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Abstract

The spatial freedom and the unconstrained work-space of Multi-Rotor Aerial Vehicles (MRAVs)
are promising characteristics for many applications that require physical interaction with an
environment, such as contact-based inspection, Non-Destructive Testing (NDT), and human
assistance in remote areas. However, Aerial Physical Interaction (APhI) control remains a ma-
jor challenge considering the high non-linearity of MRAVs dynamics, their inherent instability,
and limited capabilities of the actuators. Classical interaction control methods, which include
hybrid position/force control, impedance, and admittance control, are limited by their reac-
tive nature, where the control action is not optimized for the future horizon, and their ad hoc
solutions to try to the system constraints. Model Predictive Control (MPC) exploits the a priori
knowledge of the system dynamics to predict its behaviour in the future horizon, and optimize
the control action to achieve the control objective, defined with a certain cost function, while
the system constraints are included in the optimization problem. In the literature, MPC-based
APhI controllers are proposed using hybrid position/force control approach, without any con-
sideration of impedance control, or cascaded control architectures. In this thesis, the use of
Nonlinear Model Predictive Control (NMPC) for APhI control is investigated in three config-
urations, impedance control, admittance control in a cascaded architecture, and hybrid posi-
tion/force control. Three NMPC-based control approaches, exploring the three configurations,
are proposed, implemented, analysed, and validated with real-time simulations of interaction
tasks with different environments.
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1

1 Introduction

Multi-Rotor Aerial Vehicles (MRAVs) have been reliably deployed in many fields such as aerial
photography, precision farming, search and rescue assistance, and civil infrastructure inspec-
tion [1]. These applications require almost no physical interaction with the MRAV surround-
ings, while the trajectory planner and collision avoidance algorithms try to keep the MRAV
away from any physical collision with the surroundings to maintain its stability and safety.

However, the spatial freedom, unlimited work-space, and Vertical Takeoff and Landing (VTOL)
capabilities of MRAVs are very tempting characteristics to utilize in tasks that require physical
interaction with the environment, such as maintenance, contact-based inspection, and objects
manipulation in remote or limited-access areas [2]. These applications require physical inter-
action for a sustained period of time, during which the MRAV is exchanging energy with the
environment, and its motion is constrained in one or more of its Degrees of Freedom (DoFs) in
a near-hovering state.

Due to the challenges associated with Aerial Robots (ARs), such as high nonlinearity; inher-
ent instability; aerodynamic effects; under-actuation; and limited actuators capabilities, Aerial
Physical Interaction (APhI) has been one of the main challenges in the field of ARs. Numerous
methods and approaches have been proposed to tackle this problem in terms of the platform
design, and also control system design.

As far as the platform design is concerned, standard MRAV platforms are usually actuated with
fixed collinear propellers, this design choice limits the platform thrust generation to only one
direction, which makes these platforms under-actuated, because these vehicles cannot follow
an arbitrary trajectory in 3D space without changing their orientation. To compensate for the
unactuated DoFs in the interaction tasks, the under-actuated MRAV can be equipped with an
n-DoFs manipulator which will provide more dexterous manipulation. However, it also in-
creases the UAV inertia, adds more complexity to the system [3], and the Center of Gravity
(CoG) of the entire system will keep shifting following the manipulator motion [4].

The standard MRAV design can also be modified, where the rotors can be tilted, such that their
thrust generation direction is not collinear anymore, and the tilt angles can be chosen to allow
for thrust generation in the 3D space. This means that the vehicle does not have to change
its orientation in order to follow an arbitrary 3D trajectory. These platforms are called fully-
actuated MRAVs or Multi-Directional Thrust MRAVs, and there has been an increasing interest
in these designs to overcome the limitations of the standard under-actuated platforms [5].

A passive tool, such as a fixed end-effector [6], or a partially-passive tool, such as a gripper, can
be attached to a fully-actuated MRAV to serve as an end-effector in APhI tasks. These attached
tools do not add any significant dynamic behaviour to the system, and they keep the mechani-
cal structure simple and light-weight [7]. This design can be perceived as a flying end-effector
[8] that can control the full interaction wrench in 6D and its motion is not constrained by any
coupled DOFs. Such MRAVs that are equipped with an end-effector will be referred to as ARs
in this thesis.

APhI control has also been a major challenge that has been tackled in many contributions. In
the literature, two main classes of controllers can be noticed, hybrid position/force control;
and impedance/admittance control [9]. In hybrid position/force control, the controller tracks
references for the position and the interaction force separately in two feedback loops, such
that the position is controlled in the unconstrained DoFs, and the force is controlled in the
constrained DoFs, as in [10; 11; 12].

Robotics and Mechatronics Ayham Alharbat



2 Exploiting NMPC in Contact-Based Aerial Physical Interaction

On the contrary, the impedance/admittance control does not directly control neither the posi-
tion nor the force, but rather the dynamical behaviour of the system during both free-motion
and interaction, as in [13; 14]. Therefore, these methods are usually referred to as indirect in-
teraction control methods.

1.1 Problem definition

The aforementioned control approaches have their limitations and drawbacks. One of the main
limitations of these control approaches is their reactive nature, where the control action at any
time step, is a direct reaction of the calculated error at that time step, without optimizing the
control input for the future time horizon.

Another limitation of these control approaches, is that there is no trivial method to include the
physical constraints of the system in the controller without introducing a saturation action,
which breaks the continuity of the control loop and can destabilize the system. In other words,
the reactive control action is not optimized around the constraints of the system, whether they
are physical limitations, safety, or operational constraints. Additionally, these reactive con-
trollers do not exploit any prior knowledge of the system to predict its future evolution and
optimize the control action based on those predictions.

Recently, there has been an increasing interest in using optimal/predictive control in MRAVs
& APhI control mainly because of its ability to handle equality and inequality constraints. For
instance, in [11], a quadratic programming problem is designed to optimally control an AR per-
forming APhI tasks with energy and actuators constraints. One of the most prominent model-
based optimization control approaches is Model Predective Control (MPC). MPC superiority
over other model-based optimization control techniques is due to its ability to handle mod-
elling uncertainty and correct for them using state-feedback, which also makes it very respon-
sive to disturbances as it benefits from repeated optimization in a receding horizon fashion
[15].

MPC has first been deployed for process control in the petrochemical industry in the 1980s
where it gained its popularity after successfully replacing classical controllers in that field, but
its applications were limited to systems and processes with slow dynamics. Recent advance-
ments in the computational power of embedded computers, together with recent develop-
ments of more efficient optimization algorithms [16; 17], which can satisfy soft real-time con-
straints, has opened the door for exploiting the capabilities of MPC in time-critical applications
with fast dynamic systems, such as robotics, and aerial robotics fields.

MPC is suitable for ARs applications because the system constraints are included in the con-
troller design, and MPC optimizes the control action to satisfy these constraints. These con-
straints can be on the system states, control inputs, or other general constraints, and they can
represent physical constraints, e.g. actuators limits, or safety/operational constraints, e.g. ob-
stacle avoidance, and limited workspace. Recent publications by [18] and [19] have explored
the use of MPC in MRAVs trajectory tracking control. However, instead of linearizing the non-
linear dynamic prediction model of the MRAV so that it can be used in the MPC, the full nonlin-
ear model is used in the MPC, which is known as Nonlinear Model Predective Control (NMPC).
The interested reader is referred to [20] for a survey of the design and applications of MPC for
MRAVs.

1.1.1 Related work

In terms of physical interaction control using (N)MPC, three categories can be found in the
literature, direct pose/force control, where the Optimal Control Problem (OCP) deals with
both pose and force tracking; indirect interaction control, such that the OCP includes certain
impedance/admittance requirements; and finally cascaded control, where an outer-loop is re-

Ayham Alharbat University of Twente



CHAPTER 1. INTRODUCTION 3

Table 1.1: Overview of the contributions of this thesis compared to the state of the art.

The key of (N)MPC role: P=Pose tracking, P/F=Pose & Force tracking, I=Impedance control, A=Admittance control.

Paper
(N)MPC

role
AR

Cascaded
control

Force
tracking

Compliant
behaviour

Experimental
validation

Peric et al. 2021 [21] P/F 3 7 3 7 3

Darivianakis et al. 2014 [22] P/F 3 7 3 7 3

Tzoumanikas et al. 2020 [23] P/F 3 7 3 7 3

Matschek et al. 2020 [24] P/F 7 7 3 7 3

Bednarczyk et al. [25] I 7 7 7 3 3

Kazim et al. 2018 [26] P 7 7 3 3 7

Pankert and Hutte 2020 [27] P 7 3 3 3 3

Wahrburg and Listmann 2016 [28] A 7 3 7 3 7

Contributions of this thesis
NMPC cascaded control P 3 3 7 3 7

NMPC impedance control I 3 7 7 3 7

NMPC hybrid control P/F 3 7 3 7 7

sponsible for interaction control, and the inner-loop is a trajectory tracking controller, one of
those controllers can be an (N)MPC-based controller.

Direct pose/force control with (N)MPC

An explicit MPC is proposed in [22] for hybrid pose/force control, where the capabilities of the
controller are illustrated in an aerial writing task on a smooth flat surface with a quadrotor. In
[23] accurate aerial writing was demonstrated using a hexarotor that is equipped with a parallel
arm, and controlled by a hybrid force and position NMPC. A recent publication [21] proposed
an NMPC to directly control force and pose of an AR during push-and-slide tasks. The control
approach uses a smooth switching strategy between 3 different modes of control, Free-flight,
static, and dynamic interaction.

Indirect interaction control with (N)MPC

Another approach that can be noticed in the literature is the use of MPC to impose desired
impedance behaviour. In [25] an MPC controller is designed to behave as static state feedback
impedance control in the absence of constraints, but when defining constraints, the MPC’s
objective function is defined to drive the system with the specified impedance properties while
respecting the defined constraints. The controller design was verified with interaction tasks
using a manipulator. On the contrary, [26] proposed a different approach where admittance
control is combined with a nonlinear model predictive path following control in one OCP using
the admittance dynamics outputs as virtual states. These virtual states will modify the reference
trajectory to achieve the desired interaction behaviour. The proposed approach was verified
with simulations of a writing task using a lightweight robotic arm.

Cascaded control with (N)MPC

For a mobile robot that is equipped with a manipulator, [27] proposed a cascaded structure
with an admittance controller in the outer-loop and a whole-body MPC controller for pose
tracking in the inner-loop. The defined MPC tracks task-space trajectories of the manipula-
tor’s end-effector, and at the same time complying with physical and obstacle avoidance con-
straints. On the other hand, [28] designed an MPC-based admittance controller as the outer-
loop interaction controller, while the inner-loop controller is a classic velocity control at the
joints level of the manipulator. The MPC-based admittance controller mimics the classical
admittance control scheme in terms of its inputs and outputs, but thanks to the imposed con-
straints, the interaction forces can be constrained to certain bounds and continuous contact
with the environment is guaranteed.
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4 Exploiting NMPC in Contact-Based Aerial Physical Interaction

1.1.2 Thesis contributions

It can be noticed that the aerial robotics contributions in the literature are limited to the direct
control approach, while other control architectures remain unexplored. In this thesis, three
different approaches for APhI control using NMPC are proposed, implemented, and validated
through real-time simulations, an overview of the contributions of this thesis compared to the
state-of-the-art is presented in Table 1.1. The first proposed controller is a cascaded controller
that uses NMPC for motion tracking in the inner-loop, while the interaction is controlled by
the outer-loop admittance controller. The second controller is an NMPC-based impedance
controller that is designated to track a desired impedance behaviour and indirectly control the
APhI. Finally, the third controller is an NMPC hybrid controller that controls both the position
and the interaction force during physical interaction.

1.1.3 Research questions

The research questions that are addressed in this thesis are:

RQ1 How to exploit NMPC capabilities for APhI control?

RQ2 How to choose an NMPC-based control approach for a specific task?

RQ3 Can NMPC be combined with Admittance control to create a “Constrained Admittance
Control”?

1.2 Report layout

The rest of the thesis is organized as follows:

Chapter 2 will present an introduction to the theoretical background of this work. Where the
modelling of the AR is discussed together with the actuation principles and limitations. Also,
an introduction to direct and indirect interaction control approaches is presented.

Chapter 3 will build on the literature review of Chapter 1, and the theoretical background of
Chapter 2 to propose NMPC-based APhI control approaches. The control architecture of the
three controller is designed, and the respective OCP is proposed.

Chapter 4 discusses the practical implementation of the proposed controllers in MAT-
LAB/Simulink using MATMPC tool, and the NMPC parameters that affect the feasibility of
the proposed controllers.

Chapter 5 presents the validation of the proposed controllers through a simulations campaign
in Gazebo simulation environment. The simulation results are presented and discussed.

Chapter 6 will conclude this thesis by summarizing the conclusions, reviewing the research
questions, and proposing future extensions of this work.
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2 Theoretical background

In this chapter, a brief review of the theoretical background of this thesis is presented. First,
the mathematical modeling of the AR is presented in Section 2.1, then Section 2.2 introduces
direct force control methods, and in Section 2.3 the basic concepts of indirect force control are
discussed. Then, Section 2.4 will present the contact forces model, and finally in Section 2.5
the basic building blocks of NMPC controllers are introduced.

Notation. A consistent notation will be used throughout this thesis, where:

• Vectors and matrices will be denoted in bold font, with lower and upper cases, respec-
tively.

• Upper case subscripts of vectors refer to the reference frame that the vector is expressed
in, while Lower case subscripts are descriptive subscripts of the vector. In pW,r for ex-
ample, W refers to the world frame, and r means that this is reference vector.

• The rotation matrix R?• describes the orientation of frame • w.r.t ? . When ? is not
specified, the world frame is implied.

• The operator •> will denote the transpose operation of the matrix •.

• 0m×n and 1m×n denote the matrices with all its elements equal to 0 and 1, respectively,
and a size of m rows and n columns.

• The matrix In denotes the identity matrix of size (n ×n)

• Rn×n
>0 denotes the set of positive-definite real square matrices.

• The vectors e1 = [1,0,0]>,e2 = [0,1,0]>,e3 = [0,0,1]> ∈R3

• SO(3) refers to the special orthogonal group, which represents 3D rotations. While so(3)
refers to the Lie-algebra of SO(3)

• The operator •× ∈ so(3) denotes the skew symmetric matrix of the vector • ∈R3

• The operator •∨ is the inverse of •× and it denotes the R3 vector of any skew symmetric
matrix ∈ so(3).

2.1 Modeling of the Aerial Robot

Different modeling formalisms can be used to model the mechanical system of the MRAVs such
as the Newton–Euler, and the Lagrangian formalisms. In this thesis, the Newton–Euler for-
malism will be used, mainly because it is susceptible to the development of efficient recursive
models [29], which will be used to solve the OCP in the MPC.

2.1.1 Aerial Robot model

As shown in Fig. 2.1 the inertial world frame is defined as FW = OW {xW ,yW ,zW }, while the
frame FB = OB {xB ,yB ,zB } is the body frame, which is attached to the Center of Mass (CoM) of
the AR and aligned with the rigid body’s principal inertia axes, i.e. the inertia matrix J ∈R3×3

>0 is
a diagonal matrix. The frame FE = OE {xE ,yE ,zE } is rigidly attached to the end-effector, while
the frame FS = OS{xS ,yS ,zS} is the surface frame which is attached to the contact point of the
contact surface. Finally, the frame FAi = O Ai {xAi ,yAi ,zAi } is associated with the i -th actuator,
where O Ai coincides with the thrust generation point, and zAi is aligned with the thrust gener-
ation direction of the i -th actuator, which is assumed to be constant in this thesis. An overview
of the main symbols and notations is presented in Table 2.1.
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6 Exploiting NMPC in Contact-Based Aerial Physical Interaction

Table 2.1: Overview of the main symbols of this thesis.

Definition Symbol Set

Inertial world frame with origin OW and orthogonal axes {xW ,yW ,zW } FW

Aerial robot body frame with origin OB and orthogonal axes {xB ,yB ,zB } FB

End-effector frame with origin OE and orthogonal axes {xE ,yE ,zE } FE

Surface frame with origin OS and orthogonal axes {xS ,yS ,zS} FS

i -th actuator frame with origin O Ai and orthogonal axes {xAi ,yAi ,zAi } FAi

Position, velocity, acceleration of FE w.r.t FW p, ṗ, p̈ R3

Euler angles representing the orientation of FB w.r.t FW η R3

Rotation matrix of FB w.r.t FW RB SO(3),R3×3

Rotation matrix of FS w.r.t FW RS SO(3),R3×3

Angular velocity of FB w.r.t FW expressed in FB ω R3

Angular acceleration of FB w.r.t FW expressed in FB ω̇ R3

Actuators thrusts expressed in FAi γ R6

Actuators generated forces expressed in FB fa R3

Actuators generated torques expressed in FB τa R3

Contact force applied to the aerial robot expressed in FS fc R3

Mass of the aerial robot m R>0

Inertia matrix of the aerial robot w.r.t. to FB J R3×3
>0

Wrench map which maps γ to fa and τa G R6×6

Position of the end-effector frame w.r.t the body frame oB,E R3

Position of the i -th actuator frame w.r.t the body frame oB,Ai R3

In APhI, it is convenient to consider the linear dynamics of the end-effector instead of the AR
body, and hence the linear dynamics will be derived for the end-effector frame w.r.t the world
frame. Therefore, p, ṗ, p̈ ∈ R3 will represent the position, velocity, and acceleration of FE w.r.t
FW . On the other hand, the orientation of the AR can be expressed by the rotation matrix
RW

B ∈ SO(3), or RB , which denotes the orientation of FB w.r.t FW , while ω ∈ so(3) represents
the angular velocity of FB w.r.t FW expressed in FB , and finally the angular acceleration is
ω̇ ∈R3.

The evolution of the rotation matrix, that represents the AR orientation, w.r.t the angular veloc-
ity is expressed by:

ṘB = RB [ω]× (2.1)

The translational dynamics will be expressed in the inertial world frame, while the rotational
dynamics are expressed in the non-inertial body frame. This choice of reference frame is a
common practice when modelling an aerial vehicle and it has several advantages such as: the
inertia matrix J being constant and not dependent on the vehicle orientation; and relatively
simplified equations.

Finally, for an AR with a mass of m ∈R>0 and an inertia matrix of J, the equations of motion are:

mI3p̈︸ ︷︷ ︸
Iner t i a

=−mg e3︸ ︷︷ ︸
Gr avi t y

+ RB fa︸ ︷︷ ︸
Actuator s

+ RS fc︸︷︷︸
Cont act

+ fW,ext︸ ︷︷ ︸
E xter nal

+mI3RB
(
ω̇×oB ,E + [ω]2

×oB ,E
)︸ ︷︷ ︸

F i cti t i ous

Jω̇︸︷︷︸
Iner t i a

=−ω× Jω︸ ︷︷ ︸
Cor i ol i s

+ τa︸︷︷︸
Actuator s

+oB ,E × (
R>

B RS fc
)︸ ︷︷ ︸

Cont act

+ τB ,ext︸ ︷︷ ︸
E xter nal

(2.2)

where g is the gravitational acceleration, fa,τa are the forces and torques generated by the ac-
tuators (which will be discussed extensively in Section 2.1.3) expressed in the body frame, and

Ayham Alharbat University of Twente



CHAPTER 2. THEORETICAL BACKGROUND 7

FS

FW

FB

FE

zW

zB

zS

zE

xW

xB

xS

yB

yW

yE

xE

yS

FAi

zAi xAi

yAi

Figure 2.1: Visual representation of an aerial robot with the reference frames and the contact surface.

fc is the contact force applied to the end-effector and expressed in the surface frame. Also,
fW,ext,τB ,ext are the external force and torque applied to the AR and expressed in the world and
body frames, respectively. This external wrench can be due to external disturbances such as
wind, or internal disturbances such as unmodeled dynamics and the aerodynamic effects of
the actuators.

2.1.2 Orientation representation

Orientations and rotations of a rigid body in 3D space can be represented in different forms,
such as: Euler angles, rotation matrix, and unit quaternions. In this section, the relationship
between these three representations and the angular velocity ω is presented together with the
error definition for each representation, the section is concluded with a brief comparison and
selection criteria.

Rotation matrix

The evolution of the rotation matrix w.r.t the angular velocity has been presented in Eq. (2.1).
The error between two rotation matrices R1 and R2 , i.e. eR ∈R3 , is defined as:

eR = 1

2
(R>

1 R2 −R>
2 R1)∨ (2.3)

Euler angles

For a set of Euler angles η= [
φ θ ψ

]>
, the angular velocity can be expressed as a function

of Euler angles rate of change η̇ , or Euler rates, such that:

ω= Tη̇ (2.4)
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8 Exploiting NMPC in Contact-Based Aerial Physical Interaction

where T depends on the order of rotation of the three Euler angles. For the famous yaw-pitch-
roll order:

T =
1 0 −sθ

0 cφ sφcθ
0 −sφ cφcθ

 (2.5)

The error between two sets of Euler angles, η1 and η2 , can be derived in two definitions. First,
the direct difference between the two sets:

η1 −η2 =
φ1 −φ2

θ1 −θ2

ψ1 −φ2

 (2.6)

This definition ignores the cyclic nature of rotation such that an angle of 2π is equal to the
angle of 0 . The second definition of the error solves this issue such that:

η1 ªη2 =
 min

(|φ1 −φ2|, 2π−|φ1 −φ2|
)

min(|θ1 −θ2|, 2π−|θ1 −θ2|)
min

(|ψ1 −ψ2|, 2π−|ψ1 −ψ2|
)
 (2.7)

where min(a, b) is the minimum function that outputs the minumum value between a and
b.

Unit quaternions

For a unit quaternion q = [
qw qx qy qz

]>
, the time derivative of the quaternion q̇ w.r.t

the angular velocity can be written as:

q̇ = 1

2

[
0
ω

]
⊗q (2.8)

where the ⊗ operator denotes the Hamilton product of two quaternions (Cf. Appendix B.1).

On the other hand, the error between two quaternions, eq ∈R4 , can be defined by the geodesic
distance on the manifold of unit quaternions [30] such that:

eq = ∣∣∣∣log(q1 ⊗q∗
2 )

∣∣∣∣ (2.9)

where the operator ∗ denotes the conjugate quaternion (Cf. Appendix B.1).

Another approach to calculate the error between two quaternions is proposed in [31], where
the error eq3 is approximated in R3 such that:

eq3 = Im(q1 ⊗q−1
2 ) (2.10)

where Im denotes the imagenry part of the quaternion, i.e. Im(q) = [
qx qy qz

]>
, and q−1

is the inverse of q (Cf. Appendix B.1).

The most important advantage of using Euler angles is that it only uses three parameters to
represent the 3D rotation. However, it is well-known that the Euler-angles representation suf-
fers from singularities, such as when θ = π/2 in the yaw-pitch-roll rotation order. But also,
the Euler angles representation of 3D rotations is not unique. For example, when using the

yaw-pitch-roll rotation order, the Euler angles η1 = [
π π 0

]>
and η2 = [

0 0 π
]>

repre-
sent the same rotation, even though they are different, i.e. their error is not zero. One solution
to avoid these problems of Euler angles is to constrain the angles to certain boundaries where
Euler angles form a perfect chart on SO(3).

Rotation matrices on the other hand are in SO(3), and naturally, they do not suffer any singu-
larities. However, a rotation matrix has 9 parameters to represent the 3D rotation, which is not
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ideal when implementing a recursive algorithm on resources-limited computers. Unit quater-
nions need only 4 parameters to describe the 3D rotation while covering all of SO(3) without
any singularities. In [30], it is also found that unit quaternions are more computationally effi-
cient when implemented digitally, as in the applications of ARs.

In this thesis, Euler angles, with the transformation matrix of Eq. (2.5), are used to represent the
orientation regardless of their limitations and singularities, mainly because they are more intu-
itive to understand and interpret, and because their implementation is easier w.r.t the recursive
dynamical model that will be used in the NMPC controllers. However, this choice will restrict
the rotational motion of the AR so that the attitude does not approach the singularities of the
Euler angles, but for the subset of APhI tasks that this thesis is interested in, these restrictions
are reasonable.

2.1.3 MRAVs actuation

MRAVs are usually actuated by n rotors, which are propellers attached to motors. A rotor
i ∈ {1, . . . ,n} can generate a lift force, i.e. thrust, denoted as γi , that is mainly dependent on
the spinning velocity of rotor wi and the propeller properties, such as geometry, while its direc-
tion is along zAi of the actuator frame FAi . A by-product of this spinning is that the rotor will
experience friction with the air, which will generate a drag torque around zAi , the drag torque,
denoted τti , is also dependent on the spinning velocity of the rotor and the propeller proper-
ties.

MRAVs are usually equipped with Brushless DC motors, which can rotate in the two directions,
CCW and CW, but propellers are usually manufactured to optimally operate in one of the two
directions, depending on the pitch angle of the propeller. Therefore, the standard designs of
MRAVs are equipped with mono-directional rotors, which are assumed to be rotating in one di-
rection only, and therefore, the direction of the thrust force and drag torque is constant, where
the thrust direction is always along the positive zAi , while the drag torque direction depends on
the rotation direction.

A well-established and experimentally verified model [18] of the thrust generation is:

γi = c fi w2
i (2.11)

where c fi ∈ R>0 is the thrust coefficient of the i -th rotor, which is a propeller-dependent pa-
rameter that is affected by, among others, the propeller diameter, pitch angle, sweeping area,
and it can be identified experimentally for each propeller type.

The total force contribution of the generated thrusts by all the actuators, expressed in the body
frame, fa can be calculated as:

fa = RB

n∑
i=1

RB
Ai

e3γi (2.12)

where the individual thrusts are transformed from their actuator frame FAi to the body frame
FB .

On the other hand, the total torque that is applied to the MRAV’s CoM from the actuators ,and
expressed in the body frame, τa is the sum of two main quantities, 1) the thrust contribution to
the torque due to the leverage arms τγ; 2) the drag torque τt , such as:

τa =
n∑

i=1
τγi +τti (2.13)

First, the individual thrust contribution to the torque depends on the thrust intensity of the
rotor γi , the position of the rotor w.r.t the CoM represented by oB ,Ai , and the orientation of the
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10 Exploiting NMPC in Contact-Based Aerial Physical Interaction

rotor w.r.t the body frame RB
Ai

such that:

τγi = oB ,Ai ×RB
Ai

e3γi (2.14)

Second, the drag torque of each individual motor is modelled as:

τti =βi ctiγi (2.15)

where cti is the thrust-to-drag coefficient because the drag torque τti is proportional to the
generated thrust γi such as |τti

γi
| = cti . The rotor parameterβi ∈ {−1,1} indicates the drag torque

direction around zAi , such that its value is −1 if the rotor is spinning in CCW direction around
zAi , or +1 if it is spinning CW. This indicates that the drag torque direction is always opposite
to the spinning direction, therefore, when the rotor is rotating CCW, the drag torque will be CW
about zAi , and vice versa.

Hence, the drag torque of each individual motor expressed in the body frame can be written as:

τB ,ti = RB
Ai

e3βi ctiγi (2.16)

Substituting Eqs. (2.14) and (2.16) into Eq. (2.13), and after refactoring:

τa =
n∑

i=1

(
[oB ,Ai ]×+βi cti I3

)
RB

Ai
e3γi (2.17)

By combining Eqs. (2.12) and (2.17): [
fa

τa

]
=

[
G1

G2

]
γ= Gγ (2.18)

where γ = [γ1, . . . ,γn]>, and G ∈ R6×n is the wrench map matrix which maps the thrusts of the
rotors from its Rn thrusts space to the body wrench space of R6, and its components G1,G2

represent the mapping from of the rotors’ thrust to the 3D forces and torques, respectively,
expressed in body frame. This mapping is defined by several platform/hardware dependent
parameters, namely: the rotors position and orientation w.r.t the CoM; the propeller’s thrust
and thrust-to-drag coefficient; the rotor spinning direction. Therefore, the i -th column of G
which corresponds to the contribution of the i -th rotor in the body wrench is defined as:

G(:, i ) =
[

RB
Ai

e3(
[oB ,Ai ]×+βi cti I3

)
RB

Ai
e3

]
(2.19)

Finally, the model in Eq. (2.2) can be re-written more explicitly, including the Euler angles dy-
namics, such as:

mI3p̈ =−mg e3 +RB G1γ+RS fc + fW,ext +mI3RB
(
ω̇×oB ,E + [ω]2

×oB ,E
)

Jω̇=−ω× Jω+G2γ+oB ,E × (
R>

B RS fc
)+τB ,ext

η̇= T−1ω

(2.20)

2.1.4 MRAVs actuator limits

It is important to discuss the physical constraints of the system and to take them into account
while designing the controllers. As far as the MRAVs are concerned, the actuators limits are
the only physical constraints to the system. A standard actuator consists of an electric motor,
typically a brushless DC motor, and attached to it is a propeller. Naturally, the electric motor
rotational speed w has an upper limit w , that mainly depends on the maximum current that
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the motor can draw, and thus an upper limit to the thrust γ that the actuator can generate.
However, there is also a lower limit w to the motor’s rotational speed, which is usually associ-
ated with the capabilities of the Electronic Speed Controller (ESC) that is controlling the motor
rotational speed [32].

Additionally, the rotational acceleration of electric motors is also bounded, and therefore there
will be an upper and lower limits to the time derivative of the rotational velocities, ẇ and ẇ ,
leading to an upper and lower limits on the rate of the change of the generated thrust, γ̇ and
γ̇ . This was investigated thoroughly in [18], and it was found that these limits are functions
of the rotational velocity, where the motor acceleration/deceleration limits are functions of the
rotational velocity, ẇ(w) and ẇ(w) , hence, these limits should be experimentally identified
throughout the range of operation to have proper understanding of the real actuator limits.

2.2 Hybrid force/position control

When a robotic system is interacting with a rigid environment, its motion is typically con-
strained in one or more DoFs. These constraints mainly depend on the environment ge-
ometry, and they are called natural constraints. In a naturally constrained DoF, either the
translation/rotation is constrained, where the environment obstructs the translation/rotation
along/about this DoF, or the force/torque is constrained along/about that DoF, such that the
environment does not allow for the application of force/moment along/about that DoF.

On the other hand, in the DoFs that are not naturally constrained, the robotic system can con-
trol either the motion or the force/torque in that DoF, and drive them to desired values. These
desired values are called artificial constraints, because they do not depend on the nature of the
environment’s geometry, but rather depend on the specified task of the system. This means
that, when the velocity/angular velocity is naturally constrained in a DoF, an artificial con-
straint can be imposed on the corresponding force/torque, and vice versa.

A simple example is depicted in Fig. 2.2, where an end-effector of a robot is approaching a rigid
board to write on it. To simplify the description of the constraints, a local reference frame that
is rigidly attached to the contact surface at the contact point between the end-effector and the
surface, is defined such that FS = OS{xS ,yS ,zS} . It can be noticed that the end-effector is free
to move on the planar axes yS ,zS , but its motion is constrained in the axis that is normal to the
board surface xS , meaning that the environment poses the following natural constraints:

1. The translation along the normal axis (yS)

2. The forces along the planar axes (xS ,zS)

3. The torques about the planar axes (xS ,zS)

4. The torque about the normal axis (yS)

Whereas, the complementary artificial constraints that can be imposed are:

1. The force along the normal axis (yS)

2. The motion along the planar axes (xS ,zS)

3. The rotation about the planar axes (xS ,zS)

4. The rotation about the normal axis (yS)

Therefore, when the robotic system is interacting with a rigid environment, the system can
be decoupled into, and treated as, two subsystems. The first subsystem represents the nat-
urally constrained variables that the robot has no control over, and therefore can be excluded
from control consideration. The second subsystem represents the artificially constrained DoFs,
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FS
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Figure 2.2: Robot approaching a rigid board to write on it, an example of hybrid pose/force control.

which the robot can directly control, and therefore, separate control actions can be designed to
control those variables. This control paradigm is called, Hybrid Force/Position Control (HFPC),
since the controlled variables will be a mixture of position/orientation and forces/torques vari-
ables. Position and force can be controlled separately with two different control actions and
approaches.

For an AR, it is easier to express the constrained and unconstrained translational DoFs in the
surface frame FS that is attached to the contact surface. And since the interaction forces are
applied on the end-effector, and the motion of the end-effector is constrained/unconstrained
in certain directions, it is more convenient to derive the translational dynamics of the robot
in the end-effector frame FE w.r.t the world frame FW . Then, following [21], the dynamics of
Eq. (2.2) can be rewritten as:

p̈W = Sκ
(
m−1(RB fa +κRS fc

)− g e3 +RB
(
ω̇×oB ,E + [ω]2

×oB ,E
))

(2.21)

ω̇= J−1
(
τa +oB ,E × (

κR>
B RS fc

)−ω× (
Jω

))
(2.22)

where, Sκ is the selection matrix which selects the unconstrained translational dynamics and
truncates the constrained translational dynamics, such that:

Sκ = RSdiag(1, 1−κ, 1)RS
> (2.23)

which means that during interaction, the translational dynamics along the yS axis is naturally
constrained.

2.3 Indirect force control

The most prominent approach for indirect force control, and physical interaction control is
the framework of impedance control. This framework was first introduced by Neville Hogan in
his famous three-part paper [33]. In impedance control, the goal of the controller is neither to
steer the system to the desired position, nor to apply a certain force to the environment, but
rather to achieve a desired dynamical behaviour. To understand that, Hogan suggests, given
that the environment has inertial objects, that the environment should be considered as a me-
chanical admittance, and therefore, the robotic system should be thought of as a mechanical
impedance.
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The desired dynamical behaviour is usually described as a second-order mechanical system,
i.e. a spring-mass-damper system, which can be expressed in a one-dimensional case as:

mp̈︸︷︷︸
Inertia
force

+ d ṗ︸︷︷︸
Damping

force

+ kp︸︷︷︸
Spring
force

= f (2.24)

where f represents the combined forces applied to the mass, while p, ṗ, p̈ are the position,
velocity, and acceleration of the mass, and m, d , k are the mass, damping coefficient, and
spring coefficient, respectively. The three quantities on the left represent the three components
of the forces that the system will exert if perturbed from its equilibrium point, p̈ = ṗ = p = 0.

In terms of robotic systems control, the impedance control framework can be used in two
different settings, called impedance control (sometimes referred to as force-based impedance
control), and admittance control (position-based impedance control), which will be discussed
in Sections 2.3.1 and 2.3.2, respectively.

2.3.1 Impedance control

In impedance control, the controller will behave as a spring-mass-damper system that is trying
to reach its equilibrium point, i.e. p̈ = ṗ = p = 0 in Eq. (2.24). For a nonzero equilibrium points,
and in 3D, this can be re-written as:

M(p̈r − p̈)+D(ṗr − ṗ)+K(pr −p) = fu (2.25)

where M, D, K ∈ R3×3
>0 are the mass, damping, and stiffness diagonal matrices, p̈r , ṗr , pr ∈ R3

are the reference acceleration, velocity, and position, p̈, ṗ, p ∈R3 are the acceleration, velocity,
and position of the system, and finally fu ∈ R3 is the control force that the controller com-
mands to steer the system to the reference states with the dynamical behaviour that is defined
by M, D, K , as shown in Fig. 2.3a.

This can be extended to the rotational DoFs, where the impedance can be defined on SO(3)
to have a rotational spring, and rotational damper, and apparent inertia. Since this topic falls
outside the scope of this thesis, the interested reader is referred to [13; 34] for more details.

2.3.2 Admittance control

Admittance control is, as the name suggests, the reciprocal of impedance control. In ad-
mittance control, the interaction forces are used to modify the reference signal as shown in
Fig. 2.3b, where admittance control is used as an interaction controller in the outer-loop, with
another controller in the inner-loop that is dedicated for motion control (pose tracking) as in
[8; 35].

This type of cascaded control separates the motion control from the interaction control, which
allows for robust trajectory tracking behaviour, that rejects disturbances better, in the absence
of interaction, while a compliant behaviour can be achieved during interaction with the envi-
ronment. The admittance control tries to achieve the desired dynamical behaviour during the
interaction not by affecting the control action directly, but by modifying the reference signal,
assuming that perfect reference tracking can be achieved by the inner-loop motion controller.
Mathematically, this can be written as:

M δp̈+D δṗ+K δp = fW,c (2.26)
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Impedance
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(a)

Motion Controller Robot
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Desired Impedance

(b)

Figure 2.3: Indirect interaction control block diagrams. (a) Impedance control block diagram. (b) Ad-
mittance control block diagram.

where fW,c ∈ R3 is the interaction contact force that is applied to the system expressed in FW ,
and δp̈, δṗ, δp ∈ R3 are the acceleration, velocity, and position admittance modification, such
as:

p̈r = p̈d +δp̈

ṗr = ṗd +δṗ

pr = pd +δp

(2.27)

The admittance controller will modify the desired trajectory to a reference trajectory that will
achieve the desired dynamical behaviour defined by M, D, K ∈ R3×3

>0 . For example, in a sim-
ple 1D interaction with an environment, the admittance controller will try to minimize |fc|, by
moving the reference trajectory away from the environment. It is noted that admittance con-
trol can also be used for force tracking, such as [36], where Proportional-Integral (PI) controller
is added to the right-hand side of Eq. (2.26) so that the admittance controller will modify the
reference trajectory — moving it towards or away from the environment, to simultaneously
achieve the desired dynamical behaviour, and track the desired interaction force.

In the previous two sub-sections, impedance and admittance control have been presented and
explained mathematically for the 3D translational dynamics, however, the rotational dynamics
can also be included in the impedance and admittance control framework, to achieve a desired
dynamical behaviour in the rotational DoFs as well. The mathematical representation of this
6D impedance/admittance controller depends on the chosen representation of the three rota-
tional DoFs — such as rotation matrix, unit quaternion, Euler angles, or others. For example,
in [8], where the orientation is expressed using rotation matrices, the 6D admittance controller
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is defined as:

M6

[
p̈d − p̈r

ω̇d − ω̇r

]
+D6

[
ṗd − ṗr

ωd −ωr

]
+K6

[
pd −pr

1
2 (Rd R>

r −Rr R>
d )∨

]
=

[
fW,c

τB ,c

]
(2.28)

where M6, D6, K6 ∈ R6×6
>0 are the mass, damping, and stiffness diagonal matrices, and the term

1
2 (Rd R>

r −Rr R>
d )∨ describes the orientation error, which can be different depending on the used

representation of the rotation as discussed in Section 2.1.2. Including the rotational DoFs in the
admittance control is a design choice that is dependent on the interaction task. For example,
for tasks like peg-in-the-hole, it is desired to have a compliant behaviour from the rotational
DoFs in order to adapt to the hole orientation uncertainties.

2.4 Contact force model

The contact force fc representing the environment reaction to the physical interaction can be
modeled based on Newton’s third law of motion. Assuming that the environment is a mechan-
ically grounded rigid body, fc can be estimated based on the force generated by the actuators
fa , where the generated force will be applied to the environment in the constrained DOFs and
therefore the environment reaction (in that constrained DoF) will be equal to the applied force
and in the opposite direction. Hence the contact force is:

fc =−S̄κR>
S RB G1γ (2.29)

where G1 is a map from the thrusts γ to the 3D forces acting on the body frame, as defined in
Eq. (2.18). Then, its time derivative is:

ḟc =−S̄κ
(
R>

S RB [ω]×G1γ+R>
S RB G1γ̇

)
(2.30)

Alternatively, following [21], the contact force can be modelled as:

fc = S̄κR>
S

(
mp̈r −mg e3 −RB fa

)
(2.31)

which means that the contact force can be calculated based on the residual force.

It is important to note that this contact model is only suitable for modelling the normal force of
the interaction, and therefore, this model does not describe the friction forces, because friction
forces arise due to motion, and by definition, the motion should be constrained for the model
in Eq. (2.29) to be valid. Also, this model only captures the steady-state response of the envi-
ronment, while the collision dynamics at the beginning of the interaction are not described by
this model.

2.5 Nonlinear Model Predictive Control

A brief introduction to MPC is presented in Appendix A, however, this section will introduce
the mutual building blocks for the NMPC-based controllers that will be proposed in the next
chapter, to avoid repetition.

First, the NonLinear Programming (NLP) problem that will be used throughout the next chap-
ter is defined as:

min
x0...xN

u0...uN−1

N∑
k=0

∥∥∥J(rk ,xk )
∥∥∥2

Qk

(2.32)

s.t. x0 = x̂(t ) (2.33)

xk+1 =φ(xk ,uk ), k∈{0,N−1} (2.34)

γ≤γk ≤γ, k∈{0,N } (2.35)

γ̇
k

(γk ) ≤ uk ≤ γ̇k (γk ), k∈{0,N−1} (2.36)
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where J(rk ,xk ) ∈ Rny

>0 is the objective function that describes the controller tasks, and Qk ∈
R

ny×ny

>0 is the weights matrix, and ny ∈N>0 is the number of the outputs in the objective func-
tion J(rk ,xk ). The subscript k denotes the time step kT such that xk = x(kT ) where T is
the sampling time. The objective function, together with the discrete states vector xk ∈ Rnx

and references vector rk ∈Rnr will be defined for each control approach separately in the next
chapter depending on the control objective and approach.

The state-feedback is defined in Eq. (2.33), while the prediction model is defined by the discrete
map φ(xk ,uk ) which will be defined for each control approach separately in the next chapter.
While, the symbols • and • denote the upper and lower bounds, respectively. Therefore the
actuator thrusts limits are γ,γ ∈ Rnu . Note that the control input is defined as the actuators
thrusts derivatives, as discussed in Section 2.1.4:

u := γ̇ (2.37)

and therefore the constraints on the control inputs are γ̇, γ̇ ∈ Rnu , noting that the constraints
are not constant because the upper and lower bounds are functions of γk as discussed in
Section 2.1.4.

To summarize, the NLP problem defined in Eqs. (2.32) to (2.36) will be used in the next chapter
with different objective functions J(rk ,xk ) , prediction models φ(xk ,uk ) , states vectors xk ,
and references vectors rk .
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3 NMPC design for APhI control

In this chapter, three different NMPC-based approaches for APhI control are proposed. As pre-
sented in Section 1.1.1, three categories of (N)MPC for physical interaction control can be rec-
ognized: Direct pose/force control with (N)MPC; Indirect interaction control with (N)MPC; and
Cascaded control with (N)MPC. First, the three categories are introduced with more details in
Section 3.1, and then in Section 3.2 the NMPC cascaded control design is presented. In Sec-
tion 3.3 the design of NMPC impedance control is presented, and finally, the NMPC hybrid
control design is proposed in Section 3.4.

3.1 Introduction

As there are different approaches for physical interaction control, (N)MPC can be deployed
in different fashions for APhI control. As shown in Section 1.1.1, the use of (N)MPC for APhI
control is always limited to hybrid pose/force tracking in the state of the art, but there are
many contributions in the field of interaction control with ground robots that take different
approaches to address the problem, such as indirect interaction control, or cascaded control
architecture.

As discussed in Section 2.3.2, the motion control and the interaction control can be separated
into two nested control loops, an inner-loop dedicated for motion control, and an outer-loop
responsible for interaction control. In this architecture, (N)MPC can be implemented for mo-
tion control or interaction control, i.e. in the inner-loop or outer-loop. The most important ad-
vantage of using (N)MPC as an inner-loop motion controller is the ability to define constraints
that the robot should satisfy, additionally, the motion control can prioritize the tracking of some
states over the others, which can be critical for the stability of an ARs.

On the other hand, using (N)MPC for interaction control in the outer-loop provides many op-
tions to improve the interaction behaviour, for instance, a sub-objective can be added to the
control problem to maintain contact with the environment to avoid the well-known problem
of bouncing at the beginning of the interaction task, as done in [28]. Also, constraints can be
defined on the interaction wrench to guarantee safe and smooth interaction. However, this
configuration will not be further discussed in this thesis due to time constraints, and attention
will be given to the aforementioned cascaded configuration where NMPC is in the inner loop,
as will be presented in Section 3.2.

Indirect interaction control can also be done without the cascaded control structure in the form
of impedance control. In impedance control, the controller will try to drive the system with
the desired dynamical behaviour, thus, neither the motion nor the force is controlled directly.
This concept will be implemented in Section 3.3 as the NMPC impedance control, where the
controller will drive the system to minimize the error between its dynamic behaviour and the
desired behaviour.

Finally, in Section 3.4, the NMPC hybrid control is presented, where the controller will directly
control the normal force that is applied to the contact surface, and the pose of the AR in the
unconstrained DoFs during physical interaction, but in free-flight when there is no physical
interaction with the environment, the controller will simply control the motion of the AR in
the 6D space. To do that, the concepts of hybrid force/position control that were discussed in
Section 2.2 will be utilized, and a control-mode switching strategy is devised.

3.2 NMPC cascaded control

In this section, a cascaded control approach is proposed for APhI indirect control. In this ap-
proach, a trajectory tracking NMPC controller is used in the inner-loop, while the outer-loop is
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Aerial Robot

Admittance
Controller

NMPC Trajectory
Tracking Controller

Desired Impedance

Figure 3.1: NMPC cascaded control block diagram.

State-space Model

Figure 3.2: Admittance controller block diagram.

controlled by an admittance controller which will modify the reference trajectory of the inner-
loop, as shown in the block diagram in Fig. 3.1.

3.2.1 Admittance controller

As discussed in Section 2.3.2, the admittance controller modifies the reference acceleration, ve-
locity, and position by p̈, ṗ,p ∈R3 , respectively, to steer the system with the desired impedance,
which is defined by M, D, K ∈ R3×3

>0 , the mass, damping, and stiffness diagonal matrices, re-
spectively, such as:

M δp̈+D δṗ+K δp = RS fc (3.1)

where fc ∈ R3 is the contact forces applied to the end-effector and expressed in the surface
frame. The trajectory modifiers p̈, ṗ,p can be solved as a state-space model, as shown in
Fig. 3.2 as: [

δṗ
δp̈

]
=

[
03×3 I3

−M−1K −M−1D

][
δp
δṗ

]
+

[
03×3

M−1

]
RS fc (3.2)

with the initial conditions of δp(0) = δṗ(0) = 0 .

3.2.2 NMPC trajectory tracking controller

The design of NMPC for trajectory tracking is based on [18], but it will be summarized here
for completeness, where the NMPC’s prediction model, states vector, references vector, and
objective function will be presented.

Naturally, the states vector will include the motion states of position, velocity, orientation, and
angular velocity. However, the actuators thrusts are also included in the states since the control
inputs are their derivatives, and constraints should be defined on them. Therefore, the states
vector can be defined as:

x := [
p> ṗ> η> ω> γ>]>

(3.3)
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where x ∈Rnx such that nx = 12+nu = 18 , where nu is the number of control inputs, and it is
equal to six when a fixed-tilt hexarotor is used, which is the assumption from now on. And the
states vector can be discretized such that xk = x(kT )

The dynamic prediction model of the AR for the linear and rotational DoFs, using Euler angles
to represent orientation, as derived in Section 2.1, is:

mI3p̈ =−mg e3 +RB G1γ+mI3RB
(
ω̇×oB ,E +ω×ω×oB ,E

)
Jω̇=−ω× Jω+G2γ

η̇= T−1ω

γ̇= u

(3.4)

noting that this model does not consider any external forces or torques, so the NMPC is not
aware of any interaction forces or disturbances. This can be written in terms of the map f(•)
as:

ẋ(t ) = f(x(t ),u(t )) (3.5)

which represents the map from x and u to ẋ , and can be discretized to the corresponding
discrete-time map φ(•) , which can be written as:

ẋk+1 =φ(xk ,uk ), k = 0,1, . . . , N −1 (3.6)

The references vector will include motion reference for the linear and rotational motion, and it
is defined as:

r(t ) = [
p>

r ṗ>
r p̈>

r η>r ω>
r ω̇>

r

]
(3.7)

which can be discretized such that rk = r(kT ) ∈R18 .

The objective function should reflect the trajectory tracking objectives that the NMPC con-
troller is trying to achieve, and hence, it will depend on the errors of position, orientation, ve-
locity, angular velocity, acceleration, and angular acceleration. Therefore, the discrete objective
function is defined as:

J(rk ,xk ) =



pk −pr,k

ṗk − ṗr,k

p̈k − p̈r,k

ηk ªηr,k
ωk −ωr,k

ω̇k − ω̇r,k

 (3.8)

where ηªηr ∈R3 is the attitude error of the Euler angles, and J(rk ,xk ) ∈R18 .

Finally, the defined prediction model (Eq. (3.6)), objective function (Eq. (3.8)), states vector
(Eq. (3.3)), and references vector (Eq. (3.7)) are implemented in the NLP problem defined in
Eqs. (2.32) to (2.36).

3.3 NMPC impedance control

In this section, an NMPC controller will be developed to control the APhI indirectly through
impedance control. The basic concepts of indirect interaction control, and impedance control,
in particular, were presented in Section 2.3.1. The designed NMPC controller will drive the
system to match the desired dynamical behaviour specified by the desired damping, stiffness,
and apparent inertia, as shown in Fig. 3.3.

To control the interaction indirectly, the desired impedance behaviour should be included in
the objective function on the NMPC. To do this, an impedance error will be defined, which will
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NMPC Impedance
Controller Aerial Robot

Desired Impedance

Figure 3.3: NMPC impedance block diagram.

represent the error between the current dynamical behaviour and the desired behaviour. For
the three translational DoFs, the impedance error can be written as:

eZ = M(p̈r − p̈)+D(ṗr − ṗ)+K(pr −p)+RS fc (3.9)

where eZ ∈ R3 is the impedance error, M, D, K ∈ R3×3
>0 are the mass, damping, and stiff-

ness diagonal matrices, p̈r , ṗr , pr ∈ R3 are the reference acceleration, velocity, and position,
p̈, ṗ, p ∈ R3 are the acceleration, velocity, and position of the system, and finally fc ∈ R3 is the
contact force transformed to the world frame by RS .

In the absence of interaction forces, i.e. free flight where fc = 03, the aforementioned
impedance error will behave like a simple impedance controller for motion control, where the
errors between the references and the current states are multiplied with their respective desired
impedance behaviour. In case of interaction, i.e. fc 6= 03, the impedance error will represent
the deviation between the current dynamic behaviour and the desired behaviour, and there-
fore, minimizing this error will drive the system to the desired dynamics.

3.3.1 Prediction Model

To include this impedance error in the designed NMPC controller, the contact forces are added
to the states vector, which can be defined as:

x := [
p> ṗ> η> ω> γ> f>c

]>
(3.10)

where the interaction contact force is denoted as fc ∈ R3 , and the state vector x ∈ Rnx such
that nx = 21 , assuming that a fixed-tilt hexarotor is used.

The prediction model of the AR will be similar to the derived model in Section 2.1, but it will
also include the contact force model that was developed in Section 2.4, which can be written
as:

mI3p̈ =−mg e3 +RB G1γ+RS fc +mI3RB
(
ω̇×oB ,E +ω×ω×oB ,E

)
Jω̇=−ω× Jω+G2γ+oB ,E × (

R>
B RS fc

)
η̇= T−1ω

γ̇= u

ḟc =−R>
S RB [ω]×G1γ−R>

S RB G1γ̇

(3.11)

which can be written in terms of the map f(•) as:

ẋ(t ) = f(x(t ),u(t )) (3.12)

which represents the map from x and u to ẋ , and can be discretized to the corresponding
discrete-time map φ(•) , which can be written as:

ẋk+1 =φ(xk ,uk ), k = 0,1, . . . , N −1 (3.13)
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NMPC Force/Pose
Controller Aerial Robot

Figure 3.4: NMPC hybrid control block diagram.

3.3.2 NMPC design

After defining the states vector x in Eq. (3.10), the discrete prediction model in Eq. (3.13), and
the impedance error eZ in Eq. (3.9), the references vector will be a motion trajectory reference
identical to Eq. (3.7). Then, the discrete objective function for the NMPC impedance control is
defined as:

J(rk ,xk ) =


eZ

ηk ªηr,k
ωk −ωr,k

ω̇k − ω̇r,k

 (3.14)

where eZ ∈R3 is the translational impedance error and J(rk ,xk ) ∈R12 .

In this objective function, there are no explicit position/velocity/acceleration errors, compared
to the attitude/angular velocity/angular acceleration error terms. This choice is motivated by
the fact that the impedance error implicitly includes the errors of the position, velocity, and
acceleration, and therefore the system will be driven to track the linear trajectory motion with
the desired dynamical behaviour in the absence of interaction.

Note that the impedance error is for the translational DoFs only, and it does not include the
rotational DoFs, this choice is motivated by the desire to have separate robust control over the
rotational DoFs to keep the AR attitude stable and resilient to disturbances. However, if the
APhI task requires a compliant behaviour in the attitude as well, e.g. peg-in-the-hole task, the
impedance error can be developed to include the rotational dynamics, as in Eq. (2.28).

Finally, the prediction model (Eq. (3.13)), objective function (Eq. (3.14)), states vector
(Eq. (3.10)), and references vector (Eq. (3.7)) are implemented in the NLP problem defined
in Eqs. (2.32) to (2.36).

3.4 NMPC hybrid control

In this section, an NMPC controller will be developed to directly control the APhI in the form of
HFPC. Building on the basic concepts of HFPC which were presented in Section 2.2, two differ-
ent control modes will be defined, namely, Free-flight Mode (FM), and Contact Mode (CM). In
FM, the system’s motion is not constrained in any DoF, and in CM the system’s motion is con-
strained along at least one DoF. The NMPC controller, as shown in Fig. 3.4, will only track the
position reference trajectory in FM, but in CM, the NMPC controller will track both the position
and force references.

As presented before in Section 2.2, it is important to explicitly represent the constrained DoFs
in the prediction model and control design, and it is more intuitive to define the constrained
DoFs in FS , where yS is pointing towards the contact surface, which is assumed to be planar,
as shown in Fig. 2.1. It can be noticed that when the system is in CM, the end-effector is free
to move on the planar axes xS ,zS , but its motion is constrained in the axis that is normal to
the contact surface yS . Furthermore, the selection factor κ ∈ {0, 1} is defined such that κ= 0
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when the AR is in FM, and κ= 1 when the AR is in CM. This factor will be used in the derivation
of the system dynamics in the two control modes. The computation of κ will be discussed later
in Section 3.4.3.

The selection matrix Sκ , which selects the unconstrained translational dynamics and trun-
cates the constrained translational dynamics when the system is in FM, is defined as:

Sκ = RSdiag(1, 1−κ, 1)RS
> (3.15)

and its complement S̄κ , which selects the constrained translational DoFs and truncates the
unconstrained translational DoFs when the system is in CM, is defined as:

S̄κ = RSdiag(0, κ, 0)RS
> (3.16)

note that regardless of the control mode, FM or CM, SκS̄κ = 03×3 , which means that the posi-
tion control and force control will exclude each other for all the translational DoFs.

3.4.1 Prediction Model

As discussed in Section 2.2, the dynamics of the AR can be derived directly in the end-effector
frame, where the states vector is defined as:

x := [
p> ṗ> η> ω> γ> f>c

]>
(3.17)

where the state vector x ∈Rnx such that nx = 21 .

The prediction model of the AR, as derived in Section 2.2, is:

p̈ = Sκ
(
m−1(RB fa +κRS fc

)− g e3 +RB
(
ω̇×oB ,E +ω×ω×oB ,E

))
ω̇= J−1

(
−ω× (

Jω
)+τa +oB ,E × (

κR>
B RS fc

))
η̇= T−1ω

γ̇= u

ḟc =−S̄κ
(
R>

S RB [ω]×G1γ+R>
S RB G1γ̇

)
(3.18)

note that the contact force dynamics are equal to zero in FM, while the full 3D translational
dynamics are included in the model. While in CM, the selection matrix will exclude the trans-
lational dynamics of yS from the prediction model, and the contact force model in the yS will
be included by the complement matrix. The prediction model can be written in terms of the
map f(•) as:

ẋ(t ) = f(x(t ),u(t )) (3.19)

which represents the map from x and u to ẋ .

The continuous-time map f(•) is discretized to the corresponding discrete-time map φ(•) can
be written as:

ẋk+1 =φ(xk ,uk ), k = 0,1, . . . , N −1 (3.20)

The subscript k denotes the time step kT such that xk = x(kT ) and T is the sampling time.

3.4.2 NMPC design

After defining the states vector x in Eq. (3.17), and the discrete prediction model in Eq. (3.20),
the references vector is defined as:

r(t ) = [
p>

r ṗ>
r p̈>

r η>r ω>
r ω̇>

r f>r
]

(3.21)
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where fr ∈ R3 represents the reference contact forces expressed in FS . Then, the references
vector can be discretized such that rk = r(kT ) ∈R21 .

Then, the discrete objective function is defined as:

J(rk ,xk ) =



Sκ(pk −pr,k )
Sκ(ṗk − ṗr,k )
Sκ(p̈k − p̈r,k )
ηk ªηr,k
ωk −ωr,k

ω̇k − ω̇r,k

S̄κ(fc,k − fr,k )


(3.22)

note that in objective function is also dependent on the control model such that in FM the force
tracking term is always equal to zero, i.e. excluded from the objective function, while in CM the
position, velocity, and acceleration error in yS is excluded from J(rk ,xk ), and the force tracking
in the yS is included. Finally, J(rk ,xk ) ∈ R21 , and the NLP problem is defined as in Eqs. (2.32)
to (2.36).

3.4.3 Contact mode switching

Since switching from one control mode to another in hybrid force/pose control is dependent
on the selection factor κ , it is important to devise a switching strategy of this factor that can
reflect the real physical situation of the robot. A clear distinction between FM and CM is the
presence of the interaction control force, therefore, a trivial choice for contact mode switch is
to make it dependant on fc , such that when the contact force is bigger than a certain threshold
a , the contact mode is CM, and therefore κ= 1, and vice versa, which can be written as:

κ=
{

0 |fc| ≤ a

1 |fc| > a

However, this choice is not suitable for some interaction tasks such as pushing, and push-and-
slide tasks with a static environment, because the robot will not be able to retract from interac-
tion once the task is completed, since the controller does not control the position in the same
DoF of the interaction force control, i.e. the contact mode can not be switched back to FM, and
therefore it can not retract from interaction.

Since this thesis is mainly concerned with contact-based APhI with static environments, the
aforementioned scenario is not suitable, therefore, other switching logic should be proposed.
Another switching strategy is to include the position error in the normal direction en , i.e. the
direction of controlling the force in CM, in the switching logic, such that if the position error
is larger than a certain threshold b , the control mode switches to FM even if the contact force
condition is still true. This can be written as:

κ=
{

0 |fc| ≤ a

1 |fc| > a AND |en | ≤ b

this switching logic will allow the controller to switch back to FM when the reference trajectory
in the normal direction retracts away from the surface, which will make en larger than b, and
thus the controller switches to FM. But it also applies a restriction on the reference of the nor-
mal position during interaction, where it should not be set to penetrate the surface by a larger
penetration than b.
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4 MATLAB Simulations

In this chapter, the proposed NMPC control approaches are implemented in MAT-
LAB/Simulink simulation environment, and preliminary tests are conducted to analyse and
select the proper parameters for the NMPC controllers. This chapter is not intended to present
simulation results that validate the proposed controllers in interaction tasks, but rather it will
present the implementation details of the proposed controllers in MATLAB using MATMPC
tool, and the simulation setup that was used to test the feasibility of the proposed controllers,
and the analysis of the NMPC parameters effects on the system behaviour.

This chapter will be organized as follows, first, the simulation setup and models are introduced
in Section 4.1, and then the NMPC implementation details is presented in Section 4.2. After
that an analysis of NMPC parameters is presented in Section 4.3, and the presented results are
discussed in Section 4.4.

4.1 Simulation setup

The simulation block diagram is shown in Fig. 4.1, where the controller block is dependent
on the control approach, and was discussed in Chapter 3. The trajectory generator is a simple
waypoints-based trajectory generator where it generates the required N+1 motion trajectories
points for the prediction horizon tH . The generated trajectory consists of position and orien-
tation references, while the other references, such as velocity, acceleration, angular velocity,
and angular acceleration, are set to zero. These motion trajectories are sent to the controller in
the form of two matrices, references matrix hr e f ∈Rny×N , and parameters matrix a ∈Rnp×N+1

depending on the corresponding control approach, as will be discussed in Section 4.2.

The robot model that will be used throughout these simulations is a model of the fully-actuated
hexarotor aerial robot FiberThex, shown Fig. 4.2, that was developed in the University of
Twente, and it is equipped with a fixed end-effector that is rigidly attached to the robot me-
chanical frame. The robot parameters such as mass m , and inertia matrix J , and the actuators
parameters such as the thrust and thrust-to-drag coefficients c f ,ct , respectively, have been
experimentally validated in previous work to prompt the accuracy of this model. Also, the ac-
tuators minimum and maximum thrusts were experimentally identified, however, due to time
constraints, the control inputs constraints (minimum and maximum acceleration of the ac-
tuators) were not experimentally identified. Instead, the constraints of a similar AR, Tilt-Hex,
which were identified in [18], will be used in these simulations, since FiberThex is equipped
with the same motors as Tilt-Hex. The model parameters of FiberThex are listed in Table 4.1.
Based on the identified parameters and rotors positions, the wrench map G is calculated as
described in Section 2.1.3.

Robot 
model

NMPC 
controller

Trajectory generator

Noise addition

Surface 
model

Constraints and
weights generator

Trajectory
generator

Constraints and
weights generator

Figure 4.1: MATLAB/Simulink simulations block diagram.
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Figure 4.2: Photo of FiberThex CAD model.

In these simulations, the control input u is integrated using a fixed-step integrator to calculate
γ which is considered the input to the AR dynamical model, together with the contact forces fc

that are generated by the surface model, such that the dynamics of the robot are described by
Eq. (2.20). With proper integration, the states of the AR x are calculated such that:

x := [
p> ṗ> η> ω> γ>]>

(4.1)

which corresponds also to the output of the robot model.

The surface model, which simulates the contact surface that the end-effector will interact with,
is divided into two parts: the normal force model, and the friction model. The normal force fn

model is based on Hunt-Crossley model [37], which is a collision model representing the con-
tact dynamics of viscoelastic systems. Essentially, the model can be seen as a spring-damper
system that is activated when contact between the wall and the object is detected, and deacti-
vated when there is no contact. The contact is detected based on a positive penetration model,
such that if the position of the end-effector w.r.t the surface frame FS is greater than or equal
to zero in the normal direction (yS in Fig. 2.1) then contact is detected, otherwise there is no
contact. The model can be written as:

fn =−khσ−dhσσ̇ (4.2)

where kh ,dh ∈R>0 are the stiffness and damping coefficients, respectively,σ is the surface pen-
etration, i.e. the position of the end-effector w.r.t the surface frame in the normal direction, and
σ̇ the velocity of the end-effector in the normal direction expressed in the surface frame. Note
that the normal force is expressed in the surface frame. In the presented simulations, the sur-
face model parameters are kh = 100,dh = 100. However, it was noted that higher values for the
stiffness and damping coefficients would deteriorate the stability of contact with the model,
and therefore, this model can not represent a fully rigid contact surface, but it was suitable
for preliminary tests that are not intended to validate the controllers, but rather to study the
feasibility of their respective OCPs.

On the other hand, the model of the friction force f f along the two dimensional surface is based
on the Coulomb friction model, such that:

f f =−µ tanh(qv) | fn | (4.3)
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Table 4.1: FiberThex physical parameters.

Parameter Symbol Value

Mass m 3.061[Kg]
Inertia matrix J diag(0.115,0.114,0.194)[Kg ·m2]
Rotors tilt angle α 20◦

Rotor thrust coefficient c f 12.5e −4 [N/Hz2]
Rotor thrust-to-drag coefficient ct 2.338e −5 [m]
Rotor maximum thrust γ 13[N]
Rotor minimum thrust γ 0.32[N]

Arm length (from CoM to rotor) 0.38998m
Angle between rotors 60◦

where µ is the Coulomb friction coefficient, q is the friction slop, and v is the velocity in the
friction direction. The output of the surface model is the contact force fc = [ f fx fn f fz ]>

which is expressed in the surface frame.

Additionally, white noise is generated and added to the states and contact forces x, fc to sim-
ulate the real noisy measurements of the on-board sensors that the controller should be able
to deal with, and to test the limits of which the controller can handle this noise. In impedance
and hybrid control, f̂c will be included in the states vector of the NMPC controller.

As discussed in Chapter 3 and Section 2.1.4, the constraints on the control input u are func-
tions of the rotors thrusts γ , therefore, these constraints are calculated online based on the
experimentally identified limits of the modeled AR, and then they are sent to the controller in
the matrices u,u ∈Rnbu×N , denoted in Fig. 4.1 as u for compactness. Moreover, the constraints
on the states are also generated and sent to the controller in the matrices x,x ∈Rnbx×N , which is
also denoted in Fig. 4.1 as x for compactness. In these simulations, the only states constraints
were the upper and lower bound of the thrusts γ. Finally, the weights of the objective function
are sent to the controller in the matrix W ∈Rny×N .

4.2 NMPC implementation

The designed NMPC controllers are implemented in MATMPC, a MATLAB-based NMPC tool-
box [38]. After defining the discretized dynamical model, and the sizes of the relevant vectors
(e.g. states, control inputs, and outputs vectors), MATMPC uses MATLAB to generate C code
routines that will be called at run-time through MEX functions. This strategy increases the time
efficiency of solving the NLP problem, which allows MATMPC to run in real-time applications.

The prediction models are discretized using a fixed step 4th order explicit Runge-Kutta integra-
tor which is supported by MATMPC for multiple shooting [39], while the derivatives that are
required for solving the OCP are obtained using CasADi [40], an open-source tool for symbolic
algorithmic differentiation. Furthermore, qpOASES [41], which is a C++-based open-source
Quadratic Programming (QP) solver, is used to solve the dense QP problem using Real Time
Iteration (RTI) scheme [42].

RTI is a state-of-the-art fast algorithm for solving NMPC problems, where a single Sequential
Quadratic Programming (SQP) iteration is carried out to solve the NLP problem, which means
that the QP problem that corresponds to the NLP is solved through one iteration only. Thanks
to the initial value embedding strategy, RTI scheme can quickly solve a sequence of similar QP
problems online with varying initial conditions. The interested reader is referred to [16] for
more details about RTI in NMPC, and its implementation in MATMPC [43].
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Table 4.2: MATMPC vetors sizes for NMPC cascaded control.

Symbol Size Meaning

nx 18 No. of states
nu 6 No. of controls
ny 18 No. of outputs ( and references)
ny N 18 No. of outputs at terminal stage
np 0 No. of parameters
nc 0 No. of general constraints
nbx 6 No. of bounds on states
nbu 6 No. of bounds on controls
nbx _i d x 13-18 indexes of bounded states
nbu_i d x 1-6 indexes of bounded controls

To implement the proposed NLPs in MATMPC, these problems should be adapted to the stan-
dard NLP problem that is defined in MATMPC, which is described in details in Appendix C,
such that for each one of the three proposed controller, a reference vector hk

r e f , an inner ob-
jective vector function h(xk ,uk ) , and a parameters vector ak (if necessary) is defined. The
choice of these vectors depends on the objective function J(rk ,xk ) of each controller (which
was designed in Chapter 3), and on the standard NLP problem in MATMPC, cf. Appendix C.

4.2.1 NMPC cascaded control implementation

For the NMPC cascaded control, the reference vector is defined as:

hk
r e f =



pr,k

ṗr,k

p̈r,k

ηr,k
ωr,k

ω̇r,k

 (4.4)

While the vector function h(xk ,uk ) is defined as:

h(xk ,uk ) =



pk

ṗk

p̈k

ηk
ωk

ω̇k

 (4.5)

This definition of the vectors will render an objective function in MATMPC that is identical to
the defined objective function in Eq. (3.8).

A summary of the sizes of the vectors and matrices that MATMPC will use is presented in Ta-
ble 4.2.

4.2.2 NMPC impedance control implementation

In the NMPC impedance control, the reference vector is defined as:

hk
r e f =


03×1

ηr,k
ωr,k

ω̇r,k

 (4.6)
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Table 4.3: MATMPC vetors sizes for NMPC impedance control.

Symbol Size Meaning

nx 21 No. of states
nu 6 No. of controls
ny 12 No. of outputs ( and references)
ny N 12 No. of outputs at terminal stage
np 9 No. of parameters
nc 0 No. of general constraints
nbx 6 No. of bounds on states
nbu 6 No. of bounds on controls
nbx _i d x 13-18 indexes of bounded states
nbu_i d x 1-6 indexes of bounded controls

While the vector function h(xk ,uk ) is defined as:

h(xk ,uk ) =


M(p̈r − p̈k )+D(ṗr − ṗk )+K(pr −pk )+RS fc,k

ηk
ωk

ω̇k

 (4.7)

where the p̈r , ṗr , pr will be passed to the NMPC controller as MATMPC parameters in the
vector a ∈R9 such that:

ak =
[

p̈>
r,k ṗ>

r,k p>
r,k

]>
(4.8)

This definition of the vectors will allow the required references to be passed to the vector func-
tion through the parameters vector, and eventually, the objective function in MATMPC will be
identical to the defined objective function in Eq. (3.14).

A summary of the sizes of the vectors and matrices that MATMPC will use is presented in Ta-
ble 4.3.

4.2.3 NMPC hybrid control implementation

The reference vector for the NMPC hybrid control is defined as:

hk
r e f =



03×1

03×1

03×1

ηr,k
ωr,k

ω̇r,k

03×1


(4.9)

And the vector function h(xk ,uk ) is defined as:

h(xk ,uk ) =



Sκ(pk −pr,k )
Sκ(ṗk − ṗr,k )
Sκ(p̈k − p̈r,k )

ηk
ωk

ω̇k

S̄κ(fc,k − fr,k )


(4.10)
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Table 4.4: MATMPC vetors sizes for NMPC hybrid control.

Symbol Size Meaning

nx 21 No. of states
nu 6 No. of controls
ny 21 No. of outputs ( and references)
ny N 21 No. of outputs at terminal stage
np 12 No. of parameters
nc 0 No. of general constraints
nbx 6 No. of bounds on states
nbu 6 No. of bounds on controls
nbx _i d x 13-18 indexes of bounded states
nbu_i d x 1-6 indexes of bounded controls

where the p̈r , ṗr , pr , fr will be passed to the NMPC controller as MATMPC parameters in the
vector a ∈R12 such that:

ak =
[

p̈>
r,k ṗ>

r,k p>
r,k f>r,k

]>
(4.11)

This definition of the vectors will allow the required references to be passed to the vector func-
tion h(xk ,uk ) through the parameters vector a , and eventually, the objective function in
MATMPC will be identical to the defined objective function in Eq. (3.22).

A summary of the sizes of the vectors and matrices that MATMPC will use is presented in Ta-
ble 4.4

4.3 NMPC parameters tuning

Choosing suitable NMPC parameters is vital for the feasibility of the OCP, and stability of the
system, therefore this section is dedicated to studying the effects of these parameters on the
stability and feasibility of the proposed controllers. The parameters that will be addressed are
sampling time Ts , shooting interval Tst , and number of shooting points N . It is worth noting
that the prediction horizon Th is determined by the number of shooting points and shooting
interval such that Th = N Tst .

4.3.1 Sampling time

In the field of aerial vehicles control, it is favourable to run the controller at relatively high
frequencies to match the fast nonlinear dynamics of these systems, especially the rotational
dynamics [44]. However, the frequency of optimization-based controllers is always constrained
by the time-efficiency of solving the optimization problem, which can increase the feasible
sampling time. Therefore, there is a clear relationship between the computational time that
is required to solve the NLP problem, denoted as Tsolv, and Ts , where Ts ≥ Tsolv such that the
optimization problem is solved and the optimal solution is available on time, at each time step.

A series of simulations have been conducted to estimate the average Tsolv for the three control
approaches, where the controllers are tested in various free-flight maneuvers (such as hovering
and square trajectory tracking), and interaction tasks (pushing and push-and-slide tasks). The
computational time of the NMPC solver during the interaction tasks is presented in Fig. 4.3,
where the preliminary NMPC parameters in all of these tests are: sampling time Ts = 5ms,
shooting interval Tst = 0.1, and number of shooting points N = 15. It can be noticed that the
average computational time is always smaller than 2ms, however, numerous outliers spread
between 2ms and 5ms, while other outliers are greater than 5ms (which are not shown in
Fig. 4.3), and they represent 0.32% of the sampled data. Furthermore, similar results were
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Figure 4.3: Box-plots for the computational time Tsolv of the respective NMPC controllers in a pushing
and push-and-slide (highlighted) task.

observed when N and Tst were varied to different combinations, which decouples the com-
putational time from the other parameters.

Nonetheless, the average Tsolv in all the experiments combined is equal to 1.85ms, and there-
fore the sampling time can be chosen to be within the range of 2ms and 5ms. Statistically, a
sampling rate of 5ms will satisfy the inequality Ts ≥ Tsolv in 99.68% of the sampled data, while
a sampling rate of 4ms will satisfy the aforementioned inequality in 99.1% of the sampled data.
After multiple iterations of tests and comparisons, a sampling time of 4ms was selected, which
is a trade-off between a higher sampling frequency, and a higher statistical guarantee of satis-
fying the time constraints.

However, there is no guarantee that at any time step kT , the solution of the OCP uk will be
ready before the next time step (k +1)T . These cases can be tackled in different approaches,
for instance, a zero-order hold model can be used to hold the solution of the previous time step
uk−1 when the new solution is not ready yet, and hence, the newest available solution is always
held as a control input. Another approach is to use the solution of the second shooting point
from the previous time step k − 1. Keeping in mind that the solution of the OCP at time kT
will be a trajectory of the control inputs for the future prediction horizon, denoted as k u?1,...,N ∈
Rnu×N , and in NMPC the optimal control input is chosen to be the control input of the first
shooting point uk = k u?1 . Hence, when the solution of the time step kT is not ready yet, the
control input can be set to uk = k−1u?2 .

The two proposed approaches are suboptimal and can be considered ad-hoc, but after testing
both of them, it was noted that they both handled the mentioned rare cases well, and no signif-
icant difference was observed in the response of the system when using either of them. Thus, a
clear superiority of one approach over the other was not be observed experimentally, therefore,
a zero-order hold approach was selected.

4.3.2 Prediction horizon

As mentioned before, the prediction horizon is determined by the shooting interval Tst , and
the number of shooting points N , therefore, it is important to analyse the effect of both of them
on the NMPC behaviour. To do that, a series of tests have been conducted where one of the two
parameters, Tst and N , is varied while the other parameters are constant, to observe the effects
of this parameter on the NMPC behaviour.
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(a) Ts = 4ms and N = 10

(b) Ts = 4ms and Tst = 0.1s

Figure 4.4: The normal force response during an identical pushing task with NMPC hybrid control and
a reference force of −10N . In (a) several shooting intervals Tst is compared, and in (b) several number
of shooting points N is compared.

For these tests, the NMPC hybrid control was chosen to simulate a pushing task against a rigid
static wall, where the reference of the normal force was chosen to be a step function of −10N .
While similar results were observed when smaller force references were commanded, the ef-
fects of the NMPC parameters were more clear to observe and visualize when the force refer-
ence was set to a high value like −10N .

The normal force fc,y response for the pushing task is presented in Fig. 4.4a, where Ts = 4ms,
N = 10, and the shooting interval is tested for the values 0.05s and 0.1s. It is noticed that more
oscillation is present when Tst = 0.05s, while the response and reference tracking is better and
smoother when Tst = 0.1s. While a clear interpretation of these results is out of the scope of this
thesis and was not thoroughly investigated, a shooting interval of 0.1s has been chosen by trial-
and-error, after analysing different combinations of Tst and N for the three control approaches,
and observing similar results to what was shown in Fig. 4.4a.

On the other hand, the effect of the number of shooting points has also been studied in a sim-
ilar manner. Where a pushing task has been tested with the NMPC hybrid control, and a ref-
erence force of −10N , such that Ts = 4ms, and Tst = 0.1, and N is varied between the values
{5,10,15}. The response of the normal force fc,y is plotted in Fig. 4.4b, where it is clear that a
larger number of shooting points leads to more aggressive behaviour, with a larger overshoot.
By trial-and-error, N = 10 was chosen after testing different combinations with the three con-
trol approaches, and observing similar results.
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It is worth noting that many combinations of N and Tst , that would render an identical pre-
diction horizon Th , were not feasible, and the OCP was not solvable considering the defined
constraints, such as the combination of N = 20, Tst = 0.05s. Moreover, other combinations
that would render different horizon was also not feasible, such as N = 20, Tst = 0.1s, or
N = 10, Tst = 0.15s.

4.4 Discussion

In the literature, a longer prediction horizon with a larger number of shooting points is usu-
ally associated with better performance [15; 16], however, this was not always the case in the
shown simulations, where it was noticed that when N > 5, an increase in the number of shoot-
ing points was associated with larger overshoots in the pushing task, this observation might
be understood and interpreted in the light of the contact force prediction model which was
introduced in Section 2.4. This model does not account for the collision dynamics, instead, it
depicts the steady-state contact after the initial collision, therefore, the observed overshoots
can be a result of the unmodeled dynamics. The effects of these dynamics would be less sig-
nificant when the prediction horizon is shorter, because the divergence between the predicted
states and the actual states is smaller in shorter prediction horizons. This interpretation is also
supported by the fact that these overshoots were not observed in free-flight, instead, they were
only observed during the physical interaction, and they were very clear when an aggressive
force reference should be tracked.

This result might also be interpreted as a bi-product of using RTI scheme, where a longer pre-
diction horizon will yield a less optimal solution using only one SQP iteration. However, both of
the aforementioned correlations should be analysed thoroughly before drawing conclusions.

At the end, the number of shooting points was chosen to be N = 10, where the shooting interval
time is set to Tst = 0.1s which renders a prediction horizon of Th = 1s and an internal NMPC
prediction frequency of 10H z. On the other hand, the NMPC controller runs at a frequency of
250H z with a sampling time of Ts = 4ms, and the average computation time to solve the NLP
problems Tsolv was found to be equal to 1.85ms, where it should be less than or equal to the
sampling time Ts , and the sampling time should be less than or equal to the shooting interval
time Tst , and finally, the latter should be less than or equal to the prediction horizon Th [18; 44],
which renders the following chain of inequalities:

Tsolv ≤ Ts ≤ Tst ≤ Th (4.12)

and the chosen parameters satisfy these inequalities.

While this chapter focused on the details of the NMPC implementation in MATLAB/Simulink,
and the NMPC parameters tuning and analysis, it did not present any simulation results to
validate the capabilities and limitations of the proposed controllers. This will be carried out in
the next chapter, where the NMPC controllers are validated through real-time simulations of
two APhI tasks.
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5 Gazebo Simulations

In this chapter, the proposed NMPC control approaches are further validated with real-time
simulations of interaction tasks in Gazebo simulation environment [45]. Gazebo is an open-
source real-time multi-robot simulator, where simulation worlds can be built around the sim-
ulated robots to test and develop the robots in different scenarios, tasks, and configurations.
Thanks to its robust physics engine, robots can physically interact with each other and with
other objects that are part of the simulated world.

Each control approach will be tested in two physical interaction tasks between the AR and a
rigid wall with flat surface, where the two tasks are: pushing, and push-and-slide. In the push-
ing task, the AR will interact with the wall by applying normal force to the contact surface, and
since the wall is static this pushing force will not change its position. This resembles tasks such
as data sampling for Non-Destructive Testing (NDT), where a certain sensor should be pushed
against the tested surface for a certain period of time to collect data. Comparatively, the push-
and-slide task includes two phases, where the first phase is similar to the pushing task, but the
second phase, sliding, includes sliding on the surface while maintaining contact with it. The
Push-and-slide task also resembles a wide variety of practical tasks, such as surface cleaning,
polishing, and continuous data sampling for NDT.

Testing the proposed control approaches in Gazebo will provide more insights into the capabil-
ities and limitations of the controllers in a relatively realistic simulation environment. Also, the
real-time software components that are used to connect the controller with the simulator are
the same components that are used to connect with the real robot, which moves the controllers
one more step towards real physical experiments.

This chapter will be organized as follows, first, the Gazebo simulation setup, models, and inter-
faces are introduced in Section 5.1. Then, the simulation results of the NMPC cascaded control
are presented in Section 5.2, while Section 5.3 includes the results of the NMPC impedance
control, and Section 5.4 presents the NMPC hybrid control results. In Section 5.5, the NMPC
response to constraints is validated, and finally, the simulation results are discussed in Sec-
tion 5.6.

5.1 Simulation setup

While the controller is still running in MATLAB/Simulink, the physical models of the robot and
the wall are defined and simulated in Gazebo. The simulation models of the robot and the
wall are defined in Simulation Description Format (SDF), which is an XML format developed
by Open Source Robotics Foundation as part of Gazebo simulator. SDF describes objects and
environments for robot simulators, where any object can be characterized as a series of links
connected by joints.
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Figure 5.1: Gazebo simulations block diagram.
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(a) Low friction wall model. (b) High friction wall model.

Figure 5.2: Pictures of FiberThex with the two wall models in Gazebo.

As in Chapter 4, the robot model is based on the aerial robot FiberThex with the physical pa-
rameters listed in Table 4.1. The robot is modelled as one rigid body, while the rotors thrust/-
torque generation is modelled using the open-source Gazebo plugin mrsim-gazebo, where each
rotor is specified by its position, orientation, thrust, and drag coefficients. The robot is also
equipped with a Force/Torque (F/T) sensor which is mounted on the end-effector.

In Gazebo, a collision between two rigid bodies is modelled based on Conservation of Momen-
tum, and therefore, the wall is modelled as a mechanically-grounded rigid body, i.e. it cannot be
moved or deformed under the influence of any force, and hence the contact model in Gazebo
is in line with the assumptions that was made while developing the prediction contact model
in Section 2.4. On the other hand, the friction forces of the contact surface is characterized by
its Coulomb friction coefficient µ. Two wall models have been developed, a low-friction wall
with µ= 0.1 shown in Fig. 5.2a, and a high-friction wall with µ= 1 shown in Fig. 5.2b, to test the
controllers in interaction scenarios with different friction conditions. When the robot and the
wall are in contact, the contact forces are measured using the aforementioned F/T sensor.

A detailed description of the MATLAB/Simulink interface with Gazebo is depicted in Fig. 5.3,
where GenoM31 modules and Robot Operating System (ROS) are used in the interface. The
motivation to use Genom3 modules is that the same modules will be used to communicate
with the real robot in a real physical experiment, which makes it easier to move from Gazebo
simulation to real experiments with minimal modifications to the software architecture.

The Rotorcraft Genom3 module takes the rotors velocities commands wu that are calculated
after integrating the control inputs u, and send them to the low-level ESCs that control the
rotors velocities. In simulation, those commands are passed to mrsim Genom3 module which
simulates the work of the ESCs, and passes the commands to Gazebo plugin mrsim-gazebo, that
calculates the corresponding generated forces and torques which will be applied to the robot
model in Gazebo. mrsim-gazebo plugin also exports the acceleration p̈ and angular velocity
ω of the robot from Gazebo, to simulate the measurements of the Inertial Measurement Unit
(IMU) in the real experiments.

The Optitrack Genom3 module exports the data of position p and orientation q, represented
by unit quaternions, from Gazebo through the Gazebo plugin optitrack-gazebo. In real experi-
ments, the Optitrack module will export the position and orientation data from a real Optitrack
motion capture system. After that, the measurements from the simulated IMU and the simu-
lated Optitrack are fused in the POM Genom3 module to estimate the full motion states of the

1The Generator of Modules GenoM is a tool to design real-time software architectures developed by CNRS-LAAS:
https://git.openrobots.org/projects/genom3
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Figure 5.3: Block diagram of GenoM3 and ROS interface between MATLAB/Simulink and Gazebo.

robot, i.e. position, orientation, velocity, and angular velocity p̂, q̂, ˆ̇p,ω̂. While the estimated
velocity of the rotors ŵ is exported from the Rotorcraft module.

The F/T sensor measures the contact forces (in the end-effector frame) fE ,c which are exported
from Gazebo to a ROS network through the Gazebo plugin Gazebo-ROS-FT-sensor, then the
measurements are received in MATLAB/Simulink using the ROS Toolbox in Simulink, through
a buffer ROS node, and they are properly transformed to the surface frame to acquire the state
fc.

Finally, it is worth noting that the NMPC parameters that have been selected in Section 4.3 were
tested and validated again in Gazebo. The simulation results showed similar results to those
presented in Section 4.3, therefore, the same NMPC parameters were used in all the simulations
in this chapter.

5.2 NMPC cascaded control results

This section will present the simulation results of the NMPC cascaded controller for two inter-
action tasks, a pushing task, and a push-and-slide task, against two wall models, a low friction
wall, and a high friction wall. In these simulations, the desired impedance behaviour is defined
by the matrices M = 1.5 I3, D = 10 I3, K = 6I3, while the weights of the different terms in the
objective function are listed in Table 5.1, where Qp,Qṗ,Qp̈ ∈ R3 are the weights of the position,
velocity and acceleration errors, respectively, and Qη,Qω,Qω̇ ∈R3 are the weights of the orien-
tation, angular velocity, and angular acceleration, respectively. These weights will be used for
all the simulations in this section.

Table 5.1: Weights of the objective function for NMPC cascaded control during the pushing and push-
and-slide simulations.

Weight Qp Qṗ Qp̈ Qη Qω Qω̇

Value 0.1I3 0.01I3 0I3 1I3 0.01I3 0I3

The results of the pushing task are shown in Fig. 5.4, where Fig. 5.4a represents the results of
pushing against a low friction wall, while Fig. 5.4b is the high friction wall results. The same
motion trajectory was used in the two experiments, and it can be noticed that the response is
almost identical in the two experiments regardless of the friction of the wall, mainly because
the AR is interacting with a constant point on the wall surface, and therefore, the end-effector
is not experiencing any significant friction forces.
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The position reference pr,y was set to reach 2.6m, however, the admittance controller in the
outer-loop modified the position reference pr,y and the velocity reference ṗr,y to match the
desired impedance behaviour. It is also noted that at the beginning of the interaction (high-
lighted section) between 9− 15s, there was bouncing against the wall that resulted in losing
contact multiple times as seen in fc,y plot, after that when the penetration was larger in the
surface, the interaction was maintained.

The push-and-slide task results are shown Fig. 5.5, where Fig. 5.5a represents the results of
interacting with a low friction wall, while Fig. 5.5b is the high friction wall results. Because of
the sliding action in this task, a clear difference can be noticed between the interaction with the
low and the high friction wall, where a smooth trajectory tracking was achieved when sliding on
the smooth surface as shown in the plot of px during the sliding phase (highlighted in green),
while the orientation tracking was not affected by the sliding action, because the friction forces
were not significant compared to the rough surface.

On the contrary, the high friction wall caused relatively significant friction forces as shown in
Fig. 5.5b, where the friction force fc,x obstructed the trajectory tracking of px , and caused large
deviations in the yaw angle ψ. Nonetheless, the NMPC motion controller was able to main-
tain stability, while exploiting the full-actuation of FiberThex, as shown in the plots of γ, to
simultaneously maintain a stable interaction and motion, especially attitude stability which
was prioritized as a response to its higher relative weight in Table 5.1 compared to the other
objectives. It is also noted that the reference position pr,x and velocity ṗr,x were modified by
the admittance controller, compared to the low friction wall case, corresponding to the higher
friction forces.

The plots of the control inputs γ̇ for the cascaded control simulations are shown in Fig. 5.6,
where the upper and lower limits are time-varying, and the controller keeps the control inputs
within the defined constraints.

5.3 NMPC impedance control results

Similar to the previous section, this section will present the simulation results of the NMPC
impedance controller for the two interaction tasks against the two wall models with low and
high friction surfaces. In these simulations, the desired impedance behaviour, and the motion
trajectories are identical to their counterparts from the NMPC cascaded control simulations
in the previous section. This symmetry between the two sets of simulations will allow a pre-
liminary comparison between the responses of the two controllers for the same task and envi-
ronment. Additionally, the weights of the different terms in the objective function are listed in
Table 5.2, where QeZ ∈ R3 is the weight of the impedance error, and these weights will be used
for all the simulations in this section.

Table 5.2: Weights of the objective function for NMPC impedance control during the pushing and push-
and-slide simulations.

Weight QeZ Qη Qω Qω̇

Value 0.1I3 1I3 0.01I3 0I3

The results of the pushing task are shown in Fig. 5.7, where Fig. 5.7a represents the results of
pushing against a low friction wall, while Fig. 5.7b is the high friction wall results. The two
simulations were commanded with the same motion trajectory, and it can be noticed that the
behaviour in the two experiments, regardless of the friction of the wall, is almost identical, as
noticed in the previous section. However, compared to the cascaded control simulations, it
is noted that the interaction forces are relatively smaller, even though the motion trajectory is
identical. This can be interpreted by the different NMPC objectives, because the objective of
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(a) Low friction wall. (b) High friction wall.

Figure 5.4: Plots of FiberThex performing a pushing task against a low (left) and a high friction wall
(right) with NMPC cascaded control. From top to bottom, the position, orientation, linear velocity, and
angular velocity tracking, actuators thrusts, and contact forces. The red highlight represents the pushing
phase.
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(a) Low friction wall. (b) High friction wall.

Figure 5.5: Plots of FiberThex performing a push-and-slide task against a low (left) and a high friction
wall (right) with NMPC cascaded control. From top to bottom, the position, orientation, linear velocity,
and angular velocity tracking, actuators thrusts, and contact forces. The red highlight represents the
pushing phase, while the green highlight represents the sliding phase.
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(a) Pushing against low friction wall. (b) Pushing against high friction wall.

(c) Push-and-slide on low friction wall. (d) Push-and-slide on high friction wall.

Figure 5.6: Plots of the control inputs for the NMPC cascaded control simulations.
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the NMPC cascaded control is to track the motion references, while the objective of the NMPC
impedance control is to track the desired dynamical behaviour, which generates different re-
sponses for the same trajectory. Additionally, the weights of the OCP play a major role in priori-
tizing certain tasks over others, and therefore different weights will render different behaviours.

The push-and-slide task results are shown in Fig. 5.8, where Fig. 5.8a represents the results of
interacting with a low friction wall, while Fig. 5.8b is the high friction wall results. As expected,
the sliding action in this task shows that a smooth trajectory tracking can be achieved when
sliding on the smooth surface as shown in the plot of px in the sliding phase, and the orientation
tracking was not affected by the sliding action, because the friction forces were not significant
compared to the high friction surface.

In contrast, when sliding on the rough surface, the high friction forces deteriorated the trajec-
tory tracking of px , as shown in Fig. 5.8b, where the friction force fc,x also caused large devia-
tions in the yaw angleψ. However, the NMPC controller was able to simultaneously maintain a
stable interaction and motion, especially attitude stability, while respecting the control inputs
γ̇ constraints as shown in Fig. 5.9.

5.4 NMPC hybrid control results

This section will present the simulation results of the NMPC hybrid controller in the two inter-
action tasks against the two wall models. In these simulations, a motion reference trajectory is
defined for the 6 DoFs (translation and rotational) which will be tracked during FM, and a force
reference fr,y is defined for the motion-constrained DoF during CM, which is the translational
y−axis in these simulations. The force reference is set to be a step function, to test the step
response of the force tracking. The weights of the different terms in the objective function are
listed in Table 5.3, where Qf ∈R3 are the weights of the force tracking errors. The same weights
will be used for all the simulations in this section.

Table 5.3: Weights of the objective function for NMPC hybrid control during the pushing and push-and-
slide simulations.

Weight Qp Qṗ Qp̈ Qη Qω Qω̇ Qf

Value 0.1I3 0.01I3 0I3 1I3 0.01I3 0I3 0.1I3

The results of the pushing task are shown in Fig. 5.10, where Fig. 5.10a represents the results
of pushing against a low friction wall, and Fig. 5.10b shows the high friction wall results. The
same motion and force references were used in the two experiments, and it can be noticed that
the response is almost identical in the two experiments regardless of the friction of the wall. As
noticed in the previous two sections, this similarity is expected as long as the direction of actu-
ators forces fW,a is normal to the contact surface, but if the generated forces have a component
in the lateral directions of the surface, this lateral component will cause a sliding effect, unless
there is sufficient friction to counteract this sliding.

In other words, if yS is a vector that is normal to the contact surface, it is favourable that the
vector fW,a is parallel to yS , to maintain a constant contact point without sliding. It is important
to mention that FiberThex is a fully-actuated AR, it is theoretically possible to generate a certain
fW,a regardless of AR orientation, however, it is recommended that the vector yE of the end-
effector frame should be parallel to yS , to minimize the contact torquesτc that will be generated
around the xB axis of the body-frame.

It can also be noted that during the interaction in CM (the highlighted part), the force reference
is activated and tracked in the yS direction only, while in FM the motion reference is tracked in
that direction, which is the essence of hybrid control.
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(a) Low friction wall. (b) High friction wall.

Figure 5.7: Plots of FiberThex performing a pushing task against a low (left) and a high friction wall
(right) with NMPC impedance control. From top to bottom, the position, orientation, linear velocity,
and angular velocity tracking, actuators thrusts, and contact forces. The red highlight represents the
pushing phase.
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(a) Low friction wall. (b) High friction wall.

Figure 5.8: Plots of FiberThex performing a push-and-slide task against a low (left) and a high friction
wall (right) with NMPC impedance control. From top to bottom, the position, orientation, linear veloc-
ity, and angular velocity tracking, actuators thrusts, and contact forces. The red highlight represents the
pushing phase, while the green highlight represents the sliding phase.
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(a) Pushing against low friction wall. (b) Pushing against high friction wall.

(c) Push-and-slide on low friction wall. (d) Push-and-slide on high friction wall.

Figure 5.9: Plots of the control inputs for the NMPC impedance control simulations.
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(a) Low friction wall. (b) High friction wall.

Figure 5.10: Plots of FiberThex performing a pushing task against a low (left) and a high friction wall
(right) with NMPC hybrid control, and a reference contact force of −4N . From top to bottom, the po-
sition, orientation, linear velocity, and angular velocity tracking, actuators thrusts, and contact force
tracking. The red highlight represents the pushing phase.

Ayham Alharbat University of Twente



CHAPTER 5. GAZEBO SIMULATIONS 45

(a) Low friction wall. (b) High friction wall.

Figure 5.11: Plots of FiberThex performing a push-and-slide task against a low (left) and a high friction
wall (right) with NMPC hybrid control, and a reference contact force of −4N . From top to bottom, the
position, orientation, linear velocity, and angular velocity tracking, actuators thrusts, and contact force
tracking. The red highlight represents the pushing phase, while the green highlight represents the sliding
phase.
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(a) Reference contact force of −3N . (b) Reference contact force of −2N .

Figure 5.12: Plots of FiberThex performing a push-and-slide task against a high friction wall with NMPC
hybrid control, and a reference contact force of −3N and −2N . From top to bottom, the position, orien-
tation, linear velocity, and angular velocity tracking, actuators thrusts, and contact force tracking. The
red highlight represents the pushing phase, while the green highlight represents the sliding phase.
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(a) Pushing against low friction wall. (b) Pushing against high friction wall.

(c) Push-and-slide on low friction wall. (d) Push-and-slide on high friction wall.

Figure 5.13: Plots of the control inputs for the NMPC hybrid control simulations with a reference force
of −4N .
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The push-and-slide task results are shown Fig. 5.11, where Fig. 5.11a represents the results of
sliding on a low friction wall, and the high friction wall results are shown in Fig. 5.11b. As
expected, sliding on a low friction surface is a much easier and smoother task than sliding on
a high friction surface. It can be seen that when sliding on a smooth surface, there are no
significant position or orientation tracking errors as shown in Fig. 5.11a, and the force tracking
performance is also acceptable.

On the contrary, sliding on the high friction wall was a major challenge for the AR, as it suffered
significant friction forces as shown in Fig. 5.5b, which deteriorated the trajectory tracking of
the position px , the yaw angle ψ, and the contact force fy . However, the controller was still
able to maintain stability during these harsh circumstances, while exploiting the full-actuation
of FiberThex, as shown in the plots of γ, to simultaneously maintain a stable interaction and
motion.

The behaviour of the AR during the sliding phase is greatly influenced by the reference contact
force fr,y , because the normal contact force will indirectly determine how large the friction
forces will be, since the friction forces are functions of the normal force, and therefore smaller
fr,y values will improve the behaviour during sliding. To further verify this, the simulation in
Fig. 5.11 is replicated with smaller reference forces, −3N in Fig. 5.12a and −2N in Fig. 5.12b,
to test the sliding response of the AR with relatively smaller friction forces. It can be seen that
the position and orientation tracking are improved when the force reference is smaller, while
the force tracking always suffers some oscillations during the sliding phase. It is also noted that
the controller was able to handle the stick-slip effect during the sliding phase, where the jerky
motion of px is clearly visible in Figs. 5.12a and 5.12b.

The control inputs γ̇ during the first 4 simulations are plotted in Fig. 5.13, where it is noted that
even under the very harsh conditions in the push-and-slide task on the high friction surface
with a reference force of −4N , shown in Fig. 5.13d, the controller respected the constraints,
and the control inputs were kept within the defined limits. Also, it can be noticed in the 4
sub-figures of Fig. 5.13 that during the initial collision with the surface ( 12s) almost all the
thrusts derivatives in the 4 presented simulations reached their upper or lower limits when the
controller started tracking the force reference. This saturation did not cause any noticeable
effect on the other states such as position or orientation, and it definitely did not destabilize
the system.

5.5 Constraints response analysis

As discussed before, one of the main advantages of using NMPC is its ability to optimize a per-
formance metric considering the defined constraints. The main constraints that were consid-
ered in this thesis were the actuators thrusts γ, and the thrusts derivatives γ̇, both of them can
be identified experimentally. In this section, the NMPC ability to handle constraints is further
validated by forcing the controller to operate at the limits of those constraints.

To do that, NMPC hybrid controller was chosen to perform a push-and-slide task on a high
friction surface, where the upper limits of actuators thrusts are set to less than 50% of its real
limits. This means that instead of 13N , the upper limits of the actuator’s thrust will be equal
to 6.1N , noting that the estimated hovering thrusts are equal to 5.3N . This task was chosen
because it shows clearly how the NMPC can priorities some tasks over the other, corresponding
to the tasks weights, while considering the system’s constraints. The AR will get in contact
with the wall, where it is commanded to track a reference force of −4N , and after that is it
commanded to move 1m in the positive x−axis, identical to the tests shown in Section 5.4 with
the same weights.

The results of this simulation are shown in Fig. 5.14, where it is noted that at the beginning
of the pushing phase (highlighted in red) two actuators thrusts (γ1&γ4) quickly saturate in an
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Figure 5.14: Plots of FiberThex performing a push-and-slide task against a high friction wall with NMPC
hybrid control, and a reference contact force of −4N , while using less than 50% of its actuators thrusts.
From top to bottom, the position, orientation tracking, actuators thrusts, and contact force tracking.
The red highlight represents the pushing phase, while the green highlight represents the sliding phase.

attempt to track the force reference, however, the AR is unable to reach the reference force
while keeping the attitude stable, therefore, it priorities the attitude stabilization over the force
tracking, because the attitude tracking weights are larger than those of the force tracking. It is
also noted that the NMPC controller has, to a certain limit, exploited the attitude to apply more
force to the surface, where controller tilted the AR towards the wall, φ ≈ −2, to generate more
force towards the normal direction of the wall.

At the beginning of the sliding phase (highlighted in green), γ2 quickly saturates, while γ1 is un-
saturated and γ5&γ6 are close to the upper limit. Still, the controller again chooses to stabilize
the attitude, which was disturbed by the friction-induced torques, over force, or lateral motion
tracking within the limits of the actuators.

Additionally, in the NMPC hybrid control push-and-slide simulation on the rough surface with
a reference force of −4N , shown in Fig. 5.10b, the actuator γ3 reached its lower limit multiple
times during the sliding phase, and its derivative γ̇3, shown in Fig. 5.13d, also reached its upper
and lower limit multiple times during the sliding phase , which clearly illustrates the NMPC
capability to comply with the system constraints in harsh and critical conditions.

5.6 Discussion

This chapter presented the results of the preliminary validation simulations for the three NMPC
controllers in two interaction tasks with different friction conditions. It was clear that different
control approaches render different behaviour even with identical trajectories and parameters,
the common advantage of the three controllers is their ability to cope with the constraints of
the system, and prioritize certain tasks over others corresponding to their relative weights.
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The variations in the behaviour of the controllers provide multiple options that correspond
to the needs of different interaction tasks, while the essence of the three control approaches
that are addressed in this thesis was preserved, their NMPC implementation provided opti-
mized solutions that are implicitly accounting for the defined constraints, while exploiting the
predictive nature of NMPC. Additionally, the system’s robustness towards external unmodelled
disturbances was validated through its response to the unmodelled friction forces, while sliding
on different surfaces, that the controller is agnostic about its condition.
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6 Conclusion

In this chapter, the thesis is concluded with an overview of the presented work, where the re-
search questions of the thesis are revisited, and an outlook for future work is presented.

6.1 Overview

In this section, the research questions that are proposed in Section 1.1.3 are reviewed, and a
summary of the thesis work and conclusions that are related to each question is presented.
The research questions that were addressed in this thesis are:

RQ1 How to exploit NMPC capabilities for APhI control?

After surveying the APhI control literature using NMPC, it was noted that all the contri-
butions are focused on the hybrid force/pose control approach, while other approaches
such as impedance control or admittance control with NMPC were not explored. This
thesis proposed, implemented, and validated three NMPC-based control approaches for
APhI in Chapter 3, which reflects the three main approaches in classical physical interac-
tion control, namely, direct control, and indirect control with impedance, or admittance
control as discussed in Chapter 2.

The main advantage of using NMPC for APhI control is the ability to implement the sys-
tem’s constraints in the controller design, where these constraints will be accounted for
when solving the optimization problem, while also considering the predicted future evo-
lution of the system using the prediction model. It was shown that the proposed con-
trollers can optimize the performance while satisfying the physical constraints of the
system, even when performing complicated tasks with unmodeled disturbances, very
restrictive constraints, and harsh environments. It was also shown that the NMPC con-
trollers are able to priorities certain tasks over the others, corresponding to the rela-
tive weight of each task, such as prioritizing the attitude stability over position tracking,
which is vital during APhI.

However, designing NMPC-based controllers is a major challenge from an implementa-
tion and validation stand-point, where the feasibility of the proposed controller cannot
be guaranteed, and it is determined for the most part by the NMPC parameters, such
as prediction horizon length, and sampling time. Tuning the NMPC parameters is not
a trivial task, and it is affected by many variants such as the task definition, prediction
model, states, and control inputs, and there is no systematic approach for tuning these
parameters, to the best of the author’s knowledge, but rather broad guidelines with trial-
and-error iterations, which can be a challenging and time-consuming task.

RQ2 How to choose an NMPC-based control approach for a specific task?

It was noticed that the proposed NMPC controllers have different characteristics that cor-
respond to the different objectives of controllers. For instance, since the admittance con-
troller in the NMPC cascaded control is responsible for the interaction control, the con-
troller response during the interaction was shaped by the admittance response, where
the controller tries to minimize the impedance error by modifying the motion trajectory.
For contact-based APhI that requires maintaining contact with the environment, this ad-
mittance behaviour might be unfavorable, because sometimes it leads to losing contact
with the environment or diverging from the initial trajectory corresponding to external
forces, such as friction. However, for other APhI tasks, such as physical interaction with
humans, this kind of compliant behaviour might be favourable from a safety and reli-
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ability point of view. Nonetheless, the ability to embed the AR physical and operational
constraints in the controller design will improve the reliability of the physical interaction.

In contrast, the NMPC impedance control takes a different approach to indirect inter-
action control, where the controller is always trying to minimize the error between the
AR dynamical behaviour and the desired behaviour, without modifying the motion tra-
jectory. Instead, the NMPC controller exploits the prediction model of the AR to min-
imize the impedance error during free-flight, while during contact, the controller also
exploits the contact force model for minimizing the error. When the interaction is with
an unknown environment, the contact force prediction model can not be included in the
NMPC prediction model, still, the controller was able to operate under such uncertain-
ties, which means that the NMPC impedance controller can imitate a reactive impedance
controller while complying with the constraints of the system. It was also noted that this
approach resulted in better contact maintenance, which can be essential for contact-
based APhI tasks.

Finally, it is clear that the NMPC hybrid control is suitable for the tasks that require ac-
curate tracking of motion and force trajectories during the physical interaction. The sep-
aration between the force tracking problem and the motion tracking problem allows for
prioritizing a certain task over the other, or to shape the response of each task individu-
ally. However, HFPC requires prior knowledge of the contact surface geometry and shape,
such that the constrained DoFs can be excluded from the motion tracking problem dur-
ing the APhI. While this requirement can be easily satisfied for some tasks, such as inter-
acting with simple surfaces of uniform geometry, it might be restrictive to others where
there are uncertainties about the environment.

RQ3 Can NMPC be combined with Admittance control to create a “Constrained Admittance
Control”?

It was shown that in a cascaded structure, admittance control can be combined with
a trajectory tracking NMPC controller, where the admittance controller will control the
APhI. In this architecture, a compliant behaviour can be achieved during the interaction,
and constraints can be defined to satisfy physical, operational, or safety limits. Another
advantage of this approach is that it does not require a prediction model for the environ-
ment because of the reactive nature of the admittance controller, which means that the
system can interact with unknown environments.

6.2 Future work

This line of work can be extended and developed in many aspects, such as:

Experimental validation of the control approaches

Validation of the proposed control approaches through an experimental campaign will provide
more realistic insights into the capabilities and limitations of these control approaches in the
real world.

Contact prediction

Currently, switching from one contact mode to another is dependent on feedback, and there-
fore it is a reactive action that cannot be predicted in the simulated future horizon in NMPC. If
the position of the contact surface is known, either by visual feedback from an onboard cam-
era, or from a priori knowledge, contact can be predicted internally, and therefore transitioning
from free-flight to interaction can be better regulated and controlled.
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Momentum-based contact force prediction model

It was noticed during the simulations that the contact force prediction model, which ignores
the collision dynamics and models the steady-state interaction only, affects the AR behaviour
during the initial collision phase of the interaction because of the unmodelled dynamics. A
more descriptive contact model that takes into account these dynamics can improve the per-
formance during that phase.

Friction prediction models

So far, the contact forces model that is included in the NMPC prediction model was for the
normal force only, while the friction forces that are experienced during sliding on a surface
are not modelled in the prediction model of the controller, and they are treated as external
disturbances that the system should coup with. However, a friction model can be developed
and included in the prediction model, and therefore benefiting from the NMPC prediction to
optimize the interaction task.

Disturbance observer

During real experiments, the unmodelled dynamics might cause the predictive states and the
real states to diverge quickly, which can destabilize the system. One solution for that is to imple-
ment a disturbance observer that can estimate the external disturbances that might be caused
by the unmodelled dynamics, or other external sources, such as wind. The interaction forces
and torques can be separated from the external disturbances using force feedback from a force
sensor.

Online model learning/adaptation

The parameters of the prediction model that is implemented in each NMPC design are con-
stant, and they are determined a priori. However, these parameters can be estimated and up-
dated online, so that the controller can deal with adapt to the change of these parameters on-
line, or get a better estimate of these parameters to minimize the uncertainty and the deviation
between the prediction model and the actual physical system. Also, different models can be
used to describe the normal and friction forces, and the parameters of these models can also
be learned/updated online.

Admittance-based NMPC

An NMPC cascaded control was proposed in this thesis as an admittance-based interaction
control with NMPC. However, an interesting idea is to embed the admittance controller in the
NMPC which will allow the admittance controller to benefit from the advantages of NMPC,
such as prediction and constraints, while maintaining the admittance control properties which
are desirable in some APhI tasks, such as interaction with humans.

Transition to unit quaternions

While the Euler angles are suitable for the interaction scenarios that are considered in this the-
sis, they are not suitable for a global definition of the attitude. Therefore, it is better to abandon
Euler angles representation and transition to a unit quaternion representation.

Implementation of interaction constraints

One of the main advantages of using NMPC is its ability to comply with system constraints and
optimize the control action to achieve an objective while respecting the defined constraints.
However, this advantage has not been fully explored during this thesis, and therefore, con-
straints can be defined on the interaction behaviour to regulate it to a certain desirable be-
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haviour. These constraints can be defined to solve some of the common problems such as the
unintended loss of contact.

Interaction with complex surfaces

The interaction tasks presented in this thesis were limited to simple flat structures which is a
common assumption in the physical interaction control field. However, the ability to interact
with non-flat surfaces with complex geometries is very intriguing for many practical applica-
tions, and should be explored.
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A Brief introduction to Model Predictive Control

This chapter is dedicated to introduce the reader to the basic concepts of MPC.

A.1 Background

MPC refers to a family of control methods which share a common framework, in which a dy-
namical model of the plant is used to find the optimal control signal that would minimize a cost
function, and hence maximizing certain performance metric(s) [46]. The general structure of a
system that is controlled by MPC can be seen in Fig. A.1. Where at each time step k :

1. The states (outputs) of the plant x(kT ) are measured (estimated) from the actual plant at
time kT .

2. MPC will solve the OCP to find the optimal control sequence {u0, ...,uN−1} over the future
prediction horizon of N steps. This step includes:

Algorithm 1: Solving optimization problem over a prediction horizon of N steps

Result: {u0, ...,uN−1}
h = 0;
xh = x(kT );
while h < N do

Solve OCP to find uh ;
Find the predicted state xh+1 from the plant model;
h++;

end

3. Only the first optimal control u0 is sent as control signal to the plant, while the others
{u1, ...,uN−1} are discarded, such that u(kT ) = u0

Plant Model

Optimizer Plant

Model Predictive
Control

Reference 
Signal

+

-

Future Errors

Predicted Outputs
Measured/estimated 

Outputs/States

Control Signal

Cost  
Function Constraints

Figure A.1: Basic MPC structure

A.2 Optimal Control Problem

The MPC’s OCP is usually characterized by a cost function (Eq. (A.1)), the prediction model
(Eqs. (A.2) and (A.3)), a set of constraints (Eqs. (A.5) to (A.7)), and the state feedback definition
(Eq. (A.8)). The OCP can be written as:
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min
u0,...,uN−1

J (u, x) (A.1)

s.t. xk+1 = f (xk ,uk ) (A.2)

yk = g (xk ,uk ) (A.3)

xmi n < xk < xmax (A.4)

umi n < uk < umax (A.5)

∆umi n <∆uk <∆umax (A.6)

ymi n < yk < ymax (A.7)

x0 = x(kT ) (A.8)

A.2.1 Cost Function

The cost function represents a performance metric(s) that MPC will try to minimize. For ex-
ample, in a position trajectory tracking task, the performance metric to be minimized is the
position error between the reference and the actual position. The cost function usually con-
sists of two main parts, namely, the running cost, and the terminal cost.

The terminal cost represents the cost at the end of the optimization horizon. In the example of
position trajectory tracking task, the terminal cost would depend on the error at the end of the
horizon, i.e. at the final step N . On the other hand, the running cost is the summation of the
certain costs at each optimization step in the horizon except the final step, i.e. [0, . . . , N −1].

An example of a standard weighted quadratic cost function is:

J (u, x) = ||T (yN − r (t ))||22 +
N−1∑
h=0

||Q(yh − r (t ))||22 +||Ruh ||22 (A.9)

where:

• r (t ) is the reference signal at time t

• h is the simulated time step in the future horizon [0, N −1]

• yh is the predicted output at the simulated time step (hT )

• uh is the optimal control signal at the simulated time step (hT )

• ||a||2 is the euclidean norm of vector a ∈Rn , such that: ||a||2 =
√

a2
1 +·· ·+a2

n

• T,Q,R º 0 are the weights matrices which are all positive semi-definite

A.2.2 Prediction Model

Since the prediction model will be used to optimize the control inputs, it is essential that the
model capture the dynamic behaviour of the plant while also keeping it simple so that it can
be used efficiently in online control. Needless to say that the system evolution prediction is as
precise as the prediction model, which raises a potential trade-off for complex systems, where
a detailed model will increase the required time for solving the OCP, limiting the sampling rate,
and the prediction horizon, and on the other hand, the prediction model should capture the
main characteristics of the system such that MPC can predict the systems evolution. Addition-
ally, a complicated prediction model might affect the feasibility of the OCP, and therefore the
solver might not converge to a solution. State-space models are usually used to represent the
prediction models since most toolboxes are designed to use them, and the model should be
linear, or linearized, in case of a nonlinear system.
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A.2.3 Constraints

One of the great advantages of using MPC is the ability to define constraints on the controlled
variables (Plant output), or the control signal. Such constraints might be derived from phys-
ical limitation (e.g. actuators limits), or from a performance tuning point of view; where a
desired behaviour can be enforced by these constraints (e.g. keeping a mobile robot inside a
safe workspace), they can be constants, time-varying, or state-dependant.

The constraints will be considered while solving the OCP to find the optimal control action
within the defined limits. This is a much better approach than clipping (saturating) the control
signal. The latter approach might destabilize the system because it breaks the feedback loop
continuity, while MPC can find a suitable control action to control the system [47] within the
respective constraints, if it is feasible.

A.3 Nonlinear Model Predective Control

Thanks to recent developments in optimal control algorithms, and the increasingly improv-
ing computational power of embedded control computers, nonlinear prediction models of fast
dynamics nonlinear systems can be implemented in MPC for real time applications. This vari-
ant of MPC can be called NMPC, where the prediction model in Eqs. (A.2) and (A.3), can be
a nonlinear model, and the constraints in Eqs. (A.4) to (A.7) can also be nonlinear. The main
advantage of using NMPC over MPC is that NMPC explicitly treats the nonlinear dynamics and
constraints compared to MPC where linear approximations are used.
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B Mathematical background

B.1 Operators

B.1.1 × operator

u =
ux

uy

uz

 (B.1)

u× =
 0 −uz uy

uz 0 −ux

−uy ux 0

 (B.2)

B.1.2 ∨ operator

A =
 0 −az ay

az 0 −ax

−ay ax 0

 (B.3)

A∨ =
ax

ay

az

 (B.4)

B.1.3 Hamilton product of quaternions ⊗
The Hamilton product of two unit quaternions, q and p , is defined as:

q⊗p =


qw

qx

qy

qz

⊗


pw

px

py

pz

=


qw pw −qx px −qy py −qz pz

qw px +qx pw +qy pz −qz py

qw py −qx pz +qy pw +qz px

qw pz +qx py −qy px +qz pw

 (B.5)

B.1.4 Quaternion conjugate ∗
The conjugate of quaternion q , which is denoted as q∗ is defined as:

q∗ =


qw

qx

qy

qz


∗

=


qw

−qx

−qy

−qz

 (B.6)

B.1.5 Quaternion inverse

The inverse of quaternion q , which is denoted as q−1 is defined as:

q−1 = q∗

||q||2 = q∗(√
q2

w +q2
x +q2

y +q2
z

)2 (B.7)
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C MATMPC Implementation

MATMPC is a MATLAB-based NMPC tool where the OCP is transcribed by multiple shooting
and the resulting NLP problem is solved by Sequential Quadratic Programming (SQP) method.
MATMPC uses MATLAB code generators to write its routines in MATLAB C API and call them
at run-time through MEX functions.

In this appendix, a brief introduction to the standard definition of the NLP problem in
MATMPC and the main components of the implementation are presented. Understanding how
MATMPC defines the NLP problem is crucial to adapt that definition to the different NMPC
controllers that are designed in this thesis. However, the details of MATMPC internals are out
of the scope of this thesis, and the interested reader is referred to [38].

C.1 Standard problem definition

The MATMPC standard NLP problem is defined as:

min
xk ,uk

1

2

N−1∑
k=0

d(h(xk ,uk )−hk
r e f )Wk +

1

2
dN (hN (xN )−hN

r e f )WN

s.t . x0 = x̂0,

xk+1 =φk (xk ,uk ), k = 0,1, . . . , N −1,

xk ≤ xk ≤ xk , k = 0,1, . . . , N ,

uk ≤ uk ≤ uk , k = 0,1, . . . , N −1

r k ≤ rk (xk ,uk ) ≤ r k , k = 0,1, . . . , N −1,

r N ≤ rN (xN ) ≤ r N ,

(C.1)

where h : Rnx ×Rnu → Rny ,hN : Rnx → RnyN are vector functions of state and control (x,u), with
corresponding references hk

r e f and hN
r e f . Note that h,hN can be nonlinear and nonconvex. The

outer objective functions d : Rny → R,dN : RnyN → R are assumed convex, e.g. linear sum or
quadratic. Wk ,WN are weights for each term in d for stage k. x̂0 is the measurement of the
current state. The constraints functions r (xk ,uk ) : Rnx ×Rnu → Rnc and r (xN ) : Rnx → RncN can
be linear or nonlinear, with lower and upper bound r k ,r k .

C.2 System dynamics

To adapt any NLP problem to this definition, the states x ∈Rnx and control input u ∈Rnu vectors
should be defined. Then, the dynamical model of the system should be defined in the map
functionφk (xk ,uk ).

C.3 Outer objective function

The outer objective functions d(•),dN (•) in this thesis are always chosen to be quadratic
weighted sum, such that:

d(•) = 0.5∗ (h(xk ,uk )−hk
r e f )>∗diag(W)∗ (h(xk ,uk )−hk

r e f ) (C.2)

dN (•) = 0.5∗ (hN (xN )−hN
r e f )>∗diag(WN )∗ (hN (xN )−hN

r e f ) (C.3)

where diag(•) is the diagonal matrix of the vector •.

C.4 Inner objective function, references and parameters

The definition of the reference vectors hk
r e f ,hN

r e f and vector functions h(xk ,uk ),hN (xN ) de-
pends on the objective function definition. For example, for a states trajectory tracking ob-
jective function (states− references), the states references can be simply passed to MATMPC
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Table C.1: MATMPC sizes symbols

Symbol Meaning

nx No. of states
nu No. of controls
ny No. of outputs ( and references)
ny N No. of outputs at terminal stage
np No. of parameters
nc No. of general constraints
nbx No. of bounds on states
nbu No. of bounds on controls
nbx _i d x indexes of bounded states
nbu_i d x indexes of bounded controls

through the reference vectors hk
r e f ,hN

r e f and the corresponding states will be defined in the
vector functions h(xk ,uk ),hN (xN ) , and the end result will be (h(xk ,uk ) − hr e f ) → (states −
references).

However, when the objective does not fit to a simple definition of (states− references) (such as
the impedance error that was discussed in Section 3.3, where one error depends on multiple
states (p̈, ṗ,p), references (p̈r , ṗr ,pr ) and gains (M,D,K)), the objective should be implemented
in the vector functions h(xk ,uk ),hN (xN ) where the required references can be passed to the
vector functions in the parameters vector ak ∈ Rnp which is a standard MATMPC vector that
can be passed used to pass external variables to the NLP. This means that reference functions
hk

r e f ,hN
r e f will have zeros in the corresponding indices.

C.5 Example

For example, to implement the impedance error E q. (3.9) in MATMPC, after defining the ap-
propriate map function φk (xk ,uk ) and control input u ∈ Rnu vector, the states vector can be
defined as:

xk = [
p̈ ṗ p

]>
(C.4)

While the vector function h(xk ,uk ) ∈R3 is defined as:

h(xk ,ak ) = M(p̈r − p̈k )+D(ṗr − ṗk )+K(pr −pk )+ fc,k (C.5)

where the p̈r , ṗr , pr ∈ R3 will be passed to MATMPC in the parameters vector ak ∈ R9 such
that:

ak = [
p̈r ṗr pr

]>
(C.6)

And the reference vector is defined as:

hk
r e f = 03×1 (C.7)

C.6 Vector sizes

A summary of the sizes of the vectors that should be defined for MATMPC at compile-time is
presented in Table C.1.

C.7 Run-time sizes

At run-time, some vectors should be passed to MATMPC for the entire future horizon N , there-
fore it will be passed as a matrix where each column is the vector corresponding to k-th step in
the future horizon. A summary of the run-time sizes in presented in table Table C.2.
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Table C.2: MATMPC run-time matrices sizes

Symbol Meaning Size

hr e f References [ny N ]
W Objective function weights [ny N ]
x States upper bound constraints [nbx N ]
x States lower bound constraints [nbx N ]
u Control input upper bound constraints [nbu N ]
u Control input lower bound constraints [nbu N ]
r General upper bound constraints [nc N ]
r General lower bound constraints [nc N ]
a Parameters [np N +1]
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