
UNIVERSITY OF TWENTE

MASTER’S THESIS

Low Power ASIC Design of a
DDPSK Demodulator

Author:
P.C. Dijkshoorn

Supervisors:
dr. S. Safapourhajari
dr.ir. A.B.J. Kokkeler

dr.ir. R.A.R. van der Zee

RS
EEMCS

December 3, 2021

https://www.utwente.nl/
https://www.utwente.nl/en/eemcs/rs/
https://www.utwente.nl/en/eemcs/

iii

Contents

List of Figures v

List of Tables vii

List of Abbreviations ix

1 Introduction 1
1.1 Research questions . 2
1.2 Outline of the thesis . 3

2 Background 5
2.1 DDPSK . 5

2.1.1 Modulation . 5
2.1.2 Demodulation . 6

2.2 Previous work . 8
2.2.1 The receiver system . 8
2.2.2 Enhanced autocorrelation demodulator 9

2.3 Low power techniques . 10
2.3.1 Complex multiplication 11
2.3.2 Transistor threshold voltage 12

2.4 Related work . 12

3 Design 15
3.1 Baseband Conversion . 15
3.2 CIC-filter . 16
3.3 Polyphase FIR-filter . 17
3.4 Demodulator . 18
3.5 Duty-cycling the demodulator 23

4 Implementation 29
4.1 Demodulator . 29
4.2 Word Lengths . 31
4.3 Scalability . 36

5 Results and Discussion 39
5.1 Performance . 40

5.1.1 Bit error rate . 40
5.1.2 Power consumption . 41

5.2 Comparison . 45

iv

5.3 Duty Cycling . 46

6 Conclusion 49
6.1 Discussion . 50
6.2 Further improvements . 52

6.2.1 Folding twice . 52
6.2.2 Compile options . 53
6.2.3 Arithmetic-level optimizations 53
6.2.4 Word length analysis . 54

Bibliography 55

v

List of Figures

2.1 Block diagram of a double differential modulator 6
2.2 Block diagram of a double differential demodulator 6
2.3 Visual representation of a frequency offset in the frequency

spectrum . 8
2.4 Block diagram of the full system 8
2.5 A representation of two symbols as they are multiplied sample

by sample. No shift is applied on the left, a shift of -1 is applied
(to the delayed symbol) on the right. 9

2.6 Moving a decimator with factor M in front of a delay of N . . 10

3.1 Block diagram of the full system 15
3.2 Block diagram of the CIC filter 17
3.3 Comparison of the FIR-filter frequency response using the full

and power of two coefficients 17
3.4 Dataflow graph of the FIR filter 18
3.5 Dataflow graph of the FIR filter with polyphase decomposi-

tion applied to it . 18
3.6 A representation of two symbols as they are multiplied sample

by sample. No shift is applied on the left, a shift of -1 is applied
(to the delayed symbol) on the right. 19

3.7 Dataflow graph of the first demodulator stage for N = 4. . . . 20
3.8 Folded dataflow graph of the first demodulator stage for N = 4. 20
3.9 Dataflow graph of the second demodulator stage for N = 4. . 21
3.10 Folded dataflow graph of the second demodulator stage for

N = 4. 22
3.11 Timing diagram showing normal operation (left) and duty-

cycling (right) of the demodulator. 23
3.12 A possible location for the memory block 24

4.1 An overview of the system that is implemented in VHDL, with
clock domains indicated by dashed lines. 29

4.2 The implemented first stage of the demodulator for N = 16. . 30
4.3 The implemented second stage of the demodulator for N = 16. 33
4.4 Datapath of the CIC filter implementation, showing the two

clock domains (for N = 16). 35
4.5 Datapath of the FIR filter implementation, showing the two

clock domains for N = 16. 36
4.6 First demodulator stage for N = 4 with only 3 paths being

used (M = 1). 38

vi

5.1 Visual representation of the simulation platform used in mea-
suring system performance. 40

5.2 The BER curve of the system. 41
5.3 BER performance of the system at increasing frequency offset 42
5.4 Power consumption of the system using the SVT cell library

used in [14] . 43
5.5 Power consumption of the system (N=16) using 40nm HVT cells 44
5.6 Power consumption of the system (N=32) using 40nm HVT cells 45
5.7 Power consumption of the demodulator for SVT and HVT im-

plementations . 46

vii

List of Tables

1.1 Power consumption values of the implementation presented
in [14] . 2

2.1 Comparison of several narrowband transceivers and receivers
found in literature . 13

3.1 Values the complex input is multiplied with for different n,
k ∈ Z. 16

3.2 Compact timing diagram showing the input and number of
outputs for every cycle. The registers are reset during the final
cycle and as a result contain zeros in the first cycle. 21

3.3 List of symbols used in the model. Parameters dependend on
the location of the memory are marked with *. 24

4.1 Possible values in an example run for the first stage of the de-
modulator. The values indicated by the blue boxes are the
2N − 1 outputs for the first symbol-by-symbol multiplication. 32

4.2 Generic representation using parameters of data flow and op-
erations in the first stage of the demodulator. 34

5.1 Power values using the SVT cell library used in [14] 42
5.2 Power values for N=16 using 40nm HVT cells 43
5.3 Power values for N=32 using 40nm HVT cells 44
5.4 Power values achieved in [14] 46
5.5 Comparison between power consumption (µW) of this system

and the previous system implementation[14] 46
5.6 List of parameters and their values used by the model. Param-

eters dependend on the location of the memory are marked
with *. 47

ix

List of Abbreviations

ADC Analog to Digital Converter
ASIC Application Specific Integrated Circuit
BBC Baseband Conversion
BER Bit Error Rate
BLE Bluetooth Low Energy
CC Clock Controller
CIC Cascaded Integrator-Comb
CLK Clock
DDPSK Double Differential Phase-Shift Keying
DMD Demodulator
DSP Digital Signal Processing
FIR Finite Impulse Response
FSK Frequency Shift Keying
HVT High-Threshold Voltage
IoT Internet of Things
LPWAN Low-Power Wide Area Network
LSB Least Significant Bit
LVT Low-Threshold Voltage
MSB Most Significant Bit
NB Narrowband
PAN Personal Area Network
RPMA Random Phase Multiple Access
SDR Software Defined Radio
SNR Signal to Noise ratio
SS Spread Spectrum
SVT Standard-Threshold Voltage
TLA Three-Letter Abbreviation
UNB Ultra-Narrowband
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit
WSN Wireless Sensor Network

1

Chapter 1

Introduction

After the internet and mobile communications, the Internet of Things (IoT)
is considered to be the third wave of information technology [12]. It involves
large numbers of devices connected in a wireless sensor network (WSN) able
to communicate with each other. These devices have specific requirements
such as long range communication, low production costs and long battery
life. Generally this means that these applications try to consume as little
power as possible while maintaining sufficient performance.

An example application of a WSN can be the measurement and monitoring
of appliances and their surroundings, such as the air quality in a building or
the features of farmland soil. Many IoT services require a very low data rate
in the order of tens of bytes, sent only several times a day [13].

For these applications, Low-Power Wide Area Network (LPWAN) is the best
suited technology since it can achieve low power communication over a long
range if low datarate is sufficient. Other technologies such as Cellular (e.g.
3G and 4G) offer middle to long range communication but also consume
more power as they facilitate much greater data rates. Personal Area Net-
work (PAN) technologies such as Bluetooth/BLE are very power efficient
but only work over short distances [10].

Within the field of LPWAN three main techniques exist, Narrowband (NB),
Ultra-Narrowband (UNB) and Spread Spectrum (SS). Several companies have
already developed and patented technologies based on these techniques such
as NB-IoT which is NB-based, Sigfox and Telensa which are UNB-based, and
LoRa and RPMA which are SS-based [11]. The main difference between the
UNB and SS techniques is the bandwidth, which is very narrow for UNB and
much wider for SS. Because of this narrow transmission channel, UNB offers
very low in-band noise. A narrow filter in the receiver will filter out most of
the noise [1]. However, this also means UNB communication is highly sus-
ceptible to frequency offset. A small shift in the signal frequency may shift
the signal outside of the filter band causing it to be blocked at the receiver.
Such an offset can be caused for instance by a mismatch between the oscil-
lators used in the transmitter and receiver, or by a Doppler shift caused by
relative movement between the two.

2 Chapter 1. Introduction

To overcome the impact of the frequency offset, a frequency offset tolerant
demodulation and detection scheme can be used called Double Differential
Phase-Shift Keying (DDPSK). It encodes the input data into the double differ-
ence of the phase of the transmitted signal. If a double differential autocorre-
lation based demodulator is used in the receiver, it can extract the transmitted
data even in the presence of a frequency offset. This method is invariant to
changes in carrier frequency offset as shown in Chapter 2. A downside is
that the filter at the receiver still needs to be wide enough for the shifted sig-
nal to fit within the filter band. This will inevitably allow more noise to pass
through the filter as well.

To prevent deterioration of the Signal to Noise ratio (SNR) from degrading
BER performance, a new type of demodulator was proposed in [16]. This
demodulator allows for a wide receiver filter to be used while still maintain-
ing a good SNR. It consists of multiple conventional demodulator paths and
was first implemented by [14]. This implementation however was not heav-
ily optimized for power consumption. As shown in [14] the main source
of the power consumption in this implementation was leakage power. For
convenience these values are presented in Table 1.1.

Switch power (µW) Int. power (µW) Leak. power (µW) Total power (µW)
dmd 0.058 0.662 69.159 69.880
fir 0.005 0.034 1.005 1.044
cic 0.117 2.639 0.161 2.917
bbc - - - -
Total 0.18 3.335 70.325 73.841

TABLE 1.1: Power consumption values of the implementation
presented in [14]

In this thesis the DDPSK demodulator designed in [16] is implemented using
VHDL and synthesized towards ASIC. The system components responsible
for digital signal conditioning follow the design of [14]. To optimize power
consumption, current thesis focuses on the implementation of the compo-
nents with specifications set via system level design in [14].

1.1 Research questions

The research questions this thesis aims to answer are as follows:

How can the components of the receiver system be optimized for power?

The main trade-off that can be identified in the system is power versus per-
formance. Performing less calculations and with less precision will require
less hardware, but this will also increase the bit error rate (BER) of the sys-
tem. Given the low data-rate of the system, leakage power consumption is
dominant in the current implementation, especially in the demodulator com-
ponent. This leads to the second research question.

1.2. Outline of the thesis 3

How can the component’s leakage power consumption be reduced?

Since the major contribution to power consumption comes from leakage,
larger improvement can be made in reducing leakage power than dynamic
power. In general this means reducing the amount of hardware which can
be achieved in various ways. If this requires additional overhead control
logic another trade-off arises. The complexity of control circuitry generally
increases as more hardware is removed. Control logic that needs to be added
should not outweigh the hardware it is able to reduce.

To what extend can the demodulator be power-gated, in a duty cycling
fashion, in order to reduce the leakage power consumption?

In reducing leakage power, instead of removing hardware it can also be pow-
ered off for a while. In this state it will not be able to leak power, but also un-
able to perform operations. The main idea behind duty-cycled power-gating
is turning a system component off while storing its inputs in memory. When
the component is powered up it can then process the data from memory at
a much faster rate, such that it can be powered off again as soon as possible
when it is finished. The feasibility of this method will be investigated, as
there is again a trade-off between the leakage power reduced and the addi-
tional power control logic and memory overhead.

1.2 Outline of the thesis

Some background information is given in Chapter 2 as a starting point for
the thesis. The mathematics behind DDPSK modulation and demodulation
is explained and power-saving techniques that are used in optimizing the de-
sign are presented. Additionally, Chapter 2 includes a brief review on related
work.

Chapter 3 presents the datapath designs for the system which use the low
power techniques to decrease leakage power. Choices made in designing
separate system components are discussed. Furthermore, a mathematical
model made to evaluate the effectiveness of duty cycling is presented.

The system designed in Chapter 3 is implemented in VHDL in Chapter 4. The
working principles of the system are explained in this chapter and choices of
word lengths are explained. The scalability of the implementation is also
discussed here.

Performance of the system was measured through simulations and the re-
sults are shown in Chapter 5. The power consumption of the system as well
as the bit error rate (BER) is given and compared to literature as well as the
previous implementation of the system.

Finally, Chapter 6 concludes the thesis. In this chapter possible further op-
timizations are suggested as future research direction which may contribute
to further reduction of power consumption.

5

Chapter 2

Background

This chapter presents background information for the rest of the thesis such
as low power techniques and related work. It explains how double-differential
phase-shift keying (DDPSK), the detection scheme used in the demodula-
tor, works mathematically and presents an enhanced demodulation scheme
for DDPSK. Finally it will present comparable demodulator implementations
found in literature in the related work section.

2.1 DDPSK

The receiver uses DDPSK, which is a modulation technique that is invariant
to phase and frequency offset. Because phase shift keying encodes informa-
tion into the phase of a carrier signal, the amplitude of that signal does not
contain any information. The mathematics used to modulate and demodu-
late the signal is presented here.

2.1.1 Modulation

In order to use DDPSK at the receiver’s side, the transmitted information
should be encoded into the double difference of the transmitted signal phase.
Figure 2.1 shows a DDPSK modulator which is used for encoding informa-
tion [17]. xn, the input of the modulator, has the information encoded in its
phase. un denotes the signal after the first modulation stage. The output of
the demodulator, yn, can be described by the following equations:

yn = un · yn−1 (2.1)

un = xn · un−1 (2.2)

Given that these signals are complex they can be written in polar form, in
which case the multiplication adds the phases of the signal. Let αn, βn and
φn be the phases of xn, un and yn, respectively, then:

βn = αn + βn−1 (2.3)

φn = βn + φn−1 (2.4)

6 Chapter 2. Background

z-1

+

z-1

+

FIGURE 2.1: Block diagram of a double differential modulator

Which can be rewritten to:

αn = βn − βn−1 (2.5)

βn = φn − φn−1 = ∆φn (2.6)

αn = φn − 2φn−1 + φn−2 = ∆φn − ∆φn−1 (2.7)

And thus the input phase has been successfully encoded into the double dif-
ference of the output phase and the signal is ready to be transmitted.

2.1.2 Demodulation

Using a baseband equivalent model, the symbols coming into the demodu-
lator at the receiver side can be described by the following equations:

nth symbol:
sn(t) = ejφn · ejω0t (2.8)

(n− 1)th symbol:
sn−1(t) = ejφn−1 · ejω0(t−T) (2.9)

(n− 2)th symbol:
sn−2(t) = ejφn−2 · ejω0(t−2T) (2.10)

+ +

z-1

* *

FIGURE 2.2: Block diagram of a double differential demodula-
tor

Where T is the symbol period and ω0 = 2π fo f f set is the frequency offset. The
output after the first multiplication (the first stage of autocorrelation) is as
follows:

2.1. DDPSK 7

un(t) = sn(t) · s∗n−1(t)

= ejφn · ejω0t · e−jφn−1 · e−jω0(t−T)

= ej(φn−φn−1) · ejω0t · e−jω0t · ejω0T

= ej(φn−φn−1) · ejω0T

(2.11)

un−1(t) = sn−1(t) · s∗n−2(t)

= ejφn−1 · ejω0(t−T) · e−jφn−2 · e−jω0(t−2T)

= ej(φn−1−φn−2) · ejω02T · e−jω0T

= ej(φn−1−φn−2) · ejω0T

(2.12)

In these expressions we can rename the terms φn − φn−1 = ∆φn and φn−1 −
φn−2 = ∆φn−1 so that:

un(t) = ej∆φn · ejω0T (2.13)

un−1(t) = ej∆φn−1 · ejω0T (2.14)

The output of the first stage, un(t), is integrated over a symbol period using
an integrate and dump block. This results in a sampled signal, vn, at the out-
put of the integrator. For simplicity it is assumed that the signal amplitude is
constant over one symbol:

vn = un(t)T = Tej∆φn · ejω0T (2.15)

vn−1 = un−1(t)T = Tej∆φn−1 · ejω0T (2.16)

There is still a constant phase shift ejω0T which disappears after calculating
the double differential:

wn = vn · v∗n−1

= Tej∆φn · ejω0T · Te−j∆φn−1 · e−jω0T

= T2ej(∆φn−∆φn−1)

(2.17)

Now, the phase of output wn contains the double difference of the input
phases ∆φn − ∆φn−1 and the constant phase shift ejω0T has been removed.
The amplitude of the signal has increased by T2, but its amplitude is not im-
portant since it contains no information.

The length of the delays T can be chosen, in this implementation the delay
is two symbol periods (T) for the first demodulation stage and one symbol

8 Chapter 2. Background

period for the second one, as suggested by [17]. This provides better perfor-
mance because it makes the double difference dependent on four samples as
opposed to three, reducing noise correlation between the two demodulator
stages [17].

The number of samples per symbol N can be increased to allow for a higher
tolerable frequency offset. For this reason this thesis uses N = 16 and N =
32. According to the Nyquist Theorem the frequency offset that can be toler-
ated equals twice the sample rate. By increasing N the sample rate increases
and a larger frequency offset can be tolerated. In practice however a fre-
quency offset will already deteriorate performance, due to the filter shape
and bandwidth of the signal.

A visual representation of this is shown in Figure 2.3. It shows how the filter
in front of the demodulator does not have a perfectly rectangular frequency
response. Instead it has a transition band which limits the highest tolerable
frequency offset of the demodulator. If part of the signal falls in this transi-
tion band it will be blocked partially. This is a second effect that limits the
tolerable frequency offset. The frequency offset shifts the signal’s center fre-
quency, but the signal has a bandwidth of Bs, with 1

2 Bs on either side. This
means that in order to prevent part of the signal overlapping with the transi-
tion band of the filter, the frequency offset has to be 1

2 Bs lower than the start
of the transition band.

Frequency offset

Transition band

FIGURE 2.3: Visual representation of a frequency offset in the
frequency spectrum

2.2 Previous work

2.2.1 The receiver system

Designing the complete receiver digital signal processing (DSP) chain at sys-
tem level has been investigated in [14]. This system is shown in Figure 2.4.

BBC CIC FIR DMDADC
Analog
domain

Received
symbol

FIGURE 2.4: Block diagram of the full system

2.2. Previous work 9

It shows the analog front end on the left side, where the analog to digital
converter (ADC) converts the signal to a signal in the digital domain. It is
followed by a several DSP components. First a baseband conversion block
(BBC), which converts the signal from intermediate frequency to baseband.
Then a cascaded integrator-comb filter (CIC) followed by a finite impulse
response filter (FIR) condition the signal, in preparation for the demodulator,
by heavily reducing the sample rate and filtering out-of-band noise. Finally,
the conditioned signal is fed to the demodulator (DMD). This thesis looks
solely at the digital domain of the receiver, the blocks after the ADC.

2.2.2 Enhanced autocorrelation demodulator

In a conventional autocorrelation demodulator, multiplying two symbols with
each other is performed as follows. First, each sample of one symbol is mul-
tiplied with the respective sample of the previous symbol. The final result of
a multiplication between two symbols (autocorrelation of the input signal) is
then calculated as the sum of these sample products.

A method to improve the signal to noise behaviour of the autocorrelation
demodulator is presented in [16]. Instead of multiplying each sample of a
symbol only with the respective samples of the previous symbol, the sam-
ples are also multiplied by the left and right shifted samples of the previous
symbol. The amount of shift can increase to up to N − 1 where N is the
number of samples per symbol.

shift by -1

FIGURE 2.5: A representation of two symbols as they are mul-
tiplied sample by sample. No shift is applied on the left, a shift

of -1 is applied (to the delayed symbol) on the right.

A visual representation of this principle is shown in Figure 2.5. The vertical
arrows show which samples are multiplied and thus, in the scenario on the
left side of Figure 2.5, each sample of a symbol Sn is multiplied by the re-
spective sample of the delayed symbol Sn−1. In the scenario on the right, the
delayed symbol is first right-shifted by one sample and then the samples are
multiplied. The first sample of Sn and the last sample of Sn−1 are not multi-
plied in this case and only three multiplications are performed. In this thesis
a positive shift direction is assumed to be to the left. Therefore this right shift
corresponds to a shift by -1. Note that the shift refers to the delayed symbol
and not the current symbol.

Increasing the shift length in both directions will lead to different pairs of
samples being multiplied, until each sample of Sn is multiplied by every sam-
ple of Sn−1. The magnitude of the shifts is denoted by p so that p = 0 corre-
sponds to the conventional demodulation scheme where no shift is applied,

10 Chapter 2. Background

possitive p correspond to the right shifts and negative p to the left shifts. The
inter-sample products obtained by a certain shift p are summed, resulting in
a single value for each p. A second differential decoder is then applied to this
value producing a double differential demodulator for each p.

Therefore, there is a path through the demodulator for each shift amount p,
starting with a differential decoder, followed by a summation block, and fi-
nally another differential decoder. The values at the output of all the paths
are added to obtain the final output of the demodulator. Although this de-
modulation scheme is more complex than the conventional scheme, it offers
a better BER performance.

2.3 Low power techniques

In general, a lower clock frequency leads to lower dynamic power consump-
tion, since the capacitances inside the logic cells are being switched less of-
ten. On the other hand, more hardware leads to higher power consumption
because of leakage power. Thus lowering the clock frequency while not sig-
nificantly increasing the amount of hardware is a way to reduce dynamic
power consumption. However, when the number of calculations stays the
same, the clock frequency cannot simply be reduced without taking longer
to perform all necessary calculations. Finding a way to avoid calculations
can circumvent this.

When a decimator is present after a digital signal processing block, the deci-
mator can sometimes be moved in front of the DSP block while keeping the
system functionally equivalent, depending on the type of DSP block. Deci-
mating the input before processing it reduces the amount of required com-
putation. The DSP block can then operate at a lower clock frequency. A dec-
imator can always be moved to the prior of an adder or multiplier without
changing the system functionality [6].

For delay blocks, however, the amount of delay has to be adjusted to ensure
correct performance of the system. The following transformation applies as
long as the delay length, N, is a multiple of decimation factor, M [18]:

z-N Mx(n) y(n) Mx(n) y(n)z-NMu(n) u'(n)

FIGURE 2.6: Moving a decimator with factor M in front of a
delay of N

The system on the left hand side can be mathematically described as follows:

yn = uMn (2.18)

un = xn−N (2.19)

yn = xMn−N (2.20)

2.3. Low power techniques 11

And for the right hand side:
yn = u′n− N

M
(2.21)

u′n = xMn (2.22)

yn = xM(n− N
M) (2.23)

It is clear both sides are identical since:

xM(n− N
M) = xMn−N (2.24)

Moving the decimator through a delay block is only possible when the ratio
N
M is an integer number, and thus the delays in the DSP block should be a
multiple of the decimation ratio. This may not always be the case, but in case
of an FIR filter, transformations can be applied to enforce this. One way to
achieve this is through the use of polyphase decomposition.

The multiplier coefficients in an FIR filter can be divided into a number of
groups based on which inputs they are multiplied with. The simplest di-
vision would be into two groups, one containing those coefficients that are
multiplied by the inputs {x0, x2, x4, ...}, which one could call the ’even’ group,
and another group with those coefficients that are multiplied by the inputs
{x1, x3, x5, ...}, then called the ’odd’ group.

Note that the inputs in the even group are all delayed by a delay of 2n and
the delays in the odd group by a delay of 2n + 1, with n ∈ {0, 1, 2, 3, ...}.
Therefore the two groups can be implemented as two separate FIR filters
with delays of order 2, where the input to the odd part of the filter has one
additional delay applied to it. The outputs of these two filters are then added
to yield the same output as the original filter. Apart from the initial delay, all
delays in this new filter structure are of order two and can therefore have the
afore mentioned transformation applied to them with a decimation of factor
two. For higher decimation factors the coefficients can be split in a larger
number of groups to achieve higher order delays in these groups, so that the
decimator may then be moved to the front.

2.3.1 Complex multiplication

Generally a complex conjugate multiplication requires four multiplications
and two additions/subtractions, given that z = (a + bi) · (c − di) = (ac +
bd) + (bc− ad)i. One multiplication can be omitted at the cost of three addi-
tions, by rewriting the calculation in the following way [8]:

Let

k1 = a(c− d) = ac− ad (2.25)

k2 = c(b− a) = bc− ac (2.26)

k3 = d(a + b) = ad + bd (2.27)

12 Chapter 2. Background

Then, the magnitudes of the real and imaginary parts of the multiplication
result can be written as:

Re{z} = k1 + k3 = ac− ad + ad + bd = ac + bd (2.28)

Im{z} = k1 + k2 = ac− ad + bc− ac = bc− ad (2.29)

Calculation of the k values and from them deriving the real and imaginary
part of the multiplication result requires three multiplications and five ad-
ditions/subtractions. Since the power consumption of multipliers is much
higher than adders [7], implementing the calculation in the way described
here is expected to consume less power.

2.3.2 Transistor threshold voltage

There are three kinds of cell libraries with respect to transistor threshold
voltage that are used in ASIC design. These are denoted as high-threshold
voltage (HVT), standard-threshold voltage (SVT) and low-threshold voltage
(LVT) [4].

HTV libraries offer the lowest leakage power consumption of the three but
are also the slowest. They are not suitable for high speed designs where
timing is critical. LTV libraries on the other hand utilise transistors that waste
a lot more power as leakage, but are also much faster and well suited for high
speed designs. SVT libraries are in the middle with their average speed and
leakage power consumption.

Depending on the design, a more efficient library can be used to reduce
power consumption. The system presented in this thesis has a very low clock
speed. Timing is not critical and so an HVT library is best suited. This is ex-
pected to significantly reduce the leakage power consumption.

2.4 Related work

Several implementations of narrowband receivers for IoT and deep space
applications can be found in literature, which are briefly presented here to
give the reader an idea of their power characteristics.

A low-power multirate DPSK receiver for space applications was designed
and implemented in [19], capable of also decoding DDPSK if necessary, using
multiplexers to possibly bypass the second demodulator. It is implemented
on 0.35µm CMOS and its digital part consumes 90µW.

A DBPSK/GFSK tranceiver presented in [9] consumes 14.5mW for both the
digital and analog parts, processed in 65nm CMOS. They target sigfox, which
is an application of ultranarrowband, and use a combination of differential
detection and constant phase offset estimation to counter frequency offset.
It allows them to tolerate around ±70 Hz of frequency offset. In [5] a low-
power FSK receiver was designed and implemented (digital section only) on

2.4. Related work 13

0.25µm CMOS. Its power consumption is below 100µW at datarates below
20kb/s.

A software defined radio (SDR) is implemented in [2], which implements
a multi-standard digital baseband processor for IoT on a RISC-V core. It is
estimated to consume 1.6mW, when running at 114MHz and implemented
on 28nm FDSOI. Another SDR processor was presented in [3] consuming
1.37mW when implemented in 28nm technology, realising a BLE baseband
processor.

Table 2.1 summarises these implementations found in literature.

Source Modulation Power Frequency Technology
[19] (D)DPSK 90 µW 4Mhz SOI CMOS 0.35 µm
[5] FSK 100 µW 1.2Mhz CMOS 0.25 µm
[9] DBPSK/GFSK 14.5 mW 885Mhz CMOS 65 nm
[2] BLE GFSK 1-Ms/s (SDR) 1.6 mW 114Mhz FDSOI 28 nm
[3] BLE (SDR) 1.37 mW 20Mhz CMOS 28 nm

TABLE 2.1: Comparison of several narrowband transceivers
and receivers found in literature

In this thesis only part of the baseband processing is implemented, and in the
works referenced in Table 2.1 the fraction of power consumed by each digital
processing task is not specified. Therefore these numbers cannot directly be
compared with the power consumption of the system implemented in this
thesis, and only a comparison with [14] will be done in Chapter 5.

15

Chapter 3

Design

This chapter will focus on the steps taken in designing the system compo-
nents and explain decisions made in their design. As stated in chapter 2,
motivation for the choice of system level components is given in [14]. This
previous system is used in this thesis where the focus is on a power efficient
implementation.

The full system is shown in Figure 3.1. The left input comes from the analog-
to-digital converter at a 4Mhz samplerate and is first processed by the base-
band conversion block. The converted signal is then processed by a CIC
and an FIR filter. These blocks make up the signal conditioning part of the
receiver. The conditioned signal is then input into the actual demodulator
which outputs the transmitted symbols. The datarate of the system is de-
signed at 100 bits per second, so symbols are output at a rate of 100Hz. Each
DSP block is treated in this chapter.

BBC CIC FIR DMD
From
ADC

Received
symbol

FIGURE 3.1: Block diagram of the full system

3.1 Baseband Conversion

The baseband conversion component down-converts the incoming signal from
IF frequency to baseband by multiplying the input with the IF carrier. It is
implemented in the same way as in [14] and performs the following opera-
tion, where s(n)ejωIFnTs is the input of the baseband conversion block, s(n)
the information carrying signal and Ts =

2π
ωs

is the sampling period:

s(n)ejωIFnTs · e−jωIFnTs = s(n) (3.1)

Because calculations are performed digitally, sampling will take place. The
expression e−jωIFnTs will therefore have fixed values and does not need to
be calculated, depending on the sampling ratio rs = ωs

ωIF
. By choosing a

sampling ratio of four [14], these values will all be of unity magnitude as
shown here.

16 Chapter 3. Design

rs =
ωs

ωIF
= 4 =⇒ ωs = 4ωIF (3.2)

e−jωIFnTs = e−jωIFn 2π
ωs = e−jωIFn 2π

4ωIF = e−jn π
2 (3.3)

When n is equal to 0, 1, 2, 3 plus 4k with k ∈ Z, the term e−jn π
2 respectively

produces a 1,−j,−1, j. This removes a lot of complexity because multiply-
ing by these numbers is trivial, which makes the implementation as in [14]
possible.

A 2-bit counter will be used to cycle through the ’multiplications’. Since the
multiplier value is always of magnitude one, the inputs are simply rerouted
to certain outputs as shown in tabel 3.1 and no actual multiplications have to
take place.

n Multiplier Re out Im out
0 + 4k 1 Re in Im in
1 + 4k −j Im in -Re in
2 + 4k −1 -Re in -Im in
3 + 4k j -Im in Re in

TABLE 3.1: Values the complex input is multiplied with for dif-
ferent n, k ∈ Z.

3.2 CIC-filter

The CIC filter was implemented similar to [14], as a single integrator stage
followed by a single comb stage with a decimator in between them. It has a
decimation factor of 1250, to reduce the 4Mhz input samplerate to 3200Hz.
This 3200Hz is reduced to 1600Hz by the FIR filter, and given the symbol rate
of 100Hz, this leads to a samplerate of 16 samples per symbol. This metric
is referred ot as N. By choosing the decimation factor of 1250 differently, the
number of samples per symbol N can be changed, of which the implications
are discussed in later chapters.

The CIC filter effectively functions as a moving-average filter by continu-
ously adding the input samples and then subtracting the oldest values from
the total. The CIC filter implementation was not improved upon given that
it consists of only a single integrator comb stage.

A block diagram of the CIC filter is shown in figure 3.2. The decimation factor
is achieved by running the comb section on the right hand side at a lower
clock rate that the integrator part on the left hand side, the ratio between the
two clocks being the decimation factor. This is one of the benefits of a CIC
filter; its decimation ratio can be changed simply by altering the relative clock
rates.

3.3. Polyphase FIR-filter 17

+ 1250 +
-

z-1 z-1

FIGURE 3.2: Block diagram of the CIC filter

3.3 Polyphase FIR-filter

An FIR-filter contains many multiplications with constant coefficients. These
multiplications can be converted to shifts and additions in order to prevent
using actual multipliers, which consume much more power than adders do.
This can be achieved by converting the multiplication by a coefficient to a
sum of multiplications by powers of two. For example, a multiplication by
ten can be written as the sum of a multiplication by eight and by two; 10x =
2x + 8x. Since 8 = 23 and 2 = 21, both powers of two, the multiplications
only require bit-shifts to be performed, no multipliers are required this way.
This principle works for any multiplication, not just a multiplication by ten.

In this specific FIR filter [14], the integer coefficients are values very close to
powers of two: {4636, -1137, -7875, 8226, 32767, 32767, 8226, -7875, -1137,
4636}, corresponding with the values of {b(0), b(1) · · · b(9)} in Figure 3.4.
This allows each of the multipliers in the FIR to be replaced by a single bitshift
without significantly altering the behavior of the filter. The normalised fre-
quency responses of the filter using the original coefficients from [14] and for
the closest power of two coefficients is shown in Figure 3.3. Those powers of
two are {212,−210,−213, 213, 215, 215, 213,−213,−210, 212}. These coefficients
all contain a factor of 210 which can be taken out.

FIGURE 3.3: Comparison of the FIR-filter frequency response
using the full and power of two coefficients

18 Chapter 3. Design

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+b(9) b(8) b(7) b(6) b(5) b(4) b(3) b(2) b(1) b(0)

x(n)

y(n)

FIGURE 3.4: Dataflow graph of the FIR filter

x(n) +

+ b(0)

y(n)

b(1)+

+

+ b(2)

+ b(3)

+

+ b(4)

+ b(5)

+

+ b(6)

+ b(7)

+

+ b(8)

+ b(9)

2

2

FIGURE 3.5: Dataflow graph of the FIR filter with polyphase
decomposition applied to it

After the FIR filter the sample rate is reduced by a factor 2 using a decimator.
This allows polyphase decomposition to be applied to the FIR filter. This re-
duces the clockspeed at which the FIR filter operates at by a factor two. The
filter coefficients are split into two groups, equal to the decimation factor,
and polyphase decomposition is applied as explained in Chapter 3. The dec-
imator can then be moved in front of the additions and multiplications and
before the filter. Instead of calculating all the samples and decimating half of
them, only the samples that are not removed by decimation are calculated.

Figure 3.4 shows the filter before polyphase decomposition, decimation hap-
pens after the filter as a separate DSP operation. After polyphase decompo-
sition, the filter has the structure shown in Figure 3.5, where decimation is
done before filtering. Even though a register was added to delay one of the
inputs by one input cycle, overall less registers are required. Even though the
polyphase filter structure contains the same number of hardware arithmetic
units, it can run at half the speed, proportional to the decimation factor. This
structure will therefore consume less power.

3.4 Demodulator

The first stage of the demodulator when N = 4 (samples per symbol) can be
described by the data flow graph shown in Figure 3.7. The demodulator ef-
fectively multiplies each sample of the input symbol an with every sample of
the double delayed symbol an−2. Note that the samples are complex valued
and the multiplier is a complex conjugate multiplier, so it has been marked
with a *. These symbol by symbol multiplications are illustrated in Figure
3.6 and explained in more detail in Chapter 2. The products of the symbol
by symbol multiplications are added together as explained in [16]; all the

3.4. Demodulator 19

products that correspond to a certain amount of shift as shown in Figure 3.6
will be summed. This can be easily realised using a grid of multipliers and
adders, resulting in the data flow graph in Figure 3.7.

shift by -1

FIGURE 3.6: A representation of two symbols as they are mul-
tiplied sample by sample. No shift is applied on the left, a shift

of -1 is applied (to the delayed symbol) on the right.

Due to its repetitive nature it can be folded into two directions. ’Folding’ in
this case refers to collapsing multiple identical operating units or dataflow
structures in the dataflow graph onto one another, down to a single unit or
structure. For example, the four multipliers on the left hand side of Figure
3.7 are functionally identical. The operations they perform could therefore
be performed by a single one of such multiplier. In a way, it is as if the paper
of the page these multipliers are printed on could be folded across the grey
dotted lines, such that the multipliers end up physically on top of each other,
hence the term ’folding’. Of the four multipliers only one remains, and it will
perform the operations of the original four multipliers.

When folding vertically, folding the incoming sample inputs over one an-
other, a structure is created that takes a single input sample every cycle. The
dataflow graph that is obtained when folding in this way is shown in Figure
3.8. This is a convenient way to fold since the FIR filter in front of the demod-
ulator produces one sample during the same clock cycle. The first stage of
the demodulator can then run at the same clock rate as the FIR filter output
and process samples as they come out of the FIR filter.

The folded structure reduces the number of used adders and multipliers by a
factor of N, with N being the number of samples per symbol. A single value
is output in every cycle except for the last. In Figure 3.8, the output of the
first cycle, i = 0, is denoted by p = 3. This is the same output corresponding
to p = 3 in Figure 3.7 as well. During the last cycle, N− 1 additional outputs
are produced, so during this cycle a total of N outputs are produced at once.
In Figure 3.7 and 3.8 these are the outputs corresponding to i = N− 1 = 3. A
summary of what happens in which cycle is shown in Table 3.2. Production
of 2N − 1 outputs over N cycles means the average number of outputs per
cycle is approximately two.

A dataflow graph describing the second stage of the demodulator can be seen
in Figure 3.9. It also contains a lot of repeated hardware which can be reduced
through folding, resulting in the dataflow graph shown in Figure 3.10. This
is achieved by grouping all the multiplications into a single multiplier unit
for which the inputs are selected by multiplexers. Those cycle through the
different input pairs depending on the state, which could be a simple counter

20 Chapter 3. Design

p=3

p=2

p=1

p=0

p=-1p=-2p=-3

+ + + +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

i=0

i=1

i=2

i=3

* * * *

* * * *

* * * *

* * * *

FIGURE 3.7: Dataflow graph of the first demodulator stage for
N = 4.

+

+

+

+

+

+

+

p=3-i

p=-1p=-2p=-3i=N-1:

* * * *

FIGURE 3.8: Folded dataflow graph of the first demodulator
stage for N = 4.

3.4. Demodulator 21

Cycle 0 1 . . . N − 2 N − 1
Input an,0 an,1 . . . an,N−2 an,N−1

Registers Contain zeros - . . . - Reset
of Outputs 1 1 . . . 1 N

TABLE 3.2: Compact timing diagram showing the input and
number of outputs for every cycle. The registers are reset dur-
ing the final cycle and as a result contain zeros in the first cycle.

p=3

p=2

p=1

p=0

p=-1

p=-2

p=-3

+

i=0

i=1

i=2

i=3

+

+

+

+

+

+

+

*

*

*

*

*

*

*

FIGURE 3.9: Dataflow graph of the second demodulator stage
for N = 4.

running from 0 through 2N − 1. Addition of the multiplier outputs is then
performed using an accumulator unit that adds one multiplier output as it
is calculated each cycle and resets during the last cycle. This will effectively
add up all outputs generated by the multiplier.

In this way the number of multipliers and adders is reduced from 2N − 1
down to just a single multiplier and adder. The clock speed of the folded
datapath will have to be increased by a factor of 2N compared to when it was
unfolded in order to perform all the operations in time, causing the second
stage of the demodulator to operate at twice the clock speed of the first stage
when both stages are folded. This makes sense because the first demodula-
tor stage on average produces two outputs per cycle while the second stage
accepts a single input per cycle. Thus, when the second stage runs twice as
fast as the first stage, their input and output rate will match.

22 Chapter 3. Design

+

state

+

0

p=3

p=2

p=1

p=0

p=-1

p=-2

p=-3

*

FIGURE 3.10: Folded dataflow graph of the second demodula-
tor stage for N = 4.

3.5. Duty-cycling the demodulator 23

The values on the input paths p = −3 through p = 3 of Figure 3.9 are stored
in registers to account for the mismatch in data production and consumption
between the first and second stage of the demodulator. This mismatch stems
from the fact that the first stage does not produce 2N − 1 outputs evenly
spread across the cycles, but rather it produces N outputs during the last
cycle, as displayed in the bottom row of Table 3.2. The registers allow the
second stage to keep up with the first stage and give it time to process the
samples one by one.

3.5 Duty-cycling the demodulator

Hardware can only leak power when it is powered, thus disabling a part of
the hardware could help reduce this leakage. Since the hardware will still
receive inputs while in the off-state, these inputs will have to be stored in
some form of memory. After being powered on, the hardware can then run
at a faster rate to process all those inputs, before powering off again. In this
way the power to part of the system is being duty-cycled.

Figure 3.11 graphically shows how duty-cycling would work. Figure 3.11a
shows normal operation where all the hardware runs all the time. There
is some dynamic power consumption consisting of switching and leakage
power as well as continuous leakage power. Here, Tcycle refers to the duration
of one duty-cycle when it would be applied.

Then, when duty cycling is applied, a timing diagram like Figure 3.11b is
obtained. Within the cycle time Tcycle, for some time To f f the hardware will
be turned off and consume no power, after which it is turned on for some
time Tprocess to do all the work. Since the hardware is going to be turned
off again at the end of the Tcycle, processing has to occur at a faster rate. In

fact the processing speed has to increase by a factor of
Tcycle

Tprocess
to make up for

the off-time. Therefore the dynamic power consumption during on-time is
expected to increase by the same factor, however the leakage power in this
interval will not. Overall, the leakage power will therefore be decreased.

P

t

Internal + Switch

Leakage

(A)

t

Internal
+

Switch

Leakage

P

(B)

FIGURE 3.11: Timing diagram showing normal operation (left)
and duty-cycling (right) of the demodulator.

24 Chapter 3. Design

BBC CICCIC FIR MEM DMD
FIGURE 3.12: A possible location for the memory block

In order to evaluate the viability of using duty-cycling for leakage power re-
duction, a model was developed. The model is used to compare locations in
the system where the memory block can be positioned, as well as different
periods and cycle times for the duty cycle. An example position of the mem-
ory block is shown in Figure 3.12 where it is placed between the FIR-filter
and the demodulator.

Name Symbol
Sample rate* sr
Wordlength* WL
Cycle time Tcycle
Processing speed p
Leakage Power* Pleak
Dynamic Power* Pdyn
Memory dynamic energy per bit EMb,dyn
Memory leakage power per bit PMb,leak
Samples stored* sstored
Bits stored* bstored
Processing time* Tprocess
System off time* To f f
Leakage energy saved* Eleak
Memory total energy consumption* EM,tot

TABLE 3.3: List of symbols used in the model. Parameters de-
pendend on the location of the memory are marked with *.

The following parameters were defined in the model:

Sample rate sr, the sample rate at which the input samples are being stored in
memory. This depends on the location of the memory block in the processing
chain, as sample rates differ between components.

Wordlength WL, the word length of the input samples. This also depends on
the location of the memory block in the system.

Cycle time Tcycle, the cycle time denotes the duration of one store and process
cycle.

Processing speed p, denotes the speed in samples/second at which process-
ing of the stored samples occurs. It is the sample rate at which they are read
from memory.

Leakage Power Pleak, consumed by the system components that are going to
be power-gated. This leakage power will be prevented during shut down
time as shown in Figure 3.11.

3.5. Duty-cycling the demodulator 25

Dynamic Power Pdyn, switching and internal power consumption of the sys-
tem components that are going to be power-gated, before power-gating is ap-
plied. The dynamic power for these components will increase in the power-
gated system as shown in Figure 3.11.

Memory dynamic energy per bit EMb,dyn, the energy consumed by the mem-
ory to read and write a single bit, excluding leakage.

Memory leakage power per bit PMb,leak, the leakage power consumed by the
memory per bit of storage in the memory.

A few of these parameters are dependent on the location of the memory
block in the processing chain, namely the sample rate sr, word length WL
and power consumptions Pdyn and Pleak. Because the value of these parame-
ters depends on the location of the memory, they have been marked with a
* in Table 3.3. As an example, the sample rate at the input of the FIR-filter
is twice the sample rate at the output and the word lengths are different as
well. If a memory block is placed at the FIR input a different number of sam-
ples, and therefore bits, would have to be stored over a certain time interval
compared to placing it at the output. The symbols were defined without a
fixed memory location in mind and will take on a value when evaluating the
final expression formulated at the end of this Chapter (3.11), depending on
the memory location.

The dynamic and leakage power parameters depends on the location of the
memory block as well since those denote the power consumptions of compo-
nents behind the memory block. A larger portion of the system can be turned
off when the memory block is placed closer to the start of the chain and so
the possible power saving would then be higher.

Using the parameters so far presented with the following equations, several
more can be calculated.

Samples stored sstored, the amount of samples stored in the memory block
during a cycle, can be calculated from the sample rate sr and cycle time Tcycle:

sstored = sr · Tcycle (3.4)

Bits stored bstored. Each complex sample consists of a real and imaginary
part, both WL bits long. Thus the amount of bits stored in the memory block
during one cycle can be calculated as:

bstored = sstored ·WL · 2 (3.5)

Processing time Tprocess, is defined as the time the power-gated hardware is
on and processing inputs during each cycle, and can be calculated from the
amount of samples stored sstored and the processing speed p:

26 Chapter 3. Design

Tprocess =
sstored

p
(3.6)

System off time To f f . When processing time Tprocess and cycle time Tcycle are
known, the time during each cycle for which the power-gated hardware is
off can be calculated as:

To f f = Tcycle − Tprocess (3.7)

Leakage energy saved Eleak. When the system is turned off for time To f f ,
the amount of leakage energy that is saved during each cycle by turning the
system off is calculated as:

Eleak = Pleak · To f f (3.8)

Memory total energy consumption EM,tot, the sum of the memory’s dynamic
and leakage power consumption, can be calculated as:

EM,tot = PMb,leak · Tcycle · bstored + EMb,dyn · bstored (3.9)

As illustrated in figure 3.11b the power consumption is going to be concen-
trated on a small time interval Tprocess and therefore the instantaneous power
consumption is increased during processing. It is assumed that the same
amount of energy that would be consumed as dynamic power during a single
cycle is instead consumed during the processing time and therefore results
in a higher power value. The instantaneous power consumption can be an
important factor to take into account for practical purposes and is calculated
as:

Pinst = (Tcycle · Pdyn)/Tprocess + Pleak (3.10)

Depending on the cycle time, Tcycle, and sample rate, sr, a certain number
of samples is stored in the memory block. A longer cycle time and a higher
sample rate will lead to larger required memory as more samples will have to
be stored. Then, the processing speed p dictates how fast the memory block
is emptied again. Subtracting processing time from cycle time yields the time
To f f during which the power-gated part of the system can be turned off. The
leakage energy Eleak that is prevented during off-time is the potential energy
that can be saved using duty-cycling. It should be noted that the memory
block itself cannot be power gated and thus continuously consumes power
as it stores samples.

The power per bit consumed by the memory for both the high and low speed
variant are used to estimate the dynamic energy consumption and leakage

3.5. Duty-cycling the demodulator 27

power per bit of memory, and from that the energy consumption of the mem-
ory during a single duty-cycle. By subtracting this energy from the energy
saved through power gating, the energy saving that can potentially be gained
is calculated.

Shortening the cycle time decreases the amount of data that is stored in the
memory block and thus the energy consumed by the memory, at the cost
of powering the system on and off more often. Note that the power cost of
turning the system off and on has not yet been incorporated into the model.
A break-even time can be defined as the cycle time for which the decrease in
energy consumption through power gating equals the energy consumed by
the memory block:

Tcycle =
Pleak · (1− sr

p)

PMb,leak · 2WL · sr
−

EMb,dyn

PMb,leak
(3.11)

This equation is derived as follows:

Eleak = EM,tot (3.12)

Pleak · To f f = PMb,leak · Tcycle · bstored + EMb,dyn · bstored (3.13)

Pleak · (Tcycle − Tprocess) = (PMb,leak · Tcycle + EMb,dyn) · bstored (3.14)

Pleak · Tcycle − Pleak · Tprocess = (PMb,leak · Tcycle + EMb,dyn) · 2WL · sstored (3.15)

Pleak · Tcycle− Pleak ·
sstored

p
= (PMb,leak · Tcycle + EMb,dyn) · 2WL · sr · Tcycle (3.16)

Pleak · Tcycle − Pleak ·
sr · Tcycle

p
= (PMb,leak · Tcycle + EMb,dyn) · 2WL · sr · Tcycle

(3.17)
Pleak − Pleak ·

sr

p
= (PMb,leak · Tcycle + EMb,dyn) · 2WL · sr (3.18)

Pleak · (1−
sr

p
)− EMb,dyn · 2WL · sr = PMb,leak · Tcycle · 2WL · sr (3.19)

Tcycle =
Pleak · (1− sr

p)− EMb,dyn · 2WL · sr

PMb,leak · 2WL · sr
(3.20)

Tcycle =
Pleak · (1− sr

p)

PMb,leak · 2WL · sr
−

EMb,dyn

PMb,leak
(3.21)

Once all parameters are known, this equation can be used to calculate the
maximum length of the store and process cycles in order for duty-cycling to
be effective. In Chapter 5 this equation is used for analysis based on values
achieved through simulations.

29

Chapter 4

Implementation

This chapter presents how the system components were implemented in
VHDL and some of the choices made in the process. Beside, the way the
components work is explained in more detail. An overview of the imple-
mented system is shown in Figure 4.1. It shows the different clock domains
in the receiver chain. As can be seen, some components run on multiple clock
domains. The clocks are generated by the clock controller (CC) and derived
from the system input clock, ’clk in’.

4.1 Demodulator

The Demodulator was implemented in VHDL following the design presented
in section 3. It’s implementation is shown in Figure 4.2. It shows an imple-
mentation for N = 16 but to increase clarity not all the hardware is drawn.
After folding, hardware is being re-used for different purposes, and thus,
some control logic is required to manage the flow of data. For this purpose a
state machine was implemented that cycles through N states while the sam-
ples of the current symbol are processed one by one.

During each state, the incoming sample an,i is directly multiplied by each of
the samples of symbol an−2. Since every symbol consists of N samples, these
multiplications produce N intermediate results per state, specifically:

BBC
FIR

FIRCIC

CIC

Re

Im

4 MHz 3200 Hz 1600 Hz 3200 Hz 100 Hz

stage 1 stage 2

DMD Received
symbol

CCclk in

Received
sample

Re

Im

FIGURE 4.1: An overview of the system that is implemented in
VHDL, with clock domains indicated by dashed lines.

30 Chapter 4. Implementation

+

+

+

+

+

+

+

p=0p=-13p=-14p=-15

R1 R2 R3

Input

p=1 p=2 p=15

Output

Outputs

7

14 14 14 14

18 18 18

7 7 7 7

clk = 1600 Hz

* * * *

FIGURE 4.2: The implemented first stage of the demodulator
for N = 16.

an,i ·

an−2,0
an−2,1

...
an−2,N−1

The results of these multiplications are then added to previously stored sums,
which will accumulate all of the multiplications in each path as the samples
enter the first stage. In each state, the pipeline outputs a value belonging to
path p = N − 1− i where i is the number of the state.

During the final state, i = N − 1, the intermediate values in the pipeline
are also output. These values are the sums belonging to paths with shifts
p = −N through p = −1. This amounts to a total of 2N − 1 outputs, one
for each path in the demodulator. The pipeline registers are reset in the final
state so they again contain zeroes as the next symbol comes in.

A visual representation of the workings of Figure 4.2, as described above, is
shown in Table 4.1 for N = 4. It shows an example run for the first stage of
the demodulator. Several cycles are shown for which example inputs have
been chosen. Note that time does not start at time 0 when the system has just
been turned on, but rather at time t + 0 where t is just an arbitrary amount
of time after the system first started. This is to indicate the system in this
example run has been running for a while and is not in its initial state.

The inputs were chosen such that at time t + k the value at the input is
equal to k. Thus for the first symbol that is input, its samples have values
an = {0, 1, 2, 3}. This allows the inputs that are not shown in the table to be
deduced as well, for example the inputs for the previous symbol that stared

4.2. Word Lengths 31

at to time t− 4. Its samples were valued an−1 = {−4,−3,−2,−1} and these
values can be found in registers an−1,i at time t + 0. At time t + 4 they have
been shifted to the registers an−2,i and are used for multiplication with the
input. For simplicity, the inputs here are assumed to be purely real valued,
although in reality they are complex values.

A generic parametrical representation of the values calculated in the first
stage of the demodulator is shown in Table 4.2. It shows what the value
in each register is calculated from. Some register values are denoted with a ′

such as R′1. This is to differentiate between dependency on the current value
of registers and a previous value. For example, at time t + 0 the input value
of register R2, accordingly named R2, in, is calculated as A0 · B−2 + R1. In
the second cycle, the contents of R2 are updated with this input, and thus R2
should contain the A0 · B−2 + R1 as it was calculated in the first cycle. How-
ever, since the contents of R1 were also updated, this expression would be
incorrect. Therefore the reference to R1 in the expression is marked with a
′, to illustrate that the current contents of the register were calculated in the
previous cycle.

Going over the main path of the demodulator where no shift is applied, it
can be seen exactly how it is calculated. The sum of the sample products for
this path appears at the output in state 3: D0 · D−2 + R3, with the contents of
R3 being C0 · C−2 + R′2. R′2 here refers to the value of R2 in state 2 where its
content was B0 · B−2 + R′1. This, in turn, is based on the value of R1 in state 1
which is just A0 · A−2. Chaining these values together reveals the output to
be:

A0 · A−2 + B0 · B−2 + C0 · C−2 + D0 · D−2

This indeed corresponds to the sample-by-sample multiplication of the path
in the demodulator where no shift is applied; each sample the nth symbol
is multiplied by the respective sample of the (n− 2)th symbol. Using in the
values as they appear in Table 4.1 such that an = {0, 1, 2, 3} and an−2 =
{−8,−7,−6,−5}, this results in:

0 · −8 + 1 · −7 + 2 · −6 + 3 · −5 = −34

4.2 Word Lengths

Word lengths affect power consumption because operations involving a higher
number of bits require bigger adders and multipliers, as well as larger regis-
ters to store results. A smaller word length, on the other hand, will cause a
loss of precision and will degrade the BER performance. Optimization lies in
keeping the word lengths small to cut power consumption, but large enough
to warrant sufficient performance.

32 Chapter 4. Implementation

t +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11
clk
state 0 1 2 3 0 1 2 3 0 1 2 3
input 0 1 2 3 4 5 6 7 8 9 10 11
R1, in 0 -8 -16 -24 -16 -20 -24 -28 0 0 0 0
R2, in 0 -7 -22 -37 -12 -31 -38 -45 8 9 10 11
R3, in 0 -6 -19 -40 -8 -22 -43 -52 16 26 29 32
R1 0 0 -8 -16 0 -16 -20 -24 0 0 0 0
R2 0 0 -7 -22 0 -12 -31 -38 0 8 9 10
R3 0 0 -6 -19 0 -8 -22 -43 0 16 26 29

output 0 -5 -16 -34 -4 -13 -28 -50 24 43 56 62

an,0 -4 0 0 0 0 4 4 4 4 8 8 8
an,1 -3 -3 1 1 1 1 5 5 5 5 9 9
an,2 -2 -2 -2 2 2 2 2 6 6 6 6 10
an−1,0 -4 -4 -4 -4 0 0 0 0 4 4 4 4
an−1,1 -3 -3 -3 -3 1 1 1 1 5 5 5 5
an−1,2 -2 -2 -2 -2 2 2 2 2 6 6 6 6
an−1,3 -1 -1 -1 -1 3 3 3 3 7 7 7 7
an−2,0 -8 -8 -8 -8 -4 -4 -4 -4 0 0 0 0
an−2,1 -7 -7 -7 -7 -3 -3 -3 -3 1 1 1 1
an−2,2 -6 -6 -6 -6 -2 -2 -2 -2 2 2 2 2
an−2,3 -5 -5 -5 -5 -1 -1 -1 -1 3 3 3 3

TABLE 4.1: Possible values in an example run for the first stage
of the demodulator. The values indicated by the blue boxes are
the 2N − 1 outputs for the first symbol-by-symbol multiplica-

tion.

4.2. Word Lengths 33

+

state

+

0

p=15

p=14

p=1

p=0

p=-1

p=-14

p=-15
18

Inputs

18

18

18

18

18

18

18

18

36 40 1

sign
bit Output

1

Re

clk = 3200 Hz

*

FIGURE 4.3: The implemented second stage of the demodulator
for N = 16.

34 Chapter 4. Implementation

t 0 1 2 3
state 0 1 2 3
input A0 B0 C0 D0

R1, in A0 · A−2 B0 · A−2 C0 · A−2 D0 · A−2

R2, in A0 · B−2 + R1 B0 · B−2 + R1 C0 · B−2 + R1 D0 · B−2 + R1
R3, in A0 · C−2 + R2 B0 · C−2 + R2 C0 · C−2 + R2 D0 · C−2 + R2

R1 0 A0 · A−2 B0 · A−2 C0 · A−2

R2 0 A0 · B−2 + R′1 B0 · B−2 + R′1 C0 · B−2 + R′1
R3 0 A0 · C−2 + R′2 B0 · C−2 + R′2 C0 · C−2 + R′2

output A0 · D−2 + R3 B0 · D−2 + R3 C0 · D−2 + R3 D0 · D−2 + R3

an,0 A−1 A0 A0 A0
an,1 B−1 B−1 B0 B0
an,2 C−1 C−1 C−1 C0

an−1,0 A−1 A−1 A−1 A−1
an−1,1 B−1 B−1 B−1 B−1
an−1,2 C−1 C−1 C−1 C−1
an−1,3 D−1 D−1 D−1 D−1
an−2,0 A−2 A−2 A−2 A−2
an−2,1 B−2 B−2 B−2 B−2
an−2,2 C−2 C−2 C−2 C−2
an−2,3 D−2 D−2 D−2 D−2

TABLE 4.2: Generic representation using parameters of data
flow and operations in the first stage of the demodulator.

Word length reduction is achieved through a combination of truncation and
saturation. In some cases the least significant bits (LSB) are removed, whereas
in other cases the most significant bits (MSB) are rarely used, and can thus
be left out. Removing the LSB’s can be done without additional hardware
through truncation. The wires that transport these bits are simply removed
and the rest of data continues with a shorter word length. If the MSB’s are
rarely used, saturation is used to remove these bits. If the value being satu-
rated does not fit in the new word length, it is clipped to the highest or lowest
possible representable value instead. This lowers the magnitude of the value
but correctly keeps its sign.

The initial word length was chosen as low as possible while maintaining
the BER-curve, determined through MATLAB simulation. The chosen input
word length is 5 with 2 fractional bits (and therefore 3 integer bits), which is
the input of the baseband conversion (BBC) block. For the other components,
the CIC and FIR filters and the demodulator, the input word lengths as they
were determined in [14] were kept.

The word lengths do not increase in the base-band conversion component
since its inputs are simply rerouted to different outputs without changing
their values. In the CIC filter, shown in Figure 4.4, the word length rapidly
increases due to the continuous accumulation of input samples. The magni-
tude of the value inside the accumulator can potentially reach the decimation
factor multiplied by the highest magnitude input value. With a decimation

4.2. Word Lengths 35

+ +
- OutputInput

clk = 4 MHz clk = 3200 Hz

5 16 16 8

FIGURE 4.4: Datapath of the CIC filter implementation, show-
ing the two clock domains (for N = 16).

factor of 1250, this increases the word length required to represent the high-
est internal value to 16 bits. This comes from the fact that 210 < 1250 < 211,
adding 11 bits to the input word length allows for a times 2048 higher maxi-
mum representable value.

At the output the word length is reduced by truncating the 2 LSB’s and re-
moving the 6 MSB’s through saturation. This may seem like a lot of MSB’s
to remove. However, upon inspection of the full precision output of the CIC-
filter, it was found that very rarely (in two out of 160 000 samples) the 6 MSB’s
were actually needed to represent the output. In these cases they were sat-
urated to the nearest representable value, minimising the error made. This
leaves the output of the CIC-filter at 8 bits.

Figure 4.5 shows the implementation of the FIR filter using adders and bit
shifts. Negative coefficients are subtracted instead of added, which is gener-
ally done by inverting the input and setting the adder’s carry-in to one, the
logic for this is not drawn here as it was generated by the compiler. The co-
efficients that the shifts represent are {4,−1,−8, 8, 32, 32, 8,−8,−1, 4}, which
are based on the coefficients found in [14]. These coefficients are equal to
the powers of two: {22,−20,−23, 23, 25, 25, 23,−23,−20, 22}, and the amount
of bit shift seen in Figure 4.5 corresponds to the magnitude of these powers
(e.g. a bit-shift of 5 to the left corresponds to a multiplication with 25 = 32).

With the input word length being 8, the largest possible word length in the
FIR filter pipeline was calculated to be 15. At the output the word length is
then reduced to 7, by removing the single MSB and seven of the LSB’s in the
same way as for the CIC-filter. This method of downsizing was also used and
presented in more detail in [14]. No extensive statistical analysis was applied
to the inputs and outputs of the components to find optimal word lengths for
them, but an effort was made to narrow down the bits that were most likely
to contain the most significant information, again by inspecting the stream of
outputs of the FIR filter. For the particular output of 80 000 values inspected,
this MSB was in fact never used.

The demodulator was implemented as two stages shown in Figures 4.2 and
4.3. The input word length is equal to 7 and this is increased to 14 after the
multiplier. Since these multipliers perform complex conjugate multiplica-
tions where the real part is calculated as ac + bd, there is a single case where

36 Chapter 4. Implementation

Input

8

clk = 3200 Hz clk = 1600 Hz

< 2<

-

-< 3<

< 3<

< 5<

< 5<

-< 3<

< 3<

-

< 2<

Output

715 15 15 15

FIGURE 4.5: Datapath of the FIR filter implementation, show-
ing the two clock domains for N = 16.

a representation of 14 bits is insufficient. This occurs when a = b = c = d =
−64, the multiplication result will be 8192, while the maximum two’s com-
plement representable number using 14 bits is equal to 8191. In this case, the
value is simply assumed to be 8191, introducing a minor error.

The sum of each of the paths is then allowed to grow to 18 bits because if
N = 16, the values can become up to 16 times larger. For the shorter paths,
this is not the case, however to manually set the word lengths for each of the
paths would make the implementation in VHDL more difficult and much
less generic. Also, the distinction between the paths is not as clear cut due
to the folding of the demodulator. In this case the word length optimization
was left to the compiler.

The registers marked as ’outputs’ in Figure 4.2 are the same as the ones
marked ’Inputs’ in Figure 4.3. After multiplication the word length can be-
come up to 36 bits long for the same reason as described earlier. The value in
the accumulator that follows is then allowed to grow with 4 bits, after which
only the sign of the result matters for the output, reducing the output to just
a single bit.

Note that the above mentioned word lengths correspond to the system im-
plementation for N = 16, even though the datapaths are shown for N = 4.
The word lengths might need adjustment for other values of N. For exam-
ple, when N = 32, the decimation ratio of the CIC-filter is reduced from
1250 to 625, and the sums it calculates are likely to become only half as large
(adding 625 inputs compared to 1250 inputs is expected to yield a sum of half
the magnitude). In turn, this means that instead of removing the 6 MSB’s at
the output of the CIC-filter, the top 7 can be removed. In the demodulator,
higher N results in more and longer paths, and so the word lengths need to
be increased to accomodate for the higher values that this will yield.

4.3 Scalability

The system can be scaled by increasing the number of samples per symbol. It
was implemented in VHDL in a generic way such that the number of samples

4.3. Scalability 37

per symbol can be set and the required hardware will be generated accord-
ingly. Register arrays are scaled up, the state machine counts more states and
additional multipliers and adders are generated in the pipeline for larger N.
The word lengths, however, as stated earlier, are not dynamically calculated
by the VHDL code and have to me manually adjusted where necessary.

Increasing the sampling rate allows a larger frequency offset to be tolerated.
However, since the number of calculations in the demodulator scales with
N2 this will drastically increase the power consumption for larger N. A way
to reduce the quadratic scaling behavior is to leave out some paths in the
demodulator. The effect this has on the BER performance of the system has
been investigated in [15]. Especially for larger N, not all paths are necessary
to obtain sufficient BER, and only using a few paths with low shift values
p around the non-shifted p = 0 path would suffice. For example using the
paths that belong to values −1 < p < 1 would result in a total of 3 paths,
with a maximum shift magnitude of 2.

With M the magnitude of the highest shift (e.g. M = 1 implies shifts of 1,
0 and -1, for a total of 3 paths) the total number of complex additions and
multiplications required can be described by the following equations:

Multiplications = N +
M

∑
m=1

2(N −m) (4.1)

Additions = N − 1 +
M

∑
m=1

2(N − 1−m) (4.2)

Which can be rewritten as:

Multiplications = 2MN + N −M2 −M (4.3)

Additions = 2MN + N −M2 − 3M− 1 (4.4)

Which scales with N rather than N2. Therefore the power consumption of a
demodulator implementation using a constant number of paths is expected
to scale up linearly instead of quadratic with N. As can be seen in the equa-
tions, less additions than multiplications are required. This is because when
adding up the results of N multiplications, N − 1 additions are performed,
which is less.

Figure 4.6 shows a visual representation of removing demodulator paths (in-
dicated by the green lines). It shows an implementation for N = 4 and
M = 1 and only shows the complex multipliers. Even though more paths
are removed than are used in this example, a relatively small amount of the
hardware is removed in this case.

The way in which the first demodulator stage was folded already reduces
the amount of hardware required, which limits the effectiveness of reducing
the number of paths. After folding the demodulator in the way presented

38 Chapter 4. Implementation

i=0

i=1

i=2

i=3

+ + + +

+ + + +

+ + + +

+ + + +

FIGURE 4.6: First demodulator stage for N = 4 with only 3
paths being used (M = 1).

in Chapter 3, its hardware scales with N already and thus the benefit of re-
moving paths is greatly diminished. Still, some hardware reduction can be
achieved in this scenario.

For example, when N = 4 and M = 1 as in Figure 4.6, it can be seen that only
3 multiplications are ever performed in the same cycle (cycles are indicated
by the grey dotted lines). Therefore in a folded implementation, during any
given state, a maximum of three complex multipliers would be sufficient.
The regular folded structure contains four multipliers, and thus one could be
optimized away in this scenario. It is important to note here that the number
of multipliers in this case is not dependent on N at all, but purely on the
number of paths. As an extreme example, in an N = 32 implementation
using only 3 paths, three multipliers would still be sufficient to make the
folded demodulator work.

39

Chapter 5

Results and Discussion

This chapter presents the results obtained through simulation of the imple-
mented system. The improvements made are discussed and compared to
literature, and some suggestions for improvements are given.

Figure 5.1 shows the setup used to perform measurements on the system.
The system VHDL is connected to a testbench that provides the input signals
from a file and the clock. Only the main clock signal of 4Mhz is provided,
the system has a clock controller that generates the other clocks from it. The
testbench also collects the outputs and writes them to a file. Depending on
the configuration, different input and output files are selected by the test-
bench. In this way, input signals with different signal to noise ratios can be
simulated. The input files were generated using MATLAB, generating both
the signal and the channel noise (additive white Gaussian noise). Modelsim
was used to compile the VHDL and run the simulation, and visualize the
waveforms for system verification where necessary.

The same setup was used to perform power measurements, but instead of
simulating the VHDL files, Modelsim will simulate the hardware synthe-
sised by the Synopsys Design Compiler. During synthesis a cell library is
used to implement the VHDL structures in hardware. Both a SVT and HVT
cell library were used for power measurements. During post-synthesis sim-
ulation in Modelsim the timing information of the system run is stored in a
.SAIF file, which is then used by the Synopsys Power compiler to calculate
power consumption. For power measurements the outputs of the system are
not important, they are only used to verify correct functionality of the post-
synthesis system.

Synopsys reports the power consumption split into leakage power, switching
power and internal power. Leakage power is the static power consumption
that results from leaking currents and is consumed even when the system
is inactive. Switching power and intenal power are dynamic power compo-
nents where switching power is the power lost by charging and discharging
the output when making a logical transition (e.g. from 1 to 0 or vice versa)
while the internal power consumption is caused by possible short circuits
that arise during the switching of transistors inside logic gates. For example,
when one transistor opens and another in series closes, momentarily they
might both be half open and create a short between the voltage supply and

40 Chapter 5. Results and Discussion

ground. Both these dynamic power consumptions depend on the number of
logic transitions in the circuit.

BBC CIC FIR DMD
System

Input
File

Output
File

Testbench (Configuration)

Modelsim

Waveforms

clk

FIGURE 5.1: Visual representation of the simulation platform
used in measuring system performance.

5.1 Performance

5.1.1 Bit error rate

The pre-synthesized system was simulated using Modelsim because it simu-
lates faster than a post-synthesis simulation. Functionally the pre and post-
synthesis systems were verified to behave identically and thus for the pur-
pose of measuring functional performance, it is sufficient to simulate the pre-
synthesis system. Figure 5.2 shows the BER-curve of the system for 16 and
32 samples per symbol, for a sample size of 50.000 symbols.

To test the system’s performance with respect to frequency offset, the BER
values for inputs with increasing frequency offset and an Eb/N0 equal to 8dB
and 11dB were calculated. These values are plotted in Figure 5.3 for both the
16 and 32 samples per symbol systems. The frequency offset was increased
from 100 Hz to 1900 Hz.

It is expected that the performance of the N=16 system starts to deteriorate
around 700 Hz of frequency offset and for the N=32 system this happens at
an offset of 1400 Hz. This is due to the fact that the frequency offset that can
be tolerated equals half of the sample rate fs, where fs = Rs · N, with Rs
being the symbol rate of 100Hz. Therefore, the system can at most tolerate
a frequency offset up to ±1

2 fs = ±1
2 · 100 · 16 = ±800Hz when N=16, and

±1
2 · 100 · 32 = ±1600Hz that amount for N=32.

In practice, it can be seen that the BER already deteriorates at around 500-
600Hz for N = 16 and 1200Hz for N = 32. This is explained in part by
the FIR-filter used, which is not perfectly rectangular and has a transition

5.1. Performance 41

0 2 4 6 8 10 12

10−4

10−3

10−2

10−1

Eb/N0(dB)

B
E
R

N = 16

N = 32

FIGURE 5.2: The BER curve of the system.

band of around 100Hz [14]. Also the fact that the signal has a bandwidth of
2 · 100Hz = 200Hz (twice the symbol rate) reduces the maximum tolerable
frequency offset, because when the signal’s center frequency is offset by for
example 800Hz, half of the signal band will fall between 800Hz and 900Hz
and would still violate the Nyquist Theorem. For N = 32 these values are
doubled. The FIR filter has a transition band of around 200Hz in this case,
and therefore these implementations can maintain their BER up to around
1100-1200Hz.

5.1.2 Power consumption

To estimate the power consumption of the system, the post-synthesis system
was simulated in Modelsim and analysed with Synopsis Design Compiler.
Power optimisations used include all those presented in Chapters 3 and 4
but with all the demodulator paths present (e.g. no paths removed). How-
ever, while power measurements were performed using HVT cell libraries, to
allow a fair comparison with the results obtained in [14], an implementation
using an SVT library was also simulated.

The power simulation results using an SVT cell library are shown in Table
5.1. It shows the switching power, internal power and leakage power, as well
as the total power consumption for each component. These components are
the Baseband Converter (BBC), Cascade-Integrator Comb filter (CIC), Finite
Impulse Response filter (FIR) and demodulator (DMD). The demodulator
consumes more than 12µW, which is around 80% of the total consumption.
This is caused by the fact that it contains most of the hardware, as well as

42 Chapter 5. Results and Discussion

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000

10−3

10−2

10−1

100

Frequency Offset (Hz)

B
E

R

N = 16, Eb/N0 = 8dB N = 16, Eb/N0 = 11dB

N = 32, Eb/N0 = 8dB N = 32, Eb/N0 = 11dB

FIGURE 5.3: BER performance of the system at increasing fre-
quency offset

by the long word lengths within the demodulator, which increase to up to 40
bits.

In the BBC and CIC components, power consumption is dominated by switch-
ing power and internal power. It is responsible for 98% and 93% of the total
power in the BBC and CIC respectively. The reason for this is the fact that
the clock rate is relatively high in these components (4MHz, see Figure 4.1).
As the clock rate slows down in the FIR and DMD components, the leakage
power starts to dominate the total consumption. Therefore within both FIR
filter and the demodulator, approximately 98% of the power consumption is
caused by leakage. A graphical representation of the power consumption is
shown in Figure 5.4.

Switch power (µW) Int. power (µW) Leak. power (µW) Total power (µW)
dmd 0.0332 0.145 12.0 12.2
fir 0.001033 0.00653 0.471983 0.479
cic 0.1327 1.824 0.166373 2.12
bbc 0.25 0.75 0.021248 1.02
Total 0.417 2.75 12.7 15.8

TABLE 5.1: Power values using the SVT cell library used in [14]

To overcome the leakage power, folding techniques are used to decrease
the number of implemented adders and multipliers as explained in previ-
ous chapters. Another approach for leakage reduction is using another type

5.1. Performance 43

BBC CIC FIR DMD
0

5

10

P
ow

er
(µ
W

)

switch internal leakage

FIGURE 5.4: Power consumption of the system using the SVT
cell library used in [14]

of standard cells called HVT with higher threshold voltage [4]. Using HVT
cells for synthesis reduces leakage power, however it increases the delay of
the cells. Since this system runs at a relatively low clock rate, timing is not
critical. Therefore, the HVT cell library can be used to synthesize the system
without violating the timing constraints of our design.

The simulated power consumption of the synthesized system using an HVT
library has resulted in the values shown in Table 5.2 and visualized in Figure
5.5. When comparing power values of the SVT and the HVT implementation,
it can be seen that while the internal and switching power have not changed
considerably, the leakage power consumption is greatly reduced as expected
for an HVT library, in fact by a factor of four across all components. This
reduces the total power consumption from 15.8µW to 6.25µW.

Switch power (µW) Int. power (µW) Leak. power (µW) Total power (µW)
dmd 0.0308 0.146 2.96 3.14
fir 0.000912 0.00622 0.113739 0.1209
cic 0.119 1.812 0.04025 1.972
bbc 0.232 0.757 0.005501 0.994
Total 0.383 2.75 3.12 6.25

TABLE 5.2: Power values for N=16 using 40nm HVT cells

The power consumption of the system was also measured for the case where
N = 32, the results of which are presented in Table 5.3 and visualized in
Figure 5.6. It shows how the internal and switching power of the demod-
ulator scale quadratically with the number of samples per symbol, how-
ever the leakage power scales linearly due to the way the hardware was

44 Chapter 5. Results and Discussion

BBC CIC FIR DMD
0

1

2

3

P
ow

er
(µ
W

)

switch internal leakage

FIGURE 5.5: Power consumption of the system (N=16) using
40nm HVT cells

folded. This results in a much smaller increase in power consumption when
increasing N. The full system consumes only 50% more power going from
a N = 16 to N = 32 configuration. The power consumption increased from
6.25µW to 9.54µW which originates almost entirely from the demodulator
(6.424−3.14

9.54−6.25 = 99.8% of the increase occurs in the demodulator).

The BBC component is identical for both configurations, and so are its power
consumptions, as the choice of N is made in the CIC filter which comes after
it. For the CIC-filter the same operations happen, except to achieve higher
amounts of samples per symbol the decimation ratio is lowered. It consumes
roughly the same amount of power for both N. The FIR filter runs at double
the clock frequency for N = 32 compared to N = 16 and therefore consumes
double the dynamic power. Its hardware stays the same and so does the
leakage power.

Switch power (µW) Int. power (µW) Leak. power (µW) Total power (µW)
dmd 0.111 0.558 5.75 6.424
fir 0.00181 0.01247 0.113751 0.128
cic 0.1193 1.815 0.040252 1.974
bbc 0.232 0.757 0.005501 0.994
Total 0.464 3.17 5.91 9.54

TABLE 5.3: Power values for N=32 using 40nm HVT cells

5.2. Comparison 45

BBC CIC FIR DMD
0

1

2

3

P
ow

er
(µ
W

)

switch internal leakage

FIGURE 5.6: Power consumption of the system (N=32) using
40nm HVT cells

5.2 Comparison

Table 5.4 shows the power consumption of the system as it was previously
implemented in [14]. Since this implementation was simulated using an SVT
cell library, to keep the comparison fair, it will be compared to the power
values of the improved system simulated using an SVT library as well. Both
systems use 16 samples per symbol (N = 16).

When comparing Table 5.1 with 5.4, it can be seen that while the total power
consumption of the CIC and FIR filters has improved slightly, significant im-
provements can be seen in the total power consumption of the demodulator.
A comparison is shown in table 5.5. The total power consumption has been
reduced by 27% in the CIC filter and 54% in the FIR filter. For the FIR filter
this is mainly caused by a reduction in leakage power consumption, as this
is by far the biggest contributor to its total consumption. The demodulator
consumes 83% less power compared to the previous implementation, mainly
caused by the reduction in leakage power consumption. The BBC component
could not be compared since its consumption in the previous implementation
was not reported.

Figure 5.7 shows the demodulator power consumption for the SVT imple-
mentation and HVT implementations where N = 16 and N = 32. It clearly
shows the leakage power reduction by a factor four going from a SVT to
HVT cell library, and then a doubling of the leakage power and a quadru-
pling of the dynamic power when increasing N from 16 to 32. The majority
of the difference in power consumption is present in the demodulator, the

46 Chapter 5. Results and Discussion

Switch power (µW) Int. power (µW) Leak. power (µW) Total power (µW)
dmd 0.058 0.662 69.159 69.880
fir 0.005 0.034 1.005 1.044
cic 0.117 2.639 0.161 2.917
bbc - - - -
Total 0.18 3.335 70.325 73.841

TABLE 5.4: Power values achieved in [14]

BBC CIC FIR DMD Total
This work 1.02 2.12 0.479 12.2 15.8
Prev. work[14] - 2.917 1.044 69.880 73.841
Improvement - 0.80 (27%) 0.565 (54%) 57.7 (83%) 58.0 (79%)

TABLE 5.5: Comparison between power consumption (µW) of
this system and the previous system implementation[14]

other components consume roughly the same power. When comparing dif-
ferent implementations it therefore makes sense to look at the demodulator
individually.

SVT/N16 HVT/N16 HVT/N32
0

5

10

P
ow

er
(µ
W

)

switch internal leakage

FIGURE 5.7: Power consumption of the demodulator for SVT
and HVT implementations

5.3 Duty Cycling

A model for duty-cycled power gating by using a memory block as a sample
buffer was presented in Chapter 3. Now that the power consumption of the
system is known, these results can be used in the model. For the memory

5.3. Duty Cycling 47

block the power consumption was estimated by simulating an array of 128 7-
bit registers in VHDL, where every register is written to and read from once,
at both a high (4MHz) and a low (1600Hz) clock speed. From this simulation
the memory’s dynamic energy and leakage power consumption per bit were
determined.

The memory block is assumed to be placed between the FIR-filter and de-
modulator which means that the sample rate into the memory equals 1600Hz,
being the sample rate from the FIR-filter to the demodulator. The processing
speed of the samples from memory is assumed to be 4MHz, equal to the sys-
tem’s main clock. The word length of the samples going from the FIR-filter
to the demodulator is 7 bits. We then have the values shown in table 5.6.

Name Symbol Value
Sample rate* sr 1600
Wordlength* WL 7
Processing speed p 4000000
Leakage Power* Pleak 2.96µW
Memory energy consumption per bit EMb 1.04pJ
Memory leakage power per bit PMb,leak 1.37nW

TABLE 5.6: List of parameters and their values used by the
model. Parameters dependend on the location of the memory

are marked with *.

These values can be substituted into Equation 3.11 to calculate the maximum
amount of time for which power can be switched off, such that the memory
block does not consume more power than it saves. The result is that the
demodulator has to be power gated at least 10 times per second, in order for
the memory block to remain sufficiently small such that it does not consume
more power than the leakage power it reduces. Switching less often would
result in more samples coming in and thus a larger memory that consumes
more power.

This model, however, does not take into account the energy it would cost to
drain the demodulator of power and it assumes there is no leakage power
at all when the demodulator is switched off. Although the memory block
consumes less power if the cycle time is shortened (less samples needing to
be stored leads to smaller memory), the power consumed in power gating
the system goes up, because it is toggled on and off more often. There will
likely be power losses due to overhead with each toggle.

When the idea to duty-cycle part of the system was considered, the leak-
age power consumption was assumed to be very large. However, with the
applied power optimizations and usage of an HVT cell library, the leakage
power has been lowered considerably. It therefore appears to be impossible
to gain an advantage from duty-cycling a part of the system, as the leakage
power saved would not offset the additional overhead power consumption
of the memory block and power-gating circuitry.

49

Chapter 6

Conclusion

The Internet of Things (IoT) involves large numbers of devices connected in a
wireless sensor network (WSN) able to communicate with each other. These
devices have specific requirements such as long range communication, low
production costs and long battery life. Many IoT services require a very low
data rate in the order of tens of bytes, sent only several times a day [13].

For these applications, Low-Power Wide Area Network (LPWAN) and more
specifically Ultra-Narrowband communication is the best suited technology,
however it heavily suffers from frequency offset. To overcome the impact of a
frequency offset in these applications, a frequency offset tolerant demodula-
tion and detection scheme can be used called Double Differential Phase-Shift
Keying (DDPSK).

In this thesis an implementation of a DDPSK demodulator for ultra-narrow
band communication was presented. It is based on a previous implementa-
tion of the system in which the main power consumption was contributed
by leakage power [14]. For each of the digital system components the power
consumption was optimized through use of power saving techniques such as
folding, multiplierless design and word length reduction. Additionally the
feasibility of duty cycling in part of the system for leakage power reduction
was investigated.

The system was simulated using modelsim and analysed with the synopsys
design compiler. It was compared to the previous implementation to mea-
sure improvement in power consumption. While the previous implementa-
tion had a total power consumption of 73.8µW, the improvements presented
in the current thesis brought this down to 15.8µW (almost 75% power sav-
ing). This does not include the use of a more efficient cell library to keep the
comparison fair. When also applying a HVT cell library, the power consump-
tion is pushed further down to 6.25µW (more than 90% power saving).

It is possible to increase the number of samples per symbol N to tolerate
more frequency offset. To see how the power consumption of the implemen-
tation scales with N, a N = 32 samples per symbol implementation was also
simulated. For N = 32 the system consumed 9.54µW, an increase of only
50% compared to the HVT implementation for N = 16. For the demodula-
tor specifically, which previously scaled quadratically, going from N = 16

50 Chapter 6. Conclusion

to N = 32 only doubled the power consumption. This improvement was
obtained through using a folded structure which allowed hardware to be re-
used.

The frequency offset tolerance was measured for implementations with N
equal to 16 and 32 samples per symbol. It was shown that the offset toler-
ance of the implemented demodulator performs as expected. The simula-
tions showed that for N equal to 16 and 32, the BER performance does not
change for frequencies up to 500Hz and 1200 Hz, respectively.

Duty-cycling the power in part of the system was not implemented but mod-
eled in order to estimate its effect on the power consumption. It was found
that with the improved leakage power consumption there is not as much to
save anymore by power gating the system. Since the proposed memory block
also consumes power itself it was estimated that when power gating only the
demodulator, it has to be turned off and on 10 times per second to break even
on the power consumption of the memory. This estimation assumes there are
no overhead costs for power-gating such as transition times between the on
and off state, that there is no power consumption in the power gating con-
trol circuitry and no leakage power consumption by the hardware while it is
powered down. When also taking these costs into account, the idea of duty-
cycling the power is considered unlikely to improve the power consumption.

The following sections of this chapter will answer and discuss the research
questions and suggest future work optimizations to the system that can im-
prove it even further.

6.1 Discussion

This section will answer the research questions that were presented in Chap-
ter 1. Each answer will be motivated by a brief discussion:

How can the components of the receiver system be optimized for power?

Power saving techniques from literature were investigated and presented
in Chapter 2. Several power saving techniques were applied in designing
the receiver components as described in Chapter 3, in order to optimize for
power. The techniques applied include polyphase decomposition, multiplier-
less design, hardware folding and usage of an HVT cell library. While all of
these techniques reduce the leakage power consumption, polyphase decom-
position more specifically targets dynamic power consumption. Hardware
folding increases dynamic power consumption slightly, but provides a much
larger reduction in leakage power consumption.

The first components in the system, the baseband conversion (BBC) block
and CIC filter were shown to be responsible for a small part of the total power
consumption. These are already simple components and their optimization
(even if any further optimization is possible) will not lead to noticable power
saving. Effort made to improve them would therefore have resulted in rela-
tively little overall improvement.

6.1. Discussion 51

The FIR-filter was improved upon by noting that half of the output samples
were not used due to the decimation factor of two after the filter. By applying
polyphase decomposition the decimator was moved in front of the filter. This
halves the clock speed of the component as well as the dynamic power con-
sumption. It also allowed the implementation to use less registers, slightly
reducing the leakage power consumption.

A second improvement made to the FIR-filter was the removal of the multi-
pliers by implementing them as bit-shifts and adders, commonly referred to
as multiplier-less design. The filter coefficients were first rounded to the near-
est power of two, which had no significant impact on the filter’s behaviour.
This allowed the coefficient multipliers in the filter to be implemented with-
out adders and a single bit-shift which requires no logic, only wires.

An optimization for dynamic power that was applied to the demodulator
was the mathematical rewriting of complex multiplications from four mul-
tiplications to three, at the cost of increasing the additions from two to five.
Since multipliers are much more expensive than adders in terms of area and
power consumption this improves both the dynamic and leakage power con-
sumption. Through all optimisations, the total dynamic power consumption
of the system presented in [14] was reduced from 3.515µW to 3.167µW (a 5%
reduction). However, given the high leakage power consumption, dynamic
power reduction was not the main focus.

How can the component’s leakage power consumption be reduced?

In the presence of high leakage power consumption, some power saving
techniques are more suitable. Hardware folding is one of the techniques that
could be used. Folding involves increasing the clock speed while reducing
the amount of operation per clock cycle. The total number of operations per
time unit remains the same, but it frees up hardware that can then be re-
moved. For example five additions can be performed in one clock cycle by
five adders, or in five clock cycles by a single adder. In the second case, the
other four adders can be removed. Reducing the hardware in the system
naturally reduces the amount of leakage power. The dynamic power con-
sumption remains unchanged because the amount of operations performed
does not change.

The demodulator showed most improvement as it is the main contributor to
the total power consumption. Leakage power was dominant in this compo-
nent. It consists of two differential stages which perform the double differ-
ential demodulation. These stages were considered separately and both their
datapaths were folded as shown in Chapter 3. In the first stage the amount of
adders and multipliers was reduced from N2 to N, with N being the number
of samples per symbol. In the second stage the amount of hardware went
from 2N− 1 adders and multipliers to a single adder and multiplier. Slightly
more control logic and memory was added to manage the dataflow in the
folded structure.

52 Chapter 6. Conclusion

Another way of reducing the leakage power consumption is through usage
of an HVT cell library. It is very well suited for low speed systems such as
the receiver designed in this thesis, where timing is not critical. The benefit of
HVT cells is that they leak much less power than SVT technology. The HVT
cell library reduced the power consumption of the system by a factor of 2.5.

Finally, leakage power can be reduced by temporarily switching off compo-
nents through power gating. The main idea is that the hardware is switched
off for most of the time and all the processing is done at a higher speed in
less time. In this way, the energy dissipated due to leakage decreases. This is
referred to as duty cycling and leads to the last research question.

To what extend can the demodulator be power-gated, in a duty cycling
fashion, in order to reduce the leakage power consumption?

As explained in Chapter 3 the main goal of power gating is to reduce the
leakage power of a component by turning it off for a while. To give a compo-
nent the time to turn off, a memory block would have to be placed in front of
it. The memory then stores all the samples while the component is off such
that when the component turns on again, it can process these samples at a
faster rate. This increases the instantaneous dynamic power, but not the to-
tal energy of the calculations performed. Meanwhile, it lowers the leakage
power consumption.

However, the results obtained in Chapter 5 show that the leakage power in
the improved system is much lower than it initially was. In fact the leakage
power now only contributes 3.12µW, just 50% of the total power consump-
tion. It is therefore unlikely that power gating can be used to reduce this
further due to the additional costs of the memory block and power control
circuitry.

Ultimately the aim of power gating was to reduce the idle time during which
hardware can leak power. There may be another way to achieve this, which
is through additional hardware folding. This is elaborated in the next section.

6.2 Further improvements

To decrease the power consumption further, there are other techniques that
can be helpful. These are improvements that could have been made to the
design but were not implemented due to time constraints.

6.2.1 Folding twice

The first stage of the demodulator was folded in one direction, but there is
another additional direction into which it can be folded. This collapses all the
multiplications and additions into a single adder and multiplier unit which
correspondingly runs at a higher clock-frequency. It will perform all of the
additions and multiplications and will therefore require additional control
circuitry and registers to manage the dataflow. The demodulator will start to

6.2. Further improvements 53

look more like a processor and might even be able to take over the operations
of another component like the FIR-filter, due to the low speed at which these
operations are performed.

An additional fold in the demodulator will benefit the scalabilty of the de-
sign. Where originally N2 multipliers and adders were required to compute
the first stage, the first folding decreases the number of adders and multi-
pliers to N. This number doubles when doubling the sample rate as it in-
creases the number of samples per symbol. When folding down to a single
multiplier and adder, the number of adder and multipliers will become in-
dependent of N. Thus, the leakage power contribution is expected to remain
constant when N increases. On the other hand, the number of registers, reg-
ister accesses and the control logic still scale up with N. How much this extra
folding can improve overall power consumption needs further investigation.

6.2.2 Compile options

Not a lot of optimizations were made to the compile script used by the Syn-
opsys Design Compiler. Several options exist that allow the compiler to fur-
ther improve the design. One such option is ’compile_ultra’, which was tried
but in the end not used for this Thesis. It reduced the total power consump-
tion of the system by 20%, down to 5.02µW, when compiled with a HVT cell
library.

The reasons for not including it was that the different components defined in
the VHDL code could not be recognised anymore, thus making it unable to
obtain results for specific components and compare them. Besides that, only
this compile option was tried while there are likely more options available
that were not looked at. Therefore this result was not deemed sufficient to
include among the results in Chapter 5.

6.2.3 Arithmetic-level optimizations

In this thesis the optimizations on system and hardware implementation
level were investigated, but the arithmetic level was not looked at. Look-
ing deeper into the hardware, one may find the arithmetic can be improved
upon. This involves implementing adders and multipliers at the bit level,
manually specifying the dataflow through them. Certain application specific
bit manipulations can sometimes be applied to these operating units that im-
prove performance or power consumption.

One specific example of such a manipulation can be found in the FIR-filter.
The first two filter coefficients are 4 and -1. When adding the products of
these coefficients with the input, the three least significant bits (LSB) of the
addition do not have to be calculated. The product of the input and a coeffi-
cient of 4 produces zeroes in these LSB positions. In some cases the Synopsys
Design Compiler already found these improvements and applied them.

54 Chapter 6. Conclusion

6.2.4 Word length analysis

As stated earlier, no extensive statistical analysis was applied to the inputs
and outputs of the components to find optimal word lengths for them. The
optimal word lengths between system components were determined in [14]
for that implementation of the system, but this analysis could be extended
to the word lengths within the components. It could help to improve the
bit-error rate (BER) of the system or quantify the trade-off between perfor-
mance and power consumption. Additionally, if a mathematical expression
or algorithm can be formulated to calculate an optimal value for the various
word lengths in the system, it can be used to easily find word lengths for dif-
ferent system configurations. As described in Chapter 4, the system was de-
scribed in VHDL in such a way that the number of samples per symbol N can
be specified and the required hardware will be generated accordingly. This
property would be more useful with automatically generated word lengths.

55

Bibliography

[1] Mehdi Anteur et al. “Ultra Narrow Band Technique for Low Power
Wide Area Communications”. In: Dec. 2014, pp. 1–6. DOI: 10.1109/
GLOCOM.2014.7417420.

[2] Hela Belhadj Amor and Carolynn Bernier. “Software-Hardware Co-
Design of Multi-Standard Digital Baseband Processor for IoT”. In: 2019
Design, Automation Test in Europe Conference Exhibition (DATE). 2019,
pp. 646–649. DOI: 10.23919/DATE.2019.8714963.

[3] Yajing Chen et al. “A low power software-defined-radio baseband pro-
cessor for the Internet of Things”. In: 2016 IEEE International Symposium
on High Performance Computer Architecture (HPCA). 2016, pp. 40–51. DOI:
10.1109/HPCA.2016.7446052.

[4] David Flynn et al. Low Power Methodology Manual. Springer, Boston,
MA, 2007. ISBN: 978-0-387-71819-4.

[5] E. Grayver and B. Daneshrad. “VLSI implementation of a 100-/spl mu/W
multirate FSK receiver”. In: IEEE Journal of Solid-State Circuits 36.11
(2001), pp. 1821–1828. DOI: 10.1109/4.962305.

[6] Fredric J. Harris. Multirate Signal Processing for Communication Systems.
Prentice Hall PTR, 2004. ISBN: 0131465112.

[7] Mansi Jhamb, Garima, and Himanshu Lohani. “Design, implementa-
tion and performance comparison of multiplier topologies in power-
delay space”. In: Engineering Science and Technology, an International Jour-
nal 19.1 (2016), pp. 355–363. ISSN: 2215-0986. DOI: https://doi.org/
10.1016/j.jestch.2015.08.006. URL: https://www.sciencedirect.
com/science/article/pii/S2215098615001287.

[8] Donald E. Knuth. The Art of Computer Programming volume 2: Seminu-
merical algorithms. Addison-Wesley, 1988, pp. 519, 706.

[9] David Lachartre et al. “7.5 A TCXO-less 100Hz-minimum-bandwidth
transceiver for ultra-narrow-band sub-GHz IoT cellular networks”. In:
2017 IEEE International Solid-State Circuits Conference (ISSCC). 2017, pp. 134–
135. DOI: 10.1109/ISSCC.2017.7870297.

[10] Kais Mekki et al. “A comparative study of LPWAN technologies for
large-scale IoT deployment”. In: 5 (Mar. 2019), pp. 1–7. DOI: 10.1016/
j.icte.2017.12.005.

https://doi.org/10.1109/GLOCOM.2014.7417420
https://doi.org/10.1109/GLOCOM.2014.7417420
https://doi.org/10.23919/DATE.2019.8714963
https://doi.org/10.1109/HPCA.2016.7446052
https://doi.org/10.1109/4.962305
https://doi.org/https://doi.org/10.1016/j.jestch.2015.08.006
https://doi.org/https://doi.org/10.1016/j.jestch.2015.08.006
https://www.sciencedirect.com/science/article/pii/S2215098615001287
https://www.sciencedirect.com/science/article/pii/S2215098615001287
https://doi.org/10.1109/ISSCC.2017.7870297
https://doi.org/10.1016/j.icte.2017.12.005
https://doi.org/10.1016/j.icte.2017.12.005

56 Bibliography

[11] N. Naik. “LPWAN Technologies for IoT Systems: Choice Between Ul-
tra Narrow Band and Spread Spectrum”. In: 2018 IEEE International
Systems Engineering Symposium (ISSE). 2018, pp. 1–8. DOI: 10.1109/
SysEng.2018.8544414.

[12] K. E. Nolan, W. Guibene, and M. Y. Kelly. “An evaluation of low power
wide area network technologies for the Internet of Things”. In: 2016
International Wireless Communications and Mobile Computing Conference
(IWCMC). 2016, pp. 439–444. DOI: 10.1109/IWCMC.2016.7577098.

[13] Q. M. Qadir et al. “Low Power Wide Area Networks: A Survey of
Enabling Technologies, Applications and Interoperability Needs”. In:
IEEE Access 6 (2018), pp. 77454–77473. DOI: 10.1109/ACCESS.2018.
2883151.

[14] Victor van Rooij. “Low Power System Design of DDPSK Receiver”. In:
(2019).

[15] Siavash Safapourhajari. “Frequency Offset Tolerant Demodulators for
UNB Communications”. English. PhD thesis. Netherlands: University
of Twente, Dec. 2020. ISBN: 978-90-365-5086-4. DOI: 10.3990/1.9789036550864.

[16] Siavash Safapourhajari and André Kokkeler. “Demodulation of double
differential psk in presence of large frequency offset and wide filter”.
In: IEEE 87th Vehicular Technology Conference (2018).

[17] M. K. Simon and D. Divsalar. “On the implementation and perfor-
mance of single and double differential detection schemes”. In: IEEE
Transactions on Communications 40.2 (1992), pp. 278–291. DOI: 10.1109/
26.129190.

[18] P. P. Vaidyanathan. “Multirate digital filters, filter banks, polyphase
networks, and applications: a tutorial”. In: Proceedings of the IEEE 78.1
(1990), pp. 56–93. DOI: 10.1109/5.52200.

[19] Mehmet Rasit Yuce et al. “SOI CMOS Implementation of a Multirate
PSK Demodulator for Space Communications”. In: IEEE Transactions
on Circuits and Systems I: Regular Papers 54.2 (2007), pp. 420–431. DOI:
10.1109/TCSI.2006.885988.

https://doi.org/10.1109/SysEng.2018.8544414
https://doi.org/10.1109/SysEng.2018.8544414
https://doi.org/10.1109/IWCMC.2016.7577098
https://doi.org/10.1109/ACCESS.2018.2883151
https://doi.org/10.1109/ACCESS.2018.2883151
https://doi.org/10.3990/1.9789036550864
https://doi.org/10.1109/26.129190
https://doi.org/10.1109/26.129190
https://doi.org/10.1109/5.52200
https://doi.org/10.1109/TCSI.2006.885988

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Research questions
	Outline of the thesis

	Background
	DDPSK
	Modulation
	Demodulation

	Previous work
	The receiver system
	Enhanced autocorrelation demodulator

	Low power techniques
	Complex multiplication
	Transistor threshold voltage

	Related work

	Design
	Baseband Conversion
	CIC-filter
	Polyphase FIR-filter
	Demodulator
	Duty-cycling the demodulator

	Implementation
	Demodulator
	Word Lengths
	Scalability

	Results and Discussion
	Performance
	Bit error rate
	Power consumption

	Comparison
	Duty Cycling

	Conclusion
	Discussion
	Further improvements
	Folding twice
	Compile options
	Arithmetic-level optimizations
	Word length analysis

	Bibliography

