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ABSTRACT

Machine learning algorithms are omnipresent in today’s world. They influence what movie one
might watch next or which advertisements a person sees. Moreover, AI research is concerned
with high­stakes application areas, such as autonomous cars or medical diagnoses. These
domains pose specific requirements due to their high­risk nature: In addition to predictive ac­
curacy, models have to be transparent and ensure that their decisions are not discriminating or
biased. The definition of performance of artificial intelligence is therefore increasingly extended
to requirements of transparency and model interpretability. The field of Interpretable Machine
Learning and Explainable Artificial Intelligence concerns methods and models that provide ex­
planations for black­box models.
Spiking neural networks (SNN) are the third generation of neural networks and therefore also
black­box models. Instead of real­valued computations, SNNs work with analogue signals and
generate spikes to transmit information. They are biologically more plausible than current artifi­
cial neural networks (ANN) and can inherently process spatio­temporal information. Due to their
ability to be directly implemented in hardware, their implementation is more energy­efficient than
ANNs. Even though it has been shown that SNNs are as powerful, they have not surpassed
ANNs so far. The research community is largely focused on optimising SNNs, while topics
related to interpretability and explainability in SNNs are rather unexplored.
This research contributes to the field of Explainable AI and SNNs by presenting a novel local
feature­based explanation method for spiking neural networks called Temporal Spike Attribu­
tion (TSA). TSA combines information from model­internal state variables specific to temporally
coded SNNs in an addition andmultiplication approach to arrive at a feature attribution formula in
two variants, considering only spikes (TSA­S) and also considering non­spikes (TSA­NS). TSA
is demonstrated on an openly­available time series classification task with SNNs of different
depths and evaluated quantitatively with regard to faithfulness, attribution sufficiency, stability
and certainty. Additionally, a user study is conducted to verify the human­comprehensibility
of TSA. The results validate TSA explanations as faithful, sufficient, and stable. While TSA­
S explanations are more stable, TSA­NS explanations are superior in faithfulness and suffi­
ciency, which suggests relevant information for the model prediction to be in the absence of
spikes. Certainty is provided in both variants, and the TSA­S explanations are largely human­
comprehensible where the clarity of the explanation is linked to the coherence of the model
prediction. TSA­NS, however, seems to assign too much attribution to non­spiking input, lead­
ing to incoherent explanations.
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“Whenever an AI system has a significant impact on people’s lives, it should be possible to
demand a suitable explanation of the AI system’s decision­making process.”

High­Level Expert Group on AI of the European Commission in: Ethics guidelines for
trustworthy AI (2018)

“When an axon of cell A is near enough to excite cell B and repeatedly or persistently takes
part in firing it, some growth process or metabolic change takes place in one or both cells such

that A’s efficiency, as one of the cells firing B, is increased.”

Donald O. Hebb (1904 ­ 1985) in: The organization of behaviour

In other words: “Neurons that fire together, wire together.”

Hebb’s Law
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1 INTRODUCTION

The use of artificial intelligence and machine learning in real­life applications is common in the
year 2021. The areas of application are wide, ranging from private use, e.g. recommenda­
tion systems like Netflix [1] to decisions that have a larger impact on the individual, such as
credit scoring applications [2] or aid in medical diagnosis [3], to name a few. While private use
scenarios like Netflix recommendations are already in practice, there are general inhibitions for
practical deployment of safety or ethically critical AI applications such as medical diagnosis. In
these cases, it is not only important for a model to have high predictive performance, but also
to understand why an algorithm arrived at a certain prediction [4]. The decision must be trans­
parent to a certain degree to ensure that the algorithm makes a prediction based on criteria that
make sense and are not based on discriminating factors [5]. Interpretable Machine Learning
(IML) and eXplainable Artificial Intelligence (XAI) are fields of research that are concerned with
this problem [6]. The methods developed in these fields aim at providing transparency to differ­
ent degrees and target groups in order to foster trust in machine learning applications. This is
important for critical fields, in which a faulty decision could have major consequences [7].
While simple models like linear regression, or rule­based systems like decision trees are consid­
ered intrinsically interpretable, Artificial Neural Networks (ANN) uncover non­linearities in data
and make use of these for their predictions. Consequently, their decision behaviour becomes
a black box for humans. As these models reached high predictive performances for complex
problems like image classification, they are often applied to the above­mentioned critical areas.
Beyond the general motivation to provide transparency and encourage trust in machine learning
applications, the relevance of interpretability is also highlighted through recent ethical guidelines
like the European Commission’s ethics guidelines for trustworthy AI [8] where transparency “in­
cluding traceability, explainability and communication” [8, p. 14] of AI systems is named as
one of seven key requirements, and recent legislation like the General Data Protection Regu­
lation (GDPR). The GDPR was introduced in the European Union in 2018 [9] and emphasises
trustability, transparency, and fairness of machine learning algorithms. Thus, there is a strong
motivation for research in IML and XAI from a social, ethical and legal point of view.
As a result of the expanded research interest in IML and XAI, the performance definition of
machine learning models is increasingly extended from mainly predictive accuracy to model
interpretability [6], which underlines the importance of this field further. Model interpretability,
however, has no standard evaluation practice so far. The main reason is the high diversity in
explanation methods that provide interpretability, which differ in scope, applicability and objec­
tive [10]. Therefore, any work that studies an explanation method should also study its eval­
uation criteria, based on the use case, to provide a reliable interpretability assessment of the
model. In this work, a novel explanation method is presented, including an evaluation criteria
analysis and evaluation on a specific use case to assess the explanatory performance of the
method.
One type of black­box models are neural networks. Neural networks are based on their com­
putational units, called neurons. Based on the neurons, three generations of neural networks
can be distinguished. The first generation operates with McCulloch­Pitts neurons, which are
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CHAPTER 1. INTRODUCTION

threshold gates. The second generation uses activation functions for computation, which can
be non­linear and thus uncover non­linearities in the data. Both of these fall in the category
of ANNs, which is mostly understood under the term neural network. Spiking Neural Networks
(SNN) are less well­known. They are the third generation of neural networks and apply spiking
neurons as computational units [11]. Spiking neurons emit pulses at certain times, similar to
a biological neuron, to transmit information. Therefore, SNNs use spatio­temporal information
of the timing of a pulse as well as the frequency of pulses in their computation. By their ability
to use pulse timing, they are biologically more plausible than their predecessors. Furthermore,
SNNs yield the potential to be implemented into analogue Very Large­Scale Integration (VSLI)
hardware, which is energy efficient and space­saving [12], so that SNNs can run at lower energy
cost than current ANNs.
It has been shown that SNNs are at least as powerful as the second­generation ANNs [11].
However, there is no current state­of­the­art SNN learning algorithm yet. Since gradients are
undefined for binary pulses, the error backpropagation learning algorithm cannot be applied.
As a consequence, SNNs have not achieved significant improvements in terms of predictive
performance in comparison to ANNs. Hence, most research in SNNs is focused on the de­
velopment of a suitable learning algorithm and efficient SNN architecture. Nevertheless, the
outlook of more energy­efficient machine learning implementations that are at least as pow­
erful as current ANNs indicates that SNNs will remain subject to future research. Moreover,
progress in the research in neuromorphic VSLI hardware may have an accelerating impact
on SNN research as well. Due to the SNN’s inherent ability to process spatio­temporal data,
they are predestined to process sensor data. This makes them suitable for critical domains
such as autonomous control and medical diagnosis. For example, a previous study showed
the success of SNNs as autonomous controller systems for robots, where the low energy and
memory consumption of SNNs are mentioned as large advantages compared to ANNs [13].
A more recent study [14] presented an implementation of SNNs on neuromorphic hardware in
autonomous robot control with integration of off­the­shelf and smartphone technology. Azghadi
et al. (2020) [15] demonstrate SNNs as a complementary part to ANNs which is dedicated to
and more efficient in processing of biomedical signals in healthcare applications at the edge.
Moreover, first studies imply stronger adversarial robustness of SNNs in comparison to ANNs
especially in black­box attack scenarios thanks to their inherent temporal dynamics [16]. All
the above­mentioned points support further research into SNNs, even though they have not yet
surpassed second­generation ANNs in predictive performance. Nonetheless, it will be benefi­
cial to already have methods for interpretability in place, so that the implementation of SNNs
in productive applications can offer model interpretability at the same time. The requirements
of transparency and fairness will likely be asked of SNNs in the same way as of current ANNs.
This work aims at contributing to this rather unexplored and novel field of research, and provide
a study for the generation of explanations for SNNs.
In detail, the generation of local explanations of SNN models is studied, i.e., the explanation
of a certain model prediction outcome. Local explanations show why a particular input leads
to the model prediction [10]. They are interesting to study in an unexplored field such as the
explainability of SNN models because local explanations highlight the relation between data
instances and the model. Therefore, a local explanation method provides information about the
model behaviour at instance­level. The investigation of model behaviour at this granular level
is interesting for both users and model developers. For the users, a local explanation fulfils
the user’s legal rights for transparency and explanation regarding algorithms [9]. For model
developers, a local explanation provides possibilities to understand SNN modelling with regard
to particular data instances. This allows them to identify the reasons for model behaviour that
might otherwise not have been found and improve the model if needed. Furthermore, this level
of insight into the model might enable discoveries about e.g. SNN behaviour or the data as
well [7]. Thus, local explanations, especially for highly variable models such as SNNs that
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CHAPTER 1. INTRODUCTION

exhibit many parameters and architectural options, is interesting to study as it facilitates an
inspection of the model behaviour at instance­level. It is possible to inspect the effect of SNN’s
inherent temporal dynamics for example, which is particularly appealing for time series data.
In ANNs, the temporal dimension is often encoded in summary statistics of a window of the
time series, whereas SNNs do not necessarily require windowing. To the best of the author’s
knowledge, there exists limited related work for local explanations for SNNs, and no studies into
explainability of SNNs on time series data, so that a study in this direction likely provides novel
and interesting insights into the explainability of SNNs.
The inherent temporal dynamics of SNNs set them apart from the previous generation neural
networks. These are reflected in the SNN model’s internal variables. Therefore, it makes sense
to develop a local explanation method around these variables to provide an SNN­specific ex­
planation. Such an explanation could capture the effects of spatio­temporal learning and show
the behaviour of SNNs. As there is little previous work that such a method could build upon, a
novel vanilla feature­attribution based explanation method is targeted which extracts the attri­
butions of input features for a particular output and builds a saliency­type explanation. Future
work could then build on this method, to develop other, more complex explanations for SNNs
involving causal relationships or counterfactuals, for example.

1.1 Problem Statement and Research Questions

The problem statement for developing a reliable local explanation method for an SNN on a time
series classification task can be formulated as follows: Let f be a trained SNN model and X ∈
RD×T the spiking data with D input dimensions and duration of T . The objective is to develop
an explanation method e(f, x, t) that shows the attributions of input x ∈ X ’s features at time t
on the model’s output f(x, t) = ŷ for x at time t. For this, the model’s internal variables, such
as the weights W , the spiking behaviour expressed in spike trains S as well as the membrane
potentials U are to be used, so that the explanation reflects the model behaviour.
Thus, this research sets out to answer the following research question:
How can the predictions of a temporally coded spiking neural network be explained reli­
ably?
This research question can be broken down into two parts, which cover the development of an
explanation method (S­RQ1) and the evaluations and reliability of said explanation (S­RQ2).

1. S­RQ1: How can feature attribution be calculated for temporally coded spiking neural
networks?

2. S­RQ2: How can the quality of local feature­attribution­based explanations extracted from
SNNs be measured?

To answer S­RQ1, an SNN model­agnostic algorithm to compute feature attribution based on
the respective impacts ofW , S and U to the relation between x and ŷ is developed through an
addition and multiplication approach. A theoretical standpoint is initially chosen, but the method
is applied to temporally coded SNNs, which are built and trained on a time series classification
use case. These models act as the basis of the work, for both method development as well as
evaluation in S­RQ2. The feature attribution algorithm then presents the method that answers
S­RQ1.
To answer S­RQ2, desired explanation qualities are deduced from related literature, under con­
sideration of the scope, application, and target group of the explanation method. These are
translated into a thorough technical and user evaluation, including concrete metrics and study
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CHAPTER 1. INTRODUCTION

design. By applying this evaluation method to the explanations extracted from the underlying
SNN models, S­RQ2 is answered while assessing the explanation method from S­RQ1. Thus,
both sub­research questions contribute to answering the overarching research question, by
setting the framework to develop and assess a local explanation method for temporally coded
spiking neural networks.

1.2 Outline

This thesis is structured as follows. First, as neither spiking neural networks nor explainable
artificial intelligence is part of the standard curriculum in machine learning, chapter 2 gives
an introduction into those topics. Chapter 3 presents existing related work in the field of in­
terpretable SNNs. Additionally, related work concerning SNNs with time series data and XAI
methods with time series data is explored to choose a sensible SNN model architecture as well
as examine existing XAI work for best practices as a basis for the experimental use case.
In chapter 4, the data, task and architecture of the underlying SNN models at the basis of this
research are explained. Afterwards, the first sub­research question is studied by the formal
definition of a feature attribution computation in chapter 5. Chapter 6 presents the evaluation
qualities and metrics, as well as the experimental results and discussion on an openly available
time series dataset. The research questions are answered and the limitations of this work are
reflected in chapter 7. In chapter 8, themain points of this thesis are summarised and concluded,
as well as an outlook on potential future work given.
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2 BACKGROUND

In this chapter, relevant background information and vocabulary from the fields around spiking
neural networks as well as explainable artificial intelligence is given to equip the reader with the
background knowledge necessary for this thesis.

2.1 Foundations of Spiking Neural Networks

As spiking neural networks are a rather specific type of neural network which is more popular
in neuroscience rather than the overall field of machine learning, this section shall give a short
introduction to the relevant vocabulary and architecture concepts for this thesis. Spiking neural
networks are characterised by several architectural choices, namely the spiking neuron model,
the neural code, and the learning algorithm. Furthermore, the implementation possibilities of
spiking neural networks for experiments is shortly depicted.

2.1.1 Neural Networks and their Biological Inspiration

Artificial neural networks are modelled after the structures found in the brain, a biological neural
network [17]. In the brain, multiple neuron cells1 are linked to each other through synapses2.
Neurons exchange information in the form of chemical neurotransmitters, which affect the neu­
ron’s membrane potentials. Excitatory (i.e., increase of postsynaptic neuron’s membrane po­
tential) and inhibitory (i.e., decrease of postsynaptic neuron’s membrane potential) are distin­
guished. The change in potential can lead a neuron to activate in case of sufficient stimulation.
Once activated, a neuron communicates with its downstream neurons by firing an action po­
tential, also called spike, at activation time [18] (Figure 2.1). Directly after spiking, the neuron
enters a refractory period, in which spiking is not possible during absolute refractoriness and is
less likely during relative refractoriness. After some time, the neuron’s membrane potential re­
covers to the resting state. It is assumed that the information about a stimulus to the brain, e.g.
a sound, is contained in the number of spikes and spike timings, which spiking neural networks
(SNN) make use of [17].
SNNs are known as the third generation of artificial neural networks [11] (Figure 2.2). Gen­
erations are defined based on the computations in the neurons. After the first generation of
McCulloch­Pitts neurons, which are threshold gates, and the second generation of artificial neu­
rons with continuous activation functions, SNNs implement spiking neurons and learn spatio­
temporal patterns. Spiking neurons emit pulses at certain times, similar to action potentials in
biological neurons, to transmit information. Therefore, SNNs are closer to the biological real­
ity [17].

1The brain consists of both neuron cells and glia cells. Glia cells are omitted for brevity.
2For simplicity, only chemical synapses are referred to when mentioning synapses in this work.
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CHAPTER 2. BACKGROUND

Figure 2.1: Action potential of a neuron3

Figure 2.2: Comparison of three generations of neural networks and neurobiology [19, p. 259]

2.1.2 Spiking Neuron Model

Multiple models from the area of neuroscience exist for the definition of spiking neurons. These
dictate the temporal dynamics and the spiking behaviour of a neuron. The Hodgkin­Huxley
model [18] represents the most biologically accurate model currently, as it models the dynam­
ics of a neuron’s ion channels through three differential equations, each representing one ion
channel. However, it is too complex to implement in an SNN. Therefore efforts were done
to approximate this model through simplification. Examples are models like the Izhekevich
neuron [20] that reduce the Hodgkin­Huxley model to two dimensions, and integrate­and­fire
neurons [21]. SNNs usually employ leaky integrate­and­fire [17] or spike response neurons (a
generalised form of the integrate­and­fire model) [22], because they are efficient in computation

3Image source: https://en.wikipedia.org/wiki/Refractory_period_(physiology), last accessed (17/11/2021).
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CHAPTER 2. BACKGROUND

and rather simple to model. This work employs the leaky integrate­and­fire neuron model which
is described in the following.

Leaky Integrate­And­Fire

Leaky integrate­and­fire (LIF) neurons are the simplest of the integrate­and­fire neuron mod­
els [11, 17]. Integrate­and­fire neurons model biological neurons with two mechanisms.
Firstly, the Integrate mechanism dictates the computation of a neuron’s membrane potential
evolution over time. This is defined through a differential equation. In the case of LIF neurons,
the membrane potential u is given by this linear differential equation:

τm
du

dt
= −[u(t)− urest] +RI(t) (2.1)

where u(t) gives the membrane potential at time t, urest defines the resting potential of the
membrane, RI(t) describes the amount by which the membrane potential changes to external
input (R being the input resistance and I(t) the input current), and τm is the time constant of
the neuron.
Secondly, the Fire mechanism controls the spike generation of the neuron. LIF neurons fire
when the membrane potential u crosses a defined threshold θ from below. The firing time t(f)
is given by:

t(f) = {t|u(t) = θ ∧ du
dt

> 0} (2.2)

After firing, u is reset to the reset potential ur, which is smaller than urest. This mechanism
reflects relative refractoriness, as it lowers the chance of the neuron firing again immediately.
Without input, the membrane potential recovers to urest after a certain time, as given by (2.1).

Figure 2.3: Spikes t(f) as generated by a LIF neuron for a constant input. Threshold θ is denoted
in the dashed line (from [17]).

LIF neurons are simple to compute and implement but do not account for absolute refractori­
ness, i.e. the period in which neurons are not able to fire directly after a spike. Therefore, given
a sufficiently strong input, LIF neurons can fire consecutively. Due to their simplicity and effi­
cient computation, they are commonly used in SNNs. However, LIF neurons also oversimplify
the biological processes.
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2.1.3 Neural Code

SNNs use specific neural codes. Unlike artificial neurons, spiking neurons receive and produce
spike trains, or binary sequences, as in­ and output. As data is often real­valued, it is converted
to a suitable format through so­called neural coding schemes in SNNs. Mainly three different
neural codes are distinguished: Rate coding, temporal coding, and population coding. Based
on the neural code, data is presented in different spike patterns. Additionally, the neural code
influences the complexity of the problem [23].
Whereas rate coding assumes the information about a stimulus to be coded in the number of
times a neuron fires in a defined time window, temporal and population coding consider the
exact spike timings to also carry information. Therefore, the latter two are closer to biological
reality. In population coding, a stimulus is translated into spike times using a group of encoding
neurons. This group is called a population. Therefore, the information about the stimulus is
encoded by multiple neurons and the SNN requires an additional encoding layer [24]. Temporal
coding translates the input directly to a certain spike time and is commonly used for time series
data, which already exhibits a temporal dimension. Therefore, this work uses temporal coding
for the SNN models as well. Furthermore, since the number of related works in explanation
methods for SNNs is strongly limited, this work targets a rather simple method that shall be
widely applicable. An additional population encoding layer would entail the additional efforts of
inverse coding to relate the population to an input dimension, while temporal coding allows for
direct mapping. Therefore, the choice of temporal coding prevents specific efforts concerning
the neural code in the targeted explanation method.

Temporal Coding

Temporal coding assumes the information about a stimulus to be encoded in the specific firing
times of a neuron [17]. A simple temporal code is latency coding (Figure 2.4), where the infor­
mation about the stimulus is encoded in the time between stimulus presentation and the first
produced spike firing time [17, 23]. This coding scheme is also often referred to as time to first
spike (TTFS). It is based on the idea that the spiking pattern of a neuron changes when the
stimulus changes, e.g. when a human’s gaze jumps during reading. Therefore, the information
is in the latency to the first spike upon stimulus change, where a short latency is linked to the
strong stimulation of a neuron. The following spikes within a time window are irrelevant. In
neuron models, they are often suppressed by defining a long refractory period.

Figure 2.4: Latency coding of three neurons. The dashed line represents the stimulus, with a
change at the step. The third neuron responds strongest to this change because it fires first [17].
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2.1.4 Learning algorithm

No prominent learning method currently exists for SNNs and the majority of SNN research is
directed towards finding an efficient learning algorithm. The difficulty in transferring learning
algorithms from ANNs to SNNs lies in the non­differentiable nature of spiking neurons, caused
by their spike and reset mechanisms. As a consequence, error backpropagation, which is the
established learning algorithm in ANNs, is not applicable. Error backpropagation relies on error
gradients which are computed from an error function using the chain rule of derivatives [25].
There are different approaches in the literature to overcome the non­differentiability of spikes
and facilitate learning, ranging from unsupervised methods [26] to more complex evolution­
ary algorithms, reinforcement learning, and Hebbian learning [19]. Furthermore, research also
looks at converting a trained ANN to an SNN so that error backpropagation can be used [27],
smoothed networks or surrogate gradients [24, 28, 29]. This work uses surrogate gradient
learning.

Surrogate Gradient Learning

Surrogate gradient learning overcomes the non­differentiability of spiking neurons by substi­
tuting the undefined gradient by a surrogate in the backward pass through the network [29].
The surrogate gradient acts as a continuous relaxation of the true gradients, without changing
the model definition. This allows optimisation of the network with error backpropagation using
gradient descent, thus enabling the training of multi­layer networks. Several possible choices
for surrogate gradients exist (Figure 2.5) and were applied in several studies with SNNs using
surrogate gradient learning.

Figure 2.5: Different surrogate gradients [29, p. 56], rescaled to [0, 1] (Stepwise function in
violet, piecewise linear in green, exponential in yellow, fast sigmoid in blue).

Zenke and Vogels [30] studied the robustness of SNNs trained with surrogate gradients with
regards to the shape and scale of the surrogate function. They found that the shape of the
gradient, i.e., the choice of the surrogate derivative does not have a large effect on learning.
However, the scale of the surrogate function should not be too large to prevent exploding or
vanishing gradients during training.

2.1.5 Building Spiking Neural Networks for Research

As the computations of SNNs depend on their temporal dynamics which are often characterised
through ordinary differential equations, specific SNN simulators are usually required to build
SNN models. Already in the programming language Python, several different simulation envi­
ronments in the form of libraries exist (e.g., Brian2 [31] or BindsNET [32]). Usually, simulators
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have different focuses, e.g. Brian2 has strong applicability in neuroscience and BindsNET is
more oriented toward machine learning applications. Unfortunately, BindsNET does not im­
plement surrogate gradient learning at the time of this work and learning using out of the box
local learning methods did not yield promising results in preliminary experiments. Therefore,
neither simulator is used. However, SNNs can also be interpreted as recurrent networks in dis­
crete time. This enables the implementation and SNN training using libraries and toolboxes for
ANNs. Therefore, this work implements SNN models as recurrent neural networks in discrete
time using PyTorch [33] similar to the work of Neftci et al. (2019) [29].

SNNs as Recurrent Networks

SNNs with LIF neurons and current­based synapses can be formulated as recurrent networks
with binary activation functions by considering the dynamics of the synaptic currents and mem­
brane potential in discrete time [29].
The LIF neuron, as explained in section 2.1.2, is defined through a linear differential equation of
the membrane potential in time u(t), where u(t) acts as the leaky integrator of the input current
I(t). Therefore, synaptic currents, i.e. the currents that flow through the synapses of connected
neurons, follow specific temporal dynamics. Assuming that different currents follow a linear
summation, a first­order approximation of the synaptic current dynamics yields an exponentially
decaying current following input spikes S(l−1)

j . In other words, the dynamics of synaptic currents
decay exponentially in time, and are increased linearly by the synapse weightWij and recurrent
weight Vij at every input spike to the neuron:

τsyn
dI

dt
= −I(t) +

∑
j

W
(l)
ij S

(l−1)
j (t) +

∑
j

V
(l)
ij S

(l)
j (t) (2.3)

To view these dynamics in discrete time, first, the output spike train S(l)
i [n] of the LIF neuron is

formalised in discrete time, where n denotes the discrete time step:

S
(l)
i [n] = Θ(u

(l)
i [n]− θ) (2.4)

Setting the firing threshold θ = 1, the above equation describes the spike train using a Heaviside
step functionΘ, so that the values in S(l)

i evaluate to ∈ {0, 1}, so either spiking at n or not. Then,
for a small time step > 0, a resting potential urest = 0, and an input resistance of R = 1, the
synaptic current dynamics and membrane potential dynamics can be formulated in discrete time
as follows:

I
(l)
i [n+ 1] = αI

(l)
i [n] +

∑
j

u
(l)
i S

(l−1)
j [n] +

∑
j

V
(l)
i S

(l)
j [n] (2.5)

u
(l)
i [n+ 1] = βu

(l)
i [n] + I

(l)
i [n]− S(l)

i [n] (2.6)

In the above equations, α = exp (−∆t/τsyn) and β = exp (−∆t/τmem) describe the strength
of exponential decay of the synaptic current and membrane potential respectively. According
to [29], equations 2.5 and 2.6 describe the dynamics of a recurrent network, where the mem­
brane potential is the cell state that is calculated by considering the synaptic input currents.
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2.2 Foundations of Explainable Artificial Intelligence

Explainable Artificial Intelligence is a large area of research that spans various methods ad­
dressing the wide topic of explaining models and predictions. In this section, an overview of the
vocabulary definitions and taxonomies are given as prerequisite terminology to this thesis.

2.2.1 Terminology

Explainable Artificial Intelligence (XAI) concerns itself with explaining the decisions and predic­
tions made by machine learning models to humans. XAI is an active field of research since
around 2015, and many models, as well as methods, exist that provide explanations and inter­
pretability on different levels [6]. The term Interpretable Machine Learning (IML) is also used to
describe this field and will be used interchangeably in the frame of this work.
The interpretability of a machine learning model refers to its ability to be understood by a human.
There is no mathematical definition of it, rather it is measured by the degree of human under­
standing [34]. Barredo et al. (2019) [35] define interpretability similarly, as a passive character­
istic of a model, that is defined by how much sense a model’s behaviour and decisions make to
a human. Explainability, in contrast, is an active characteristic of a model which describes the
behaviour of the model that actively contributes to its decisions being human­understandable.
It also does not have a mathematical definition, and it is unclear how model explainability is
measured. Instead, it is an attribute a model has or not, as it is an active characteristic. Nev­
ertheless, both concepts are devoted to making machine learning models understandable to
humans. Consequently, they are at the core of IML and XAI, which aim at providing a suite of
explanation methods and models that are transparent and understandable for humans in their
predictions and decisions [36, 35].
Miller (2019) [34] defines an explanation as an answer to a Why­question. In this sense, the
main question answered by explanations of IML and XAI methods can be formulated as Why
does amodel make a (certain) prediction? A good answer to this question is a good explanation,
but the requirements for such in literature are not very specific. Powerful explanations should be
general [10, 36], meaning that their applicability holds for many examples. Another requirement
for a good explanation is its clarity. It should leave little to no room for user interpretation, which
could lead to misunderstandings caused by poor clarity of the explanation [35]. In accordance,
the explanation should focus on the user audience [36]. The level of explanation varies with the
background knowledge and prior beliefs of the audience, therefore explanations have a social
aspect that should be considered. Thus, no set requirements for a good explanation exist, rather
it depends highly on the data used, and the audience that the explanation targets.

2.2.2 Taxonomies

Due to the general nature of the definition of XAI, many methods and models fall under this
topic. These can be divided according to a general taxonomy of three criteria [7] (Figure 2.6).
First, an explanation method is specified by the scope of its given explanation, which can be
either local or global. In a local scope, an explanation is provided for an individual prediction
of the model, whereas a global explanation gives insights into the global model behaviour. The
latter is quite difficult to achieve, as it is about providing a global understanding of how input
features and the model are related to an outcome distribution. Therefore, the complexity of
the task increases with the number of features and parameters of the data and model used.
Second, methods are distinguished by themoment of method implementation. On the one hand,
methods can be intrinsic. This means that interpretability, or rather explainability, is already a
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part of the model itself: It is intrinsically explainable. Often, intrinsic methods and models have
restricted complexity (e.g. Decision Trees). On the other hand, methods can be applied post­
hoc, meaning that they are used at model inference. Third, explanation methods are classified
according to theirmodel specificity, where a method is either model­specific or model­agnostic.
Model­specific methods are limited to a specific type of model, and thus cannot be used for
other types. Model­agnostic methods, however, are general methods that can be applied to
any model. Usually, these methods are post­hoc. In addition to these, Molnar (2019) [36]
also identifies the result of the interpretation method as a criterion for discriminating different
methods. Summary statistics as an explanation are differentiated from visualisation methods,
as well as certain data points for explanation (i.e. representative data points for a prediction)
and intrinsically interpretable models.

XAI Methods

Scope

Local

Global

Moment of 
implementation

Intrinsic

Post-hoc

Model-
specificity

Model-specific

Model-agnostic

Explanation 
format

Intrinsically 
interpretable 

model 

Summary 
statistic

Visual

Sample data 
point

Figure 2.6: General XAI taxonomy [7] and additional criteria (shaded) by Molnar (2019) [36].

Additionally, Guidotti et al. (2019) [10] define four problems in XAI, according to which the
suite of models and methods can be classified (Figure 2.7). The model explanation problem
addresses the global explanation of a model. The emphasis on this problem is put on global
interpretability. Therefore, methods that solve the model explanation problem provide an expla­
nation that makes amodel’s decision logic understandable to humans. Guidotti et al. (2019) [10]
mention solving this problem by finding a transparent model, which mimics the behaviour of the
original black box model, and therefore can give global explanations. The outcome explanation
problem is concerned with the explanation of a model’s prediction for a certain input. Therefore,
this problem is essentially addressing local explanations, as opposed to the first problem. The
model inspection problem targets the understanding of internal model behaviour given a certain
input. For example, an inspection of the learned parameters of a neural network gives insight
into the internal model behaviour. So, this problem is also overlapping with the other prob­
lems. A method can therefore be categorised into multiple problems as well. The last problem
is the transparent box design problem, which is about designing a transparent model, that is
human­understandable on a local and global level by default.
The explanation method developed in this thesis generates local, post­hoc explanations that
shall be model­agnostic to temporally coded SNNmodels and address the outcome explanation
and model inspection problem. The provided explanation is a feature attribution explanation,
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XAI Problems

Model 
explanation 

problem

Outcome 
explanation 

problem

Model 
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Figure 2.7: General XAI problems [10].

thus the explanation format is a two­dimensional heat map that is visualised for presentation to
the user.
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3 RELATED WORK

The thesis provides novel research on explanations from SNNs trained on a time series classi­
fication task. To give an overview of the related fields, this chapter first presents related meth­
ods. Additionally, literature linked to XAI with time series and SNN architectures is presented
to understand common approaches to explanations and model development respectively. This
enables the positioning of the thesis work in the fields of research regarding SNNs as well as
XAI.

3.1 Interpretable Spiking Neural Networks

The number of previous studies concerning explanations for SNNs is currently quite limited.
Very few works have studied this topic, and it is a rather unexplored area of research. This
section highlights 2 methods: the first addresses global interpretability through finding feature
strength functions, whereas the second provides a local explanation based on interspike inter­
vals.

3.1.1 Global Interpretability through Feature Strength Functions

Jeyasothy et. al (2019) [37] presented one of the first interpretability methods for SNNs4. They
identify interpretable knowledge for a specific SNN model based on SEFRON, the Synaptic
Efficacy Function­based leaky integrate­and­fire neuRON [38].
SEFRON is a neuron model that can solve binary classification tasks with one LIF neuron and
time­varying synaptic efficacies, meaning time­dependent weights of synapses (Figure 3.1).
Therefore, the synapse values are determined by a continuous function over time. SEFRON
synapses are inspired by an observation from the field of neuroscience: The possibility of an
inhibitory synapse to switch to an excitatory synapse and vice versa5. The work uses population
coding for neural coding. The input spikes are multiplied with the synaptic efficacy at time t to
determine the postsynaptic potential (PSP) in the postsynaptic neuron. The first output spike is
then used for classification, where the class is predicted based on the spike time of the output
neuron. The model is trained using supervised spike time­dependent plasticity6 (STDP) with
target synapse strengths, that represent the ratio of the firing threshold to the ideal PSP for the
correct classification.
The extraction of interpretable knowledge from amulti­class SEFRONmodel (MC­SEFRON) us­
ing different UCI machine learning datasets (e.g. Iris) and the handwritten digits MNIST dataset
was demonstrated in [37]. MC­SEFRON differs from SEFRON in terms of the output layer size,

4This paper is published as a preprint.
5This switching has particularly been observed in developing brains and is referred to as the gamma­aminobutyric

acid­switch [38].
6Learning rule that can be seen as a spike­based form of Hebbian learning. Synapses are strengthened if the

time interval between the output spike and input spike is short, and weakened otherwise [39].
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Figure 3.1: Single SEFRON model with time­varying synaptic weights wi(t) [38, p. 1233].

where the model has as many output neurons as classes (Figure 3.2). Consequently, the ear­
liest spiking output neuron determines the predicted class ŷ (3.1), where θj is the threshold of
the j­th neuron and Uj(t) is its membrane potential.

ŷ = argmin
j

min{t|Uj(t) ≥ θj} = argmin
j

min{t| 1
θj
Uj(t) ≥ 1} (3.1)

In all other aspects, the computations of the MC­SEFRONmodel are derived from the SEFRON
model. Thus, the network is shallow, uses time­varying synaptic weights determined by a weight
function over time, and the learning is also based on supervised STDP with target synapse
strengths. Furthermore, the input is encoded using a population coding scheme.
To extract interpretable knowledge from the MC­SEFRON SNN, this population coding scheme
is made use of. Population coding can be viewed as a function G(x) of an input x, which results
in a spike train s, according to the defined size of the population and receptive field of each
population neuron. By using the inverse of G, it is possible to map spike trains back to the input
feature domain due to the unique solution of this problem:

G−1(si) = {xi|G(xi) = si} −→ si = G(G−1(si)) = G(xi) (3.2)

Therefore, Jeyasothy et al. (2019) [37] define so­called feature strength functions (FSF)ψi(xi, j)
of an input feature xi and output neuron j by replacing the spike time sri of the r­th population
neuron of xi with G(xi)r in the computation of the membrane potential. The FSF reflects the
relation between input and output that is learned by the MC­SEFRON SNN.
Hence, the FSF is a function of the input, which is in a human­understandable domain, instead
of the temporal domain of spike trains. It shows the relationship between an input feature and
the output classes, thus providing global model insights and addressing the model explanation
and model inspection problem [10]. Moreover, the FSFs can be used in a classification task
as they are specified for each connection between the input and output neurons of the network
they are derived from. The classification then occurs according to the strongest aggregated
feature strength between a given input x of class k and the output classes:

ŷ∗ = argmax
j

m∑
i=1

ψi(x
k
i , j) (3.3)

As FSFs can be utilised for the same classification task (Figure 3.3), their reliability of the inter­
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pretable knowledge is validated using this property. Experiments with multivariate (several UCI
machine learning datasets), image (MNIST), and time series data (EEG) show a minimal loss
in prediction performance, thus validating the reliability of explanations provided through FSFs.

Figure 3.2: MC SEFRON model with population coding of input xi [37, p. 4].

Figure 3.3: Classification model with FSFs extracted from MC SEFRON model from inverse
population coding [37, p. 8].

In conclusion, the FSFs extracted from theMC­SEFRONmodel are a global explanationmethod,
which is model­specific to SNN models with time­varying synapses and population coding and
addresses the model inspection problem. It is the first work that highlights the requirement for
SNNs to be explainable and showed how the spike domain and input domain can be bridged
by an inverse mapping of the neural code. The approach taken in this thesis differs greatly
from the FSF explanations [37] as it highlights a different side of XAI for SNNs. Instead of a
global explanation for a specific SNN architecture, a local explanation is targeted, which ex­
plains a certain decision taken by the model. Moreover, the synapses are fixed over time so
that the proposed method in this thesis applies to a wider range of SNN models. The proposed
method is agnostic to all temporally coded SNN models, regardless of their architecture, while
FSFs apply to shallow SNNs with one computational layer and require time­varying weights.
Furthermore, this thesis also addresses the quality of the proposed explanation method by pro­
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viding a thorough evaluation of an explanation that includes aspects beyond the reliability of an
explanation.

3.1.2 Local Explanations with the Spike Activation Map

A recent work by Kim and Panda (2021) [40] presents a local explanation method for SNNs
called Spike Activation Map (SAM). SAM is a visual heatmap explanation with a temporal di­
mension and was applied to deep convolutional SNNs with LIF neurons. SAMmakes use of the
biological observation that short time intervals between the spikes of a neuron likely carry infor­
mation as they have a high chance of causing a postsynaptic spike. Based on this observation,
the so­called Temporal Spike Contribution Score (TSCS) (3.4) is defined. The TSCS describes
the contribution of a previous spike time t(f) to the current time t in one neuron, formulated with
an exponential kernel with the steepness parameter γ.

T (t, t(f)) = exp (−γ|t− t(f)|) (3.4)

As the TSCS is formulated for one single spike time t(f), an additional score is computed to
achieve the explanation. The Neuronal Contribution Score (NCS) (3.5) sums all TSCS of the
previous spikes of one neuron at time t. Thus, it quantifies the contribution of a neuron to its
downstream neuron’s spiking behaviour (Figure 3.4). A high NCS means that many spikes are
fired within a short time window, while a low NCS indicates a small number of spikes distributed
in time. Let P be the set of previous spike times of a neuron. That neuron’s NCS at current time
t is then:

N(t) =
∑

t(f)∈P

T (t(f), t) (3.5)

Figure 3.4: Visualisation of the NCS computation [40, p. 5].

Using the NCS of all neurons of the network, the SAM is computed at current time t by a forward
pass in the network through multiplication with the NCS at t. The visualisation is determined
through a sum of the NCS’ across the channel axis of a convolutional layer. Let S(t) denote the
input spike pattern of the data up until t. Kim and Panda (2021) [40] then define the map Mt
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to be a sum of the product of input and NCS over all channels k, as they demonstrated their
method on coloured image data.

M(t) =
∑
k

N (k)(t)S(k)(t) (3.6)

Thus, at each time step t, a different SAM is generated, highlighting the parts of the input which
contribute more to the prediction. It is noteworthy that this explanation can be computed without
a target label, as it is not gradient­based like other heatmap explanation methods for ANNs.
In their work, explanations were generated for rate­coded image data (Tiny­ImageNet) in con­
volutional SNNs trained with surrogate gradient learning as well as ANN­SNN conversion and
compared against another heatmap method for ANNs, namely Grad­CAM. It was found that
SAM provides higher variance in the heatmap as it does not suffer from using an approximated
gradient, which smoothes the heatmap. Additionally, SAMs extracted from the SNN trained with
surrogate gradient learning were more accurate (i.e., more similar to heatmap generated with
Grad­CAM of ANN) than from the SNN which was converted from an ANN.
In conclusion, SAM provides a local explanation method for SNNs which does not require back­
propagation, i.e., does not require gradients. The effectiveness of this method was shown in [40]
for rate coded image data in convolutional SNNs. Interestingly, the components of this method
(i.e., NCS and TSCS) are model­agnostic to SNNs because they are based on the spike pat­
terns of spiking neurons. This thesis targets a similar explanation method for temporally coded
SNNs and employs Kim and Panda (2021)’s [40] TSCS and NCS. In this thesis research, the
definition of the NCS is extended by additionally considering the learned weights of an SNN di­
rectly in the calculation. Furthermore, we look at temporally coded time series data as opposed
to rate­coded image data, thus providing a novel contribution to local explanations using spike
patterns in SNNs. Additionally, this work also focuses on the qualities of an explanation on time
series data. This thesis proposes a set of evaluation metrics for the generated explanation and
investigates the quality of the explanation.

3.2 Explainable AI with Time Series

In contrast to the sparsity in related work with regards to explanations from SNNs, XAI is an
active area of research for ANNs, with increasing research focus in recent years. Overall, works
in the field of XAI for models trained on a time series classification task are less common than for
other data types, e.g. image or text data. A large factor for this is the non­intuitive interpretation
of time series. Compared to an image, for example, it is less straightforward for a human to
identify relevant parts of the data with time series [41]. However, explanations for time series
data remain relevant as this type of data is prevalent in many sensitive application areas, e.g.
health, traffic, or natural disasters [42].

3.2.1 Explanation Methods with Time Series

There are several different approaches to explanations with time series data, which have differ­
ent scopes, model­specificities, and explanation formats. Furthermore, different types of clas­
sifiers and time series datasets can be found in related literature, which impact the explanation
method used. This section presents a short overview of related work of local explanations.
One type of local explanation for time series can be found in literature in the form of sample
data point explanations. One example is the work of Ates et al. (2020) [43], who generated
counterfactual explanations for a high­performance computing telemetry dataset. They targeted
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faithful, robust, and human­comprehensible explanations. By using a counterfactual example
that is similar to the original input and presenting it in comparison, the authors want to overcome
the complexity and non­intuitiveness of time series data. Another example is Kuesters et al.
(2020) [44], who criticised heatmapping and visual explanations for time series data. Inherent
properties of time series, e.g., trends or seasonality, are often not able to be localised in an input.
Instead, these properties are often spread over the input. As they can be important to explain a
prediction, the inability to localise trends, for example, is a drawback. The authors propose the
use of conceptual explanations, which are mask­based approaches to explanations. However,
instead of masking input regions, they mask input properties using different filters, thus aiming
at explanations that highlight these concepts. These aforementioned explanations mention
relevant downsides to visual explanations for time series data regardless of the used model.
They show that by using sample­based explanations, these limitations can be overcome. In the
frame of this thesis, SNNs are used which can inherently process the temporal domain of time
series data. As this work is one of the firsts of its kind, not much is known yet about the effect
of e.g. seasonality in explanations extracted from SNNs. Therefore, this thesis aims at solving
a more fundamental problem first, therefore aiming at feature­based explanations.
Many local explanation methods for time series tasks provide visual explanations, such as [45]
and [46]. These works provide a heatmap explanation, in which the importance of input features
and the time step are indicated with varying intensities. Assaf et al. (2019) [46] present a
backpropagation­based explanation architecture using a similar approach like Grad­CAM7 on
the axes of time and input feature (Figure 3.5). They visualise the attention of their model in
the granularity of time step per input feature for a multivariate time series classification task,
resulting in an interpretable heatmap per input.

Figure 3.5: Example data and explanation from Assaf et. al (2019) [46, p. 6489] for an energy
forecasting task for photovoltaic power plants using observations of the plant and weather. a)
displays the data sample. The attention explanation across the axes of time and input features
is visualised in b) and c) respectively. b) represents the joint contribution of the input features
across time whereas c) gives more insight into the contribution of the single features.

Kono, Yamaguchi and Nagao (2020) [45] take a different approach by utilising generative contri­
bution mapping, a method from the field of explanations for image data. Generative contribution

7Gradient­weighted Class Activation Mapping. A common heatmap explanation method for images [47].
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mapping creates importance maps per class, which are inherently interpretable as their weights
can be treated as partial regression coefficients. The authors applied this method on time se­
ries data as a 1D image and obtained an importance map showing the class probabilities as an
explanation through the aggregation of the different importance maps.

Figure 3.6: Example explanation from Kono, Yamaguchi and Nagao (2020) [45, p. 4100] for
a time series forecasting task (prediction of crude oil prices using price variations in a day as
data). The blue line corresponds to the ground truth, the red line and green line correspond to
the prediction using either argmax or expectation. The explainability is given through the square
highlights in the background. These regions inform the user of the class probabilities, where a
darker colour represents a higher probability for a class.

The explanation method from this thesis also aims at providing a visual explanation in form of a
heatmap that highlights the attribution of the input at a certain time. Following the related works,
the attribution in this work will also be retrieved on a granularity of time and input dimension. As
the underlying model is different, and this thesis aims to provide an SNN­specific explanation
method, only concepts can be transferred and a new explanation method must be formulated.

3.2.2 Desired Properties of Explanations for Time Series

Unlike the predictive performance of machine learning models, a model’s interpretability does
not have clear performance metrics. There is also no consensus about a set of metrics and re­
quirements that explanation methods need to fulfil. Instead, the requirements of interpretability
are dependent on the task, the model, and the target audience [6]. This lack of specificity in
requirements for explanations also applies to explanations for time series.
Fauvel, Masson and Fromont (2020) [42] provided a framework to particularly assess the per­
formance of a model on multivariate time series (MTS) data, specifically including the model’s
explainability. They argue that machine learning models overall should be evaluated with re­
gard to their explainability in addition to the predictive accuracy. However, their framework is
quite high­level, mainly categorising models into the taxonomy of XAI [7]. Detailed metrics for
faithfulness (i.e. does the explanation truthfully reflect model behaviour) are not given, instead,
it is treated as a binary property that is false if a surrogate model is used for the explanation so
that the framework applies to a large class of models. This demonstrates the heterogeneity of
the evaluations of explanations, also for models trained on MTS data.
A recent survey [48]8 defines the purpose of explanations in the provision and/or increase of user
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trust in a black box model for time series. Several building blocks act as a foundation for trust:
Stability (i.e., model is resistant against small, naturally occurring perturbations), robustness
(i.e., adversarial robustness), and confidence (i.e., explanation highlights prediction confidence
of the model). Therefore, this details the desired properties of explanations for time series in a
slightly higher level of detail than the previously mentioned work [42].
Regardless of what task explanations are generated for, there are more aspects than the afore­
mentioned to be considered [36]: An important part of the quality of explanation lies in its com­
prehensibility. To be comprehensible, an explanation has to be human­understandable with
regard to the target user group.
These depicted properties (i.e., faithfulness [42], stability, robustness, confidence [48], and
comprehensibility [36]) of explanations are taken as a basis for the evaluation of the proposed
method of this thesis. As they are not directly and straightforwardly related to specific metrics,
this is the topic of the second sub­research question.

3.3 Common Architectures of Spiking Neural Networks

Even though the idea of SNNs exists for roughly 25 years already [11], there is no consensus
in the literature about an ideal architecture for SNNs, including the choice of neuron model and
neural coding. Especially efficient learning methods for SNNs are an active field of research.
However, to identify an appropriate and representative architecture for the underlying models for
this research, related works using SNNs for classification tasks in current SNN research have
been identified. Several scientific search engines and libraries were queried on 23/02/2021 with
the phrase spiking neural network classification, namely Google Scholar, Scopus, arXiv, ACM
Digital Library, IEEE Xplore, ScienceDirect. These libraries were selected as they appeared to
carry most publications around SNNs from prior literature research. The search results were
sorted by relevance, and of each search engine, the top five publications in English that studied
an SNN classifier were accessed to get an impression of common classification tasks for SNNs.
Three main groups of tasks can be identified from these retrieved papers, including time series
classification. A summary overview is shown in Table 3.1 and the full overview can be found in
appendix A.

Tabular Image Time series
Number of papers 7 9 18
Publication years 2001 ­ 2021 2015 ­ 2020 2010 ­ 2021
Most common neuron model IF variations LIF LIF
Most common neural code Rate Rate Temporal
Network depths 1­2 Layers 1­6 Layers 1­6 Layers
Learning methods Various Various Various

Table 3.1: Summary overview of surveyed papers.

The first group of tasks study SNN performance in tabular data classification, mostly with com­
mon UCI machine learning datasets, such as the Iris dataset [49]. These datasets have likely
been used as a benchmark for SNNs, as they are standard datasets for testing classification
methods. Thus, SNNs become comparable with other machine learning algorithms and ANNs
for these tasks. It is noteworthy that mainly integrate­and­fire neurons have been used, and
no temporal coding is used. There is a tendency toward shallow architectures with at most one
hidden layer. Little layers seem to suffice for solving tabular data classification tasks with SNNs.

8This paper is currently under review.
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Additionally, it can be observed that different learning methods are used, beyond supervised
learning (e.g., evolutionary algorithms). In the second group of tasks, the classification of image
data is investigated. Several works have been found to test SNN classification performance for
common benchmark datasets such as MNIST and CIFAR. Also, these tasks were used to ex­
plore an SNN’s power and to compare it, especially to convolutional ANNs, which are known to
deal well with image data. Through these studies, a convolutional SNN architecture similar to
the ANN counterpart has emerged. In image classification with SNNs, rate coding dominates
the neural codes and LIF neurons are predominantly used. Similar to the works on tabular data,
often shallow architectures but also more complex architectures like deeper convolutional SNNs
are used. These SNNs are often inspired by the LeNet architecture from ANNs. The learning
methods for image classification are various, even though a tendency towards STDP­based
methods is noticeable. While tabular and image data are interesting to study for comparison to
other models due to the existing benchmark datasets, the temporal dimension of data, which
is particularly interesting for SNNs, is neglected. This is reflected in the prevalent use of rate
coding in the related works on these tasks. The information about the data is often assumed to
be encoded in the firing rate solely. As the targeted explanation method shall make use of the
exact firing times, similar to [40], these types of data are not the first choice. Hence, this thesis
research does not look into tabular or image data.
The datasets at the centre of the third group of common tasks found for SNNs are of time series
nature, which is of interest to this thesis. Mainly signal data, such as EEG or audio signals are
studied. However, also efforts to create a spatio­temporal domain version of MNIST (N­MNIST)
has been realised and is subject to SNN research. This list is larger than the other two groups,
indicating that SNNs are especially of interest with time­domain data, which makes sense as
SNNs can process spatio­temporal data. This finding supports the choice of a time series clas­
sification task in the frame of this thesis with regard to application relevancy. Nevertheless, it
remains unclear in most papers whether the time series datasets have been processed as such
(i.e., with temporal dependencies) or as tabular data (i.e., every timestep as an independent
data point). Experiments were made with different neuron model types, with a dominance of
integrate­and­fire neurons. All three main neural codes were utilised with a slight domination
of temporal coding, and the variety of architecture is similar to the previous groups, i.e., rather
shallow architectures. Especially in this group of surveyed papers, diverse learning methods
are observed. Therefore, this thesis research takes the liberty of choosing a learning algorithm
that achieves acceptable performance for the selected dataset.
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As the objective of this thesis is the extraction of local, feature­based explanations from SNNs,
an essential prerequisite are the SNN models. In this chapter, the SNN models and dataset
used in the frame of this work are presented.

4.1 Data

This section details the dataset used in the frame of this thesis, as well as the preprocessing
steps that have been performed with the objective of reproducibility of the work.

4.1.1 Dataset Description

The dataset used to train the SNNs is the Activities of Daily Living Recognition using Binary
Sensors dataset [50] (ADL), which is openly available in the UCI repository. The ADL dataset is
a multivariate time series dataset, which can be used for supervised or unsupervised learning.
It consists of data that has been collected from a wireless binary sensor network installed in the
homes of two subjects A and B. This dataset was chosen mainly because the task of activity
prediction from these binary sensors does not require a domain expert to understand the data.
The sensors in this dataset are expressive and easily human­understandable, e.g. if the Bed
sensor is activated, the user is lying in their bed. Therefore, feature explanations on this dataset
are assumed to be human­understandable.
The data was collected continually for 35 days and has a time granularity of 1 second, therefore
there are no missing values in terms of sensor data. The dataset was labelled manually with
one of ten labels describing the activity (e.g. Sleeping). As both subjects live in different houses,
there are sensors in one house that do not exist in the other. However, the majority of sensors
overlap because they are quite generic (e.g. bed or toilet), and thus the person­dependency of
the collected data is limited and is assumed to be negligible.
In the use case of this thesis, the models shall learn a task of continuous activity prediction.
This means that the network learns to predict a subject’s activity at each time step of the data,
which is each second in the case of the ADL dataset. To enable this type of task, the data labels
specified in the dataset are broken down to labels per second. For example, if the dataset shows
that the subject was eating breakfast on the first day at eight in the morning for 15 minutes, every
second of these 15 minutes is also labelled Breakfast (Figure 4.1).
The dataset exhibits class imbalance. Figure 4.2 shows the class distribution across the ac­
tivities in the dataset. There are activities such as Spare_Time/TV, Sleeping, Leaving, which
occur significantly more often than others. This is noteworthy, as class imbalance potentially in­
fluences model training and performance. The class imbalance is enhanced by breaking down
the labels to a time step granularity of one second.
For the experiments in the frame of this thesis, the dataset was split into a training (60%), val­
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Figure 4.1: Visualisation of the label breakdown. If a time segment is labelled with y (upper
part of Figure), e.g. Sleeping, each second of that time segment also has the label y on its own
(bottom part of Figure).

Figure 4.2: Class distribution of ADL dataset when broken down to a time granularity of one sec­
ond after preprocessing. Sleeping and Spare_Time/TV are clearly the majority classes due to
the relatively long nature of these activities. Leaving is also rather large because the the whole
absence of the subject is considered as Leaving. Since the activities do not transition seam­
lessly into each other, the Other class is present between almost each activity. Consequently,
the number of timesteps in Other is not small.

idation (20%), and test set (20%). Due to the non­i.i.d. nature of time series data, the split
was performed sequentially to preserve the temporal dependencies of the data. For this, the
dataset was first split into the subsets per subject, i.e. the first 60% of A’s recordings are part
of the training set as well as the first 60% of B’s recorded data. Then, the subsets per subject
are concatenated to build the final subsets (e.g. training sets of subjects A and B are concate­
nated to build the overall training set). Due to the long duration of the overall time series, this
approach ensures that all parts of the day are present in each subset. Moreover, data from both
subjects is represented in all subsets. Therefore, inherent properties like trends and periodicity
are assumed to be present in all subsets.
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4.1.2 Data Preprocessing

SNNs can inherently process time series data. Therefore, no heavy preprocessing of the ADL
dataset is required before training the network. Instead, the binary sensor data is converted
into a binary spiking input, which the model is trained on. Thus, the neural coding is a direct
mapping of spike times.
Even though the dataset claims to be completely labelled [50], short time gaps were found which
do not exhibit a label, even though sensor data was recorded. These cases were labelled as
Other in this work, to avoid making assumptions about their true activity. Other is a class
that is not expected to be learned by the model. Moreover, two cases9 were found in which
the specified end of the activity precedes the start of the same activity. These activities were
excluded from the dataset as either the data collection or labelling is faulty. Since these are only
two activities, their exclusion is assumed not to have a large impact, so that the valid entries
are treated as one sequence with no gap.

4.2 Models

As mentioned in chapter 2, SNNs require a number of architectural design choices, similar to
ANNs. In this section, the architectures and models used in this work are presented.

4.2.1 SNN Architecture Choices

The focus of this thesis lies in the extraction of explanations from SNNs. Therefore, rather
simple architectures are chosen and built in the frame of this thesis:

Specification Choice(s)
Neuron model LIF
Neural coding Temporal coding
Learning Algorithm Surrogate Gradient Learning with Fast Sigmoid

Table 4.1: SNN architecture choices for this thesis.

For the neuron model, the underlying neuron model LIF is chosen for three reasons: First and
foremost, the implementation is simple and fast. Secondly, related literature in SNNs has shown
that simple neural models such as LIF are often used in SNNs. Therefore, this choice is valid
when developing an SNN. Thirdly, the explanation method shall be model­agnostic with regards
to SNNs, so that the specific SNN architecture is less important.
As SNNs can process temporal information directly, it makes sense to make use of this property
to study explanations from SNNs. Therefore, temporal coding is chosen, as it assumes infor­
mation about an input to be represented in spatio­temporal patterns, while rate coding neglects
the exact firing times.
The SNNs use surrogate gradient learning from Neftci et al. (2019) [29] with a fast sigmoid sur­
rogate gradient. This learning algorithm has proven effective for the ADL dataset in preliminary
experiments, and with deep architectures with more than one computational layer.

9Entries with index 78 and 80 of label file of subject A.
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4.2.2 Model Development

In total, three SNNs are built with differing depths: The first network has no hidden layers,
thus only the output layer is a computational layer. It shall be referred to as OneLayerSNN.
The second network has one hidden layer (TwoLayerSNN), and the third network has two hid­
den layers (ThreeLayerSNN). Three different models shall give insights into how explanations
change upon the addition of hidden layers. The models were developed as recurrent networks
with binary activations, using discretised formulas of the network dynamics10, in accordance
with Neftci et al. (2019) [29].
For all models, the input layer has the same size as the input dimensions, i.e. the number of
sensors in the dataset, plus a bias neuron with a constant firing input (14 in total). The output
layer is sized to the number of output classes (11), where each neuron corresponds to one
class. The number of neurons in the hidden layers of the deep models are determined through
hyperparameter tuning. All models have a fully connected feedforward architecture, where the
membrane potential state u(t) of a neuron is retained throughout the timesteps of a data sample
by a recurrent definition. Unlike Zenke et al. (2018) [28] and Neftci et al. (2019) [29], this thesis
deals with time series data that possesses temporal dependencies between data samples, i.e.,
activities in the case of the ADL dataset, that do not fulfil the i.i.d. assumption between data
samples. The data is sequential, and past data samples can be relevant to the current data
sample. Therefore, themodel definition has been extended with regards to retaining the network
variables (i.e., membrane potential u(t) and synaptic current I(t)) in between any simulation
runs. This means that the state variables of the model are initialised with the last states of
the last simulation. This extension of the model definition presents a novel aspect to the SNN
architecture of [29].
During model development, the data is presented to the model in a fixed number of simulation
steps similarly to Neftci et. al (2019) [29]. Hence, each simulation run has the same duration
and different time series lengths are not supported. This is done for reasons of computational
efficiency and optimisation of memory usage during the run of the model. To represent the spik­
ing data in the fixed duration format, the dataset which can be seen as one long time series is cut
into non­overlapping sample time series of the same duration of 15 minutes (i.e., 900 seconds)
(top part of Figure 4.3). The duration of the data is the same as the number of steps defined
in a single simulation run so that each second of the dataset corresponds to one simulation
step. By keeping the sample duration fixed, the resolution of the data during the simulation run
is the same for each sample. Preliminary experiments showed that sequential training (i.e., by
running the data of the first day up until the last day sequentially) is very slow and therefore not
feasible. To take advantage of parallel processing options during training, the model is trained
in batches. One batch runs a number of samples with the fixed duration of T = 900 in parallel
(e.g., samples 1, 4, 7 are run in parallel in the example in Figure 4.3). After one batch, the
model parameters are updated using gradient descent. It is assumed that the SNN models can
learn the temporal dependencies without being presented with the whole time series (i.e. first
to last day) in sequence. Nevertheless, an effort to ensure as much sequential order of the
data as possible is made in the training process by the sample selection for a batch. The batch
samples are selected to ensure the temporal order of the data (i.e., sample 1 is in batch one,
sample 2 is in batch 2, and so on). Due to this, the data is possibly not fitting into a batch, so that
it is padded with non­spiking data of the Other class. Furthermore, the synaptic currents and
membrane potentials of the model are also retained in between epochs to keep the temporal
dependencies between the epochs. To ensure the correct order in time, the dataset is rotated
at each epoch during training (Figure 4.3). The gradients of the synaptic current and membrane
potentials, however, are freed between batches during optimisation, to avoid an ever­growing

10Code available at: https://github.com/ElisaNguyen/tsa­explanations.
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computational graph and with it, memory issues.

Figure 4.3: Visualisation of batch processing during training. The original time series (top)
is divided into even duration samples of 900 seconds. These are presented to the model in
batches during training, where the membrane potentials are kept between batches and epochs.
Model parameters are updated after each batch. At each epoch, the dataset is rotated so that
the temporal order of samples is kept (e.g. first sample of the first batch in epoch 2 is follows
the first sample of the last batch of epoch 1). In this example, there are three batches, so that
the dataset is rotated by 3. Hence, sample 4 is the first sample, initialised with the membrane
potential of running sample 3 last.

A prediction for a sample is made depending on the maximummembrane potential at the output
layer at each timestep∆t. This allows the use of regular loss functions for optimisation. Similar
to Zenke et al. (2018) [28], the models are optimized on the negative log­likelihood loss, which
is appropriate for multi­class probabilistic models.
Even though the main focus of this work is not the optimisation of SNNs, the underlying mod­
els to explanation research should demonstrate a clear improvement in performance to pure
chance, so that an explanation likely represents what the network has learned. Therefore, the
hyperparameters of the networks are tuned in a greedy optimisation process under the assump­
tion of independence. This means that initial hyperparameter values are set so that one after
the other can be tuned. Once the best option is determined for one hyperparameter, the initial
value for tuning the next is replaced. This greedy optimisation was mainly done to increase
model building speed. Each hyperparameter was tuned by training an SNN with 20 epochs on
the training set and evaluating it on the validation set after training. The lowest validation loss
determines the optimal hyperparameter. The full list of hyperparameters and the detailed tuning
results can be found in appendix B. Only the optimiser for adapted gradient descent learning
has been fixed to Adam, based on preliminary experiments.

Hyperparameter OneLayerSNN TwoLayerSNN ThreeLayerSNN
∆t 0.001 0.001 0.001
τsyn 0.01 0.01 0.01
τmem 0.01 0.001 0.01
Learning rate 0.01 0.001 0.001
Batch size 128 256 512
Size of hidden layer 1 ­ 100 50
Size of hidden layer 2 ­ ­ 25

Table 4.2: Results of the hyperparameter tuning for all models.
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4.2.3 Final Models

With the hyperparameters in Table 4.2, the final models were fully retrained on the training
set. As a regularisation, early stopping with a patience of 10 epochs was used, monitoring the
validation loss. To evaluate the models, the balanced accuracy is reported on the test set at a
95% confidence interval (CI) (Table 4.3).
The CI was calculated using the following formula. Let n be the cardinality of the respective
datasets (i.e. train, validation, test).

CI0.05 = 1.96×
√

Balanced Accuracy× (1− Balanced Accuracy)
n

(4.1)

Balanced Accuracy

Balanced accuracy is a performance metric for supervised classification tasks [51]. Unlike the
common accuracy metric, balanced accuracy considers class imbalance and is more robust in
its indication toward model performance concerning imbalance. Formally, balanced accuracy
is the arithmetic mean of sensitivity and specificity in a binary classification case. For multi­
class classification, there exist different definitions. The definition used in the frame of this work
follows Mosley [52], who defined it as below:

Balanced Accuracy =
1

N

∑
C

min(PC , RC) (4.2)

where N is the number of classes in the dataset, PC the precision and RC the recall of class C.
In this work, the implementation of Python’s scikit­learn library is used [53].

Model Balanced Accuracy
Test Train Val

OneLayerSNN 0.516 ± 0.001 0.506 ± 0.001 0.536 ± 0.001
TwoLayerSNN 0.517 ± 0.001 0.515 ± 0.001 0.549 ± 0.001
ThreeLayerSNN 0.500 ± 0.001 0.490 ± 0.001 0.520 ± 0.001

Table 4.3: Balanced Accuracies of the SNN models reported at 95% CI.

The model performances (Table 4.3) show that the SNN models used for this thesis do not out­
perform recent work on this dataset (e.g. Hamad et a. (2021) [54] who used a convolutional
neural network with dilated causal convolution and self­attention and achieved F1­scores of
90.78 and 87.34 for the activity prediction task per subject A and B respectively). Neverthe­
less, the models perform significantly better than chance on an 11­class classification problem.
Therefore, they are suitable for research into local explanations for SNNs. Interestingly, the
performances of all models are quite similar, with TwoLayerSNN having the best performance
and the ThreeLayerSNN having the worst on all sets. The inference models act as the use case
models to carry out further research on extracting explanations from SNNs using the algorithm
defined in chapter 5.
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Little explanation methods for predictions with spiking neural networks exist. In the frame of this
thesis, a method is developed to provide a local, feature­based explanation, which is inspired by
attribution methods for ANNs. This chapter defines feature attribution and presents Temporal
Spike Attribution (TSA), an algorithm to compute feature attribution in SNNs, demonstrated on
the models presented in chapter 4.

5.1 Feature Attribution Definition

There are several names for explanations that provide interpretable knowledge through relevant
parts of the input to an output [36]. Saliency, feature relevance, contribution, and attribution are
some, for example. In this work, the term feature attribution shall be used.
Then, each input feature has an attribution value that indicates how much it attributes to a single
network prediction. In the case of time series data, a feature is not solely defined by the input
dimension, but also by the time step of the input.

Formal Definition of Feature Attribution for Time Series Data

Let x ∈ RD×T denote a single multivariate time series within a time series dataset. D describes
the cardinality of the input in terms of input dimensions (e.g. number of sensors in the case of
the ADL dataset). Consequently, T is the duration of x. Let O be the cardinality of the output,
i.e., the number of output classes.
Then, the feature attribution AO×D×t(x, t) is defined for each input dimension at each time step
up until current time t ≤ T of x to each output dimension o, where each combination of input
dimension and time step computes an attribution value ao,d,t(x, t).

AO×D×t(x, t) =



a1,1,1 a1,1,2 · · · a1,1,t
a1,2,1 a1,2,2 · · · a1,2,t
...

... . . . ...
a1,D,1 a1,D,2 · · · a1,D,t

 · · ·


aO,1,1 aO,1,2 · · · aO,1,t

aO,2,1 aO,2,2 · · · aO,2,t
...

... . . . ...
aO,D,1 aO,D,2 · · · aO,D,t



(5.1)

These attribution values indicate the past time series’ impact on the current prediction at the
current time step t, where a positive value indicates a positive relationship (e.g. an active bed
sensor could be positively related to the prediction of Sleeping) and a negative value shows a
negative relationship respectively (e.g. an active door sensor could contribute negatively to the
prediction of Sleeping).
The explainability of the models is provided through the visualisation of the feature attribution
map which results from TSA. The following sections detail the computation of the attribution.
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5.2 Temporal Spike Attribution Components

As related work [45, 46] has shown, there are multiple methods to arrive at a feature attribution
explanation for time series data in ANNs. Due to the difference in information processing be­
tween SNNs and ANNs, gradient­based approaches which are widespread for ANNs [36, 55],
are not applicable. Kim and Panda (2021) [40] showed that even for SNNs that were trained
with surrogate gradient learning, gradient­based feature attribution explanations are not opti­
mal, as the gradients are smoothed with a surrogate. Therefore, the feature attributions become
smoothed as well, leading to an unclear attribution map where every feature is somewhat rele­
vant to the prediction. Thus, a new feature attribution computation for SNNs is required. This
research takes the approach of a model­agnostic method for temporally coded SNNs, consid­
ering the different model­internal information available at model inference.
An SNN processes spike trains across several layers to arrive at a prediction. Therefore, the
information that is available in one prediction of one input x is the following: (1) the exact spike
times of every neuron of every layer S(l) (Section 5.2.1), (2) the learned weights of the network
W (Section 5.2.2), and (3) the membrane potential of the neurons at the output layer U (L)

(Section 5.2.3). Each of these has a certain relationship to the prediction, which is elaborated
below. By combining them, a formula for feature attribution of temporally coded SNNs is derived.

5.2.1 Influence of Spike Times

In temporal coding, the information about the stimulus, or data, is assumed to be in the exact
firing times of a neuron [17]. The exact spike times of each neuron indicate the attribution of
neurons to their downstream neurons, which includes overall feature attribution information to
the prediction at the time of the explanation t. Therefore, the spike times are to be analysed in
relation to t.
A LIF neuron i fires a spike if its membrane potential ui crosses a certain threshold θ [17].
As ui decays exponentially over time, frequent input spikes are more likely to stimulate the
neuron to fire, as they impact the membrane potential additively. Consequently, sparse input
spikes are less likely to generate output spikes. With regards to t, this means that recent input
spikes attribute more to the state of the neuron than input spikes that lie further in the past.
To capture this relationship between the exact spike times and their attribution, Kim and Panda
(2021) [40] introduce the neuronal contribution score (NCS) (see section 3.1.2). The NCS sums
the temporal spike contribution scores (TSCS) of one feature’s spike train (e.g. a pixel in an
image). The TSCS describes the contribution of a single spike in a spike train to the current time
t. Hence, the NCS represents the contribution of input spikes of a neuron to its downstream
neurons.
The model prediction is based on the membrane potential of the output layer. Applied to the
output layer of an SNN, the NCS’ of the hidden layer neurons indicate the attribution of hidden
layer spikes to an output neuron’s membrane potential as it is directly connected. Therefore,
the NCS of all layers before the output layer consolidates the exact spike times’ effect of the
network on the prediction at each time step and should be considered in the feature attribution
computation.
Formally, the contribution of a neuron i to the prediction at current time t in the model is modelled
through the NCS Ni(t) (see equation (3.5) in section 3.1.2). This score is characterised by γ,
which specifies the steepness of the exponential decay over time. To reflect the dynamics of the
model in the explanation, we define the decay at the same rate as the decay of the LIF neuron’s
membrane potential, which generates spikes if threshold θ is crossed.
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γ =
∆t

τmem
(5.2)

In the case of a multivariate binary time series dataset, such as the ADL, with a prediction task
at each time step, the NCS can be slightly simplified. The NCS can at most consider one spike
at t′ with regard to explanation time t > t′, meaning that the summation in the NCS computation
can be neglected.
If there is no spike at t′, the neuron i does not contribute actively to a change in membrane
potentials of the downstream neurons. Instead, the effect of a non­spike can be interpreted in
two possible ways. On the one hand, no effect can be understood as such, which means that
the NCS of neuron i would be 0 at the time of the non­spike. On the other hand, no spike can
be understood to contribute to the downstream neurons by not increasing or decreasing their
membrane potential by the postsynaptic potential. Therefore, the spike time ingredient Ni,t′(t)
is defined per neuron i of the model and exhibits two possible definitions:

Ni,t′(t) =

{
exp(−γ|t− t′|) if xi,t′ = 1

0 Otherwise
(5.3)

Ni,t′(t) =

{
exp(−γ|t− t′|) if xi,t′ = 1

−exp(−γ|t− t′|) Otherwise
(5.4)

Then, the NCS with regards to t can be computed for each layer and time step before t, resulting
in vectors N⃗ (l)(t) that have the same size of the respective layer. Let n be the size of layer l:

N⃗
(l)
t′ (t) = ⟨N1,t′(t), N2,t′(t), ..., Nn,t′(t)⟩ (5.5)

5.2.2 Influence of Model Parameters

The network parameters that are learned during the training process are referred to as the
network’s learned weights. In this research, static weights are considered because they are
more common, unlike the time­varying weights that form the basis for Jeyasothy et al. (2019)’s
work [38]. Hence, the weights influence the attribution of an input to the network’s prediction.
The weight values W represent the strength of the synapses in a neural network. In SNNs,
they determine the exact postsynaptic potential as the input values are always 1 in case of a
spike, and 0 if there is no spike at a time t. Therefore, the weights determine the impact on the
postsynaptic neuron’s membrane potential directly, where the absolute weight value indicates
the weight’s attribution to the postsynaptic neuron.
Moreover, the sign of the weight specifies whether the synapse is excitatory or inhibitory. The
nature of the synapse influences the change in membrane potential of the postsynaptic neuron,
where positive weights increase and negative weights decrease the potential. Consequently,
the sign of the weight matters in identifying the spikes that caused a neuron to spike.
In summary, the computation for feature attribution in SNNs shall consider both the value of
a weight as well as its sign. To keep the effects of the weight values relative, the absolute of
the weight matrix |W (l)| connecting two layers are normalised with a min­max normalisation.
The absolute is taken as the absolute values dictate the effect of the synapse (i.e., the synapse
strength). Additionally, to keep the excitatory or inhibitory nature of the synapse, the signs are
considered:
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CW (W (l)) = sign(W (l)) ◦ |W (l)| −min(|W (l)|)
max(|W (l)|)−min(|W (l)|)

(5.6)

where ◦ denotes an element­wise matrix multiplication. So, CW is also a two­dimensional matrix
with the same dimensions asW . It is noteworthy that the weight attribution is the same for each
input and constant across time because it is a property of the inference models. Thus, this
attribution gains its meaning from the combination with the other components.

5.2.3 Influence of the Output Layer’s Membrane Potential

The output layer is the last computational layer in an SNN. The activity of the output layer is
the basis for the prediction, thus it influences the model prediction. Hence, the output layer
component should be considered in feature attribution computation. The output layer consists
of spiking neurons that contain the state variables u (membrane potential) and s (spike train).
The prediction is done based on the output layer’s membrane potential u. This is the reason
why this component is to be considered in the computation of feature attribution. The spike
trains s are neglected as a consequence11.
This component gains its meaning from the relative states of the other output neurons. High
membrane potential is connected to high classification confidence only if the other output neu­
rons exhibit lower potentials. Therefore it is important to consider the relative values in the
output layer. Through the membrane potential, the certainty of the model’s prediction can be
accessed, which is also referred to as prediction confidence. Additionally, it is a piece of inter­
esting information for the explanation overall.
The classification confidence Pi(t) of output neuron i for current time t is defined as the softmax
probability of the output membrane potentials at the output layer in this work. In this way, the
membrane potentials are normalised in a fixed interval and represent the class probabilities
which are interpreted as classification confidence. Let L denote the set of output neurons so
that i ∈ L. Let j be a neuron ∈ L. Output neuron i’s confidence is then computed as such:

Pi(t) =
expui(t)∑
j expuj(t)

(5.7)

Similar to the NCS, the classification confidence can also be computed for the whole output
layer at once. Then, the confidence values are specified in the confidence vector P⃗ , where O
is the size of the output layer:

P⃗ (t) = ⟨P1(t), P2(t), ..., PO(t)⟩ (5.8)

5.3 Temporal Spike Attribution Formula

Considering the variables discussed in the previous section as components, a formula can be
derived with a summation and multiplication approach for the calculation of a feature attribution
score. This formula is referred to as Temporal Spike Attribution (TSA).
In this thesis, a forward approach taking the work of Kim and Panda (2021) [40] as inspiration is
followed. This means that the final attribution scores are retrieved by aggregating the attribution

11In the case of a SNN that predicts based on earliest spikes, the NCS of the output layer should be considered
instead of the membrane potential.
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elements (i.e., spike times, weights, output membrane potential) in the input domain. This is
done class­wise so that the final results are feature attributions of the input to each output class.
A neuron i(l) generates the spike train si to the downstream computational layers. It is fully
connected via synapses to the next layer given the SNN models. Therefore each neuron is
connected to all neurons of the following layer l + 1 with the weight matrixW (l).

Figure 5.1: Information available for the computation of Temporal Spike Attribution of TwoLay­
erSNN: Available internal states when presented with input x ∈ RDxT . l denotes the layer, s(l)i
the spike train of neuron i of layer l, u(l)i the membrane potential of i at l respectively. W (l)

marks the weight matrix of l and ŷ is the predicted class.

The NCS N⃗ (l)(t) represents the spike times, the weight contribution CW represents the weights
and the classification confidence P⃗ (t) represents the output layer membrane potentials as com­
ponents of the Temporal Spike Attribution algorithm (see Figure 5.2).

Figure 5.2: Components for Temporal Spike Attribution of TwoLayerSNN at t′ with regards to t:
N

(l)
i,t′ is the NCS of neuron i for time step t′ < t with regards to explanation time t at layer l. C(l)

W

represents the weight contributions, and Pi(t) denotes the classification confidence for class i.

The first two are combined by multiplying the diagonal matrix of N⃗ (l)(tc)with CW . This operation
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results in a weighted NCS matrix N (l)
W ∈ Rn×m, where n is the size of layer l and m is the size

of the next layer l+ 1. The weighted NCS matrix can be computed for all layers, except for the
output layer. The result is a matrix consisting of scores for each synapse within the network,
representing how the presynaptic neuron contributes to the postsynaptic neuron under direct
consideration of the synapse weight.

N
(l)
W (t) = diag(N⃗ (l)(t)) · C(l)

W (5.9)

To aggregate these values across layers, a multiplication and summation approach is taken.
Since each input neuron is connected to each output neuron through multiple paths, the values
are summed to arrive at a single value for each feature at a given time. If there are hidden layers
in the network, the weighted NCS values that are connected across the layers in depth are mul­
tiplied (Figure 5.3). This addition and multiplication process can be described through multiple
matrix multiplications of the weighted NCS’ of the different layers, simulating a forward pass
of the model. This represents how the input influences the neurons of the network. The final
feature attribution A(x, t) ∈ RO×D×t is computed through multiplication with the classification
confidences, as shown in algorithm 1.
As there are two different interpretations of non­spiking attribution, Temporal Spike Attribution ­
Spikes only (TSA­S) which uses (5.3) as the definition forN (l)

i,t′(t) and Temporal Spike Attribution
­ Non Spikes included (TSA­NS) with (5.4) as the definition for N (l)

i,t′(t) are distinguished in this
thesis.

Figure 5.3: Visualisation of the computation of a0,0,t of AD×O×t using Temporal Spike Attribu­
tion. The neurons highlighted through colour are part of the computation, where one colour
corresponds to the multiplication of these elements. The different products are then added to
map the input to the output. Here, N (0)

0,t′(t) and P0(t) are used multiple times in the computation.
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Algorithm 1 Temporal Spike Attribution

Let x be an input in RD×T , f the SNN model with L layers, S(l) the spike trains of layer l, U (L)

the membrane potential of the output layer, and t the current time.

S(1), ..., S(L−1), U (L) ← f(x) ▷ Run the input and retrieve internal variables.
P⃗ (t)← softmax(U (L))
for l = 1, 2, ..., L do

C
(l)
W ← sign(W (l)) ◦ W (l)−min(W )

[max(W )−min(W )]

end for
for t′ = 0, 1, 2, ..., t do

Initialize F (t) = I ∈ RDxD

for l = 1, 2, ..., L− 1 do
if S(l)(t) = 1 then ▷ In case there was a spike at t′

N⃗ (l)(t)← ⟨N1(t), N2(t), ..., Nn(t)⟩ where Ni,t′(t) = exp(−γ|t− t′|)
else ▷ In case there was no spike at t′

N⃗ (l)(t)← ⟨N1(t), N2(t), ..., Nn(t)⟩ where Ni,t′(t) = 0 (TSA­S)
or Ni,t′(t) = −exp(−γ|t− t′|) (TSA­NS)

end if
N

(l)
W (t)← diag[N⃗ (l)(t)] · C(l)

W

F (t)← F (t) ·N (l)
W (t)

end for
A(x, t)← F (t) · diag(P⃗ (t))
Concatenate A(x, t) to feature attribution map A(x, t).

end for

5.4 Visualisation

To present the information in the attribution map as a local explanation to the target group of
model developers, the attributions need to be visualised. Additionally, the information of model
prediction, ground­truth label, and classification confidence is provided in the visualised expla­
nation. The design of the visualisation is defined through three short design iteration cycles
with TSA­S explanations within the research team of this thesis. We emphasise that this pro­
cess does not replace a separate study regarding optimal visualisation. Instead, it shall offer
sufficiently good visualisation of the attributions computed from TSA which can be used in the
evaluation. This section gives a short overview of the design process.

5.4.1 First Iteration ­ Initial Visualisation

The resulting feature attribution map retrieved from TSA is a three­dimensional map that details
the attributions of each input dimension d at each timestep prior to the prediction at timestep t
to each output class o. Three dimensions are not straightforward to display on two­dimensional
surfaces such as a screen. Therefore, two options for visualisation are explored in the first
iteration: (1) Visualisation of all two­dimensional maps per class (Figure 5.4a), (2) Collapse the
three­dimensional map into one map (Figure 5.4b). In the latter option, the class that a feature
attributed to the most is shown in the visualisation. The classification confidence distribution
is presented as a bar graph. Moreover, the predicted class and ground truth are given as text
information.
In the first approach, the attributions per class can be distinguished between negative and pos­
itive, visualised through a diverging colour map from blue to red. It offers more information as
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(a) Approach 1: Separated attribution maps per class.

(b) Approach 2: Collapsed two­dimensional map.

Figure 5.4: First iteration of visualisation design for TSA using TSA­S explanations. The first
design iteration was conducted on preliminary experiments with SNN models trained on a five­
class classification problem.

the different class attributions can be compared. However, the amount of information can also
be overwhelming, especially in a multiclass case such as the ADL from binary sensors task.
In contrast, the second approach only shows one feature attribution map, where the different
class attributions are highlighted in different colours. As the second approach is better suited
for multiclass problems, we decided on a collapsed map in the visualisation.
As shown in Figure 5.4b, sensor activation is shown in white, while the absence of spikes is
indicated in black. The class attribution of a feature is overlaid with a certain degree of trans­
parency. The meaning of the spikes and non­spikes in the data did not become clear in this first
iteration. Moreover, this approach does not suit TSA­NS explanations, as a coloured overlay to
black (i.e. non­spikes), is not visible. Therefore, the data visualisation needs improvement to
clarify the spiking data and allow for a clear attribution highlight.
Furthermore, the class colours used for the feature attribution map are each indicated as their
own colour bar next to the map, which requires a lot of space with multiple classes. Besides,
the colours were chosen from the available built­in colours of the plotting library [56]. Due
to the number of classes, certain colours are not easily distinguishable (e.g., red and orange).
Thus, the colour scheme requires improvement as well as the visualisation of the colour to class
mapping. Additionally, the correspondence of the class confidence distribution to the attribution
map was not found to be clear instantly. An alignment with the other colours used would be
appropriate.
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5.4.2 Second Iteration ­ Spikes and Colours

In the second iteration, improvements were made in the visualisation, specifically concerning
the data visualisation and colour scheme. The data is visualised per spike where each spike is
a vertical black line. The background is white, thus non­spikes are also white, which enables a
clear view of the attribution of non­spikes, too. A colour scheme with high perceptual distance is
chosen using Brown University’s Cologorical tool [57] to represent the class colours. The colour
scheme is also adapted in all parts of the visualised explanation (i.e., true label and predicted
label text, confidence distribution, feature attribution map) to enable immediate categorisation
and provide consistency of the displayed classes. Besides, the colour bars next to the feature
attribution map are replaced with a legend of the colour scheme used throughout the whole
explanation. Another small alteration is the exclusion of the class numbers (e.g., “C1”) in front
of the class labels, as this is not needed for the user. Furthermore, the confidence distribution
part of the visualisation shows the development of the model’s classification confidence over
time up until the prediction at t. This should give some insight into the model behaviour up until
t to the user. It was found that the feature attributions for all SNN models of the use case are
largely covered in the presentation of the last 60 seconds prior to prediction time t. Hence, the
explanation covers the time frame of [t− 60, t] in the visualisation.

Figure 5.5: Second iteration of visualisation design for TSA using TSA­S explanations.

While the second iteration improved on the first version, there is one main concern. Although
the development of the confidence distribution over time is interesting, it can confuse the user.
The feature attribution map shown relates each feature attribution to the prediction at time t. The
confidence distribution, in contrast, shows themodel’s confidence at each time t′ < t. Therefore,
the possibility to misinterpret the feature attributions of features at t′ < t to correspond to the
confidence development over time exists. Hence, clarity could be improved.

5.4.3 Third Iteration ­ Confidence

The third iteration of the explanation visualisation design yields the final visualisation (Fig­
ure 5.6). The confidence distribution is switched back to the bar plot of iteration one in order to
emphasise the validity of the explanation for prediction at time t. This visualisation offers dense
information about the feature attributions and confidence distribution of the model, with consis­
tency in the different parts of the visualisation through a colour scheme with high perceptual
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distance.

Figure 5.6: Third and final iteration of visualisation design for TSA using TSA­S explanations.

The design of the explanation visualisation is determined using TSA­S explanations, for which
the visualisation makes sense and showed coherent results in the eyes of the researcher.
However, the TSA­NS explanations do not seem to make sense when collapsed into one two­
dimensional map (Figure 5.7). The sensor activation of the data is not attributing to the predicted
class in TSA­NS, and the found feature attributions do not seem to make much sense when
consolidating the three­dimensional attribution map into one from the researcher’s perspective.
Hence, a need for revising the weight of the non­spiking attribution is required to improve TSA­
NS in this regard before conducting user studies to measure human­comprehensibility.

Figure 5.7: Visualisation of a TSA­NS explanation.

As the TSA­NS explanation visualised in this manner showed major incoherence between the
data and the ground truth as well as model prediction, only the TSA­S explanations are evalu­
ated visually in the frame of this research.
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6 EXPLANATION QUALITIES

The preceding chapter 5 detailed how a feature attribution explanation is achieved for SNN
models using Temporal Spike Attribution (TSA). This offers a local explanation of the model’s
predictions. To assess the quality of the explanation, it needs to be measured and evaluated.
Unlike prediction performance, explainability does not have a standard set of measures, as
the requirements for a good explanation are not straightforward and highly target­group depen­
dent [6]. Previous works in XAI for SNNs have focused on validating the explanation reliability
of interpretable knowledge [37] or the accuracy of the explanation, considering another expla­
nation as ground truth [40]. Both did not aim at providing a thorough evaluation procedure for
interpretability but demonstrated the functionality of their explanation methods. Moreover, these
qualities are mainly related to whether the explanation is truthful, however, there are more as­
pects to a good explanation to be considered. Therefore, this chapter discusses qualities to
measure TSA by with respective concrete metrics as well as the experimental results using
the models and task proposed in chapter 4. The evaluation is split into a technical evaluation
based on faithfulness [42], stability, robustness, certainty, and a user evaluation for human­
comprehensibility [36, 48]. These qualities have been identified from related work in XAI with
time series tasks, as presented in chapter 3.

Figure 6.1: Evaluation framework for local feature­based explanations on time series data with
qualities and metrics. Arrows indicate optimal values of the metrics, check marks indicate de­
sired fulfilment of property. In this thesis, robustness is not evaluated.
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6.1 Technical evaluation

The technical evaluation inspects the quality of TSA explanations in a functionally­grounded
evaluation [58]. Such an evaluation is appropriate because TSA as an explanation method is
not yet validated in its explainability. Through a technical evaluation that does not require hu­
man evaluation, a fundamental evaluation of TSA’s effectiveness and functionality as a local
explanation method for temporally coded SNNs is performed. Hence, the technical evalua­
tion concerns all quality aspects which are not directly linked to human understanding and can
therefore be evaluated without humans. Namely, these are (1) TSA’s faithfulness to the model
behaviour, (2) the sufficiency of the feature attributions for the model prediction, (3) TSA’s sensi­
tivity to similar data, and (4) TSA’s certainty in the explanation. In this section, the experimental
setup, as well as the results of the experiments, are presented and discussed. While the first
three qualities are elaborated further in this section, certainty is a binary quality that does not
require a dedicated evaluation and can therefore be discussed beforehand.

Certainty

The certainty [36] of an explanation is a quality that indicates whether the explanation informs
the user about the confidence of the model in its prediction. Rojat et al. (2021) [48] identify
this information as a fundamental part of a trustworthy explanation method. By quantifying
how confident the model is in its prediction, the explanation is put into context. Users know
how sure the model is, and can therefore judge the model prediction under that consideration.
Certainty contributes to the transparency of the explanation and hence is a desirable quality. In
the frame of this thesis, the definition of certainty is restricted to the underlyingmodel’s prediction
confidence and is not referring to the explanation method’s confidence in the quality of the
explanation.
As certainty is binary, it is not measurable by evaluation. Instead, it is a property that an expla­
nation method fulfils or not. In the case of the explanation method presented in this thesis, the
classification probability P (C|x) is interpreted as the classification confidence, or certainty. It is
part of the explanation, hence the explanation method provides certainty.

6.1.1 Experimental Setup

The technical evaluation is based on a specific test set selected for evaluation of TSA’s explain­
ability due to computational efficiency. This section explains the selection of the test set for
technical evaluation first before presenting the tested metrics and experimental procedures.

Test Data

As a basis of the technical evaluation of the explanations, test set data from model training is
appropriate since it represents unseen data to the SNN models. Unfortunately, the complete
assessment of TSA is not feasible on all test data due to the non­optimal efficiency of the SNN
model implementation in terms of runtime and memory efficiency: When extracting explana­
tions, the whole time series from t = 0 until the respective timestamp is considered. As state
variables (i.e., membrane potential and spike train) are retained from start to finish of a simula­
tion and complete records of the state variables of this time are required for the explanation, the
data has to be processed sequentially. This leads to slow processing as well as large memory
requirements due to the large size of the state variable records.
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Therefore, the test set is sub­sampled to select evaluation data for the technical evaluation
(see Figure 6.2). For each time series of subjects A and B of the dataset, nine timestamps
are chosen per class that is present in the test set. From these timestamps per class, three
are required to be each from the beginning, middle and end of the respective activity to ensure
that different temporal characteristics and changes of activities are present in the data used
for evaluation. The beginning and end of the activity are defined as the first and last minute
respectively. Given these constraints, the timestamps are sampled at random. This results
in a total of 180 timestamps across the test set (i.e., 81 for data of subject A and 99 for data
of subject B) for which explanations are extracted and evaluated with regards to the qualities
presented in this chapter. Choosing the same number of timestamps per class additionally
balances the evaluation of TSA. Furthermore, an assumption is made to limit the length of the
time series presented to the network. It is assumed that only the information of the last hour prior
to the timestamp of the explanation includes information that is relevant to the model prediction.
Therefore, the explanations for the evaluation are extracted for the timeframe of one hour prior.

Figure 6.2: Sampling process for the dataset for technical evaluation. From each subject data
A and B, nine samples are collected per class of the test set that includes three samples from
the beginning, middle and end of an activity respectively. Colours represent classes. Then, all
samples are shortened to a maximum of one hour.

Since there is limited related work in local explanations for temporally coded SNNs, there is no
reported baseline to compare to. Therefore, a baseline is generated through the assignment of
random attribution scores in the extracted test set explanations. The baseline assumes that all
spikes in the input exhibit an attribution value. Therefore, random attribution values in the inter­
val between theminimum andmaximum recorded attribution value of the extracted explanations
are assigned to the spiking parts of the data.

Feature Segments

TSA generates feature attribution explanations. Hence, the feature attributions are the subject
of the technical evaluation. The feature attributions are computed per input dimension and time
step. The attributions, however, cannot be interpreted at the granularity of one input dimension
and time step because of the temporal dependencies (e.g., the attribution of the Bed sensor
at t = 50 to the class Sleeping is particularly large not only because the sensor is activated at
t = 50, but also because the sensor is activated in the previous time steps). Therefore, the
technical evaluation is based on so­called feature segments. In the frame of this thesis, feature
segments are defined as follows.
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A feature segment is a number of contiguous strictly positively or negatively attributing features
over time within one dimension d of x that is at most 10 seconds long. This duration is assumed
to capture the temporal dependencies at an appropriate level of information coarseness from the
explanation. In other words, this means that 10 seconds are assumed to capture the temporal
relations in the explanation. At the same time, the feature segment is short enough to provide
a detailed basis for the evaluation of different attribution values, meaning that attribution values
are not expected to vary strongly within 10 seconds if all attribution values are either positive or
negative.
Feature segments are determined through the explanation obtained from TSA. Within an input
dimension d (i.e., a sensor), the attribution values are inspected and if applicable, segments are
formed with a maximum window length. The first segment is built around the highest attribution
value in d at the middle of the window, and the following segments are defined accordingly.
This approach of feature segments is followed in the evaluation of faithfulness and attribution
sufficiency.

Figure 6.3: Feature segment (FS) definition based on attribution of input dimension d. Only
non­zero attribution is considered. Segments with a maximum window size of 10 time steps are
defined around the first segment which contains the maximum attribution.

Faithfulness

Faithfulness [42], also referred to as fidelity or truthfulness [36] is the first evaluation criterion of
the technical evaluation. This refers to whether the explanation reflects the true behaviour of the
model. In other words, faithfulness is a desirable quality that indicates whether the explainability
achieved through the explanation method is faithful to the true reasoning of the model. I.e., the
attribution values defined through the explanation reflect the SNN model and how it arrived
at the prediction. This quality is universally desirable and holds the essence of XAI, which
aims at finding methods to explain black­box models. Faithfulness is qualitatively evaluated in
Jeyasothy et al. (2019)’s work [37] as reliability, as well as Kim and Panda (2021)’s work [40]
as accuracy. While the latter used explanations from Grad­CAM as ground truth to obtain their
evaluation, a different approach is taken in this thesis.
To measure faithfulness of TSA, the metric explanation selectivity [59] is chosen. This metric
evaluates whether feature attributions defined by TSA are faithfully attributing respectively to
the model’s prediction. This is determined in an iterative process similar to Montavon, Samek,
and Müller (2018) [59]. Input feature segments are ranked by their attribution and iteratively
removed by their rank (i.e., highest attributing first). However, due to the nature of time series
data, the removal of a feature segment is not straightforward. A feature is defined by its input
dimension as well as time step, therefore removing it would interrupt the time series. Instead,
the inversion of the feature values acts as the removal of features, similar to the perturbations
proposed by Schlegel et. al (2019) [60] for the evaluation of XAI methods on time series data.
The idea behind this is that changing the value of highly attributing features should lead to a
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change in the model’s prediction.
In detail, explanation selectivity [59] is defined as the area under the curve (AUC) of the graph
resulting from inverting the most attributing feature segments first. A low explanation selectivity
is desirable, as the performance is expected to drop significantly for highly attributing feature
segments. Algorithm 2 describes the computation of this metric.

Algorithm 2 Explanation selectivity [59]
Let e be the explanation function that results in feature attribution map A(x, t) describing the
attributions to the predicted class, f(x, t) denote the model’s prediction on an input x ∈ X at
time t. Let R be the total number of feature segments of x, and N the size of the test set X
and Y be the corresponding ground­truth labels for X.
for x ∈ X do

for t = 1, 2, ..., T with T being the duration of x do
A(x, t)← e(f, x, t)
Define R feature segments.
Sort the feature segments in descending order by their mean attribution values.
for rank r = 0, 1, ..., R do

xinv@r ←Invert the value of feature segment x(r) so that x(r) = |x(r) − 1|.
ŷinv@r ← f(xinv@r, t)

end for
end for

end for
Let X inv@r denote X with feature segments up to rank r inverted.
for rank r = 0, 1, ..., R do

Compute Balanced Accuracy of Ŷ inv@r, Y .
end for
Compute explanation selectivity as the AUC of the graph resulting from the performance of
the model depending on the amount of feature segments inverted.

The experimental setup for the evaluation of faithfulness looks at the explanation selectivity of
the TSA explanations of the predicted class.

Attribution Sufficiency

While faithfulness is a quality that answers the question of whether the feature attributions as­
signed by the explanation are true, what is referred to as attribution sufficiency in this thesis
highlights another quality aspect of the explanation: the sufficiency of the set of important fea­
tures in the sense of propositional logic for the prediction. This refers essentially to the question
of whether the set of important features F is sufficient for the same model prediction ŷ, i.e.,
F → ŷ and is also referred to as fidelity or faithfulness in related work [61]. It addresses the
input­output mapping of the explanation when compared to the original model, and is an inter­
esting aspect for feature attribution based explanations. A feature­based explanation that is
sufficient covers all important features that are relevant to the prediction. Attribution sufficiency
is therefore strongly connected to faithfulness and is a desirable quality.
If the attributions defined by TSA are sufficient for the model prediction, the explanation consists
of all relevant features to the same prediction as for the whole data by the model f . Therefore,
the measurement of this quality looks at f ’s behaviour when presented with solely the important
features. Similarly as is the case for the evaluation of faithfulness, eliminating features from
time series data is not trivial due to the i.i.d. nature of the data. Unlike the inversion approach
proposed for faithfulness, the elimination of features is handled by a random shuffling of the
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unimportant features of the data. This is because faithfulness is evaluated through an iterative
process, while the unimportant features are eliminated at once for the evaluation of attribution
sufficiency. If all feature values were inverted, the distribution of the data would change, thus
limiting the applicability of f . The data shuffling, however, does not change the distribution[62].
Therefore, the degree of attribution sufficiency describes the accuracy of the model f ’s perfor­
mance using only the important features and shuffling the unimportant features with regards
to its predictions ŷ using all features. Unimportant features are defined as such, which do not
belong to a highly attributing feature segment. In other words, unimportant features have an
absolute attribution value defined by the explanation lower than a certain threshold and do not
belong to a highly attributing feature segment. The absolute attribution value is taken as an
indicator of importance as large attribution values regardless of their sign represent important
information to the model prediction. High sufficiency is desirable, as model performance is
expected to be similar for the clean and perturbed input.

Algorithm 3 Degree of sufficiency
Let f(x, t) be a SNN model’s prediction on input x ∈ X at time t, e be the explanation function
which results in attribution map A(x, t) that describes the attribution to the predicted class.
Let ϵ be the threshold for feature importance.
for x ∈ X do

for t = 1, 2, ..., T with T being the duration of x do
A(x, t)← e(f, x, t).
Mask A where |a| > ϵ.
xp ← Perturb unmasked area of A.
ŷp ← f(xp, t)

end for
end for
Compute the degree of sufficiency as the balanced accuracy of Ŷp, Ŷ .

Similar to faithfulness, the attribution sufficiency is determined by the TSA explanations for the
predicted class. As an ideal ϵ for identifying the important features is not known beforehand,
eight different values of ϵ are tested. Namely, these are 0, 25%, 50% and 75% of the maximum
absolute feature attribution recorded over all extracted explanations. Additionally, the thresholds
5%, 10%, 15% and 20% were added to the experimental set­up after receiving initial results
with the purpose to inspect TSA’s attribution sufficiency for lower values of ϵ. The thresholds
are defined relative to the maximum attribution due to the unnormalised nature of the feature
attributions defined through TSA.

Sensitivity

Next to faithfulness and attribution sufficiency, an explanation’s trustworthiness is dependent on
its stability and robustness [36, 48]. These are qualities that refer to an explanation’s behaviour
when small perturbations are added to the input, which is referred to as an explanation’s sen­
sitivity [63] in this report. An explanation is stable if it does not change strongly for similar input
caused by natural perturbations in the data due to e.g. noise. Robustness is achieved if an
explanation does not change strongly to intended perturbations, i.e. adversarial attacks [48].
However, the evaluation of robustness is not in the scope of this thesis as it first raises different
research questions in this area: As adversarial examples intentionally mislead the model, can
robustness only be measured of adversarially robust models? How are adversarially robust
SNNs built? Should a feature­based explanation method such as TSA highlight the features
that lead the model to misclassify? Even though first studies have shown the increased adver­
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sarial robustness of SNNs when compared to ANNs [16], this requires further research and is
therefore out of the scope of this thesis. Nevertheless, both criteria indicate the sensitivity of
the explanation to perturbed input, where an explanation with high sensitivity responds to per­
turbed input and explanations with rather low sensitivity do not change much. Low sensitivity
is therefore desirable as high sensitivity is difficult for a user to understand, which could lead to
distrust in the explanation. Furthermore, explanations with low sensitivity have a certain level
of generalisation and are considered simpler than highly sensitive explanations [63].
A specific case of sensitivity is the behaviour of the explanation for the same input. In this case,
the same explanation should be generated for all exact inputs x. It is a desirable quality since
it is strongly connected to the reliability of an explanation method. However, this specific case
is not measured by a metric. Instead, it is a binary property that an explanation method either
fulfils or not. The explanation method presented in this report is generated without randomness
as a post­hoc explanation with the inference model, whose model weights are fixed. The com­
putation consists mainly of matrix multiplications, which are deterministic. Thus, a consistent
explanation behaviour for the same inputs is ensured and it is not tested in the experiments for
the evaluation of the explanation method.
Beyond the specific case of the same inputs, sensitivity as an explanation quality can be mea­
sured using max­sensitivity (6.1) as proposed by Yeh et al. (2019) [63]. Max­sensitivity is a
metric that measures the maximum change in an explanation e(f, x, t) given perturbations in a
neighbourhood r around the input x at time t. The neighbourhood ensures the similarity of the
original input to the perturbed input. This can be applied for both natural, unintended perturba­
tions as well as adversarial attacks to measure stability and robustness respectively.

Max­Sensitivity(e, f, x, t, r) = max
||x′−x||≤r

||e(f, x′, t)− e(f, x, t)|| (6.1)

Natural and unintended perturbations have to be simulated to test the stability of the explana­
tion method. In the frame of the ADL dataset, natural perturbations cannot be modelled as the
addition of random noise for example, since this would lead to new examples that are out of
distribution and therefore also not similar to the original input. Instead, natural perturbations in
an activity dataset with binary sensors could be modelled through a change in the sensor acti­
vation duration. This could occur in reality as different people usually follow a different routine,
e.g., taking less or more time to shower. Moreover, also within data collected from one user,
such natural perturbations could occur within different days.
To implement these perturbations, the duration of the active sensors within input x is randomly
changed within the realms of 10% of its original duration. It is randomly chosen whether the
activation is lengthened or shortened if it is perturbed at the start of the activation or the end,
as well as by how much exactly. By limiting the perturbation to 10% of the original duration, the
similarity between the perturbed and original data shall be ensured. Each of the samples in the
test set for technical evaluation is perturbed this way and explanations are extracted using TSA.
Then, max­sensitivity is computed as the maximum Frobenius norm of the difference between
the explanations on clean and perturbed data. A small difference is to be expected, as the data
is different. However, the value should be small if TSA is stable.
As a baseline for the evaluation of explanation sensitivity, random baseline explanations based
on the extracted explanations from the perturbed input are generated. This is done similarly to
the generation process of the baseline explanations for the evaluation of the explanations on
original data. I.e., the features with non­zero attributions of the TSA explanations are randomly
assigned an attribution value within the interval of the minimum and maximum recorded attribu­
tion. To compute the baseline stability, the max­sensitivity of the baseline explanations on the
clean data is compared to the baseline explanations of the perturbed data.
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6.1.2 Results and Discussion

The technical experiments measuring faithfulness, attribution sufficiency and stability are con­
ducted through automated Python scripts12 run on the high performance computing cluster at
the Institute for Artificial Intelligence inMedicine of the University of Duisburg­Essen. The results
are presented and discussed in the following.

Faithfulness

The results of the evaluation of faithfulness are presented in Table 6.1 and the graphs resulting
from the iterative feature segment removal is shown in Figure 6.4. The explanations extracted
from the different models have a different maximum number of feature segments detected in
the data, which is why there is variation in the y­axis scale.
Figure 6.4 shows two types of graphs per SNN model: firstly, the model performance with
regards to the ground truth (i.e., balanced accuracy of Y, Ŷp) in the bottom row, and secondly,
the model performance with regards to the original model predictions (i.e., balanced accuracy
of Ŷ , Ŷp) in the top row. The latter is the basis for the explanation selectivity score because it
reflects the feature segment’s attribution to the prediction, whereas the first shows the decline
of model performance to chance as the number of flipped segments increases. Both curves
are not necessarily similar as e.g. the curves of OneLayerSNN show from roughly the 100th
segment on. In these cases, original model predictions, which were wrong, may be predicted
correctly with the perturbed input.

Model TSA­S TSA­NS Baseline
OneLayerSNN 0.086 ± 0.041 0.024 ± 0.022 0.411 ± 0.072
TwoLayerSNN 0.635 ± 0.070 0.248 ± 0.063 0.462 ± 0.073
ThreeLayerSNN 0.541 ± 0.073 0.061 ± 0.035 0.392 ± 0.071

Average 0.421 ± 0.072 0.111 ± 0.046 0.422 ± 0.072

Table 6.1: Explanation selectivity of the TSA explanations extracted per model and on average
reported at 95% CI. It is measured as the AUC of the plots (a), (b), (c) of Figure 6.4.

The explanation selectivity of the TSA­NS explanations is low compared to both TSA­S expla­
nations and the random baseline. This implies that TSA­NS generates faithful explanations
whereas TSA­S explanations are less faithful to model behaviour. Therefore, the absence of
spikes in the data is indicated to be relevant to the model prediction. As TSA­S does not con­
sider these attributions, it is not completely faithful to model behaviour. TSA­S explanations
achieve a similar overall explanation selectivity to the baseline, at first glance implying that the
TSA­S explanations are not better than random explanations in faithfulness to model behaviour.
Upon further inspection, the explanation selectivity scores per model suggest that TSA­S does
provide faithful explanations and significantly outperforms the baseline in explaining OneLayer­
SNN (0.086 ± 0.041 vs. 0.411 ± 0.072). For the other models, the baseline explanations are
better than the explanations provided by TSA­S. This observation indicates that TSA­S is not a
faithful explanation method for deep SNNs. The propagation of the attribution scores across the
different layers might not capture the correct model behaviour in the explanation. Nonetheless,
the number of segments in the baseline explanations and TSA­S explanations must be consid­
ered when comparing them. The baseline explanations are larger and therefore exhibit more

12The scripts for the technical evaluation are available at: https://github.com/ElisaNguyen/tsa­explanations.
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(a) Balanced accuracy(ŷ, ŷp) of
OneLayerSNN

(b) Balanced accuracy(ŷ, ŷp) of
TwoLayerSNN

(c) Balanced accuracy(ŷ, ŷp) of
ThreeLayerSNN

(d) Balanced accuracy(y, ŷp) of
OneLayerSNN

(e) Balanced accuracy(y, ŷp) of
TwoLayerSNN

(f) Balanced accuracy(y, ŷp) of
ThreeLayerSNN

Figure 6.4: Faithfulness of TSA variants as balanced accuracy per model with flipped feature
segments on the test set for technical evaluation with the respective baselines.

feature segments, whereas the number of feature segments for TSA­S explanations is com­
paratively low. Hence, the explanation selectivity score does not capture the fact that the drop
in accuracy within flipping the first few feature segments is stronger with TSA­S than with the
baseline explanations forOneLayerSNN and TwoLayerSNN (see Figures 6.4a and 6.4b). Thus,
the definition of the baseline explanations may not be ideal for the comparison because TSA­S
does seem to faithfully capture parts of the true model behaviour in the first feature segments.
Generally, the graphs resulting from iterative flipping of the ranked feature segments all fulfil the
expectation of a sharp decrease at first followed by a slower decrease for both TSA variants. As
can be seen in Figure 6.4, the performance decreases sharply with the flipping of the highest­
ranking feature segments for both TSA explanations extracted from all models. In contrast, the
baseline explanations stagnate in the drop in performance when reaching a balanced accuracy
of around 0.6. This observation suggests that the high ranking feature segments carry the
highest importance for the model prediction, and TSA, specifically TSA­NS, is rather successful
in faithfully identifying these segments.
It is noticeable that the number of feature segments is larger for the explanations extracted
from OneLayerSNN and ThreeLayerSNN. These models have a slower decay of their neuron’s
membrane potential. Consequently, the TSA explanations are larger because the attribution
of past timesteps decays slower than for TwoLayerSNN (Figure 6.5). Hence, the explanation
consists of more non­zero attribution values than the explanations from TwoLayerSNN, which
consequently leads to a higher number of feature segments. This explains the different y­axis
scales of the different models. Within the models, TSA­S explanations are much smaller than
TSA­NS explanations judging from the number of feature segments, therefore the performance
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graphs stop at a certain number of feature segments in Figure 6.4.

(a) TSA­S explanation extracted from OneLayerSNN for timestep 177081 of the testset.

(b) TSA­S explanation extracted from TwoLayerSNN for timestep 177081 of the testset.

(c) TSA­S explanation extracted from ThreeLayerSNN for timestep 177081 of the testset.

Figure 6.5: Example explanations to visualise the effect of the membrane potential decay rate
on the attribution. OneLayerSNN and ThreeLayerSNN have a slower decay rate, which shows
in the larger non­zero attribution values further in the past, indicated by the intensity of the
attribution colours. Hence, the number of feature segments for TwoLayerSNN is significantly
smaller.

Upon inspection of the faithfulness per SNN model, it is evident that the TSA explanations are
the least faithful to TwoLayerSNN. The explanation selectivity score is highest for both TSA vari­
ants as well as the baseline for this model. This observation could be linked to the membrane
potential decay rate, as this is a property that sets TwoLayerSNN apart from the other models.
It is also noteworthy that the balanced accuracy recovers to roughly 0.6 after around 50 flipped
feature segments identified with TSA­S. This is a strong indication that TSA­S does not faithfully
explain the model prediction for TwoLayerSNN. The explanation seems to be incomplete be­
cause a decay of model performance to chance is expected, whereas the model performance
only decreases by 0.1 to 0.4 (Figure 6.4e). For TSA­NS, the balanced accuracy also shortly in­
creases again at around feature segment 50 before continuing to definitely decrease at roughly
100 feature segments flipped. This fluctuation could be reasoned by the correct classification
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of some samples by chance as the balanced accuracy continues to decrease steadily again.
The lowest explanation selectivity scores are achieved for TSA explanations ofOneLayerSNN’s
predictions, which implies that TSA explanations for this model are most faithful. TSA in both
variants seems to capture the truemodel behaviour ofOneLayerSNN specifically well. It is inter­
esting to note that the balanced accuracy of ThreeLayerSNN’s predictions with flipped feature
segments with regard to the original model predictions decreases the fastest for the baseline
explanations (Figure 6.4c). While the drop in performance for feature segments identified from
TSA­S and TSA­NS explanations is also steady and sharp, the random baseline explanations
lead to the fastest decrease within the first 100 feature segments. ForOneLayerSNN, the oppo­
site is clearly the case: The performance of the model predictions with flipped feature segments
identified from the TSA explanations clearly decreases stronger and faster than the baseline.
Therefore, there is an indication that TSA as an explanation method loses faithfulness with the
addition of layers in the SNN model to be explained.
Overall, the evaluation of faithfulness using the explanation selectivity score [59] yielded ex­
pected results which indicate the faithfulness of TSA explanations. The inversion of the highest
attributing feature segments leads the model to classify differently than with the original data in
all models and with both TSA variants. The general faithfulness of TSA, especially TSA­NS, is
shown in this experiment, which validates the approach of TSA as an explanation method.

Attribution Sufficiency

The degrees of attribution sufficiency given different thresholds for the consideration of highly
attributing feature segments (defined through ϵ) are shown in Figure 6.6. The concrete value
of ϵ varies between the TSA variants because the explanations extracted with TSA­S and TSA­
NS have different maximum attribution values which the definition of ϵ is based on. The overall
attribution sufficiency is reported as the mean of the computed sufficiency scores across the
different underlying SNN models. As can be seen in Figure 6.6, the sufficiency of the explana­
tions is only larger than of the baseline explanations for ϵ = 0. Therefore, the overall attribution
sufficiency scores are reported at a 95% CI in Table 6.2 for ϵ = 0.

Model TSA­S TSA­NS Baseline
OneLayerSNN 0.597 ± 0.072 1.000 ± 0.000 0.475 ± 0.073
TwoLayerSNN 0.659 ± 0.069 0.926 ± 0.038 0.460 ± 0.073
ThreeLayerSNN 0.546± 0.073 0.960 ± 0.028 0.445 ± 0.073

Average 0.601 ± 0.072 0.961 ± 0.028 0.460± 0.073

Table 6.2: Attribution sufficiency scores of the TSA explanation method at 95% CI for ϵ = 0.

Figure 6.6 clearly shows that the best value for ϵ is 0 for the explanations extracted from all mod­
els for both TSA variants. For this threshold, the attribution sufficiency of TSA­NS is particularly
large. The TSA­S explanations also show improved sufficiency performance in comparison to
the baseline at ϵ = 0, but not as large as the sufficiency scores of TSA­NS. A possible reason for
this is the definition of the background close to the time of prediction in the case of TSA­S. The
difference in performance between TSA­S and TSA­NS supports this observation. The TSA­S
explanations consist of attribution scores of spiking feature segments exclusively (Figure 6.7a),
while TSA­NS also assigns attributions to non­spikes in the data (Figure 6.7c). Therefore, it is
less likely for TSA­NS to consider recent data of the time series (i.e., in the timeframe shortly
before the model prediction) as background. Hence, it is less likely that this area is perturbed
(Figure 6.7). Nevertheless, the evaluation is still valid as unimportant features should not influ­
ence the model prediction strongly, regardless of their value. This observation indicates that
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(a) Sufficiency of TSA­S expla­
nations extracted from OneLay­
erSNN

(b) Sufficiency of TSA­S expla­
nations extracted from TwoLay­
erSNN

(c) Sufficiency of TSA­S expla­
nations extracted from Three­
LayerSNN

(d) Sufficiency of TSA­NS expla­
nations extracted from OneLay­
erSNN

(e) Sufficiency of TSA­NS expla­
nations extracted from TwoLay­
erSNN

(f) Sufficiency of TSA­NS expla­
nations extracted from Three­
LayerSNN

Figure 6.6: Attribution sufficiency from TSA explanations per model with their respective base­
lines per ϵ values 0, 5%, 10%, 15%, 20%, 25%, 50%, 75% of the extracted maximum attribu­
tions.

non­spikes are relevant to the prediction, as already implied by the faithfulness experiments.
Taking a threshold ϵ > 0 does not capture a set of feature segments that are sufficient for the
original model predictions because the model requires all attributing segments for its prediction.
Instead, every feature segment that exhibits an absolute attribution value larger than 0 belongs
to the required set of feature segments for a sufficient explanation. This means that there is no
large difference between the attributing feature segments in their importance with regard to suf­
ficiency. The attribution value is secondary as long as it is non­zero for sufficient explanations.
Therefore, the TSA explanations are evaluated with ϵ = 0.
The average degree of sufficiency of 0.961±0.028 indicates a high degree of sufficiency for
TSA­NS explanations. In comparison to the degree of sufficiency of both TSA­S and the base­
line explanations, TSA is significantly superior in this evaluation. The explanations extracted
fromOneLayerSNN even display a perfect attribution sufficiency of 1, showing that explanations
of this model are sufficient to the original model prediction. This high score could be caused
by the slower decay of the membrane potential compared to TwoLayerSNN. As the neuronal
contribution score (NCS), which represents the model spikes component in the computation of
TSA, depends on the decay rate of the model it is explaining, the attribution values farther in
the past more likely carry a non­zero value. This leads to parts of the input farther in the past
being marked as highly attributing (i.e., |a| > ϵ) so that the background is smaller. Thus, the
perturbation applied to the background of the samples in the frame of the attribution sufficiency
experiment would have little effect on the last time steps before the prediction. Hence, the pre­
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diction is not strongly influenced by the background perturbation, enabling a perfect sufficiency
score for OneLayerSNN. An example of this can be seen in Figure 6.7 and examples from the
other models can be found in appendix C.
ThreeLayerSNN has the same decay rate of the membrane potential as OneLayerSNN. As the
degree of sufficiency for the TSA­NS explanations extracted from ThreeLayerSNN is larger than
for the TSA­NS explanations from TwoLayerSNN, the role of the decay rate in connection with
the background size with regard to attribution sufficiency is supported. For the TSA­S explana­
tions, however, the explanations extracted from TwoLayerSNN achieve the highest degree of
sufficiency. In this case, the decay rate is likely responsible for this result but differently than
for TSA­NS explanations. The model relies on recent parts of the data in a small time inter­
val. Random shuffling perturbations of the background are less probable to perturb this small
time interval. Therefore, the highly attributing feature segments of the TSA­S explanations from
TwoLayerSNN achieve a higher degree of sufficiency.
However, TSA­NS explanations from ThreeLayerSNN do not achieve perfect attribution suffi­
ciency either. The reason for this difference could lie in the more complex input­output mapping
in deeper models. In OneLayerSNN, each input dimension is directly connected to the output
neurons, leading to rather direct effects showing in the perturbation of the input. TSA is based
on a forward pass approximation of the model it is explaining, meaning that these direct changes
are more immediate in the extracted explanation. In contrast, deeper networks propagate the
input across hidden computational layers, which is considered in the computation of TSA. Nev­
ertheless, each attribution value uses all spike and weight components of the hidden layers.
This effect of hidden layer computation influences the computation of the explanation, evidently
leading to slightly less sufficient explanations using both TSA­S and TSA­NS in deeper models.
The respective baseline sufficiency scores per model support this, as they also decrease with
an increase of model layers.
At the same time, the depth of the model is connected to the decay of feature attribution values,
too. As the weighted NCS’ of each layer are multiplied with the weighted NCS’ of the following
layers, the attribution score consists of as many multiplications of values ≤ 1 as there are lay­
ers. With a larger number of layers, this causes the attribution score to be small. Therefore,
the explanations extracted from deeper models such as ThreeLayerSNN assign non­zero attri­
bution values to features closer to the current timestep when compared to shallow models like
OneLayerSNN. By the same logic as the argument of the decay rate, this consequently leads
to larger parts of the data to be considered as background.
Thus, the evaluation of attribution sufficiency shows that explanations extracted from SNNs
using TSA­NS show a high degree of sufficiency in the feature attributions, given the threshold
for considering absolute attributions as important lies at ϵ = 0. The explanations extracted with
TSA­S score lower due to the exclusion of non­spikes as attributing features but still demonstrate
a clear improvement from the baseline.
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(a) TSA­S explanation for OneLayerSNN’s prediction of timestep 80763.

(b) Time series until timestep 80763 with perturbed background based on the TSA­S explanation of
OneLayerSNN’s prediction.

(c) TSA­NS explanation for OneLayerSNN’s prediction of timestep 80763.

(d) Time series until timestep 80763 with perturbed background based on the TSA­S explanation of
OneLayerSNN’s prediction but the background perturbation is not visible in the last 60 seconds.

Figure 6.7: Example of TSA­S and TSA­NS explanations of OneLayerSNN’s prediction for
timestep 80763 in (a) and (c). Red marks positive and blue negative attributions. (b) and (c)
show the data with a shuffled background based on the explanations and ϵ = 0. The red spikes
show the difference between the perturbed and clean input. While the bed sensor activation
from earlier in the time series is shuffled in the last 60 seconds in the case of TSA­S, TSA­NS
considers all sensor dimensions as relevant, hence the last 60 seconds are not perturbed.
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Sensitivity

Table 6.3 presents the max­sensitivity scores per model for TSA­S and TSA­NS explanations
compared to the random baseline explanations. As the baseline is random and does not depend
on a model, only one baseline score is reported. In all cases, the TSA explanations outperform
the baseline strongly, with the explanations extracted with TSA­S from TwoLayerSNN achieving
the best score of 0.033. Also for TSA­NS explanations, the max­sensitivity for TwoLayerSNN is
lowest. Figure 6.8 displays an example of the TSA explanations extracted from the predictions
of TwoLayerSNN on the clean and perturbed input. Examples of explanations for the other
models can be found in appendix C.

Model TSA­S TSA­NS Baseline
OneLayerSNN 0.853 2.359 ­
TwoLayerSNN 0.033 0.450 ­
ThreeLayerSNN 0.316 6.733 ­

Average 0.401 3.181 175.923

Table 6.3: Max­sensitivity results of the TSA­S and TSA­NS explanations extracted per model
and on average with their respective baselines.

The results clearly show that the TSA explanations provide stability concerning the tested per­
turbation of random shortening and lengthening of spike trains, where TSA­S is more stable
than TSA­NS. Compared to the random baseline, the average max­sensitivity of both TSA­S
(0.401) and TSA­NS (3.181) is undoubtedly smaller. This indicates a high level of stability of
TSA explanations with regard to such perturbations. However, a baseline of random attributions
may be rather unfit for this type of experiment, as it sets the baseline up for particularly poor
performance. Nevertheless, the results demonstrate that the TSA explanations are not random,
and perform significantly better than random initialisation of feature attributions.
TSA­S outperforms TSA­NS noticeably in terms of stability. The max­sensitivity scores of the
explanations extracted per model are in each case lower for TSA­S explanations. Hence, TSA­
S explanations are less sensitive to natural perturbations than TSA­NS explanations. This can
in part be explained by the nature of considering non­spiking attribution as 0 like in TSA­S
explanations. The non­spiking part of the input cannot exhibit a non­zero attribution value, which
is why there is a smaller number of attributing features in TSA­S explanations as opposed to
TSA­NS (e.g. Figure 6.8a vs Figure 6.8c). Therefore, changes in the attribution values are likely
less prominent, leading to a lower Frobenius norm of the attribution map matrix. Consequently,
the max­sensitivity score is likely small.
The explanations extracted from TwoLayerSNN produce the lowest sensitivity to the tested
types of natural perturbations for both TSA variants, therefore they exhibit the highest level of
stability. In this case, the larger membrane potential decay rate of TwoLayerSNN when com­
pared to the other networks could be a reason for the improved stability (Figure 6.8). Due to
the high decay rate, the explanations extracted from this model are smaller in the sense that
they provide a smaller number of features with attribution values. As the number of features
with attribution is lower than in the explanations extracted from the other models, the Frobenius
norm that defines the max­sensitivity score is also lower. The explanations from TwoLayer­
SNN happen to be smaller in terms of the Frobenius norm, still, the size of the attribution maps
extracted from all models is the same, thus they are comparable.
Interestingly, the explanations extracted fromThreeLayerSNN (Figure C.4) are more stable than
from OneLayerSNN (Figure C.3) in TSA­S while it is the other way around for TSA­NS explana­
tions. TSA­S displays the expected behaviour in this regard: Based on the direct mapping from
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(a) TSA­S explanation for TwoLayerSNN’s prediction of timestep 26442.

(b) TSA­S explanation for TwoLayerSNN’s prediction of timestep 26442 with natural perturbation.

(c) TSA­NS explanation for TwoLayerSNN’s prediction of timestep 26442.

(d) TSA­NS explanation for TwoLayerSNN’s prediction of timestep 26442 with natural perturbation.

Figure 6.8: Example of TSA­S and TSA­NS explanations of TwoLayerSNN’s prediction for
timestep 26442 with and without natural perturbation (shortening of the maindoor activation
by two seconds). Red marks positive and blue negative attributions. The explanation does
not show large changes for the perturbed example in both TSA variants, most likely due to the
decay rate of the neuron’s membrane potential.

the input layer to the output layer, changes in the input were expected to show more strongly
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in the explanations from OneLayerSNN, but this is not the case for TSA­NS explanations. In­
stead, the sensitivity of ThreeLayerSNN is almost three times as large (6.733 vs. 2.359). This
indicates that the amount of layers, as well as their size, plays a role in the evaluation of ex­
planation sensitivity, too. As the attribution scores for the explanation are computed using a
summation over the weighted neuronal contribution scores (NCS), TSA for larger models could
tend towards larger attribution values in the explanations. Thus, this evaluation highlights the
need for some form of normalisation with regard to hidden layer size in the TSA calculation.
Nonetheless, the evaluation of sensitivity infers a high level of stability for TSA explanations,
with TSA­S demonstrating improved stability in comparison to TSA­NS. As robustness is not
evaluated, a general statement about TSA’s sensitivity cannot be made.

6.2 User evaluation

The objective of explanations and efforts in XAI is to provide interpretability for a model, which
is the ability to be understood by humans. Therefore, the human­comprehensibility, especially
by the target group of the explanation method, is a quality to measure an explanation by [36].
Comprehensibility is therefore a human­centred quality of explanations, which does not have a
clear definition. While the time series specific evaluation frameworks presented in [42] and [48]
do not mention human­centred metrics, the human­comprehensibility is a central part of XAI [6].
Hence, the explanation developed in this thesis is evaluated in this regard in a human­grounded
evaluation [58]. Comprehensibility is a large concept and comprises other connected qualities.
A good and comprehensible explanation is clear in its intention, it is unambiguous [35]. This
means that the explanation does not leave room for interpretation by the user; it shows clearly
why a model made a certain decision. To measure clarity, a qualitative evaluation with users
is required. The number of different user understandings acts as an indicator for clarity and
ambiguity, where a clear explanation with little difference in understanding is desirable.
At the same time, a good explanation that is unambiguous to the user requires the explana­
tion to match with the user’s prior beliefs [36]. Explanations that do not fulfil this are at risk
of devaluation due to confirmation bias, which states that people tend to ignore and devalue
information that does not match their beliefs [64]. Measuring this stand­alone is difficult. As it
is strongly connected to clarity, it is implicitly measured through the aforementioned process as
well. Additionally, the user study is extended by a user study simulation that follows the forward
simulation approach defined by Doshi­Velez and Kim (2017) [58], where the understanding of
the explanation is tested. Users are asked to simulate the model behaviour based on the ex­
planation. The idea behind this is that good explanations that are unambiguous and match the
user’s prior knowledge and beliefs should suffice to predict the model’s classifications.

6.2.1 User Study Design

Especially for qualities like comprehensibility, it is clear that a purely technical, functionally­
grounded evaluation is not satisfactory. A qualitative human­centred, and more specifically a
user­centred evaluation must include the users themselves [6]. To evaluate qualitatively in a
reproducible way, this study aims to provide a clear experimental setup.
To evaluate TSA explanations, the best performing model in terms of predictive accuracy is
chosen as the model to be explained (TwoLayerSNN). Higher predictive accuracy implies that
the model has learned the task better than the other models, and thus predictions are less based
on random guessing. Additionally, this choice is made to limit the duration of the user study,
as it increases the chance of participants. The focus is on evaluating TSA as an SNN model­
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agnostic method so that explanations from the other models can be neglected in the evaluation
of comprehensibility.
For the user study, six explanations for the predictions of TwoLayerSNN are extracted from the
test set using TSA­S. These are selected to show a range of different types of data and model
behaviour (i.e., misclassification and correct classification). To identify these samples, the test
set is randomly sampled one by one, and the first six suitable samples are selected. These are
examples of correct and incorrect classifications of data that differ from each other (e.g., not
showing multiple samples with the Bed sensor activated even though this is quite common in
the dataset).
The type of user study is a survey. Surveys are an efficient way to reach a large population and
are appropriate for gaining insights into the experiences and attitudes of users [65]. As the aim
of the study is to measure the comprehensibility of the explanation, which is an experience of
the user, a survey is a fitting study type. The survey design method by Müller [65] is followed:
(1) Research goal formulation, (2) Matching of research goals to constructs, and (3) Conversion
of constructs to survey questions. The ethics approval for this user study can be found in the
attachment.
The goal of the survey is the measurement of comprehensibility of the explanation method with
regard to its user group. However, the target group of the explanation method are model de­
velopers, which are difficult to reach. Instead, a requirement of existing background knowledge
in the field of machine learning is imposed on participants. Therefore, the target user group
first has to be identified and briefed from the survey respondents before studying their com­
prehensibility. Consequently, the first part of the survey consists of a filtering question, where
non­target group users (i.e., without any prior machine learning knowledge) are excluded from
responding. The target users are briefed about the data and task used in this thesis in order to
prevent confusion during the survey with regards to the data.
As detailed before, comprehensibility contains both the constructs of clarity and coherence. As
these constructs are strongly overlapping, they cannot be viewed separately. Therefore, two
types of questions are proposed to study both. In the first task, the users are shown three
explanation examples. These are shown in random order to prevent any question ordering
bias. The users are asked to explain their understanding of the model prediction as shown by
the explanation in free text. These free­text answers are post­processed by three people with
preknowledge in machine learning in an inductive clustering task of possible different interpre­
tations. This is done independently from each other and without preknowledge of the targeted
metric. The average number of clusters represents the clarity and coherence of the explanation.
Explanations that are clear and unambiguous, as well as matching with the user’s prior belief
are hypothesised to leave little room for different user interpretations as they are understood in
the same way. Thus, a small number of clusters, ideally one, is desirable as it indicates that
the explanation is comprehensible. The instructions given to the annotators are provided in
appendix E.
Secondly, a forward simulation task is selected [58]. Three new explanations are presented
to the users. However, these miss the information about the model’s prediction, as well as
the confidence distribution. The users are asked to simulate the model behaviour given the
explanation and predict the model classification. Additionally, they are asked to explain their
simulation in free text. The idea behind this question is to study the comprehensibility of the
explanation through an analysis of user understanding. This task also addresses both clarity
and coherence, as explanations that are unambiguous and match the user’s prior belief are
hypothesised to be easily understandable. Thus, the model behaviour should become clear
through the explanation, so that users can easily simulate the model. To measure this task,
the classification accuracy of the users with regards to the true model predictions is computed.
High accuracy is desirable. The provided reasoning for the user’s predictions is considered in
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addition to this metric, to give further insight into the user’s understanding of the explanation.
The full survey design is provided in the attachment.

6.2.2 Results and Discussion

The user study was conducted from 01/10/2021 to 11/10/2021 for a total of 11 days. Of the 36
respondents, three did not fulfil the selection criteria of prior background knowledge or experi­
ence in supervised machine learning. Thus, they were not presented with the survey questions
and can be neglected in the analysis, leaving 33 responses for the qualitative analysis of human­
comprehensibility of TSA.
Out of the 33 respondents, 26 (i.e., 79%) indicated that they understood the explanation compo­
nents from the visualisation after the briefing. Two respondents also contacted the researcher
to clarify the explanation components, but it is unclear at which point in the survey this occurred.
Six respondents (i.e., 18%) said that they are not sure whether they fully grasp the explanation
components. The main concern is related to the understanding of the feature attribution over­
lay to the data. Some participants were unsure about the different intensities of the feature
attribution colour, while for another the connection of the colours to the labels was not instantly
clear. Another participant indicated that their machine learning knowledge is limited and they
were not familiar with the meaning of the bias anymore, while another was confused by the
visualisation of the spiking data (i.e., the empty spaces in between the spikes). Furthermore,
one respondent questioned the chosen dataset and task. They answered that they are not able
to “understand what [the explanation for the prediction is]” because “there is nothing to explain
[if a sensor seems to be directly connected to a certain class]”. One respondent indicated that
they did not understand the explanation components from the briefing, saying that they are
unable to distinguish the colours used for the feature attribution. Moreover, participants were
able to submit any comments they may have at the end of the survey. From these comments,
the participant’s insecurity and hesitance also becomes apparent as some participants men­
tioned that they potentially misunderstood the survey tasks and the topic. Some participants
also mentioned directly to the researcher that they have never seen a local feature attribution­
based explanation before, which caused uncertainty. As XAI is not necessarily a standard part
of the machine learning curriculum, some confusion was expected. However, the briefing had
the objective to clarify these confusions, where it was mostly, but not always sufficient.
During the analysis of the survey responses, these concerns have to be considered. The vi­
sualisation is not completely clear to some participants, which could potentially impact the way
these respondents answered the rest of the survey, especially as human­comprehensibility is
to be studied. In the following, the survey results regarding the user understanding questions
as well as the simulation task are presented, analysed and discussed.

User Understanding

For the first part of the survey, three explanation examples were shown to the users in random
order (namely timestamps 4918, 87083, 184970 of the test set) and users were asked to explain
their understanding of why the SNN model made a certain prediction. Hence, qualitative data in
form of free­text answers was collected in this part of the survey and clustered by three annota­
tors into themes that shall represent different interpretations of participants. One response to a
question was excluded from the analysis due to an apparent user error, in which the participant
misread the data, leading to out of context interpretations. The original cluster themes identified
per annotator can be found in appendix F and an overview of the number of clusters identified
by annotator is presented in Table 6.4.

57



CHAPTER 6. EXPLANATION QUALITIES

Number of clusters
Explanation Annotator A Annotator B Annotator C
#1 5 6 613
#2 5 10 913
#3 3 8 7

Average 4.33 8 7.33

Table 6.4: Number of clusters identified by each annotator per explanation.

The number of clusters identified implies some ambiguity of the explanation as it exceeds a def­
inite and clear interpretation. It shows that the explanation can be read differently by different
users. The overall average number of clusters is at 6.55 which means there are on average
more than 6 different interpretations of the model prediction given the visualised explanation,
where one cluster likely corresponds to confusion by the explanation (i.e., the participants did
not understand why the model made a certain prediction). However, many clusters are also
close together (i.e., using the seat and the seat sensor being activated are considered separate
clusters) and it can be argued that these slightly different perspectives refer to the same user
understanding. Thus, the interpretations of these clusters are similar. Instead of different un­
derstandings, the clusters rather represent different parts of the explanation that the participants
paid attention to.
As different labels between annotators are possible in an inductive approach, the granularity of
themes differs per annotator, which can be seen by the number of themes and comments iden­
tified. While annotator A did not make a distinction between user action and sensor activation,
annotators B and C did. In addition, annotator C also distinguished if a participant indicated un­
certainty in their answer. In an effort to consolidate the annotations, we define common umbrella
terms for the annotator themes. Namely, these are:

1. Data: This umbrella cluster combines the cluster themes that revolve around survey par­
ticipants identifying the data itself as the reason for the SNN model prediction (i.e., Only
feature attribution from annotator A, sensor activation, use of x, colours, time from annota­
tor B and themes connected to sensor activation, user actions and colours from annotator
C). This includes naming activated sensors that were displayed in the visualisation (e.g.,
“Because the cupboard sensor was activated”) as well as the user action inferred from
the displayed data (e.g., “The cupboard was opened”). While the latter implies that the
participant connected the data to user activities, both can be summarised in the common
theme of data. From the survey responses, it is not clear whether participants always
paid attention to the feature attribution map explanation, or whether they based their an­
swer solely on the shown data and gave their reasoning from their domain knowledge.
However, this cluster summarises the user responses that imply the reason for a model
prediction to be found in the input data to the model. Most survey responses (61.6%)
across all three explanations fall into this category.

2. Classification confidence: As a second, much smaller (8.8% umbrella cluster, responses
to the question of why TwoLayerSNN made a certain decision indicate that survey par­
ticipants related the model’s prediction to the shown classification confidence in the ex­
planation visualisation (e.g. “Again, the confidence of the class Lunch outperforms the
probability of other classes”). Participants mentioned the high classification confidence
as the sole reason for the model prediction. However, participants did not indicate the

13Uncertainty themes if in combination with other identified themes were treated as comments, since the partici­
pant’s uncertainty still allowed them to give an answer to the question.
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reason for the high classification confidence. Hence, it is unclear whether participants
accepted the high confidence or perhaps thought about a deeper reason for the high con­
fidence such as sensor stimulation or model bias, for example.

3. Data and classification confidence: In the third umbrella cluster, both preceding themes
are combined. Survey respondents gave their understanding of the model behaviour by
mentioning both the data as well as the model’s classification confidence. This indicates
that they viewed the explanation visualisation as awhole. This cluster is the second largest
with 20.4% of the survey responses.

4. Learned patterns: This umbrella cluster consolidates survey responses that indicate the
reason for the model prediction to be linked to the training process and learned patterns.
Potential model bias is mentioned as well as possible dataset­specific information that
may have been learned by the model, such as the time of day. It is very close to the
data umbrella cluster, as learned patterns are recognised in the input data. Nevertheless,
responses in this cluster incorporate the model training into their interpretation and under­
standing of model behaviour in addition. Thus, the responses in this cluster also show that
the survey respondents looked at the explanation as well, and thought about the model
behaviour. However, this was not often the case as 6.5% of the survey responses fall into
this category.

5. No certain answer: The last umbrella cluster summarises the cases where the respon­
dents were too confused by the visualised explanation to conclude reasoning for themodel
prediction. Even though this cluster is quite small, it is worthy to mention as it indicates
that either the explanation or the task was not clear to the participant. This cluster is the
smallest with 2.7% of the survey responses, showing that some participants were con­
fused about some explanations but neither a certain explanation nor a certain participant
can be identified as particularly confusing or confused.

To validate the above­explained umbrella clusters, the responses are coded to these themes
using a mapping of the originally defined clusters by the annotators, and an assessment of the
inter­rater reliability (IRR) is performed. As there are three raters, Fleiss’ kappa [66] is taken
as an IRR metric. As κ = 0.592, there is a moderate agreement between the raters. Thus,
the mapping of the original annotations to the umbrella clusters makes sense and is in line with
the original annotations. The mapping as well as the computation of κ can be found in the
attachment.
These umbrella clusters represent the different themes that occurred in the survey responses.
However, they do not necessarily match an answer to the question of Why did the model make
a certain prediction?. Rather, these themes capture what respondents paid attention to while
answering this part of the survey. While the Learned patterns cluster answers this question, it
is quite small with 6.5% of the survey responses, thus corresponding to a small sample size.
An interesting observation is that some responses in the data, confidence or both clusters
also refer to the attribution highlights (e.g. “high contribution of spiking seat sensor, in particular
at later timesteps.”, “feature attribution shows the sensors is of cupboard”). Additionally, the
term activation could mean a spiking sensor, thus referring to the data itself, or alternatively the
feature attribution highlights. Under the assumption that the mentioned sensor activation in the
responses refers to attribution, most responses are based on the data as well as the attribution
highlights. Thus, given this assumption, the explanations were mostly used in this survey part
and led to the main interpretation of the shown explanations to be present in the input data.
Furthermore, it is noteworthy that the survey responses indicate the occurrence of uncertainty
within the participant’s interpretations of model behaviour in the case of misclassification as all
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answers in No certain answer correspond to the first explanation, which displayed a misclas­
sification. This observation suggests that the participants do not intuitively understand why the
model made a misclassification, and suggest that the coherence of the model predictions is
relevant to the comprehensibility of the explanation. Especially the confidence graph seems to
cause confusion and uncertainty in the human­comprehensibility of the explanation if it does not
match the attribution shown in the explanation (e.g. “It is unclear why the confidence of Other
is so high when the feature attribution graph does not clearly show this.”). This observation
is also found in the responses to the second explanation, in which the model correctly classi­
fies Lunch, but the feature attributions of the model are not strictly toward this class. As the
attribution did not make sense and was incoherent with the respondents understanding of the
data, the responses also showed hesitance (e.g., “[...]I am unsure (based on the feature attri­
bution window), why the confidence distribution is spread out so broadly across other classes.
[...]”). However, other responses suggested that the participants did have an understanding of
non­zero confidence values of other classes (e.g. “[...]Small contribution of bias sensor to other
labels still.”). In the last presented explanation, the model makes a correct classification with
almost 100% confidence at the predicted class, which seemed to be very clear to the partici­
pants (e.g. “Major confidence, almost 100% certainty on the class Spare_Time/tv”). Therefore,
the human­comprehensibility of the explanation is implied to be connected to the coherence of
the model behaviour.

Simulation Task

Three examples were presented to the users for the forward simulation, namely of timestamps
81860, 5571 and 70169 of the test set. These examples showed the activities Breakfast, Leav­
ing, Sleeping and were predicted by TwoLayerSNN as Lunch, Leaving, Sleeping respectively.
Hence, two examples showed an explanation for a correct prediction of the model and one
example showed an explanation for a misclassification.
The sample of timestamp 70169 was correctly classified by TwoLayerSNN with strong confi­
dence of 1. Also, the sample of timestamp 5571 was correctly classified with high confidence of
about 0.85 for leaving. For the misclassified sample of timestamp 81860, the model predicted
Lunch with confidence just below 0.5. The unmasked explanations can be found in appendix D.
The predictions by the survey participants per question are displayed in Figure 6.9. Table 6.5
shows the resulting accuracy per question as well as the averaged accuracy over all simulation
questions.

(a) User simulation predictions
for question 1. The model
prediction is Lunch, while the
ground truth is Breakfast.

(b) User simulation predictions
for question 2. The model
prediction and ground truth is
Leaving.

(c) User simulation predictions
for question 3. The model
prediction and ground truth is
Sleeping.

Figure 6.9: Simulation task predictions per question.

In all cases, the majority of the participant’s prediction is the same as the model prediction,

60



CHAPTER 6. EXPLANATION QUALITIES

Simulation Question Accuracy
Question 1 0.758 ± 0.146
Question 2 0.970 ± 0.058
Question 3 0.909 ± 0.098

Averaged 0.879 ± 0.111

Table 6.5: Results of the user study simulation task (Accuracy of user predictions concerning
model predictions reported at a 95% cI).

which is reflected in the mean user simulation accuracy of 0.879 ± 0.111. From all participants,
21 correctly predicted the model classification in all cases (i.e., 63.6% of participants). Across
all examples, participants indicated that they chose their prediction mainly based on the feature
attribution colour (e.g., “The only highlighted part in the image (besides the bias) is dark blue.”,
“Only the green color is present [...].”, “Same color as sleeping. [...]”). Another often occurring
reason given is the activation of a certain sensor/input dimension (e.g., “The cupboard is the only
active sensor in the time before.”, “Maindoor is active.”, “Continuously sensor reading from the
bed”‘). A few also mentioned the feature attributions in the bias to be relevant to their prediction
(e.g., “The prediction is based on the attribution of bias sensor at second 81860.”), as well as
the duration of the spike trains of the input (e.g., “The duration was too short for lunch / breakfast
/ dinner. Would guess snack because of that”). It is noteworthy that the lowest user simulation
accuracy (0.758 ± 0.146) is achieved in the case of misclassification and lowest confidence of
the samples by the model in the first question (see Table 6.5). This question also shows the
largest variety of predicted classes, with five different predictions and one participant who was
unable to make a prediction with the given information (see Figure 6.9a). For the second and
third question, two classes were predicted each, where the third question also had one case
where the participant was unable to decide on a class. However, the highest user simulation
task accuracy does not correspond to the sample with the highest model confidence.
Even though the overall user simulation task accuracy is high (0.879 ± 0.111) and the feature
attribution map overlaid to the data is stated by most participants as the main reason for their
prediction, some respondents seemingly did not let the feature attribution influence their pre­
diction. Therefore, a high level of clarity and coherence cannot be inferred by default. The
results indicate that the explanation successfully gives insight into the model behaviour and
can be understood by humans but at the same time is not straightforward. As some partici­
pants based their prediction on the data itself, rather than the data and feature attribution from
the explanation, the high accuracy cannot be concluded to be completely due to the human­
comprehensibility of the explanation. The nature of the dataset also contributes to the perfor­
mance as the connection of certain sensors to certain activity classes are natural and make
sense (e.g., Bed sensor activation is connected to Sleeping). However, this fact emphasises
the coherence of the explanation since participants partly used the feature attribution and sen­
sor activation as one unit (e.g. “Sleeping sensor is activated”). As the connection between
the sensors and the model prediction is sound and coherent in the given example, referring
to the attribution and sensor activation as one unit is possible. However, this is not true as
a sensor does not necessarily have a one to one relationship with a certain class, which was
interestingly suggested by one respondent (“I feel this was purely a one sensor to one outcome
mapping. I am not able to understand how this is providing the explanation.”). In particular,
the human­comprehensibility of the explanation suffers in case of misclassification. In the case
of question one, the model predicted Lunch falsely, but the attribution toward this class was
shown in the feature attribution. Since the participants knew the true label, the explanation was
not coherent with their knowledge, which partly led to confusion. This confusion becomes ap­
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parent in the responses, where other meal­related classes (i.e., Breakfast, Snack) were also
predicted, next to Lunch. The responses to question two show that a feature attribution map
that is evidently highlighting one particular class is clear and unambiguous as an explanation.
Almost all participants correctly predicted the model behaviour. From the comments, it seems
that the participant which did not predict Leaving was unable to see the feature attribution (“I
am not really sure what happens when nothing was recorded but it would make sense to me
that the prediction is other in that case.”). Question three answers demonstrate that the par­
ticipants paid attention to the feature attribution map in this task, as the two classes that were
shown in the feature attribution map are both predicted. In summary, most participants were
able to correctly predict the model behaviour, showing that the explanation is clear and quite
unambiguous. Therefore, the results from the simulation task suggest that the explanation from
TSA­S itself is human­comprehensible, with the clarity and coherence depending on the model
predictive performance.

6.3 Implication and Outlook

In this chapter, an evaluation framework for testing the explainability of temporally coded SNN
models with the help of TSA is deduced from related work in XAI in time series and applied. To
conclude the findings of the evaluation, the main implications from the evaluation are shortly
presented.
The tested qualities in the evaluation highlight different quality aspects. Therefore, dependen­
cies of different metrics from the technical and user evaluation are not necessarily expected
(i.e., a faithful explanation is not necessarily human­comprehensible). However, some connec­
tions can be observed between metrics and impacts connected to certain TSA properties can
be observed recurrently in the analysis of the different metrics.
On the one hand, faithfulness and attribution sufficiency as metrics are connected in mean­
ing. They both inspect how well TSA explanations reflect the model behaviour. Faithfulness
and attribution sufficiency are prerequisites for a feature­based explanation to fulfil as they indi­
cate whether model behaviour is reflected through the explanation. Nevertheless, they inspect
different perspectives, so that it cannot be concluded that faithful explanations are also suffi­
cient and vice versa. On the other hand, stability concerns the model behaviour to changed
input specifically, and human­comprehensibility is a user­centred metric. Stability is desired
because unstable explanations tend to be difficult to understand [63]. This motivation shows
the connection between stability and human­comprehensibility. Certainty as a fulfilled property
by the explanation is linked to the human because it provides additional information about the
model prediction. Thus, stability, certainty and human­comprehensibility focus on qualities that
specifically revolve around the user, where TSA­S outperforms TSA­NS. In this sense, the ex­
periments with TSA show that the superior explanation method in faithfulness and attribution
sufficiency is not necessarily a good explanation overall. TSA­NS is inferior in stability. A user
study with TSA­NS was not conducted because the visualised explanation did not make sense.
This highlights the importance of comprehensive evaluations in XAI as various quality aspects
apply to a good explanation.
In the analysis of the evaluation results, particularly of the technical evaluation, certain proper­
ties of TSA are connected to its explanatory performance. First, the consideration of non­spikes
as negative attribution (TSA­NS) or zero attribution (TSA­S) has a clear effect on all metrics. As
described in the respective sections, the absence of spikes evidently carries relevant informa­
tion for an SNN’s prediction, which makes sense. Therefore, TSA­NS is superior in faithfulness
and attribution sufficiency, which analyse the fundamental functionality of TSA as an explana­
tion method. These metrics evaluate whether TSA successfully reflects the model behaviour.
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Nevertheless, considering non­spikes as attributing as well also leads to larger explanations in
size, which influences the stability of TSA. TSA­NS, which generates larger explanations in size,
is less stable than TSA­S when it comes to natural perturbations because more features change
in attribution values. Second, TSA is shown to explain shallow models better than deep mod­
els. Regardless of the TSA variant, the explanations extracted from OneLayerSNN generally
achieve higher explanatory performance than the explanations extracted from deeper models.
Hence, the layer propagation of weighted NCS’ in the TSA algorithm requires improvements to
enhance the applicability of TSA for deep SNNs. Lastly, the decay rate used in the computation
of the NCS component of the TSA algorithm is implied to affect TSA’s explanatory performance.
While it makes sense that the decay rate used to compute spike contribution is the same as the
SNN model’s decay rate, the experimental results from the evaluation suggest that the decay
rate impacted the explanatory performance of the TSA explanations. As this algorithmic de­
sign choice reflects the impact of a spike in an SNN model closely, a conclusion regarding the
evaluation procedure can be formulated: The decay rate influences the size of the explanation
(e.g., explanations from TwoLayerSNN with a larger decay rate are generally smaller than of
OneLayerSNN), so that the evaluation of models with different decay rates may not be appro­
priate using the same maximum feature segment size. The assumption taken for the definition
of the feature segment size is that the attribution values within a segment are close to each
other. However, with a large decay rate, the attribution values change more rapidly, so that a
smaller feature segment size is required to fulfil the assumption.
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7 DISCUSSION

In this chapter, the research results which are presented in the previous chapters are reflected
on the research questions that this thesis set out to answer. Additionally, limitations that must
be considered in the frame of this thesis are highlighted.

7.1 Answer to Research Questions

This thesis set out to answer the research question of How can the predictions of temporally
coded spiking neural networks be explained reliably? by studying the sub­questions How
can feature attribution be calculated for temporally coded spiking neural networks? andHow can
the quality of local feature attribution­based explanations extracted from SNNs be measured?
using a time series classification use casewith a fully connected SNNwith LIF neurons, temporal
coding, as well as surrogate gradient learning.
A novel approach called Temporal Spike Attribution (TSA) is developed to answer the first sub­
research question. TSA considers the spiking behaviour of the network S, learned weights W
as well as the output layer membrane potential U (L). TSA is proposed as an algorithm to de­
termine feature attribution in temporally coded SNNs. The algorithm builds on the use case
problem as well as the use case SNN but applies to all temporally coded SNNs with static
weights, as opposed to the model­specific explanations through feature strength functions pre­
sented by Jeyasothy et al. (2019) [37]. The components of the algorithm are defined as the
NCS N⃗ (l)

t′ (t) which considers spike times t′, normalised weight components CW (W (l)) and clas­
sification confidence P⃗ (t) based on U (L). Through addition and multiplication of the algorithm
components, the model activation and forward propagation are approximated in two different
variants: TSA­S only considers spikes of a neuron to affect its downstream neurons whereas
TSA­NS also considers the absence of spikes. A particular input x’s attributions to the different
outputs ŷ are computed through TSA. These represent and enable the inspection of the model
behaviour, thus providing a local explanation in the form of feature attribution maps per class
that addresses the outcome explanation and model inspection problem. Moreover, the model’s
certainty in its prediction is quantified as the softmax probabilities of the output layer. TSA ap­
plies the NCS presented by Kim and Panda (2021) [40] and extends them by incorporation of
the learned weights of the model and the quantification of prediction certainty. Therefore, more
information about the model behaviour is directly included in the explanation. In the TSA­NS
variant, the temporal contribution definition is extended to non­spikes as well. Moreover, the ex­
act spike times of the neurons in an SNN carries more meaning when using temporal coding as
opposed to rate coding. Thus, this study showed the applicability of the NCS [40] in temporally
coded SNNs on a time series classification task.
Furthermore, a thorough evaluation of TSA demonstrated on the time series classification use
case is provided in the frame of this thesis to ensure the reliability of the explanation method
and answer the second sub­research question. A technical and user evaluation covering the as­
pects of faithfulness, attribution sufficiency, sensitivity, certainty, and human­comprehensibility
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is performed to measure the quality of TSA as well as to provide an evaluation framework for
local feature attribution­based explanations on time series data. This evaluation is performed
using three SNN models of different depths trained on a time series classification task, namely
the activity of daily living using binary sensors recognition [50].
Faithfulness refers to the faithfulness of the explanation toward themodel behaviour [42]. Hence,
it is concerned with the question of whether the attributions of the explanation are the true attribu­
tions to the model prediction. As there is no explanation ground­truth to compare the attributions
to, faithfulness is measured in explanation selectivity [59] in this thesis. By iterative inversion
of the feature segment values with the highest attribution score and recording the model pre­
dictions, the effect of changing the value of the attributing feature segments is measured. The
evaluation shows that TSA­NS in particular provides faithful explanations while TSA­S misses
the attributions from non­spiking data and therefore does not outperform the baseline. Thus,
this evaluation highlights the relevance of non­spikes to the model prediction which a faithful
explanation method should consider. Additionally, TSA’s improved faithfulness OneLayerSNN
demonstrates the improved applicability to shallow SNN models. Hence, TSA may need to be
adapted for deeper models to achieve better faithfulness.
Attribution sufficiency measures whether all truly relevant features are included in the expla­
nation, thus whether the important features per explanation are sufficient for the model predic­
tion [61]. The metric chosen in this thesis is the degree of sufficiency, which inspects the model
performance when the background, i.e. non­important feature segments, are randomly shuffled
within their input dimension. Different thresholds for considering attributions as important are
tested, where a high degree of sufficiency is only reached with a threshold of 0. Therefore,
TSA does not distinguish between important and non­important attributions with regard to suf­
ficiency. TSA­NS showed particularly high attribution sufficiency with this threshold, supporting
the observation from the faithfulness experiments that the non­spiking parts of the input attribute
actively to the prediction and should not be neglected in a feature attribution­based explanation.
Hence, the experiments testing faithfulness and attribution sufficiency suggest that TSA suc­
cessfully reflects the model behaviour of the SNN models to be explained, where TSA gener­
ates better explanations for shallow models as well as under consideration of non­spiking input.
These results indicate that TSA as an explanation method is effective in capturing SNN model
behaviour, which is essential to an explanation method.
Sensitivity describes an explanation method’s desired ability to generate similar explanations
for similar input. Stability (i.e., sensitivity to naturally occurring data perturbations) and robust­
ness (i.e., adversarial perturbations) are distinguished [48], where the latter is not evaluated in
this thesis. Sensitivity is measured in max­sensitivity [63], and realised as the Frobenius norm
of the difference in explanations with clean and perturbed input. Both implementations of TSA
achieve a high level of stability across the different tested SNN models, where TSA­S outper­
forms TSA­NS. The decay rate of the membrane potential likely influences the stability. As TSA
is a deterministic algorithm, it also fulfils the property of consistency, meaning the generation of
the same explanations for the same input.
Moreover, the certainty of the model prediction is provided in the explanation as well as con­
sidered in the TSA computation. Information about certainty in the explanation can put the
explanation attributions into context [48].
Lastly, human­comprehensibility concerns itself with the target group of the explanation and
focuses on how understandable an explanation is to its target users. To evaluate this, studies
with humans are required [6]. In the frame of this thesis, a user study in the form of a sur­
vey was conducted to qualitatively evaluate human­comprehensibility through the constructs
of clarity and coherence for the TSA­S explanations as the TSA­NS explanations are deemed
incoherent beforehand. Two tasks were presented to the users. The first task evaluated the
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user interpretations of explanations and data, and the answers were clustered into themes of
different interpretations by three coders. In the second task, users were asked to simulate the
model prediction given the explanation [58]. The accuracy of the simulation is then the metric to
measure the comprehensibility by. The results of the user study suggest that the explanations
generated by TSA­S are clear in showing what features attribute to the model prediction, but
it is not always coherent. This is especially the case of misclassification, or if the data itself
is incoherent with the user’s beliefs. Furthermore, the interpretation task showed that different
participants focus on different parts of the explanation during interpretation. Therefore, TSA­S
can be human­comprehensible but this quality is also tightly linked to the predictive performance
of the SNN model to be explained.
Thus, the evaluation framework covers different aspects of a good feature attribution explana­
tion on time series data and can be transferred to other local feature­based explanations on time
series tasks. Concrete metrics are provided so that such explanations can be benchmarked in
possible future work. While the framework is quite comprehensive, the evaluation shows that
it is not complete. For example, the number of non­zero attributing features is implied to con­
tribute to explanatory performance, especially concerning human­comprehensibility. However,
this was not evaluated. Similarly, robustness was not evaluated because it requires other ques­
tions to be solved first. Therefore, this framework represents a first comprehensive evaluation
methodology for TSA explanations that addresses the second sub­research question of this the­
sis and has the potential for extension and improvement. This topic is reflected on in dedication
in the upcoming section 7.2.
In summary, this thesis defines a way to explain the predictions of temporally coded spiking
neural networks through the definition and evaluation of Temporal Spike Attribution quite reliably
where TSA­S and TSA­NS both have their strengths and weaknesses. Overall, observations
from this study suggest that TSA is better at explaining shallow models rather than deeper
models which highlights the need to adapt the computation of attributions in deeper models. In
addition, insight into the attribution of spikes and non­spikes of the data is gained where the
non­spiking input should not be neglected. As both these topics are interesting to inspect, they
are reflected separately in the following sections 7.3 and 7.4.

7.2 Reflection on Evaluation Framework

The target of the evaluation is to provide a thorough evaluation of local feature­based explana­
tions on time series data such as TSA. The technical evaluation spans the explanation qualities
of faithfulness measured in explanation selectivity [59], attribution sufficiency measured in the
attribution sufficiency score [61], and stability measured in max­sensitivity [63]. No new metrics
are introduced in this work, rather existing metrics that match the data and explanation format
are applied. An evaluation of robustness is not performed in the frame of this thesis because
the definition of adversarial robustness for explanations must be clarified first. Therefore ro­
bustness is still missing for a complete evaluation of TSA’s sensitivity. Additionally, the size
of the explanation is not evaluated directly. Still, it indirectly impacted the other explanation
qualities (e.g. TSA­NS explanations are larger because they consider non­spiking attribution,
which impacted the max­sensitivity scores). A dedicated metric could be introduced to measure
the explanation size because it is connected to human understanding [58]. However, the opti­
mal size is not straightforward: a smaller size does not necessarily lead to a better explanation
because it may be missing information (e.g., TSA­S explanations are smaller but also perform
worse in faithfulness and sufficiency than TSA­NS explanations). Instead, a balance of size and
informativeness in the explanation has to be reached for which a metric has to be proposed.
In the user evaluation, only human­comprehensibility in terms of clarity and coherence is tested.
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This is a quality of the explanation that requires a human­grounded evaluation. A user study
design with free­text user understanding questions and a forward simulation task [58] is per­
formed to assess the comprehensibility of TSA­S explanations. The free­text answers are clus­
tered inductively by three people which are not part of the research team without awareness
of the target metric, i.e., the number of clusters as an indicator for clarity. While this approach
prevents a researcher bias toward good results, the clusters rather capture which part of the
explanation users paid attention to instead of the understanding. The instructions and defini­
tion of the clustering task, which took place remotely to limit the researcher influence, might
be unclear. Therefore, future studies using this methodology shall take care to improve on this
aspect.

7.3 Reflection on Explaining Deep Models

The performance of TSA as a local explanation method is tested on different SNN models in
this thesis. These models have the same neuron model and neural coding and were trained
using the same learning method. However, the number of layers is different. In the experi­
ments to evaluate TSA as an explanation method, a trend showed toward better performance
for OneLayerSNN, which is the shallow model without any hidden layers. TSA performed best
in all quantitative metrics across the variants, which suggests that it is better at generating ex­
planations for shallow models than for deep models.
In the TSA algorithm, the difference in depth means that multiple weighted NCS are multiplied
and aggregated in the input space for deep models, while shallow models are explained using
the weighted NCS score of the input spikes. Therefore, the multiplication of multiple weighted
NCS scores may not fully capture the complexity of a hidden layer in the SNN model to be
explained. The computations do not seem to approximate the model behaviour as well as in
the case of shallow models. The reason for this is unclear, however, the size of the hidden
layers, as well as the number of hidden layers, likely contribute to this. The size of the hidden
layer is connected to the sizes of the matrices of the TSA computation. In the aggregation of
values in the input space to arrive at attribution values, the hidden layer sizes influence the
computation in the sense that larger hidden layers generally result in larger attribution values
due to the additive operation of matrix multiplication. At the same time, the number of hidden
layers also influences the attribution values. As the possible values for each component of the
computation (i.e., NCS of S, weight contribution ofW , outcome probability computed from U (L))
are realised in the interval [0, 1], TSA could be at risk of vanishing attribution values for deep
models due to repeated multiplication of values smaller than 1. Consequently, the information
extracted for the explanation could be blurred by the number of hidden layers and distorted by
the hidden layer sizes.
To solve this issue, further research into the TSA algorithm is required. Some form of normalisa­
tion could counteract the effect of the hidden layer sizes, while measures to prevent vanishing
values, such as operations in log­space or intermediate normalisation of weighted NCS for ex­
ample, could be implemented to prevent this issue. Nevertheless, these suggestions need to
be studied and drawbacks considered (e.g. negative values are undefined in log­space).

7.4 Reflection on Non­Spiking Attribution

In the frame of this research, TSA explanations were tested in two variants which are distin­
guishable by the way they consider non­spikes in their computation. This is realised in the
spike time component of the TSA algorithm, namely the neural contribution score (NCS) (see

67



CHAPTER 7. DISCUSSION

section 5.2.1). On the one hand, TSA­S defines the contribution of a neuron i to its downstream
neurons at time t′ as zero in case of no spike because there is no effect of xi,t′ on the down­
stream neurons. Instead, a downstream neuron j’s membrane potential uj decays according
to the LIF dynamics. In TSA­NS, on the other hand, the absence of a spike at t is assumed
to affect the downstream neurons in a sense that uj is neither decreased nor increased by a
postsynaptic potential. Therefore, this effect is captured by the NCS as the negative of a spike’s
attribution.
Hence, the explanations that are extracted with TSA­S and TSA­NS are different, as the exper­
imental setup and results show. Not only does their size differ, as TSA­NS considers a larger
number of features, but their explanatory performance is also different. While both methods ex­
ceed the baseline in all tested properties, there are noticeable improvements of TSA­NS over
TSA­S in terms of faithfulness to the explained model and sufficiency of the attributions to the
model prediction. Both of these properties describe that TSA­NS is better at capturing model
behaviour in its explanations. This suggests that the models use not only the spiking part of the
input but also the absence of spikes as information for the prediction. Therefore, the interpre­
tation of spike absence as zero is wrong as it does not capture the full model behaviour in the
explanation. Nevertheless, TSA­S achieves better stability and offers human­comprehensible
explanations, which TSA­NS does not. The TSA­NS explanations, however, are incoherent with
the data, ground truth and model prediction when observing class activation in the explanation.
In the case of the ADL classification task, the sensor activation related to an activity attributes
to what seems to be random classes but the predicted class. However, information is carried
in spikes in temporal coding [17], TSA­NS must be wrong regarding the attribution strength it
assigns to features. Since the only difference between both TSA variants is the definition of the
NCS in case of spike absence, an incorrect definition of the NCS for absent spikes is implied.
Therefore, a need to refine the definition of the NCS concerning non­spikes is highlighted. In
the experiments of this thesis, the NCS of non­spikes in TSA­NS is defined as −exp(γ|t− t′|),
where γ is the membrane potential decay rate dictated by LIF neuron dynamics, t is the time of
prediction and t′ is the time of the non­spike. It is the negative version of the NCS for spikes,
in other words, it is the NCS with a weight of ­1. Thus, the weight definition likely requires
improvement for more coherent explanations. A future study could explore different approaches
with smaller weights depending on the data. An option could be to compute the NCS relative
to the amount of input dimensions, i.e. Ni,t′(t) = − 1

D exp(γ|t − t′|) if xi,t′ = 0. This approach
could capture the relative meaning of a single non­spike in a single dimension in the context
of the input data. Another option could be to examine the input at t′ and define the attribution
relative to the spiking input at t′. I.e., Ni,t′(t) = − 1

M exp(γ|t − t′|) if xi,t′ = 0 where M is
the number of dimensions which do not spike at t′. Such an approach would emphasise overall
the importance of absent spikes in certain dimensions, while other input dimensions are spiking.
Moreover, the attribution of a non­spike could be defined by howmuch the membrane potentials
of the downstream neurons decay in the time step. This definition would capture the effect of
a non­spike from a different perspective: Instead of considering that the downstream neuron’s
membrane potential was not changed by the postsynaptic potential, it looks at the true evolution
of the downstream neuron’s membrane potentials. However, these suggestions are only ideas
so far, which have to be properly researched in future work to validate them.

7.5 Limitations

While this research can provide answers to the posed research questions, there are several
limitations to consider when interpreting the results.
First of all, the use case models and data represent a specific use case on which the research
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is based. Even though TSA is designed to be model­agnostic for temporally coded SNNs and
is not specific to the use case, it has only been demonstrated on the models and data in this
thesis. SNNs with other neural models like the Izhekevich neuron [20] for example, were not
tested. Further experiments with other SNN architectures are therefore required to validate the
findings of this thesis for a larger class of SNN models. From the data perspective, a similar
limitation applies. As the experiments solely looked at the binary ADL dataset, TSA is strictly
speaking tested with binary sensor data alone, which was directly translated into spikes. Hence,
the dataset requires little effort in neural coding. Another type of time series data which is not
limited to binary values requires neural coding to spike trains before explanations could be
extracted using TSA. Also, reverse coding would have to be studied to relate the spike code as
well as the feature attribution extracted based on the spike code to the input space. The choice
of the binary ADL dataset is therefore convenient for the scope of the research. However, to
generalise the findings of this thesis to applicability on other datasets and tasks, studies with
more complex time series data and other data types would be required that include neural coding
and decoding.
Additionally, the implementedmodels in this work are not optimally performing in terms of predic­
tive accuracy, runtime as well as memory usage. The models do not reach comparable predic­
tive performance on the dataset as recent work [54], thus the explanation may not make sense
at times. This especially could pose a limitation for the evaluation of human­comprehensibility
as incoherent model behaviour becomes likely. Also, the models require quite a lot of memory
as they record the history of their neuron’s membrane potentials and spike trains from t = 0,
and the sequential processing leads to long runtimes. Hence, assumptions that enable a certain
degree of parallelisation were made during model training and explanation extraction. There­
fore, the inherent temporal processing of SNNs is limited during model training. However, as
the models were able to learn, this is a minor point. For the explanation, however, potentially
some information could be lost by only considering the last hour before the time point that is
explained. Moreover, the test set for quantitative evaluation is rather small due to reasons of
computational efficiency as well, so that the generalisation of the results is limited.
There are also some limitations in the TSA computation. TSA explanations provide an attribu­
tion map per class so that the input’s attribution to a certain output can be inspected individually.
At the same time, this limits the explanation as the information becomes complex with a grow­
ing number of classes, and cross­class effects in the attributions are not specifically identified.
These could be interesting in an explanation however as they could contribute to understanding
the logic behind a model’s prediction. Moreover, the computation is based on matrix multipli­
cations, which are essentially multiplication and addition operations of the matrix elements. As
mentioned in section 7.3, this leads to limitations regarding deep models connected to the num­
ber of hidden layers and their size. A considerable limitation to the computation of TSA­S is
the NCS, which is essentially only computed for the spiking part of the input as mentioned in
the previous section. Consequently, the non­spiking parts of the input do not exhibit attribution
values, even though these carry relevant information to the model prediction as shown by the
evaluation of faithfulness and attribution sufficiency. However, TSA­NS does not seem to gen­
erate coherent explanations as it often weighs spiking input less than non­spiking input, even
though they may seem faithful and sufficient to the model. Weighing the non­spikes with the
same absolute value as spikes may not be the correct implementation.
Furthermore, there are considerations to take into account in the evaluation of the explanation as
well. As mentioned during the discussion of the quantitative results, the random baseline used
in this research may be a particularly bad performing baseline for the experiments. However,
as the evaluation of XAI methods is not straightforward in terms of metrics and methods [6],
a random baseline is an appropriate start to compare an explanation method’s explanatory
performance to. In addition, only the feature attribution map of the predicted class is evaluated
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in the quantitative evaluation. As this represents only part of the explanation, the evaluation
is only valid for the feature attribution map of the predicted class and it would be interesting to
consider the whole explanation in further studies.
The small number of explanations shown in the qualitative evaluation (i.e., three per task) also
limited the explanations that could be shown to participants, even though a balance of over­
whelming a survey respondent and the survey content has to be ensured. However, it could
also have been interesting to compare the explanations of the different SNN models of this
study for example. In this research, the results of the qualitative study are based solely on the
explanations extracted from TwoLayerSNN with TSA­S. Besides, a study regarding the opti­
mal visualisation of the explanation to the user may have been needed before an evaluation of
human­comprehensibility. Such a study would ensure the separation of the evaluation of ex­
planation content, which was the objective in this thesis, and the evaluation of the presentation
itself. Instead, a few users were confused by the selected colours or visualisation of the input
data and spikes, which probably influenced their judgement. This confusion is apparent in the
answered comments, as well, and suggests some underlying misunderstandings in the user
study responses. Moreover, it becomes apparent in the survey responses that users thought
about the explanation in different depths, leading to different abstraction levels in the answers.
In retrospect, an in­place experimental setup such as a focus group or individual interviews for
example might be a better choice as they allow the user to pose questions if there is confusion
and clarify any prior questions directly with the researcher before the evaluation, and it allows
the researcher to follow up on unclear answers.
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This thesis presents Temporal Spike Attribution (TSA) as a novel local, post­hoc explanation
method for temporally coded spiking neural networks that provides explainability through feature
attributions in the input space. It is based on the model internals of SNNs, namely the spike
trains of the neurons, the model weights, and the classification confidence. These components
are generally found in SNNs so that TSA is an SNN model­agnostic explanation method. Two
TSA variants, namely TSA­S which only considers spiking input as attributing, and TSA­NS
which also considers non­spikes to carry information, are explored in this research. TSA is
demonstrated on the activities of daily living with binary sensors dataset [50] using temporally
coded SNNs of varying depths that employ LIF neurons, temporal coding and were trained using
surrogate gradient learning. Using this use case, both TSA variants are thoroughly evaluated in
faithfulness, attribution sufficiency, stability, certainty, and human­comprehensibility. The results
validate TSA explanations as faithful, sufficient, and stable. While TSA­S explanations are
more stable, TSA­NS explanations are superior in faithfulness and sufficiency, which suggests
relevant information for the model prediction to be in the absence of spikes as well. Certainty
is provided in both variants, and the TSA­S explanations are largely human­comprehensible
where the clarity of the explanation is linked to the coherence of the model prediction. TSA­
NS, however, seems to assign too much attribution to non­spiking input, leading to incoherent
explanations and highlighting the need to research the relation between spike attribution and
non­spike attribution. Furthermore, the applicability of TSA is best on shallow models without
hidden layers which emphasises that further research is required to ensure the same level of
explanatory performance of TSA on SNN models with hidden layers as well.
Even though TSA provides a method to explain the predictions of an SNN, there is a need for
future research to address the limitations of this thesis as well as explore related fields. First
of all, the attribution of non­spikes could be improved by studying the contributions of absent
spikes to model predictions. Furthermore, TSA could be studied with other SNNmodels that are
implemented in an SNN simulator, or even in neuromorphic hardware. Research in this direction
is required to validate the model­agnostic property of the method. Research to improve the
TSA algorithm could look into computation in logarithmic space to prevent vanishing attribution
values for deep models. However, the algorithm requires some changes, as negative values,
which occur due to negative weight contributions, are undefined in log­space.
Moreover, the evaluation framework presented in this thesis can be extended in future work.
For example, explanation sensitivity requires further research and a more detailed definition.
While stability shall measure the explanation’s sensitivity to naturally occurring perturbations,
the tested perturbations are still generated artificially, thus imitating natural perturbations. Fu­
ture research could employ generative adversarial networks to create similar data within the
distribution for a better approximation of naturally occurring perturbations. TSA is not evaluated
for the robustness of the explanations with adversarial examples as well. This is an interesting
field for future research, which is not limited to explanations of SNNs but all opaque models: the
definition of adversarial robustness, as well as an evaluation framework for robustness, could
be defined.
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Future research in the field of optimal feature attribution visualisation is also required to improve
the human­comprehensibility of such explanations. Especially in cases where the data is not
inherently readable like in image data, feature attribution explanations may require additional in­
formation to enhance comprehensibility. Such studies could consider extending and enhancing
the current visualisation by making it interactive, for example by enabling the user to investigate
different time steps in order to understand the evolution of feature attribution over time better.
Furthermore, TSA offers a foundation for further forms of explanation methods. The attribution
scores defined through TSA could be used in a temporal saliency rescaling method which finds
saliency scores based on the occlusion of input and temporal dimensions [41]. Using such a
method, the attribution of non­spiking input could be determined in a better way than with TSA­
NS, too. Another worthwhile research direction could be utilizing TSA to generate counterfactual
explanations, which are generally easy for humans to comprehend [36].
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APPENDIX A. OVERVIEW OF RELATED WORK IN SNN RESEARCH

Work Task Test accu­
racy (%)

Neuron
model

Neural
Code

Architec­
ture

Learning
Method

2021 [67] XOR 100.0 LIF Rate
Coding

1 Layer
FFNN14

Transfer
from RNN

2018 [68]
Iris 98.7

NIDA15 ­ NIDA EAWBC 99.3
Pima 78.6

2016 [69]
Iris 97.0 LIF Population

Coding 1 Layer
FFNN

EA16
WBC 96.4

2015 [70]

Appendicitis 73.0

IF17 Population
Coding

1 Layer
FFNN EA

Haberman 72.0
Heart 58.2
Hepatitis 54.0
Ionosphere 69.6
Iris 89.7
Liver 50.6

2014 [71]

Stanford
Liver Tumor 99.7

NLIF18 Rate
Coding

2 Layer
FFNN

Wavelet
Mapping

Global
Cancer Map 99.8

Glioma 98.5
Breast
Cancer 96.0

11 Tumor 73.8
Hepatocell 97.8

2010 [72] Iris 95.3 LIF Rate
Coding

2 Layer
FFNN

Merge of
STDP, BCM19WBC 96.7

2001 [73] Iris 97.0 SRM Population
Coding

2 Layer
FFNN QuickProp

Table A.1: Comparing related works on tabular data and XOR classification using SNNs

14Feed Forward Neural Network (i.e. a fully connected feed­forward architecture).
15Neuroscience Inspired Dynamic Architecture. Neurons configured in 3D space with unlimited connectivity.
16Evolutionary Algorithm.
17No specific type of Integrate­And­Fire neuron was given in their work.
18Non­Linear Integrate­And­Fire neuron. The integration of themembrane potential is non­linear (e.g. exponential)
19Bienenstock­Cooper­Munro learning rule, which is a learning rule that approximates Hebbian Learning.
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APPENDIX A. OVERVIEW OF RELATED WORK IN SNN RESEARCH

Work Task Test accu­
racy (%)

Neuron
model

Neural
Code

Architec­
ture

Learning
Method

2020 [74] MNIST ∼90.0 SRM Temporal
Coding

1 Layer
FFNN

Online
STDP

2020 [75] MNIST 95.0­
96.0

Adaptive
SRM

Rate
Coding

Adaptive
FFNN STDP

EMNIST
(incl. letters) 70.0­

80.0

2020 [76] MNIST 99.0 LIF Rate
Coding

6 Layer
C­SNN20

Transfer
from CNN

98.5
SpiNNaker
Chip imp­
lementation

STBP21

2019 [77] MNIST 89.2 LIF Rate
Coding

2 Layer
FFNN STDP

2019 [78] Color feature
classification 90.0 LIF Population

Coding
2 Layer
FFNN Tempotron

2018 [79]

CIFAR
(2 classes) 98.5

LIF Rate
Coding

6 Layer
C­SNN STDPCIFAR

(4 classes) 90.3

MNIST 96.3

2018 [80]
MNIST 81.8

LIF Rate
Coding

1 Layer
C­SNN STDPCaltech 82.0

MNIST 80.1 1 Layer
FFNN

2015 [81] Hoda 95.0 ­ Rate
Coding

2 Layer
FFNN STDP

2015 [82] MNIST 91.5 LIF Temporal
Coding

1 Layer
FFNN

STDP

91.2 Transfer
from ANN

Table A.2: Comparing related works on image data classification using SNNs

Work Task Test accu­
racy (%)

Neuron
model

Neural
Code

Architec­
ture

Learning
Method

2021 [67]
Wake Phrase
Detection
(DEMAND)

87.0 LIF Rate
Coding

1 Layer
FFNN

Transfer
from RNN

2021 [83] N­MNIST 70.0
Probab­
ilistic
Neuron

­ 2 Layer
FFNN

Expect­
ation Maxi­
misation

20Convolutional SNN.
21Spatio­temporal backpropagation.
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APPENDIX A. OVERVIEW OF RELATED WORK IN SNN RESEARCH

2021 [84]

Encrypted
internet
traffic
(ISCX)

96.0 LIF Rate
Coding

2 Layer
FFNN

Surrogate
Gradient
Learning

2021 [85] Neural spike
classification 96.0 LIF NA 1 Layer

FFNN STDP

2021 [86]

Arousal
Recognition
(DEAP)

78.8

LIF Temporal
Coding NeuCube STDPArousal

Recognition
(MAHNOB
­HCI)

79.4

Valence
Recognition
(DEAP)

67.8

Valence
Recognition
(MAHNOB
­HCI)

72.1

2021 [87]
MIT­BIH
Arrhythmia
(ECG)

91.0 IF Rate
Coding

1 Layer
FFNN

Transfer
from CNN

2020 [88]
Binary electric
pulse
classification

100.0 HH NA 1 Layer
FFNN

Barabasi­
Albert

2020 [89]

Binary road
type from
mobile sen­
sor data

99.9
­ Population

Coding
2 Layer
FFNN

Least
Squares

Anomaly
Detection for
unpaved roads

100.0

Anomaly
Detection for
paved roads

99.8

2020 [76] N­MNIST 98.2 LIF NA 6 Layer
C­SNN

Transfer
from ANN

97.9 NA
SpiNNaker
chip impl­
ementation

STBP

2020 [90] Motor Imag­
ery Detection
(EEG)

60.0­90.0
per subject IZ22 NA Single

Neuron Particle
swarm
Optimization54.0­95.0

per subject NA 2 Layer
FFNN

2020 [91] Electric pulse
Classification 100.0 HH NA 1 Layer

FFNN
Barabasi­
Albert
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2019 [92] TIMIT
(Gender) 98.0 LIF Temporal

Coding
1 Layer
FFNN Tempotron

2018 [68]

Radio (from
DeepSig) 71.0

NIDA ­ NIDA EAEpilepsy
Detection
(EEG)

99.0

TIMIT
(vowel vs
consonant)

85.0

2018 [93]
Binary Speech
Command
Detection

89.9 LIF NA 4 Layer
C­SNN STDP

2016 [69]
Epilepsy
Detection
(EEG)

89.3­91.1
per subject LIF

Population
Coding

1 Layer
FFNN EA

2015 [94]

Cognitive
Process
classification
(EEG)

80.0­100.0
per subject LIF

Temporal
Coding NeuCube23 STDP

2014 [95]
Network
Anomaly
Detection

97.7 ­ Population
Coding

2 Layer
FFNN EA

2010 [72] TI46 subset
(ASR24) 95.3 LIF Rate

Coding
2 Layer
FFNN

Merge of
STDP, BCM

Table A.3: Comparing related works for time­series data classification using SNNs.

22Izhekevich neuron.
23NeuCube is a development environment for brain­like AI that uses spiking neurons as building blocks.
24Automatic Speech Recognition.
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B SUPPLEMENTARYMATERIALABOUTMODELDEVEL­
OPMENT

Hyperparameter Grid values
∆t 1e­2, 1e­3, 1e­4,
τsyn 10e­4, 10e­3, 10e­2
τmem 10e­4, 10e­3,10e­2
Learning rate 1e­4, 1e­3, 1e­2
Batch size 128, 256, 512
Size of hidden layers 25, 50, 100, 200

Table B.1: Hyperparameter grid for greedy optimisation of the underlying SNN models.

Figure B.1: Training loss history per SNN model trained with early stopping and a patience of
20 epochs.
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APPENDIX B. SUPPLEMENTARY MATERIAL ABOUT MODEL DEVELOPMENT

Hyperparameter OneLayerSNN TwoLayerSNN ThreeLayerSNN
∆t

0.01 1.594 1.606 2.398
0.001 0.532 0.408 0.422
0.0001 1.047 1.379 1.590

τsyn

0.1 0.748 0.826 0.805
0.01 0.404 0.416 0.434
0.001 0.753 0.419 0.462

τmem

0.1 0.741 0.505 0.441
0.01 0.418 0.426 0.431
0.001 0.769 0.404 0.437

Learning rate
0.01 0.388 0.456 0.479
0.001 0.507 0.411 0.425
0.0001 2.256 0.863 0.562

Batch size
128 0.389 0.409 0.435
256 0.392 0.405 0.440
512 0.409 0.419 0.427
Hidden Layer size 1
25 ­ 0.418 0.423
50 ­ 0.411 0.416
100 ­ 0.406 0.433
200 ­ 0.409 0.439

Hidden Layer size 2
25 ­ ­ 0.420
50 ­ ­ 0.430
100 ­ ­ 0.456
200 ­ ­ 0.427

Table B.2: Validation negative log­likelihood loss of tuning process per SNN model. The vali­
dation loss is reported after a training of 20 epochs.
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APPENDIX C. EXAMPLES FROM THE QUANTITATIVE ANALYSIS

(a) TSA­S explanation for TwoLayerSNN’s prediction of timestep 80763.

(b) Time series until timestep 80763 with perturbed background based on the TSA­S explanation of
TwoLayerSNN’s prediction.

(c) TSA­NS explanation for TwoLayerSNN’s prediction of timestep 80763.

(d) Time series until timestep 80763 with perturbed background based on the TSA­NS explanation of
TwoLayerSNN’s prediction.

Figure C.1: Example of TSA­S and TSA­NS explanations of TwoLayerSNN’s prediction for
timestep 80763 in (a) and (c). Red marks positive and blue negative attributions. (b) and (c)
show the data with a shuffled background based on the explanations and θ = 0 for the evaluation
of attribution sufficiency. The red spikes show the difference between the perturbed and clean
input. The perturbation based on TSA­NS does not reach the last steps before timestep 80763.
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APPENDIX C. EXAMPLES FROM THE QUANTITATIVE ANALYSIS

(a) TSA­S explanation for ThreeLayerSNN’s prediction of timestep 80763.

(b) Time series until timestep 80763 with perturbed background based on the TSA­S explanation of
ThreeLayerSNN’s prediction.

(c) TSA­NS explanation for ThreeLayerSNN’s prediction of timestep 80763.

(d) Time series until timestep 80763 with perturbed background based on the TSA­NS explanation of
ThreeLayerSNN’s prediction.

Figure C.2: Example of TSA­S and TSA­NS explanations of ThreeLayerSNN’s prediction for
timestep 80763 in (a) and (c). Red marks positive and blue negative attributions. (b) and (c)
show the data with a shuffled background based on the explanations and θ = 0 for the evaluation
of attribution sufficiency. The red spikes show the difference between the perturbed and clean
input.
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APPENDIX C. EXAMPLES FROM THE QUANTITATIVE ANALYSIS

(a) TSA­S explanation for OneLayerSNN’s prediction of timestep 26442.

(b) TSA­S explanation for OneLayerSNN’s prediction of timestep 26442 with natural perturbation.

(c) TSA­NS explanation for OneLayerSNN’s prediction of timestep 26442.

(d) TSA­NS explanation for OneLayerSNN’s prediction of timestep 26442 with natural perturbation.

Figure C.3: Example of TSA­S and TSA­NS explanations of OneLayerSNN’s prediction for
timestep 26442 with and without natural perturbation (shortening of the maindoor activation by
two seconds) for the evaluation of stability. Red marks positive and blue negative attributions,
where the colour corresponds to the attribution value. The explanation changes slightly for the
perturbed example in both TSA variants.
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APPENDIX C. EXAMPLES FROM THE QUANTITATIVE ANALYSIS

(a) TSA­S explanation for ThreeLayerSNN’s prediction of timestep 26442.

(b) TSA­S explanation for ThreeLayerSNN’s prediction of timestep 26442 with natural perturbation.

(c) TSA­NS explanation for ThreeLayerSNN’s prediction of timestep 26442.

(d) TSA­NS explanation for ThreeLayerSNN’s prediction of timestep 26442 with natural perturbation.

Figure C.4: Example of TSA­S and TSA­NS explanations of ThreeLayerSNN’s prediction for
timestep 26442 with and without natural perturbation (shortening of the maindoor activation by
two seconds) for the evaluation of stability. Red marks positive and blue negative attributions.
The perturbation shows to impact the attributions of other features beside the perturbed features
as well.
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D UNMASKEDSIMULATIONEXPLANATIONSFORUSER
STUDY

Figure D.1: Unmasked explanation for timestep 81860 of the testset

Figure D.2: Unmasked explanation for timestep 5571 of the testset
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APPENDIX D. UNMASKED SIMULATION EXPLANATIONS FOR USER STUDY

Figure D.3: Unmasked explanation for timestep 70169 of the testset
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E CLUSTERING INSTRUCTIONS

First of all, thank you for willing to help me with the analysis of the survey responses to qualita­
tively evaluate my thesis.
In my thesis, I developed a feature attribution­based explanation for predictions from a spiking
neural network model. As you have seen in the survey, this means that an explanation for
why the model predicted a certain class is provided through highlighting which parts of the data
attributed to which classes. This information shall help humans understand the model better
and provide transparency. In other words, a bit of light shall shine into the black box that is a
spiking neural network.
However, it is not guaranteed that this explanation is a good one. But what requirements does a
good explanation have to fulfil? There are several aspects to consider besides the truthfulness
of the explanation. Human­comprehensibility is one because the explanation is valuable to
a human. This is assessed through the survey. Human­comprehensibility as a requirement
details that an explanation should be clear and unambiguous, as well as understandable in
terms of coherence with the human’s background knowledge and beliefs.
In the survey, participants were presented with example explanations for example data and
asked to interpret the explanations. How did they understand the model arrived at its prediction
based on the provided explanation? This was a free­text answer question. In the next section
of the mural, you will see all the answers to each of the three examples on different color sticky
notes, one color corresponding to one example explanation.
Your task is to perform an inductive cluster analysis. This means that you should identify clus­
ters of the user’s interpretations, with one cluster corresponding to one possible interpretation.
Please also describe the topic of the cluster. You are free to define as many clusters as you see
fit. You can cluster the sticky notes together to form a cluster and add a description by adding
some text.
In a nutshell, the instructions for this task are:
For each explanation:

1. Read the survey responses.

2. Identify themes of people’s interpretations that you recognise (no set number, up to you).

3. Note these on WHITE sticky notes (can be found under ’Text’ on the left side of the Mural).

4. Group the survey response sticky notes under these themes.

5. Add any comments on other WHITE sticky notes

Are you ready? Let’s go to the next section!
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F RESULTS OF INDUCTIVE CLUSTER ANALYSIS

Explanation Original clusters A Count Umbrella cluster
#1 Both features and probability 11 Data and confidence

Only feature attribution 15 Data
Only probability distribution 3 Classification confidence
Uncertain/unclear 3 No clear answer
Personal interpretation 1 Learned patterns

#2 Only feature attribution 15 Data
Only probability distribution 2 Classification confidence
Both features and probability 13 Data and confidence
Personal interpretation 1 Learned patterns
Used time of day as the only feature? 1 Learned patterns

#3 Only feature attribution 24 Data
Both features and probability 7 Data and confidence
Only probability distribution 2 Classification confidence

Table F.1: Clusters defined by Annotator A per explanation with mapping to the umbrella clus­
ters.
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APPENDIX F. RESULTS OF INDUCTIVE CLUSTER ANALYSIS

Explanation Original clusters B Count Umbrella cluster
#1 Many explanations: sensor activation,

confidence, bias, time
4 Data and confidence

Sensor activation, time, seat, basin 19 Data
confidence 4 Classification confidence
Not clear / unsure 3 No clear answer
Learned patterns during training 2 Learned patterns
Bias 1 Learned patterns

#2 Opening the cupboard / use of cup­
board

7 Data

Use of cupboard and model training 1 Learned patterns
colour(s) in the figures/plots 1 Data and confidence
Sensor activation 8 Data
confidence 3 Classification confidence
sensor activation and confidence 7 Data and confidence
Time and sensor activation 1 Data
Using cupboard and time 2 Data
Model training 1 Learned patterns
Time 1 Learned patterns

#3 Using seat 6 Data
Sensor activation and time 4 Data
Sensor activation 13 Data
Color(s) in the figures 1 Data and confidence
Using seat and time 1 Data
Sensor activation and confidence 4 Data and confidence
Sensor activation, confidence and
time

1 Data and confidence

Confidence 3 Classification confidence

Table F.2: Clusters defined by Annotator B per explanation with mapping to umbrella clusters.

Explanation Original clusters C Count Umbrella
cluster

#1 Seat used for long time (longer than basin) 20 Data
Unsure due to confidence distribution (Does not un­
derstand the ”other” category); Seat used for long
time (longer than basin)

2 Data

Participant unsure/does not understand; When seat
is used it is classified as spare time

1 Data

Participant unsure/does not understand; Seat used
for long time (longer than basin)

1 Data

When seat is used it is classified as spare time 2 Data
Highest classification confidence 4 Classification

confi­
dence

Participant unsure/does not understand 1 No clear
answer

xxxvi
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Use of toilet during spare time was still classified as
spare time in training data

1 Data

Participant misunderstood the meaning of true la­
bel/predicted class

1 No clear
answer

#2 Cupboard sensor activation indicates lunch 12 Data
Unsure due to confidence distribution (Confidence
distribution is spread out between classes); Cup­
board sensor activation indicates lunch

2 Data

Color (Because model says so) 1 Data
Lunch has the highest confidence 3
Lunch has the highest confidence; Unsure due
to confidence distribution(Confidence distribution is
spread out between classes); Cupboard sensor ac­
tivation indicates lunch

2 Data

Lunch has the highest confidence; Cupboard sensor
activation indicates lunch

3 Data and
confi­
dence

Lunch has the highest confidence; Model biased to
choose lunch; Cupboard sensor activation indicates
lunch

1 Learned
patterns

Unsure due to other kitchen sensors being inactive
(Kitchen appliances are not used); Model considers
the time of day; Cupboard sensor activation indi­
cates lunch

1 Learned
patterns

Unsure as other kitchen sensors are being inactive
(Kitchen appliances are not used); Model biased to
choose lunch; Cupboard sensor activation indicates
lunch

1 Learned
patterns

Model considers the time of day; Cupboard sensor
activation indicates lunch

2 Learned
patterns

Model biased to choose lunch 1 Learned
patterns

Model biased to choose lunch; Cupboard sensor ac­
tivation indicates lunch

2 Learned
patterns

Model considers the time of day 1 Learned
patterns

#3 Seat is used 19 Data
No other sensors activated; Seat is used 5 Data
Color (Because model says so) 1 Data
High confidence; No other sensors activated; Seat is
used

3 Data and
confi­
dence

High confidence; Seat is used 3 Data and
confi­
dence

High confidence 2 Classification
confi­
dence

Table F.3: Clusters defined by Annotator C per explanation with mapping to umbrella clusters
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Comprehensibility of explanations from
spiking neural networks
Thank you for participating in my survey about the quality of explanations from spiking 
neural networks, which is part of my Master thesis research at the University of Twente.


Purpose: 

By participating in this research, you will help me evaluate my research and find out 
whether my explanations for the predictions of a spiking neural network are human-
understandable. Your responses are intended for qualitative evaluation of my method and 
is not intended to test your performance in any way. 


Background:

In my Master thesis, I studied local explanations (i.e., explaining single predictions) based 
on features (i.e., by looking at the input features) from spiking neural networks (SNNs) 
using an activity of daily living prediction task (i.e., predicting what a person is doing based 
on sensor activity). SNNs are known as the third generation of neural networks and are 
biologically more plausible than neural networks based on artificial neurons. They are not 
popular because the research community has not found an efficient learning method for 
them yet. However, they are in theory at least as powerful as their predecessors and 
predestined to be used in critical application areas, e.g., health or traffic, which is why I am 
studying how to generate a model-specific explanation method for these types of 
networks and shine some light into the black box.


Procedure:

First, a general question will be asked and some more background information about the 
data and task given. Then, you will be presented with example explanations and asked to 
give your interpretation and understanding of those. In the last part, you will be asked to 
classify a small data sample based on the data and the explanation. This survey will take 
approximately 15-30 minutes. It is recommended to fill this survey on a laptop. 


Anonymity:

I will use your answers, as well as the answers from other respondents to qualitatively 
evaluate my research. The answers are recorded anonymously, and therefore there is no 
connection from your answers to your person.


Freedom to withdraw:

You may withdraw from the activity at any time without penalty, by not submitting the 
survey.  

If you have any questions, feel free to contact me at t.q.e.nguyen@student.utwente.nl. 

If you have questions about your rights as a research participant, or wish to obtain 
information, ask questions, or discuss any concerns about this study with someone other 
than the researcher, please contact the Secretary of the Ethics Committee "Computer & 
Information Sciences" of the University of Twente, drs. Petri de Willigen, mail: 
ethicscommittee-cis@utwente.nl.

*Required
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1.

Tick all that apply.

I have read and understood the above information.

I agree that the results of this study can be used for academic purposes.

Inclusion
criteria

The target group for the explanation method are model developers. Therefore, only 
participants with some form of familiarity with supervised machine learning are in my 
target group for this survey. 

2.

Mark only one oval.

Yes

No Skip to section 13 (Thank you. )

Preliminary
information

In this survey, you will help me evaluate an explanation for a machine learning 
model's prediction on certain input data. In this short information part, you will be 
briefed on the data and task. 



What kind of data is used?

For the research, a model was trained on the Activities of Daily Living from Binary 
Sensors dataset from the UCI ML repository [1]. It is a multivariate time series 
dataset of sensor data. The sensors are placed around a home, for example on the 
bed or on the toilet. Since they are binary sensors, they are only either activated or 
not. For a spiking neural network, the sensor activation has been coded into spikes, 
where spiking indicates that the sensor is activated. Each sensor can spike at most 
once per timestep. A constantly spiking bias sensor was added in addition to the 
sensors available in the dataset (similar to a bias neuron with value 1 in a deep 
neural network). The sensors can be seen on the y-axis of the graph below. 



What is the task? 

The model was trained to predict the activity of the person living in the home based 
on the sensor data, e.g. 'eating' or 'leaving'. The model predicts this continuously at 
each time step. The dataset is originally annotated with 10 classes. Some parts 
were not annotated, and put into an "Other" class. The classes can be seen in the 
legend of the graph below.



[1] Javier Ordóñez, Paulade Toledo, and Araceli Sanchis. Activity recognition using 
hybrid generative/discriminative models on home environments using binary 
sensors. Sensors(Basel, Switzerland), 13(5):5460–5477, 2013.

Active consent *

Do you have some prior knowledge and/or experience in the field of supervised
machine learning? *
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3.

Other:

High resolution image available here: https://drive.google.com/file/d/1-UCKtiCf-
rZCfELXx8kyENLBnrzzL7cn/view?usp=sharing 




The image above shows an example explanation of a SNN model for a data sample from timestep 1 to

timestep 60, during which the seat sensor and bias sensor are spiking at each timestep. There are 3 parts to
the explanation: 


(1) The predicted and true label at the top left corner.

(2) The classification confidence of the current time step on the top right corner. 

(3) The feature attribution highlights on the bottom part overlayed with the data. 




In this example, the model correctly predicts that the person is watching TV in their spare time, and the seat

sensor activation from timestep 60 mainly contributes to this prediction at timestep 60.




Do you understand the components of the explanation?
Tick all that apply.

Yes

No

Not sure (Please detail what is unclear in "Other")

Explanation
understanding

In this part of the survey, you will be shown 3 data samples with explanations 
for the model's predictions. Please take a look at the explanation, and write a 
short paragraph of how you understand it. 

Example explanation: Do you understand the components (true label, predicted class,
confidence distribution, feature attribution) of the explanation? *
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4.

High resolution image here: https://drive.google.com/file/d/1-UwEJ8oPh6dgvtcYKBe0oPf3Y_daHae-/view?
usp=sharing

In the example below, why did the model predict >Spare_Time/TV<? *
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5.

High resolution image here: https://drive.google.com/file/d/1-VhevBMKxs0CKYiBTF1JwL4lK5hQvwho/view?
usp=sharing

In the example below, why did the model predict >Lunch<? *
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6.

High resolution image here: https://drive.google.com/file/d/1-aTdS34itjdlIlP6--_rLgn3PjkHI5SF/view?
usp=sharing

Simulation

In this part of the survey, you will be shown three data sample with the explanations, 
but without the model predictions and the confidence distributions (covered in 
black). Your task is to imitate the model and simulate its behaviour based on the 
explanations given. 

Simulation - Part 1/3

In the example below, why did the model predict >Spare_Time/TV<? *
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7.

High resolution image here: https://drive.google.com/file/d/1-
cJnkQzoWOe3o2f6Nql2hWDuzcHQHcgw/view?usp=sharing

Mark only one oval.

Sleeping

Toileting

Showering

Breakfast

Grooming

Spare_Time/TV

Leaving

Lunch

Snack

Dinner

Other class

I don't know

Simulation - Part 1/3

In the example below, what would be the model's prediction in your opinion? *
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8.

High resolution image here (same as before): https://drive.google.com/file/d/1-
cJnkQzoWOe3o2f6Nql2hWDuzcHQHcgw/view?usp=sharing

Simulation - Part 2/3

Please explain your prediction for the model's behaviour at second 81860. *



04.10.21, 11:57 Comprehensibility of explanations from spiking neural networks

https://docs.google.com/forms/d/1vuqvTlIwEKXkWeCXIkkMBDk5Qcsby9_R9-XwdVB5qts/edit 9/13

9.

High resolution image here: https://drive.google.com/file/d/1-
cT3GpY80yhWV2eNOgJ82_pkFwezRzqk/view?usp=sharing

Mark only one oval.

Sleeping

Toileting

Showering

Breakfast

Grooming

Spare_Time/TV

Leaving

Lunch

Snack

Dinner

Other class

I don't know

Simulation 2/3

In the example below, what would be the model's prediction in your opinion? *
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10.

High resolution image here (same as before): https://drive.google.com/file/d/1-
cT3GpY80yhWV2eNOgJ82_pkFwezRzqk/view?usp=sharing

Simulation - Part 3/3

Please explain your prediction for the model's behaviour at second 5571. *
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11.

High resolution image here: https://drive.google.com/file/d/1-fuodqFrjej-u5ZixIorVeGdZNsmWwg9/view?
usp=sharing

Mark only one oval.

Sleeping

Toileting

Showering

Breakfast

Grooming

Spare_Time/TV

Leaving

Lunch

Snack

Dinner

Other class

I don't know

Simulation 3/3

In the example below, what would be the model's prediction in your opinion? *
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12.

High resolution image here (same as before): https://drive.google.com/file/d/1-fuodqFrjej-
u5ZixIorVeGdZNsmWwg9/view?usp=sharing

Thank you for your answer.

13.

Thank
you.

Thank you for your  participation. Unfortunately, you are not within the target group of my 
research and therefore cannot submit a response. No data has been saved, and you can 
safely close the survey. 



If you want to know more about the research or have other questions, feel free to contact 
me at t.q.e.nguyen@student.utwente.nl. I will be happy to answer any questions. 

Please explain your prediction for the model's behaviour at second 70169. *

If you have any comments before submitting, please enter them below.
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