
 
 
 
 
 
 
 
 
 
 
 
 

Master Thesis 
 

Great Expectations: An Attempt to Clarify the Role of 
 

Theta Activity in Human Cognitive Control Processes 
 

A.N.J.P.M. (Alexander) Haas 
 

Main supervisor: dr. R.H.J. (Rob) Van der Lubbe 
Secondary supervisor: dr. R. W. (Russell) Chan 

 
MSc Psychology – University of Twente – 19 November 2021 

 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

	
	

	
	



2 

 
 
 
 
 
 

 
 
 

--------   ABSTRACT   -------- 

 

The dual mechanisms of control (DMC) framework makes a distinction between proactive and 

reactive cognitive control processes. The results of a recent study suggest that the latter may be 

accompanied by a wider distribution of theta activity in the human brain than the former. The 

present study aimed to put that possibility to the test. The Add-n task, a digit transformation 

task, was used in an attempt to elicit proactive and reactive cognitive control processes in 37 

individuals whilst their brain activity was being recorded by means of electroencephalography 

(EEG). Theta activity was found to be most pronounced at electrode FCz in all task conditions. 

Partial support was found for the notion that relatively challenging tasks and task conditions 

induce higher levels of frontal-midline theta activity than relatively unchallenging ones. Unlike 

expected, the results did not corroborate the idea that reactive cognitive control processes  

are accompanied by a wider distribution of theta activity in the human brain than proactive 

cognitive control processes. The attempted manipulation of the participants’ cognitive control 

strategies may not have been effective, however, so no definitive conclusions can be drawn. 
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1. Introduction 

 

Cognitive control can be defined as the ability to (consciously or subconsciously) optimise one’s 

information processing strategy for a specific task or situation (Braver et al., 2008). Cognitive 

control processes are essential to our overall functioning (Miller & Wallis, 2008; Carter & Krug,  

2012). Little is known about how cognitive control is realised in our brains, however. Arguably,  

this remains “one of the most fascinating mysteries of human cognition” (Braver, 2012, p. 106). 

 

The influential working memory model of Baddeley and Hitch (1974) deserves credit for having 

drawn scholars’ attention to the concept of cognitive control. However, its own account of that 

concept is controversial (Andrade & May, 2004; Braver et al., 2008; Conway et al., 2008). 

Little is known about the properties and specific interactions of the entity that the working 

memory model attributes all cognitive control processes to: the central executive (Eysenck & 

Keane, 1995; Jonides & Smith, 1997; Solso, 2000; Baddeley, 2002; Quinlan & Dyson, 2008; 

Logie, 2016; Chai et al., 2018). This is undesirable. More problematically, many scholars find it  

hard to unite the notion of a single central executive with empirical findings that suggest that 

cognitive control is an intrinsically variable phenomenon (Braver, 2012). They have felt inclined  

to resort to some sort of non-unitary “executive committee” instead (Baddeley, 1996, p. 8; 

Eysenck & Keane, 1995; Wagner et al., 2004). As Jonides and Smith already put it more than 

two decades ago, the term ‘central executive’ may actually be little more than “a convenient 

umbrella for a constellation of processes” (1997, p. 246). This line of thought has formed the 

basis for an alternative view on cognitive control: the dual mechanisms of control framework. 

 

1.1. The dual mechanisms of control framework 

 

The dual mechanisms of control (DMC) framework was first described in the literature in the 

early 2000s (Braver et al., 2008; Braver, 2012). It makes a distinction between two types of 

cognitive control processes (Braver et al., 2008; Braver, 2012; Bugg, 2014; Cooper et al., 2015;  

Chiew & Braver, 2017; Eschmann et al., 2018; Sauseng et al., 2019; Martins-Klein et al., 2020).  
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Proactive cognitive control processes involve an early selection process in which goal-relevant 

information is strongly focused on from the moment it is presented. Reactive cognitive control 

processes, on the other hand, involve a late adjustment process in which information that is 

initially focused on must subsequently make space for other (more relevant) information. It  

is not entirely clear yet how proactive and reactive cognitive control processes relate to each  

other (Chiew & Braver, 2017). Perhaps they should be treated as independent phenomena that  

can both be present simultaneously (to differing extents) at any given point in time (Fröber  

& Dreisbach, 2012). Alternatively, perhaps proactive and reactive control should be seen as 

two extremes on a single continuum (Braver et al, 2008; Braver, 2012). That would imply  

that, apart from proactive and reactive, cognitive control processes can also be hybrid in nature. 

 

Reactive cognitive control processes are believed to involve activity in a much wider area of 

the human brain than proactive cognitive control processes (Braver et al., 2008; Braver, 2012; 

Chiew & Braver, 2017; Sauseng et al., 2019). Proactive cognitive control processes are believed  

to mostly involve activity in the lateral prefrontal cortex, whereas reactive cognitive control 

processes are believed to additionally involve activity in the anterior cingulate cortex, the 

(medial) temporal lobe and the parietal lobe. Empirical findings seem to support these views  

(Grandjean et al., 2012; Niendam et al., 2012; Chiew & Braver, 2017; Eschmann et al., 2018). 

 

Proactive cognitive control processes have both advantages and disadvantages, which makes 

them more suitable for some tasks than for others (depending on the task goals). The same  

is true for reactive cognitive control processes. For many tasks, a mixed cognitive control 

strategy would be optimal (Braver et al., 2008; Braver, 2012; Chiew & Braver, 2017). Hence, 

humans rarely need to adopt a cognitive control strategy that is fully proactive or fully reactive  

in nature. The DMC framework posits that subtle task and situational differences can have a 

considerable impact on “the weighting between proactive and reactive control [processes]” 

(Braver et al., 2008, p. 86). There exists empirical support for this assumption (Braver et al., 

2008). One factor that appears to be relevant in this context and that plays an important role in 
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the present study, is the degree to which someone expects a task to be cognitively demanding.  

Research suggests that when people anticipate a low mental workload during a task, they will 

adopt a cognitive control strategy that is relatively proactive in nature (Speer et al., 2003; 

Braver et al., 2008; Braver, 2012). When people anticipate a high mental workload during 

a task, in contrast, they will adopt a cognitive control strategy that is relatively reactive in nature. 

 

1.2. Theta activity and cognitive control 

 

The DMC framework has grown quite influential in recent years (Martins-Klein et al., 2020) and  

has already inspired “a wealth of empirical research” (Chiew & Braver, 2017, p. 148). A second 

development that can be observed in the literature on cognitive control, concerns theta activity. 

 

Neurons are often active in groups, so-called neuronal populations or assemblies (Hof et al., 

2008; Cavanagh & Frank, 2014; Stankovski et al., 2017). The synchronised activity of such 

groups can give rise to brain oscillations (Kahana, 2006; McCormick, 2008; Frank, 2009; 

Fröhlich, 2016), which can be measured by means of electroencephalography (EEG) (Kutas 

& Dale, 1997). In the past, brain oscillations were mostly seen as by-products of neuronal 

activity with little functional value (Fröhlich, 2016). Today, in contrast, “rhythmic activity 

patterns” are seen by many scholars as “fundamental to how the brain works” (Fröhlich, 2016, 

p. 82; Fell & Axmacher, 2011; Hsieh & Ranganath, 2014). Brain oscillations may be able to 

affect neurons’ electrical excitability and thereby enable selective communication between 

different groups of them (Fröhlich, 2016; Eschmann et al., 2018). It should be noted, however, 

that the “precise function of (…) brain rhythms remains mysterious” (Frank, 2009, p. 483). 

 

Brain oscillations can occur at various frequencies, depending on the nature of the synchronised 

activity of the neurons that generate them. The frequencies in question can be categorised into 

various frequency bands (Miller & Buschman, 2012; Fröhlich, 2016), one of which – the theta 

band – plays a central role in the present study. The theta band can be defined as ranging from 

4 Hz to 7 Hz (Cooper et al., 2015; Eschmann et al., 2018; Fuentes-García et al., 2019; Román-
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López et al., 2019). Theta oscillations were already observed in the human brain more than seven  

decades ago (Arellano & Schwab, 1950; Ishihara & Yoshii, 1972; Hsieh & Ranganath, 2014). 

A “unifying framework of human theta oscillations that includes their appearance, functional 

roles, and underlying mechanisms [still seems to be] lacking,” however (Fröhlich, 2016, p. 250; 

Hsieh & Ranganath, 2014). This is undesirable, of course, but fortunately it has not prevented  

scholars from developing a growing interest in theta activity in recent years (see Appendix A). 

 

Many research findings point in the direction of an intricate relationship between theta activity 

and working memory. Consider a recent study by Pomper and Ansorge (2021), for example. 

They found that when people have to simultaneously hold two pieces of visual information in 

working memory, one of those two pieces is always a bit more readily available to them than 

the other. Which piece of information is prioritised in working memory constantly switches, and 

that switching appears to be reflected by changes in theta activity. A more established finding 

is that relatively difficult working memory tasks and task conditions tend to be accompanied by  

higher levels of theta activity (particularly frontal-midline theta activity) than relatively simple  

ones (Gevins et al., 1997; Gevins & Smith, 2000; Jensen & Tesche, 2002; Onton et al., 2005; 

Sauseng et al., 2007; Griesmayr et al., 2010; Roberts et al., 2013; Fuentes-García et al., 2019). 

 

Encouraged by some of their findings, many scholars seem to have developed great expectations 

regarding the role of theta activity in human cognitive control in the course of the past decade 

or so (Griesmayr et al., 2010; Sauseng et al., 2010; Cavanagh et al., 2012; Cavanagh & Frank, 

2014; Cooper et al., 2015; Fröhlich, 2016; Helfrich & Knight, 2016; Eschmann et al., 2018;  
 

Cooper et al., 2019; Eschmann et al., 2020). What could that role entail? If multiple parts of 

the human brain are together responsible for cognitive control (as the DMC framework posits), 

then their activity must somehow be synchronised (Duncan & Manly, 2012). Experts believe 

that brain oscillations might facilitate such synchronisation (Cavanagh et al., 2012; Miller & 

Buschman, 2012; Cooper et al., 2015; Brzezicka et al., 2019; Karakaş, 2020). The neurons  

of the involved brain areas might assemble in a single neuronal population and subsequently 
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become more or less excitable as a function of that population’s oscillation. It has been 

proposed that such “rhythmic excitability” could result in the instantiation of “transient 

functional networks between spatially distal sites” (Cavanagh & Frank, 2014, p. 416; Engel  

et al., 2001; Azouz & Gray, 2003; Fries, 2005; Nobre et al., 2012; Cooper et al., 2015). In 

other words, neuronal oscillations might explain how the various parts of the human brain  

that are together responsible for cognitive control operate in tandem with each other. Many 

scholars seem to believe that the oscillations in question fall within the theta band (Onton et 

al., 2005; Cavanagh et al., 2010; Griesmayr et al., 2010; Sauseng et al., 2010; Cohen, 2011; 

Fröhlich, 2016; Eschmann et al., 2018; Sauseng et al., 2019; Eschmann et al., 2020; Karakaş, 

2020; Asanowicz et al., 2021). This could explain why past findings consistently point in the 

direction of an association between theta activity and cognitive control (Sauseng et al., 2010). 

Besides, because of their relatively long wavelengths, theta oscillations can easily travel across  

distances in the brain (Von Stein & Sarnthein, 2000; Buzsáki & Draguhn, 2004; Uhlhaas et 

al., 2010; Miller & Buschman, 2012; Cavanagh & Frank, 2014). This makes them seem more 

suitable for a synchronising role than the oscillations in most other frequency bands: only delta  

oscillations have longer wavelengths and are hence thought to be able to bridge larger distances. 

All in all, although much is still unknown in this area, theta activity might well be an essential  

“integrative brain mechanism” that underlies cognitive control (Sauseng et al., 2010, p. 1015). 

 

1.3. Theta activity and the DMC framework 

 

In what appears to have been a first-of-its-kind EEG study, Eschmann et al. (2018) recently 

examined theta activity in the context of the dual mechanisms of control framework. To elicit 

proactive and reactive cognitive control processes in their participants, they used two different 

tasks. An implementation of the delayed match-to-sample (DMTS) task was used to elicit 

proactive cognitive control processes. At the start of each trial, participants were presented 

with a pattern of small squares. They were instructed to remember that pattern over a delay 

period and subsequently compare it (or a mirrored version of it, depending on the condition 
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that they were in) with another pattern. Eschmann et al. (2018) assumed that this task would 

mostly induce proactive cognitive control processes to support “the sustained and anticipatory  

maintenance of goal-relevant information” (p. 58). To elicit reactive cognitive control processes,  

they used an implementation of the well-known Stroop task. During each trial, participants  

were presented with a single word (usually a colour name, e.g. “red”) printed in randomly  

coloured ink. They were instructed to name the colour of the ink. Eschmann et al. (2018) 

assumed that this task would mostly induce reactive cognitive control processes to support a 

late adjustment process in which the information that is typically focused on first (the lexical 

meaning of the word) makes space for the information that is needed (the colour of the ink). 

 

During the DMTS task, Eschmann et al. (2018) mostly recorded theta oscillations at the most 

frontal electrode sites (Fp1, Fp2 and Fz). During the Stroop task, they observed theta activity 

at many other electrode sites (including posterior ones) as well. The researchers concluded that 

reactive cognitive control processes involve a wider distribution of theta activity in the human 

brain than proactive cognitive control processes. Since the DMC framework posits that the set 

of brain areas that are together responsible for reactive cognitive control processes is larger than 

the set of brain areas that are together responsible for proactive cognitive control processes, this  

conclusion appears to offer some support for the notion that theta oscillations play an important 

synchronising role in human cognitive control. The researchers themselves indeed argued that 

they had found evidence for “large scale theta synchronization” (Eschmann et al., 2018, p. 62). 

Other scholars have interpreted their findings in a similar manner since (Sauseng et al., 2019). 

 

Eschmann et al. (2018) seem to have been the first researchers to observe “scalp topographical 

differences of theta activity between tasks differing in their cognitive control demands” (p. 63).  

There has never been a follow-up to their study so far. This is undesirable, especially since 

Eschmann et al. (2018) made use of two different tasks to elicit proactive and reactive cognitive 

control processes in their participants (Andrade & May, 2004). Task differences unrelated  

to cognitive control may have confounded their results (Sauseng et al., 2019). Eschmann et  

al. (2018) already admitted this themselves and indicated that they had a different research 
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question in mind when they designed their study. They called upon the academic community 

to conduct more research on theta activity and cognitive control. The present study can be seen 

as a response to that call. The aim of this study was to put the conclusion of Eschmann et al. 

(2018) to another test. To ensure that it would not suffer from the same weakness, a single 

task was used to elicit both proactive and reactive cognitive control processes: the Add-n task. 

 

1.4. The Add-n task 

 

The Add-n task is a digit transformation task. It was first described in the literature by Nobel  

laureate Daniel Kahneman and his colleague Jackson Beatty in 1966 (Beatty & Kahneman, 1966; 

Kahneman & Beatty,1966). Inspired by earlier research (Hess & Polt, 1960; Hess & Polt, 1964; 

Hess, 1965), Kahneman and Beatty wanted to investigate whether the size of one’s pupils alters 

as a function of one’s mental workload. They devised several tasks to manipulate their subjects’ 

mental workload, including an elegant “transformation task” (Kahneman & Beatty, 1966, p. 

1584). Following Röber (2019), the task in question shall be referred to as the Add-n task here. 

In the Add-n task, a participant is first briefly shown a sequence of four digits (Kahneman, 2011). 

This is followed by an interval during which the participant is expected to add n (a non-negative 

integer) to each of those four digits. Finally, the participant is asked to disclose their solution  

by saying it out loud, writing it down or entering it on a keyboard. As an illustration, consider 

the sequence ‘2 8 3 7’. If n were to equal 0, the correct solution would likewise be ‘2 8 3 7’. 

The correct solution would be ‘3 9 4 8’ if n were to equal 1 and ‘4 0 5 9’ if n were to equal 2. 

 

Kahneman and his colleagues made use of the Add-n task on several occasions in the late 1960s 

(Kahneman et al., 1967; Kahneman et al., 1968; Kahneman et al., 1969). Since then, the Add-n 

task (which should not be confused with the serial addition task) has not been used very often 

(Steinhauer et al., 2000). It only seems to have popped up in works of student research every 

now and then (Kimchi, 1982; Stone et al., 2004; Bishop, 2014; Röber, 2019), although similar 

tasks can sporadically be encountered in the literature without any reference to Kahneman  

and Beatty (consider subtests 5 and 8 of the 1972 study by Ishihara & Yoshii, for example). 
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Research suggests that the Add-n task can be used to effectively manipulate people’s mental 

workload (Kahneman & Beatty, 1966; Kahneman et al., 1969; May et al., 1990). Kahneman  

once wrote that he thinks finding the solution to a sequence can be an “exceptionally effortful”  

challenge if n does not equal 0 (2011, p. 34). The larger the value of n, the more demanding 

the Add-n task appears to become (Kahneman et al., 1969; Steinhauer et al., 2000; Röber, 

2019). It seems fair to assume that most people would also naturally expect this to be the case. 

If so, this would provide reason to believe that as n grows larger, the cognitive control processes 

that are elicited by the Add-n task become more reactive (and less proactive) in nature. As was  

discussed in section 1.1, after all, past research suggests that when people anticipate a relatively 

low mental workload during a task, their cognitive control processes will become relatively 

proactive in nature. When people anticipate a relatively high mental workload during a task, 

on the other hand, their cognitive control processes will become relatively reactive in nature. 
 

 

1.5. The present study 

 

In the present study, participants were subjected to three conditions of the Add-n task: the Add-0  

condition, the Add-1 condition and the Add-2 condition. In line with the discussion at the end of  

section 1.4 above, it was theorised that the Add-2 condition would elicit more reactive cognitive 

control processes than the Add-1 condition, and that the Add-1 condition would elicit more 

reactive cognitive control processes than the Add-0 condition. Eschmann et al. (2018) concluded 

from their findings that reactive cognitive control processes involve a wider distribution of theta 

activity in the human brain than proactive cognitive control processes. The aim of this study  

was to put that conclusion to another test by answering the following question: if x, y ∈ {0, 1, 2}  

and x > y, does the Add-x condition of the Add-n task involve a wider scalp topographical 

distribution of theta activity in the human brain than the Add-y condition of the Add-n task? 

In other words, is the scalp topographical distribution of theta activity most focal in the Add-0 

condition, more extended in the Add-1 condition, and most extended in the Add-2 condition? 
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It should be noted that the Add-0 condition is fundamentally different from the Add-1 condition 

and the Add-2 condition: the former only involves remembering a sequence of digits, whereas 

the latter involve mentally transforming those digits as well. There is a difference between 

maintaining information and manipulating it (Veltman et al., 2003; Jablonska et al., 2020). In 

the present study, any observed differences between the Add-0 condition and the other two 

conditions could be caused by that confounding factor, rather than by differences related (more 

directly) to cognitive control (Wagner et al., 2004; Itthipuripat et al., 2013; Lamp et al., 2016).  

Hence, the focus was primarily on the Add-1 condition and the Add-2 condition in this study. 

 

2. Methodology 

 

2.1. Participants 

 

In total, 37 individuals (14 males and 23 females) took part in this study (age 23.7 ± 9.1 years). 

Most of them were German (n=17) or Dutch (n=14). The remaining participants were Bulgarian 

(n=3), Latvian (n=1), Swiss (n=1) and French (n=1). The first 20 participants took part in the 

experiment in the spring of 2019. The remaining 17 participants took part in the experiment in 

the spring of 2021. The same methodology was used on both occasions, apart from some minor 

differences. The 2019 procedure involved darkening the laboratory during the experiment, for 

instance, whereas the 2021 procedure did not. To find out whether there were major differences 

between the data that was collected in 2019 and the data that was collected in 2021, ‘Year of 

measurement’ was included as a between-subjects factor in all relevant statistical analyses. 

Interested readers could consult Röber (2019) for a comprehensive description of the 2019 

procedure. In this text, the procedure that was followed in the spring of 2021 shall be described. 

 

All participants were either related to or socially acquainted with at least one member of the 

research team. Participation was voluntary. The participants did not receive any remuneration 

in exchange for their help. During the experiment, all participants had normal or corrected-to-

normal vision. None of the participants had ever undergone any head or brain surgery. Likewise,  
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none of the participants had drunk any alcohol during the last 24 hours before the experiment. 

The participants were informed about the nature of the experiment when they were invited to 

take part in it. They were also provided with a detailed information sheet shortly in advance of 

the experiment. All participants provided their informed consent directly before the start of the  

experiment. The experimental procedure was approved by the Ethics Committee of the Faculty  

of Behavioural, Management and Social Sciences at the University of Twente (request 210176). 

 

2.2. COVID-19 measures 

 

In the spring of 2021, the Netherlands was in lockdown as a result of the COVID-19 pandemic. 

Strict measures were taken to minimise the risk of spreading the COVID-19 virus in the EEG 

laboratory. The researchers wore N95 respirators and gloves at all times, ensured that the room 

was properly ventilated, and regularly disinfected their (gloved) hands with alcohol. They also 

tried to maintain distance between themselves and the participants whenever possible, and 

they disinfected all possible fomites (such as desk surfaces, keyboards and pens) before each 

session. The participants were asked to disinfect their hands and put on an N95 respirator 

before entering the laboratory. They were only allowed to take off their respirator during the 

experiment. The participants were explicitly asked not to come to the laboratory if they had any  

COVID-19 symptoms or if they had recently been in touch with an infected individual. Nobody 

appears to have been infected with SARS-CoV-2 as a consequence of participating in this study. 

 

2.3. Experimental procedure 

 

The experiment took place in the EEG laboratory on the campus of the University of Twente. 

Each session took approximately 2 to 2.5 hours and involved two tasks: the Add-n task and the 

Sternberg task. Since the latter task was not part of this study, it will not be reported on here. 

 

A single experimental session (with a single participant) looked as follows. After the participant 

had read the information sheet and signed the informed consent form, standard procedures were 

followed to prepare them for the EEG recording (see, for example: Hörsting & Titsing, 2021). 
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Once prepared, the participant was given a form with a detailed explanation of the Add-n task. 

The participant was informed that they would be subjected to three conditions of the Add-n 

task: the Add-0 condition, the Add-1 condition and the Add-2 condition. The participant was 

then asked to indicate which of those conditions they expected to involve the lowest mental 

workload and which of those conditions they expected to involve the highest mental workload. 

Next, the room was silenced and the Add-n task was presented on a computer screen that was 

positioned at a distance of approximately 60 cm from the participant’s eyes. The participant 

was asked to try to avoid making any unnecessary (eye) movements during the experiment. 

 

As Figure 1 shows, each participant faced six blocks of the Add-n task (with two blocks per 

condition). The order of the conditions was counterbalanced across the participants. The three 

conditions were first gone through once, and then a second time (with different trials) in  

the same order. Each block consisted of twenty randomly ordered trials. A schematic overview  

of a single trial in an Add-2 block can be found in Figure 2. At the beginning of every trial, a 

brief instruction was displayed for 2000 ms: “ADD ZERO”, “ADD ONE” or “ADD TWO”. 

Next, a sequence of four digits was presented for 1000 ms. A green square was subsequently 

displayed at the centre of the screen for 3000 ms. The participant was expected to come up 

with their solution during this interval. Finally, a question mark popped up on the screen. The 

participant was expected to first say their solution out loud (digit by digit) and then enter that  

solution on a keyboard. It was made clear to the participant that there was no need to hurry: the 

 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 
Figure 1. An overview of the experiment. Each participant was subjected to 120 trials of the Add-n task. 
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Figure 2. A schematic representation of a single trial in an Add-2 block. The correct solution is ‘4 5 3 1’. 
 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 

question mark would stay on the screen until all four digits had been entered, after which a new 

trial would start. The participant was explicitly instructed to calculate their solutions for the 

Add-1 trials and the Add-2 trials in their mind, and not to use a trick that involves remembering 

the original digits and then looking at the keyboard to arrive at the correct outcome. Once the 

participant had gone through all six blocks of the Add-n task, the EEG cap was removed  

from their head and they were kindly thanked for their participation. The participant was 

offered a snack and a beverage, and they were given the opportunity to wash their hair in  

the laboratory. The participant was then thanked once more and escorted out of the building. 

 

2.4. Equipment 

 

The experiment was administered on a desktop computer that ran Windows 7 in lean mode.  

A standard QWERTY keyboard and a 22’’ LED monitor with a refresh rate of 60 Hz were 

connected to that computer. To implement the Add-n task, a popular stimulus delivery and 

experimental control program called Presentation was used (Neurobehavioral Systems, Inc.). 

The participants’ EEG activity was recorded with 32 active electrodes (not including the ground) 

that were positioned according to the standard 10-20 system (see Appendix B). The actiCAP 

snap EEG system with slide-in electrode holders was used (Brain Products, GmbH). Electrodes  

TP8 and Fpz served as the online reference electrode and the ground, respectively. The EEG 

signals were sampled at a rate of 500 Hz and amplified with an actiCHAMP amplifier (Brain 

Products). The signals were registered on a separate desktop computer that ran Windows 10. 

A software package called BrainVision Recorder was used for this purpose (Brain Products). 
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2.5. Data analysis 

 

The collected behavioural data and the collected EEG data were subjected to a number of 

statistical analyses, as will be described in the following subsections. IBM SPSS Statistics  

26 was used for this purpose (IBM, Inc.). A level of significance of α=0.05 was adopted. 

 

2.5.1. Workload expectations 

 

Pearson’s chi-squared test was used to analyse the participants’ workload expectations for the 

three conditions of the Add-n task. A significant p-value would imply that the sample did not 

have random expectations about which condition would involve the lowest mental workload 

and which condition would involve the highest mental workload. In other words, it would imply 

an association between the factors ‘Condition’ and ‘Workload expectation’. To determine the 

strength of any such association, Cramér’s V was calculated (Lomax & Hahs-Vaughn, 2012). 

 

2.5.2. Task performance 

 

For each subject, it was calculated how many of the digits that had been typed in at the end of 

each trial were correct. If the correct response at the end of a trial was ‘2 9 3 8’ but ‘3 8 3 8’ 

had been entered, for example, a participant was deemed to have made two mistakes during 

that trial. For each condition, each participant’s total number of correct entries was calculated. 

The calculated numbers were then converted into percentage scores by dividing them by the 

maximum number of correct entries per condition (160). Finally, the percentage scores were 

arcsine transformed (to give them a normal distribution) and subjected to a one-way repeated 

measures analysis of variance (ANOVA) with ‘Condition’ (3: Add-0, Add-1, Add-2) as the 

within-subjects factor. ‘Year of measurement’ (2: 2019, 2021) was included in the ANOVA 

as a between-subjects factor. Simple planned contrasts were conducted to compare the three 

conditions with each other one by one. A few trials were accidentally not recorded for two 

subjects. Since it was impossible to retrieve how many mistakes those subjects had made  

during the missing trials, it was decided to exclude their data from the performance analysis. 
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2.5.3. EEG data 

 

2.5.3.1. Processing pipeline 

 

A Python script was written to process the collected EEG data (see Appendix C). The code has 

been published online under an open-source license.1 A global outline of the code, which made 

extensive use of the MNE-Python package (version 0.22.0), will be provided in this subsection. 

 

The EEG data files were processed one by one (i.e., participant by participant) in the following 

manner. First, an average reference was computed. Electrode TP8, which served as the online 

reference electrode in the laboratory, was granted a normal electrode status. Next, the raw 

EEG data was subjected to a visual inspection. All channels that appeared to contain a large 

amount of noise during at least 40% of the recording were marked as ‘bad’. On average, 0.66 

of the 32 channels (2.05%, SD=0.80) were marked as ‘bad’ for each participant. Independent 

component analysis (ICA) was subsequently used to clean the EEG data. This involved 

various steps. A copy was made of the data first, and a finite impulse response (FIR) filter 

with a lower passband edge frequency of 0.1 Hz and an upper passband edge frequency of 30  

Hz was applied to that copy. Next, an ICA solution was generated with the FastICA algorithm 

(Oja & Yuan, 2006). The extracted independent components were then inspected one by one. 

All components that were unrelated to cortical activity, such as components that had mostly 

captured ocular movements, were removed (see Appendix D). On average, 30.34 components 

(SD=0.80) were extracted for each participant, of which 9.37 components (30.95%, SD=2.18) 

were discarded. The final step of the ICA involved applying the generated ICA solution to the 

original data. All major frequency drifts were subsequently removed from the cleaned data by 

applying a FIR filter to it. The filter in question was identical to the filter that was used during 

the ICA. Next, the data was split up into small time-windows that were centred around the on-

screen appearances of the trials’ (original) four-digit sequences. Each epoch ran from 500 ms  

before to 4.000 ms after such an appearance, the time-window in which most of the mental 
 

 
 

1 Please see the repository called ‘Alexander-Haas-Thesis-2021/Code’ on GitHub (www.github.com). 
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computations were expected to have taken place in the Add-1 condition and the Add-2 

condition. Baseline correction was applied to the data when the epochs were created (mode: 

mean; interval: -500 ms to 0 ms). All epochs that still contained major artefacts after this step 

were dropped. Two criteria were used here: a minimum amplitude difference criterion of 0.1 

µV and a maximum amplitude difference criterion of 150 µV. For two participants, more than 

30% of all epochs had to be dropped. It was decided to exclude those two participants’ data 

from the remainder of the EEG analysis. (Their data also was not used to calculate any of the 

statistics reported earlier in this section.) For the other participants, 6.51% of all epochs had to 

be dropped on average. After this was done, all channels that were previously marked as ‘bad’ 

were interpolated on the basis of the signals that had been recorded by their neighbouring 

channels. This was done for all epochs. For each condition-electrode combination, average 

power scores were subsequently calculated (looking at all epochs) for various frequencies by 

means of the multitaper method. Those scores were then normalised by dividing all of them by 

their collective sum. (All of the participant’s power scores were used to compute that collective 

sum: the normalisation was not performed at the condition-level, but at the participant-level.) 

 

Applying the above procedure to all EEG files ultimately resulted in a single data structure that 

contained thousands of normalised power scores for each participant. All power scores that were 

obtained at sampling frequencies in the range of 4.0 Hz to 7.0 Hz were subsequently used to 

calculate an average theta power score for each participant-condition-electrode combination. 

The calculated average theta power scores were then extracted for further processing in SPSS.   

 

2.5.3.2. Scalp topographical theta distributions 

 

To find out whether there were any differences between the conditions’ theta distributions, three 

topoplots were generated. In addition, a two-way repeated measures ANOVA was performed 

on the extracted data with ‘Condition’ (3: Add-0, Add-1, Add-2) and ‘Electrode’ (32: Fp1, Fp2, 

F7, F3, F1, Fz, F2, F4, F8, FT7, FC3, FCz, FC4, FT8, T7, C3, Cz, C4, T8, TP7, CP3, CPz, 

CP4, TP8, P7, P3, Pz, P4, P8, PO7, PO8, Oz) as the two within-subjects factors. ‘Year of 

measurement’ (2: 2019, 2021) was also included in the analysis as a between-subjects factor. 
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2.5.3.3. Frontal-midline theta activity and task difficulty 

 

To get an impression of the reliability of the output of the EEG processing pipeline, it was 

examined to what extent that output was aligned with a comparatively well-established fact 

about theta activity that was already briefly discussed in section 1.2: the fact that relatively 

challenging tasks and task conditions tend to be accompanied by higher levels of frontal-midline 

theta activity than relatively unchallenging ones. On the basis of the literature, one would expect 

that the Add-n task tends to induce higher levels of frontal-midline theta activity as n increases. 

Four electrodes were selected to compute a single mean frontal-midline theta power score for 

each participant-condition combination: F1, F2, Fz and FCz. Those scores were subsequently 

subjected to a one-way repeated measures ANOVA with ‘Condition’ (3: Add-0, Add-1, Add-2) 

as the within-subjects factor. ‘Year of measurement’ (2: 2019, 2021) was also included in  

the analysis as a between-subjects factor. Polynomial planned contrasts were conducted to  

examine whether a significant linear trend could be observed in the EEG data, and simple  

planned contrasts were conducted to compare the three conditions with each other one by one. 

 

3. Results 

 

3.1. Workload expectations 

 

In total, 17 participants were asked to indicate which condition of the Add-n task they expected 

to involve the lowest mental workload and which condition of the Add-n task they expected  

to involve the highest mental workload. A significant association was found between the 

factors ‘Condition’ and ‘Workload expectation’, χ2=90.71, p<0.001. That association was 

found to be very strong, ϕc=0.94 (Field, 2013). Almost all of the surveyed participants (n=16, 

94.12%) expected the Add-0 condition to involve the lowest mental workload and the Add-2 

condition to involve the highest mental workload. The remaining participant also expected the 

Add-0 condition to be the least demanding one. Unlike the other participants, however, he 

expected the Add-1 condition to involve a higher mental workload than the Add-2 condition.	



19 

3.2. Task performance 

 

On average, as Figure 3 shows, the participants made fewer mistakes in the Add-0 condition 

than in the Add-1 condition. Likewise, on average, the participants made fewer mistakes in 

the Add-1 condition than in the Add-2 condition. These findings are in line with the workload 

expectations described in section 3.1. (Interestingly, the participant who expected the Add-1 

condition to be the most cognitively demanding one also scored worse in that condition than 

in the other two conditions.) Mauchly’s test showed that the sphericity criterion was satisfied for  

‘Condition’, χ2(2)=0.96, p=0.620, so no correction had to be applied to the degrees of freedom 

for the repeated measures ANOVA. Results of the ANOVA revealed a significant main effect  

of the factor ‘Condition’ on the participants’ performance, F(2, 66)=39.02, p<0.001, ηp
2=0.54.  

Simple planned contrasts revealed that the difference between the participants’ performance in 

the Add-0 condition and their performance in the Add-1 condition was statistically significant, 

F(1, 33)=46.84, p<0.001, ηp
2=0.59. The difference between the participants’ performance  

in the Add-0 condition and their performance in the Add-2 condition was significant as well,  

F(1, 33)=60.75, p<0.001, ηp
2=0.65. The relatively small difference between the participants’ 

 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 

Figure 3. On average, the subjects scored best in the Add-0 condition and worst in the Add-2 condition. 
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performance in the Add-1 condition and their performance in the Add-2 condition, on the  

other hand, was not found to be statistically significant, F(1, 33)=0.82, p=0.372, ηp
2=0.02.  

The between-subjects factor ‘Year of measurement’ did not have a significant main effect,  

F(1, 33)=0.26, p=0.617, ηp
2=0.01. The interaction between ‘Year of measurement’ and 

‘Condition’ was not significant either, F(2, 66)=0.45, p=0.642, ηp
2=0.01. Estimated marginal  

means and their corresponding confidence intervals and standard errors can be found in Table 1. 

 

3.3. Scalp topographical theta distributions 

 

The sample’s average scalp topographical distribution of theta activity was plotted for each 

condition of the Add-n task (see Figure 4). In each condition, more theta activity was recorded 

at electrode FCz than at any other electrode. Some variation can be observed between the three 

distributions. The differences are not very pronounced, however. Mauchly’s test showed that 

the sphericity criterion was violated for the factor ‘Condition’, χ2(2)=11.68, p=0.003. The 

Greenhouse-Geisser estimate of sphericity was greater than 0.75, 𝜀=0.77, so Huynh-Feldt 

correction was applied (Field, 2013). The results of the two-way ANOVA revealed that the 

main effect of ‘Condition’ was not significant, F(1.64, 54.12)=1.51, p=0.232, ηp
2=0.04, which 

implies that the overall theta power scores did not significantly vary across the three conditions.  

Mauchly’s test showed that the sphericity criterion was also violated for the factor ‘Electrode’,  

χ2(495)=855.25, p<0.001. The Greenhouse-Geisser estimate of sphericity was smaller than 

 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 

Table 1 
 

Estimated marginal means (and their corresponding confidence intervals and standard errors) for the main  

effect of ‘Condition’ on the subjects’ task performance. The percentage scores were arcsine transformed  

for the ANOVA. For ease of interpretation, the SPSS output was transformed back again for this Table. 
 

Condition Mean percentage correct Confidence interval (95%) Standard error 

Add-0 98.82 98.06-99.41 0.02 
Add-1 93.60 91.72-95.20 0.03 
Add-2 92.74 90.41-94.72 0.04 
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Figure 4. Plots of the (normalised) theta power scores show some variation across the three conditions. 

Time-window: from 500 ms before to 4.000 ms after the on-screen appearance of a four-digit sequence 

(see section 2.5.3.1 again). The plots suggest that, unlike expected, theta activity was least focal in the 

Add-0 condition and most focal in the Add-2 condition. The differences were statistically insignificant. 

The green dots in the plots mark the positions of electrodes F1, F2, Fz and FCz (also see Appendix B). 
 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 

0.75, 𝜀=0.39, so Greenhouse-Geisser correction was applied (Field, 2013). The results of the 

ANOVA revealed that the main effect of ‘Electrode’ was significant, F(12.13, 400.12)=5.53, 

p<0.001, ηp
2=0.14. In other words, different electrodes recorded significantly different levels 

of theta activity. Finally, it was assumed that the sphericity criterion was also violated for the 

interaction between the factors ‘Condition’ and ‘Electrode’ (SPSS could not calculate the results 

of Mauchly’s test for that interaction). The Greenhouse-Geisser estimate of sphericity was much 

smaller than 0.75, 𝜀=0.14, so Greenhouse-Geisser correction was applied (Field, 2013). The 

interaction between ‘Condition’ and ‘Electrode’ was not significant, F(8.39, 276.70)=1.10, 

p=0.366, ηp
2=0.03. The results of the ANOVA imply that the three theta distributions shown 

in Figure 4 are not significantly different from each other. The between-subjects factor ‘Year 

of measurement’ did not have a significant main effect, F(1, 33)=2.59, p=0.117, ηp
2=0.07. The 

interaction between the factors ‘Year of measurement’ and ‘Condition’ was not significant 

either, F(1.64, 54.12)=0.33, p=0.678, ηp
2=0.01, nor were the interactions between ‘Year  

of measurement’ and ‘Electrode’, F(12.13, 400.12)=1.00, p=0.449, ηp
2=0.03, and between 

‘Year of measurement’, ‘Condition’ and ‘Electrode’, F(8.39, 276.70)=1.12, p=0.349, ηp
2=0.03. 
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3.4. Frontal-midline theta activity and task difficulty 

 

The results of the ANOVA revealed that the effect of ‘Condition’ on the participants’ levels of 

frontal-midline theta activity was not significant, F(2, 66)=2.59, p=0.083, ηp
2=0.07. Mauchly’s  

test showed that the sphericity criterion was satisfied for the factor ‘Condition’, χ2(2)=4.07, 

p=0.131. The overall result of the ANOVA notwithstanding, polynomial planned contrasts 

revealed a significant linear trend in the data, F(1, 35)=4.86, p=0.034, ηp
2=0.12. This suggests 

that the Add-n task induces higher levels of frontal-midline theta activity as n grows. Estimated 

marginal means and their corresponding confidence intervals and standard errors can be found in  

Table 2. Simple planned contrasts revealed that the difference between the participants’ levels 

of frontal-midline theta activity in the Add-0 condition and their levels of frontal-midline theta 

activity in the Add-2 condition was statistically significant, F(1, 33)=4.69, p=0.038, ηp
2=0.13. 

The difference between the participants’ levels of frontal-midline theta activity in the Add-0 

condition and their levels of frontal-midline theta activity in the Add-1 condition, in contrast, 

was not significant, F(1, 33)=1.02, p=0.321, ηp
2=0.03. Likewise, the difference between the 

participants’ levels of frontal-midline theta activity in the Add-1 condition and their levels  

of frontal-midline theta activity in the Add-2 condition was not significant, F(1, 33)=1.61, 

p=0.213, ηp
2=0.05. The between-subjects factor ‘Year of measurement’ also did not have a 

significant main effect, F(1, 33)=1.92, p=0.175, ηp
2=0.06. The interaction between ‘Year of 

measurement’ and ‘Condition’ was not significant either, F(2, 66)=0.13, p=0.876, ηp
2<0.01. 

 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 

Table 2 
 

Estimated marginal means (and their corresponding confidence intervals and standard errors) for the main 

effect of ‘Condition’ on the subjects’ levels of frontal-midline theta activity. The power scores are quite 

small. This can be explained by the normalisation procedure that was followed (see section 2.5.3.1 again). 
 

Condition Theta power (nV2/Hz) Confidence interval (95%) Standard error 
Add-0 1.52 1.29-1.76 0.12 
Add-1 1.58 1.32-1.83 0.13 
Add-2 1.67 1.43-1.92 0.12 
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4. Discussion 

 

The primary aim of this study was to investigate whether reactive cognitive control processes 

involve a wider distribution of theta activity in the human brain than proactive cognitive control 

processes, as Eschmann et al. (2018) concluded on the basis of their research. The results do 

not seem to point in this direction: the participants’ scalp topographical distributions of theta 

activity did not significantly differ across the three conditions (which were theorised to induce 

different mixtures of proactive and reactive cognitive control processes). There had never been  

a follow-up to the experiment by Eschmann et al. (2018) before. It is not unthinkable that their 

conclusion was incorrect, especially in light of the fact that they used two completely different 

tasks to evoke proactive and reactive cognitive control processes in their participants. Perhaps 

the idea that reactive cognitive control processes are accompanied by a wider distribution of 

theta activity in the human brain than proactive cognitive control processes is actually valid, 

however. If so, there must exist some explanation for why the results of the present study fail  

to provide support for that idea. Three possible strands of explanation shall be considered here. 

 

First of all, the three conditions of the Add-n task that the participants were subjected to in this 

study may not have induced significantly different mixtures of proactive and reactive cognitive 

control processes. The Add-n task had never been used in the context of the DMC framework 

before, so it is unclear to what extent experienced researchers in this area would endorse the 

assumptions that had to be made about the types of cognitive control processes that the Add-0 

condition, the Add-1 condition and the Add-2 condition would bring about. Those assumptions 

revolved around the idea that people’s workload expectations for a task influence what kind of 

cognitive control strategy they will adopt during that task. That idea is based on past research 

by (among others) the founders of the DMC framework (Speer et al., 2003; Braver et al., 2008; 

Braver, 2012). Unfortunately, it appears to have been put to the test only once and with only 

one working memory task: the Sternberg task. More and broader support for it would have 

been desirable. Even if it is correct that people’s workload expectations for a task affect what 

kind of cognitive control strategy they will adopt during that task, perhaps in the present study 
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the participants’ expectations regarding the three conditions of the Add-n task did not vary 

enough for those conditions to induce significantly different mixtures of cognitive control 

processes. At the start of the experiment, almost all participants indicated that they thought 

the Add-0 condition would involve the lowest mental workload and the Add-2 condition 

would involve the highest mental workload. Perhaps their expectations regarding the three 

conditions only differed to a very small extent, however. This cannot be excluded, although 

anecdotal evidence suggests otherwise: during chats in the laboratory, virtually all participants 

signalled that they dreaded the Add-2 condition much more than the other two conditions  

and that they thought participating in the Add-0 condition was comparable to taking a break. 

 

Secondly, the epochs that were focused on in the analyses may have been too long. Each epoch 

ran from 500 ms before to 4.000 ms after the on-screen appearance of a four-digit sequence.  

If a smaller time-window had been opted for, perhaps significant differences would have been 

observed between the conditions’ scalp topographical distributions of theta activity. Various 

efforts to repeat the analyses with different epoch length settings did not result in any support 

for the conclusion of Eschmann et al. (2018) either, however. Perhaps different time-windows 

should have been looked at for the different task conditions, since the DMC framework posits 

that proactive and reactive cognitive control processes have different temporal dynamics: the 

latter tend to be less sustained in nature than the former (Braver, 2012). The time-window for 

the Add-2 condition, for example, should perhaps have been made shorter than it currently is 

(with epochs running from, say, 3.500 ms after to 4.000 ms after the on-screen appearance of 

a four-digit sequence). The DMC framework offers very little guidance in this area, however. 

This seems problematic, if only because it raises the researcher degrees of freedom for studies 

on proactive and reactive cognitive control to a very high level. Eschmann et al. (2018) chose 

their time-windows by examining when most theta activity was recorded during each of their 

two tasks. It could be argued that, for the sake of comparability, a similar approach should have 

been adopted here. In any case, it would have been useful if the collected EEG data had been 

subjected to a time-frequency analysis. Unfortunately, that was beyond the scope of this study. 
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Thirdly and finally, the individuals who participated in this study may each have had a strong 

preference for a certain cognitive control strategy (Braver, 2012; Chiew & Braver, 2017). If so,  

this may have rendered the attempts that were made in this study to manipulate their cognitive 

control strategies less effective. Factors that may be of influence on one’s preferences in the 

area of cognitive control include one’s level of fluid intelligence and one’s personality traits 

(Fales et al., 2008; Burgess & Braver, 2010; Savine et al., 2010; Braver, 2012; Bugg, 2014; 

Dash et al., 2019; Aguerre et al., 2020). No evidence could be found in the literature for the 

existence of individuals with highly inflexible modes of cognitive control, however. On the 

contrary, as was already alluded to in section 1.1, past research suggests that people’s modes 

of cognitive control tend to be highly malleable (Braver et al., 2008). Moreover, even if there 

would exist individuals who are relatively inflexible in this regard, it seems highly unlikely 

that the proportion of such individuals in the present study’s sample was much larger than  

the proportion of such individuals in the study of Eschmann et al. (2018): both samples were  

relatively large for EEG research, and both samples mainly consisted of university students. 

 

Given the above considerations, especially the first two of them, the results of this study cannot 

be used to convincingly challenge the view that reactive cognitive control processes involve a 

wider distribution of theta activity in the human brain than proactive cognitive control processes. 

They do not provide any support for that view either, however: if anything, although it should 

be stressed that the differences were statistically insignificant and not very pronounced, theta 

activity appears to have been most widespread in the Add-0 condition (which was theorised to 

evoke more proactive cognitive control processes than any other condition) and most focal in 

the Add-2 condition (which was theorised to evoke more reactive cognitive control processes 

than any other condition). All in all, therefore, it might be advisable to treat the outcome of 

the study by Eschmann et al. (2018) with some caution pending further research in this area. 

 

It should be pointed out that the difference between the participants’ performance in the Add-1 

condition and their performance in the Add-2 condition was not statistically significant. This 

seems to imply that the Add-2 condition was not significantly more challenging than the Add-1  
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condition. The frontal-midline theta data points in a similar direction. Röber (2019) obtained a  

highly comparable outcome when she analysed the data that was collected in 2019 (see section 

2.1). Based on Kahneman’s (2011) description of the Add-n task, however, one would expect 

the Add-2 condition to be far more challenging than the Add-1 condition. Kahneman does not 

discuss the Add-2 condition himself, but he writes about the Add-3 condition that it is “much 

more difficult” than the Add-1 condition and that participating in it is “as hard as people can 

work – they give up if more is asked of them” (pp. 32-33). The Add-0 condition does not seem 

to be very challenging, so if participating in the Add-3 condition is “near the limit of what most 

people can do” (Kahneman, 2011, p. 36) one would expect to see steep drops in performance 

as n incrementally grows from 0 to 3. Part of the data corroborates this: the participants scored  

much better in the Add-0 condition than in the Add-1 condition. This statistically significant 

performance difference can probably be explained by the fact that the Add-0 condition merely 

involves remembering a sequence of digits, whereas the Add-1 condition involves transforming 

those digits as well. The participants did not score significantly better in the Add-1 condition 

than in the Add-2 condition. Since there is no reason to believe that the jump from the Add-1 

condition to the Add-2 condition is smaller than the jump from the Add-2 condition to the Add-3 

condition, this finding suggests that Kahneman’s assertions regarding the difficulty of the latter 

(which, it should be noted, he made in a book that he wrote for a non-scientific audience) may 

have been a bit overblown. Researchers who plan to make use of the Add-n task in the future 

can benefit from this insight. It may be advisable for them to make use of a more diverse set of  

conditions (e.g. Add-1, Add-4 and Add-7) than the one used here. Depending on their aims, they 

could even consider introducing relatively complex conditions like Multiply-by-n or Add-(n+m). 

 

This study had various strengths, arguably, including a clear focus and a relatively large sample 

size for EEG research. Unfortunately, this study had some limitations as well. Two limitations 

were already discussed earlier in this section: the attempted manipulation of the participants’ 

cognitive control strategies may not have been successful, and the epoch length settings that  

were used in the EEG processing pipeline may have been too crude. A third and final limitation 
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that is worth highlighting, concerns the fact that a rather large number of components had to be 

dropped during the independent component analysis in the EEG processing pipeline. Multiple 

attempts (involving multiple ICA algorithms) were made to reduce the number of components 

that had to be removed, but none of them were successful. Many of the discarded components 

were related to eye-movement artefacts. To determine whether a component had to be dropped, 

both its signal and its topoplot were examined (see Appendix D again). It is unfortunate that so 

many components had to be removed, since valuable information may have been lost with them. 

The outcome of the analysis of the frontal-midline theta data (which was performed primarily  

to get an impression of the reliability of the output of the EEG processing pipeline) does not 

provide much reason for concern, however. As one would expect on the basis of the literature, 

the polynomial planned contrasts revealed that the Add-n task tends to induce higher levels of 

frontal-midline theta activity as n increases. The results of the simple planned contrasts were 

also largely in line with the results of the analysis of the participants’ task performance, which 

makes sense: task performance and frontal-midline theta activity both seem to be suitable (albeit 

imperfect) proxies for task difficulty. In sum, it is unfortunate that many components had to be  

dropped during the independent component analysis, but there is no concrete reason to believe 

that the output of the EEG processing pipeline should be strongly mistrusted as a consequence. 
 

 

To find a definitive answer to the question of whether reactive cognitive control processes are 

accompanied by a wider distribution of theta activity in the human brain than their proactive 

counterparts, more research is needed. It should be disclosed that this study’s research question 

was only developed after its design was already largely set in stone. This order of events is far 

from ideal. Future studies could aim to put the conclusion of Eschmann et al. (2018) to another 

test with a different task, designed specifically for that purpose. It would be desirable for such 

studies to make use of more advanced analysis techniques (e.g. wavelet-based time-frequency 

analysis) than the ones that were applied here. Scholars could also try to find more evidence for 

the idea that people’s workload expectations for a task influence what kind of cognitive control 

strategy they will adopt during that task. Meanwhile, the founders (and other advocates) of the 
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DMC framework could try to provide more clarity on the temporal dynamics of proactive and 

reactive cognitive control processes. It would also be valuable for them to produce an overview  

of all tasks that they believe can be used to effectively manipulate people’s cognitive control 

strategies. Such an overview could facilitate new work in this area, which will hopefully lead to  

new insights and a better understanding of the role of theta activity in human cognitive control. 
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APPENDIX A 

 

Academic interest in theta activity has steadily risen in the course of the past three decades. 

Please see the figure below, which was made with data that was retrieved from the Scopus 

database (query: ‘theta oscillations’). To create the figure, only publications by psychologists, 

neuroscientists, biologists and multidisciplinary research teams were taken into consideration. 
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APPENDIX B 

 

The standard 10-20 system was used to position the electrodes on the participants’ scalps. Please 

see the figure below. In total, 32 electrodes were used (not including the ground, Fpz, which is  

marked by a green circle in the figure). Electrode TP8 served as the online reference electrode 

in the laboratory. An average reference was later switched to in the EEG processing pipeline. 
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APPENDIX C 

 

Please see the textbox below for a slightly trimmed-down version of the code that was used to 

process the collected EEG data. The complete script (as well as a number of important related  

files) can be found online in the GitHub repository that was referred to on page 16 of this work. 
 

 

# ============ SETTINGS ============= # 
 
# To process the EEG data of only a 
#  few (rather than all) participants, 
#  set 'limitedFocus' to 'True' and 
#  enter the identification numbers of 
#  the participants whose data you want 
#  to examine in 'selectedParticipants'. 
limitedFocus = False 
selectedParticipants = [1, 2, 3] 
 
# To ensure that a participant's data 
#  will never be processed (because it 
#  is too noisy, for example), please 
#  enter their identification number 
#  in 'excludedParticipants' below. 
excludedParticipants = [22, 34] 
 
# To avoid generating new ICA solutions 
#  for all participants (which is very 
#  time-consuming) at step 2.2.10 and to 
#  make use of old ICA solutions instead, 
#  please set 'completeICA' to 'False'. 
completeICA = False 
 
# Different scholars have different 
#  views on what constitutes theta 
#  activity. To accommodate for this, 
#  you can set 'thetaRange' yourself 
#  here. The first value (in Hz) is 
#  the lower limit. The second value 
#  (also in Hz) is the upper limit. 
thetaRange = [4.0, 7.0] 
 
# =============== CODE =============== # 
 
### ******************************** ### 
###            ~ Part 1 ~            ### 
###         Essential set-up         ### 
### ******************************** ### 
 
### ----------- Step 1.1 ----------- ### 
 
# We import the Python modules we need. 
import mne 
import os 
 

	
	

	
	

	

à
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from os import path 
from pathlib import Path 
from mne.preprocessing import ICA 
import pandas as pd 
import numpy as np 
import pickle 
 
### ----------- Step 1.2 ----------- ### 
 
# We import some useful information 
#  that we stored in other files to 
#  avoid cluttering up this code file. 
mainDirectory = '../..' 
 
# There were 37 participants in total. 
#  For each participant, we have one .vhdr 
#  file. The paths to all .vhdr files can 
#  be found in '/Miscellaneous/File paths.txt'. 
#  For the sake of convenience, let us load 
#  those paths into an array called 'files'. 
files = [] 
document = open('../../Miscellaneous/File paths.txt', 'r') 
document = document.readlines() 
for fileName in document: 
   files.append(mainDirectory + fileName.strip()) 
 
# Were there any bad channels when we 
#  recorded our EEG data? To find out, 
#  we can use the code provided in 
#  '/Code/Other/Bad channel identifica- 
#  tion.py'. My findings (per subject) 
#  can be found in '/Miscellaneous/Bad 
#  channels.txt'. Let us load them into 
#  an array called 'badChannelsPerSubject'. 
badChannelsPerSubject = [] 
document = open('../../Miscellaneous/Bad channels.txt', 'r') 
document = document.readlines() 
for badChannelSet in document: 
   badChannelsPerSubject.append(badChannelSet.strip()[5:].split()) 
 
# We will use independent component 
#  analysis (ICA) to remove noise from 
#  our data. I already identified which 
#  components should be removed. My 
#  findings (per subject) can be found in 
#  '/Miscellaneous/Unwanted components.txt'. 
#  Let us load them into an array called 
#  'unwantedComponentsPerSubject'. 
unwantedComponentsPerSubject = [] 
document = open('../../Miscellaneous/Unwanted components.txt', 'r') 
document = document.readlines() 
for unwantedComponentSet in document: 
   components = unwantedComponentSet.strip()[5:].split() 
   unwantedComponentsPerSubject.append(components) 
 
### ******************************** ### 
###            ~ Part 2 ~            ### 
###    Subject-level computations    ### 
### ******************************** ### 
 
### ----------- Step 2.1 ----------- ### 
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# For all participant-condition-electrode 
#  combinations, we want to calculate power 
#  spectral density scores for a wide range 
#  of sampling frequencies (0 Hz - 250 Hz). 
#  We will do that in this part of the code. 
#  We will store the power spectral density 
#  scores in an array called 'powerScoresPer- 
#  Subject'. We will store the sampling fre- 
#  quencies (which will be identical for all 
#  participant-condition-electrode tuples) 
#  in an array called 'samplingFrequencies'. 
powerScoresPerSubject = [] 
samplingFrequencies = [] 
 
### ----------- Step 2.2 ----------- ### 
 
# Let's have a look at all files, and hence 
#  all subjects, one by one in a special loop. 
for file in files: 
 
   ### ---------- Step 2.2.1 ---------- ### 
 
   # We can derive the identification number 
   #  of this subject from the name of their 
   #  .vhdr file. We will do that immediately. 
   participantNumber = file[-17:-15] 
 
   ### ---------- Step 2.2.2 ---------- ### 
 
   # Did we set 'limitedFocus' to 'True'? 
   if limitedFocus: 
       # Did the current subject make the selection? 
       if int(participantNumber) not in selectedParticipants: 
           #  We move on to the next participant. 
           continue 
 
   # Should we skip this participant? 
   if int(participantNumber) in excludedParticipants: 
       # We move on to the next participant. 
       continue 
 
   ### ---------- Step 2.2.3 ---------- ### 
 
   # Does the .vhdr file actually exist? 
   if not path.exists(file): 
       print(print("[ERROR] The file \'{}\' could  
          not be found".format(file))) 
       exit() 
 
   # We recorded our data with the Brain- 
   #  Vision Recorder software. The files 
   #  we refer to in the array we called 
   #  'files' (step 1.2) are .vhdr files. 
   #  For each participant, the BrainVision 
   #  Recorder software we used also gene- 
   #  rated two other (eponymous) files that 
   #  are also important: a .eeg file and a 
   #  .vmrk file. The .vhdr file merely con- 
   #  tains metadata. The .eeg file contains 
   #  the raw data that we need. The .vmrk 
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   #  file contains information about events 
   #  (e.g. button presses and stimulus on- 
   #  sets) that occurred during the experi- 
   #  ment. Let us check whether the .eeg 
   #  file and the .vmrk file, which should 
   #  be located in the same folder as the 
   #  corresponding .vhdr file, also exist. 
   eegFile = file[:len(file) - 4] + 'eeg' 
   vmrkFile = file[:len(file) - 4] + 'vmrk' 
   if not path.exists(eegFile): 
       print(print("[ERROR] The file \'{}\' could  
         not be found".format(eegFile))) 
       exit() 
   elif not path.exists(vmrkFile): 
       print(print("[ERROR] The file \'{}\'  
         could not be found".format(vmrkFile))) 
       exit() 
 
   ### ---------- Step 2.2.4 ---------- ### 
 
   # We load the data. Since we make use 
   #  of BrainVision data, we should apply 
   #  a non-standard read function here. 
   raw = mne.io.read_raw_brainvision(file, preload=True) 
 
   # We can inspect the loaded data. 
   if False: 
       print(raw.info) 
       print(raw.info.ch_names) 
 
   ### ~~~~~~~~ Pre-processing ~~~~~~~~ ### 
 
   ### ---------- Step 2.2.5 ---------- ### 
 
   # We have 32 EEG channels and 2 MISC 
   #  channels. The two MISC channels are 
   #  labeled 'hEOG' and 'vEOG'. They only 
   #  contain useful data for the first 20 
   #  participants or so. We want to treat 
   #  each data file in a similar manner, 
   #  so let us simply discard the two 
   #  MISC channels for all participants. 
   raw.drop_channels(['hEOG', 'vEOG']) 
 
   ### ---------- Step 2.2.6 ---------- ### 
 
   # When we recorded our data, we used TP8 
   #  as our reference electrode. It would 
   #  be better to make use of an average 
   #  reference, however, since that would 
   #  reduce a potential bias towards brain 
   #  activity in the left hemisphere. We 
   #  add TP8 to our set of electrodes and 
   #  then calculate an average reference. 
   mne.add_reference_channels(raw, ref_channels=['TP8'], copy=False) 
   raw.set_eeg_reference(ref_channels='average')  
 
   ### ---------- Step 2.2.7 ---------- ### 
 
   # We should indicate how the EEG electrodes 
   #  were positioned on the subject's head (i.e. 

	
à
	



42 

   #  what electrode montage we used). We 
   #  made use of the so-called 10-20 system. 
   raw.set_montage(mne.channels.make_standard_montage('standard_1020')) 
 
   # We can visualise our electrode montage. 
   if False: 
       raw.plot_sensors(kind='topomap', ch_type='eeg', block=True) 
       raw.plot_sensors(kind='3d', ch_type='eeg', block=True) 
 
   ### ---------- Step 2.2.8 ---------- ### 
 
   # During the experiment, many events 
   #  (e.g. button presses and stimulus 
   #  onsets) occurred. Let us extract all 
   #  event information for the current 
   #  participant from the data and store 
   #  it in an array called 'events'. 
   events, notNeeded = mne.events_from_annotations(raw) 
 
   # Each type of event is described by a 
   #  so-called 'stimulus code'. Different 
   #  types of events are described by 
   #  different stimulus codes. Let us in- 
   #  dicate what each stimulus code means. 
   event_dictionary = \ 
       {'Required1': 1, 'Required2': 2, 
        'Required3': 3, 'Required4': 4, 
        'Required5': 5, 'Required6': 6, 
        'Required7': 7, 'Required8': 8, 
        'Required9': 9, 'Pressed0': 210, 
        'Pressed1': 201, 'Pressed2': 202, 
        'Pressed3': 203, 'Pressed4': 204, 
        'Pressed5': 205, 'Pressed6': 206, 
        'Pressed7': 207, 'Pressed8': 208, 
        'Pressed9': 209,  'PressedSB': 211, 
        'Add0_StimulusAppears': 100, 
        'Add0_StimulusDisappears': 150, 
        'Add1_StimulusAppears': 101, 
        'Add1_StimulusDisappears': 151, 
        'Add2_StimulusAppears': 102, 
        'Add2_StimulusDisappears': 152, 
        'Practice': 155} 
 
   # There is one stimulus code that we did 
   #  not include in the above dictionary 
   #  yet: '10' (meaning: 'Required0'). That 
   #  code was (by accident) not included in 
   #  the data for participant 1. It was in- 
   #  cluded in the data for the remaining 36 
   #  participants, however, so we will add 
   #  the code to their event dictionaries. 
   if int(participantNumber) != 1: 
       event_dictionary['Required0'] = 10 
 
   # We can visualise which events 
   #  occurred at which points in time. 
   if False:  
       figure = mne.viz.plot_events(events,  
                                    event_id=event_dictionary, 
                                    sfreq=raw.info['sfreq'], 
                                    first_samp=raw.first_samp) 
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   ### ---------- Step 2.2.9 ---------- ### 
 
   # Were there any bad channels when 
   #  we recorded this participant's 
   #  brain activity? At step 1.2 above, 
   #  we loaded this information into an 
   #  array called 'badChannelsPerSubject'. 
   #  Let us extract the information that 
   #  we need from that array and link it 
   #  to the current subject's EEG data. 
   #  We will interpolate the bad channels 
   #  later, at step 2.2.14 of this code. 
   raw.info['bads'] = badChannelsPerSubject[int(participantNumber) - 1] 
 
   ### ---------- Step 2.2.10 --------- ### 
 
   # Eye blinks, eye movements, heartbeats 
   #  and environmental factors may have 
   #  caused there to be artefacts (bits 
   #  of noise) in our data. We can try to 
   #  get rid of those artefacts by means 
   #  of a technique known as independent 
   #  component analysis (ICA). If we set 
   #  'completeICA' to 'True' earlier, we 
   #  will now generate a new ICA solution 
   #  for this participant. Please note that 
   #  this may take some time (~90 seconds). 
   if completeICA: 
 
       #  We first make a copy of our data, which 
       #  we will use to create an ICA solution. 
       raw_copy = raw.copy() 
 
       # We need to remove all major frequency 
       #  drifts from the copy of our data, since 
       #  such frequency drifts can make it hard 
       #  to create an ICA solution. The reason 
       #  we made a copy of our data earlier, is 
       #  that we do not want to remove any drifts 
       #  from our original data yet at this point. 
       raw_copy.load_data().filter(l_freq=0.1, h_freq=30) 
 
       # We will now create the ICA solution for 
       #  the current participant's data. We make 
       #  use of the 'FastICA' algorithm, since I 
       #  found (after several trial sessions) that 
       #  this algorithm tends to converge faster 
       #  than its key competitors: the 'infomax' 
       #  algorithm and the 'Picard' algorithm. 
       #  Since 'FastICA' does not converge for 
       #  participant 27 (for unknown reasons), 
       #  we will use 'Picard' for that subject. 
       algorithm = 'fastica' 
       if int(participantNumber) == 27:  
           algorithm = 'picard' 
       numberOfComponents = raw.info['nchan']-len(raw.info['bads'])-1 
       ica = ICA(n_components=numberOfComponents,  
     random_state=91, method=algorithm) 
       ica.fit(raw_copy) 
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       # Let us store the ICA solution in a folder 
       #  called '/Output/ICA solutions' so we can 
       #  use it again in the future. 
       with open('../../Output/ICA solutions/P' + 
                 participantNumber + '.data', 'wb') as filehandle: 
           pickle.dump(ica, filehandle) 
 
   # If we set 'completeICA' to 'False' earlier, 
   #  we will not generate a new ICA solution for 
   #  this participant. Instead, we will make use 
   #  of a solution that we already found earlier. 
   if not completeICA: 
 
       # Let us load the ICA solution from 
       #  the folder we stored it in earlier. 
       with open('../../Output/ICA solutions/P' + 
                 participantNumber + '.data', 'rb') as filehandle: 
           ica = pickle.load(filehandle) 
 
   # When we created our ICA solution for the 
   #  current participant, we essentially 
   #  tried to split up that participant's 
   #  EEG data into various independent parts 
   #  (or 'components'). We can now examine 
   #  all of those components one by one. 
   if False: 
       raw.load_data() 
       ica.plot_components() 
       ica.plot_sources(raw, block=True) 
 
   # We may want to get rid of some of the 
   #  components we have identified, such 
   #  as components that seem to have captured 
   #  ECG or EOG (rather than EEG) activity. I 
   #  already identified all unwanted components 
   #  for each subject. We loaded this information 
   #  into an array called 'unwantedComponentsPer- 
   #  Subject' at step 1.2. Let us extract the 
   #  information that we need from that array. 
   ica.exclude = [int(i) for i in  
     unwantedComponentsPerSubject[int(participantNumber) - 1]] 
 
   # We are now ready to apply the ICA solution 
   #  that we created to our original data. This 
   #  essentially means that we are now ready to 
   #  reconstruct our original EEG data, this 
   #  time with much less noise. Let us do this. 
   ica.apply(raw) 
 
   ### ---------- Step 2.2.11 --------- ### 
 
   # We now filter all major frequency 
   #  drifts from our data, to further 
   #  enhance the data's overall quality. 
   raw.load_data().filter(l_freq=0.1, h_freq=30) 
 
   ### ~~~~~~~~~~~ Epoching ~~~~~~~~~~~ ### 
 
   ### ---------- Step 2.2.12 --------- ### 
 
   # An epoch is a segment of EEG data 
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   #  that is centred around an event. 
   #  Let us extract epochs from this 
   #  subject's data. By default, one 
   #  epoch will be created for each 
   #  event. We cannot change this, even 
   #  though we are only interested 
   #  in epochs centred around a spe- 
   #  cific type of event: 'Add[N]_Stim- 
   #  ulusAppears' with N ∈ {0, 1, 2}. 
   #  We can determine how long each 
   #  epoch should be, however. The 
   #  settings that are used here were 
   #  chosen because they seem suitable 
   #  for the epochs we are interested 
   #  in. For details, please see 
   #  sections 2 and 4 of my thesis. 
   epochs = mne.Epochs(raw, events, 
                       event_id=event_dictionary, 
                       tmin=-0.5, tmax=4.0, preload=True) 
 
   ### ---------- Step 2.2.13 --------- ### 
 
   # We already tried to clean our data 
   #  in various ways, but unfortunately 
   #  there may still be some artefacts 
   #  left. We will now throw away all 
   #  epochs that contain major artefacts. 
   #  If the difference between the 
   #  highest recorded amplitude and 
   #  the lowest recorded amplitude in 
   #  an epoch is larger than 150 µV, we 
   #  reject that epoch. Brain activity 
   #  fluctuations are unlikely to cause 
   #  such large amplitude fluctuations. 
   reject_criteria = dict(eeg=150e-6) 
 
   # If the difference between the 
   #  highest recorded amplitude and 
   #  the lowest recorded amplitude in 
   #  an epoch is smaller than 0.1 µV, 
   #  we reject that epoch. Brain ac- 
   #  tivity fluctuations typically 
   #  give rise to larger amplitude 
   #  fluctuations, so it seems there 
   #  has been a measurement error. 
   flat_criteria = dict(eeg=1e-7) 
 
   # Now that we have specified our epoch 
   #  rejection criteria, let us get rid of 
   #  all epochs that meet those criteria. 
   originalNumberOfEpochs = len(epochs) 
   epochs.drop_bad(reject=reject_criteria, flat=flat_criteria) 
 
   # We can print some statistics 
   #  about how many epochs were dropped. 
   if False: 
       epochs.plot_drop_log() 
       remainingNumberOfEpochs = len(epochs)  
       percentageDropped = (originalNumberOfEpochs -  
             remainingNumberOfEpochs) /  
            (originalNumberOfEpochs/100) 
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       print("Percentage of epochs that  
        were dropped: {}".format(percentageDropped)) 
 
   ### ---------- Step 2.2.14 --------- ### 
 
   # At step 2.2.9, we marked all of 
   #  the bad channels for this subject. 
   #  Instead of simply dropping those 
   #  channels and pretending they were 
   #  never part of our electrode montage, 
   #  we will try to repair them by looking 
   #  at the EEG data that was recorded by 
   #  other (good) channels in the same 
   #  area. This technique is known as 
   #  interpolation. We make use of the 
   #  so-called spherical spline method. 
   epochs.interpolate_bads() 
 
   ### ---------- Step 2.2.15 --------- ### 
 
   # We could visualise the epochs around, 
   #  for example, all events that are 
   #  of type 'Add0_StimulusAppears'. For 
   #  the sake of conciseness, the code that 
   #  would allow us to do so has not been 
   #  included in this trimmed-down version. 
 
   ### ~~~~~~~~~ Power scores ~~~~~~~~~ ### 
 
   # We will now calculate the power scores 
   #  for this participant, one condition at 
   #  a time. We will store the scores in an 
   #  array called 'powerScoresPerCondition' 
   #  and the sampling frequencies in an array 
   #  called 'samplingFrequenciesPerCondition'. 
   #  Please note that the latter is actually 
   #  a bit redundant: we use the same sampling 
   #  frequencies across all three conditions. 
   powerScoresPerCondition = [] 
   samplingFrequenciesPerCondition = [] 
 
   for condition in range(0, 3): 
       epochsForThisCondition = epochs['Add' +  
           str(condition) + '_StimulusAppears'] 
       powerScoresForThisCondition, samplingFrequenciesForThisCondition =  
    mne.time_frequency.psd_multitaper(epochsForThisCondition,  
     picks=['eeg']) 
       powerScoresForThisCondition =  
    np.mean(powerScoresForThisCondition, axis=0) 
 
       # We store the power scores and sampling 
       #  frequencies for this condition in 
       #  the arrays we initialised earlier. 
       powerScoresPerCondition.append(powerScoresForThisCondition) 
       samplingFrequenciesPerCondition.append(samplingFrequencies- 
    ForThisCondition) 
 
       # We can visualise the topographical 
       #  distribution of theta activity for 
       #  the current participant-condition tuple. 
       if False: 
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           mne.viz.topomap.plot_psds_topomap( 
                psds=powerScoresForThisCondition,  
     freqs=samplingFrequenciesForThisCondition, 
                bands=[(thetaRange[0],thetaRange[1],'Theta')],  
    dB=False, normalize=False, show=True, ch_type='eeg',  
    pos=epochsForThisCondition[0][0].info) 
 
   # We normalise the power 
   #  scores for this participant. 
   sumOfAllPowerScores = \ 
       powerScoresPerCondition[0].sum(axis=-1, keepdims=True) + \ 
       powerScoresPerCondition[1].sum(axis=-1, keepdims=True) + \ 
       powerScoresPerCondition[2].sum(axis=-1, keepdims=True) 
   powerScoresPerCondition[0] /= sumOfAllPowerScores 
   powerScoresPerCondition[1] /= sumOfAllPowerScores 
   powerScoresPerCondition[2] /= sumOfAllPowerScores 
 
   # We store the power scores and sampling 
   #  frequencies for this participant in 
   #  the arrays we initialised earlier for 
   #  this specific purpose at step 2.1. 
   powerScoresPerSubject.append(powerScoresPerCondition) 
   samplingFrequencies.append(samplingFrequenciesPerCondition) 
 
### ******************************** ### 
###            ~ Part 3 ~            ### 
###     Sample-level computations    ### 
### ******************************** ### 
 
### ----------- Step 3.1 ----------- ### 
 
# We now have power spectral density scores 
#  for all participant-condition-electrode 
#  combinations. We want to combine those 
#  scores into a single array, which 
#  contains one (average) power score per 
#  condition-electrode-frequency combination. 
#  We start by creating an array that 
#  contains a list of power scores for each 
#  condition-electrode-frequency combination. 
powerScores_FullSample_notAveragedPerFrequency = [[[[] for i in 
range(1126)] for j in range(32)] for k in range(3)] 
for condition in range(0, 3): 
   for participant in range (0, len(powerScoresPerSubject)): 
       for electrode in range (0,32): 
           for frequency in range(0, 1126): 
               powerScores_FullSample_notAveragedPer- 
     Frequency[condition][electrode][frequency].\ 
                   append(powerScoresPerSubject[participant]\ 
     [condition][electrode][frequency]) 
 
# We now create an array that contains a 
#  single (average) power score for each 
#  condition-electrode-frequency combination. 
powerScores_FullSample_averagedPerFrequency = [[[] for j in range(32)] 
for k in range(3)] 
for condition in range(0, 3): 
   for electrode in range (0,32):  
       for frequency in range(0, 1126): 
           listOfPowerScores = powerScores_FullSample_notAveraged\ 
      PerFrequency[condition][electrode][frequency] 
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           averagePowerScore = sum(listOfPowerScores) /  
    len(listOfPowerScores) 
           powerScores_FullSample_averagedPerFrequency[condition]\ 
     [electrode].append(averagePowerScore) 
 
### ----------- Step 3.2 ----------- ### 
 
# Let us now extract a single average theta 
#  power score per electrode, per condition, 
#  per participant from all of our data. 
#  We will store the new scores in an array 
#  called 'powerScores_perParticipant_theta'. 
powerScores_perParticipant_theta = [] 
 
thetaScoreIndices = [] 
for frequencyIndex in range(0, len(samplingFrequencies[0][0])): 
   if thetaRange[0] <= samplingFrequencies[0][0][frequencyIndex] 
     <= thetaRange[1]: thetaScoreIndices.append(frequencyIndex) 
 
for participant in powerScoresPerSubject: 
   conditions = [] 
   for condition in participant: 
       electrodes = [] 
       for electrode in condition: 
           thetaScores = [] 
           for scoreIndex in range(0, len(electrode)): 
               if scoreIndex in thetaScoreIndices: 
                   thetaScores.append(electrode[scoreIndex]) 
           averageElectrodeScore_theta =  
    sum(thetaScores) / len(thetaScores) 
           electrodes.append(averageElectrodeScore_theta) 
       conditions.append(electrodes) 
   powerScores_perParticipant_theta.append(conditions) 
 
### ******************************** ### 
###            ~ Part 4 ~            ### 
###     A focus on theta activity    ### 
### ******************************** ### 
 
### ----------- Step 4.1 ----------- ### 
 
# We can now use the calculated power 
#  scores to generate three theta topoplots: 
#  one for each condition. We save the three 
#  theta topoplots as PDF files in a folder 
#  called '/Output/Theta topoplots'. 
for condition in range(0, 3): 
   powerScoresForThisCondition =  
     np.array(powerScores_FullSample_averagedPerFrequency[condition]) 
   samplingFrequenciesForThisCondition =  
     np.array(samplingFrequencies[0][0]) 
   fig = mne.viz.topomap.plot_psds_topomap(psds=powerScoresForThis\     
       Condition, freqs=samplingFrequenciesForThisCondition, 
       bands=[(thetaRange[0],thetaRange[1],'Theta')], dB=False,  
       normalize=False, show=True, ch_type='eeg', pos=epochsForThis\ 
       Condition[0][0].info) 
   fig.savefig(fname="../../Output/Theta topoplots/ 
                      Add-" + str(condition) + ".pdf", format='pdf') 
 
### ----------- Step 4.2 ----------- ### 
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# We extract the theta power scores for 
#  further processing in SPSS. We store the 
#  extracted theta power scores in a folder 
#  called '/Output/Theta power scores'. We 
#  do so twice, in two different formats: 
#  the 'wide' format and the 'long' format. 
#  We start by creating a 'wide' table. We 
#  save it in the above-mentioned folder as 
#  an Excel-file called 'Wide format.xlsx'. 
pythonTable_wide = [] 
for participantNumber in range (0,  
                         len(powerScores_perParticipant_theta)):  
   realParticipantNumber = participantNumber + 1 
   for excludedParticipant in excludedParticipants: 
       if realParticipantNumber >= excludedParticipant: 
           realParticipantNumber += 1 
   newRow = [realParticipantNumber] 
   for conditionNumber in range (0,  
      len(powerScores_perParticipant_theta[participantNumber])): 

for electrodeNumber in range (0,  
        len(powerScores_perParticipant_theta[participantNumber]\ 
            [conditionNumber])): 

              thetaPowerAverage = powerScores_perParticipant_theta\ 
                 [participantNumber][conditionNumber][electrodeNumber] 
              newRow.append(thetaPowerAverage) 
   pythonTable_wide.append(newRow) 
columns = ['Participant'] 
numberOfConditions = len(powerScores_perParticipant_theta[0]) 
numberOfElectrodes = len(powerScores_perParticipant_theta[0][0]) 
for conditionNumber in range(0, numberOfConditions): 
   for electrodeNumber in range(0, numberOfElectrodes): 
       columns.append('Add' + str(conditionNumber) +  
                      '_Electrode' + str(electrodeNumber + 1)) 
pandasTable_wide = pd.DataFrame(pythonTable_wide, columns=columns) 
pandasTable_wide.to_excel("../../Output/Theta power  
                          scores/Wide format.xlsx") 
 
# We continue by  creating a 'long' table. 
#  We save it (in the same folder) as an 
#  Excel-file called 'Long format.xlsx'. 
pythonTable_long = [] 
for participantNumber in range (0,  
                         len(powerScores_perParticipant_theta)): 
    realParticipantNumber = participantNumber + 1 
    for excludedParticipant in excludedParticipants: 
       if realParticipantNumber >= excludedParticipant: 
           realParticipantNumber += 1 
    for conditionNumber in range (0,  
        len(powerScores_perParticipant_theta[participantNumber])): 
          for electrodeNumber in range (0,   
              len(powerScores_perParticipant_theta[participantNumber]\ 
         [conditionNumber])): 
                 thetaPowerAverage = powerScores_perParticipant_theta\ 
                  [participantNumber][conditionNumber][electrodeNumber] 
                 newRow = [realParticipantNumber, conditionNumber,  
         electrodeNumber+1, thetaPowerAverage] 
               pythonTable_long.append(newRow) 
pandasTable_long = pd.DataFrame(pythonTable_long,  

  columns=['Participant', 'Condition', 'Electrode', 'Theta power score'])  
pandasTable_long.to_excel("../../Output/Theta power 
                          scores/Long format.xlsx") 
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APPENDIX D 

 

Please see the table and the figures below for examples of the types of components that were 

typically removed during the independent component analysis. A single participant’s data was 

used here. Thirty components were generated, ten of which (33.3%) were selected for removal. 

 
 

Component Primary reason for removal Clarification 
1 Signal Nearly flat signal 
2 Signal Nearly flat signal 
3 Signal and topography Ocular activity 
4 Signal and topography Ocular activity 
5 Topography Ocular activity 
6 Topography Muscle movements or heart activity 
7 Topography Muscle movements or heart activity 
8 Signal Noisy signal 
9 Topography Muscle movements 
10 Topography Muscle movements 

 

 

 

 

 

	
	

	
	


