
State representation learning using robotic
priors in continuous action spaces for

mobile robot navigation

 A.L. (Arnold) Bijman

MSC ASSIGNMENT

Committee:
prof. dr. ir. G.J.M. Krijnen

 N. Botteghi, MSc
dr. M. Poel

 August, 2020

040RaM2020
Robotics and Mechatronics

EEMathCS
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

ii
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

Arnold Bijman University of Twente

iii

Abstract

The recent advance of reinforcement learning algorithms has shown that these algorithms are
able to solve complex problems. One of these complex problems is the problem of mobile
robot navigation. Mobile robot navigation can be highly complex and diverse. To navigate
environments, mobile robots must often rely on generic sensors like cameras or lidar sensors.
These sensors provide high dimensional data. Using this high dimensional data directly in end-
to-end reinforcement learning can be challenging, as this typically requires large amounts of
data to learn a task. This is especially problematic in the context of robotics, as acquiring this
data can be expensive and time consuming. State representation learning aims to map the high
dimensional data from sensors to a low dimensional state space to reduce training time and the
required data.

Various methods of learning a low dimensional state representation have been proposed in
literature. One method is to use prior knowledge to learn such a representation. This prior
knowledge is encoded using loss functions, called robotic priors, which can be used to train
an encoder network, implemented using an artificial neural network. This work is focused on
mobile robot navigation, where a robot learns to navigate an environment. Previous work from
(24) and (11) that has used robotic priors to learn a state representation for the purpose of
mobile robot navigation has used discrete actions. This work expands this into a continuous
action setting.

The work is done using the Gazebo simulator, in which confined environments are build. A
differential drive mobile robot is used for the navigation task. The mobile robot has a camera
and a 360-degree lidar sensor to observe its environment. The Gazebo simulator is coupled
with python code using ROS middleware. The state representation learning algorithm and the
reinforcement learning algorithm are implemented in python using tensorflow. The used rein-
forcement learning algorithm is DDPG, as this can work with continuous actions and is sample
efficient.

To learn a state representation using robotic priors in a continuous action setting, adaptations
to these robotic priors needed to be made. This work has shown two ways these robotic priors
can be adapted to work with continuous actions. It was shown that these priors can be used to
learn a state representation that allows the DDPG algorithm to navigate various environments
successfully. Furthermore, the adapted priors are easier to implement compared to the priors
introduced in literature and did not require extensive tuning. It is shown that the robotic priors
can be used to learn a state representation across a range of simulation environments.

To extend the generality of the state representation learning using robotic priors framework,
learning the state representation using robotic priors was extended to learn a recurrent state
representation. Environments can be non-markovian, i.e. not all observations can be uniquely
mapped to the state of the environment. To make the problem markovian, such that it can be
solved using reinforcement learning, memory can be added. The work of (36) has introduced
recurrent state representation learning using robotic priors. To train the encoder network, this
work has relied on ground truth data. In this work it was shown that the previously used priors
are sufficient to learn a recurrent state representation.

Robotics and Mechatronics Arnold Bijman

iv
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

Arnold Bijman University of Twente

v

Acknowledgements

I would like to take this opportunity to thank all the people who have helped me to get to this
point.

First of all, I want to thank my daily supervisor, Nicolo Botteghi. Nicolo has been brilliant to
collaborate with. He has been very supportive throughout the whole process and was always
willing to make time. Whenever I hit a hurdle, he was able to provide clear insight to help me
along. His enthusiasm and passion have helped to push me to achieve more. I am thankful for
the opportunity he has given me and for his guidance.

I also want to thank the other members of my committee, prof.dr.ir. G.J.M. Krijnen and dr. M.
Poel. I thank them for taking the time to read and judge my work.

There are many people who have helped my get to this point, mentioning all of them would
be too elaborate. I would like to thank some people in particular. Firstly, I want to thank my
parents who have always supported me in any way they could. Their unwavering love and
support has meant so much to me. I would not have gotten here without their help and support.

Given the global circumstances, I have been working from home for the majority of this work.
I am grateful to my lovely wife for putting up with me. She has helped me get through the
challenging periods and has cheered me on tirelessly. Her help and support has helped me stay
sane and motivated. Finally, my thanks go to my cat Tobias for keeping me company.

Robotics and Mechatronics Arnold Bijman

vi
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

Arnold Bijman University of Twente

vii

Contents

1 Introduction 1

1.1 Introduction to the problem context . 1

1.2 Technical problem overview . 2

1.3 Project objectives and topics . 3

1.4 Report outline . 3

2 Background 4

2.1 Reinforcement learning . 4

2.2 State representation learning . 11

3 Analysis 15

3.1 Research aims . 15

3.2 System analysis . 16

3.3 Methodology . 23

3.4 Summary . 24

4 Design and implementation 26

4.1 Experimental design . 26

4.2 Algorithm Implementation . 29

4.3 Simulation setup . 42

4.4 Summary . 42

5 Results and Discussion 43

5.1 Ground truth baseline . 43

5.2 RQ1 . 45

5.3 RQ2 . 53

5.4 Additional experiments . 59

5.5 Changing encoder architecture . 62

6 Conclusions and recommendations 67

6.1 Answering the research questions . 67

6.2 Recommendations for future work . 69

A Additional background information 71

A.1 Compression of observation . 71

A.2 Dynamics model . 71

B Additional figures 73

Robotics and Mechatronics Arnold Bijman

viii
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

C Additional environments 76

D Removing the conditions from priors 77

E Generalisation of the state representation 78

E.1 Dataset for testing generalising performance . 78

E.2 Principal component analysis . 78

E.3 Q-value analysis . 79

F Reaching multiple target locations 81

Bibliography 82

Arnold Bijman University of Twente

1

1 Introduction

1.1 Introduction to the problem context

Mobile robot navigation is an important topic of research. Over the years, many techniques for
navigation and localisation have been presented in literature (17). This work will be focused on
mobile robot navigation. Environments in which a robot may need to navigate can be highly
varied and complex. The problem of mobile robot navigation therefore is not trivial.

One promising approach towards mobile robot navigation is to make use of the recent ad-
vances in reinforcement learning. Reinforcement learning in recent years has tackled increas-
ingly complex problems (28), (45). Recent advances have been demonstrated largely in the
domain of computer games, with openAIs Dota2 (42) and google deepminds AlphaStar (8) and
AlphaZero (47). However, in the field of robotics there have also been promising developments.
OpenAI has demonstrated complex dexterity behaviour in a robotic hand that shows similar
dexterity to the human hand (41). Although most research has not focused on the problem of
mobile robot navigation specifically, these advances could potentially translate to the field of
mobile robot navigation.

To make mobile robot navigation more accessible, the robots should preferably make use of
generic sensors. This would reduce the cost of building such a mobile robot and can give them
a highly diverse functionality. These generic sensors often are cameras, which are cheap and
useful for many tasks, as well as lidar sensors to aid in the detection of obstacles. One challenge
with using cameras and lidar sensors on mobile robots is that these sensors often produce high
dimensional data. This high dimensional data slows down learning significantly, increasing
training time and hardware requirements for training a reinforcement learning policy.

One recent approach that has attempted to tackle this problem of high dimensionality in the
context of mobile navigation was proposed by (24). Where in the typical deep reinforcement
learning setting one neural network is used which maps one high dimensional input to one
output, this approach proposes to make use of two separate networks. Instead of mapping the
high dimensional input directly to the output, one network is used to map the high dimensional
input to a low dimensional state space. This mapping is called the state representation. This
low dimensional state space is then used in the reinforcement learning algorithm. Multiple
approaches for learning such a low dimensional representation have been proposed in litera-
ture (30). The aforementioned approach proposed to use prior knowledge based on physics to
train a representation in an unsupervised manner. This approach could reduce training time
for reinforcement learning policies significantly, as this method allows high dimensional obser-
vations to be mapped to a low dimensional state space. Once such a representation has been
trained for an environment, policies can be learned quickly in this environment. These physics
based heuristics are implemented by defining a loss function, and are called robotic priors.

This method, as well as other work which has expanded upon this concept (31) has been pro-
posed for a discrete action space, where at each time-step the algorithm can take one of a
limited set of predefined actions. In robotics, a continuous action space is often more inter-
esting, as most robotics tasks are continuous in nature. This project aims to test and optimise
the learning of a state representation using these robotic priors for a continuous action space.
The aim for this work is to allow for quicker learning of new policies and make learning more
efficient. In this work, new robotic priors are introduced that enable learning a state represen-
tation with a continuous action space.

Furthermore, in many real life problems, the environment in which the robot operates is not
fully observable. To be able to learn a policy in a partially observable environment, recurrent
neural networks can be used in combination with a reinforcement learning algorithm (19). (36)

Robotics and Mechatronics Arnold Bijman

2
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

has introduced the concept of recurrent state representation learning, where a recurrent neu-
ral network is used to learn a state representation, after which a non-recurrent reinforcement
learning algorithm can be used for learning the policy. This approach will be further explored
in this work.

The devised method should be able to be used as a drop-in replacement for the standard rein-
forcement learning framework. This means that the proposed method should be based on the
information which typically is available in standard reinforcement settings.

1.2 Technical problem overview

The concept of robotic prior based state representation learning was introduced by (24). While
different methods of learning a state representation can be found in literature, as summarised
in (30), the method of encoding prior knowledge about such an environment to learn the rep-
resentation space is still under-explored. This method is potentially more efficient than other
methods, as this method can achieve a very low dimensional state space representation. Re-
search on this topic (24) (31), (13), (11) has been mostly focused on the discrete action space
setting. Given that using continuous actions can give an advantage in robotics as this gives the
possibility of more fine grained and precise control, this is seen by the author to be a short-
coming. While there has been work which has used continuous actions, the work of (25) has
focused on continuous control tasks instead of navigation tasks. Therefore this work cannot be
easily transferred to other tasks, like mobile robot navigation.

The goal of learning a state representation is to significantly reduce the dimensionality of the
sensory input data to train reinforcement learning algorithms more efficiently. Cameras and
lidar sensors are common and generic sensor modalities that can be used in a wide range of
problems. The challenge of working with these sensor modalities is that these often produce
highly dimensional sensory data. This high dimensionality is a challenge for learning good
policies, as it takes more time to learn a good policy and requires more data when the input
is high dimensional. This can be especially problematic in the field of robotics, as obtaining
data can be a challenge in real world settings. (24) states that as a robot only need the infor-
mation relevant to the task, this information can be represented in a low dimensional space.
Furthermore, as robots operate in the physical world, and as such are governed by physics, so
should the learned state space be constrained by physics. Physics imposes constraints on how
the world changes and how the robot can interact with these. Using prior knowledge about
interactions with the environment allows to learn representations which are consistent with
physics. These priors further allow to learn the relevant information, while discarding infor-
mation that is not relevant for the task for which the representation is learned. The way this
prior knowledge is implemented is through loss functions, the loss is then minimised by opti-
mising the state representation network.

This work considers the case of mobile robot navigation. The mobile robot makes use of dif-
ferential drive for manoeuvring. The robot has a generic RGB camera at the front, which gives
a 62.2 degrees field of view. In addition to the camera, the robot also has a lidar sensor, which
has a 360 degrees field of view, and a maximum range of 3.5 meters.

Using only information which is typically available in the reinforcement learning setting, the
state representation will be learned. This work will focus on learning a state representation
when making use of a continuous action space. This makes learning such a representation
more challenging. To learn the state representation, experiences can be gathered from the en-
vironment.

This work will be done in a simulation environment. The gazebo simulator is used, the mobile
robot which is used in the simulation environment is the Turtlebot3 waffle pi mobile robot (4).

Arnold Bijman University of Twente

CHAPTER 1. INTRODUCTION 3

1.3 Project objectives and topics

This work will be focused on two main parts. The first part will be to evaluate the effective-
ness of the priors from literature in a continuous actions space and to optimise the learned
representation using these priors in the context of continuous actions. This part will adapt pri-
ors from literature to improve the learned state representation when using continuous actions.
The second part of this work will be focused on learning a state representation in the partially
observable setting. Many real life problems are partially observable, or non-markovian, and
thus learning a state representation in a partially observable setting is relevant for applying this
method to real world problems. While one work which learned a state representation (36) has
been investigating the partially observable setting when learning the state representation us-
ing robotic priors, their work made use of ground truth data to learn this representation. This
work will focus on finding a good state representation without using any data that would not be
available in the standard RL setting. Based on these objectives we can formulate two research
questions:

1 How can robotic priors be used to learn a state representation in a continuous action
space?

The set of robotic priors which were found to be most effective for learning a good state repre-
sentation will be used for learning the state representation in the partially observable setting.

2 To what extend can a fully observable state representation be learned using the adapted
priors to train a recurrent state representation encoder?

1.4 Report outline

This report will first expand on some of the theory which will be used in this work. Background
information will be given on the reinforcement learning method which is used. The different
methods for learning state representations will be further expanded upon and explained. Then
an analysis will be given on the different parts of the overall setup of the experiments. First the
state representation learning using robotic priors will be further introduced, and several differ-
ent priors will be discussed. Then different elements of the reinforcement learning algorithm
will be given and the connection between the different parts of the system will be explained. Af-
ter the analysis, the design and implementation of the system and the performed experiments
will be discussed. The results of the experiments will then be presented and analysed. Finally,
a conclusion is given and recommendations for further work are made.

Robotics and Mechatronics Arnold Bijman

4
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

2 Background

2.1 Reinforcement learning

Reinforcement learning deals with the problem of learning from trial-and-error. Unlike dy-
namic programming, RL does not assume full knowledge of the environment beforehand. In-
stead, for an RL agent to be able to learn it has to be able to interact with the environment, and
collect information from the environment. Where supervised learning problems learn from
some ground truth data which is provided to the algorithm, in the reinforcement learning set-
ting no such ground truth is available. Instead, learning is done using feedback signals from
the environment.

Generally speaking, the RL problem is a discrete time stochastic control process. The agent
interacts with its environment in discrete steps. The agent starts in a given state within the
environment s0 ∈ S. An initial observation ω0 ∈ Ω is gathered. At each time step t , the agent
takes an action at ∈ A. This action gives three consequences: the agent obtains reward rt ∈ R
from the environment, the next state st+1 and the next observation ωt+1 resulting from this
state. The agent can use these elements to learn a policy π. An overview of the RL setting can
be seen in Figure 2.1.

Figure 2.1: Interaction between agent and environment in the RL setting

2.1.1 Markovian environment

In the typical RL setting, the environment is considered to be Markovian, or fully observable.
The problem is Markovian if

• P(ωt+1|ωt , at) =P(ωt+1|ωt , at , ...,ω0, a0)

• P(rt |ωt , at) =P(rt |ωt , at , ...,ω0, a0)

The Markov property means that the next observation and reward only depend on the current
observation and the action the agent takes after this observation. If the Markov property holds,
the RL problem becomes a Markov Decision Process (MDP) (10). This means that the agent
is not interested in the history of observations and actions, as the current observation fully
summarises the state of the environment. This means that if the system is fully observable
ωt = st . The MDP is then defined by the tuple (S, A,T,R,γ), where S is the state space, A is the
action space, T is the state transition function between states, R is the reward function and γ is
the discount rate, with γ ∈ [0,1]. At each item step t , the probability of moving to st+1 is given
by the state transition function T (st , at , st+1) and the reward is given by R(st , at , st+1). The state
space S and the action space A can both be continuous or discrete.

Arnold Bijman University of Twente

CHAPTER 2. BACKGROUND 5

Tasks in the real world often are not fully observable, but instead are partially observable. In
the partially observable setting, the problem changes to a Partially Observable Markov Deci-
sion Process (POMDP) (20). In this setting, the observation ωt 6= st . The POMDP is defined
by the tuple (S, A,T,R,γ,Ω,O). Here, S is the state space, A the action space, T the state tran-
sition function, R the reward function and γ the discount rate as in the MDP setting. in the
POMDP setting the observation is not longer equal to the state, and thus the agent receives an
observation ω ∈Ω. This observation is generated from the underlying system state s according
to probability distribution ω ∼ O(s). An environment is partially observable when an obser-
vation is not sufficient to uniquely identify the underlying state. In the presented theory, the
Markovian property will be assumed. RL algorithms have no explicit means of dealing with
partially observability. This can hurt performance. To better estimate the underlying system
state, memory can be added in the form or a recurrent neural network to include past obser-
vations. Another approach to deal with a partially observable environment is to use multiple
observations.

2.1.2 Common concepts

There are some aspects of RL which are common across all methods. Here the terminology will
be explained.

Environment, agent, and goal

The RL problem deals with an agent with policy π, which is placed in an environment ξ. The
agent is given a goal gξ. The goal can both be static or dynamic. In case the goal is dynamic
the goal typically is part of the state. These goals can be very diverse, ranging from moving to
a target, to picking up an item, to solving a level of a game. The agent learns to reach the goal,
or solve the problem by making use of the reward function R(st , at , st+1). The environment or
task the agent has to solve can both be continuous and episodic. Continuous tasks do not stop
when a goal is reached, instead these tasks can go on forever. An example of a continuous task
is predicting stock action. Episodic tasks are more common. An example of episodic tasks are
the classic Atari games, where the task ends when the game level is finished or the agent dies.

Policy

The policy π defines the behaviour of the agent given the environment and the goal. The pol-
icy maps the observations from the environment to actions. These policies can come from a
lookup table or a simple function, where in other cases the policy can be more involved. These
policies may be either deterministic or stochastic. The policy will generally try to maximize the
cumulative reward the agent receives.

Reward function

The reward signal r allows the agent to learn a task. The reward signal thus specifies the goal
of the agent implicitly. Each time step, each step an agent has performed an action, the agent
receives a reward. This reward is a simple scalar value. The policy will be optimised to maximize
the total reward the agent will receive in the long run.

The reward may either be dense or sparse. In the dense reward setting, the agent receives a non
zero reward every time step. If the agent has to move to a target, this may be a reward based
on the distance of the agent to the target. In the sparse reward setting, the agent receives zero
reward most of the time, and -1 if it bumped into some wall or did a counterproductive action,
and +1 when it has reached the goal. A dense reward setting allows for quicker learning, as the
agent has a more straight forward way of getting more reward. In the sparse reward setting,
the agent has to first get a positive reward by accident, after which it can start learning. A
dense reward therefore often offers better and quicker convergence. However, when the task is

Robotics and Mechatronics Arnold Bijman

6
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

simple, like navigating to a goal, constructing this dense reward function can be quite straight
forward, in more complex environments or for more complex tasks, this is not so easy.

Value function

The reward indicates how good a state is in the immediate sense. The value function indicates
how good a state is in the long run (49). The value of the state is not just the reward it receives
at that state, but it is a sum of all discounted future rewards it expected to receive when in that
state, following policy π.

The goal of the agent is not to receive the maximum reward at each step, but instead to maxi-
mize the total reward. The value function evaluates the value of each state, which is roughly the
amount of reward the agent is expected to receive in the future starting from that state. Reward
therefore is the short term value of a state, where the value is rather the longer term value of
each state. Some states can then get low reward, but high value because the goal is very likely to
be reached from this state. The value function can be implemented using a table, but for larger
state spaces this becomes intractable. Therefore, the value function is typically implemented
using a neural network.

Using the intuition that reward now is often more valuable than the reward somewhere in the
future, the reward often is discounted by the discount rate γ. Equation 2.1 gives the value func-
tion. Here r is the reward, and K the terminal state.

V π(s) = E
[

K∑
k=0

γk rt+k |st = s,π

]
(2.1)

As estimating the value function from the rewards is not a straight forward task, the way in
which this value function is estimated is an essential part of many algorithms. The value func-
tion represents the value of a state, or the discounted sum of rewards the agent can expect.
Since the agent tries to find the policy π to maximize the sum of rewards, the agent must seek
the state with the highest value. The value function can thus be used to learn a task. The opti-
mal expected return is given by Equation 2.2

V ∗(s) = max
π∈Π

V π(s) (2.2)

On policy vs off policy

Reinforcement learning can both be on and off policy. Off policy RL algorithms are algorithms
which can learn their policy both with samples obtained from the current policy, as well as
samples from a different policy. This means in practice, that off policy algorithms can reuse
samples which are collected in an earlier state of training, typically by a different policy. This
reusing of older samples makes off policy algorithms more sample efficient, they require less
samples than on policy algorithms to converge. On policy algorithms on the other hand, can
only train their policy using samples collected by their current policy. Off policy algorithms
make use of experience replay to learn from past experiences.

Experience replay

A sequence of experiences often has high correlation between the samples. This high correla-
tion between the samples would negate the benefit of using batch updates. Furthermore, the
neural networks are prone to catastrophic forgetting (27), a property of neural networks to for-
get previously learned behaviours when optimised to learn new behaviours. When the network
is updated using sequential data from the agent, the network could forget values that occurred
early in the sequence when optimised only for the values late in the sequence. To make the
updates stable and prevent catastrophic forgetting, DQN introduced experience replay.

Arnold Bijman University of Twente

CHAPTER 2. BACKGROUND 7

When interacting with the environment, the agent collects experiences. Each experience can
be defined by the collected tuple (st , at ,rt+1, st+1). These experiences can be added to a replay
memory R with capacity N . This memory should span multiple episodes if the task is episodic.
When a new experience is recorded it can be added to memory. When the memory is filled up
to N , an earlier experience can be removed and updated with the new experience tuple. Each
update, a minibatch of experiences can be drawn e ∼ R, which can then be used to update the
network parameters θ. This allows for each experience to be used multiple times for updating
the network, which increases sample efficiency.

2.1.3 Most important RL methods

Value based methods

In addition to the value function, the action-value function can also be used. This function,
instead of representing the value of each state, it represents the value of each state-action pair.
Equation 2.3 gives the Q-value function.

Qπ(s, a) = E
[

K∑
k=0

γk rt+k |st = s, at = a,π

]
(2.3)

This Q-value function can also be written recursively using the Bellman equation:

Qπ(s, a) = ∑
s′∈S

T (s, a, s′)(R(s, a, s′)+γQπ(s′, a =π(s′)) (2.4)

Similarly to the value function, the optimal Q-value function can be defined as:

Q∗(s, a) = max
π∈Π

Qπ(s, a) (2.5)

The optimal policy can be directly obtained from Q∗(s, a):

π∗(s) = argmax
a∈A

Q∗(s, a) (2.6)

In the basic version of Q-learning, this Q-value function is implemented using a lookup table,
with an entry for each state-action pair. As shown in equation 2.6, the optimal policy can be
obtained by taking the action with the maximum Q-value. Equation 2.4 shows the equation for
getting the Q values, however this equation depends on transition function T (s, a, s′), which is
not available to the agent, as the agent does not have an underlying model of the environment.
Instead, the Q-values can be estimated recursively, using equation 2.7.

Qt (st , at) =Qt−1(st , at)+α(rt+1 +γmax
a

Qt−1(st+1, a)−Qt−1(st , at)) (2.7)

Hereα is the learning rate. The updating rule makes use of the Bellman equation. The intuition
behind this equation is the following. Given equation 2.3, the following holds:

Q∗(st , at) = E[
rt+1 +γQ∗(st+1, at+1)

]
(2.8)

This should hold for the Q-function, as the total discounted reward the agent receives from
state st should be equal to the reward in state t plus the total discounted reward from state
st+1. If this is not the case, the Q-function is not fully converged to its optimum value. As Q-
learning follows the simple greedy policy max

a
, this methods can be applied off-policy. Tabular

Q-learning is shown to converge, given enough samples for each state, and a discrete state-
action space (51).

When the state-action space is large, as it often is in more complex environments or with more
complex observations, using the tabular method becomes impractical. The big state-action

Robotics and Mechatronics Arnold Bijman

8
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

space will prevent effective training, as each state needs to be visited multiple times to reach the
optimal Q-value function. To deal with these huge state-action spaces, function approximators
can be used to approximate the Q-function instead of keeping all values in a lookup table. A
commonly used function approximator is an artificial neural network, which has shown state
of the art results. A popular algorithm using a neural network as function approximator is the
DQN algorithm (34).

Instead of estimating Q(s, a) directly, DQN makes use of a neural network with parameters θ,
now θ needs to be found such that Q(s, a;θ) converges to the optimal Q value. . Similarly to
tabular based Q-learning, the Bellman equation of 2.8 may be used for learning the Q(s, a;θ). A
loss function may be defined:

Li (θi) = E,
[
(yi −Q(s, a;θi))2] (2.9)

with yi = E′

[
r +γmax

a′ Q(s′, a′;θ−)|s, a

]
is the target value for iteration i . The target depends on

the network parameters θ and therefore change during training. This makes training prone to
instability. To make training more stable θ− is used, which is an older version of the network,
which, unlike the main network θ is updated only every k iterations, to θ− = θi . The network
parameters are updated using gradient descent, using the following gradient:

∇θi Li (θi) = E,

[(
r +γmax

a′ Q(s′, a′;θ−)−Q(s, a;θi)
)∇θi Q(s, a;θi)

]
(2.10)

In practice it is impractical to compute the full expectation. Instead, a batch of experiences
can be used. Although a single experience could be used for updating the network, using a
batch update, in which the individual experiences are averaged, reduces variance and allows
for larger updates.

In the basic Q-learning implementation, a lookup table is used with an entry for every state-
action pair. Using the state and action as input to the network would be impractical, as one
would have to compute the output of the network for every action for each state. Instead, the
state is used as input to the network, and the network has a separate output for each of the
actions. This can be seen demonstrated in Figure 2.3.

Figure 2.2: The basic architecture for Q-learning based on a lookup table (left) and DQN (right). The
DQN has one value output for each action, giving the value of that state-action pair

Policy gradient methods

This family of RL algorithms optimize a performance objective by finding a good policy. There
exists a group of RL algorithms that optimize the policy without using gradients, like evolu-
tionary methods (43), but using gradients is more common. Policy gradient methods can be
both deterministic and stochastic. Stochastic policy gradient methods do not output actions
directly, but instead output a probability distribution over the actions, from which one of the

Arnold Bijman University of Twente

CHAPTER 2. BACKGROUND 9

actions is selected according to this distribution. Deterministic policy gradient methods in-
stead are adapted to be able to deal with continuous actions. Some deterministic methods are
DDPG (48) and NFQCA (18). Policy gradient methods can be optimised without estimating a
value function, by means of Monte Carlo estimates. This means that instead of estimating the
value function, the empirical reward from a trajectory is used as value estimate. This method
is used in the REINFORCE algorithm (53). This Monte-Carlo estimate is an unbiased estimate,
as it uses the true sum of rewards the agent has received. It is however high variance as the
observed rewards can differ significantly between episodes. This method also requires a full
episode roll-out to collect the empirical reward, which makes this method slow to converge.

A more efficient way to estimate the value of states is to use the actor-critic architecture (29).
This architecture has two parts, an actor and a critic. The actor represents the policy, while the
critic represents the estimation of the value function. Typically, the actor and critic are repre-
sented using neural networks. The value function can be estimated similarly to value function
based methods. The actor, or policy can be updated similarly to pure policy based methods,
using the critic’s value function estimate instead of the Monte-Carlo style value estimation. The
actor-critic method can be used both in the on-policy and off-policy setting. In the off policy
method, the gradients are generally biased, as the policy used to collect the samples is gen-
erally different from the policy which is updated. Using data stored in memory makes these
off-policy methods more data efficient, but less stable as they have biased gradient updates.
On policy methods are less sample efficient, but more stable due to the unbiased gradient up-
dates. Typically, on policy actor-critic algorithms uses parallelization of agents to ensure the
agent experiences different parts of the environment at each given time step.

DDPG is a policy gradient method designed specifically to work with a continuous action space.
Other policy gradient methods can also be used in a continuous action space, these include
PPO (44), A2C and A3C (33). These methods are actor-critic methods, like DDPG. The critic in
the actor-critic methods learns the Q-value function of the environment and serves as a critic
for training the actor network. PPO, A2C and A3C are on policy methods, meaning that the ac-
tor and critic are trained only using data generated by the current policy. DDPG is an off policy
method, and makes use of a replay memory. This makes the DDPG algorithm more sample-
efficient, as the replay memory allows samples to be used for multiple updates. The DDPG al-
gorithm has been tuned for better performance (15). This however introduces more complexity
in the algorithm. The DDPG algorithm is considered to be relatively simple to implement, and
can in many cases reach a good performance.

Deep Deterministic Policy Gradients (DDPG)

The DDPG algorithm, as proposed by (32) is a deterministic policy gradient method. The DDPG
algorithm uses an actor-critic architecture, with one neural network representing the policy
µ and the other neural network representing the value function θ. The policy network out-
puts the actions directly instead of a distribution over the possible actions. This makes the
DDPG algorithm work with continuous action spaces. Similar to Q-learning, the DDPG algo-
rithm uses the Bellman equation to update the action-value function estimate. DDPG is an
off-policy algorithm, meaning that its policy can be trained using samples generated by a dif-
ferent policy. DDPG, like DQN makes use of experience replay to decorrelate the training sam-
ples and stabilise learning. Experiences are saved in a replay memory R, as experience tuples
(st , at ,rt+1, st+1).

In Q-learning, the value function approximation can be updated using the loss function in
equation 2.9. This equation makes use of the greedy policy π∗(s) = argmax

a∈A
Q∗(s, a). As the

actions are continuous instead of discrete like in Q-learning, using such a greedy policy would
require an optimization over the entire action space. Instead of using such an optimization, a
policy network is used to obtain the action.

Robotics and Mechatronics Arnold Bijman

10
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

Q-learning makes use of a target network Q(s, a;θ−), in the target estimation in the bellman
equation to make learning more stable. Instead of copying the Q network every k time steps,
the DDPG algorithm uses soft target network updates. This means that a copy of the actor and
critic networks is created, π(s;θ′µ) and Q(s, a;θ′Q) , and updated each training step. The values
of these target networks are then updated using polyak averaging: θt ar g et = ρθt ar g et + (1−ρ)θ.
ρ is a hyperparameter between 0 and 1. The loss for the value function estimate, from which
the gradient update can be computed, is be defined as:

Li (θ) = E,

[(
r +γQ(s′,π(s′;θ′π);θ′Q)−Q(s, a;θQ)

)2
]

(2.11)

The deterministic policy µ(s;θµ) is optimised to give the action which maximizes
Q(s,µ(s;θµ);θQ). Since the action space is continuous maximizing Q is problematic since it
requires a global maximisation at every step. Instead, the policy can be moved in the direction
of the gradient of Q, instead of globally maximizing Q. Since the Q function is differentiable, the
policy parameters can be updated using gradient ascent. The parameters θπ can be updated
using gradient ∇θπQ(s,π(s;θπ);θQ). Using the chain rule, this update becomes:

E
[∇θππ(s;θπ)∇aQ(s,π(s; a);θQ)|a=π(s;θπ)

]
(2.12)

A challenge when using a deterministic policy is exploration. When using a stochastic policy,
the policy will explore due to the stochastic nature of the policy. With a deterministic policy,
noise can be added to the output to aid exploration. The original work used the Ornstein-
Uhlenbeck process (50) to generate temporally correlated noise.

π′(st) =π(st ;θµ)+N (2.13)

Algorithm 1: Overview DDPG

Initialise actor and critic networks π(s;θπ) and Q(s, a;θQ) with random weights
Initialise target networks as: π(s;θ′π) ←π(s;θπ), Q(s, a;θ′Q) ←Q(s, a;θQ)
Initialise replay memory R
for episode in N do

Receive initial observation o0

Compute ŝ0 =φ(o0)
Initialise OU noise N

for t in max_steps do
Compute action at =π(ŝt |θπ)+N

Take action at and observe rt+1,ot+1

Compute ŝt+1 =φ(ot+1)
Save experience tuple (st , at ,rt+1, st+1) to R
Sample a minibatch with N experience tuples from R
Compute yi = ri+1 +γQ(ŝi+1,π(ŝi+1;θ′π);θ′Q)

Update critic network using lossL = 1/N
∑

i
(
yi −Q(ŝi , ai ;θ′Q)

)2

Update actor network according to
1/N

∑
i
(∇θππ(si ;θπ)∇aQ(si ,π(si ; a);θQ)|a=π(si ;θπ)

)
Update the weights of the target networks:
π(s;θ′π) ← ρπ(s;θπ)+ (1−ρ)π(s;θ′π)
Q(s, a;θ′Q) ← ρQ(s, a;θQ)+ (1−ρ)Q(s, a;θ′Q)

end
end

Arnold Bijman University of Twente

CHAPTER 2. BACKGROUND 11

2.2 State representation learning

As discussed in the previous section, current RL methods have shown to be able to learn im-
pressive behaviours from raw pixel inputs. Such high dimensional input however comes at
the cost of increased computational load and reduces the sample efficiency, taking more time
and samples to converge. While Atari games can be played with an input image size of 64x64
pixels (35), other tasks might require more detailed inputs. The number of input dimensions
then quickly increases, and with it the training time. With an increased input dimensional, the
model typically needs to be more complex to handle the larger inputs. This gives an increased
number of parameters to match to an increased number of inputs.

Often, the information present in the raw observation can be represented using a limited num-
ber of variables, which contains all information relevant for solving the task. Take a navigation
task in a known environment. When using a camera for observing the environment, with o pa-
rameters per observation, the agent can learn to navigate this environment using the camera.
But the only information the agent needs to successfully navigate the environment would be
its position and orientation. While more complex tasks would require an increased number of
inputs, the minimum number of dimensions d is usually d << o.

Traditionally, in robotics applications, the observation space is designed manually. While this
is often possible for easier tasks, when more complex tasks are considered, designing the obser-
vation space is non-trivial. Furthermore, when in simulation one often has access to the true
state. When executing a task in the real world, one must rely on sensory data. Most applications
must rely on generic sensors, like cameras or lidar sensors. These sensors produce high dimen-
sional data, which makes them very versatile, but also more difficult to work with. Extracting
the relevant information from this high dimensional sensory data is not a trivial endeavour.

Reinforcement learning algorithms have shown to work well when having only raw pixels as
input. The neural networks then develop an internal state representation, which represents
the relevant information in lower dimensionality. Learning such a representation is done ex-
plicitly by optimising for the task learned. Such a learned representation is not interpretable as
this is often formed within a neural network. When a new task is taught to the reinforcement
learning algorithm, even if this taks is within the same environment, the learned internal state
representation cannot be re-used but must be learned again for each task. For mobile robot
navigation specifically, this means that learning to reach a new position in the environment
means learning a new representation of the environment.

To make a learned representation more interpretable as well as reusable, state representation
learning (SRL) can be used. SRL aims at learning the underlying state from observations, in
an unsupervised or self-supervised manner. This observation state mapping is learned in the
early phase of training, and then the state is used as input to the RL algorithm. SRL aims at
learning this mapping such that the problem is a MDP, such that the states are not ambiguous.
To learn the observation-state mapping φ, all observations up to that state, the actions taken
and the reward received from the environment can be used, as described in equation 2.14.

ŝt =φ(o1:t , a1:t ,r1:t) (2.14)

While traditional RL learns the relevant state implicitly, from observations using only the re-
ward signal, SRL aims at learning the state representation more efficiently by making use of
additional information and constraints.

Learning this state is a non-trivial task, as the state should contain all information which is
relevant for the task. At the same time, the number of variables in the state must be kept at a
minimum as to keep the training of the agent efficient, so the representation should be able to
represent the state with a minimal number of variables. If the environment is fully observable,

Robotics and Mechatronics Arnold Bijman

12
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

e.g. markovian, then so should the state representation be, creating a unique state representa-
tion for each of the observations. Apart from being markovian, the representation should rep-
resent the true value of the state good enough to be able to make policy improvements based
on the representation. Furthermore, as it would require too much training time to collect all
possible states, the observation-state mapping should generalise to unseen states which are
similar to the previously seen states.

Several methods for learning a state representation have been developed over the years. Three
major approaches can be distinguished. These approaches will be discussed briefly.

The first approach is to use compression of observations. This approach uses methods for
compressing the observations to a lower dimensional observation space. This can be achieved
using a linear method like PCA (14), but is typically achieved using the auto-encoder framework
(21; 52; 22). The main downside of this approach is that the auto-encoder framework does
not distinguish between task relevant information and task irrelevant information. Therefore,
part of the learned state space is used to encode information which is not relevant for solving
the task. Furthermore, this framework is known for ignoring smaller objects present in the
observations, while these objects can be relevant for the task.

The second approach is to learn a dynamics model, which learns to model the dynamics of the
environment (7). One way to achieve this is to use the forward model, in which the next state
is estimated using the current state. The difference between the predicted next state and the
encoded next state is then minimised. The inverse model instead tries to predict the action at

which was taken to get from ŝt to ŝt+1. The forward and inverse models have been found to
be complementary and can be used in parallel to learn a good representation. In many works
these dynamics models are combined with the auto-encoder framework in order to improve
and stabilise the learned state representation. More information on both the compression of
information and dynamics model methods can be found in A.

Finally there is the method of using robotic priors for learning the state representation. This
method was devised specifically for the context of robotics, in which the changes in the envi-
ronment are confined by the laws of physics. This framework uses loss functions, which encode
some prior knowledge of the environment to learn the state representation. Unlike the com-
pression of observations and the dynamics model approaches, using robotic priors allows the
state representation to be learned using the reward signal from the environment. This allows
this method to learn a representation which encodes information that is relevant for the task,
and ignore information which is not relevant for the task. This is achieved by the fact that in-
formation which is relevant for solving the task is reflected in the reward signal. The robotic
prior approach assumes that all task relevant information can be contained in a few dimen-
sions. Reducing high dimensional observations to only a few dimensions allows for learning
the task more efficiently using reinforcement learning.

2.2.1 Learning a state representation using robotic priors

(24) introduced the concept of robotic priors for learning state representations. Unlike priors
in the context of Bayesian learning, priors do not refer to a probability distribution, but rather
a loss function representing some knowledge about the world or task. The goal of these priors
is to learn low dimensional representations from high dimensional input data in an efficient
manner. In their work, it was shown that using priors it was possible to learn a state represen-
tation which corresponds to physical properties. These priors exploit the fact that the robot acts
in the physical (simulated) world, and therefore it has to adhere to the laws of physics. While
the previously discussed methods learn state representations based on predictions about ei-
ther future or past values, or try to compress the observations, robotic priors make use of the
distance between two states to learn a consistent and coherent state representation.

Arnold Bijman University of Twente

CHAPTER 2. BACKGROUND 13

The priors introduced in the work of (24) all assume the Markovian property, such that the state
can be deduced from a single observation. The priors are thus used to learn the the mapping
from observations to states st = φ(ot). Learning the state representation is formulated as an
optimization problem, where the priors are implemented as loss functions. The network φ is
then trained using the combined loss from each prior. To compute the loss, data from the agent
interacting with the environment is used D = {ot , at ,rt }n

t=1, which consists of observations from
the sensors of the robot, the action the robot took, and its reward. As learning the state repre-
sentation is formulated as an optimization problem, the mapping is robust to counter exam-
ples for each prior, it simply learns the mapping which is most consistent with each prior. To
compute the loss, a Siamese network architecture is used, where two observations are passed
through two identical networks. These network share all parameters. The resulting states for
both observations will then be used for computing the loss on the prior. Data from the environ-
ment is collected either using an RL policy or by random exploration, and added to a memory
which saves the experiences.

Figure 2.3: The siamese network architecture which is used to compute the loss on the priors. All pa-
rameters are shared between the two models

Neural networks are typically trained using minibatches to reduce variance and therefore in-
crease stability. To compute the loss for each of the priors, a minibatch of collected experiences
is sampled from memory. For each of the priors which is used, the loss on this minibatch is
computed. The network is then trained using gradient descent to reduce this loss.

2.2.2 State of the art for learning a state representation using robotic priors

The topic of learning a suitable state representation using robotic priors has not been re-
searched extensively. The work of (24) has introduced the topic. In their workφ, with ŝt =φ(ot)
was constrained to be linear.

The first task on which their method was applied, was a simple navigation task. In this task,
a mobile robot had to navigate a small square environment to reach a target location. In this
small square environment, each of the walls had a different color. The mobile robot could
navigate forward, backward, left and right at each time step. Several different, discrete step
sizes could be chosen. The orientation of the robot was kept fixed, limiting the observation
space of the robot. The robot has a camera to obtain the observations, this camera has a field
of view of 300o . Using a top-down camera view instead of a camera on the mobile robot also
worked well.

The second environment on which their method was applied was a slot racing car challenge.
This challenge had two cars, of which only one was controlled. The observation showed the

Robotics and Mechatronics Arnold Bijman

14
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

entire environment, including the two cars. The learned state representation was able to ignore
the car which could not be controlled.

In a third experiment the simple square environment was revisited. This time, moving circles
and squares of a different color were added to the floor and the walls respectively. It was found
that these distracting shapes did not have a negative impact on the learned state representa-
tion.

In later work (25), the position-velocity encoder was introduced. This work focused on continu-
ous control tasks, in which the environment dynamics are most important. This work proposed
to compute a velocity state explicitly using finite differences between the position states. This
work introduced priors which could make use of this explicitly computed velocity state. using
this position-velocity encoder, the inverted pendulum, cart pole and ball in cup tasks could be
learned from pixel inputs. This work used a continuous action space. The three tasks on which
this method was evaluated are similar in structure, and it is not clear how this method would
transfer to other tasks.

(31) has expanded the use of robotic priors for learning a state representation into the domain
of robotic arms. In this work, a neural network is used to learn the state representation from
observations. These observations are images from a fixed camera. For this work the baxter
robot (1) is used. The agent is trained to push a button using the end-effector of one of the arms
of the robot. The other robot arm is used as a distractor object. It was found that this robot arm
could be ignored if it was moving, but when the distractor robot arm was kept still within an
episode, but at different positions each episode, the learned state representation suffered. By
introducing an additional prior, this could be mitigated.

The work of (36) has focused on learning a state representation in a partially observable setting.
For this work, a 3D maze environment was created. This environment was partially observable.
In order to learn a good state representation, a recurrent neural network was used to map the
ambiguous observations to unique states. To be able to learn a good representation, an addi-
tional prior was introduced.

2.2.3 Summary

This chapter has covered the relevant background information which is needed to read this
work. First, the reinforcement learning framework was introduced. This covered some of the
main concepts that come with the reinforcement learning framework. Concepts like the value
function, the policy and the reward function and experience replay were discussed in detail.
Then the basics on the value based methods and the policy gradient methods were introduced
and explained. The DDPG algorithm was then considered in more detail.

After introducing the reinforcement learning framework, the state representation learning
framework was introduced. This has covered the aim and motivation for learning such a state
representation. One method of learning a state representation is to use robotic priors. This
concept was introduced in more detail. Learning a state representation using robotic priors
entails training an encoder network using the robotic priors, which are defined by loss func-
tions. These loss functions encode some prior knowledge on how state space should be shaped,
based on laws of physics. A Siamese architecture is used for computing these losses.

Finally, the current state of the art for learning a state representation using robotic priors is
explained. This has covered the various works from literature that has used the concept of
robotic priors for learning a state representation.

Arnold Bijman University of Twente

15

3 Analysis

This work aims to improve upon the state of the art of learning a state representation using
robotic priors. The application to which this will be applied is mobile robot navigation. This
work will focus mainly on two separate areas. The first part of this work is focused on learning a
state representation using robotic priors in a continuous action space. The second part of this
work will expand learning a state representation to more difficult problems using a recurrent
state representation encoder network.

3.1 Research aims

Previous work on state representation learning using robotic priors has mostly been focused on
environments with a discrete action space. (36) has applied robotic priors for learning a state
representation in a continuous action space, however, this work used ground truth information
to learn the state representation. It is our goal to use only the information that is generally
present in the reinforcement learning setting. Another work which has used robotic priors with
a continuous action space is (25), however this work did not focus on the problem of mobile
robot navigation. It is our belief that further research into learning a state representation using
robotic priors in a continuous action setting can make applying reinforcement learning more
practical. Using a continuous action space allows for more fine-grained control. In the context
of robotics this is especially relevant, as many robotics problems are continuous in nature.

While the previously mentioned works have used robotic priors to learn a state representation
in a continuous action space, these works cannot be directly applied to the problem of mobile
robot navigation. The work by (24), which introduced the concept of robotic priors has used
these priors to perform mobile robot navigation. (11) has adapted these priors and expanded
the problem into more challenging environments. This inspires the first research question:

1 How can robotic priors be used to learn a state representation with a continuous action
space?

This raises the question if the priors which have been proposed in literature are able to learn a
good representation if these are adapted to a continuous actions space. Therefore the question:

1a Are the proposed priors from (24) and (11) able to learn a good representation when
using a continuous action space, when these are adapted to better work with continu-
ous actions?

The priors proposed in (24) and (11) are conditional, meaning that pairs of training points need
to be found that meet these conditions. As the action and reward space are both continuous, it
might be possible to construct priors which are fully continuous. This would remove the need
to find matching pairs of points for training. Finding these points can form a performance
bottleneck, and removing these conditions not only improve performance but will also make
the priors easier to implement. Getting rid of the conditions in the robotic priors can reduce
the number of hyper-parameters, which might make the robotic priors more robust to different
environments or easier to tune. Therefore the question:

1b Can the current sets of conditional priors be adapted to better make use of the contin-
uous nature of both the reward signal and action space by removing conditioning for
training pairs?

After evaluating different priors, these priors can be used to move into the more complex par-
tially observable setting. The work of (36) has considered state representation learning in a

Robotics and Mechatronics Arnold Bijman

16
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

partially observable setting. In their work they have not touched upon the originally proposed
priors, neither on adapted variants of these. It remains to be seen if these priors, or adaptations
of these can be made to work in a partially observable setting. Therefore the question:

2 To what extend can a recurrent state representation be learned using the adapted pri-
ors in a continuous action space?

This work will investigate the presented research questions, and attempt to answer these ques-
tions.

3.2 System analysis

This section will cover the main components of the overall system. First, learning the state
representation learning using robotic priors will be analysed. After this, a further analysis of
the used reinforcement learning method is given. Lastly, an analysis of the used mobile robot
is given.

3.2.1 State representation learning using robotic priors

As mentioned previously, learning the state representation means finding the mapping ŝt =
φ(ot) from high dimensional ot to a low dimensional ŝt . This low dimensional state ŝt should
contain information about the state of the environment, and needs to contain at only informa-
tion which is relevant for solving the task.

(24) introduced four robotic priors, which were expressed as a loss function, to optimise a state
encoder network φ. It was hypothesised that all task relevant information can be expressed in
a low dimensional state. This hypothesis is not encoded using a loss function, but is implicitly
assumed when setting the dimensionality of ŝt << ot . The priors that were introduced in this
work will be discussed below. Other priors have been proposed in literature, however only pri-
ors that are relevant for this work will be discussed. Finally, a set of priors, which were designed
by the author of this work will be presented.

Originally proposed priors

This section will cover the priors proposed in (24). Each prior will be discussed briefly, and the
associated loss function is introduced and analysed.

Temporal coherence prior
This prior assumes that many real world phenomena only change slowly over time. Objects
have inertia and therefore only change their velocity slowly as a result of external forces. This
prior assumes that other real world aspects to also change gradually. This prior favors state
representations that change gradually between observations. The state change is defined as
∆ŝt = ŝt+1 − ŝt . The temporal coherence loss is defined as:

Ltemp(D,φ) = E
[‖∆ŝt‖2] (3.1)

Proportionality Prior
This prior encourages the state representation to change in proportion to the action. This prior
results from the Newton’s second law of motion. It is assumed that this does not only hold
for the robot and interactions of the robot with other objects, but also for more abstract pro-
cesses. This prior encourages that the same action result in the same change in state. The loss
is defined as:

Lprop(D,φ) = E
[(‖∆ŝt2‖−‖∆ŝt1‖

)2
∣∣∣at1 = at2

]
(3.2)

Arnold Bijman University of Twente

CHAPTER 3. ANALYSIS 17

Causality Prior
This prior states that if the same action leads to a different reward in different states, these
situations must be different in some relevant manner. As such, these situations must not be
represented by the same state. It is stated that this prior favors state representations that in-
clude task relevant properties to distinguish these different situations (24).

Lcaus(D,φ) = E
[

e−‖ŝt2−ŝt1‖2
∣∣∣at1 = at2 ,rt1+1 6= rt2+1

]
(3.3)

Repeatability Prior
This prior states that the consequence of an action should be similar if the situation in which
the action is performed is similar. This and the causality prior are inspired by Newtons third
law of motion.

Lrep(D,φ) = E
[

e−‖ŝt2−ŝt1‖2‖∆ŝt2 −∆ŝt1‖2
∣∣∣at1 = at2

]
(3.4)

The computed losses for each of these priors can then be used to optimise a neural network
using gradient descent. The total loss is computed using: L = ω1Ltemp +ω2Lcaus +ω3LPr op +
ω3Lr ep . The weighting parameters ωx are used to change the relative importance of each of
the priors.

The proportionality prior and repeatabiltiy priors defined in 3.2 and 3.4 have the condition
at1 = at2 . The causality prior defined in 3.3 has the condition at1 = at2 ,rt1+1 6= rt2+1. These
conditions are enforced by finding pairs of training tuples which comply with these conditions.
Only pairs of training tuples which comply to the condition of the prior is used to compute the
loss on that prior and train the encoder network.

Exploiting the reward landscape for learning the state representation

In the work of (11), the priors proposed by (24) were adapted to better exploit information
present in the reward function. Two priors were adapted, the proportionality prior and the
repeatability prior. The new priors are:

Lprop(D,φ) = E
[(‖∆ŝt2‖−‖∆ŝt1‖

)2
∣∣∣|∆rt1 −∆rt2 | < κ

]
(3.5)

Lrep(D,φ) = E
[

e−‖ŝt2−ŝt1‖2‖∆ŝt2 −∆ŝt1‖2
∣∣∣|∆rt1 −∆rt2 | < κ

]
(3.6)

Where ∆rt = rt+1 − rt . As can be seen from the equations, the selection criterion has been
changed from equal actions to similar reward variation. This encourages the network to shape
the state representation such that pairs with similar reward variation have a similar magnitude
change in the state space.

State representation learning for continuous actions space

The priors introduced in (24) were designed with a discrete action space in mind. The work
of (36) has introduced state representation learning in the context of continuous actions. In
this work the temporal coherence prior is used as defined in 3.1. The proportionality prior is
adapted to better fit the continuous action space.

Lprop(D,φ) = E
[(‖∆ŝt‖−eβ‖at‖

)2
]

(3.7)

In their work, it was found that these priors alone were not sufficient to learn a good state
representation, and therefore, the landmark prior was introduced. This prior will be further in-
troduced later. Equation 3.7 shows a version of the proportionality prior which works between

Robotics and Mechatronics Arnold Bijman

18
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

consecutive states, whereas the proportionality prior in 3.2 works between all observed states,
given these comply with the condition.

The originally proposed priors as introduced by (24), have not been tested for a continuous
action space. These cannot be used directly in a continuous action space because there will be
very few training tuples where two actions are identical. Therefore, adaptations to these priors
are made to make these work in a continuous action space. The conditions of these priors need
to be relaxed to find more pairs of training tuples that comply with the conditions in the priors,
as actions will rarely be equal in a continuous action space. The equality condition at1 = at2

in the priors can be replaced with a similarity condition ‖at1 − at2‖ < ε. The causality prior in
3.3 adds the additional condition rt1+1 6= rt2+1 to the causality prior. This is designed for the
sparse reward setting, where many rewards are equal. In the dense reward setting, even states
that are very close in the environment will have different rewards. Therefore, this condition
should be changed to |rt1+1 − rt2+1| > µ in the dense reward setting. The temporal coherence
prior, as defined in equation 3.1 does not have any condition, and therefore does not need to
be adapted. The adapted priors then become:

Lprop(D,φ) = E
[(‖∆ŝt2‖−‖∆ŝt1‖

)2
∣∣∣‖at1 −at2‖ < ε

]
(3.8)

Lcaus(D,φ) = E
[

e−‖ŝt2−ŝt1‖2
∣∣∣‖at1 −at2‖ < ε, |rt1+1 − rt2+1| >µ

]
(3.9)

Lrep(D,φ) = E
[

e−‖ŝt2−ŝt1‖2‖∆ŝt2 −∆ŝt1‖2
∣∣∣‖at1 −at2‖ < ε

]
(3.10)

The priors introduced by (11), as defined in equations 3.5 and 3.6 can also be used in the con-
tinuous action setting. This can be combined with the causality prior defined in 3.9 and the
temporal coherence prior from 3.1.

3.2.2 Removing the conditions from the priors

The above presented priors have been conceived with a discrete action space in mind. These
priors use conditions, which match points st1 and st2 based on these conditions. While in the
discrete action space, the points which are matched based on the actions can be selected for
equal actions, in the continuous action space, these have to be selected based on similarity.
This introduces additional hyper-parameters which will need to be tuned to obtain a good state
representation. These hyper-parameters might also require different values for different envi-
ronments. This has the downside of introducing additional engineering effort. Furthermore,
these hyper-parameters add a discrete condition, while the action space is continuous. Finding
points which comply to these conditions also introduce additional computational complexity.
To better take advantage of the continuous nature of the action and reward spaces, these con-
ditions can be replaced by a continuous expression which increases or decreases the loss based
on the similarity of the actions or rewards in the training pair. These novel priors are the main
contribution of this work.

Temporal coherence prior
The temporal coherence prior did not have any conditions attached, only that this prior is used
on consecutive states in the sequence. When using continuous actions, the magnitude of the
action determines the distance between the two states. When the action taken is large, the
temporal coherence loss should be lower than when the taken action is small. This leads to the
following prior:

Ltemp(D,φ) = E
[(‖∆ŝt‖e−α‖at‖)2

]
(3.11)

Here αis a hyper-parameter which can be tuned to scale the state space.

Arnold Bijman University of Twente

CHAPTER 3. ANALYSIS 19

Proportionality prior
The proportionality prior encodes the heuristic that the difference in the state space should be
similar if the taken action is also similar. In the continuous action space, this could be inter-
preted such that the difference in the state space between consecutive states should be more
similar if a similar action is taken in the state st . As the difference between the actions taken
from both states is more different, the loss on this prior should be lower.

This lead to the following prior:

Lprop(D,φ) = E
[(‖∆ŝt2‖−‖∆ŝt1‖

)2e−β‖at1−at2‖2
]

(3.12)

The βis a hyper-parameter which can be tuned to control how similar the actions should be to
get a high loss.

Repeatability prior
This prior should give a high loss when a similar action is performed from a similar state, and
the resulting change in the state is not similar. Again, the condition that the actions performed
from both states should be similar can be replaced by a continuous component.

Lrep(D,φ) = E
[

e−‖ŝt2−ŝt1‖2‖∆ŝt2 −∆ŝt1‖2e−β‖at1−at2‖2
]

(3.13)

Causality prior
This prior encodes the heuristic that if the same action results in different rewards in different
states, these states should be different. The loss then should be higher if the actions are more
similar. Equally, the loss should be higher if the difference in the loss is larger. If the reward is
equal, the loss should be zero. This gives the following prior:

Lcaus(D,φ) = E
[

e−‖ŝt2−ŝt1‖2
e−β‖at1−at2‖2 |rt1+1 − rt2+1|

]
(3.14)

3.2.3 State representation learning in the partially observable setting

State representation learning has mostly been considered in the fully observable setting. In this
setting, each observation corresponds uniquely to a single state in the environment. In the par-
tially observable setting, an observation can correspond to several states. To make the problem
markovian, recurrent neural networks can be used. Recurrent neural nets have propagation of
information across time, allowing the network to learn temporal connections. This allows the
state to be identified based on a sequence of observations instead of a single observation. This
allows the state representation to be learned for a wider range of environments.

Landmark prior
Where all previous works have assumed a fully observable environment, (36) considered the
case of learning the state representation from observations in a partially observable environ-
ment. To make the problem markovian, memory was added to the encoder network φ by
means of an LSTM layer. In their work, the task of navigating a maze was considered. A new
prior was introduced, called the landmark prior. This prior uses a set R of l landmarks. For each
landmark sl , all states, for which the ground truth state is within a range of sl are selected. From
these points, k pairs (st1 , st2) are selected. These are selected by finding the k pairs for which
the true state is most similar. The states st1 and st2 must be from different episodes (trajecto-
ries). These k pairs are used to minimize the distance between sequences in the state space.
The landmarks are distributed evenly across the environment.

Llandmark(D,φ) = E
[
‖ŝt1 − ŝt2‖2

∣∣∣st1 ≈ st2 ≈ sl ; sl ∈ R
]

(3.15)

This Landmark prior makes use of ground truth data to match the underlying states st1 , st2

and landmark state sl . This work will investigate whether the continuous priors introduced

Robotics and Mechatronics Arnold Bijman

20
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

for the fully observable setting are sufficient to learn a good representation when in a partially
observable setting.

3.2.4 Hyper parameter analysis

This section will cover the relevant hyper parameters for the state representation learning
framework, using the robotic priors presented above. A short analysis of each of the hyper-
parameters will be given.

• Matching parameters: These parameters are used in the discrete priors for finding pairs
of observations for training.

– ε: Threshold for setting how similar actions should be. Determines the range of
actions on which the prior will work.

– κ: Threshold for how similar reward differences should be for the prior to work on
it.

– µ: Threshold for the minimum difference in reward for the causality prior.

• Prior parameters: These parameters are used in the continuous priors.

– α: Constant dictating how fast the loss of the temporal coherence prior goes down
with increased action magnitude.

– β: Constant determining how fast the loss decreases with increased difference in
actions.

• Prior weighting parametersω: The weighting parameters which weight up the individual
losses from each of the priors can be tuned to change the relative importance of each of
the priors.

3.2.5 Reinforcement learning method

The reinforcement algorithm used in this work is DDPG (48). The DDPG algorithm is designed
to work with a continuous action space, has a relative good sample efficiency as it is an off-
policy method. Furthermore, the DDPG algorithm is easy to implement. These reasons make
the DDPG algorithm a good method for this work.

As the DDPG algorithm can get stuck in a local optimum, noise can be added to the actions
to aid in exploration. A good exploration of the environment can help avoid local optima. For
the purpose of exploration of the environment, Ornstein-Uhlenbeck (OU) noise is added to
the actions. This is correlated noise, which helps with better exploration of the environment,
versus uncorrelated noise, as uncorrelated noise has zero mean.

The DDPG algorithm has several hyper-parameters which need to be tuned. These parameters
need to be tuned such that the algorithm works well and reliably. These hyper-parameters will
be introduced and explained further.

Neural network architecture
The neural network architecture of both the actor and the critic can be of crucial importance to
the performance of the algorithm. While many different architectures could be used, the fact
that in this work the input is a low dimensional state makes the design easier. Given that the
input is only a low dimensional state, using only fully connected layers is sufficient. To further
simplify the design, the network architectures of the actor and the critic can be set to be almost
the same, with only the output layer being different. The output layers of the actor and the
critic needs to be different, as the critic only has one output value, the Q value, and the actor
has as many outputs as the number of different outputs.

Arnold Bijman University of Twente

CHAPTER 3. ANALYSIS 21

Learning rate
The learning rateα is of high importance to the performance of any neural network. The learn-
ing rate which gives good performance depends on a number of factors. These factors include
the neural network architecture, the batch size with with the neural network is trained and the
optimization method with which the gradients are computed. The learning rate needs to be
set experimentally as no analytical methods are available for computing the learning rate. The
learning rate can be different for the actor and critic networks.

Discount rate
The discount rate γ determines how much the algorithm values the rewards in the current step
versus the rewards in future steps. This parameter controls how greedy the policy will be with
regards to obtaining rewards.

Batch size
The batch size is the number of points, which are sampled from the replay memory at random,
which is used for updating the network. The batch size influences the stability of the learning,
as well as the speed.

Limit on actions
The actions which can be taken by the actor network are limited to set parameters. The limit
can be different for each output of the actor network, as these outputs control separate prop-
erties of the robot.

Exploration policy
To aid with exploration, OU noise is added to the action, i.e. to the output of the actor network.
This sum of action and noise is then limited to the same limit as which the actions are limited
to the same limit as the output of the actor network.

Reward function
The reward function can be set to different functions. The reward can be based on different
metrics, a common metric is the euclidean distance between the robot and the target. The
reward function can be non-linear, an exponential function is commonly used to accelerate
the learning process.

Maximum number of steps
There is a maximum number of steps that can be taken within one episode. If the robot has not
collided with any wall or reached the target, the episode will end, and the environment will be
reset to the begin state.

The DDPG algorithm has the state as input. This state is computed by the state representation
network such that ŝt = φ(ot). The learned state should contain all information relevant for
solving the task, and should be unambiguous, as ambiguity will hamper the learning of a good
policy.

The actor and critic networks will be updated once for each time-step taken. The updates will
take place after an episode has ended. An episode ends once the agent has reached the target,
hit a wall or has reached the maximum number of steps for that episode.

3.2.6 Mobile robot analysis

The experiments for answering the research questions will be performed in a simulation envi-
ronment. The mobile robot of choice is the Turtlebot3 waffle pi (4), as shown in Figure 3.1

The Turtlebot mobile robot is chosen for several reasons. The first reason is that this mobile
robot features both a lidar and a camera sensor, which combined is a very versatile package.
These sensors can be used for many different tasks, and are well suited for the task of mobile
robot navigation. Furthermore, these sensors are both high dimensional, making these suit-
able for state representation learning. The Turtlebot3 is relatively affordable, making real world

Robotics and Mechatronics Arnold Bijman

22
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

Figure 3.1: The Turtlebot3 waffle pi mobile robot

experimentation or validation feasible. The Turtlebot3 is based on the ROS platform, and has
open source software available for communication and simulation. This makes the use and
implementation of this robot much easier. A model for the Gazebo simulation was already
available can be used unchanged in this work. Therefore, the Gazebo simulation environment
will be used for experimentation.

Robot control

The robot has two driven wheels to control the robot. Steering is done using differential drive.
Each wheel is controlled using a DYNAMIXEL actuator (3). The Turtlebot robot is controlled us-
ing velocity commands. These commands consist of a command for the translational velocity
and the rotational velocity. An internal controller then translates these velocity commands to
obtain the required velocities for each of the wheels, such that the required translational and ro-
tational velocity is achieved. This internal controller can sent the required velocities directly to
each wheel, as the DYNAMIXEL actuator has an internal controller to control the motor speed.
An overview of this control scheme can be seen Figure 3.2.

Instead of sending commands for the required translational and rotational velocities, one could
also directly control the speed of the wheels. This requires the reinforcement learning algo-
rithm to learn the kinematics of the robot. Although the kinematics are relatively simple, this
work is not focused on learning robot kinematics. As the internal controller can be used directly
without any further engineering cost, this is preferred.

Figure 3.2: Overview of the control structure

Sensor analysis

The Turtlebot waffle pi has two sensors which will be used for learning the state representation.
The first sensor which is used is a lidar sensor. The second is a RGB camera.

Arnold Bijman University of Twente

CHAPTER 3. ANALYSIS 23

The lidar sensor on the Turtlebot robot measures the distance between itself and obstacles.
There are two main elements to consider:

Range
The range of the laser dictates the maximum distance at which obstacles can be detected. This
is mainly dictated by limitations in the sensor, although this limit can be artificially lowered.

Lidar samples
The lidar sensor works in 360 degrees. The number of lidar samples is the number of measure-
ments taken in these 360 degrees. Having more measurements gives more information about
the shape and distance of obstacles. More measurements also means higher dimensional data.

The Turtlebot3 waffle pi makes use of the raspberry pi camera. The two main components of
this camera are:

Resolution
The resolution of the camera can be important for learning the state representation. A higher
resolution will allow for greater detail in the image. However, the higher resolution also means
a higher computational cost to run it through the network. A higher resolution image also
requires a more complex convolutional network to give the model increased capacity for ex-
ploiting these details.

Field of view
The field of view is an important aspect of the camera, especially in the context of state rep-
resentation learning. The field of view determines how much of the environment can be seen
in one observation. If more of the environment can be seen in one observation. This makes
learning a state representation easier.

3.3 Methodology

This work will be focused on two parts. The first part of this work will focus on learning the
state representation in a continuous action space. The second part of this work will be focused
on learning a state representation in a partially observable setting.

To perform the experiments, a simulation environment is used. This simulation environment
should mimic the real world. The Turtlebot mobile robot should be implemented into the sim-
ulation environment. The simulation environment should allow for easy interfacing with the
implemented state representation framework and RL algorithm.

The work will be performed in a simulation environment, which will model real world be-
haviour of the mobile robot. The robot has a camera and a lidar sensor, as mentioned pre-
viously. The model will be able to simulate the Turtlebot’s kinematics and dynamics. The sim-
ulation is implemented using Gazebo, an open-source robotics simulation platform. Gazebo
interfaces with ROS (5). As Gazebo is an established platform, there is open source code avail-
able which enables this interaction. The interface with ROS is used to control the robot and
retrieve observations from the robot. This can be done using OpenAI’s gym (40) and python.
This interface had already been set up, and had only to be adapted for this work. Many of the
visualisation tool had already been implemented, and could be used as-is.

The code for learning the state representation and the reinforcement learning algorithm is writ-
ten in python. Python has a wide choice of packages for machine learning purposes available.
The package used in this work for both the state representation learning method and the re-
inforcement learning algorithm are build using Tensorflow (6). The DDGP algorithm has been
implemented from scratch for this work. The state representation method was already avail-
able at the start of this work, but was made to work for a discrete action space. This code had to
be modified extensively to work for the purposes of this work. Further work had to be done to

Robotics and Mechatronics Arnold Bijman

24
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

implement a recurrent neural network, and integrate this into the state representation learning
framework.

For answering the research questions, the proposed state representation framework using the
robotics priors should be tested across different environments, as this gives a more robust eval-
uation of the proposed robotic priors. To evaluate the performance of the different sets of
robotics priors for learning the state representation, several evaluation metrics can be used.
These evaluation metrics will be used when these give more insight into the performance of
the state representation learning.

3.3.1 Evaluation metrics

The evaluation metrics that can be used for evaluating the performance of the state represen-
tation framework using the proposed robotic priors will laid out in this section.

Cumulative reward
The cumulative or episode reward is the sum of all rewards the agent receives throughout one
episode. The goal of learning the state representation is ultimately that the reinforcement
learning algorithm is able to learn a good policy based on this representation. Therefore, the
quality of the learned policy is of great importance. One way to judge and compare the quality
of the learned policies is to look at the cumulative reward. The higher this cumulative reward,
the better the policy, as reaching the target in less steps will result in a higher cumulative re-
ward.

Terminal reward
The terminal reward is the last reward received in an episode. The terminal reward will show
whether one of the walls was hit, the target reached, or if the episode terminated without either.
The terminal reward will thus show how reliably the robot reaches the target location and when
the robot crashes into a wall. If the representation is good, the policy should learn to reach the
target location reliably.

Smoothness of the representation
The learned state representation can be judged by looking at the smoothness of the learned
representation. This can be achieved by plotting the learned representation versus the re-
wards. The reward function is a smooth function throughout the environment, and only is
discrete when a wall is hit or the target reached. Therefore, the reward should change smoothly
throughout the environment, and thus also throughout the learned state representation.

Correlation analysis
The state representation networkφ should learn to encode relevant information for solving the
task. Solving a navigation task towards a stationary target can be achieved using only informa-
tion on the position and orientation of the mobile robot. A good representation should learn to
encode this basic information. Therefore, the correlation coefficient between the ground truth
position and orientation and the learned state representation can be used to evaluate whether
the state representation network has learned to encode this information.

3.4 Summary

In this chapter, the research questions which have been the starting point of this work were
introduced. The first research question: How can robotic priors be used to learn a state rep-
resentation in case of a continuous action space?. And the second research question: To what
extend can a recurrent state representation be learned using the adapted priors in a continuous
action space?

After introducing the research questions, an analysis of the various systems was presented.
Firstly, this covered an analysis of the state representation framework. Here, an analysis is made

Arnold Bijman University of Twente

CHAPTER 3. ANALYSIS 25

of the different method of learning a state representation. This analysis concludes with the
reasons for learning a state representation using robotic priors.

The robotic priors, which are encoded as loss functions, can take many shapes. Several of these
priors have been presented in literature. The priors which are relevant for this work are intro-
duced and analysed in this section. The robotic priors which have been designed for this work
are also introduced here. After introducing these novel robotic priors, the partially observable
setting is considered. An analysis is given of the work in literature which have considered the
partially observable setting while using robotic priors to learn a state representation.

An analysis is made of the reinforcement learning algorithm. This covers an analysis of the
parameters and hyper-parameters which will need to be set, and will affect the performance of
the algorithm. The choice of reinforcement learning algorithm is also analysed. The final part
of the system that was discussed is the mobile robot. The choice of mobile robot is considered,
as well as some of the aspects of the robot that are important. This includes the control of the
robot, as well as an analysis of the sensors and its properties.

Finally, the methodology for this research is laid out. This section has covered the tools that are
used to do this research, and has laid out the way in which the performance of the methods will
be evaluated. The main metrics of evaluation are the cumulative reward, the terminal reward
and the more qualitative metric of smoothness of the learned representation.

Robotics and Mechatronics Arnold Bijman

26
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

4 Design and implementation

This chapter will discuss the design and implementation of the experiments and the frame-
works presented in the previous chapter. First, the design of the experiments will be covered,
which will cover which experiments will be performed for answering the research questions.
Then the implementation of the RL algorithm and the state representation learning framework
is expanded upon. The chapter will then further elaborate on the simulation setup.

4.1 Experimental design

In this section, we will touch upon the setup of the experiments. This section will cover the dif-
ferent environments which have been used to perform the experiments, as well as the structure
and goals of the experiments. This section will first discuss the experiments used for answering
research question 1, and then go on to cover the experiments for research question 2.

4.1.1 Research question 1

This section will cover the experiments that will be performed for answering RQ1. This first
research question is repeated here:

RQ 1 How can robotic priors be used to learn a good state representation with a continuous
action space?

This question is split into two sub-questions. The first sub-questions:

1a Are the proposed priors from (24) and (11) able to learn a good representation when
using a continuous action space, when these are adapted to better work with continu-
ous actions?

The adaptations made to the priors from (24) have been presented in the previous chapter.
The previous chapter has also covered the adaptations made to these priors to better exploit
the reward signal, which were proposed by (11). These adaptations can also be combined with
the priors adapted to work with continuous actions. To answer the research question, and also
consider the adaptations proposed by (11) two sets of priors are made.

Prior set one

The first set of priors to be tested will consider the priors which were adapted from the work of
(24). This set consists of the temporal coherence prior as defined in 3.1, the causality prior as
defined in 3.9, the proportionality prior as defined in 3.8 and the repeatablity prior as given in
3.10.

Prior set two

(11) has changed the proportionality and repeatablity priors to better exploit the reward signal.
These priors used the equality condition at1 = at2 , this condition is changed to |∆rt1 −∆rt2 | < κ.
These new priors can be found in equations 3.5 and 3.6. These priors can be combined with
the temporal coherence prior and adapted causality prior from Prior set one, to create a second
set of priors.

1b Can the current sets of priors be adapted to better make use of the continuous nature
of both the reward signal and action space by removing conditioning on the training
points?

Arnold Bijman University of Twente

CHAPTER 4. DESIGN AND IMPLEMENTATION 27

(a) Overview of the small square environment (b) Overview of the L-shaped environment

Figure 4.1: Overview of environments showing the initial position of the robot and the target location
with the yellow circle

The manner in which the priors are adapted to remove the conditions from the priors and make
them continuous is covered in section 3.2.1. This gives two extra sets of priors to be evaluated.

Prior set three

The priors of set three are adaptations of the priors in set one. The temporal coherence priors,
causality prior, proportionality prior and repeatebility prior can be found in equations 3.11,
3.14, 3.12, and 3.13 respectively.

Prior set four

In fourth and final set of priors, the term e−β‖at1−at2‖ is replaced with the term e−β‖∆rt1−∆rt2‖ in
the proportionality prior and repeatabilty prior from equations 3.12 and 3.13. This makes the
fourth set of priors the continuous equivalent of the priors in set two.

These four sets of priors will be tested in the environments which will be presented below. The
performance of these different sets of priors will be evaluated in these environments, based on
the evaluation metrics introduced in 3.3.

Environments

To test the priors different sets of priors, the environments in which these are tested must be
sufficiently diverse in layout and difficulty. Another consideration with a continuous action
space is that the scale of the actions can be different between different environments, in a large
environment one would typically increase the action limit. The action limit can impact the
learned representation, and the robotic priors should be able to learn a good representation
even when the agent is allowed to take larger actions.

The environments that are used for answering RQ1 are covered here. The first environment
that is used is a small square. Each of the four walls have a different color, as there is no texture,
the different colors of the walls make the environment fully observable.

Figure 4.1a shows a top view of the environment. The yellow circle indicates the target loca-
tion, this is added for illustration purposes and cannot be seen in the real environment. The
Turtlebot3 is shown in its initial position. This is true for all environments that are shown.

This environment small square is similar to the environment used in (24). This environment is
relatively easy, as the agent needs few steps to reach the target.

The second environment is a bit more complex, this environment is called the L-shape envi-
ronment. This environment will further test the priors ability to learn a good representation.
This is especially true because the area near the target location will be less explored than the

Robotics and Mechatronics Arnold Bijman

28
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

Figure 4.2: Overview of the large square environment showing the initial position of the robot and the
two target locations

rest of the environment when using a random policy to gather the data, as is done to gather
training data. Therefore, the data which is gathered in this environment will not be uniformly
distributed across the environment. This will pose a challenge, as even the less dense area need
to be represented such that a good policy can be learned. Figure 4.1b shows a top view of the
environment, as well as the starting position of the agent and the target location.

The third environment is again a square environment with differently colored walls. This en-
vironment however is much larger. This environment is designed to be such that when close
to the walls, no corner can be seen in the camera image. Given the much larger size of this
environment, the translational velocity limit is increased in this environment. This will give an
indication of how well the priors can handle the different action magnitudes.

This large square environment is shown in Figure 4.2. In this environment, two target locations
can be seen. Target location one is positioned close to one of the corners, and is used in the
experiments of research question 1. The second location is positioned somewhere near the
middle of one of the walls, this target location is used exclusively for experiments in research
question 2.

Each set of priors will be tested on these environments. First these will be tested on the small
square environment, then these will be tested on the L-shaped environment. Finally, these
priors are tested in the large environment and tested for the ability of RL algorithm to learn a
good policy.

4.1.2 Research question 2

The second research questions considers more challenging environments. To learn a state rep-
resentation in these environments, a recurrent state representation encoder will be used. For
each environment, a comparison will be made between the performance of the non-recurrent
state representation encoder network and the recurrent version. To train the recurrent encoder
network, the priors from set three will be used. The second research question is:

RQ 2 To what extend can a recurrent state representation be learned using the adapted pri-
ors in a continuous action space?

Environments used for answering RQ 2

To test how well these priors can learn a state representation when the encoder network is re-
current, more challenging environments need to be created. These environments will be made

Arnold Bijman University of Twente

CHAPTER 4. DESIGN AND IMPLEMENTATION 29

(a) Overview showing the L-shaped environment with
one color wall

(b) Overview of the large square environment with col-
ored cones

Figure 4.3: Overview of environments used for research question 2, showing the initial position of the
robot and the target location

such that the robot cannot be uniquely localised by looking a the color of the walls. This makes
learning a good state representation more challenging, and in some states partially observable.

The large square environment, seen in Figure 4.2 was created such that in some states, the
colors of the walls can be used to uniquely define the state. In other states, mainly when close
to one of the walls, only one wall can be seen in the camera image, such that the state cannot
be uniquely determined by the camera image. This gives that the location of some targets, like
target location one, are much easier to encode well. Target location two on the other hand is
much harder to encode, as the camera image is not sufficient to determine a unique state of
the mobile robot. This environment should allow for a good comparison between the use of
a recurrent model and the non recurrent setting. This can be done by evaluating the learned
representations, and making comparisons between those. Then a comparison can be made
between the learned policies.

To further evaluate the effectiveness and the limits of the recurrent model, more complex en-
vironments are introduced. The L-shaped environment from Figure 4.1b will be adapted. In-
stead of differently colored walls, all walls will have the same color. Also, the shadows will be
removed to make each wall the same shade. The environment can be seen in Figure ??. This
environment is complex because the color of the walls cannot be used to determine the po-
sition. Instead, the state representation network must rely on the shape of the walls and on
the lidar sensor. Using a recurrent state representation network can help to disambiguate the
states, especially when the observations can be very similar in different states.

A third environment for evaluating the recurrent state representation framework is shown in
Figure 4.3b. This environment has the same dimensions as the large square environment.
The walls are all the same color and symmetric, making the environment partially observable.
Three colored blocks are added into the environment. These colored blocks make some states,
the states in which one of these blocks can be seen, fully observable. However, to get to one of
the corners, there is a long sequence of non-unique states, making it difficult for the recurrent
state representation framework to find a good representation, and requiring a long sequence
length during training.

4.2 Algorithm Implementation

The different components of the overall framework are covered in the previous chapter. This
chapter will look at the elements from the reinforcement learning algorithm and the state rep-
resentation learning algorithm. This chapter will cover further implementation details of these
algorithms.

Robotics and Mechatronics Arnold Bijman

30
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

4.2.1 Implementation of DDPG

The DDPG algorithm was chosen as the algorithm for the reinforcement learning part of this
work. The technical details of how this algorithm works is covered in section 2.1.

As mentioned previously, the DDPG algorithm was designed for a continuous action space. The
DDPG algorithm is an actor-critic method. Actor-critic methods have two separate networks,
one network for estimating the action-value function, or Q-function. This is called the critic
network. The actor network outputs the action. In discrete action spaces, the critic network can
have multiple outputs, it has one output for each of the different actions. In a continuous action
space, this would be impossible, given the size of the action space. To make the Q-function
practical to implement, this function has only one output value. Instead of giving an output for
each possible action, the output of the actor network at is concatenated with the state ŝt , such
that the input dimensionality of the critic network is the sum of the dimensionality of the state
and the action space. Note that as the state representation network estimates the state from
observations, and the state is then fed to the RL algorithm. The state ŝt is not the true state,
but instead the estimated state, such that ŝt = φ(ot) with φ the state representation encoder
network.

The actor has only the state as input. In our specific implementation, the dimensionality of the
action space is two, one for the desired translational velocity, and one for the desired rotational
velocity. In our experiments, the actions are limited to maximum and minimum values. The
translational velocity is limited between zero and ζ. This means that the robot is not able to
go backwards. The upper limit ζ is set depending on the size of the environment, where larger
environments have a higher upper limit. The rotational velocity is limited between -0.2 and 0.2
in all experiments. This gives the robot sufficient maneuverability to reach each point in the
environments. As the output for the translational velocity is clipped to be equal or larger than
zero, and the rotational velocity can be smaller than zero, the two outputs need different output
activation functions. For the translational velocity output, the sigmoid activation function is
used, and for the rotational velocity output the tanh activation function is used.

As described in the background section, target networks are used in the target estimation in
the bellman equation, as this makes learning more stable. Both the actor and critic have a
target network. The DDPG algorithm uses soft target network updates, meaning that the values
of the target networks are updated using polyak averaging. The target networks are updated
at each training step, so each time the main networks are trained. This is done according to
θtarget = ρθtarget + (1−ρ)θ. Here ρ is a parameter between zero and one which can be tuned.
A low value gives higher training speed, while a high value will give a more stable learning
process.

The actor and the critic networks can be updated separately. Each learning step, the critic net-
work is trained first, then the actor network is trained. The critic network is updated according
to the bellman equation, where the bellman equation is the target. The full loss function is
given in equation 2.11. The actor is instead updated by optimising the Q-value for the action.
The gradient for the actor is computed using equation 2.12.

The DDPG algorithm is an off-policy algorithm. This means that the networks can be trained
using data which is collected from a different policy. This means that a replay memory can be
used for training a policy. A replay memory stores past experiences. At each training step, a
batch of samples is pulled from this replay memory at random. This ensures that the samples
in the batch are not temporally correlated, which aids in training. The size of the batch can be
set and tuned for good performance.

The size of the replay memory is also an important aspect to tune. Increasing the size of the re-
play memory can prevent catastrophic forgetting, a phenomenon in neural networks where the
neural network will forget previously learned information when trained with new information.

Arnold Bijman University of Twente

CHAPTER 4. DESIGN AND IMPLEMENTATION 31

In the setting of the state representation learning framework, the replay memory should not
be too large. When the state representation network is trained, the states which were stored in
the replay memory of the DDPG algorithm are no longer of the same distribution as the states
which are encountered in the environment. Having a relatively small replay memory allows
these states from the old distribution to be replaced by the new states before the state repre-
sentation is trained again.

Exploration policy

Exploration of the environment is very important in the RL setting. Having a good exploration
policy will aid in finding a good policy. A lack of exploration often leads to sub-optimal perfor-
mance. The easiest way to aid exploration is to add noise to the actions which are taken by the
actor. The DDPG algorithm is deterministic, such that when no noise is added, the actor will
perform the same actions is the same states each time, given that the network is not trained in
between. Adding noise is crucial to ensure sufficient diversity in the training data, helping with
finding a better policy. The authors of the original DDPG paper (48) advised adding Ornstein-
Uhlenbeck (OU) noise (50), which is time correlated noise. This was therefore used. As advised
by OpenAi (2), the scale of the noise is reduced over the course of training. As training restarts
when the state representation is trained, due to the fact that the distribution of states changes,
the scale of the noise is reset when the state representation network is trained. It was further
found that when the noise level is kept constant, the policy learns to partially correct for the
noise, which deters the algorithm to explore the environment.

Exploration is very important in the normal RL setting, but when using state representation
learning using robotic priors, exploration is even more crucial. A good exploration of the envi-
ronment allows the state representation network to learn a good representation, which is again
important for finding a good policy, as the policy is based on the learned state representation.
As the samples need to be sufficiently distributed across the environment to learn a good state
representation, the magnitude of noise which is added is kept relatively large.

The OU noise can be estimated by using the following equation, as implemented in the openAI
baselines (39):

xn+1 = xn +θ(µ−xn)∆t +σ
p
∆tN (0,1) (4.1)

Practical implementation

The task is of episodic nature, an episode starts in the same position and rotation. The esti-
mated state at this point is ŝ0. Each episode has a maximum number of time steps before it
terminates, which is set to 150. For more complex environments this could be set higher. Each
episode will terminate on one of the three conditions. The first condition is that the robot has
hit one of the walls, after which the robot receives a negative reward. The second is that the
goal has been reached, then the agent receives a positive reward. Finally, the episode can end if
neither of these conditions has been met, but the maximum number of steps have been taken.

At each time step, the observation from both the lidar sensor and the camera, which together
is ot , is used to estimate the state ŝt =φ(ot). Then ŝt is used by the actor, or policy network π to
compute the action at = π(ŝt). Noise is added to this action, at = π(ŝt)+ ε. This action is then
sent to the controller, to execute the action. After the action is performed, the environment
will sent the new observation ot+1, the reward for being in that new true state rt+1 and a binary
value indicating whether this new state is a terminal state or not. This information will be
saved to the replay memory for training the network. The information is saved in tuples, with
(ŝt , at ,rt+1, ŝt+1,d) where d is the binary value indicating if ŝt+1 is a terminal state.

The Q-value network and the policy network will be trained with a mini-batch for each time-
step. This is done at the end of an episode. The Q-value network is updated according to the
loss function defined in 2.11. If the training state ŝt is a terminal state, the Q value for ŝt+1

Robotics and Mechatronics Arnold Bijman

32
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

Figure 4.4: Reinforcement learning neural network architecture overview

should be zero. Exploiting the fact that d = 1 if ŝt is terminal, and zero otherwise, the loss
function can be implemented as:

Licritic (θ) = Ê,

[(
rt+1 +γ(1−d)Q(ŝt+1,µ(ŝt+1;θ′µ);θ′Q)−Q(ŝt , at ;θQ)

)2
]

(4.2)

Neural network architecture

The architecture of the neural network can be an important part of the success of a reinforce-
ment learning algorithm. The network should be sufficiently expressive to effectively represent
the Q-value function as well as a good policy. The actor and critic networks are kept mostly the
same, for the sake of simplicity. As the performance of the RL algorithm is not the main aim of
this work, the network architecture was not highly optimised.

The dimensionality of the state representation is set to five in all experiments. This means that
the actor has five inputs, while the critic has an input dimensionality of seven. Given that the
dimensionality of the input space is relatively low, using only fully connected layers in the neu-
ral network is sufficient. The network consists of two hidden layers, and an output layer. The
number of hidden nodes in these layers is chosen to be 256. It was found that using 128 hid-
den nodes per layer gave inferior performance, using 256 worked well, and allowed the agent
to learn a good policy when using the ground truth state in each of the environments. The
activation function used in these hidden layers is the ReLu activation function.

As the robot is limited to a translational velocity larger than zero, while the rotational velocity
is limited between -0.2 and 0.2, means that both outputs need a different activation function.
The output for the translational velocity has a sigmoid activation function, which limits the
output between zero and one. This output can be multiplied with the action limit to obtain
the action. Then the output for the rotational velocity has the activation function tanh. which
gives an output between -1 and 1. Again, this output is multiplied with the action limit for the
rotational velocity to obtain the action. An overview of the neural networks used for the actor
and critic can be seen in Figure 4.4.

Reward function

To aid with learning a good policy, a dense reward function is used. The reward function is
designed to aid the algorithm to be able to reach the target quickly. The used reward function is
based on the euclidean distance between the robot and the target, with the reward increasing as
the distance to the target decreases. To further enhance the speed of learning a good policy, an

Arnold Bijman University of Twente

CHAPTER 4. DESIGN AND IMPLEMENTATION 33

exponential factor is used in the reward function. The exponential factor increases the reward
difference between states as the distance to the target is larger. This will encourage the agent
to move towards the target quicker.

The reward function is continuous within the environment, except for when the robot hits a
wall or reaches the target. If the robot hits a wall it will receive reward −rt , and receive reward
rt if it reaches the target. The reward function is defined as:

r =

−rt if hit a wall

rt if reached target

1−ea∗distance otherwise

(4.3)

Equation 4.3 shows the reward function which is used in each environment. The terminal re-
ward term rt can be changed depending on the environment. In our experiments, these were
set to rt = 20 for the small square environment and the L-shape environment. For the large
square environment, rt = 50. This value was increased, as the cumulative reward is much larger
in the large square environment given that is takes more steps to reach the target location. The
variable a in the exponential can be used to scale the reward function across the environment.
This helps to make the range of the reward similar between environments. This value is differ-
ent for each environment:

• Small square environment: a = 0.5

• L-shape environment: a = 0.2

• Large square environment: a = 0.18

Used hyper-parameters

This section will cover the hyper parameters used in the experiments. These include previously
covered parameters, as well as other parameters that have not been introduced explicitly.

• Discount rate (γ): 0.99

• Batch size: 64

• Replay memory size: 5000

• Maximum steps per episode: 150

• Polyak averaging parameter (ρ): 0.995

• Noise parameters: OU noise is added to the actions during training to aid exploration.
The magnitude of the noise is linearly decreased from the highest to lowest magnitude.

– σ: σmin = 0.02, σmax = 0.15

– θ: 0.35

– ∆t : 1

– µ: 0

– Decay period, the number of episodes in which σ goes from σmax to σmin: 250

• learning rate Q network (αQ): 0.001

• learning rate actor network (α π): 0.0001

Robotics and Mechatronics Arnold Bijman

34
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

4.2.2 Implementation of the state representation framework

We then consider the design and implementation of the state representation framework. The
goal is to learn a state representation which encapsulates all task relevant information and dis-
cards information not relevant for the task. The state representation mapping from observation
to state ŝt =φ(ot) is implemented using a neural network. The network is optimised using the
robotic priors, as presented in the previous chapter.

To compute the loss and train the network, experiences will need to be saved into a memory.
The memory will be filled with experiences from the environment, the states will be saved in
tuples of (ot , at ,rt+1,d) to the state representation memory. In this setting, d is the binary value
indicating whether the saved sample is the last sample of the episode. This is slightly different
than the RL setting, where d indicated whether it was a terminal state, so only when the agent
has hit the wall or reached the target.

Finding pairs of observations

The previous chapter has discussed several pairs of robotic priors which will be tested and com-
pared for this work. The priors which were taken from literature require pairs of observations
which are checked for some condition. The original work of (24), finding pairs of training tu-
ples by first sampling a batch of tuples from the memory. Then all combinations of tuples in
this batch are evaluated on the conditions. Finally, the loss is computed using all these com-
binations which comply to the conditions of each prior, after which the state representation
network is trained.

Algorithm 2: Training procedure in the work of (24)

Sample minibatch of N random indexes I from SRL memory indexes
Initialise empty arrays M1, M2 for the matched points
for i in I do

for j in I do
if ai == a j then

Append index pair (i , j) to M1

if ri 6= r j then
Append index pair (i , j) to M2

end
end

end
end
Compute Ltemp using samples in I
Compute Lprop and Lrep using the pairs in M1

Compute Lcaus using the pairs in M2

Compute Lpriors =ω1Ltemp +ω2Lcaus +ω3Lprop +ω4Lrep

Optimise φ using Lpriors

In a discrete action setting, this works well, as there will be many pairs of training tuples with
equal actions. In the continuous action setting, this procedure does not work as well, since
much fewer pairs of observations will be found to comply to the condition. Although the con-
ditions in these priors are relaxed, this will still be the case. One can vary the threshold variables
ε and µ of equations 3.9, 3.10, and 3.8 to find more matching points, but this can also have a
detrimental effect on the learned representation. Furthermore, this method of finding match-
ing points gives that the number of points used for each of the priors can vary depending on
the number of matching observations that are found. Furthermore, it requires evaluating of all
pairs of observations, which becomes a very large number of evaluations when the batch size
becomes larger. The temporal coherence prior defined in 3.1 does not have a condition. This

Arnold Bijman University of Twente

CHAPTER 4. DESIGN AND IMPLEMENTATION 35

means that the number of observations used for this priors is equal to the batch size. If the
batch size is increased, the number of matching pairs for the other priors will increase more
than the increase in batch size, as the number of possible combinations grows quadratically.
Therefore, changing the batch size will change the ratio between the number of training sam-
ples used for the computing temporal coherence loss and the number of samples used for the
other prior losses. This may require re-tuning the ratios ωx by which the losses of each of the
priors are multiplied in order to get a state representation of similar quality each time the batch
size is changed.

For these reasons, the implementation of finding these matching points is changed. Instead
of evaluating each possible pair of observations within a sampled batch, only one matching
observation is sampled from the state representation memory for each observation in the sam-
pled batch. This makes that each prior is evaluated using an equal number of samples, inde-
pendently of the batch size.

To find matching pairs efficiently in the state representation memory, one should not perform
an exhaustive search. Instead one could use a while loop, and continue evaluating the obser-
vation in the sampled batch with on from memory until an observation complying with the
condition has been found. However, it was found that in python it was more efficient to com-
pute this condition for multiple points at the time and randomly pick one observation from the
observations that comply with the condition. This is more efficient, as this makes better use of
the efficient implementations of the python library Numpy. It was found that evaluating 1000
tuples from memory was a good compromise. To ensure a good random sampling over the en-
tire memory, the evaluation starts at a random point in memory, and continue to go through
the entire memory.

The priors defined in 3.8, 3.9, and 3.10 each have the matching criteria |at1 − at2 | < ε, where
the causality prior has an additional matching criterion. The other set of priors with match-
ing criteria, of which the causality prior is the same, has the criterion |∆rt1 −∆rt2 | < ε for the
proportionality prior 3.5 and repeatability prior 3.6. As the first set has the same criterion for
the three priors, these matching samples can be easily found using the same loop. The proce-
dure for finding the training pairs is detailed in algorithm3 When using the second set of priors,
the repeatablity and proportionality prior samples are selected based on a different condition

Robotics and Mechatronics Arnold Bijman

36
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

than the causality prior samples. Therefore, selection of training points for these priors is done
according to algorithm 4. The entire procedure is detailed in algorithm ??.

Algorithm 3: Match points according to criterion 1

Sample minibatch of N random indexes I from SRL memory indexes
Split the SRL memory into memor y si ze/spl i t si ze splits S
Initialise empty arrays M1, M2 for the matched points
for i in I do

Select random split Sstart to start in the dataset, to randomize the matching
for x in S do

Sy = Sx mod Sstart

Compute the norm used in the first condition using actions in Sy , aSy , and action
ai : ‖aSy −ai‖

Find indexes of points which satisfy condition 1: C1 =W her e(‖aSy −ai‖ < ε)
Compute the norm used in the second condition using the rewards: ‖rC1 − ri‖
Find indexes of points which satisfy condition 2: C2 =W her e(‖rC1 − ri‖ >µ)
if len(C2) > 0 then

Pick one index c1 randomly from C1

Append c1 to M1

Pick one index c2 randomly from C2

Append c2 to M2

Break out of the for loop, move on to i +1
end

end
end

Algorithm 4: Match points according to criterion 2

Sample minibatch of N random indexes I from SRL memory indexes
Split the SRL memory into memor y si ze/spl i t si ze splits S
Initialise empty array M for the matched points
for i in I do

Select random split Sstart to start in the dataset, to randomize the matching
for x in S do

Sy = Sx mod Sstart

Compute the reward delta for points in Sy : ∆ry = ‖rSy+1 − rSy‖
Compute the reward delta for the minibatch tuple: ∆ri = ‖ri+1 − ri‖
Find indexes of points which satisfy the condition: C =W her e(‖∆ry −∆ri‖ < κ)
if len(C) > 0 then

Pick one index c randomly from C1

Append c to M
Break out of the for loop, move on to i +1

end
end

end

For the continuous priors introduced in the previous chapter, there are no matching criteria.
This means that there is no need to find matching pairs of tuples in the memory. Instead, to
find pairs of tuples in memory for computing the loss on the priors, one can simply sample
a training batch, which is 2 times the training minibatch size. This batch can be split up to
create the pairs of points, the same points can be used for each of the priors. Note that when
sampling random observations from memory, the observations which are the last observation

Arnold Bijman University of Twente

CHAPTER 4. DESIGN AND IMPLEMENTATION 37

Algorithm 5: Overview of the State Representation Learning framework

Initialise the state representation network φ with random weights
Define the number of episodes, E and the maximum number of steps per episode T
for e in E do

for t in T do
Predict state ŝt =φ(ot)
Compute the action at = cl i p(π(ŝt)+N , ami n , amax)
Take action at in the environment and receive ot+1,rt+1,and dt+1

Save an experience tuple to the SRL memory R ← (ot , at ,rt+1,dt+1)
end
if Update φ then

for number of epochs do
for Batches in epoch do

Create training batch according to matching algorithm
Calculate the loss for each prior based on the sets of points in the batch
Calculate regularization loss Lreg for all network weights according to L2

regularization
Compute Lpriors =ω1Ltemp +ω2Lcaus +ω3Lprop +ω4Lrep +ω5Lreg Update

parameters of φ using Lpriors

end
end

end
end

in the sequence are removed from the minibatch, as∆ŝt cannot be computed, given there is no
ot+1 in that sequence.

Neural network architecture

The state representation network encoder φ is implemented using a neural network. The state
representation network computes the estimated state from the observation ŝt =φ(ot). As men-
tioned previously, the robot uses two sensor modalities as observation, a camera and a lidar
sensor. The observations of the camera are downsampled to 32x24x3, and the lidar sensor in-
formation is downsampled to 40 observations. To deal with these two different sensor modali-
ties, the neural network is divided into two separate streams, one for the camera input and one
for the lidar input. These streams are then later concatenated and used to compute the state
estimate.

Figure 4.5 shows the architecture of the neural network used for the state representation. The
convolutional layers (Conv) are defined as channels x kernel size x stride. Each of the convo-
lutional layers in the network has a kernel size of 3 and a stride of 1. The number of channels
are the number of output channels of that layer. The number in the Dense layers represents
the number of nodes in the layer. Lastly, each block shows the activation function which is
used. At the output of the network, gaussian noise is added, with σ = 10−6. After each convo-
lutional layer, a batch normalisation layer (23) is added, which helps to speed up and stabilise
the learning process. The two streams are concatenated before going into the final Dense layer.

This network architecture is designed to work with the task of mobile robot navigation using
the Gazebo simulator and the Turtlebot mobile robot. Other experiments in which only a cam-
era observation require a different architecture. These experiments make use of a larger ob-
servation of 100x100x3. Therefore, pooling layers are introduced into the architecture to down
sample the data.

Robotics and Mechatronics Arnold Bijman

38
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

Figure 4.5: State representation network architecture overview

Figure 4.6: Architecture of the state encoder network used for non-gazebo environments with only rgb
observations

Adaptation of the neural network architecture

The network architecture presented in Figure 4.5 is used in all experiments unless specified
otherwise. This architecture fuses the two streams at the end of the network, with only a lin-
ear layer left to combine the two streams. This limits the way the network can combine the
information from both streams. To make the network more expressive, an adaptation to this
architecture is made.

The new architecture can be found in Figure 4.7. To make the architecture more expressive, the
two streams are fused earlier. Instead of reducing both streams to the state dimension before
fusion, the streams are fused with higher dimensions. After fusing the two streams, the network
now has two non-linear layers, after which it is reduced to the state dimension in a linear layer.
The number of filters for the lidar sensor data is increased to 32, allowing for extracting more
information.

Hyperparameters

Here the parameters and the used values for these parameters will be displayed.

• Learning rate (α): Different learning rates are used for the discrete and continuous priors.
For the discrete priors α= 0.001 and for the continuous priors α= 0.0005.

• Batch size: The batch size used for computing the loss on each of the priors was set to
256

Arnold Bijman University of Twente

CHAPTER 4. DESIGN AND IMPLEMENTATION 39

Figure 4.7: New architecture used for the state encoder network

• SRL memory size: The size of the SRL memory was set to 30000 experience tuples, al-
though it was found that using a smaller memory size also gave good results.

• Epochs: The number of epochs for which the state representation network is trained was
set to 20.

• Conditional parameters: These parameters are used in the conditional priors for finding
pairs of observations for training.

– ε: 0.01

– κ: 0.01

– µ: 0.1

• Continuous parameters: These parameters are used in the continuous priors.

– α: 2

– β: 10

• Prior weighting parameters ω, (conditional priors / continuous priors):

– Temporal coherence prior weight (ω1): 1/1

– Causality prior weight (ω2): 5/1

– Proportionality prior weight (ω3): 5/1

– Repeatability prior weight (ω4): 5/1

4.2.3 Adapting the state representation framework to work with recurrent neural networks

The previously laid out details on the implementation of the state representation framework
have not been designed to deal with recurrent networks. To answer research question 2, the
framework needs to be adapted to be able to work with recurrent neural networks. This entails
changing the neural network itself to add recurrency, as well as adapting the structure of the
state representation memory and the way in which training batches are sampled.

For the training of recurrent neural networks (RNNs), sequences of samples are used instead
of just a collection of samples. In the non-recurrent setting, a minibatch of samples is sam-
pled from the memory for training the neural network, as this reduces variance and increases
training stability. Also, the batch normalization layers in the neural network need a sufficiently
large batch size to give a good normalization. A minibatch is a collection of samples from the
memory, which has been collected randomly, distributed uniformly over the entire memory.

Robotics and Mechatronics Arnold Bijman

40
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

When training a RNN, a minibatch is not a randomly sampled collection of single samples,
instead the minibatch will consist of a randomly sampled collection of sequences. The se-
quences of experiences which are stored in the memory are not all of the same length. Training
the model using a batch of sequences requires some adaptations to the way these experiences
are stored.

Adapting the memory

When it is not important to keep track of the sequences in the memory, the experiences can eas-
ily be added to a simple array. This is simple in implementation and relatively efficient. When
it is important to keep track of the sequences in the memory, the architecture becomes a bit
more complex. One could save sequences of experiences into the memory directly, however as
these sequences all have varying length, this does not allow the use of standard numpy arrays.
Instead, one could pad each sequence to have the length of the maximum number of steps per
episode. The downside of this would be the additional memory this requires. Although prob-
ably not a problem on modern machines when dealing with medium sized memory sizes, this
could become problematic when using large memory sizes or large potential sequences.

Instead, the experience tuples are still saved into a single array. To keep track of the start and
end of each sequence, a separate array is used to keep track of the length of each sequence.
This array contains a value for each of the sequences of the array, indicating the length of the
sequence. This way, the arrays containing the experience tuples can be predefined, reducing
the memory requirement and speeding up the code. The start and end points of each sequence
can be found using the sequence lengths.

If the maximum memory size has been exceeded, the first sequence in the memory is be
purged. This way the most recent sequences of experiences are in the memory.

Sampling and padding

Training the neural network using a batch of sequences requires these sequences to all be of
the same length. However, these sequences have varying lengths, as episodes have different
lengths. Furthermore, the sequences can be 150 steps long. Using such sequences has a sig-
nificant effect on the speed of training. Therefore, the sequences will be truncated to the same
length for each batch. The length at which the sequences will be truncated is a training param-
eter which can be varied to trade of the speed of trading and the effective memory length.

A common way to ensure equal length sequences in the batch is to truncate the sequences if
possible, and otherwise pad the sequence with zeros. This means padding the beginning of
each sequence with zeros if the point is in the beginning of the sequence. However, a problem
with padding these points with zeros is that due to the biases in the network, the internal state
of the memory will not be zero at the first experience in the sequence.

Instead of padding the sequences, the points from the beginning of each sequence are not
used for training. Instead, these points will only be used for training as part of the sequence of
another training sample.

Change the architecture of the NN to include LSTM

The architecture used in the non-recurrent state representation learning is adapted to be re-
current by including LSTM layers (46). In line with the work done by (36), two LSTM layers are
added. The number of units in the hidden state was set to 256. Dropout layers were added after
the LSTM units to prevent overfitting.

Hyperparameters

Again, several parameters are involved in training the state representation. These parameters
are largely the same parameters which were introduced for the non-recurrent state represen-

Arnold Bijman University of Twente

CHAPTER 4. DESIGN AND IMPLEMENTATION 41

Figure 4.8: State representation network with recurrent architecture overview

tation learning framework. These parameters had to be re-tuned to work well with this new
architecture.

• Sequence length: The sequence length is changed between environments and is tuned
for the best results.

• Learning rate: 0.0003

• Batch size: 128, when the sequence length is longer than 16, the batch size and learning
rate are decreased by a factor of 2 for each doubling of the sequence length.

• SRL memory size: 30000

• Epochs: 30

• Prior parameters: These parameters are used in the continuous priors.

– α: 2

– β: 10

• Prior weighting:

– ω1: 0

– ω2: 1

– ω3: 1

– ω4: 1

Robotics and Mechatronics Arnold Bijman

42
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

4.3 Simulation setup

This section will cover a more in depth look into the simulation setup which is used for this
work. The simulator which is used is the Gazebo simulator. Gazebo is an open-source sim-
ulator for robotics. The Gazebo simulator is well known and has models of some common
robots, like the Turtlebot robots. The Gazebo simulator further offers support for several sensor
modalities, which includes the support for cameras and lidar sensors. The Robotic Operating
System (ROS) (5) is integrated into Gazebo, allowing for communication between python and
the Gazebo simulator. ROS works as the middleware, enabling communication between the
two platforms. A openAI gym wrapper is then used to structure the interaction between the
environment and the python code.

The state representation learning method and reinforcement learning algorithm are imple-
mented in python. The reinforcement learning algorithm will generate actions using the
learned policy, which are composed of a targeted translational and rotational velocity. This
can be seen as high-level commands to the robot. Through the gym interface, and the ROS
middleware, this command is sent to the low level controller of the Turtlebot robot. Apart from
controlling the wheels of the robot. The observations are read on the robot, and sent to the gym
interface, using the ROS middleware.

The low-level controller and the reading of the sensors of the robot is done in the Gazebo sim-
ulator. This is inspired by a realistic setup, as in a real setup, this would be done on the robot.

Two different sensors are used for learning the state representation, which are a camera and a
lidar sensor. The camera on the Turtlebot3 robot which is used has a 680x480 pixel RGB camera.
Given that the environments are created using coloured walls without any texture, this high a
resolution is not necessary. Using a much smaller image from the camera can give a loss of
detail, but will make computation much faster, which is a significant advantage. The images
from the cameras are downsampled to 32x24 RBG images, which is sufficient for this task. The
camera has a field of view of 62.2 degrees in the horizontal direction.

A second sensor modality which is used is the lidar. This sensor has 360 laser distance measure-
ments, which is distributed over 6.28 radians. The maximum range this sensor can measure is
3.5 meters, which is equal to the real world laser sensor which is on the Turtlebot3 waffle pi. As
it is not necessary to have so many samples, this is downsampled to 40 measurements, evenly
divided over the 6.28 radians.

The lidar sensor is used to check for collisions, and the robot is considered to have collided with
one of the walls, if the sensor measures less than 0.26 meters between the sensor and the wall.

4.4 Summary

This chapter has first covered the experimental design of this work. This section has covered
the design of the experiments and has introduced the environments in which these experi-
ments have been performed. Then a detailed look into the implementation of the algorithms
for both the RL algorithm as well as the state representation learning algorithm is given. It
has covered the different implementations of the robotic priors to facilitate learning the state
representation using the different priors. Finally, the simulation setup was covered.

Arnold Bijman University of Twente

43

5 Results and Discussion

This chapter will cover the results from the performed experiments, which are used for answer-
ing the research questions. All results will be covered and interpreted. First, some ground truth
baselines will be presented. Then the results for answering research question 1 will be covered
in detail. These results will be split up between the two parts of the first research question.
The first part will cover the priors in set one and two. The second part will consider the con-
tinuous priors in sets three and four. These different sets of priors have all been tested on the
environments as discussed in the previous chapter. The performance and the resulting state
representations will be compared and discussed. Then the results for research question two
will be presented.

5.1 Ground truth baseline

The ground truth baselines will serve to show what performance should be expected from the
training a policy if the state representation is very good.

5.1.1 Training settings

The ground truth state has a dimensionality of five, which is equal to the dimensionality of the
learned state representation. This is important for the comparison, as the dimensionality of
the input state can be important for the performance of the RL algorithm, where a high input
dimensionality typically makes solving a task harder.

The ground truth state vector is composed of the following information: the x coordinate, the
y coordinate, the orientation of the robot in radians, the x position of the target, and the y
position of the target. The input vector thus becomes

(
xr, yr,θr, xt, yt

)
. The coordinates of the

target position is not strictly necessary, given that the target location does not move. The agent
can therefore simply learn the policy to move to the target based on the reward signal, and does
not need the location of the target in its state. However, keeping this information in the state
gives that the dimensionality of the input state is equal between using the ground truth data
and the state estimate.

The exploration noise is kept equal to the exploration noise in the other experiments, where
the learned state representation is used to learn a policy. The actor and critic networks are ini-
tialised randomly. The agent is trained for 250 episodes for each environment, the magnitude
of the noise is linearly decreased between the first and last episodes.

5.1.2 Results small square environment

When trained on the ground truth state in the small environment, the agent is able to con-
verge to a good policy within 150 episodes. Possibly this could be even quicker if the hyper-
parameters of the DDPG algorithm would be tuned further.

Figures 5.1a and 5.1b show the results in this environment. The blue signal in Figure 5.1a rep-
resents the unfiltered episode reward, the orange line is the moving average across 10 episodes.
The goal of the agent is to optimise its cumulative reward. Figure 5.1b shows the final reward
received by the agent, the reward at the terminal step. This reward is -20 if the agent has hit the
wall, close to zero if it has reached the maximum step and +20 if the agent has reached the tar-
get. In the large square environment this is set to -50 and +50. From these two graphs it can be
seen that the final reward dominates the cumulative reward per episode, this is especially true
since the environment requires only few steps to reach a solution. From Figure 5.1b with the
final reward, one can clearly see that from episode 150 onwards, the robot reaches the target
each episode and is always successful. In these episodes, there is still exploration noise added,

Robotics and Mechatronics Arnold Bijman

44
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

(a) Episode reward throughout the training process (b) The final reward received per episode
.

Figure 5.1: Training results using the ground truth state in the small square environment

Figure 5.2: Points visited by the robot throughout training using the ground truth in the small square
environment

which can be seen in graph of cumulative reward. One can see that the cumulative reward still
varies, which indicates that the agent does not take the same path in each episode. Despite the
noise, the agent is still able to reach the target each episode.

Figure 5.2 shows the (xrt , yrt) coordinates visited by the robot throughout training. The darker
the points, the later these have been visited in the training process. One can see that even on
the darkest paths, there is still some variance in the taken path to the target location.

Unlike some of the other reinforcement learning algorithms, DDPG is deterministic. If no noise
is added, and the agent would not be trained further, it would perform the same actions each
episode.

5.1.3 Results L-shape environment

The L-shape environment is slightly more complex, as the agent is more restrained in which
path to the target can be taken, as well as the fact that this environment is larger. This means
that more steps are needed to solve the task, which typically makes training harder.

Given that more steps are needed to reach the target, also means that the agent is more affected
by the accumulating noise. This is especially true since the noise which is added in an episode
does not have a zero mean, and is thus working against the policy over more steps. From Fig-
ure 5.3b, which shows the terminal, or final reward, can be seen that the agent learns to reach
the target relatively quickly, but fails to reach the target in some of the episodes. As the magni-
tude of the noise decreases, the agent learns to reach the target more consistently, where after
episode 210, the agent reaches the target each episode. The same effect can be seen in Figure

Arnold Bijman University of Twente

CHAPTER 5. RESULTS AND DISCUSSION 45

(a) Episode reward throughout the training process (b) The final reward received per episode
.

Figure 5.3: Training results using ground truth in the L-shaped environment

Figure 5.4: Points visited by the robot throughout training using ground truth for the L-shaped environ-
ment

5.3a, which shows the cumulative loss per episode. The points visited by the robot for the L-
shaped environment can be found in Figure 5.4. From this figure, it can be seen that the agent
misses the target location on some occasions.

5.1.4 Results large square environment

The large square environment requires many steps to successfully complete. The reward func-
tion was therefore adapted to have a reward of -50 and 50 for hitting the walls and reaching the
target respectively. The biggest challenge of this environment is the size, the policy will need to
learn its way through the entire environment.

Figure 5.5a shows the cumulative reward per episode. Figure 5.5b shows the terminal reward for
each episode. unlike the small and L-shaped environments, the large environment shows rela-
tively many terminal rewards close to zero. This means that there are relatively many episodes
in which the agent does not reach the target but also does not hit a wall. This is as expected,
given that the environment is a large open space. In the last episodes the agent does learn to
reach the target reliably.

5.2 RQ1

5.2.1 Testing the adapted priors from literature

As discussed in chapter 3, the priors proposed by (24) and (11) have been adapted to work with
a continuous action space. These priors have both been implemented. These priors have some
hyper-parameters, which have been tuned to work well across the different environments. Tun-

Robotics and Mechatronics Arnold Bijman

46
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

(a) Episode reward large square environment (b) The final reward received per episode for the large
square environment

Figure 5.5: Training results using the ground truth state in the large square environment

ing these parameters for each of the environments could potentially improve the learned rep-
resentation, however in my experience, this did not make a significant difference to the results.
Furthermore, tuning these parameters is a very laborious job, which would make jumping to a
new environment a non-trivial task.

For this reason and the reason that the priors should be easy to use between different envi-
ronment, a set of hyper-parameters is found that gives a good compromise between the per-
formance for the environments. These hyper-parameters are then kept constant between the
different environments.

For each of the environments a dataset containing at least 30000 samples is gathered. The
memory size of the state representation framework is kept at 30000, and as such, an equal num-
ber of samples will be used for each of the environments. The state representations resulting
from different sets of priors are trained using the same training data.

Prior set one

This will cover the results which have been obtained with the action based priors, which are
adapted from (24). These priors are defined in equations 3.1, 3.8, 3.9, and 3.10.

Small environment
First the small square environment will be used to test these priors. To train the state repre-
sentation, the dataset for the small environment is used. The distribution of observations over
the environment can be seen below in Figure 5.6a. As can be seen from this figure, the data
is well spread out over the environment. Figure 5.6b shows the same (xr, yr) points as figure
5.6a, but then shows the reward the agent received at that point by the color of the point. The
reward is clipped at -2.0 and 0.1 in the plot, such that the rewards for reaching the target and
hitting the wall is distinct but does not dominate the range. As can be seen clearly, the reward
function changes smoothly over the environment, this smoothness should be present in the
learned state representations as well.

To quantitatively judge the learned state representations, two methods for plotting this data will
be mainly used. These are a PCA plot of the first two principal components, and a t-SNE plot,
which brings down the dimensionality to 2, such that it can be plotted. The reason for using
both, is that these plots can give different insights, and will complement each other. Using PCA
to plot the first two principal components has the advantage of it often retaining some part
of the shape of the environment. This method however has the disadvantage that it can map
points that are not actually close in the high dimensional space close to each other. This will be
especially true if the data has many principal components. The t-SNE plotting method has the

Arnold Bijman University of Twente

CHAPTER 5. RESULTS AND DISCUSSION 47

(a) The points of observations in the dataset of the small
square environment

(b) The reward values for the points of observations in the
dataset

Figure 5.6: The training dataset for the small square environment

downside of completely losing the physical structure of the environment. The advantage of this
plotting method is that it will better retain the relation between points in the high dimensional
space, mapping close points close together.

The plots of the first two principal components and the t-SNE plot of the learned representation
of the small square environment can be found in Figures 5.7a and 5.7b respectively. From the
plots can be seen that there is no clear color gradient in either plot. This indicates that the
learned state representation is not smooth, making learning a good policy more difficult.

(a) First two principal components of the SR for the small
environment, prior set one

(b) T-SNE visualization of the SR for the small environ-
ment, prior set one

Figure 5.7: Learned representation using prior set one on the small square environment

The goal of the learned state representation is to allow the RL policy to efficiently learn a good
policy. Therefore, the learned state representation should be judged by the ability of the RL al-
gorithm to learn a good policy. Figure 5.8b shows the moving average of the cumulative reward
per episode. Figure 5.8a shows the points visited by the robot during training. From the reward
plot and the path of the robot can be seen that a good policy is found and the target is reached
reliably.

L-shaped and large environments
As discussed, this set of priors worked well on the small, and easiest environment. These priors
are also tested on the L-shape environment and the large square environment. The reward per
episode for these environments can be found in figure 5.9a and 5.9b respectively.

From the episode reward in the L-shape environment in Figure 5.9a can be seen that a good
policy is found, but then lost when the magnitude of the noise tapers off. From Figure 5.9b

Robotics and Mechatronics Arnold Bijman

48
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

(a) Visited states during training (b) Episode reward during training in the small environ-
ment

Figure 5.8: Training results using prior set one in the small environment

(a) Cumulative reward during training on the L-shape en-
vironment

(b) Episode reward during training on the large square en-
vironment

Figure 5.9: Training results using prior set one in the L-shaped and large environments

showing the cumulative reward of the agent in the large square environment can be seen that
at no point during training the agent is able to reach a good policy. The learned state repre-
sentation for the large environment is visualised in Figure 5.10. From these visualisations it
can be seen that the points close to the target and points far away are very close in the learned
representation. A similar effect can be seen in the L-shaped environment shown, which can be
found in Appendix B. This shows that states that are far apart are not pushed apart sufficiently
using this set of priors.

Prior set two

The second set of priors introduced in chapter 3.2.1, are the priors which replaced the condition
of a similar action with the condition of similar reward variation for the proportionality and
repeatability prior. The priors are defined in equations 3.1, 3.9, 3.5, and 3.6, for the temporal
coherence prior, the causality prior, proportionality prior and repeatabilty prior respectively.

Small square environment

Comparing the learned state representation using the reward variation based priors and the
action based priors shows a clear difference. The t-SNE plot in Figure 5.11b shows a much
clearer color gradient, and a much smoother representation than the plot in Figure 5.7b. Also
the walls, which are the black dots, are grouped better, both in the t-SNE plot, as well as in the
first two principal components shown in Figure 5.11a.

Arnold Bijman University of Twente

CHAPTER 5. RESULTS AND DISCUSSION 49

(a) First two principal components of learned SR (b) T-SNE visualisation of the learned SR

Figure 5.10: Visualisation of the learned SR using prior set one in the large square environment

(a) First two principal components of the SR of the small
square environment, prior set two

(b) T-SNE visualisation of the SR of the small square envi-
ronment, prior set two

Figure 5.11: Learned representation of the small environment using prior set two

From Figure 5.12b which shows the moving average of the cumulative reward per episode dur-
ing the training process, we can see that using these priors, a good policy can be learned. Com-
paring this reward signal with the cumulative reward when training on the ground truth data,
as displayed in Figure 5.1a, it can be seen that the speed of convergence is very similar. Also,
the reward per episode is very similar after it has converged.

L-shaped and large environments

Figure 5.13 shows the episode rewards for both the L-shaped and large environment. In the L-
shaped environment, a good policy can be learned, although the policy does not learn to take
the shortest path. The path the robot takes can be found in appendix B, as well as a visualisation
of the learned state representation. For the large environment, no good policy can be found.
When looking at the first two principal components and the t-SNE visualisation of the learned
SR in the large environment, found in Figure 5.14, it can be seen that the learned representation
is not very smooth. Looking at the t-SNE representation it can be seen that there is no clear
color gradient, and there is some mixing of colors. This points to a bad representation as the
cause of not learning a good policy.

5.2.2 Testing the continuous priors

Initial results

The initial results using the priors of sets three and four did not show promising results. The
representation tended to have all information in only two principal components in the large

Robotics and Mechatronics Arnold Bijman

50
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

(a) Robot locations during training in the small square en-
vironment, prior set two

(b) Cumulative reward during training in the small square
environment, prior set two

Figure 5.12: Training results in the small environment using prior set two

(a) Episode reward during training using prior set two in
the L-shaped environment

(b) Episode reward during training using prior set two in
the large square environment

Figure 5.13: Training results in L-shaped and large environment using prior set two

(a) First two principal components of the large environ-
ment using prior set two

(b) T-SNE visualisation of the large environment using
prior set two

Figure 5.14: Visualisation of the learned SR in the large environment using prior set two

square environment. The resulting state representation was not smooth, nor well separated.
The variance explained per principal component of the learned representation can be found
in Figure 5.15a. This graph shows that most variance of the learned SR is expressed only in a
single dimension. The t-SNE visualisation shown in Figure 5.15b of the learned representation
shows that many states are not separated properly.

Arnold Bijman University of Twente

CHAPTER 5. RESULTS AND DISCUSSION 51

(a) Variance explained by principal component for the
learned SR

(b) T-SNE visualisation of the learned SR in the large
square environment using prior set three

Figure 5.15: Initial results using prior set three in the large environment

This was worst in the large square environment, because the reward difference between differ-
ent states is larger on average than the other environments due to the larger size. This could
be countered by decreasing a in the reward function shown in 4.3. However, decreasing a can
have a detrimental effect on the performance of the DDPG algorithm. Having large differences
in the rewards gives that the term |rt+1 − rt+2| dominates the loss, as this term is not bounded
while the exponential terms of the loss function are bounded between 0 and 1. Because of this,
the term |rt+1 − rt+2| was dropped from the causality prior loss function. The new causality
prior is defined in equation 5.1.

Lcaus(D,φ) = E
[

e−‖ŝt2−ŝt1‖2
e−β‖at1−at2‖2

]
(5.1)

Prior set three

The action based continuous priors are defined in Chapter 3. The temporal coherence prior,
proportionality prior, repeatability prior, and causality priors can be found in equations 3.11,
3.12, 3.13, and 5.1 respectively.

This set of priors is able to perform well in each of the three environments. The cumulative
reward achieved during the training process can be found in Figure 5.16. Figure 5.16a shows the
episodic reward achieved in the small square environment. This reward signal shows a similar
pattern to training the policy on the ground truth data. A good policy is found in 100 episodes,
and then converges. The L-shaped environment is more challenging, the reward signal can
be found in Figure 5.16b. This reward signal shows that a good policy is found early on in
training, but then lost again. However, it does recover again at the end of the training period.
When comparing this to the policy trained on the ground truth state, of which the reward signal
is displayed in figure 5.3a, it can be seen that the reward signal is more stable when training
on the ground truth data. The policy trained on the large environment shows relatively quick
convergence to a good solution. The t-SNE visualisations of the learned state representations
for each of the environments can be found in Appendix B.

Prior set four

Replacing the term e−β‖at1−at2‖2
in the proportionality prior and repeatability prior with the

term e−β‖∆rt1−∆rt2‖2
, showed similar results. Where the performance of the conditioned priors

showed significant difference between using the reward based conditioning versus the action
based conditioning, this did not translate to the continuous priors. The action based condi-
tioned priors from prior set one did not show a strong performance, given that it did not allow
for solving two of the three environments. Figure 5.17 shows the reward for each of the three

Robotics and Mechatronics Arnold Bijman

52
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

(a) Episodic reward for the small square environment (b) Episodic reward for the L-shaped environment

(c) Episodic reward for the large square environment

Figure 5.16: Episode reward in three environments using prior set three

environments. The t-SNE visualisations of the learned state representations for each of the
environments can be found in Appendix B.

5.2.3 Comparing the performance of the priors

Now that the different sets of priors have been tested, the performance of the priors can be
compared. It was found that adapting the originally proposed priors with the condition based
on actions, prior set one, gave poor performance on the L-shaped and large square environ-
ments. Changing the condition on the repeatability and proportionality priors to a condition
based on the reward difference significantly improved the results, as can be seen in section
5.2.1. This second set of priors showed good performance on the small square environment
and the L-shaped environment. On the large environment, the performance deteriorated.

Given that these priors did work well on the other environment, these priors could likely be
made to work well in the large environment as well. This would however require re-tuning
the hyper-parameters to make these priors work in the large environment. Tuning hyper-
parameters can be a costly endeavour, as it requires multiple training runs for both the state
representation as well as the RL algorithm.

Then the continuous priors were tested, which were designed specifically with a continuous
action space in mind. These priors removed the requirement of finding observation pairs that
adhered to the condition on the priors, simplifying the implementation. Comparing the con-
tinuous priors based on the action condition in section 5.2.2 and the priors partly based on
the rewards in section 5.2.2 does not show any major differences. Both sets of priors allow the
agent to learn a good policy. Differences in the speed of learning between the two sets of priors
can be attributed to differences between runs, as similar differences were observed between
different runs with the same priors.

Arnold Bijman University of Twente

CHAPTER 5. RESULTS AND DISCUSSION 53

(a) Episodic reward for the small square environment (b) Episodic reward for the L-shaped environment

(c) Episodic reward for the large square environment

Figure 5.17: Episode reward in three environments using prior set four

5.3 RQ2

This section will cover the experiments that have been performed to answer research question
2. The recurrent state representation learning framework is tested on multiple environments,
as can be read in section 4.1. The results from these experiments will be presented in this sec-
tion, comparing the performance of a recurrent framework versus the standard framework. At
first, the large square environment will be covered. Then, the results from the other environ-
ments will be presented. All experiments use the robotic priors in prior set three, as used in
section 5.2.2.

5.3.1 Large square environment

The results for the large square environment have been presented in the previous section. This
section has covered only the results for one target location one, positioned close to a corner.
The fact that it is close to a corner is significant, as this makes the locations around the target
easier to locate. To test the effectiveness of the LSTM framework, a second goal is added. The
locations of both goals can be found in Figure 4.2. This second goal is placed close to one of the
walls, far removed from any corners. This makes locations around the target more difficult to
determine, as the observations from the camera are not ambiguous.

Target location one

In the previous section, it was shown that the non-recurrent state representation framework
was able to learn a state representation that enables learning good policy. This section will
further expand on these results and introduce the results from learning the state representation
using the recurrent state representation learning framework.

Robotics and Mechatronics Arnold Bijman

54
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

(a) First principal components of the learned SR using the
non-recurrent state encoder

(b) First principal components of the learned SR using the
recurrent state encoder

Figure 5.18: First two principal components of the learned representation on the large environment

The first two principal components of the learned state representation when using a non-
recurrent network to learn the state representation are shown in Figure 5.18a. In this repre-
sentation it can be seen that the black points, which represent the locations of the walls, are
grouped together in clusters. Three different clusters can be distinguished, representing the
three walls of the environment which are hit most often. The first two principal components
of the learned state representation using the recurrent network can be found in Figure 5.18b.
Comparing this to the non-recurrent state representation it can be seen that this representation
shows a much smoother transition in the colors.

(a) T-SNE visualisation of the learned SR using the non-
recurrent state encoder

(b) T-SNE visualisation of the learned SR using the recur-
rent state encoder

Figure 5.19: T-SNE visualisations of the learned representations of the large environment

The t-SNE representations for both the non-recurrent and recurrent state representations can
be seen in Figures 5.19a and 5.19b respectively. In the plot showing the visualisation of the
non-recurrent state representation, it can be seen that the different areas of the environment
are separated well, as it shows good separation of the colors. Comparing this to the recurrent
state representation however, it can be seen that the non-recurrent state representation lacks
the smooth color gradient that the recurrent state representation shows.

From the plots showing the non-recurrent state representation it can be seen that especially
the states close to the walls of the environment are not represented as well as in the recurrent
state representation. Therefore, it is interesting to see what the learned state representation
looks like at observations close to the walls. To that end, the first two principal components
from the state representation from the points seen in Figure 5.20 are mapped separately. These

Arnold Bijman University of Twente

CHAPTER 5. RESULTS AND DISCUSSION 55

mappings can be seen in Figure 5.21a and 5.21b for the normal state representation and the
recurrent state representation respectively.

Figure 5.20: Robot positions close to the walls

Looking at the state representation near the walls for the non recurrent state representation
framework, as can be seen in Figure 5.21a, it can be clearly seen that it has four clusters of
points. These clusters are the same as which can be seen in Figure 5.18a, which shows the
state representation for the entire dataset. It can be seen in the figure that these clusters are
interconnected with some points, but do not show a clear gradient in the color of these points.
These interconnecting points are the observations in which the intersection of two walls can
be seen in the camera observation. The target location, which are the brightest points, is also
partially mapped between two clusters. The four clusters each represents one of the walls, and
the points in between the corners between these walls. The representation shows an empty
area in the middle, which indicates that it is able to retain some of the physical shape, as these
points are all close to the walls.

Mapping the same points in the dataset using the recurrent state representation network, as
can be seen in Figure 5.21b, shows a very different image. There are no real clusters of points,
instead, the points are much more spread out. It can also be seen that the color of the points
changes smoothly over the outer perimeter. This shows that the recurrent model is able dis-
tinguish the states well, in contrast with the non recurrent model. The states are not very well
confined to the edges, as they are sometimes spread to the middle. This suggests that the recur-
rent state representation is not as good in keeping the physical properties of the environment.

Figure 5.22a shows the episode reward in the large square environment for target location 1.
This plot shows the episode reward for both the non-recurrent and the recurrent state repre-
sentation mappings. Both the recurrent and non-recurrent state representations allow for the
policy to learn to reach the target. The non-recurrent state representation gives a more reliable
policy, which converges to a good solution. The policy based on the recurrent state representa-
tion also learns to reach the target, albeit less reliably. In the last 100 episodes, the policy based
on the non-recurrent state representation reaches the target 98 times, while the recurrent state
representation allows the policy to reach the target 72 times in the same episodes.

Figure 5.22b shows the episode reward in the large square environment for target location 2.
This target proves to be harder to reach, with the target reached only 56 and 50 times for the
non-recurrent and recurrent based policies respectively. Furthermore, policies trained on a
non-recurrent state representation proved to be unstable, with the RL algorithm failing to find
a policy that reaches the target regularly. Across three attempts, the results from the policy
shown in Figure 5.22b was the only policy that learned to reach the target regularly.

To analyse why the policy based on the recurrent state encoder network performs worse than
the policy based on the non-recurrent state encoder for reaching target location one, further

Robotics and Mechatronics Arnold Bijman

56
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

(a) First two principal components of the non-recurrent
state representation of the points from Figure 5.20

(b) First two principal components of the recurrent state
representation of the points from Figure 5.20

Figure 5.21: First two principal components of the learned representation of the edges of the environ-
ment

(a) Episode reward in large square environment for target
location 1

(b) Episode reward in large square environment for target
location 2

Figure 5.22: Episode reward for both the recurrent and non-recurrent state encoder for two target loca-
tions in the large environment

experiments have been performed. To test how well each of the models generalise to unseen
data, a new set of test data is gathered. Instead of gathering this data using the random policy,
the data is gathered by training an RL policy, as this will ensure that the newly gathered data
has a different distribution than the training data. More information on the new dataset can be
found in the appendix E.1.

Figures 5.23a and 5.23b show the resulting t-SNE plots for the non-recurrent and recurrent
state encoders respectively. The blue circles indicate the places where the target location has
been plotted. Firstly, it can be seen that while the non-recurrent SR encoder maps all target
location points to two locations. The recurrent state encoder however, maps the target location
to four different areas in the plot. Generally speaking, it can be seen that the non-recurrent SR
encoder preserves the color gradient better than the recurrent case. The t-Sne visualisations of
both encoders when mapping the training data to the states, seen in Figures 5.19a and 5.19b
for the non-recurrent and recurrent encoders respectively, show that on the training data, the
recurrent SR is better. This shows that the non-recurrent state encoder network generalises
better to unseen data.

A correlation analysis shows that the recurrent encoder network has worse generalisation per-
formance than the non-recurrent state encoder. This is mainly seen in the x component, the
correlation with x is very low in the test data using the recurrent state encoder. The non-
recurrent state encoder also shows much lower correlation in the test data, but not as severely

Arnold Bijman University of Twente

CHAPTER 5. RESULTS AND DISCUSSION 57

(a) T-SNE visualisation of the SR using the non-recurrent
state encoder

(b) T-SNE visualisation of the SR using the recurrent state
encoder

Figure 5.23: T-SNE visualisation of the state encoder applied to test data

(a) Cumulative reward in the single colored L-shape envi-
ronment

(b) Terminal reward in the single colored L-shape envi-
ronment

Figure 5.24: Episode and terminal reward signals in the L-shaped environment

as the recurrent state encoder. Further analysis of the Q-value and the correlation matrixes
between the learned representation can be found in the appendix E.

5.3.2 L-shaped environment with same color walls

The L-shaped environment is adapted to be more challenging. This is achieved by changing the
colors of the walls to all have the same color. Again, the recurrent and non-recurrent models
are tested and compared. In this environment, 500 training episodes are shown because that
the LSTM model still showed improvement after 250 episodes.

Figure 5.24a shows the moving average of the episode reward throughout training for both the
recurrent and non-recurrent model. From this graph can be seen that the recurrent model
ends up having a higher score, but is not converging to reach the target each time. Figure 5.24b
shows the terminal reward that is achieved for the recurrent and non-recurrent models in this
environment. For the entire 500 episodes, the non-recurrent model reaches the target location
45 times, while the recurrent model reaches the target 117 times. In the last 100 episodes of
training, where the noise added to the actions has a small magnitude, the difference becomes
larger. The non-recurrent state representation policy reaches the target only two times in these
100 episodes. The recurrent based policy reaches the target location 50 out of 100 times.

Robotics and Mechatronics Arnold Bijman

58
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

Figure 5.25: Dataset used for training the state representation on the large environment with cones

5.3.3 Square environment with colored cones

An even more challenging environment was created, shown in Figure 4.3b. This environment
is challenging, because the walls of the environment are highly ambiguous, as these are the
same color. The environment is square, adding symmetry to the environment. The colored
cones can be used to locate the robot. However, to reach the target, there are many states in
which the cones cannot be seen. To solve this environment, a relatively long sequence length
is needed for training the recurrent network.

For reference, the robot locations in the training dataset are included, with the color indicating
the reward that is received for being at that position. This plot also shows the target location.
This can be found in Figure 5.25.

First, the state representation using the standard, non-recurrent framework is considered. The
first two principal components of the learned representation can be found in Figure 5.26a, and
the resulting t-SNE plot in Figure 5.26b.

(a) First two principal components of the learned SR (b) T-SNE visualisation of the learned SR

Figure 5.26: Visualisation of the learned SR of the large environment with cones using the non-recurrent
state encoder network

Figure 5.26a has numbered ellipses drawn into the plot. In the plot can be seen that the three
cones are represented in distinct parts of the representation, at ellipse one, two and three. El-
lipse one shows the middle cone, ellipse two the cone farthest from the target, and cone three
the other cone. These cones are represented very distinctly in the representation, and are not
connected smoothly between those. Ellipse four encircles the part of the representation which
represents the area of the target location and the area on the opposite of the middle cone. It can
be seen that these two areas are mixed together, as colors are mixed in this area. This inability
to separate those two areas can also be seen in the t-SNE plot of the learned representation, as

Arnold Bijman University of Twente

CHAPTER 5. RESULTS AND DISCUSSION 59

can be seen in Figure 5.26b. While part of the representation shows a smooth color gradient,
parts of the representation shows mixing of colors. This signifies that the learned represen-
tation is not smooth and is not able to separate distinct areas of the environment. This state
representation did not allow for learning a good policy.

(a) First two principal components of the learned SR (b) T-SNE visualisation of the learned SR

Figure 5.27: Visualisation of the learned SR of the large environment with cones using the recurrent
state encoder network

The plots of the first two principal components and the t-SNE visualisation of the learned rep-
resentation using the recurrent model can be found in Figures 5.27a and 5.27b respectively.
Judging from the t-SNE visualisation, the recurrent state representation learning framework is
better able to separate the different areas in the representation. To achieve a good separation
between the states, the sequence length for training the recurrent state representation network
needed to be increased to 16.

The plot of the first two principal components highlights the position of the origin with the
blue circle. This is an artifact of the fact that the first 15 states are not trained explicitly, but only
used compute the 16th state. Going to longer sequence lengths aggravates this problem. This
limits the sequence length to use only small sequences, which in turn limits the class of envi-
ronments which can be solved using the recurrent state representation framework. Instead of
ignoring the first states in a sequence, padding can be applied to also train the encoder network
using the first states in the sequence. However, padding distorts the results, as the biases in the
network will give a non-zero state that is transferred in time. Instead of padding the sequence
with zeros as observations, a variable sequence length can be used during training. This how-
ever introduced artifacts into the state representation and did not give improved results. Using
a shorter sequence length only to train the observations in the start of the sequence, such that
all observations in the sequence are used for training the encoder network gave similar results.
It did not show an improved state representation, and suffered similar artifacts in the state rep-
resentation for the initial states.

Despite the recurrent encoder network producing a better separated state representation, no
successful policy could be trained.

5.4 Additional experiments

This section covers some further experiments that have been performed. These experiments
have been performed using the non-recurrent state encoder network, which is trained using
prior set three.

Robotics and Mechatronics Arnold Bijman

60
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

5.4.1 Visual feature close to the target

From earlier experimentation in the large square environment, it was found that target location
two, close to one of the walls was hard to reach 5.22b. From plotting the first two principal
components of the learned representation of observations close to the walls it was found that
these points close to the walls were clustered together 5.21a. To test whether performance
would improve if a visual aid was added close to the target that would help to localise the robot,
the large square environment was adapted. A visual feature was added on the wall close to the
target location, the environment can be seen in Figure C.1a.

Figure 5.28: Moving average of the episodic reward in the large square environment comparing adding
a visual feature close to the target versus no visual feature close to the target

Figure 5.28 shows the episodic reward during training for both the environment with a visual
feature added as the environment without visual feature. From this plot it can be seen that the
performances of both agents are relatively close. In the last 100 episodes, in the environment
with visual feature reaches the target 80 times, versus 56 times for the standard environment.
As previously mentioned, in the standard large square environment, the agent learns to reach
the target location in 250 episodes one out of three training runs. With the visual feature added,
the agent learns to reach the target reliably across three runs.

5.4.2 Obstacle

So far, most environments have been open spaces without obstacles. To test whether the state
representation can learn to avoid an obstacle, an obstacle is placed between the starting posi-
tion of the robot and the target location in a square environment. An overview of the environ-
ment can be found in Figure C.1b.

(a) Robot positions during training (b) Episode reward during training

Figure 5.29: Results training a policy to reach the target location in the environment with an obstacle

Arnold Bijman University of Twente

CHAPTER 5. RESULTS AND DISCUSSION 61

Figure 5.29a shows the x and y positions of the robot during training. Figure 5.29b shows the
episodic reward during training. From this it can be seen that the agent learns to reach the
target reliably. The agent learns to avoid the obstacle.

5.4.3 Gym environments

To test the robotic priors in different types of environments and different tasks, the priors are
used to train a state representation framework in two gym environments. As the gym environ-
ments only have an rgb input, the network architecture is adapted. The architecture can be
found in Figure 4.6. The input dimensions was set to [100,100,3].

Pendulum

The first gym environment in which the robotic priors are tested is the pendulum (37). The
agent has to swing the pendulum upright, and then balance the pendulum. The reward is based
on the position of the pendulum, the speed and the magnitude of the input torque. To train the
state representation, 18000 observations are collected. The state representation is trained using
the same priors, using the same hyper-parameters. The resulting state representation can be
found in Figure 5.30a. From this figure can be seen that the states lie on a circle, as is expected.

(a) Learned SR in the pendulum environment (b) Episode reward from training in the pendulum envi-
ronment

Figure 5.30: Results in the pendulum environment

Furthermore, it can be seen that the reward changes relatively smoothly, with a clear color
gradient in the states. Although not solely determined by the position, the reward signal is still
dominated by the angle of the pendulum.

From the plot of the learned state representation can be seen that the encoder network learns
to encode the x and y positions of the pendulum end effector. This is not sufficient to solve this
environment, as the speed of the pendulum is necessary to balance the pendulum. Therefore
the state used as input for the DDPG algorithm is set to [ŝt v̂t], where v̂t = ŝt − ŝt−1. At t = 0 v̂t is
set to zeros.

Figure 5.30b shows the episodic reward throughout training. After episode 90 it learns to bal-
ance the pendulum in most episodes. Because the agent is not able to balance the pendulum
exactly in the middle, thus having to apply more torque on the pendulum to balance it, the
episode reward is low compared to training on ground truth data. Using the ground truth data,
the policy converges after episode 40, after which it achieves mean episode reward of approxi-
mately -144.

This task benefits from having a accurate state representation, however, the maximum accu-
racy is limited by the resolution of the observation. Before using observations of 100x100 pixels,
observations of 30x30 pixels were used. Although the learned SR was similar, this did not allow

Robotics and Mechatronics Arnold Bijman

62
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

(a) First two principal components of the learned SR (b) T-SNE visualisation of the learned SR

Figure 5.31: Learned SR in the LunarLander environment

the agent to learn to balance the pendulum. Increasing the resolution of the observation fur-
ther will likely reduce the gap in episode reward between the policies trained on the ground
truth states and the state estimations.

LunarLander

The second environment in which the robotic priors are tested is in the LunarLander-
continuous (38) gym environment. The target of this environment is to gently land a moon-
lander on a landing pad by controlling the thrust of three engines. The landscape in the envi-
ronment changes slightly for each episode. This is different from all previous tasks, where the
starting state was equal between episodes. The state encoder network is trained using 25500
observations. The resulting representation can be found in Figure 5.31. From the plots can be
seen that the state representation is not one smooth field, but instead many small clusters of
points. A similar phenomenon was observed by (31), where the different placement of a dis-
tractor object caused different clusters in the learned state representation. In this environment,
the random landscape causes each episode to end up with it own cluster. In each cluster one
can find a terminal state, distinct from other states by having a lower reward. This clustered
state representation did not allow the agent to learn the task successfully.

5.5 Changing encoder architecture

This chapter considers some final experiments and late results that could not be included in
the main body of this work.

5.5.1 Architecture

As mention section 5.3, the states close to the walls of the large square environment are not
represented as well as the other states. This can be seen from the clustering of the points near to
each of the walls, where the real distribution would be more even. Close to the walls, the camera
observation does not give as much information as it does for other points, as the camera image
will be identical from different points in the environments. However, the observation from the
lidar sensor should be sufficient to disambiguate these states.

In the final stages of this work, it was found this was caused by the architecture of the encoder
network. This architecture, which can be found in Figure 4.5, fuses the two streams from the
camera and lidar at the end of the network. After fusing the two streams, there is only a linear
layer in the network. This limits the network to combine the information from both streams
linearly. This can be an issue, especially apparent close to the walls, as close to the walls the
camera data does not give as much information is it does when the camera can see multiple
walls in the image.

Arnold Bijman University of Twente

CHAPTER 5. RESULTS AND DISCUSSION 63

To rectify this issue, the existing architecture was altered. The new architecture is defined in
Figure 4.7. This new encoder network architecture is used in the experiments shown below.

5.5.2 Initial results

This architecture was first tested in the large square environment, as this environment shows
whether the new architecture will be better at disambiguating positions close to the walls. After
learning the state representation for the large square environment, an RL agent was trained to
reach target location two. This target location was difficult to reach using the previously learned
state representation. It was hypothesised that this was due to the bad representation close to
the walls. The new state representation should be good enough for an RL agent to learn to
reach positions close to one of the walls, as this would show the new architecture provides an
improvement.

To learn a good state representation which allowed for learning to reach the target location,
some tuning of the hyper-parameters was required. The magnitude of the L2 regularization
was reduced to 10−6. The prior weights were adjusted to Lpriors = 1 ∗ Ltemp + 2 ∗ Lcaus + 1 ∗
Lprop + 1∗ Lrep. The resulting state representation can be found in Figure 5.32. Comparing
the first two principal components of the learned representation using the new architecture
with the learned representation using the old architecture as found in Figure 5.18a shows some
clear differences. The old architecture shows the walls as clusters, barely connected. The new
architecture shows that the walls are connected, and shows a smooth transition between the
walls of the environment. The state estimates close to the walls of the environment are plotted
in Figure 5.34a. This shows how well the states close to the walls are represented. From this
plot shows that the clustering of points close to the walls is reduced, and the rewards are more
smoothly connected compared to the old architecture.

(a) First two principal components of the learned SR (b) T-SNE visualisation of the learned SR

Figure 5.32: Learned SR of the large square environment using the new encoder network architecture

For the sake of comparison the learned representation using the old architecture is plotted
again, see Figure 5.33. Comparing the first two principal components shows a clear difference.
The old architecture produces a state representation that less smoothly connected. Also, the
walls are not connected, but instead clustered. The new architecture shows that the walls are
connected better. The t-SNE visualisations also show that the new architecture is an improve-
ment. The t-SNE visualisation of the new architecture, shown in figure 5.32b shows a clearer
color gradient towards the target location.

To test whether the new state representation is indeed better using the new encoder network
architecture, the learned state representation will be used to train an agent. Target location two
will be used for this, as this target could not be reached reliably based on the previous encoder
architecture. Figure 5.34b shows the episode reward throughout training based on the new
state representation.

Robotics and Mechatronics Arnold Bijman

64
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

(a) First two principal components of the learned SR (b) T-SNE visualisation of the learned SR

Figure 5.33: Learned SR of the large square environment using the old encoder network architecture

(a) First two principal components of the learned SR,
showing the states close to the edges of the environ-
ment as in 5.20

(b) Episodic reward for target 2 in the large square en-
vironment

Figure 5.34

This shows that the new architecture gives an improved state representation as this target loca-
tion can be reached reliably using this new state representation.

5.5.3 Testing in other environments

It was found that using the new state encoder architecture allowed for learning to reach tar-
get location two in the large square environment. However, this new architecture should also
at least be able to solve all previously solved environments. Therefore, each of these environ-
ments are tested again using the new encoder architecture.

Figures 5.35 and 5.36 show the training results for the environments and targets that were suc-
cessfully solved using the old architecture. Only the large square environment shows slightly
unreliable performance. In the rest of the environments, learning still happens as expected.

After validating that the new encoder architecture and hyper-parameters allow for learning suc-
cessful policies in the environments in which the old architecture was also successful, other
environments can be considered. The first environment in which the old encoder network did
not allow for learning a good policy, is the L-shaped environment with all its walls the same
color.

Figure 5.37 shows the episode reward achieved during training in the L-shaped environment
with the same colored walls. In the last 100 episodes, the robot reaches the target 51 times,
of which 33 times in the last 50 episodes. The new architecture does improve over the old en-
coder architecture, as the policy now learns to reach the target location successfully. However,

Arnold Bijman University of Twente

CHAPTER 5. RESULTS AND DISCUSSION 65

(a) Episode reward for the small square environment (b) Episode reward for the L-shaped environment

Figure 5.35: Episode reward using the new encoder network architecture for the small square and L-
shaped environment

(a) Episode reward for the large square environment,
target location one

(b) Episode reward for the environment with obstacle,
as can be found in Figure C.1b

Figure 5.36: Episode reward using the new encoder network for the large square environment and the
obstacle environment

Figure 5.37: Episode reward using the new encoder architecture in the L-shaped with the same colored
walls

it is still not reliably reaching the target location, indicating that even with this new encoder ar-
chitecture, the learned state representation is not good enough. Figure 5.38 shows the learned
representation in the L-shaped environment with same colored walls using the new encoder
architecture. To better visualise the representation, the first three principal components are
plotted, as this gives a better visualisation in this particular case. What can be seen from the vi-
sualisations is that the learned state representation fails to capture the physical structure of the
environment well. While the learned representation shows a good color gradient, the locations
close to the starting position are mapped closely to the positions of the target location. A simi-

Robotics and Mechatronics Arnold Bijman

66
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

(a) First three principal components of the learned SR (b) T-SNE visualisation of the learned SR

Figure 5.38: Visualisation of the learned SR in the L-shaped environment with the same color walls
using the new encoder architecture

lar effect was seen previously, as described in 5.2.1. This shows that the distance between states
in the learned representation is not representative of the difference in reward. The robotic pri-
ors do no directly account of the difference in reward between observations and does therefore
not account for the space in which there are no observations.

Arnold Bijman University of Twente

67

6 Conclusions and recommendations

6.1 Answering the research questions

The field of reinforcement learning shows great potential in advancing the field of robotics.
This has the promise of making robots smarter and tackle more complex tasks. To achieve these
tasks, robots must often rely on generic sensors, as these are cheap and can be used to tackle a
wide verity of tasks. These generic sensors often produce high dimensional data, which makes
learning tasks using RL more challenging and requires more data for training agents. This is
also true for mobile robot navigation, the problem on which this work has focused. State rep-
resentation learning aims to solve this problem of high dimensions of the observation space
by learning a low dimensional state representation. This state representation maps the high
dimensional observations to a low dimensional state space. This learned state representation
is then used for training an RL policy. In the context of robotics, learning such a state repre-
sentation can be done using robotic priors. Robotic priors have been used for mobile robot
navigation in literature, but not in a continuous action space. This leads to the first research
question:

1 How can robotic priors be used to learn a good state representation with a continuous
action space?

Section 3.1 has presented the two sub-questions which are used for answering this research
question:

1a Are the proposed priors from (24) and (11) able to learn a good representation when
using a continuous action space, when these are adapted to better work with continu-
ous actions?

1b Can the current sets of priors be adapted to better make use of the continuous nature
of both the reward signal and action space by removing conditioning on the training
points?

To answer these questions, several environments were created. These environments varied in
size and difficulty. For each questions, two sets of robotic priors were created, as presented in
4.1. The first two sets of robotic priors were adapted from priors found in literature. Two other
sets of priors were created, in which the conditions were replaced with continuous expressions.
This is a novel approach to implementing robotic priors. To answer the sub-questions, and
consequently research question 1, each set of priors was tested. To test each set of priors, each
set was tested in the three environments presented in the section 4.1.

Using each set of priors, a state representation was learned using a dataset gathered from each
environment. To judge the quality of the learned representation, several methods were used.
The first method was to qualitatively analyse the learned state representation. For this analysis,
the first two principal components to the learned state representation and a t-SNE visualisa-
tion were plotted. One way to analyse a learned representation is to look at the color gradient
present in both plots. These plots should show a smooth color gradient, as this means that
different areas of the environment are separated well.

The most important way of evaluating a learned state representation is to train a policy which
is based on this state representation. This is most important, as the goal of learning a state
representation is to more easily learn to solve a task, which in this work entails navigating the
environment to reach the target location.

Robotics and Mechatronics Arnold Bijman

68
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

Using the results in section 5.2.1 research question 1a can be answered. It was found that adapt-
ing the priors from the work of (24), called prior set one, was not able to learn a good repre-
sentation in two of the three environments. The priors in set two, which were priors adapted
from (11), were able to learn a good representation in the small square environment and the
L-shaped environment. In both environments, a good policy could be learned that learned to
reach the target location. This set of priors did not learn a good representation in the large
square environment. The hyper-parameters for both sets priors were kept the same for each
environment, given that these priors work well in the first two environments, it is possible that
a good representation could be learned for each of the environments if the hyper-parameters
are tuned appropriately for each of the environments, although this has not been achieved in
this work. This sensitivity to the hyper-parameters makes these sets of robotic priors less suit-
able, as this means spending more effort to successfully solve an environment.

The results presented in section 5.2.2 can answer research question 1b. It was found that us-
ing the causality prior as designed initially in 3.14 did not result in a good state representation.
Therefore, the causality prior was adapted 5.1. Using this new causality prior in both prior set
three and four showed good results for each of the environments. Both sets of priors worked
equally well. These priors were able to learn a good representation in each of the environments
without the need of extensive hyper-parameter tuning. This can be a big advantage, as tun-
ing these parameters can be an expensive exercise. Furthermore, the implementation of these
continuous priors from set three and four is significantly easier than the conditional priors
from set one and two. This is evident when comparing the implementation details in section
4.2.2. It was further shown that the priors in set three is also able navigate an environment
with an obstacle, and was successful in learning a state representation in the gym environment
pendulum.

After performing all the experiments, the research question can be answered. Two methods
for learning a state representation with a continuous action space have been presented. The
first method is to relax the conditions in the conditional priors and the second approach is to
replace the conditions with continuous expressions. Both approaches have been shown to be
viable. It was shown that relaxing the conditions on the priors made these priors sensitive to
the hyper-parameters of these priors. The continuous priors was found to work better as these
were not as sensitive to hyper-parameter tuning and worked well in the different environment
without requiring further tuning.

To answer the second research question, further experiments have been performed. The sec-
ond research question:

2 To what extend can a recurrent state representation be learned using the adapted pri-
ors in a continuous action space?

It was found that using a recurrent encoder did help to distinguish ambiguous states, especially
when the colors of the walls could not be used to uniquely distinguish the states. Learning a
policy using the recurrent state encoder showed that the recurrent state encoder did not allow
to learn a policy that reaches the target location reliably. It was found that the recurrent encoder
generalises less well to the distribution of data that is encountered when training a policy. In
the L-shaped environment with all walls the same color it was found that the non-recurrent
state encoder did not allow for learning a policy to reach the target with the old encoder archi-
tecture, while the recurrent version did, albeit in only half of the episodes. In the environment
with colored cones, no good policy could be learned. The recurrent and non-recurrent state en-
coders have been compared extensively. It was found that the recurrent state encoder network
has poorer generalising performance from training to test data. This lack of generalising per-
formance limits the practical usefulness of the recurrent state encoder, as this does not allow
for learning a good policy that reaches the target reliably. Furthermore, in the partially ob-

Arnold Bijman University of Twente

CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS 69

servable environment with the colored cones, no good state representation could be learned.
When long sequences are required for training the state representation, the quality of the state
representation suffers. Whether the recurrent state encoder network can learn a good state
representation using the current priors in partially observable environments remains an open
question.

It was found that the architecture of the state encoder network can play a significant role in the
performance of the reinforcement learning algorithm. The architecture of the non-recurrent
state encoder network was adapted and tested and showed improvement over the previously
used architecture. Due to time constraints, the recurrent state encoder network architecture
has not been adapted. It is possible that adapting the architecture of the recurrent encoder
network will improve the results that have been achieved.

6.2 Recommendations for future work

This work has focused on applying state representation learning with robotic priors to mo-
bile robot navigation. Recommendations for further work on the topic of state representation
learning using robotic priors are given below.

6.2.1 Exploration

Exploring the environment is crucial for learning a good state representation. In this work,
the used environments could all be explored sufficiently using only OU noise. If environments
become more complex to navigate, by having more bends and tighter spaces, using only OU
noise will not give a sufficiently good exploration of the environment. Harder to reach spaces
will hardly be explored by using the OU noise. To explore these harder to reach spaces, another
approach is be needed. To achieve good exploration some form of intrinsic reward could be
used which encourages the robot to explore unseen parts of the environment.

6.2.2 Distribution of training data

Having a good distribution of training data across the environment is important for learning
a high quality state representation. This is especially true if the state representation is used to
reach arbitrary target locations within the environment. Solving the problem of exploration
could help to ensure having a good distribution. However, the SRL memory size is limited and
could overflow during exploration. The naive method which is used in this work is to remove
the oldest experiences. This however does not ensure a good distribution of states across the
environment as some parts of the environments might be explored in the beginning of train-
ing, and others later. Choosing which experience to remove from the SRL memory when the
memory is overflowing can help to ensure a good distribution.

6.2.3 Environment dynamics

This work has only considered the problem of mobile robot navigation in a limited set of en-
vironments. In this problem, a velocity set-point is set by the policy. This velocity set-point is
then converted to wheel velocities by the internal controller. This command is then executed
for a set duration, making the steps similar in time. The SRL method has no need to learn
the velocity of the robot as this is set by the controller. Therefore, the dynamics of the envi-
ronments were not important for solving the task. In other robotics applications this can be
different. Often the dynamics are important for solving tasks. Expanding the concept of state
representation learning to the class of problems where the environment dynamics are impor-
tant for solving the task can expand the class of problems that can be solved using SRL.

Robotics and Mechatronics Arnold Bijman

70
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

6.2.4 Changing environments

This work has focused on a class of environments that stay static between episodes. In a real
world situation, this will rarely ever be the case, as environments will change over time by dif-
ferent lighting conditions or objects moving about. The current set of robotic priors are not able
to distinguish between sources of variation that are relevant for the task and sources that are
not relevant. Furthermore, if changes happen between episodes but not within episodes, the
learned state space will no longer be coherent, as further detailed in section 5.4.3. To improve
applicability of the state representation learning using robotic priors framework, this would
need further work.

6.2.5 Partially observable environments

This work has performed further investigation into the recurrent state representation learn-
ing using robotic priors framework. It was found that a recurrent state encoder can be trained
using the same robotic priors as are used to train a non-recurrent state encoder network. How-
ever, in this work, no good representation could be learned in the environment with colored
cones, which is partially observable. As mentioned previously, changing the architecture of the
recurrent state encoder network could help to improve the results achieved in this work.

Arnold Bijman University of Twente

71

A Additional background information

A.1 Compression of observation

It can be assumed, given limited noise, that compressing the observation should retain most
of the relevant information. Observations can also often be brought back to a lower dimension
with minimal loss, such that the loss of information is minimal. This idea can be exploited for
learning a state representation.

One method of performing dimensionality reduction is Principal Component Analysis (PCA).
PCA is a linear transformation, which is able to compress and decompress observations with
minimal reconstruction error (14). This dimensionality technique was employed to play a Su-
per Mario game (12), where only 4 dimensions were needed to obtain a similar performance
to using the observations directly. It was further employed for robotics simulation to solve the
Swimmers and Mountain Car simulations (40).

This linear dimensionality reduction can be expanded to non-linear dimensionality reduction
methods using auto-encoders (21). The state representation is learned using samples from
the environment, which trains both the encoder and decoder to map the input to a low dimen-
sional state, and to project it back to its original input. After these mappings have been learned,
the encoding part of the network can be used to map new observations to a lower dimensional
state, which can be used as input to the RL algorithm. The well known variants on the AE, the
variational autoencoder and the denoising autoencoder can also be used for learning a state
representation (52; 22).

These models map only the current observation to the state, and as such cannot model any
dynamics. Furthermore, auto-encoders are known to sometimes ignore smaller objects in the
input, which can be significant if these are relevant for the task. Furthermore, the auto-encoder
framework does not distinguish between environment elements based on whether these are
task relevant and irrelevant. It will model factors of variation in the data, which would mean
that it will model elements of the environment which are not relevant for the task.

The AE framework can be expanded such that environment dynamics will help constrain the
state space. (16) adds the constraint that the transition between two consecutive states st and
st+1 must be linear.

A.2 Dynamics model

Another class of methods aims a modeling the environment dynamics from observations.

A.2.1 Forward model

The forward model aims at forcing the states to encode all information necessary to predict the
next state, given the action that was taken. This method works by encoding the observation to
a state estimation, ŝt =φ(ot), the next state is then predicted using the current state estimation
and the action taken: ŝp

t+1 = ξ(ŝt , at). The model is then optimized to minimize |ŝp
t+1−φ(ot+1)|.

Further constraints can be made to improve the representation. One common constraint is
that the transition between states needs to be linear (16; 52), such that the next state is a linear
combination of the current estimated state st and the action at .

Forward models are able to learn representations of controllable factors in the environment.
The model will model those aspects of the environment which can be affected by the action
the agent takes. Therefore, it will model elements of the environment which are predictable.
Environment aspects that cannot be controlled by the actions of the agent, but instead are
controlled by other factors are often not predictable, and thus these will not be encoded into

Robotics and Mechatronics Arnold Bijman

72
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

the state. Forward models will thus model predictable aspects of the environment into its state,
and will tend to not model other environmental aspects.

The forward model can be combined with the auto-encoder framework to improve the state
representation and stability (9; 26). A forward model combined with the AE framework can be
implemented the following way. Using the estimated state st and at , the next state ŝt+1 can be
predicted. ŝt+1 can then be mapped to ôt+1. The model is trained to minimise the pixel-wise
loss between ôt+1 and ot+1.

A.2.2 Inverse model

Instead of a forward model, in which a future state is predicted, an inverse model can be em-
ployed. The inverse model first projects observations ot and ot+1 onto states ŝt and ŝt+1 and
then tries to predict the action ât that explains the transition from ot to ot+1. Just like the for-
ward model, this poses constraints on the state representation, in the case of the inverse model
to make the action predictable from the states.

The forward and the inverse model can be combined, and are found to be complementary. (7)
has used the combination of a forward model and an inverse model to learn the state repre-
sentation for a robotic arm. The robotic arm was able to learn to poke objects. In their work it
was found that using a forward model in combination with the inverse model regularizes the
learned state space. Using the combination of forward and inverse model consistently outper-
formed the inverse model on its own.

The work of (13) combines the forward and inverse models with an auto-encoder, as well as
the prediction of the instantaneous reward. Using all these modalities they were able to learn a
state representation which gave relevant information for racing a virtual car on a racetrack.

Arnold Bijman University of Twente

73

B Additional figures

(a) Robot locations during training in the L-shaped envi-
ronment

(b) Robot locations during training in the large square en-
vironment

Figure B.1: Paths taken during taken in the L-shaped and large environments while using SR based on
prior set two

(a) First two principal components of the learned SR of
the L-shaped environment using prior set one

(b) t-SNE visualisation of the learned SR of the L-shaped
environment using prior set one

Figure B.2: t-SNE visualisations of the learned state representation in the L-shaped environment using
prior set one

(a) First two principal components of the learned SR of
the L-shaped environment using prior set tow

(b) t-SNE visualisation of the learned SR of the L-shaped
environment using prior set two

Figure B.3: t-SNE visualisations of the learned state representation in the L-shaped environment using
prior set two

Robotics and Mechatronics Arnold Bijman

74
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

(a) t-SNE visualisation of the learned SR of the small en-
vironment using prior set three

(b) t-SNE visualisation of the learned SR of the L-shaped
environment using prior set three

(c) t-SNE visualisation of the learned SR of the large envi-
ronment using prior set three

Figure B.4: t-SNE visualisations of the learned state representations using prior set three

Arnold Bijman University of Twente

APPENDIX B. ADDITIONAL FIGURES 75

(a) t-SNE visualisation of the learned SR of the small en-
vironment using prior set four

(b) t-SNE visualisation of the learned SR of the L-shaped
environment using prior set four

(c) t-SNE visualisation of the learned SR of the large envi-
ronment using prior set four

Figure B.5: t-SNE visualisations of the learned state representations using prior set four

Robotics and Mechatronics Arnold Bijman

76
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

C Additional environments

(a) Overview showing the large square environment as in
4.2 with an added visual feature close to the target

(b) Overview of the square environment with an obstacle
blocking the direct path to the target

Figure C.1: Overview of environments used in additional experiments, showing the initial position of
the robot and the target location

Arnold Bijman University of Twente

77

D Removing the conditions from priors

Section 3.2.1 has covered an extensive analysis of the robotic priors which will be used in this
work. This section has introduced the sets of continuous priors which is used in prior sets three
and four. In these priors, the condition at1 = at2 is replaced with the expression e−β‖at1−at2‖2

in
the loss function. To see if using this expression in the loss function has any benefit, a set of
priors is used in which the conditions of the original priors are removed and not replaced with
an expression in the loss function. These priors then become:

Ltemp (D,φ) = E
[(‖∆st‖

)2
]

(D.1)

Lpr op (D,φ) = E
[(‖∆st2‖−‖∆st1‖

)2
]

(D.2)

Lr ep (D,φ) = E
[

e−‖ŝt2−ŝt1‖2‖∆ŝt2 −∆ŝt1‖2
]

(D.3)

Lcaus(D,φ) = E
[

e−‖ŝt2−ŝt1‖2
]

(D.4)

Figure D.1 shows the episode reward throughout training for small and large square environ-
ments and the L-shaped environment. The figure shows that in the small square environment,
the policy converges to a good solution. In the large square environment, the policy learns
to reach the target momentarily but it is not stable and not able to recover. In the L-shaped
environment, no solution is found.

Figure D.1: Test dataset

Robotics and Mechatronics Arnold Bijman

78
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

E Generalisation of the state representation

E.1 Dataset for testing generalising performance

To test the generalising performance of the recurrent and non-recurrent state encoder net-
works, a test dataset was gathered. This was done by training a policy based on a trained recur-
rent encoder network. This network was not trained for 30 epochs but instead for 10 epochs.
This made the learned state representation not good enough to learn a policy that would learn
to reach the target reliably. This ensured sufficient exploration of the environment.

Figure E.1: Test dataset, used to analyse the gener-
alising performance

Figure E.2: Test dataset, where the locations are
plotted versus the reward

Gathering the data using an RL policy instead of using random exploration ensures that the
test data has a different distribution than the test data. This means that the actions are more
varied, as well as the paths that are taken by the mobile robot. This test data is more aligned
with the data that would be gathered when training a policy, and is therefore a good test of
generalisation. The resulting dataset can be found in Figures E.1 and E.2.

E.2 Principal component analysis

As presented in section 5.1, the agent is able to successfully reach the target in each of the envi-
ronments when training on the ground truth data. The ground truth data consists of five values,
of which two represent the target location. The target location is not necessary for training the
agent, as the goal is stationary. To train an agent based on a learned state representation, this
state representation must learn to at least represent the x and y locations of the robot, as well
as the orientation.

To test whether this is actually learned by the agent, the pearson correlation coefficient can be
computed between the ground truth state, the x, y, and θ of the root and the principal compo-
nents of the learned representation. It should be noted that this only evaluates the linear cor-
relation between the ground truth state and the learned state representation, while this may be
very non-linear.

This analysis is performed for both the recurrent state representation encoder and the non-
recurrent version. Although this could be done for each of the environments, this analysis is
performed only for the large square environment. Table E.1 shows the resulting correlation co-
efficients between the ground truth and the four principal components for the recurrent state
representation encoder. Table E.2 shows the same for the non-recurrent encoder. The highest
absolute correlation coefficient for each of the ground truth state components is made bold.

Arnold Bijman University of Twente

APPENDIX E. GENERALISATION OF THE STATE REPRESENTATION 79

PC 1 PC 2 PC 3 PC 4
xr 0.75993336 -0.0751216 -0.356089 0.08148859
yr -0.00353692 -0.82507391 0.24372134 0.21590286
θr -0.0591193 -0.58792952 0.10164354 0.46282379

Table E.1: Correlation analysis using the recurrent state encoder

PC 1 PC 2 PC 3 PC 4
xr -0.73927324 0.01819131 -0.39570218 0.05921032
yr 0.00736506 -0.72162511 -0.05094587 0.05244842
θr 0.01302098 -0.76812087 0.03203499 0.30170934

Table E.2: Correlation analysis using the non-recurrent state encoder

To test how well the state encoder network is able to generalise the learned state representation
to unseen data, the same analysis can be done on the test data from Figure E.1. This could be
considered a test of generalisation performance, although the non-linear nature of the state
representation network makes these results more difficult to analyse.

PC 1 PC 2 PC 3 PC 4
xr 0.0779288 -0.1718507 -0.18439722 -0.04497203
yr -0.40031505 -0.22893654 -0.26159839 0.45712542
θr -0.22440733 -0.34830969 -0.02868713 0.44189775

Table E.3: Correlation analysis using the recurrent state encoder on the data shown in Figure E.1

PC 1 PC 2 PC 3 PC 4
xr -0.23461015 0.17487065 0.435942838 0.14831155
yr 0.4444722 -0.3245973 -0.0497809 0.12402462
θr 0.20900021 -0.44634144 -0.2666961 0.40278132

Table E.4: Correlation analysis using the non-recurrent state encoder on the data shown in Figure E.1

Tables E.3 and E.4 show the correlation between the principal components of the learned state
representation and the ground truth state when applied on the test data for the recurrent and
non-recurrent state representation networks respectively. The most notable difference be-
tween the two is that xr has very little correlation with the learned state representation when
using the recurrent encoder network, while the non-recurrent encoder has similar correlation
between the three parts of the ground truth state.

E.3 Q-value analysis

The Q-value can be plotted against the position as a measure of the perceived value of a state
at that position. Figure E.3a shows the Q-value plotted for the training process when using a
recurrent state representation network. Figure E.3b shows the same plot for the non-recurrent
state representation network. The difference between the two plots is clear, the perceived Q-
value reaches much higher values near the target when the non-recurrent state encoder is used.
This is a result of reaching the target more reliably, due to a better state representation.

Robotics and Mechatronics Arnold Bijman

80
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

(a) Q-value versus position during training when using a
recurrent state encoder

(b) Q-value versus position during training when using a
non-recurrent state encoder

Figure E.3: Showing the Q-value versus position during training

Arnold Bijman University of Twente

81

F Reaching multiple target locations

A good state representation should enable the reinforcement learning algorithm to learn a good
policy for any target. The experiments in this work have only considered the case in which the
data on which the SR was trained used the same target as the target location for the policy.
However, to make state representation learning more practical and make it have an advantage
over end-to-end learning a policy, this SR should generalise to other areas of the environment.
To test whether an SR trained on data for one target enables learning to reach other targets in
the environment as well, an experiment was performed.

For this experiment, the small square environment was used. The SR was trained using the
same dataset on which all state representations of the small square environment were trained,
as presented in Figure 5.6a. Figure F.1a shows the target locations which were tested. Target lo-
cation one is the same location as shown in Figure 4.1a, and also the target location used when
gathering the training data. Using this training data the SR encoder network was trained. This
encoder network was then used to train a policy for each of the targets. Figure F.1b shows the
episode rewards for each of the three targets. This shows that there was no problem generalis-
ing to the other target locations, with the time of convergence and the final reward per episode
being similar across the different targets.

(a) The tested target locations in the small square envi-
ronment

(b) Episodic reward achieved during training for the three
target locations

Figure F.1: Testing the generalisation of the learned SR to other targets

Robotics and Mechatronics Arnold Bijman

82
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

Bibliography
[1] Baxter (robot), Apr 2020.

[2] Deep deterministic policy gradient¶, 2020. Accessed: 2020-06-10.

[3] Dynamixel sdk, 2020. Accessed: 2020-06-10.

[4] E-manuel turtlebot robot, 2020. Accessed: 2020-06-10.

[5] Powering the world’s robots, 2020. Accessed: 2020-06-10.

[6] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Good-
fellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous systems, 2015. Software available
from tensorflow.org.

[7] Pulkit Agrawal, Ashvin Nair, Pieter Abbeel, Jitendra Malik, and Sergey Levine. Learning to
poke by poking: Experiential learning of intuitive physics. CoRR, abs/1606.07419, 2016.

[8] Kai Arulkumaran, Antoine Cully, and Julian Togelius. Alphastar: An evolutionary compu-
tation perspective. CoRR, abs/1902.01724, 2019.

[9] John-Alexander M. Assael, Niklas Wahlström, Thomas B. Schön, and Marc Peter Deisen-
roth. Data-efficient learning of feedback policies from image pixels using deep dynamical
models. CoRR, abs/1510.02173, 2015.

[10] Richard Bellman. A markovian decision process. Journal of Mathematics and Mechanics,
6(5):679–684, 1957.

[11] Nicolò Botteghi, Ruben Obbink, Daan Geijs, Mannes Poel, Beril Sirmacek, Christoph
Brune, Abeje Mersha, and Stefano Stramigioli. Low dimensional state representation
learning with reward-shaped priors, 2020.

[12] William Curran, Tim Brys, Matthew E. Taylor, and William D. Smart. Using PCA to effi-
ciently represent state spaces. CoRR, abs/1505.00322, 2015.

[13] T. de Bruin, J. Kober, K. Tuyls, and R. Babuška. Integrating state representation learning
into deep reinforcement learning. IEEE Robotics and Automation Letters, 3(3):1394–1401,
July 2018.

[14] I K Fodor. A survey of dimension reduction techniques. Technical report, Lawrence Liver-
more National Lab., CA (US), 2002.

[15] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation
error in actor-critic methods. CoRR, abs/1802.09477, 2018.

[16] Ross Goroshin, Michaël Mathieu, and Yann LeCun. Learning to linearize under uncer-
tainty. CoRR, abs/1506.03011, 2015.

[17] Faiza Gul, Wan Rahiman, and Syed Sahal Nazli Alhady. A comprehensive study for robot
navigation techniques. Cogent Engineering, 6(1):1632046, 2019.

[18] Roland Hafner and Martin Riedmiller. Reinforcement learning in feedback control. Mach.
Learn., 84(1-2):137–169, July 2011.

[19] Matthew J. Hausknecht and Peter Stone. Deep recurrent q-learning for partially observ-
able mdps. CoRR, abs/1507.06527, 2015.

Arnold Bijman University of Twente

Bibliography 83

[20] Matthew J. Hausknecht and Peter Stone. Deep recurrent q-learning for partially observ-
able mdps. CoRR, abs/1507.06527, 2015.

[21] G E Hinton and R R Salakhutdinov. Reducing the dimensionality of data with neural net-
works. Science, 313(5786):504–507, July 2006.

[22] Herke Hoof, Nutan Chen, Maximilian Karl, Patrick van der Smagt, and Jan Peters. Stable
reinforcement learning with autoencoders for tactile and visual data. 10 2016.

[23] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift. CoRR, abs/1502.03167, 2015.

[24] Rico Jonschkowski and Oliver Brock. Learning state representations with robotic priors.
Auton. Robots, 39(3):407–428, October 2015.

[25] Rico Jonschkowski, Roland Hafner, Jonathan Scholz, and Martin A. Riedmiller. Pves:
Position-velocity encoders for unsupervised learning of structured state representations.
CoRR, abs/1705.09805, 2017.

[26] Maximilian Karl, Maximilian Soelch, Justin Bayer, and Patrick van der Smagt. Deep varia-
tional bayes filters: Unsupervised learning of state space models from raw data. 04 2017.

[27] Ronald Kemker, Angelina Abitino, Marc McClure, and Christopher Kanan. Measuring
catastrophic forgetting in neural networks. CoRR, abs/1708.02072, 2017.

[28] Jens Kober, J. Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32:1238–1274, 09 2013.

[29] Vijaymohan Konda. Actor-critic Algorithms. PhD thesis, Cambridge, MA, USA, 2002.
AAI0804543.

[30] Timothée Lesort, Mathieu Seurin, Xinrui Li, Natalia Díaz Rodríguez, and David Filliat. Un-
supervised state representation learning with robotic priors: a robustness benchmark.
CoRR, abs/1709.05185, 2017.

[31] Timothée Lesort, Mathieu Seurin, Xinrui Li, Natalia Díaz Rodríguez, and David Filliat. Un-
supervised state representation learning with robotic priors: a robustness benchmark.
CoRR, abs/1709.05185, 2017.

[32] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yu-
val Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement
learning. In Yoshua Bengio and Yann LeCun, editors, ICLR, 2016.

[33] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lilli-
crap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. CoRR, abs/1602.01783, 2016.

[34] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

[35] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin A. Riedmiller. Playing atari with deep reinforcement learning.
CoRR, abs/1312.5602, 2013.

[36] Marco Morik, Divyam Rastogi, and Oliver Brock. State representation learning with
robotic priors for partially observable environments data. 2019.

[37] OpenAI. A toolkit for developing and comparing reinforcement learning algorithms.

[38] OpenAI. A toolkit for developing and comparing reinforcement learning algorithms.

[39] Openai. openai/baselines, 2020. Accessed: 2020-06-10.

[40] OpenAI. A toolkit for developing and comparing reinforcement learning algorithms, 2020.
Accessed: 2020-06-4.

Robotics and Mechatronics Arnold Bijman

84
State representation learning using robotic priors in continuous action spaces for mobile

robot navigation

[41] OpenAI, Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Józefowicz, Bob Mc-
Grew, Jakub W. Pachocki, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell,
Alex Ray, Jonas Schneider, Szymon Sidor, Josh Tobin, Peter Welinder, Lilian Weng, and Wo-
jciech Zaremba. Learning dexterous in-hand manipulation. CoRR, abs/1808.00177, 2018.

[42] OpenAI, Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław
Dębiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, Rafal
Józefowicz, Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique Pondé
de Oliveira Pinto, Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szy-
mon Sidor, Ilya Sutskever, Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with large scale
deep reinforcement learning. 2019.

[43] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution Strate-
gies as a Scalable Alternative to Reinforcement Learning, September 2017.

[44] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. CoRR, abs/1707.06347, 2017.

[45] Jahanzaib Shabbir and Tarique Anwer. A survey of deep learning techniques for mobile
robot applications. CoRR, abs/1803.07608, 2018.

[46] Alex Sherstinsky. Fundamentals of recurrent neural network (RNN) and long short-term
memory (LSTM) network. CoRR, abs/1808.03314, 2018.

[47] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai,
Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy P.
Lillicrap, Karen Simonyan, and Demis Hassabis. Mastering chess and shogi by self-play
with a general reinforcement learning algorithm. CoRR, abs/1712.01815, 2017.

[48] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Ried-
miller. Deterministic policy gradient algorithms. In Proceedings of the 31st International
Conference on International Conference on Machine Learning - Volume 32, ICML’14, pages
I–387–I–395. JMLR.org, 2014.

[49] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The
MIT Press, second edition, 2018.

[50] G. E. Uhlenbeck and L. S. Ornstein. On the theory of the brownian motion. Phys. Rev.,
36:823–841, Sep 1930.

[51] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. In Machine Learning, pages
279–292, 1992.

[52] Manuel Watter, Jost Tobias Springenberg, Joschka Boedecker, and Martin A. Riedmiller.
Embed to control: A locally linear latent dynamics model for control from raw images.
CoRR, abs/1506.07365, 2015.

[53] Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist re-
inforcement learning. Mach. Learn., 8(3-4):229–256, May 1992.

Arnold Bijman University of Twente

	Abstract
	Acknowledgements
	Contents
	1 Introduction
	1.1 Introduction to the problem context
	1.2 Technical problem overview
	1.3 Project objectives and topics
	1.4 Report outline

	2 Background
	2.1 Reinforcement learning
	2.2 State representation learning

	3 Analysis
	3.1 Research aims
	3.2 System analysis
	3.3 Methodology
	3.4 Summary

	4 Design and implementation
	4.1 Experimental design
	4.2 Algorithm Implementation
	4.3 Simulation setup
	4.4 Summary

	5 Results and Discussion
	5.1 Ground truth baseline
	5.2 RQ1
	5.3 RQ2
	5.4 Additional experiments
	5.5 Changing encoder architecture

	6 Conclusions and recommendations
	6.1 Answering the research questions
	6.2 Recommendations for future work

	A Additional background information
	A.1 Compression of observation
	A.2 Dynamics model

	B Additional figures
	C Additional environments
	D Removing the conditions from priors
	E Generalisation of the state representation
	E.1 Dataset for testing generalising performance
	E.2 Principal component analysis
	E.3 Q-value analysis

	F Reaching multiple target locations
	Bibliography

