fig. 6.7b.
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(a) Range (b) Velocity

Figure 6.7: Radar Accuracy

6.3 Lateral Maneuver Warning System

The evaluation of the overall warning system was carried out in two fold. It was initially
tested by adapting procedures followed in the ISO 17387 standard for LCDAS in cars [9].
This is done as the system functionalities are quite similar with change in the targets
and operating environment. The system was later installed on a bicycle along with a
mobile camera to record the video of the environment and ridden around in different
road scenarios. The status of the warning system was continuously displayed on a mobile
phone remotely connected with the Raspberry pi and also logged and stored in a csv file
with timestamp. The stored file was later used to compare with the frames captured by
the camera to cross check the ground truth.

6.3.1 ISO 17387 Testing Procedure:

1 m
1 m

A

B

3.5 m

3.5 m  

Target Bicycle

Target Bicycle

Host Bicycle

Host Bicycle

Figure 6.8: Test Scenarios

The purpose of this test is to check whether the system works according to its design.
The testing procedure includes a scenario in which a target bicycle approaches the host
bicycle with the warning system at different speeds. The procedure was carried out in
a separated bicycle lane and tested on either sides as shown in Fig. 6.8. The test was
repeated for 3 times in each direction and the system was able to generate warnings
accordingly in all cases. The distance at which the system generated the warning for
each speed of the target bicycle is shown in Table 6.1. The false warning test was also
conducted and verified that the system did not generate warnings for vehicles present
beyond the configured lateral distance of 3 m on either sides.
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Target
Velocity
(m/s)

Warning
Distance

(m)

Warning
Timing (s)

4.5 24.5 5.4
5.5 24.6 4.5
9.7 43.8 4.5

(a) Left side

Target
Velocity
(m/s)

Warning
Distance

(m)

Warning
Timing (s)

4.0 22.2 5.5
5.5 25.1 4.5
9.0 39.2 4.4

(b) Right side

Table 6.1: ISO 17387 Testing results

6.3.2 Real-time Scenario Testing:

The purpose of this test was to evaluate the performance of the warning system in different
road scenarios. The bicycle was ridden across all the 3 different road scenarios mentioned
above for a total duration of around 32 minutes of which around 15 minutes was in
shared road with and without lane marking and the remaining duration was in dedicated
bicycle lane scenario. The warnings generated by the warning system stored in the csv
file were later compared to camera frames obtained and verified. Then a confusion matrix
was used to describe the performance of the warning system using the metrics given in
Table 6.2.

The basic terms used for the construction of the confusion matrix are defined as follow:

• True Positive (TP): The cases in which the system generated a warning in a
particular direction and a possible obstacle was found in same direction on the
camera frame at the same point in time.

• True Negative (TN): The cases in which the system generated no warnings and no
possible obstacle was found on the camera frame at the same point in time.

• False Positive (FP): The cases in which the system generated a warning but no
possible obstacle was found on the camera frame at the same point in time.

• False Negative (FN): The cases in which the system did not generate a warning
but possible obstacles were found on the camera frames at the same point in time.
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Performance Metric Definition Formula
Accuracy It denotes the overall

correctness of the warning
system.

TP + TN

total

Misclasification Rate It denotes the overall
incorrectness of the warning
system.

FP + FN

total

Sensitivity It denotes the
proportion of cases in
which the warning system
generated a warning
correctly.

TP

Actual ′′Y ES ′′

FP Rate It denotes the
proportion of the cases
in which the warning
system generated a warning
incorrectly.

FP

Actual ′′NO′′

Specificity It denotes the
proportion of the cases
in which the warning
system did not generate a
warning correctly.

TP

Actual ′′Y ES ′′

Precision It denotes the success
probability of the warning
system in making a correct
warning decision

TP

Predicted ′′Y ES ′′

Table 6.2: Performance Evaluation Metrics

Individual Scenario Performance: The performance of the system is evaluated by
grouping together the shared road with and without lane markings scenarios, where the
number of road users are high and separately for the dedicated bicycle lane scenario with
a relatively lower number of road users. This is done to give a comparison of the system
performance in a noisy environment and an environment with relatively lower noise. The
confusion matrix for both the cases is given in Table 6.3 and Table 6.4.

The performance of the system in both the cases is shown in the Table 6.5. In both
cases, it is obvious that the system has a high level of accuracy (above 90%). However, the
most noticeable difference is the sensitivity, which is an essential statistic that indicates
the true effectiveness of the warning system by indicating its capacity to identify threats.
It is considerably good under dedicated bicycle lane scenario, but falls short to an extent
in shared road scenarios. This degradation is inferred to be mainly due to the high
sampling rate of the warning system, the radar configuration and the threat assessment
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Table 6.3: Confusion Matrix - Noisy Road Scenarios
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27
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1718
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1745

total 169 1743

Table 6.4: Confusion Matrix - Dedicated Bicycle Lane Scenario

thresholds. The configuration of the radar to enable long range detection restricts it to
detect objects that are very close to the bicycle in the rear and leads to a very small
region out of coverage of the system between the radar and the ultrasonic sensors. Thus,
warnings for an approaching vehicle are stopped a little earlier when the vehicle is in the
out of coverage region itself before coming under the threshold coverage of the ultrasonic
sensor or passing the host bicycle. This out of coverage region is very small and its effect
is not as significant in the dedicated bicycle lane scenario as the duration of the presence
of target vehicles in the out of coverage region was very minimal due to the higher relative
speed of vehicles. Whereas, the effect is significant due to the reduced speed of vehicles in
shared road scenarios. This effect can be improved with a slight increase in the sampling
time of the warning system but it may result delayed warnings is some cases. Thus, an
ideal solution would be to only clear the warning status of the system when no warnings
are generated for 2 or 3 consecutive samples. This is inferred to improve the sensitivity
of the system significantly but with an slight increase in the FP rate. The characteristics
of the mode of the communication used to intimate the rider along with this trade-off
needs to be considering when improving further.
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Performance Metric Shared Road Scenario Dedicated Bicycle
Lane Scenario

Accuracy 92.4 % 97.3 %

Misclasification Rate 7.6 % 2.7%

Sensitivity 67.5 % 84.4 %

FP Rate 1 % 1.5 %

Specificity 99 % 98.4 %

Precision 94.9 % 84 %

Table 6.5: Performance Metrics - Individual Scenario

Overall performance: The overall performance of the system across all the different
road scenarios is evaluated in this section. This is done to give a description of the
system performance along with the time in advance it was able to generate warnings for
approaching vehicles. The confusion matrix for the evaluation is given in Table 6.6.
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38
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2841
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2879

total 383 2964

Table 6.6: Confusion Matrix - Overall Performance

Performance Metric Overall

Accuracy 95.2 %

Misclasification Rate 4.8 %

Sensitivity 73.7 %

FP Rate 1.3 %

Specificity 98.6 %

Precision 89.6 %

Table 6.7: Performance Metrics - Overall System

The overall performance of the system is shown in the Table 6.7. It can be inferred
from the results that the warning system performs well across different road-scenario with
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a good accuracy and an acceptable sensitivity with further scope of improvement. The
Fig. 6.9 shows the time in advance the warnings were generated for approaching vehicles.
It can be inferred that most of the warnings were generated between 5 and 6 seconds and
only a very few were generated between 2 and 4 seconds with a lowest of 2.3 seconds.
The warnings that were slight delayed were inferred to be due to the reduced detection
range of relatively fast moving targets in noisy road scenarios. Most of these targets were
seen to be bicycles. However, These results align very well with the configured threshold
of 6 seconds and verify the performance of the warning system.

Figure 6.9: Early Warning Timings

6.4 Limitations

The benefits of using the proposed methods such longer detection range, higher early
warning timings, higher accuracy, and mainly the ability to perform well across different
real-road scenarios are evident from the results mentioned above. However, the system
still has some limitations that need to be addressed in the future. One of the main
limitation of the system was seen to be the reduced sensitivity of the system in all the
road-scenarios as shown Table 6.5. This was mainly inferred to be due the maximum
detection range configuration of the radar, the MSD setting for the threat assessment of
the sides according to minimal lateral displacement scenarios to reduce the false warnings
as mentioned in Section 5.2.2, and the high sampling rate of the system. These factors
contribute to the inability of the system to effectively detect very close-by targets and
generate warnings accordingly. To elaborate on the limitations let us consider a scenario
of an approaching target at a lateral distance of 2m from the bicycle. The target is
detected at a far distance and warnings are generated earlier, but when the target comes
very close to the radar (longitudinal distance < 0.4m) it is not detected by the radar
due to its reduced resolution. At this point in time the target is present within the
coverage range of the ultrasonic sensor on the side considering its length, but a warning
is not generated due to reduced MSD of 0.5m configured on the sides. These scenarios
contribute to the FN of the system and increase by a factor of 2 every second due to
the high sampling rate of the system. These are the reasons for the reduced sensitivity
of the the system in noisy shared road scenarios, where the speed of the targets are
relatively slower and the lateral distances of approaching target vehicles are higher, than
dedicated bicycle lane scenarios. These limitation can be solved by two methods, one is
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to reduce the sampling rate of the system, and the other is to vary the radar front-end
configuration and the MSD for the sides according to the road scenario. The first method
is more viable and easier to implement but may result in slightly delayed warnings and
increased FP. Whereas the second method will be more accurate and effective, but will
increase the complexity of the system as well as require a sensing method to differentiate
road scenarios. A thorough analysis considering all these trade-off must be done in the
future before addressing the limitations.
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Chapter 7

Conclusion

In this thesis, an on-board early warning system for safe lateral maneuver of bicycle was
designed and tested in real-road scenarios. Multi-modal off-the-shelf sensors like mmWave
radar and ultrasonic sensor were used to extract information from the surrounding.
The fusion of ultrasonic sensor and mmWave radar detects obstacles beyond the rider’s
peripheral vision and alerts only if the obstacle is a threat to the lateral maneuver.
Both sensors measure the proximity of obstacles, while the mmWave radar also measures
the relative velocity and the two-dimensional position of the obstacle relative to the
radar that enables to compute the TTC and the direction of closing targets. Using these
sensors, we estimate the TTC and MSD of the obstacle and deem its threat in a two-stage
approach. The on-field testing in different real scenarios show that the system is robust
in detecting true positives while minimizing false positives, with an overall accuracy of
95.2%. This proves that our system is not over-sensitive to non-threat obstacles. However,
analyzing the sensitivity shows that the system is effective upto 73.7%. The reason for this
limitation is addressed along with suggested methods to overcome them in Section 6.4.
The results of the project are encouraging and has opened a new research direction for
the implementation of lateral maneuver assistance systems in bicycles.

7.1 Future Work

There are a lot of features that can be added to this project to extend system functionality
and improve its performance in the future. One such possibility for an adaptive system
has already been mentioned in Section 6.4. The other possibility is to incorporate a
suitable feedback mechanism to the host cyclist and the driver of the approaching targets
based on the generated warning information. The feasibility of modifying the system
to be triggered only when the cyclist initiates a lateral maneuver can be studied, as
it is expected to reduce the power consumption and also reduce the generations of
unnecessary warnings. Further extensive testing of the system across more complex
traffic and road scenarios will provide more insight on further limitations of the system,
that will lead to new research direction. An suitable housing to incorporate the system
components without affecting the system performance must also be developed to evaluate
the performance of the system across poor weather conditions such as rain. Designing
a radar housing without deteriorating its performance by studying the permeability
characteristics of the radar wave would be an ideal point to start. The radar EVM can
be replaced with a custom designed board using only the IWR1642 sensor and necessary
interfaces as it is inferred to be feasible.
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