
Design of a high-level control
layer and wheel contact
estimation and compensation for
the pipe inspection robot PIRATE

N.M. Geerlings

M
as

te
ro

fS
cie

nc
e

Th
es

is

Design of a high-level control layer
and wheel contact estimation and

compensation for the pipe inspection
robot PIRATE

Master of Science Thesis

For the degree of Master of Science in Mechanical Engineering at
Delft University of Technology

N.M. Geerlings

November 22, 2018

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

This thesis project was executed at the Robotics and Mechatronics group at the University
of Twente.

Copyright c© Department of BioMechanical Engineering (BME)
All rights reserved.

Delft University of Technology
Department of

Department of BioMechanical Engineering (BME)

The undersigned hereby certify that they have read and recommend to the Faculty of
Mechanical, Maritime and Materials Engineering (3mE) for acceptance a thesis

entitled
Design of a high-level control layer and wheel contact estimation

and compensation for the pipe inspection robot PIRATE
by

N.M. Geerlings
in partial fulfillment of the requirements for the degree of

Master of Science Mechanical Engineering

Dated: November 22, 2018

Supervisor(s):
Prof. Dr. R. Babuska

N. Botteghi, MSc

Prof. Dr.-Ing. H. Vallery

Summary

Automation of pipe inspections by using robots has many advantages over manual pipe in-
spection, such as faster, more consistent and more accurate inspection. For this reason the
pipe inspection robot PIRATE is being developped by the University of Twente.

In this project the first goal is to design a high-level control layer, which should allow the
robot to autonomously move through various types of pipe segments, without falling. The
second goal is to estimate the wheel slip ratio and friction coefficient. The Magic formula and
Gaussian processes are used to estimate their relation. The third goal is to design a traction
controller, to ensure reliable odometry and prevent falls in a vertical pipe.

The high-level control layer is designed based on the motion primitives. In order to structure
the behaviour of the robot, five finite state machines are used. The joints and wheels can be
controlled by position control or open-loop voltage control. A set of fourteen commands is
used to control the robot.

The high-level controller is implemented in ROS using C++, in the RobMoSys style. At
the Skill level, nodes for motion primitives and for sequences of motion primitives are im-
plemented. An extra detector node can trigger a sequence by using information from e.g.
a camera. The traction controller incorporates velocity control and gravity compensation
for the wheels, and a controls the clamping force for the bending joints. This controller is
implemented in a Simulink simulation model of the PIRATE.

To estimate the wheel slip and friction force, the PIRATE drives forward and backward in a
2D straight ’pipe’ and in a real straight pipe. The linear velocity is determined by a camera
with a marker detection algorithm.
To evaluate the autonomy of the robot, the robot has to drive autonomously through a 2D
90◦ mitre bend. In simulation the robot has to drive up and down in a horizontal and vertical
pipe while using traction control.

When driving, wheel slip ratio’s up to 0.3 are observed. Differences in slip ratio are observed
when the movement of the robot is obstructed. For the friction coefficient large differences
between the wheels are observed.
The robot is able to move through the 2D mitre bend, with the setup tilted up to an angle

Master of Science Thesis N.M. Geerlings

ii

of 28◦, when commands are provided by the operator, as well as when the robot is triggered
by the perceived location of the marker.
Simulation shows that the smallest odometry error is achieved with the traction controller
that has a velocity controller, but no gravity compensation, and either a controlled clamping
torque or fixed joint torque.

The relation between the wheel slip and friction coefficient can not be identified with either
the Magic formula or the Gaussian processes, due to inconsistent behaviour of the robot. The
software architecture successfully allows for driving through a mitre bend autonomously. The
traction controller is able to select a proper clamping torque such that the PIRATE does not
slide out of a vertical pipe in simulation.

N.M. Geerlings Master of Science Thesis

iii

Symbols

˜ Interpolated and filtered.

D Duty cycle of the PWM.

E Expected value.

FF Friction or parallel force (N).

FN Normal or perpendicular force (N).

GP Gaussian process.

I Current (A).

k(x,x′) Covariance matrix of x.

m(x) Mean of x.

N Normal distribution.

r Gear ratio or wheel radius.

v Linear velocity (m/s).

V Variance.

γ Angle of a bend joint (rad) or skew
coefficient in intrinsic camera matrix.

η Gear efficiency.

κ Slip angle of the wheel (rad).

λ Slip ratio.

µ Friction coefficient.

µmax Maximum friction coefficient.

σ Standard deviation.

τ Torque (Nm).

φ Angle of the rotation joint (rad).

θ Angle of a wheel (rad).

ψ Pitch or roll angle (rad).

ω Angular velocity (rad s−1).

Abbreviations

CSV Comma-separated values.

DC Direct current.

DOF Degrees of freedom.

EC Execution container (level).

EMA Exponential moving average.

FSM Finite state machine.

FU Function (level).

GCC GNU Compiler Collection.

GUI Graphical user interface.

HMI Human machine interface.

HSV Hue - saturation - value.

IMU Inertial measurement unit.

MIDI Musical Instrument Digital Inter-
face.

OS Operating system (level).

PAB Partially autonomous behaviour.

PICO PIRATE control.

PIRATE Pipe Inspection Robot for Au-
Tonomous Exploration.

POM Polyoxymethylene.

ppr Pulses per revolution.

PVC Polyvinyl chloride.

PWM Pulse width modulation.

RGB Red - blue - green.

RobMoSys Composable Models and Software
for Robotic Systems.

ROS Robotic Operating System.

SE Service (level).

SK Skill (level).

Master of Science Thesis N.M. Geerlings

iv

SMA Simple moving average.

STL Stereolithography.

URDF Unified Robot Description For-
mat.

N.M. Geerlings Master of Science Thesis

Table of Contents

Summary . iii
Symbols . v
Abbreviations . v

1 Introduction 1
1-1 Context . 1
1-2 Problem statement . 1
1-3 Objectives . 3
1-4 Other works . 3
1-5 Approach . 5
1-6 Outline . 5

2 Preliminaries 7
2-1 Robot hardware . 7
2-2 Methods and tools . 8

2-2-1 ROS and C++ . 8
2-2-2 RobMoSys . 8
2-2-3 Motion primitives . 9
2-2-4 Wheel slip λ . 9
2-2-5 Friction coefficient µ . 10
2-2-6 Magic formula . 12
2-2-7 Gaussian processes . 13

2-3 Robot software architecture . 16

3 Design 19
3-1 Requirements . 19
3-2 Finite state machines . 21
3-3 Sequences of primitives . 25
3-4 The model . 26

3-4-1 Simulation model . 26
3-4-2 Traction controller . 27

Master of Science Thesis N.M. Geerlings

vi Table of Contents

4 Robot software implementation 31
4-1 Simulation model . 31
4-2 Low-level control . 35

4-2-1 SerialCommunication node . 35
4-2-2 PirateCommunication node . 37
4-2-3 Movement node (at Execution level) . 37
4-2-4 Movement node (at Function level) . 38
4-2-5 Additional nodes . 41

4-3 High-level control . 42
4-3-1 PAB node . 42
4-3-2 Sequence node . 42
4-3-3 Additional nodes . 43

4-4 Overview . 43

5 Experiment design 45
5-1 Goals . 45
5-2 Materials and dimensions . 47
5-3 Protocol . 47

5-3-1 Experiment 1: driving up and down the pipe 47
5-3-2 Experiment 2: moving through a bend 48
5-3-3 Experiment 3: traction controller in simulation 49

5-4 Visual tracking . 50
5-5 Data collection and postprocessing . 52

6 Experimental results 55
6-1 Overall performance . 55
6-2 Setups 1 and 2: straight pipe . 55
6-3 Setup 3: 2D mitre bend . 64
6-4 Simulation . 66

7 Conclusions and recommendations 69
7-1 Discussion . 69

7-1-1 Behavioural issues . 69
7-1-2 High-level controller . 70
7-1-3 Experimental setups . 70
7-1-4 Visual tracking . 70
7-1-5 Wheel slip estimation . 70
7-1-6 Simulation model . 71
7-1-7 Traction controller . 71

7-2 Conclusions . 72
7-3 Recommendations . 72

7-3-1 ROS communication . 72
7-3-2 Simulation model . 73
7-3-3 Traction controller . 73
7-3-4 Wheel slip estimation . 73
7-3-5 Setup . 73
7-3-6 Experiments . 73

N.M. Geerlings Master of Science Thesis

Table of Contents vii

A Components 75

B Sensor conversion 79

C Computer vision 83
C-1 Camera parameters . 83
C-2 Marker detection . 84

D Quick start guide 85
D-1 List of used software . 85
D-2 List of used hardware . 85
D-3 Walkthrough . 86

Master of Science Thesis N.M. Geerlings

Chapter 1

Introduction

1-1 Context

Inspection of industrial pipelines is a slow process that costs a lot of manpower. One of the
problems is that not all pipes are easily accessible. Another issue is that a part of the plant
needs to be shut down for inspection. Furthermore a lot of insulation material is discarded
to reach the pipe and if there are doubts about the quality of the pipe, the pipe will be
discarded. Pulles et al. [2008] state that robotic pipe inspection should result in less manual
labour, faster inspection, lower replacement costs, more consistent and accurate inspection,
less incidents and less downtime for the plant or network. Ideally, the robot should be able
to autonomously perform routine inspections and reparations the inside of the pipe.
For this reason the Pipe Inspection Robot for AuTonomous Exploration (PIRATE) is being
developed by Robotics & Mechatronics (RAM) research group of the University of Twente.
Its development is part of the European Smart Tooling project, which aims to make the
process industry safer and more cost efficient [Smart tooling, 2018]. The current version of
the PIRATE is shown in Figure 1-1. The robot has four bending modules, with one bending
joint, one internal spring and one wheel each; a rotational module, with one rotational joint
and two wheels; a front module, with one bending joint, LEDs and a camera with two degrees
of freedom; and a rear module, with one bending joint, LEDs and an ethernet port.
The environment in which the robot will operate puts some restrictions on the behaviour of
the robot. The robot has to be able to inspect pipes of 100-200mm in diameter, where mitre
bends 1, T-junctions and other configurations can occur, as is shown in Figure 1-2. The robot
has to able to move through these segments without getting stuck.

1-2 Problem statement

The PIRATE can currently only be controlled by manual inputs via a MIDI panel (Fig. A-2e).
To be able to inspect pipes autonomously, high-level autonomous control is needed.

1Sharp bend created by combining two beveled pipes, often connected in a 90◦ angle.

Master of Science Thesis N.M. Geerlings

2 Introduction

Figure 1-1: The kinematic model of the PIRATE Prototype II. γ represents the bend joint angles,
φ represents the rotational joint angle and θ represents the orientation of the wheels. Permission
granted by the author. Adapted from [Dertien, 2014].

Figure 1-2: Pipe segments that a pipe inspection robot may encounter, such as a) a diameter
change, b) a curved joint, c) an inclination, d) a T-joint or e) an uneven inner surface. Copyright
c© 2011, IEEE. [Park et al., 2011]

One of the biggest issues is that as soon as the PIRATE gets too close to a mitre bend, it
cannot detect the bend anymore and therefore it does not know the distance to that bend.
Currently a laser circle is projected within the pipe and based on the shape of the circle a
bend can be detected. As soon as the PIRATE comes closer to a bend, a change in the circle
is measured [Drost, 2009]. When the bend is reached, the bend is not detected anymore
because the bend is out of the camera view. In this small window the travelled distance can
not be measured via the laser projection. As such, dead reckoning is required and therefore
the relation between the angular velocity of the wheels and the linear velocity of the robot
should therefore be investigated. Since the relation between the angular velocity and linear
velocity depends also on the forces that the PIRATE exerts on the pipe walls, these forces
also need to be taken into account, especially when the PIRATE is driving in a vertical pipe.

N.M. Geerlings Master of Science Thesis

1-3 Objectives 3

1-3 Objectives

1. Design a high-level control layer, such that the PIRATE can move through a corner
autonomously.

2. Evaluate the high-level control layer in a 2D setup, where the robot can only move in a
horizontal plane constrained by vertical plates.

3. Identify the wheel slip and friction coefficient of the PIRATE wheels, such that the
travelled distance can be approximated by measuring the wheel angles.

4. Design a traction controller, so the PIRATE can drive vertically in a pipe without
falling.

1-4 Other works

To get an insight in how robots can move through pipes, and to find out what the current
level of autonomy for other robots is, other robots were investigated. An overview of robots
that are able to move through horizontal and vertical pipe sections is shown in Figure 1-3.

The PIKO, MRINSPECT V and AIRo robots have multiple segments, just as the PIRATE.
The SPAMMS, PAROYS and AIRo show clamping behaviour, which makes them suitable for
various pipe diameters. For the SPAMMS [Kim et al., 2010] and MRINSPECT V [Lee et al.,
2011] autonomy is described for navigation trough a pipe network, but it is unclear if these
robots are able to navigate through segments like mitre bends. For the PIC, PIKo, AQAM
and PAROYS II no autonomy is described.

The AIRo, which is based on the same concept as the PIRATE, has shown to be able to move
through various pipe segments autonomously by means of recognising shadows in the pipe
[Kakogawa et al., 2017]. The front wheel of the AIRo allows for easily steering the robot in
an environment without sharp bends (Fig. 1-3h). So far autonomous control for the AIRo
has only been shown for curved joints, not for mitre bends or T-junctions.

Master of Science Thesis N.M. Geerlings

4 Introduction

(a) The PIC robot (Pipe In-
spection Crawler). Open access,
K.T.N.U. [Moghaddam and Jer-
ban, 2015]

(b) The PIKo robot. Copy-
right c© 2009, IEEE. [Fjerdingen
et al., 2009]

(c) The SPAMMS robot,
previously known as FAM-
PER (Sensor-based Pipeline
Autonomous Monitoring and
Maintenance System). Copy-
right c© 2010, IEEE. [Kim
et al., 2010]

(d) The PAROYS II robot (Pipe
Adaptive Robot of YonSei Uni-
versity). Copyright c© 2011,
IEEE. [Park et al., 2011]

(e) The MRINSPECT V robot.
Copyright c© 2011, IEEE. [Lee
et al., 2011]

(f) The AQAM robot (Adapt-
able Quad Arm Mechanism).
Copyright c© 2012 Elsevier Ltd.
All rights reserved. [Lee et al.,
2012]

(g) The AIRo robot (multilink-Articulated In-
spection Robot). Rights managed by Taylor &
Francis. [Kakogawa and Ma, 2018]

(h) Kinematic model of the AIRo. Rights man-
aged by Taylor & Francis. [Kakogawa and Ma,
2018]

Figure 1-3: Robots that can move through horizontal and vertical pipe segments.

N.M. Geerlings Master of Science Thesis

1-5 Approach 5

1-5 Approach

To get familiar with the robot and its environment, a kinematic Simulink model will be built.
In this model a preliminary version of the high-level control can be built and tested. The next
step is to throughly investigate the current C++ and ROS implementation, mostly written
by Garza Morales [2016] and Hoekstra [2018]. If needed, the current control layers will be
adapted to allow for a next control layer. Afterwards the high-level control layer will be built
and debugged, while maintaining the conventions as defined by the previous contributors. The
high-level control layer will then be evaluated in a 2D setup, so the robot is easily accessible
in case it gets stuck.

In the 2D setup, the robot should be able to drive straight for about a meter, in this setup
data should be gathered from the PIRATE itself and from an external camera to measure the
wheel slip and friction coefficient.

The current prototype of the PIRATE cannot yet generate enough wheel torque to prevent
sliding out of a vertical pipe. The traction controller will therefore be designed in simulation.
This simulation will be built in Simulink.

The product of this assignment will be the software with added high-level control and full
documentation, along with an analysis of the wheel slip and friction coefficient signals and a
proposal for a traction controller. Also a walkthrough of the experiment and a compact user
manual for the operator will be delivered.

1-6 Outline

In Chapter 2, previous work on the PIRATE robot is analysed and the theoretical frameworks
used in this thesis are introduced and elaborated upon. In Chapter 3 the main concepts for the
new control layer are explained and the requirements are stated. The derivation of the traction
controller is also provided. In Chapter 4, the changes to the current software are described
and the implementation of the new control layer and the model are explained. In Chapter 5,
the experimental setups will be discussed, along with the postprocessing. Chapter 6, describes
the results of the development and the experiments. Eventually, in Chapter 7, these results
will be discussed, conclusions will be drawn and recommendations will be given.

Appendix A discusses the actuators, sensors and other hardware components of the PIRATE
robot. Appendix B describes the conversion from raw sensor values to SI units. Appendix C
describes how to process camera images for marker detection. Appendix D provides a quick
start guide needed to operate the PIRATE and update its software, along with lists of the
used software and hardware.

Master of Science Thesis N.M. Geerlings

Chapter 2

Preliminaries

This chapter, firstly, provides an overview of the hardware architecture of the PIRATE.
Secondly, the methods and tools that will be used in the design chapter are explained. Finally
the current state of the software architecture is described, as a reference for the updated design
in the next chapter.

2-1 Robot hardware

To give an overview of the interaction with the robot, the hardware architecture of the
PIRATE is shown in Figure 2-1. The PIRATE contains nine PICO (PIRATE control) boards,
one in each module, which can actuate up to two motors and process up to two sensors each
[Reiling, 2014]. An Arduino MEGA board serves as transparent bridge between the high-level
(laptop) and low-level (PICO) control. High-level control is performed by Robot Operating
System (ROS). User inputs can either be entered via the command line or via a MIDI panel.

All wheels and joints have position and current sensors and are actuated by DC micromotors.
Additionally the springs in the Bend modules also have position sensors. individual actuators,
sensors and other components are discussed in Appendix A.

User Interface
Hardware

MIDI Panel

Screen
(visualisation)

Control
Hardware

Control laptop
ROS

Transparent Bridge
Hardware

Arduino MEGA/
PIRATEbay
(master)

Robot
Hardware

ATmega328/
PICO (slave)
PID control

Actuators Sensors

Figure 2-1: Hardware architecture of the PIRATE. Adapted from [Garza Morales, 2016].

Master of Science Thesis N.M. Geerlings

8 Preliminaries

2-2 Methods and tools

2-2-1 ROS and C++

For high level control of the PIRATE a software architecture on ROS is implemented [Garza
Morales, 2016]. Robotic Operating System (ROS) is an open-source meta-operating system for
robotics. ROS is compatible with C++ and Python, in this project C++ is used to write the
source code for the nodes, which will then be executed by ROS. ROS provides communication
methods for both low level and high level messages, in various communication styles. It also
provides packages for e.g. kinematics, visualisation and human-machine interface (HMI),
which make controlling a robot a lot easier. All communication can be stored within ROS,
and played back at a later time.

The main structures in ROS are [Martinez Romero, 2014]:

• Nodes: These are the main processes. They are able to communicate asychronously
with each other.

• Messages: These contain variables and can be published and subscripted to by nodes,
and can therefore be used for many-to-many communication.

• Services: Request and reply version of messages. They are used for one-to-one commu-
nicaton. Services are blocking: while an instance of a service is running, ROS cannot
create a new instance of this service.

• Bags: File that stores all ROS message data.

In the architecture by Garza Morales [2016] it was hard to make adaptions when the hard-
ware was updated (e.g. when an extra sensor was installed) or when a software extension was
needed (e.g. image processing). Therefore the software architecture is implemented the Rob-
MoSys style by Hoekstra [2018]. This way hardware can be changed and software extensions
can be added by rewriting a small part of the software, instead of multiple large software
sections.

2-2-2 RobMoSys

RobMoSys (Composable Models and Software for Robotic Systems) is a European project
that focusses on creating an industry-grade software development ecosystem for robotics. One
of the main advantages is modularity of software [Tucci and Schlegel, 2017]. The software is
divided in various levels which all have their own goal, as is shown in Table 2-1. Due to this
separation of levels, autonomy can be implemented level by level. Also, if the design of the
robot changes, only a small number of levels need to be adapted, instead of all.

When applied to an in-pipe exploration robot the mission could for example be exploring an
unknown network or going from point A to point B in a known network. A task could be
taking a right turn on an T-joint. A skill could be clamping itself to the walls or driving
forward. The function level could contain an inverse kinematic model, to calculate what
should be the next desired configuration. The torques for this configuration will be generated
by the lower levels.

N.M. Geerlings Master of Science Thesis

2-2 Methods and tools 9

This framework has been implemented from the hardware level up to the service level, this
implementation will be elaborated on in Section 2-3. At the skill level only a simple clamping
action was implemented, in order to ensure that the software performance could be evaluated
[Hoekstra, 2018].

Table 2-1: Separation of levels (vertical) and separation of concerns (horizontal) as formulated
by RobMoSys. An example of each level is given for a robot that serves coffee. Adapted from
[Tucci and Schlegel, 2017].

Levels vs.
Concerns Computation Communication Coordination Configuration Example

Mission serve as
butler

Task does does deliver coffee

Skill translate into
parameters

grasp object
with

constraint

Service structures move
manipulator

Function does IK solver

Execution provides
resources

provides
resources

provides
access to
scheduler

activity

Operating
system/
Middleware

realises realises receives thread,
socket

Hardware does does receives receives actuator,
sensor

2-2-3 Motion primitives

To structure the skill level, the concept of motion primitives will be used. Dertien [2014]
defines motion primitives as:"the smallest meaningful action that can be performed by the
PIRATE robot". He states that the basic PIRATE actions can be split into the following
motion primitives: clamp with force τ , drive with rotational speed ω, bend with angle γ and
rotate with angle φ.

The reason to use motion primitives for high-level control is that it reduces the number
of actions that the robot has to choose from, and therefore reduces the complexity of the
controller. For example, when reinforcement learning is applied on a robot, having a few
actions to choose from, instead of multiple continuous action spaces, drastically reduces the
training time. The higher control level may also make it easier for an operator to control the
robot.

2-2-4 Wheel slip λ

As mentioned in Section 1-2, the robot needs to be able to determine the distance to a bend
to be able to move through it autonomously. Odometry, determining displacement based on
wheel rotation, can be used by the in-pipe robot to determine its location in the networks

Master of Science Thesis N.M. Geerlings

10 Preliminaries

when it cannot rely on other sensors. Due to the possibly contaminated pipe walls the robot
may suffer from slipping, which makes the odometry unreliable. If slip can be detected or
even compensated for, the odometry becomes much more robust. This also helps the robot
to move through slippery environments.

An overview of the velocities and forces for a wheel is shown in Figure 2-2.

v

FF
F
N

r

Figure 2-2: Overview of the forces and velocities for a wheel.

The slip ratio λ is defined as the normalisation of the angular velocity to the linear velocity.
The sign of λ varies between different sources, in this thesis the definition as described in
Equation 2-1 is used [Hansen et al., 2005].

λ = v − ωr
v

= 1− ωr

v
(2-1)

Where λ indicates the following situations:

λ = 0 Perfect transmission from angular to linear velocity.

λ = 1 The wheel is locked (ω = 0), while there may still be linear velocity.

0 < λ < 1 Wheel skid, e.g. when you brake at high speed (0 < rω < v).

1 < λ The angular velocity and linear velocity are in opposite directions.

λ < 0 Wheel spin. Only partial transmission of angular to linear velocity (v < rω).

λ = undefined No linear velocity (which causes division by zero), while there may still be
angular velocity.

2-2-5 Friction coefficient µ

The slip ratio is dependent on the friction coefficient µ. For example, for a car driving on a
snowy road (low µ) the chances that wheel spin or wheel skid occur are higher than for a car
driving on a dry road (high µ) (Fig. 2-3b). The friction coefficient relates the normal force to
the friction force.

For static friction between two surfaces without relative speed the normal and friction force
are related by the static friction coefficient µs (Eq. 2-2).

N.M. Geerlings Master of Science Thesis

2-2 Methods and tools 11

FF ≤ µsFN (2-2)

Whenever the friction force becomes higher that the threshold value of µsFN, the surfaces
start moving with respect to each other. The friction and normal force are then related by
the kinetic friction coefficient µk (Eq. 2-3).

FF = µkFN (2-3)

An example is shown in Figure 2-3a. Note that when λ = 0, the wheel and pipe have no
relative speed and therefore static friction occurs. Even when the wheel is rolling, at each
time instant the relative speed at the contact point is zero. As soon as λ 6= 0, kinetic friction
occurs. The curve describing the relation between λ and µ can be empirically estimated, as
shown in Fig. 2-3b. Note that in literature sometimes the λ-FF curve instead of the λ-µk
curve is identified. Estimating the λ-FF curve is only useful when the normal force FN is
constant. This is not necessarily the case for the PIRATE since the normal force is not only
compensating the gravitational force, but also the clamping force, which may vary.

0 20 40 60 80 100

F
N

 (N)

0

20

40

60

80

F
F
 (

N
)

s

k

(a) Relation between the normal force and friction
force. When there is no slip, the force can be
anywhere in the grey area (Eq. 2-2). When there is
slip, the forces must be on the black line (Eq. 2-3).
To generate a friction force of 35 N, a normal force
of at least 50 N is needed for µs = 0.7 without slip
and 70 N for µk = 0.5 with slip.

(b) Relation between the slip ratio and the friction
coefficient for various road conditions. Copyright
c© 2010, IEEE. [Junhui and Jianqiang, 2010]

Figure 2-3: Examples to illustrate the relation between slip and friction.

The relation between the wheel slip ratio and the friction force can be identified using a para-
metric idenfitication and non-parametric identification. The Magic formula (Section 2-2-6),
which is a well known model within the vehicle dynamics field, will be used as paramet-
ric model. Gaussian processes (Section 2-2-7) will be used as non-parametric identification
method, since it also predicts the certainty of the output.

Master of Science Thesis N.M. Geerlings

12 Preliminaries

2-2-6 Magic formula

A widely used parametric model for wheel slip is the empirical Magic formula (Eq. 2-4)
[Pacejka and Besselink, 1997]. The relation between the slip ratio λ and the friction force FF
can be described as in Equation 2-4. An example of a resulting curve is shown in Figure 2-4.
The parameters vary for different normal forces.

y = D sin (C arctan (Bx− E (Bx− arctan (Bx)))) (2-4)
Y (X) = y(x) + SV (2-5)

x = X + SH (2-6)

where

X : input variable − λ B : stiffness factor
Y : output variable FF C : shape factor
SH : horizontal shift D : peak value
SV : vertical shift E : curvature factor

Figure 2-4: The Magic formula curve. X is the negative wheel slip ratio −λ, Y is the friction
force FF. Rights managed by Taylor & Francis. Adapted from [Pacejka and Besselink, 1997].

N.M. Geerlings Master of Science Thesis

2-2 Methods and tools 13

2-2-7 Gaussian processes

Non-parametric identification takes into account uncertainties in the model structure, instead
of only uncertainty in the model parameters. Gaussian processes model uncertainties based
on the training data using a probabilistic approach. This way not only the output can be
predicted, but also its uncertainty. A Gaussian process describes a set of random variables,
which have a joint Gaussian distribution [Rasmussen and Williams, 2006]. Therefore a Gaus-
sian process can be described by a mean function m(x) (Eq. 2-7) and covariance function
k(x,x′) (Eq. 2-8). This can also be written down as shown in Equation 2-9.

m(x) = E (f(x)) (2-7)
k(x,x′) = E

(
(f(x)−m(x))

(
f(x′)−m(x′)

))
(2-8)

f(x) ∼ GP
(
m(x), k(x,x′)

)
(2-9)

For example, a certain function can be described by a linear Bayesian regression model. In
this model the output is described by sum of basis functions φi(x) of the inputs x times
weights wi (Eq. 2-10), where w has a Gaussian distribution (Eq. 2-11). A linear combination
of Gaussian distributions results in a Gaussian process (Eq. 2-12 & 2-13).

f(x) =
N∑
i

φi(x)wi = φT (x)w (2-10)

w ∼ N (0,Σp) (2-11)
E (f(x)) = φ(x)TE (w) = 0 (2-12)

E
(
f(x)f(x′)

)
= φ(x)TE

(
wwT

)
φ(x′) = φ(x)TΣpφ(x′) (2-13)

Usually the mean of the function is assumed to be zero, so no hyperparameters are needed for
the mean. Various kernels can be chosen for the covariance function, but the standard choice
is the squared exponentional covariance (Eq. 2-14), with hyperparameters signal variance σ2

f

and length scale l. The output of the test data f∗ is assumed to be a Gaussian distribution
with zero mean (Eq. 2-15). The same is assumed for the combination of training and test
data: since the relation between the training output and training input is the same as the
relation between the test output and test input, the combined set of training output and test
output should be a Gaussian distribution (Eq. 2-16).

cov (f(xp), f(xq)) = k(xp, xq) = σ2
f e
− 1

2 |xp−xq |
T (l2I)−1|xp−xq | (2-14)

f∗ ∼ N (0,K (X∗, X∗)) (2-15)[
f
f∗

]
∼ N

(
0,
[
K (X,X) K (X,X∗)
K (X∗, X) K (X∗, X∗)

])
(2-16)

When white noise on the sensory input is assumed (Eq. 2-17), the covariance function gets
an additional variance term σ2

n on the diagonal (Eq. 2-18 & 2-20). σ2
n represents the variance

Master of Science Thesis N.M. Geerlings

14 Preliminaries

of the noise, which is also a hyperparameters of the Gaussian process.

y = f(x) + ε (2-17)
cov (yp, yq) = k(xp, xq) + σ2

nδpq (2-18)

δpq =
{

0 if i 6= j

1 if i = j
(2-19)[

y
f∗

]
∼ N

(
0,
[
K (X,X) + σ2

nI K (X,X∗)
K (X∗, X) K (X∗, X∗)

])
(2-20)

For test inputs x∗, the predicted output f̄(x∗) is linearly related to test outputs y by means
of the covariance matrices. This results in a mean prediction (Eq. 2-21) and a variance
prediction (Eq. 2-22).

f̄(x∗) = K(X,X∗)T (K(X,X) + σ2
nI)y (2-21)

V(f(x∗)) = K(X∗, X∗)−K(X,X∗)T (K(X,X)− σ2
nI)−1K(X,X∗) (2-22)

Through minimisation of the standard deviation of the Gaussian likelihood, the hyperparam-
eters σf, l and σn can be found. During the optimisation of the hyperparameters log(σf),
log(l) and log(σn) are be used, instead of σf, l and σn, to reduce the influence of scaling.

An example of the steps in a Gaussian process identification is shown in Figure 2-5. The
training output y for input x is shown in Fig. 2-5a. The optimisation for the hyperparameters
is shown in Fig. 2-5b:2-5d. The predicted output f̄(x∗) for input x∗ in each optimisation
iteration is shown in Fig. 2-5e. The resulting predicted output and confidence interval are
shown in Fig. 2-5f.

N.M. Geerlings Master of Science Thesis

2-2 Methods and tools 15

-3 -2 -1 0 1 2 3

Input x

-2

0

2

O
u

tp
u

t
y

(a) The initial noisy dataset of a sine function.

0 5 10 15

Iteration

-1

-0.5

0

(b) Length scale of the covari-
ance.

0 5 10 15

Iteration

-0.2

0

0.2

0.4

(c) Standard deviation of the
covariance.

0 5 10 15

Iteration

-3

-2

-1

0

(d) Standard deviation of the
Gaussian likelihood.

-3 -2 -1 0 1 2 3

Input x

-2

0

2

O
u

tp
u

t
y

(e) Estimated mean functions. The reddest line represents the mean of the Gaussian process for
the initial non-optimised hyperparameters, the greenest line represents the Gaussian process for the
optimised hyperparameters.

-3 -2 -1 0 1 2 3

Input x

-2

0

2

O
u

tp
u

t
y

(f) The resulting Gaussian process with estimated mean and 95% confidence interval. Close to the
training data the confidence interval is narrow, while it is wide far from the training data, since the
uncertainty is high in that area.

Figure 2-5: Example of the steps to train a Gaussian process. The training of this Gaussian
process took fourteen iterations to converge. Based on the example in the GPML toolbox docu-
mentation [Rasmussen and Nickisch, 2010].

Master of Science Thesis N.M. Geerlings

16 Preliminaries

2-3 Robot software architecture

This section provides a short summary of the work by Hoekstra [2018] and describes the
software structure prior to this thesis. An overview is shown in Figure 2-6. In Section 4-2
and 4-3 each node will be discussed, along with the changes made for the software structure
in this thesis.

The SerialCommunication node runs on the PIRATEbay and translates commands between
the ROS structure and RS485 communication structure for the PICO boards. The PAB
(Partially autonomous behaviour), Movement and PirateCommunication nodes run on the
laptop. The PirateCommunication and SerialCommunication nodes together form the com-
munication bridge over the serial port. The PirateCommunication node does not add any
functionality apart from sending and receiving data over the serial port.

The Movement node is divided over two levels. The Execution level contains functionality
for sensors, motors and modules separately, like building blocks. Due to the identifiers and
polymorphic approach it is easy to add e.g. an extra sensor or a new type of module. The
Function level contains the functionality for the robot as a whole and contains algorithms
that can access data from specific sensors and motors.

The Service level does not have its own node but is designed as an interface between the
low-level and high-level nodes. This interface is implemented as a ROS service between the
PAB and the Movement node.

The PAB node at the Skill level takes care of high-level control. In this structure only a
simple clamp command is implemented, to be able to evaluate the software structure as a
whole.

N.M. Geerlings Master of Science Thesis

2-3 Robot software architecture 17

PICO boards

Motors Sensors
Hardware

SerialCommunicationMIDI panel

PirateCommunication
OS

Execution

Function

Movement

Service

Partially autonomous
behaviour (Pab)

Skill

User terminal

Control_Array.msg
Limits_Array.msg
Setpoint_Array.msg

State.msg

Move.msg Sensors.msg

Joint_State.msg
State.msg

SimpleMove.srv

Primitive.srv

Figure 2-6: Overview of the software structure prior to this thesis. The rectangles represent
the hardware, the rounded rectangles represent the RobMoSys levels, the ellipses represent the
ROS nodes, the arrows represent (ROS) messages and the dashed arrows represent ROS services.
None of the nodes subscribe to Joint_State.msg and State.msg, but, as holds for all messages,
their contents can be requested in the terminal.

Master of Science Thesis N.M. Geerlings

Chapter 3

Design

In this chapter, the requirements for the design are stated. Then the design for the high-level
controller is explained. Finally the proposed strategy of moving through a bend, based on
this high-level controller, is elaborated on.

3-1 Requirements

• Low-level control

– Each wheel should be able to be actuated with an individual setpoint for open-loop
voltage control (PWM, with duty cycle D) .

– Both open-loop voltage control and closed-loop position control should be imple-
mented for the joint angles.

– It should be possible to control multiple motors simultaneously. E.g. it should be
possible to actuate both bending joints of the front part simultaneously in order
to clamp the front part.

– The low-level controller has to ensure that all sent commands are executed by the
PIRATE.

• High-level control

– There should be as few choices for actions as possible, instead of a continuous range
of actions for each actuator. This way it is easier for an operator to operate the
PIRATE. Train a future learning agent also becomes easier and faster.

– The state of the PIRATE should be described in a structured way, such that the
operator can immediately imagine what the PIRATE is doing without being able
to see it. This will be done by defining states and transitions in multiple finite
state machines (FSM). The motion primitives will be used as base for these state
machines.

Master of Science Thesis N.M. Geerlings

20 Design

– The PIRATE should be able to execute various lists of successive commands.
– The PIRATE should be able to use triggers from external sensors to start the

sequences.
– The PIRATE should be able to track its travelled distance.

• Simulation

– Since the robot is not always available and as there is no simulation model yet, a
simulation model needs to be built.

– The model should have similar behaviour to the real robot when provided with a
high-level command, so the model can be used to get familiar with the kinematics
and test commands before testing them on the real robot.

– The model should be fast enough: not slower than 0.1x real time (10 real seconds
to simulate 1 second), measured over the entire simulation. This way it can be
usefull for training a learning agent in later PIRATE projects.

– A traction controller should be implemented to actuate the wheels and bending
joints in such a way that the torques can be as low as possible while preventing
the robot from sliding out of a vertical pipe. This has to be done in simulation
since the current software architecture does not allow for velocity or torque control.
Also, the real robot slides out of a vertical pipe even when the PWM setpoints for
the wheels are set to maximum.

N.M. Geerlings Master of Science Thesis

3-2 Finite state machines 21

3-2 Finite state machines

The high-level controller consists of five finite state machines (Fig. 3-1):

BendingState Describes the clamping and bending behaviour based on the bending
joints.

FrontWheelsState Describes the behaviour of the front wheels.

RearWheelsState Describes the behaviour of the the rear wheels.

RotationState Describes the relative orientation of the front and rear part.

LightingState Indicates if lights are on or off.

Figure 3-1: Overview of which actuators are affected by which state machine.

These five state machines are based on the motion primitives as mentioned in Section 2-2-3:
BendingState refers to clamp and bend, FrontWheelsState and RearWheelsState refer to
drive and RotationState refers to rotate. The fifth state machine is a switch for the LEDs,
this state machine is not related to motion. The reason clamp and bend are in the same
state machine is because they refer to the same joints. The reason FrontWheelsState and
RearWheelsState are split is because they operate independent of eachother. For example,
when only the rear is clamped and the PIRATE is driving, only the rear wheels should be
actuated.

The FrontWheelsState and RearWheelsState state machines are shown in Figures 3-2a and
3-2b. For both the front wheels (Wheel 1, 2 and 3) and the rear wheels (Wheels 4, 5 and
6), the Free state means zero torque mode, while Fixed means that the position is locked
at zero angular velocity. The DrivingForward and DrivingBackward state set a fixed PWM
setpoint for the wheels. Since Wheel 2 and Wheel 5 are touching the opposite part of the pipe
with respect to Wheel 1 and 3 or Wheel 4 and 6, they are actuated in the opposite direction
to generate linear velocity in the same direction (Fig. 1-1).

The BendingState state machine is shown in Figure 3-3. The initial state for the BendingState
state machine is Unclamped. Since the Unclamped state should never be reached when oper-
ating the PIRATE (the PIRATE will fall out of the pipe), it is used as a reset state: it brings
all bend angles back to zero. When clamping e.g. the front, a PWM value is set for bending
joints γ1 and γ2 in opposite directions, while the rear part remains unactuated.

For a state like RearClampedFrontBending, the rear part is clamped. γ1 and γ2 each have
a negative position (angle) setpoint. This way the negative angle ensures that the front part

Master of Science Thesis N.M. Geerlings

22 Design

Free
τω = 0 Nm

Fixed
ω = 0 rad/s

DrivingForward
ω = ωmax rad/s

DrivingBackward
ω = −ωmax rad/s

ClampFront

DriveForward DriveBackward
Brake Brake

RelaxFront

(a) FrontWheelsState state machine, with Free as
initial state.

Free
τω = 0 Nm

Fixed
ω = 0 rad/s

DrivingForward
ω = ωmax rad/s)

DrivingBackward
ω = −ωmax rad/s)

ClampRear

DriveForward DriveBackward
Brake Brake

RelaxRear

(b) RearWheelsState state machine, with Free as
initial state

Figure 3-2: State machines for the wheels.

will slide along the bend instead of getting stuck when moving forward through a mitre bend.
As soon as the desired angles are reached a negative PWM setpoint is put on γ2 and γ3, to
prevent the robot from getting stuck while sliding around the bend.
The RotationState state machine is shown in Figure 3-4. For the rotation state, it is assumed
that the initial state is Unaligned, which means that the front and rear part are not in the
same plane. In the AlignStraight, AlignedRight and AlignedLeft state the rotation angle
is fixed at 0 rad, 0.5π and −0.5π rad respectively. This way the robot is able to rotate
stepwise around its axis. The rotation angle itself instead of a PWM value is sent to the
PICO, since it has an internal controller for the angle. In a future PIRATE project states
like AlignHorizontal and AlignVertical may be added, based on the IMU sensor.
On both the front and the rear module there are LED lights, these are either both on or both
off. The LightingState state machine is shown in Figure 3-5.
As said before, the aim of the state machine commands is to use as few commands as possible
to actuate the robot. As such the following commands are chosen as being the bare minimum
required:

ClampFront, ClampRear, RelaxFront and RelaxRear for clamping (Fig. 3-2a, 3-2b and 3-3).

BendInto and BendBack for bending (Fig. 3-3).

DriveForward, DriveBackward and Brake for driving (Fig. 3-2a:3-2b).

AlignStraight, AlignLeft and AlignRight for rotation, all of which are only pos-
sible when the bending state is not
DoubleClamped (Fig. 3-4).

ToggleLighting for lighting (Fig. 3-5).

Reset sets all state machines to their orig-
inal states: Free, Free, Unclamped,
Unaligned and Off (which are indi-
cated in bold italics in Fig. 3-2a:3-5).

Note that each of these commands may influence multiple state machines.

N.M. Geerlings Master of Science Thesis

3-2 Finite state machines 23

U
nc
la
m
pe
d

γ
1

=
0
ra
d

γ
2

=
0
ra
d

γ
3

=
0
ra
d

γ
4

=
0
ra
d

Fr
on

tR
el
ax

ed
R
ea
rC

la
m
pe

d
D
γ
,1

=
0%

D
γ
,2

=
0%

D
γ
,3

=
10

0%
fo
rw

ar
d

D
γ
,4

=
10

0%
re
ve
rs
e

Fr
on

tC
la
m
pe

dR
ea
rR

el
ax

ed
D
γ
,1

=
10

0%
re
ve
rs
e

D
γ
,2

=
10

0%
fo
rw

ar
d

D
γ
,3

=
0%

D
γ
,4

=
0%

D
ou

bl
eC

la
m
pe

d
D
γ
,1

=
10

0%
re
ve
rs
e

D
γ
,2

=
10

0%
fo
rw

ar
d

D
γ
,3

=
10

0%
fo
rw

ar
d

D
γ
,4

=
10

0%
re
ve
rs
e

Fr
on

tB
en
di
ng

R
ea
rC

la
m
pe

d
Fi
rs
t:

γ
1

=
−

0.
3
ra
d

γ
2

=
−

0.
3
ra
d

D
γ
,3

=
10

0%
fo
rw

ar
d

D
γ
,4

=
10

0%
re
ve
rs
e

w
he
n
re
ac
he
d:

D
γ
,2

=
50

%
re
ve
rs
e

D
γ
,3

=
10

0%
re
ve
rs
e

Fr
on

tC
la
m
pe

dR
ea
rB

en
di
ng

Fi
rs
t:

D
γ
,1

=
10

0%
re
ve
rs
e

D
γ
,2

=
10

0%
fo
rw

ar
d

γ
3

=
0.

3
ra
d

γ
4

=
0.

3
ra
d

w
he
n
re
ac
he
d:

D
γ
,2

=
10

0%
re
ve
rs
e

D
γ
,3

=
50

%
re
ve
rs
e

Fr
on

tB
en
di
ng

B
ac
kR

ea
rC

la
m
pe

d
D
γ
,1

=
0%

D
γ
,2

=
10

0%
re
ve
rs
e

D
γ
,3

=
10

0%
fo
rw

ar
d

D
γ
,4

=
10

0%
re
ve
rs
e

Fr
on

tC
la
m
pe

dR
ea
rB

en
di
ng

B
ac
k

D
γ
,1

=
10

0%
re
ve
rs
e

D
γ
,2

=
10

0%
fo
rw

ar
d

D
γ
,3

=
−

10
0%

re
ve
rs
e

D
γ
,0

=
10

0%

C
la
m
pR

ea
r

C
la
m
pF

ro
nt

C
la
m
pR

ea
r

R
el
ax

Fr
on

t

B
en
dI
nt
o

B
en
dB

ac
k

C
la
m
pF

ro
nt

R
el
ax

R
ea
r

B
en
dI
nt
o

B
en
dB

ac
k

C
la
m
pR

ea
r

R
el
ax

Fr
on

t

C
la
m
pF

ro
nt

R
el
ax

R
ea
r

C
la
m
pR

ea
r

R
el
ax

Fr
on

t

C
la
m
pF

ro
nt

R
el
ax

R
ea
r

R
el
ax

Fr
on

t
R
el
ax

R
ea
r

Fi
gu

re
3-
3:

Be
nd

in
gS

ta
te

st
at
e
m
ac
hi
ne
,w

ith
Un

cl
am

pe
d
as

th
e
in
iti
al

st
at
e.

Master of Science Thesis N.M. Geerlings

24 Design

Unaligned
PWM = 0

AlignedStraight
φ = 0 rad

AlignedLeft
φ = 0.5π rad

AlignedRight
φ = −0.5π rad

AlignStraight

AlignLeft AlignRight

AlignLeft

AlignRight

AlignStraight

AlignLeft

AlignStraight AlignRight

Figure 3-4: RotationState state machine.

Off
D = 0%

On
D = 100%

ToggleLighting ToggleLighting

Figure 3-5: LightingState state machine.

N.M. Geerlings Master of Science Thesis

3-3 Sequences of primitives 25

3-3 Sequences of primitives

To reach a higher level of autonomy than the states and actions from the previous section,
sequences of actions need to be generated. These sequences should be triggered by external
sensors, like a camera module or a proximity sensor. Sequences can then be used for tasks
such as Enter the pipe or Take a left turn. When placed into a pipe the PIRATE should be
placed in the middle of a horizontal pipe segment. Since the whole body of the PIRATE is
in the pipe, it does not matter whether the front or rear part is clamped first.

Entering the pipe in 2D could be achieved by a sequence like:

1. ClampFront 2. ClampRear 3. ToggleLight 4. DriveForward

In a 3D environment you want to drive the PIRATE as much as possible in the horizontal
plane, since the bottom of the pipe may contain dirt. An entering sequence could for example
be:

1. ClampRear

2. AlignRight

3. ClampFront

4. ToggleLight

5. UnclampRear

6. AlignOther

7. ClampRear

8. DriveForward

As soon as the PIRATE encounters a mitre bend, it should prepare itself for entering the
bend with the following sequence: Brake→ UnclampFront→ BendInto→ DriveForward.

As soon as Wheel 3 is around the bend, the PIRATE should move its clamping with: Brake→
ClampFront→ UnclampRear→ BendBack→ ClampRear→ DriveForward.

Master of Science Thesis N.M. Geerlings

26 Design

3-4 The model

3-4-1 Simulation model

The inputs of the simulation model are the torques for the bending joints (τγ), for the wheels
(τθ) and for the rotational joint (τφ). The outputs of the sensors are the angles of the bending
joints (γ), the angles of the wheels (θ), the angle of the rotational joint (φ) and the pitch and
roll angles (ψ). The yaw, pitch and roll definitions from aviation terminology are used, with
the origin at the IMU sensor on the front PICO board of the rotational module, as shown
in Fig. 3-6. The yaw angle is currently not used, since it does not affect the forces on the
PIRATE.

Figure 3-6: Definition of the yaw, pitch and roll axes, based on the sensor in the front PICO
board of the rotational module.

In the simulation model the coordinates (x, y, z) of wheel 1 with respect to its original
position, the friction force (FF) on each wheel and normal force (FN) on each wheel can
be directly measured from the contact model. For the real robot the coordinates need to
be estimated using an external sensor, like a camera or proximity sensor. The friction and
normal force need to be calculated based on the angle and torque values. The calculation of
the friction and normal forces in the simulation can be validated with the friction and normal
force for the contact model.
An overview of the inputs and outputs is shown in Figure 3-7. All derivatives are directly
available in the simulation model, in real life they need to be estimated.

Model
τγ , τθ, τθ

γ, φ, θ, ψpitch, ψroll (encoders and IMU)

x, y, z (external sensor)

FF, FN (contact model)

Figure 3-7: Inputs and outputs of the simulation model. All derivatives of the outputs are
calculated by the simulation model and are available.

The linear component of the angular velocity is calculated by multiplying the angular velocity
θ̇i with wheel radius r and direction compensation di (di = 1 for Wheels 1, 3 and 5, di = −1
for Wheels 2, 4 and 6). From this the wheel slip ratio λ, discussed in Section 2-2-4, for each
wheel is calculated as in Equation 3-1.

λi = ẋ− rdiθ̇i
ẋ

(3-1)

N.M. Geerlings Master of Science Thesis

3-4 The model 27

The clamping force Fclamp can be calculated from the joint angles and joint torques, as per
Equations 3-2 and 3-3, with definitions shown in Figure 3-8.

hfront = |l sin (0.5γ2)|
hrear = |l sin (0.5γ5)| (3-2)

Fclamp =

τγ,2√
l2−h2

front

1
2
1

τγ,5√
l2−h2

rear

1
2
1

(3-3)

Figure 3-8: Derivation of the clamping force Fclamp in the front part, based on the joint angle
γ2, joint torque τγ,2 and segment length l. The pipe diameter is h+ 2r. Permission granted by
the author. Adapted from [Dertien, 2014].

3-4-2 Traction controller

For the design of the traction controller the following simplifications are made (Fig. 3-9):

• When both the front and rear part are clamped, the PIRATE can be modelled as a
rigid body with six wheels.

• The rotational joint is fixed at 0 rad.

• The model is in 2D.

• The PIRATE is constrained in the y direction and orientation.

Master of Science Thesis N.M. Geerlings

28 Design

Using these simplifications, the 13 DoF system in 3D becomes an 8 DoF system in 2D. The
simplified equations of motion are defined as in Equations 3-4:3-6, where m is the total mass
of the PIRATE, I is the inertia of a PIRATE wheel and α is the tilt angle of the pipe. The
x and y axes are defined to be parallel and perpendicular respectively to the pipe (Fig. 3-9),
which further simplifies the equations.

mẍ =
∑

Fx = −mg sinα+
∑
i

FF,i (3-4)

mÿ =
∑

Fy = −mg cosα+
∑
i

FN,i +
∑
i

Fclamp,i (3-5)

Iθ̈i =
∑

τ = τθ,i − rdiFF,i (3-6)
i = 1, .., 6

Figure 3-9: Free body diagram with forces and torque shown for Wheel 1 and 5.

As mentioned in Section 2-2-4, when λ 6= 0, the angular acceleration is not linearly related to
the linear acceleration (ẍ 6= rθ̈). Combining Equations 3-4 and 3-6 the desired wheel torque
can be approximated.

∑
i

FF,i = m (ẍ+ g sinα) (3-7)

1
r

∑
i

di
(
τθ,i − Iθ̈i

)
= m (ẍ+ g sinα) (3-8)∑

i

diτθ,i = I
∑
i

diθ̈i + rm (ẍ+ g sinα) (3-9)

Since the accelerations in the behaviour of the PIRATE are relatively low, they are neglected
in the controller for simplicity. The gravitational force is assumed to be distributed equally

N.M. Geerlings Master of Science Thesis

3-4 The model 29

over all wheels. Therefore the desired torque per wheel to compensate gravity can be derived
as shown in Equations 3-10:3-11. ∑

i

diτθ,i ≈ rmg sinα (3-10)

τθ,i,d = di
1
6rmg sinα (3-11)

Another approach for the wheel torque controller is a simple velocity controller, as in Equa-
tion 3-12.

τθ,i,d = diKp
(
ẋd − rθ̇i

)
(3-12)

The problem with only a velocity controller is that when the angular velocity and the linear
velocity are equal, no torque is applied. When both velocities are zero, this would result
in sliding, at which point a torque is again applied, thus resulting in jitter. Therefore a
combination of both the gravity compensation and the velocity controller is proposed in
Equation 3-13.

τθ,i,d = di
1
6rmg sinα︸ ︷︷ ︸

gravity compensation

+ diKp
(
ẋd − rθ̇i

)
︸ ︷︷ ︸

velocity controller

(3-13)

To prevent the PIRATE from sliding out of the pipe the friction force should be able to at least
compensate the forces resulting from gravity acting on the system, as shown in Equations 3-14
and 3-15.

∑
i

FF,i,d ≥ m (ẍ+ g sinα) (3-14)

FF,i,d ≥
1
6m (ẍ+ g sinα) (3-15)

To be sure that the desired friction force is high enough, a safety factor of 2 is chosen. The
desired normal force is then calculated by means of the estimated kinetic friction coefficient
µ̂k,i, which should be estimated by means of an experiment with the real robot. From the
desired normal force the desired clamping force can be calculated, as shown in Equations 3-
16:3-19.

FF,i,d = 1
3m (ẍ+ g sinα) (3-16)

µ̂k,i ≤ µk,i (3-17)

µ̂k,i = FF,i
FN,i

(3-18)

FN,i,d = FF,i,d
µ̂k,i

(3-19)

Master of Science Thesis N.M. Geerlings

30 Design

Reworking the equation of motion given in Equation 3-5 results in the desired clamping force
as in Equations 3-20:3-22. ∑

i

Fclamp,i = m (ÿ + g cosα)−
∑
i

FN,i (3-20)

Fclamp,i ≈
1
6m (ÿ + g cosα)− FN,i (3-21)

Fclamp,i,d = 1
6m (ÿ + g cosα)− FN,i,d (3-22)

Combining Equations 3-3, 3-19 and 3-22 to Equation 3-23, the desired torques for bending
joints γ2 (front part) and γ5 (rear part) can be determined as shown in Equations 3-24 and
3-25 respectively.

τγ,2,d = 1
2

√
l2 − h2

frontFclamp,i,d

= 1
2

√
l2 − h2

front

(1
6m (ÿ + g cosα)− FN,i,d

)
= 1

2

√
l2 − h2

front

(
1
6m (ÿ + g cosα)− 1

µ̂k,i

(1
3m (ẍ+ g sinα)

))
(3-23)

τγ,2,d = 1
2

√
l2 − h2

front

(
1
6mg cosα− 1

3µ̂k,2
mg sinα

)
(3-24)

τγ,5,d = 1
2

√
l2 − h2

rear

(
1
6mg cosα− 1

3µ̂k,5
mg sinα

)
(3-25)

N.M. Geerlings Master of Science Thesis

Chapter 4

Robot software implementation

In this chapter the design of the simulation is briefly discussed. The adaptions made on the
low-level controller are then discussed node by node. Finally, the ROS node implementation
for the high-level controller is explained.

4-1 Simulation model

The simulation model was built in Simulink. The hardware was modelled using the Simscape
Multibody package, a native Simulink package. The kinematics and visual appearance (Fig-
ure 4-1) were generated by importing an existing URDF file (kinematics) and existing STL
files (meshes) of the PIRATE. As shown in Figure 4-1, the front and rear modules are left
out. The front module is currently not available for the real robot and the rear module is not
actuated. Omitting these two modules will reduce the complexity and therefore improve the
simulation performance.

Figure 4-1: Simulation and visualisation of the PIRATE in two pipe segments.

Master of Science Thesis N.M. Geerlings

32 Robot software implementation

All joints and wheels are connected by 1-DOF revolute joints, which use torque as input and
angle as output. The first joint is connected to the world by a 6-DOF joint without actuation,
making the robot a 17-DOF system. This extra joint is needed by the simulation to be able to
initialise the position and orientation of the robot, and can also be used to directly measure
the coordinates of the robot. The dimensions of the modules are known from the URDF
file and were validated by measuring them. The masses of the modules and wheels were
determined by weighting spare parts of the robot, see Table 4-1. The modules are assumed
to have point masses at the center of their corresponding wheel, since the real mass matrices
are unknown. The wheels are modelled as disks, with the inertia of a homogeneous disk with
its total mass equivalent to the measured mass of a wheel. Figure 4-2 shows an overview of
the Simscape model.

Figure 4-2: Overview of the Simscape model. The inputs and outputs and the transformation
blocks are omitted for simplicity.

The contacts are modelled using the Simscape Multibody Contact Forces Library [Miller,
2017]. The contacts between the wheels of the PIRATE and the pipe walls are modelled with
sphere-to-tube contacts, since this was the only contact model geometry that incorporated a
tube element. Due to the width of the wheels (1.2 cm) the sphere-to-tube geometry should
be appropriate. Each contact block combines a linear mass-spring-damper system with a con-
tinuous stick-slip friction law. The contact block first calculates the location and orientation
between the sphere and the tube. Based on that it calculates the penetration of the pipe wall
and the resulting damped spring force. Rigid surfaces are very hard to model in Simulink, so
suitable thickness, stiffness and damping values have to be used to model the pipe wall. The
stiffness and damping parameters were tuned in such a way that the robot could clamp itself
without penetrating the pipe wall and without bouncing, see Table 4-1. Based on the relative
orientation between the two bodies, the damped spring force is transformed to a normal force
acting on both bodies. This in turn allows for calculation of the friction force, based the
relative linear velocity and the normal force. The relation between the relative velocity and
µ is as modelled in the Simscape Multibody Contact Forces Library is shown in Figure 4-3.

N.M. Geerlings Master of Science Thesis

4-1 Simulation model 33

-2 0 2

-1

-0.5

0

0.5

1

Figure 4-3: Relation between the relative velocity and friction coefficient as defined in the
Simscape Multibody Contact Forces Library. The parameters are µs, µk and vth, which in this
example are 0.7, 0.5 and 0.001 m/s.

Due to the used contact model the wheel radii are not constant, but depend on the penetration
depth dp in the contact model. The required modifications for the calculation of the friction
force result in Equations 4-1 and 4-2. For the controller the constant radius r is used, since
the penetration depth for the real robot will be less (approximately 2 mm) and the real robot
cannot measure the penetration depth.

FF,i = 1
r∗i

(
τθ,i − Iθ̈i

)
. (4-1)

r∗i = r − 1
2dp,i (4-2)

Since the angle values can be read out directly from the revolute joint blocks, no sensors
need to be modelled. White noise is added to the output angles (including the IMU), angular
velocity, position and linear velocity.

The IMU is modelled as an orientation sensor based on quaternions, measuring the orientation
of the front part of the rotational module with respect to the world frame (Figure 1-1).

Since communication between Simulink blocks is handled completely by Simulink, only lines
need to be drawn, and no implementation of the OS level or Service level is needed. The
Function/Execution level contains PD controllers for the wheels and joints, as will be discussed
in Section 4-2. The Skill level contains a Finite State Machine and the selection of the
setpoints, as will be discussed in Section 4-3.

Master of Science Thesis N.M. Geerlings

34 Robot software implementation

Table 4-1: Simulation parameters.

Bend Rotation Wheel
Length (m) 0.09 0.098 -
Diameter (m) - - 0.048
Mass (kg) 0.130 0.150 0.020

Inertia (kg m2) - -
2.88 · 10−6

5.76 · 10−6

2.88 · 10−6

Stiffness (Nm−1) 1000
Damping (kg s−1) 100
Friction, kinetic (-) 0.2 (front), 0.5 (rear)
Friction, static (-) 0.3 (front), 0.7 (rear)
Friction, velocity threshold (ms−1) 0.001

N.M. Geerlings Master of Science Thesis

4-2 Low-level control 35

4-2 Low-level control

In this section the existing nodes for low-level control (SerialCommunication, PirateCommuni-
cation and Movement) are discussed and the changes are elaborated. Also the new additional
nodes rViz and robot_state_publisher are discussed.

4-2-1 SerialCommunication node

To make sure that all commands can be executed at high level, first the low-level controllers
need to be adapted. The SerialCommunication node needs to be able to control each wheel
individually.

The PIRATEbay runs the SerialCommunication node as is described in Algorithm 1. The
Control_Array.msg that was previously incorporated in this node is removed, since the con-
version from any control mode to PWM is done at a higher level. The Limits_Array.msg is
removed, since limits should be checked at multiple levels independently from the checks at
other levels. This way the system becomes more robust and no unnecessary communication
is needed.

Previously, the Setpoint_Array readout in SerialCommunication node used the 11th setpoint
as setpoint for all the wheels, while these should have separate setpoints. For example, if only
the front part is clamped, only the front wheels should be actuated. This has been changed
such that each of the new 18 setpoints can now be used in the SerialCommunication node.

An ID tag has been added to the Setpoint_Array.msg and a publisher has been added to
the SerialCommunication to echo the received setpoints. This makes it possible to check if,
and when, messages are received by the PIRATEbay, such that it can be verified that all
commands are executed. As soon as the callback of the Setpoint_Array is triggered, the
Setpoint_Echo is published. Since ROS communication is asynchronous, this can happen
anywhere in Algorithm 1.

Master of Science Thesis N.M. Geerlings

36 Robot software implementation

Algorithm 1: Pseudocode for the SerialCommunication node.
Initialisation: Calibrate PICO boards and write initial setpoints, limits and control modes
to PICO boards.
Setup: Create SerialCommunication ROS node, Setpoint_Array subscriber, and State and
Setpoint_Echo publishers. Set baud rate and start serial communication. Initialise state
message.
while forever do

Poll PICO via RS485 serial communication. Set loop counter at 0.
for every 4 milliseconds do

switch loop counter do
case 1 do

Do nothing.
case 2 do

Write setpoints to PICO boards.
case 3 do

Read a specific sensor value from one of the PICO boards.
case 4 do

Publish the sensor value from the previous loop to ROS.

if loop counter reached max. number of options then
Reset loop counter.

else
Increment loop counter

Poll MIDI board.

N.M. Geerlings Master of Science Thesis

4-2 Low-level control 37

4-2-2 PirateCommunication node

The PirateCommunication node is summarised in the pseudocode of Algorithm 2. The pub-
lishers and subscribers of Control_Array and Limits_Array, as mentioned in Section 4-2-1,
were removed.

Since the Setpoint_Echo is received approximately 0.05 seconds after sending the Setpoint_-
Array, a delay of 0.1 seconds is set to prevent sending too much messages to the PIRATEbay.
Since about 20% of the messages is missed (determined during test while debugging) and
since one of two consecutive messages is always received, all messages are published double
to ensure all data is received. Receiving both messages does not result in different behaviour
than wouuld be the case if only one message was received. Using a callback at the Pirate-
Communication node for the echo messages, checking their ID’s and resending a message if
missed does not work, since the Movement node keeps publishing messages while the Pirate-
Communication node is still waiting to check the ID of the Setpoint_Echo message. This
results in an unacceptable delay in communication.

Algorithm 2: Pseudocode for the PirateCommunication node.
Create PirateCommunication ROS node, publishers for Setpoint_Array and Sensors and
subscribers for State and Move.
while Node is okay do

if State message is received then
Publish this info in a Sensors message.

if Move message is received then
Check if control mode is correct. Place setpoint at correct index in the
Setpoint_Array message. Publish the Setpoint_Array message. Wait. Publish the
message again. Wait.

4-2-3 Movement node (at Execution level)

The main class in the Movement node is the Movement class. The building blocks, the
Element (module), Motor and Sensor classes and their inheriting child classes, are provided
at the Execution level. Instances of these classes are created by the Movement class at the
Function level.

The original Motor child classes were DriveMotor, LedMotor, NoMotor, PositionMotor and
TorqueMotor. The original Sensor child classes were AngleSensor, CameraSensor, ImuSensor
and SpringSensor. Since the purpose of the Movement node at Execution level is to provide
all building blocks (sensors, motors and modules) for the robot, these blocks should follow
the structure of the actual hardware. When changing e.g. the type of motor for the bending
joint, this should result in changes for only one Motor child class. The bend, rotation and
camera joints have different motors and sensors, so there should be a separate Motor and
Sensor child class for each type of joint. The spring angle sensor and bend angle sensor are
part of the same gear train and are therefore related. The spring angle sensor is used to
determine the spring force in a bending joint based on the rotational spring deflection for this
joint. Therefore the SpringSensor is merged with the BendAngleSensor.

Master of Science Thesis N.M. Geerlings

38 Robot software implementation

The new set of motor child classes therefore is BendMotor, CameraMotor, Drivemotor, Led-
Motor, NoMotor and RotateMotor. The sensor child classes are changed to BendAngleSensor,
CameraSensor, ImuSensor, DriveSensor and RotateAngleSensor. The components to which
these Motor and Sensor child classes refer can be found in Appendix A.

The Motor and Sensor child classes did not have any implementation yet besides storing
the raw sensor/motor value. For the Motor child classes P-controllers are now implemented,
so the desired position or velocity can be converted to a PWM value for the motors. A
PD-controller is not needed since the motors provide enough damping. For the Sensor child
classes, conversion from raw sensor values to SI units is now implemented. Information about
these conversions can be found in Appendix B.

The BendAngleSensor class provides bend angle γbend, current Ibend and torque τbend. The
RotationAngleSensor class provides rotation angle φrotate and current Irotate. The DriveSensor
class provides wheel angle θwheel, angular velocity ωwheel and current Iwheel. The ImuSensor
provides the raw values for the accelerometer and magnetometer, the roll angle ψroll and the
pitch angle ψpitch. For the CameraSensor no conversion is implemented as of yet, since the
module with this sensor was not available during the project.

The Element child class each describe a type of module (BendElement, Rotation, Front and
RearElement) by creating a set of one or two Motors and one or two Sensors for a module
with one PICO board (bend and rear modules) and up to four Motors and up to four Sensors
for a module with two PICO boards (rotation and front modules). No changes have been
made to the Element child classes.

4-2-4 Movement node (at Function level)

The Movement node creates instances of the Elements in a fixed order, as shown in Table 4-
2. Even though the front module and the sensor in the rear module are not available, the
FrontElement and RearElement are incorporated in the structure. The high-level controller
uses the identifiers of the Elements in the list, so including the FrontElement and RearElement
results in less changes in code when the physical front and rear module become available for
the real robot. No changes were made to this list, except implementing the new Motor and
Sensor child classes as defined in Section 4-2-3.

A concise overview of the Movement class is shown in Algorithm 3.

When a SimpleMove request is received, the Movement node translates it to a Move message
and passes it through, via the Element class, to the PirateCommunication node. When a
Sensor message is received the info is stored at the correct Sensor class instance.

The PIRATE needs to be able to be controlled in different modes. Therefore PWM control
(open-loop voltage control, with a setpoint for the duty cycle) and position control are both
implemented. The reason why velocity and torque control are not yet implemented is due
to the blocking behaviour of the ROS services. Velocity (or torque) control would be a
continuous process, so while this service is running no other commands can be executed.
Action messages instead of services could be a solution, but this was outside the scope of
this thesis. The absence of velocity and torque control is the main reason why the traction
controller is designed and tested in simulation. The absence of the velocity controller also has
consequences for the high-level controller, as will be discussed in Section 4-3-1.

N.M. Geerlings Master of Science Thesis

4-2 Low-level control 39

Table 4-2: Structure of the PIRATE as generated in the Movement class. Starred (*) items are
currently not available for the real robot.

ID Elements Motors Sensors
0 FrontElement* CameraMotor* CameraSensor*

CameraMotor* CameraSensor*
BendMotor* BendAngleSensor*
LedMotor*

1 BendElement BendMotor BendAngleSensor
DriveMotor DriveSensor

2 BendElement BendMotor BendAngleSensor
DriveMotor DriveSensor

3 RotationElement - IMU
DriveMotor DriveSensor
RotateMotor RotationAngleSensor
DriveMotor DriveSensor

4 BendElement BendMotor BendAngleSensor
DriveMotor DriveSensor

5 BendElement BendMotor BendAngleSensor
DriveMotor DriveSensor

6 RearElement - BendAngleSensor*
LedMotor -

For moves like clamping, it is important that multiple modules (joints, wheels or LEDs) can
be actuated at the same time. This is therefore implemented in the Movement class. For
example, bending joints γ1 and γ2 can be actuated simultaneously, as well as γ3 together with
γ4, and γ1 together with γ2, γ3 and γ4. Simultaneous control of these bend joints is possible
for both PWM and position control.

Master of Science Thesis N.M. Geerlings

40 Robot software implementation

Algorithm 3: Pseudocode for the Movement node.
Create Movement ROS node, publishers for ConfigurationState, JointState, WorkspaceState
and Move, a subscriber for Sensors and a service server for MoveCommand.
Create an ordered list of Element class instances: FrontElement → BendElement →
BendElement → RotateElement → BendElement → BendElement → RearElement
while Node is okay do

if MoveCommand message is received then
Select corresponding module or set of modules and check if requested control mode is
possible.
if PWM control (possible for all motors) then

Store PWM setpoint at corresponding Element and Motor class instance and
publish PWM setpoint in a Move message.

if Position control (possible for bend angles) then
Send desired angle to corresponding Element and Motor class instance and
receive angle error and PWM setpoint.
while At least one of the angle errors is not within angle thresholds do

for Each angle do
if Angle error is not within angle thresholds then

Send desired angle to corresponding Element class instance and Motor
class instance, receive angle error and PWM setpoint and publish
PWM setpoint in a Move message.

else
Publish PWM setpoint of zero in a Move message.

For all angles publish PWM setpoints of zero in a Move message.

if Sensor message is received then
Select corresponding Element and Sensor class instance, change data to SI format
and store data at this Sensor class instance.
Publish ConfigurationState message containing data of all sensors.
Publish JointState message for visualisation.
Read out the poses from the TransformStamped message with respect to the first
module and publish these poses in the WorkspaceState message.

N.M. Geerlings Master of Science Thesis

4-2 Low-level control 41

4-2-5 Additional nodes

To easily see if all sensor values correspond with the real situation, an rViz visualisation
is now incorporated in the software structure. The visualisation is based on the exising
STL mesh files, which describe the visual appearance of the robot. An example of an rViz
visualisation is shown in Figure 3-6 (without the axes). rViz is a native ROS node, which
needs information about the angles and torques between segments, described in a sensor_-
msgs::JointState message, and information about the position and orientation of each segment,
described by a geometry_msgs::TransformStamped message. Both are native ROS message
structures. All angles and torques are described in the Movement node, so that node publishes
the sensor_msgs::JointState.

Since the kinematic structure of the robot is already available in an URDF file, the robot_-
state_publisher node is used to calculate the position and orientation. This robot_state_-
publisher node is a native ROS node and is optimised to calculate forward kinematics, and is
therefore heavily preferred over writing a method by hand. The local transforms are expressed
in poses with quaternions and are published in geometry_msgs::TransformStamped messages.
These are then received by the Movement node and from this message the relative pose with
respect to the first joint can be calculated. These relative poses are then published in a
WorkspaceState message.

To store data while running ROS, the rosbag package is used, which records all messages
and saves them in a .bag file. An important note here is that the rosbag package only stores
message data, not service data.

Master of Science Thesis N.M. Geerlings

42 Robot software implementation

4-3 High-level control

4-3-1 PAB node

The PAB node (Partially Autonomous Behaviour) contains the finite state machines (FSM’s)
from Section 3-2. Primitive services, either received from the user interface or from the
Sequence node, are only executed if the command is possible and purposeful. For example,
changing the alignment of the rotation joint is not possible when both parts of the robot are
clamped. Clamping the front is not a purposeful command if the front is already clamped, so
it will not be executed. This way unnecessary commands will not be passed through to the
lower levels, reducing the computative load on the system.

As mentioned in Section 4-2-4 velocity and torque control is not available. Due to the
absence of a these controllers the Free and Fixed state in the FrontWheelsState and
RearWheelsState state machines are actuated in the same way: a setpoint with a PWM
duty cycle of 0%. The DrivingForward and DrivingBackward states are actuated with
PWM duty cycles of 100% in the forward and reverse direction respectively. Due to the gear
ratio of the wheels, the wheels will resist rotation when the PWM duty cycle is set to 0%,
resulting in unwanted friction when a wheel touches the pipe wall.

As mentioned in Section 4-2-5, services are not stored by the rosbag package. To store the
changes in the FSM’s, all states are published in an FSMState messages.

An overview of the PAB node implementation is given by Algorithm 4.

Algorithm 4: Pseudocode for the PAB node.
Create PAB ROS node, a publisher for FSMState, a service client for MoveCommand and a
service server for Primitive.
if Primitive request is received then

Check if command exists.
if Command is possible and purposeful in current combination of states then

for Each FSM do
Select new state. for Each part of the state command do

Publish the module, setpoint and mode in a MoveCommand request.
if All MoveCommand responses were successfull then

Update current state of each FSM with its new states.

if All FSM’s were updated successfully then
Return positive Primitive response. Publish FSMState.

4-3-2 Sequence node

The Sequence node should be the highest node within the Skill level (Table 2-1). Based on
external triggers (from the Detector node, Section 4-3-3), sequences of Primitive commands
should be executed. The Sequence node should also provide all necessary data for mapping
the network, which should happen at Task level.

N.M. Geerlings Master of Science Thesis

4-4 Overview 43

The Environment message contains information for mapping at the Task level. The type
of segment is described as Out (not yet in the pipe), Straight (straight section of the pipe)
and Joint (for a mitre bend). This can be expanded to also cover T-joints and other types
of segments. The Environment message also contains the pitch and the roll, in order to
determine the orientation of the pipe segment, and the diameter of the pipe. The diameter
can be calculated as h + 2r by means of the bend angles, as shown in Equation 3-2 and
Figure 3-8.

When slip compensation is implemented, the odometry data becomes trustworthy and can
be sent within this message as well. This was outside of the scope of this thesis.

An overview of the implementation is shown in Algorithm 5.

Algorithm 5: Pseudocode for the Sequence node.
Create Sequence ROS node, a publisher for Environment, a subscriber for Detected, a
service client for Primitive and a service server for PabSequence.
if PabSequence request is received then

Check if command exists.
if Command is possible then

Select corresponding list.
for Each action in list do

Send Primitive request and wait a few seconds. If result is successfull, send next
request.

if ConfigurationState message is received then
Extract roll, pitch and pipe diameter. Publish Environment message.

if Detected message is received then
Select corresponding list.
for Each action in list do

Send Primitive request and wait a few seconds. If result is successfull, send next
request.

4-3-3 Additional nodes

To detect pipe segments like a T-joint, an external sensor is needed, like a camera or proximity
sensor. The data from this sensor should be processed in a low-level node, and then send
to a high-level node that can detect and distinguish these pipe segments. This high-level
node will be the Detector node, which sends triggers to the Sequence node in the form of
a Detected message. The implementation of the Detector node depends on the used sensor.
The implementation of this node for the experiments is explained in Section 5-4.

4-4 Overview

The updated overview of the software framework with all its nodes is shown in Figure 4-4.

Master of Science Thesis N.M. Geerlings

44 Robot software implementation

PICO boards

Motors Sensors Camera
Hardware

SerialCommunicationMIDI panel

PirateCommunication
OS

Execution

rViz∗

Function
ComputerVision

Movement

RobotStatePublisher∗

Service

Partially autonomous
behaviour (PAB) Detection

Sequence
Skill

User terminal

Setpoint_Array.msg State.msg
Setpoint_Echo.msg

WorkspaceState.msg

ConfigurationState.msg

Move.msg Sensors.msg

JointState.msg∗

JointState.msg∗ TransformStamped.msg∗

TransformStamped.msg∗

HoughCoords.msg
BlobCoords.msg

MoveCommand.srv

FSMState.msg

Primitive.srv

Environment.msg

Detected.msg

PabSequence.srv

Figure 4-4: The updated software overview. The rounded rectangles represent the RobMoSys
levels, the ellipses represent the ROS nodes, the arrows represent (ROS) messages, the dashed
arrows represent ROS services and the asterisk(∗) represents native ROS nodes or message formats.
The nodes and messages in italics are only added for the experiments and will be discussed in
Chapter 5. None of the nodes subscribe to Environment.msg and FSMState.msg, but, as holds
for all messages, their contents can be requested in the terminal.

N.M. Geerlings Master of Science Thesis

Chapter 5

Experiment design

5-1 Goals

For the experiment two setups are used, as shown in Figure 5-1.

The first goal is to determine the slip ratio and the friction coefficient. Setup 1, a 2D straight
pipe (Figure 5-1a, and Setup 2, a real 3D straight pipe (Figure 5-1b), are used to do this.
The slip ratio will be determined from the linear velocity of the PIRATE as a whole, which
is measured with a camera, and the angular velocity of the wheels, which is measured by
sensors on the PIRATE. Based on this data a distinction can be made between a wheel that
is contributing to the velocity and a wheel that is not.

The friction coefficient will be determined from the clamping torque in the bend joints (γ1
for the front and γ4 for the rear) and the torque from its wheels. The friction force FF and
normal force FN will be used together with the slip ratio to identify the λ-µk-curves, as is
done in Hansen et al. [2005], by means of the Magic formula (Section 2-2-6) and Gaussian
processes (Section 2-2-7).

The second goal is to evaluate if the PIRATE can move autonomously through a mitre bend
with the updated software. Setup 3, a 2D mitre bend, is used to do this (Figure 5-1c). The
location of the robot is determined by a camera. One of the aims is to determine how often
the robot gets stuck, and if so, why. Another aim is to determine if the robot can also pass
the mitre bend, without falling, if the backplate is tilted. Based on the trials in these setups
recommendations will be made for moving through a mitre bend using a proximity sensor
instead of a camera.

The third goal is to evaluate each part of the traction controller. This is done in simulation,
as explained in Section 4-2-4.

2D setup instead of setups with real pipes were chosen such that the robot was easily acces-
sible, the 3D setup was used to validate the transferability of the 2D setup.

Master of Science Thesis N.M. Geerlings

46 Experiment design

(a) Setup 1: 2D straight pipe.

(b) Setup 2: 3D straight pipe. (c) Setup 3: 2D mitre bend. The dimen-
sions of the horizontal and vertical part are
equal.

Figure 5-1: Schematics of the setups, in mm. The origin for the detection is defined at the red
plus sign.

Figure 5-2: Setup 1 with the camera (1), PIRATE (2), PIRATEbay (3) and MIDI panel (4).

N.M. Geerlings Master of Science Thesis

5-2 Materials and dimensions 47

5-2 Materials and dimensions

Setup 1 and 3 (Fig. 5-1) consist of parallel POM (polyoxymethylene) plates which are mounted
on aluminium Boikon 40x40mm bars, mounted on a wooden (birch) backplate.

Setup 1 (Fig. 5-1a) only contains straight bars, creating a ’pipe’ with a length of 113.5 cm
and an inner diameter of 12.0 cm. An impression of this setup during an experiment is shown
in Figure 5-2.

In Setup 2 a PVC pipe is placed on top of Setup 1, where the pipe is supported and kept in
place by the POM plates.

Setup 3 (Fig. 5-1c) contains a 90◦ bend of two ’pipes’ with both a diameter of 12.0 cm.
Both setups are lying flat on the table, such that the plane in which the robot moves is
perpendicular to gravity. This way the influence of gravity is the same on all moves of the
robot.

To ensure that the robot is clamped and not leaning on the backplate in Setups 1 and 3, the
robot is first placed upon a block with a thickness of 2 cm. Once in position the clamping
commands are sent and the block is removed.

All setups contain a vertical bar on which a camera can be mounted. The camera used in
these experiments is an USB camera module with fisheye lens (ELP-USBFHD06H, 1080p
resolution, HD H.264 encoding). This camera is chosen for its wide angle. For Setup 1 and 3
an orange marker is used, since using this colour is detected best. For Setup 2 a blue marker
is used. Since the pipe is not fully transparent and has a blue-gray colour, this colour resulted
in the best detection for the 3D pipe.

5-3 Protocol

5-3-1 Experiment 1: driving up and down the pipe

The task in Setup 1 is to clamp the front and/or rear module and drive forwards to the other
end of the pipe, and then drive backwards to the start of the pipe. The robot drives up and
down three times, triggered by Primitive commands which are sent by the operator. This is
done in three experiments:

Exp. 1a Clamp the front and the rear parts in Setup 1.

Exp. 1b Clamp only the front part in Setup 1.

Exp. 1c Clamp only the rear part in Setup 1.

Exp. 1d Clamp the front and the rear parts in Setup 2.

The steps for these experiments are:

Master of Science Thesis N.M. Geerlings

48 Experiment design

1. Send ClampFront command.

2. Send ClampRear command.

3. Remove supporting block.

4. Send DriveForward command.

5. Send Brake command.

6. Send DriveBackward command.

7. Send Brake command.

8. Send DriveForward command.

9. Block the pipe for a moment, in front of
the PIRATE (except in Exp. 1d).

10. Send Brake command.

11. Send DriveBackward command.

12. Block the pipe for a moment, behind the
PIRATE (except in Exp. 1d).

13. Send Brake command.

14. Send DriveForward command.

15. Send Brake command.

16. Send DriveBackward command.

17. Send Brake command.

For all experiments in Setup 1 (Exp. 1a-1c), at certain moments when driving forward and
backward the pipe is blocked. This way the PIRATE bumps into the obstacle and cannot
continue driving, while the wheels are still rotating, resulting in a change in slip ratio. These
occurrences should be distinguishable in the slip ratio measurements. Due to the inaccess-
ability in Setup 2, this was not done in Experiment 1d.

5-3-2 Experiment 2: moving through a bend

For Setup 3, the robot should try to move through the bend autonomously. This is done in
three experiments:

Exp. 2a Using Primitive commands, flat backplate.

Exp. 2b Using Sequence commands with Detector triggers, flat backplate.

Exp. 2c Using Sequence commands with Detector triggers, tilted backplate.

In Experiment 2a the PIRATE is controlled by an operator who sends Primitive commands
directly to the PAB node, ignoring the Sequence node. The camera is not used in this
experiment. In Experiment 2b the operator only has to send the Sequence command to enter
the pipe. The detection of the mitre bend is done based on the camera system. The camera
detects the marker and determines the location of the marker with respect to the inner corner
of the mitre bend. In Experiment 2c the backplate is tilted to show that the PIRATE does
not fall down while driving through the mitre bend. The tilt angle should be high enough to
make the PIRATE slide away when it is not clamping, but also not to high to ensure that
the PIRATE can still provide enough torque to clamp.

To determine this angle the robot is placed on the backplate and the plate is tilted until the
robot starts sliding. Then the robot is placed in the horizontal section of the mitre bend and
is commanded to clamp the front and rear parts. If this is successfull, the robot is removed,
the tilt angle is increased and the robot is commanded to clamp again. This is repeated until

N.M. Geerlings Master of Science Thesis

5-3 Protocol 49

the robot cannot properly clamp itself, thus resulting in the maximum achievable tilt angle
for the setup.

Since this experiment is done in a 2D setup, the rotational joint is not needed. This joint also
cannot be used since it cannot a rotation of 180◦. Therefore the angle of the rotational joint
is keps at zero and no commands influencing the RotationState state machine are sent.

5-3-3 Experiment 3: traction controller in simulation

In the simulation the robot will first clamp both parts. Next it drives backwards and forwards,
each for 10 seconds. When the robot is back at its starting position, the gravitational vector
changes from being perpendicular to the pipe to being parallel to the pipe, so the robot will
start behaving as if it was in a vertical pipe. It then has to drive backwards and forwards
again. Four different settings will be used:

Exp. 3a Velocity control + fixed clamping torque.

Exp. 3b Velocity control with gravity compensation + fixed clamping torque.

Exp. 3c Velocity control + controlled clamping torque.

Exp. 3d Velocity control with gravity compensation + controlled clamping torque.

To investigate the influence of the friction coefficient, the wheels in the front part will have
different pre-set values for µs and µk from the wheels in the back part. This should influence
the clamping torque for Experiments 3c and 3d.

Since Experiments 3a-3d are done in simulation, all triggers can be send at exactly the same
time. This makes it easier to compare their performances. The triggers are sent at the
following moments:

T = 2 s Clamp front

T = 4 s Clamp rear

T = 6 s Drive backward

T = 6 s Change velocity control (Exp. 3b
and 3d)

T = 16 s Brake

T = 19 s Drive forward

T = 29 s Brake

T = 32 s till T = 37 s Gradually change
gravity vector from
vertical to horizontal.

T = 41 s Change clamp control
(Exp. 3a and 3c)

T = 44 s Drive backward

T = 54 s Brake

T = 55 s Drive forward

T = 56 s Brake

Master of Science Thesis N.M. Geerlings

50 Experiment design

5-4 Visual tracking

To track the PIRATE with the camera processing of the image need to be taken into account.
The fisheye causes straight lines in the real world to appear curved on the image, as shown in
Figure 5-3a. To restore the straight lines to being straight in the image as well, an undistortion
algorithm is applied, as shown in Figure 5-3b. This is done by using the C++ OpenCV library
[Bradski, 2000]. More information about the image processing can be found in Appendix C-1.

(a) Before undistortion. (b) After undistortion.

(c) After conversion to HSV, thresholding and
detection by Hough circle transform (green) and
SimpleBlobDetector (red).

Figure 5-3: Steps in the image processing.

Once the image is undistorted, it is converted from RGB to HSV colour space. More infor-
mation about this can be found in Appendix C-2. To find the orange marker, upper and
lower thresholds are set on the hue, saturation and value. Whenever too much artefacts are
detected, the thresholds need to be tuned. To reduce noise and prevent false detections, the
image is smoothened with a Gaussian filter.

OpenCV offers various feature detection methods, like the Hough circle transform and the
SimpleBlobDetector. The Hough circle transform specialises in finding circular shapes, where
the SimpleBlobDetector finds blobs of pixels in any shape (Fig. 5-3c).

Whenever the camera is mounted on any of the setups, the extrinsic matrix has to be

N.M. Geerlings Master of Science Thesis

5-4 Visual tracking 51

(re)calculated. The extrinsic matrix describes the relation between the 2D position of a
point in the image and the 3D position of the marker in the real world (Appendix C-2). This
is done by selecting four points in the real world and measuring their location in the real
world and in the image. Using these values the OpenCV getPerspectiveTransform method
approximates the extrinsic matrix. This way the units are also instantly converted from pixels
to meters.

The before mentioned steps are all implemented in a separate ROS node named Comput-
erVision. During each loop the found coordinates of the Hough circle transform and the
SimpleBlobDetector are published to ROS. For Setups 1 and 2 these coordinates are only
used in postprocessing. For Setup 3, the Detector node checks, based on the coordinates and
the local transformations within the PIRATE, if the PIRATE is close to the bend, is in the
bend or has passed the bend. This node then sends the appropriate triggers to the Sequence
node. The visual tracking nodes are shown in Figure 4-4.

Master of Science Thesis N.M. Geerlings

52 Experiment design

5-5 Data collection and postprocessing

All ROS messages are stored in .bag files, as mentioned in Section 4-2-5. To be able to load
the data into Matlab, each .bag file is converted to a set of .csv files, where each .csv file
contains the data for a certain message type.

In order to calculate wheel slip ratio λ, the angular velocity from the ConfigurationState mes-
sage and the coordinates from either the BlobCoordinates message or the HoughCoordinates
message are used, depending on which marker detection method has the least artefacts. For
the friction coefficient µ, the joint torque for the bending joints and the wheel torque from
the ConfigurationState message are both needed.

The message data for the ConfigurationState message remains the same for about 0.1 seconds,
while it is published multiple times. This results in wheel angles that remain the same
about 0.1 seconds, and then suddenly have a very high angular velocity when the data in the
ConfigurationState message is updated. In real life the angular velocity may be constant. This
problem cannot be solved by simple interpolation. To prevent this behaviour from distorting
the wheel angular velocity, only the first datapoint of such a set of constant datapoints is
taken into account.

Since messages are sent asynchronously in ROS, the timing of each type of message is different
and the time between two succeeding messages is inconsistent. Therefore the data in the
ConfigurationState message and the visual coordinates are interpolated linearly to consistent
timesteps of 0.01 seconds, starting at the first moment that a message is published in ROS.

To smoothen the blocky signal of the interpolation and to reduce noise, the signals are filtered
using a moving average filter of with a window of n = 100 steps (1 second), where all filtered
signals are moved 0.5 second back to correct for the time delay caused by the filter. The
interpolated and filtered values will be indicated with a tilde (˜), as in Equations 5-1 and 5-2.

The angular velocity is calculated based on the time derivative of the wheel angle, as in
Equation 5-1. The reason why the angular velocity is not used is because that signal appears
to be an angular difference instead of an angular velocity. This is elaborated on in Appendix B.

ω̃i = ∆θ̃i
∆t̃

(5-1)

The linear velocity of the marker is calculated by taking the time derivative of the x-
coordinate, as in Equation 5-2.

ṽ = ∆x̃
∆t̃

(5-2)

From the measurements in the straight pipe λ and µ will be calculated, as discussed in
Section 3-4-2. The assumption is made that only the wheels touch the pipe and that no other
external forces are applied on the PIRATE. Based on that the friction force for each wheel
is calculated based on the wheel torque. Since there are no torque sensors for the wheel,
the only way to estimate the wheel torque is by means of the wheel current, as shown in
Equation 5-3. The gear train is described in Appendix A [Dertien, 2014]. Since the current
signal provided by the PICO boards is always positive, the direction of the wheel torque τθ
is taken from the torque setpoint τθ,i,d.

N.M. Geerlings Master of Science Thesis

5-5 Data collection and postprocessing 53

τθ,i = kmrgearbox sign (τθ,i,d) Iθ,i
= 8.44 · 10−3 · 112 sign (τθ,i,d) Iθ,i (5-3)

When the values for λ, FF and FN have been determined, a relation for λ and µ can be
found by means of identification. The parameters of the Magic formula will be optimised by
a least squares optimisation, which is a simple well known method to fit parameters. For
the Gaussian processes the GPML toolbox will be used, with a mean of zero and a squared
exponention covariance function [Rasmussen and Nickisch, 2010].

Master of Science Thesis N.M. Geerlings

Chapter 6

Experimental results

6-1 Overall performance

At low level, due to double publishing and setting the correct time delays, all commands from
the PirateCommunication node are received and executed by the PIRATEbay (Section 4-2-2).
For the position controller no overshoot is observed.
During the experiments Wheels 3 and 4 are not actuated, even though control signal is
provided to the PIRATEbay. Furthermore no sensor signals are received for Wheel 3 and 4
and therefore they are not taken into account in the rest of this chapter.

6-2 Setups 1 and 2: straight pipe

In Setups 1 and 2, the straight pipes as described in Section 5-2, the PIRATE was able to
clamp itself and drive up and down the pipe horizontally. In Setup 1 the PIRATE did slide
down, but only when driving.
Figure 6-1 shows the joint torques. The means of the measured absolute clamping torques
are 0.1672, 1.6009, 0.5162 and 0.2043 Nm for bending joints 1, 2, 3 and 4 respectively. The
medians for the clamping torques of these bending joints are 0.1587, 1.9230, 0.4873 and 0.2373
Nm respectively. In this trial γ3 has one artefact around T = 40 s, where the bend angle
jumps to its lower limit and the torque becomes very high.
Figure 6-2 shows the comparison of the velocity of the marker along the x-axis with the linear
velocity of the wheels. The data from the SimpleBlobDetector algorithm is used to determine
the linear velocity.
Wheels 5 and 6 are spinning slightly. When applying a force opposite to the driving direction
while driving forward, Wheel 1 rotates more slowly and Wheel 5 keeps the same speed as
before the block. Wheels 2 and 6 stop rotating. When applying a force opposite to the driving
direction while driving backward, Wheel 5 and 6 keep the same speed, Wheel 1 rotates even
faster than before applying the force, while Wheel 2 starts to rotate more slowly.

Master of Science Thesis N.M. Geerlings

56 Experimental results

0 50 100

Time (s)

-2

0

2

T
o

rq
u
e
 (

N
m

)

Bend
,1

0 50 100

Time (s)

-2

0

2

T
o

rq
u
e
 (

N
m

)

Bend
,2

0 50 100

Time (s)

-2

0

2

T
o

rq
u
e
 (

N
m

)

Rotation
,1

0 50 100

Time (s)

-2

0

2

T
o

rq
u
e
 (

N
m

)

Bend
,3

0 50 100

Time (s)

-2

0

2

T
o

rq
u

e
 (

N
m

)

Bend
,4

State transition

Joint torque

Figure 6-1: Exp. 1a: Joint torque (Setup 1).

Figure 6-3 shows the wheel slip ratio. When driving (the yellow to red range in Fig. 6-3),
the wheel slip ratio is between -0.3 and 0.3. The mean and standard deviation are shown in
Table 6-1. Note the drops of λ at T = 70 s and T = 80 s.

Figure 6-4 shows the normal force FN and the friction force FF, Figure 6-5 shows the friction
coefficient µ. The friction force increases whenever a wheel is actuated, but there is no peak
at the start of an actuation. For both the front and the rear part, the clamping force shows an
increasing trend. Note the low friction force and friction coefficient for Wheel 5 with respect
to Wheels 1, 2 and 6.

Figure 6-6 shows friction coefficient µ with respect to slip ratio λ, while Figure 6-7 shows µ
with respect to the relative velocity |v − diωir|.

The maximum measured friction coefficients are 2.40, 0.93, 0.15 and 1.3 for wheels 1, 2,
5 and 6 respectively. For wheels 2, 5 and 6 the friction coefficient became approximately
constant for relative velocities higher than 0.07 m/s, resulting in constant friction coefficients
of approximately 0.5, 0.07 and 0.07 respectively.

Figure 6-8 shows the fits of the Magic formula and Gaussian processes for the data from
Figures 6-6 and 6-7. Per ten datapoints one point is used for training.

N.M. Geerlings Master of Science Thesis

6-2 Setups 1 and 2: straight pipe 57

40 50 60 70 80 90 100 110

Time (s)

-0.1

0

0.1

V
e
lo

c
it
y
 (

m
/s

) Wheel 1

40 50 60 70 80 90 100 110

Time (s)

-0.1

0

0.1

V
e

lo
c
it
y
 (

m
/s

) Wheel 2

40 50 60 70 80 90 100 110

Time (s)

-0.1

0

0.1

V
e

lo
c
it
y
 (

m
/s

) Wheel 5

40 50 60 70 80 90 100 110

Time (s)

-0.1

0

0.1

V
e

lo
c
it
y
 (

m
/s

) Wheel 6

State transition

Camera

Wheels

Figure 6-2: Exp. 1a: Velocity comparison (Setup 1).

Master of Science Thesis N.M. Geerlings

58 Experimental results

40 50 60 70 80 90 100 110

Time (s)

-1

0

1

W
h
e
e
l
s
lip

ra
ti
o

 (
-)

Wheel1

0

2

4

6

|
1

|
(r

a
d

/s
)

40 50 60 70 80 90 100 110

Time (s)

-1

0

1

W
h
e
e
l
s
lip

ra
ti
o

 (
-)

Wheel2

0

2

4

6

|
2

|
(r

a
d

/s
)

40 50 60 70 80 90 100 110

Time (s)

-1

0

1

W
h
e
e
l
s
lip

ra
ti
o

 (
-)

Wheel5

0

2

4

6

|
5

|
(r

a
d

/s
)

40 50 60 70 80 90 100 110

Time (s)

-1

0

1

W
h
e
e
l
s
lip

ra
ti
o

 (
-)

Wheel6

0

2

4

6

|
6

|
(r

a
d

/s
)

State transition

Figure 6-3: Exp. 1a: Wheel slip ratio (Setup 1).

N.M. Geerlings Master of Science Thesis

6-2 Setups 1 and 2: straight pipe 59

Table 6-1: Distribution of the wheel slip ratio. High values of |λ| ≥ 1 are removed to be able
to calculate a mean and std. For comparison also the median, mean and std. when driving
(|v| ≥ 0.09 m/s) is shown. For the front wheels in Exp. 1b and the rear wheels in Exp. 1c the
wheels are not clamped and actuated, and thus the corresponding cells are empty.

Wheel 1 2 5 6
Exp. 1a |λ| ≤ 1 Mean 0.2641 0.0482 0.3687 0.3576

Std. 0.5129 0.3434 0.6004 0.5876
|v| ≥ 0.09 m/s Median -0.0300 -0.0201 -0.1369 -0.1435

Mean -0.0286 -0.0226 -0.1396 -0.1641
Std. 0.0750 0.0751 0.0550 0.0948

Exp. 1b |λ| ≤ 1 Mean 1.0000 1.0000
Std. 0.6093 0.6111

|v| ≥ 0.09 m/s Median -0.1051 -0.1176
Mean -0.1332 -0.1348
Std. 0.1033 0.1241

Exp. 1c |λ| ≤ 1 Mean 1.0000 1.0000
Std. 0.1435 0.0231

|v| ≥ 0.09 m/s Median 0.5475 0.5519
Mean -0.0261 -0.0251
Std. -0.0227 -0.0455

Exp. 1d |λ| ≤ 1 Mean 0.1073 0.1502 1.0000 0.3367
Std. 0.4817 0.5152 0.5271 0.5447

|v| ≥ 0.09 m/s Median 0.0287 0.0216 0.0112 -0.0158
Mean 0.0349 0.0276 0.0071 -0.0200
Std. 0.0867 0.0936 0.0672 0.0706

Master of Science Thesis N.M. Geerlings

60 Experimental results

Figure 6-4: Exp. 1a: Forces (Setup 1).

N.M. Geerlings Master of Science Thesis

6-2 Setups 1 and 2: straight pipe 61

40 50 60 70 80 90 100 110

Time (s)

0

1

2

 (
-)

Wheel1

0

5

|
1

|
(r

a
d

/s
)

40 50 60 70 80 90 100 110

Time (s)

0

1

2

 (
-)

Wheel2

0

5

|
2

|
(r

a
d

/s
)

40 50 60 70 80 90 100 110

Time (s)

0

1

2

 (
-)

Wheel3

0

5

|
3

|
(r

a
d

/s
)

40 50 60 70 80 90 100 110

Time (s)

0

1

2

 (
-)

Wheel4

0

5

|
4

|
(r

a
d

/s
)

40 50 60 70 80 90 100 110

Time (s)

0

1

2

 (
-)

Wheel5

0

5

|
5

|
(r

a
d

/s
)

40 50 60 70 80 90 100 110

Time (s)

0

1

2

 (
-)

Wheel6

0

5

|
6

|
(r

a
d

/s
)

State transition

Figure 6-5: Exp. 1a: Friction coefficient (Setup 1).

Master of Science Thesis N.M. Geerlings

62 Experimental results

-1 0 1

 (-)

0

1

2

 (
-)

Wheel1

0

2

4

6

|
1

|
(r

a
d

/s
)

-1 0 1

 (-)

0

1

2

 (
-)

Wheel2

0

2

4

6

|
2

|
(r

a
d

/s
)

-1 0 1

 (-)

0

1

2

 (
-)

Wheel5

0

2

4

6
|

5
|
(r

a
d

/s
)

-1 0 1

 (-)

0

1

2

 (
-)

Wheel6

0

2

4

6

|
6

|
(r

a
d

/s
)

Figure 6-6: Exp. 1a: Slip ratio with respect to the friction coefficient (Setup 1).

0 0.1

|v
rel

| (m/s)

0

1

2

 (
-)

Wheel1

0

2

4

6

|
1

|
(r

a
d

/s
)

0 0.1

|v
rel

| (m/s)

0

1

2

 (
-)

Wheel2

0

2

4

6
|

2
|
(r

a
d

/s
)

0 0.1

|v
rel

| (m/s)

0

1

2

 (
-)

Wheel5

0

2

4

6

|
5

|
(r

a
d

/s
)

0 0.1

|v
rel

| (m/s)

0

1

2

 (
-)

Wheel6

0

2

4

6

|
6

|
(r

a
d

/s
)

Figure 6-7: Exp. 1a: Absolute relative velocity with respect to the friction coefficient (Setup 1).

N.M. Geerlings Master of Science Thesis

6-2 Setups 1 and 2: straight pipe 63

0 0.5 1

-

0

0.5

1

1.5
Wheel1

0 0.5 1

-

0

0.5

1

1.5
Wheel2

0 0.5 1

-

0

0.5

1

1.5
Wheel5

0 0.5 1

-

0

0.5

1

1.5
Wheel6

0 0.05 0.1

|v- r|

0

0.5

1

1.5
Wheel1

0 0.05 0.1

|v- r|

0

0.5

1

1.5
Wheel2

0 0.05 0.1

|v- r|

0

0.5

1

1.5
Wheel5

0 0.05 0.1

|v- r|

0

0.5

1

1.5
Wheel6

95% CI GP

Training data

GP fit

Magic Formula fit

Figure 6-8: Exp. 1a: Fitting the Magic formula and a Gaussian processes (GP). Only the negative
part of λ is taken into account due to the definition of the slip in the Magic formula.

Master of Science Thesis N.M. Geerlings

64 Experimental results

6-3 Setup 3: 2D mitre bend

Driving through the corner using Primitive commands given by the operator (Exp. 2a) was
successful, as is shown in Figure 6-9. It was also successful for the Sequence commands when
the backplate is horizontal (Exp. 2b) and tilted at an angle of 28◦ (Exp. 2c). The second
bend joint needed manual push when using position control (transition from Fig. 6-9b to 6-
9c), otherwise it did not start moving. The PIRATE was faster in moving through the mitre
bend in Experiment 2a than in Experiment 2b.

N.M. Geerlings Master of Science Thesis

6-3 Setup 3: 2D mitre bend 65

(a) Initial configuration.
FWS: Free
RWS: Free
BS: Unclamped
RS: Unaligned
LS: Off

(b) Clamping the rear.
FWS: Free
RWS: Fixed
BS: RearClampedFrontRelaxed
RS: Unaligned
LS: On

(c) Bending the front.
FWS: Free
RWS: Fixed
BS: RearClampedFrontBending
RS: Unaligned
LS: On

(d) Driving into the bend.
FWS: Free
RWS: DrivingForward
BS: RearClampedFrontBending
RS: Unaligned
LS: On

(e) Brake just before Wheel 4
enters the corner.
FWS: Free
RWS: Fixed
BS: RearClampedFrontBending
RS: Unaligned
LS: On

(f) Clamp the front.
FWS: Fixed
RWS: Fixed
BS: DoubleClamped
RS: Unaligned
LS: On

(g) Turn γ2 the other way
around, so front can fully clamp.
FWS: Fixed
RWS: Fixed
BS: FrontClampedRearBending-
Back
RS: Unaligned
LS: On

(h) Drive out of the bend.
FWS: DrivingForward
RWS: DrivingForward
BS: DoubleClamped
RS: Unaligned
LS: On

(i) Passed the bend.
FWS: Fixed
RWS: Fixed
BS: DoubleClamped
RS: Unaligned
LS: On

Figure 6-9: Exp. 2c: PIRATE moving through the bend. For the state machines the following
abbreviations are used: FWS (FrontWheelsState), RWS (RearWheelsState), BS (BendingState),
RS (RotationState) and LS (LightingState).

Master of Science Thesis N.M. Geerlings

66 Experimental results

6-4 Simulation

When the simulated robot tries to move through a mitre bend, it starts bouncing fiercely,
clips through the wall and often drops out of the pipe. The simulated robot is able to drive,
clamp, bend and rotate in a straight pipe.

For the experiments where the robot has to drive up and down in a pipe with various con-
trollers (Exp. 3a-3d), the simulation is about 5x times slower than the real time. The position
of the model in the pipe in Exp. 3a-3d is shown in Fig. 6-10, where x is defined along the
length of the pipe. Initially the controllers are tested without noise on the sensors, as shown
in Fig. 6-10a:6-10b. The tests with noise are shown in Fig. 6-10c:6-10d.

0 10 20 30 40

Time (s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

x
 (

m
)

Exp. 3a

Exp. 3b

Exp. 3c

Exp. 3d

(a) Vertical gravity, no noise.

40 50 60 70 80

Time (s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

x
 (

m
)

Exp. 3a

Exp. 3b

Exp. 3c

Exp. 3d

(b) Horizontal gravity, no noise.

0 10 20 30 40

Time (s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

x
 (

m
)

Exp. 3a

Exp. 3b

Exp. 3c

Exp. 3d

(c) Vertical gravity, sensor noise.

40 50 60 70 80

Time (s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

x
 (

m
)

Exp. 3a

Exp. 3b

Exp. 3c

Exp. 3d

(d) Horizontal gravity, sensor noise.

Figure 6-10: Exp. 3a-3d: Position of the model in the pipe.

N.M. Geerlings Master of Science Thesis

6-4 Simulation 67

Figure 6-11 shows the odometry error (x − ri
∑
t ωi∆t) for the case with sensor noise. For

both Experiments 3c and 3d the odometry error is approximately 2 cm, based on driving up
and down for a distance of approximately 80-90 cm.

0 20 40 60 80

Time (s)

-0.1

0

0.1

0.2

0.3

0.4

0.5

O
d
o
m

e
tr

y
 e

rr
o
r

(m
)

Exp. 3a (mean)

Exp. 3a (mean+std.)

Exp. 3a (mean-std.)

Exp. 3b (mean)

Exp. 3b (mean+std.)

Exp. 3b (mean-std.)

Exp. 3c (mean)

Exp. 3c (mean+std.)

Exp. 3c (mean-std.)

Exp. 3d (mean)

Exp. 3d (mean+std.)

Exp. 3d (mean-std.)

Figure 6-11: Exp. 3a-3d: Odometry error when sensor noise occurs. The signals of the individual
wheels are lumped together in the mean and std.

Master of Science Thesis N.M. Geerlings

68 Experimental results

Figure 6-12 shows the elation between λ and µ (Fig. 6-12a) and between |v−ωr| and µ (Fig. 6-
12a) for Wheel 1 in the case with sensor noise. A fit for the Magic formula and a Gaussian
process are shown for the relation between |v − ωr| and µ (Fig. 6-12c). Per 600 datapoints
one point is used for training. Experiments 3a-3c give similar results. For Wheels 2 and 3
the same maximum µ of approximately 0.3 and the same constant µ of approximately 0.2 for
the |v − ωr| plot are found. For the other Wheels these values are 0.7 and 0.5 respectively.

(a) Relation between λ and µ. (b) Relation between |v − ωr| and µ.

0 0.05 0.1 0.15

|v- r|

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Wheel1

(c) Fitting the Magic formula and a Gaussian
processes (GP).

Figure 6-12: Exp. 3d: Relation for friction coefficient µ for Wheel 1 in the case with sensor
noise.

N.M. Geerlings Master of Science Thesis

Chapter 7

Conclusions and recommendations

7-1 Discussion

7-1-1 Behavioural issues

A major issue that occurs in most of the experiments is that the PIRATE suddenly starts to
randomly actuate motors that should not be actuated. When this occurs the SerialCommu-
nication node stops publishing messages, without any error message. The problem has not
yet been found in the PIRATEbay code, so it can either be a bug in the code on the PICO
boards or it can be a broken connector in the PIRATE. This issue heavily increases the time
needed to do experiments.

The sensor for the second joint angle is unreliable, since the signal often drops to its lower limit
or remains zero rad, instead of giving any value that resembles what is actually happening in
the joint. For control of the robot in Experiments 1a-1d this is not a problem, since, in those
specific experiments, only open-loop voltage control is used for the angle. For Experiments
2a-2c position control of the joints is needed, so these experiments can not be carried out when
these sensor issues occur. The problem is often that either the sensor connector becomes loose
or the magnet of the magnetic sensor, supposedly fixed to the other module in the joint, is
rotating along with the sensor, so no angle with respect to the zero position is measured.

Extra unwanted friction is generated by Wheels 3 and 4 when they touch the pipe wall while
driving, since these wheels are not actuated and cannot be put in a zero-torque mode, as this
mode is currently not yet available, resulting in the motors resisting rotation. The torque in
the second bend joint is about ten times as high as for the other bending joints (Fig. 6-1)
due to extra friction in that joint. This friction is sometimes so high that a manual push is
needed to overcome the static friction in the joint, as mentioned in Section 6-3.

The artefact for the torque in the third bend joint (Fig. 6-1) is most likely a physical connection
that was not making full contact for a moment, since the value dropped to the lower limit.

Master of Science Thesis N.M. Geerlings

70 Conclusions and recommendations

7-1-2 High-level controller

As mentioned in Section 6-1 no position overshoot occurred, so the position control loop in
ROS is fast enough.

As mentioned in Section 6-3 the experiment with the Primitive commands is faster than with
the Sequence commands. This is due to the time delays built into the Sequence node (Exp. 2b
and 2c), while the Primitive commands (Exp. 2a) were provided by the operator. Currently
the PAB node sends a command to the Movement node and gets a reply when the Movement
node has processed the request, but not if the action corresponding to that request has been
finished. For example, the PAB node sends the ClampFront command, the Movement node
formulates and sends a Move message, the Movement node then lets the PAB node know
that the command has been processed, but the PAB node does not know when the front part
is clamped. In the Sequence node enough time delay has been built in to assure that the
PIRATE has enough time to perform such an action.

7-1-3 Experimental setups

The robot does slide down (along the wheel rotation axis) while driving in Setups 1 and 3, as
mentioned in Section 6-2. When the support block is removed, the configuration of the robot
slightly changes, as it suddenly has to support its own weight by clamping. This minor change
in orientation in combination with the gravitational force may have caused the PIRATE to
touch the backplate at a certain point while driving. This movement against the backplate
results in extra unwanted friction. When driving in a real pipe in Setup 2, this was not a
problem, since the curve of the pipe counteracts the down-sliding motion.

7-1-4 Visual tracking

For the estimaton of the velocity a choice had to be made between the SimpleBlobDetector
and the Hough algortihm. After implementing both methods, the SimpleBlobDetector is used
as this resulted in far less artefacts than the Hough algorithm.

7-1-5 Wheel slip estimation

The slight negative slip ratio in Figure 6-3 indicates that only a part of the angular velocity
is translated into linear velocity. Wheel spin is detected, as can be seen by the drops at λ at
T = 70 s and T = 80 s. Based on the wheel slip ratio alone a distinction between wheel spin
and zero angular velocity at standstill cannot be made. In order to determine which is the
case, the angular velocity has to be taken into as well, like is done in Figure 6-2.

The low wheel slip ratio when driving is expected due to the low speed of the robot, which
causes momentum and inertia to have a low influence.

As mentioned for Figure 6-2, the wheels do not behave consistently with respect to eachother
when the pipe is blocked.

As can be seen in Figure 6-6, a relation between λ and µ is hard to idenfity. When plotting
the absolute relative velocity (|v − ωr|) with respect to µ in Figure 6-7, one would expect

N.M. Geerlings Master of Science Thesis

7-1 Discussion 71

a shape as in Figure 6-12b. This is not the case. The horizontal spikes in Figure 6-7 are a
result of blocking the pipe.

Due to the inconsistency of the measured clamping torque and friction force, and the absence
of sensor signals for Wheel 3 and 4, µs and µk can not be estimated properly. A fitting curve
between λ and µ or |vrel| and µ can not be generated by the Magic formula or the Gaussian
processes, as shown in Figure 6-8. A possible cause for the bad relations could be that the
wheel torque, from which the friction force is estimated, is wrongly estimated based on the
current used by the wheel actuator. Currently there is no other way to estimate the wheel
torque.

7-1-6 Simulation model

Using similar commands for the Simulink simulation model as for the ROS implementation,
the behaviour of the robot can be simulated at high level in a straight pipe. For a transition
between two pipes the simulation model can not be used. The bouncing behaviour as men-
tioned in Section 6-4 made it impossible to move through a bend. This behaviour is most
likely caused by a resonance effect that occurs because the pipes are modelled as mass-spring-
damper systems. More investigation should be done on tuning the parameters to find out if
the current way of modelling can be used for simulating moves through a mitre bend, or that
this should be done in another way.

The low-level performance is different from the real robot, in the sense that the dynamics of
the robot miss some components. For example, the clamping springs and friction in the joints
can be incorporated, but this will reduce the simulation speed and therefore the usability.

7-1-7 Traction controller

The velocity controller without gravity compensation but with controlled clamping torque
(Exp. 3c) had approximately the same performance as the one without controlled clamping
(Exp. 3a). Therefore, a controller based on the estimated friction coefficient can correctly
determine what the proper joint torque should be, instead of just selecting a fixed joint torque.

In the noiseless case without gravity compensation, the robot first starts rolling before a
wheel torque is applied, thus causing jitter. The gravity compensation therefore increase the
performance in the noiseless case (Fig. 6-10b). However, in the case with sensor noise the
robot is always seemingly moving, at least a little, so the gravity compensation has no added
value and even deteriorates the performance (Fig. 6-10d).

Master of Science Thesis N.M. Geerlings

72 Conclusions and recommendations

7-2 Conclusions

The simulation model was usefull for developing the traction controller, but is not suitable
for development of the high-level controller.

With a set of fourteen commands and a camera for localisation, the PIRATE can drive through
a mitre bend autonomously at an angle up to 28◦. This can be done either by an operator
sending multiple Primitive commands or by sending a Sequence command once.

The robot shows a low slip ratio of up to 0.3 for driving through a pipe, both in the real setup
as well as in simulation. It was shown in simulation that the traction control, for known
estimated values of µ, works. In this traction controller, clamping torque control and velocity
control should be incorporated, but the gravity compensation should not.

7-3 Recommendations

7-3-1 ROS communication

The timing and type of ROS messages used in the software architecture should be investigated
further. The speed of the control loops at each level should be tuned in such a way that a
high level command will be translated and executed at low level in a shorter time. This way,
delays and publishing topics twice, as mentioned in Section 4-2-2, is not needed anymore.

Furthermore, the blocking behaviour of ROS services, as mentioned in Section 4-2-4, should
be investigated more throughly. The action library of ROS may be a solution, since this
type of command gives updates during the execution, as well as when the execution of the
command is finished. There are few examples to be found on how to use this library, therefore
this should be investigated by a ROS expert. The goal would be to implement continuous a
controller for velocity and torque.

When these blocking issues are solved, joints and wheels can be controlled simultaneously in
a more structured way in the Movement node (Section 4-2-4). For example, when clamping
the front part a single setpoint is sent to the combination of the first and second bending
joint, where the controller alternates between updating the front joint and updating the rear
joint within the time loop. A separate controller is now needed for the combination of e.g. all
bending joints together, such that bending joint three and four are taken into account in the
loop. This results in redundancy. Each joint should have an individual control loop, where
another part of code in this node ensures that all joints gets updated with approximately the
same rate.

The PAB node should not only know that its command has been processed, as discussed in
Section 7-1-2, but also know that the corresponding action has been finished, or that this
action has failed. For the position control this is done automatically, but for commands
with open-loop voltage control, such as clamping, this is not the case. The PIRATE only
knows that it has started clamping, but does not now when the front part is fully clamped.
These kind of checks should be incorporated into the software architecture. This way the
architecture will be more robust and execution of Sequence commands will become faster.

N.M. Geerlings Master of Science Thesis

7-3 Recommendations 73

7-3-2 Simulation model

The simulation model should be split up in two simulation models, since there are two different
goals. One simulation model should be used for further development of the autonomy, so for
high-level controllers. This model has to be simple and as fast as possible, such that it can
be used in learning. This model should be able to handle moving through a mitre bend or
T-joint in simulation.

The other model should be used for the development of low-level controllers, and should
therefore be more elaborate than it is now. The gearboxes, joint springs, friction in the
joints, etc. should also be incorporated in this model in order to investigate the response to
controllers.

7-3-3 Traction controller

In this thesis a start is made on the traction controller. This controller should be expanded
by an online estimation of friction coefficient µ, in order to determine the required clamping
torques continuously, instead of offline estimation afterwards. The velocity control should
also work when the sensor for the linear velocity is not continuously available. In order to
do this more elaborate experiments should be done in simulation, with time-varying contact
models that mimic a pipe with slippery parts.

Since the simulation model can only partially simulate the real robot, the controller should
also be tested in a real life setup.

7-3-4 Wheel slip estimation

As mentioned in Section 7-1-5 the wheel torque may be wrongly estimated by using the wheel
current. The relation between the current and the wheel torque should be investigated to
ensure that a correct torque is measured.

7-3-5 Setup

As a trade-off between easy access to the PIRATE (Setups 1 and 3) and transferability to a
real environment (Setup 2), half open pipes could be used in the setups, where the pipe is
cut along the longitudinal axis. The bars do not have to be removed from the setups, since
these bars could be used to clamp these pipe segments.

7-3-6 Experiments

Currently, only one orientation of the tilted mitre bend experiment (Exp. 2c) is used, where
the robot drives from the horizontal pipe to an upper vertical pipe. To show that the robot
can move through a mitre bend in all directions without falling, the following variations of
Experiment 2c should also be performed:

• Horizontal pipe to lower vertical pipe.

Master of Science Thesis N.M. Geerlings

74 Conclusions and recommendations

• Upper vertical pipe to horizontal pipe.

• Lower vertical pipe to horizontal pipe.

The next step is to test the robot in real pipes. The commands for the rotational joint can
then also be tested. Variations with T-joints instead of mitre bends, or different diameters
should also be investigated to test the robustness of the system. The IMU data should also
be incorporated in the control, for example to align the rotational joint with the horizontal
plane.

N.M. Geerlings Master of Science Thesis

Appendix A

Components

This chapter describes the components of the PIRATE, based on Dertien [2014] and on the
code on the PICO boards.

For direct communication with the PIRATEbay (Fig. A-2a) the KORG nanoKONTROL2
MIDI panel (Fig.A-2e) is used.

Each PICO board (Fig. A-2c:A-2d) contains an ATmega328p microcontroller, an FXOS8700CQ
compass with accelerometer and magnetometer, an A3906 H-bridge as motor driver, an
LTC2850 transceiver for RS-485 communication, an LTM8020 regulator and DF57 connec-
tors for precrimped wires. The PICO boards are daisy chained over the RS485 bus. The
connections can be found in Table A-1.

Each bending joint is actuated by a Faulhaber 1016_006G micromotor (3.0·10−3 Nm/A) with
a 10/1 gearhead (ratio 64:1, efficiency 70%), followed by a worm gear (ratio 24:1, efficiency
36%), a spring (3.5 · 10−3 Nm/◦)) and another gear box (ratio 3.625:1, efficiency 80%). An
overview is given in Figure A-1. AS5055 magnetic hall-effect sensors are used to measure the
angle of the motor (between the first gear box and the worm gear) and of the joint itself (Fig.
A-2b).

The rotational joint is actuated by a Faulhaber 1516_006SR micromotor (4.15 · 10−3 Nm/A)
with a 15A gearhead (ratio 809:1, efficiency 62%). The angle is directly measured by an
IE2-16 incremental encoder (16 ppr).

Each wheel is actuated by a Faulhaber 2619_006SR micromotor (8.44 · 10−3 Nm/A) with an
internal gearbox (ratio 112:1, efficiency 59%). The angle is directly measured by the internal
IE2-16 encoder (16 ppr).

Master of Science Thesis N.M. Geerlings

76 Components

Table A-1: Overview of the PICO connections with the motors and sensors, and the signals they
provide. Note that some motors also provide sensor values for the current and/or encoder. The
front module (*) is currently not attached, so no sensor values are taken into account. F is short
for Faulhaber micromotor. P refers to the connection port on the PICO (Fig. A-2d). Adapted
from Garza Morales [2016].

Module PICO Motor0 Motor1 Sensor0 Sensor1
ID (P4) (P5) (P7) (P1)

Front* 20 Tilt camera* Pan camera* Tilt camera* Pan camera*

21 F1016 front* Front LED* AS5055 joint
front*

AS5055 spring
front*

Bend I 22 F1016 1
xbend,load

F2619 1
xwheel,angle
xwheel,velocity
xwheel,load

AS5055 joint 1
xbend,angle

AS5055 spring 1
xbend,spring

Bend II 23 F1016 2
xbend,load

F2619 2
xwheel,angle
xwheel,velocity
xwheel,load

AS5055 joint 2
xbend,angle

AS5055 spring 2
xbend,spring

Rotation 24 (Not used)

F2619 3
xwheel,angle
xwheel,velocity
xwheel,load

IMU xacc yacc
zacc xmag ymag
zmag

-

25
F1516 1
xrotate,angle
xrotate,load

F2619 4
xwheel,angle
xwheel,velocity
xwheel,load

- -

Bend III 26 F1016 3
xbend,load

F2619 5
xwheel,angle
xwheel,velocity
xwheel,load

AS5055 joint 3
xbend,angle

AS5055 spring 3
xbend,spring

Bend IV 27 F1016 4
xbend,load

F2619 6
xwheel,angle
xwheel,velocity
xwheel,load

AS5055 joint 4
xbend,angle

AS5055 spring 4
xbend,spring

Rear 28 (Not used) Rear LED (Not used) (Not used)

N.M. Geerlings Master of Science Thesis

77

Figure A-1: The ideal physical model of the bend drive. Permission granted by the author.
[Dertien, 2014]

Master of Science Thesis N.M. Geerlings

78 Components

(a) The PIRATEbay (adapted Arduino MEGA). (b) AS5055 rotary sensors.

(c) A PICO board (front). [Garza Morales,
2016]

(d) A PICO board (back). Adapted from [Garza
Morales, 2016]

(e) The MIDI panel [Garza Morales, 2016]. Sliders [0-6] set the PWM
value for the bend and camera motors. Slider [7] sets the PWM value for
all wheels. Potentiometers [16 and 22] set the LED PWM. Potentiometer
[23] sets the rotational joint angle. PLAY [41] enables the motors, STOP
[42] disables them. CYCLE [46] starts reading the sensors values. Buttons
M [48:55] sets the PWM value for the corresponding motor to zero. SET
[64] calibrates the sensors.

Figure A-2: Hardware components used in the PIRATE system.

N.M. Geerlings Master of Science Thesis

Appendix B

Sensor conversion

In the Movement node the raw signals are converted to meaningfull signals with SI units. An
overview of the implementation of the actuators and sensors in the Movement node is shown
in Table B-1. Here all incoming sensor signals are structured in a Sensor class instance,
while all outgoing actuation signals are structured in a Motor class instance. The software
implementation therefore differs from the hardware implementation, as was shown in Table A-
1.

The bend angle sensors provide Angle (xbend,angle), Load (xbend,load) and Torque (xbend,torque)
signals. A total rotation for the angle sensor covers 4096 pulses, so the angle γ can be
calculated with Equation B-1.

γ = 2π
4096xbend,angle (B-1)

The current is provided in mA, so it is translated to A by a factor 0.001 as in Equation B-2.

Iγ = 1.0 · 10−3xbend,load (B-2)

The deflection of the spring in the bend joint is calculated by means of the bend angle sensor
and the spring angle sensor, which is placed before the spring and some of the gears in the
gear train. The spring angle sensor can make multiple revolutions, so to calculate what the
bend joint angle x∗bend,angle would be without the spring but with the gears, the revolutions
are taken into account as in Equation B-3.

x∗bend,angle = SMA

(
xbend,spring + 4096revspring

rwormrgearbox
, 8
)

(B-3)

The bend angle sensor and spring angle sensor are placed in opposing orientations, so they
have to be added to get the angular difference. The torque signal that comes out of the
PICO’s is therefore not a torque but an angular difference, calculated as in Equation B-4.

xbend,torque = SMA
(
xbend,angle + x∗bend,angle, 8

)
(B-4)

Master of Science Thesis N.M. Geerlings

80 Sensor conversion

Table B-1: Structure of the PIRATE in the Movement node, separating the actuators and sensors.
For each Sensor class instance the converted signals are shown. Starred (*) items are currently
not available for the real robot.

Module PICO ID Motors Sensors
Front* 20 CameraMotor* CameraSensor*

CameraMotor* CameraSensor*
21 BendMotor* BendAngleSensor*

LedMotor*
Bend I 22 BendMotor BendAngleSensor γ1 Iγ,1 τγ,1

DriveMotor DriveSensor θ1 ω1 τθ,1
Bend II 23 BendMotor BendAngleSensor γ2 Iγ,2 τγ,2

DriveMotor DriveSensor θ2 ω2 τθ,2
Rotation 24 - IMU ψroll ψpitch

DriveMotor DriveSensor θ3 ω3 τθ,3
25 RotateMotor RotationAngleSensor φ1 Iφ,1

DriveMotor DriveSensor θ4 ω4 τθ,4
Bend III 26 BendMotor BendAngleSensor γ3 Iγ,3 τγ,3

DriveMotor DriveSensor θ5 ω5 τθ,5
Bend IV 27 BendMotor BendAngleSensor γ4 Iγ,4 τγ,4

DriveMotor DriveSensor θ6 ω6 τθ,6
Rear 28 - BendAngleSensor*

LedMotor -

The bend torque τγ can then be calculated by taking into account the spring constant and
the gear ratio, as seen in Equation B-6.

τγ = kspringr
2
gearbox

360
4096xbend,torque (B-5)

τγ = 3.5 · 10−3
(58

16

)2 360
4096xbend,torque (B-6)

The rotation angle sensor also provides Angle, Load and Torque signals. The angle φ is
calculated by means of the pulses per revolution and the gear ratio, as shown in Equation
B-7

φ = 2π
Rpprrgearhead

xrotate,angle = 2π
16 · 809xrotate,angle (B-7)

The current is translated in the same way as for the bend joint, as shown in Equation B-8.

Iφ = 1.0 · 10−3 · xrotate,load (B-8)

The torque signal for the rotational joint is always zero, since this signal is not provided by
the PICO.
For the wheels the signals Angle, Velocity and Load are provided. The angle is calculated as
shown in Equations B-9.

θ = 2π
Rpprrgearhead

xwheel,angle = 2π
16 · 112xwheel,angle (B-9)

N.M. Geerlings Master of Science Thesis

81

For the current it is done in the same way as for the bend and rotation joint, as shown in
Equation B-10.

Iθ = 1.0 · 10−3xwheel,load (B-10)

In the PICO code the Velocity signal is calculated by means of an exponential moving average
filter on the difference between the current and previous wheel angle, with a weight of 0.5,
as can be seen in Equation B-11. Therefore the signal xwheel,velocity is an angular difference,
not an angular velocity. Time was not taken into account, therefore the 1

∆t factor is taken
into account in postprocessing, as seen in Equation B-12. The angular velocity based on
the angular difference signal needs a gain of 0.5 to result in approximately the same angular
velocity based on the angle signal.

xwheel,velocity(i) = EMA (xwheel,angle(i)− xwheel,angle(i− 1), 0.5)
= 0.5xwheel,velocity(i− 1) + 0.5 (xwheel,angle(i)− xwheel,angle(i− 1)) (B-11)

ω =

0.5 2π

Rpprrgearhead
xwheel,velocity

1
∆t

2π
Rpprrgearhead

∆xwheel,angle
∆t

(B-12)

The IMU is currently not yet used in the control. The raw accelerometer and magnetometer
values have not yet been investigated, but from the ratio between the accelerometer values
the roll and pitch can be determined as in Equations B-13 and B-14.

ψroll = atan
(−yacc
zacc

)
(B-13)

ψpitch = atan
(

xacc√
y2

acc + z2
acc

)
(B-14)

Master of Science Thesis N.M. Geerlings

Appendix C

Computer vision

C-1 Camera parameters

The relation between a point
[
u v 1

]T
on a 2D image and that same point

[
x y z 1

]T
in the 3D world can be described by a projective mapping (Eq.C-1) [Bradski, 2000].

z

uv
1

 = K3×3
[
R3×3 T3× 1

]
x
y
z
1

 (C-1)

K denotes the intrinsic matrix, which describes the properties of the camera itself: the focal
length f , the scale factors mx and my relating the pixels to the distance, principal points
u and v, and the skew coefficient γ (Eq.C-2). The extrinsic matrix describes the relation
between the image plane and a plane in the 3D world, by means of a rotation matrix R and
translation vector T .

K =

αx γ u0
0 αy v0
0 0 1

 =

f ·mx γ u0
0 f ·my v0
0 0 1

 (C-2)

Distortion, as can be seen in a fisheye lens, can be described by distortion coefficients k1, k2,
k3, p1 and p2 (Eq. C-3).

[
xcorr
ycorr

]
=
[
x
y

]
+
[
∆xradial
∆yradial

]
+
[
∆xtangential
∆ytangential

]
[
xcorr
ycorr

]
=
[
x
y

]
+
(
k1r

2 + k2r
4 + k3r

6
) [x
y

]
+
[
2 · p1 · x · y + p2 ·

(
r2 + 2 · x2)

p1 ·
(
r2 + 2 · y

)
+ 2 · p2 · x · y

]
(C-3)

Master of Science Thesis N.M. Geerlings

84 Computer vision

To estimate the intrinsic matrix, first the image is set to gray scale. Snapshots must be
taken of a chessboard pattern with known square size and amount, in as much orientations
and positions as possible within the camera view. Using OpenCV methods the positions of
these chessboards can be recognised and the intrinsic matrix and distortion coefficients can
be optimised. With this matrix and these coefficients the image can be undistorted, as shown
in Figure 5-3b.

C-2 Marker detection

To detect markers with a known colour in an image, first the image needs to be translated
from RGB (red-green-blue) to HSV (hue-saturation-value) colour space. Saturation describes
the grayness, value describes the darkness and hue describes the range of pure colours without
the effects of grayness or light and darkness. As can be seen in Figure C-1, conversion to HSV
channels instead of RGB channels gives a clearer distinction between different parts of the
object. The next step is to place a maximum and a minimum threshold on the H, S and V
values, so only the marker is shown in the resulting image. The final step is to use a detection
algorithm, like the Hough transform, to extract the coordinates of the marker in the image.

(a) Original.

(b) Red. (c) Green. (d) Blue.

(e) Hue. (f) Saturation. (g) Value.

Figure C-1: RGB to HSV colour conversion for a photo of the PIRATEbay, plotted as grayscale
images with pixel values from 0 (black, low) to 1 (white, high). As can be seen in the subfigures,
splitting the image into HSV channels instead of RGB channels shows more colour distinction
between the various parts of the PIRATEbay, which makes recognition easier.

N.M. Geerlings Master of Science Thesis

Appendix D

Quick start guide

D-1 List of used software

In this thesis a HP EliteBook 8560w laptop with Ubuntu 16.04.5 LTS is used. The software
tools used in this thesis are:

• Matlab/Simulink 2017b for the simulation, with the following toolboxes:

– Simscape Multibody Contact Forces Library 4.1 [Miller, 2017]
– Gaussian Processes Matlab Library (GPML) v4.2-2018-06-11 [Rasmussen and Nick-

isch, 2010]

• ROS Kinetic 1.12.13, to operate the PIRATE

• C++/GCC 5.5.0 compiler, to compile the ROS source files, with toolbox:

– Open Source Computer Vision Library (OpenCV) 4.0.0 for image processing [Brad-
ski, 2000]

• Doxygen 1.8.11 compiler for C++ documentation, with Doxywizard GUI

• Arduino 1.6.5 for compiling and uploading the PIRATEbay code (it does not compile
in the latest Arduino version, 1.8.7)

D-2 List of used hardware

The PIRATE hardware system includes:

• PIRATE

• Power adapter (PIRATEbay)

Master of Science Thesis N.M. Geerlings

86 Quick start guide

• MIDI panel

• PIRATEbay (Arduino Mega in black case)

• USB 2.0B to USB 2.0A cable (PIRATEbay to laptop)

• USB 2.0Mini-B to USB 2.0A cable (MIDI to PIRATEbay)

• Ethernet cable (PIRATEbay to PIRATE)

D-3 Walkthrough

• Updating the ROS nodes:

– Open a terminal and go to the PIRATE folder in the catkin workspace, probably
/catkin_ws/src/pirate.

– Enter catkin build to build all packages or catkin build [package name] for
one package. Do not use sudo.

– Repeat this at least once, until all dependencies are fixed and no errors occur.

• Updating the PIRATEbay:

– Open a terminal and enter rosrun rosserial_arduino make_libraries.py [arduino
sketchbook location]/libraries. This creates a folder named ros_lib.

– Open pirate_bay.ino in Arduino and connect the Arduino Mega to your laptop.
– Check the port and upload.

• Execute an experiment:

– Connect all hardware.
– Open a terminal and enter roscore, this initialises ROS. Keep this window open,

but do not enter any commands here.
– Open another terminal window and enter roslaunch pirate_seq seq.launch.

The execution of this launch file causes all the nodes to start up and run their
scripts, and also starts the recording of all messages. Keep this window open,
since the print function of ROS sends information to this window.

– Push the [Play] button on the MIDI panel to start the actuators. The red LEDs
on the PICO boards should start blinking. If a red LED is lighted continuously,
an error has occured at that motor and it can not be actuated. Pushing the [Stop]
button and then the [Play] button sometimes solves this.

– Push the [Set] button on the MIDI panel to start the sensors. The blue LEDs on
the PICO boards should start blinking.

– Check if the joint angles in the rViz visualisation correspond to the real joint angles.
– Open another terminal window and enter a commands like rosservice call

/sk_pabSequence "pab_sequence: 0" or rosservice call /sk_primitive "mp_-
command: 0". As soon as the cursor returns the command has been executed and
a new command can be entered.

N.M. Geerlings Master of Science Thesis

D-3 Walkthrough 87

– To see the data returned by ROS, open a new window and enter rqt or rostopic
echo [name of the topic].

– To see an overview of all nodes, open a new window and enter rqt_graph.

• Process the data:

– Open a terminal and go to the folder where all rosbags are stored, probably
/catkin_ws/src/pirate/recordings.

– Enter python bag_to_csv.py [rosbag name] to convert the .bag file to a folder
with a .csv file for each topic.

– Open Matlab and enter importdata(strcat(’[folder name]’,’[topic .csv file
name]’));.

Master of Science Thesis N.M. Geerlings

References

Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Journal of Software Tools.

Dertien, E. C. (2014). Design of an inspection robot for small diameter gas distribution
mains. PhD thesis, University of Twente, Enschede.
https://www.ram.ewi.utwente.nl/aigaion/.

Drost, E. (2009). Measurement system for pipe profiling. Master’s thesis, University of
Twente, Enschede. https://www.ram.ewi.utwente.nl/aigaion/.

Fjerdingen, S. A., Liljebäck, P., and Transeth, A. A. (2009). A snake-like robot for internal
inspection of complex pipe structures (piko). In 2009 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 5665–5671. IEEE.

Garza Morales, G. A. (2016). Increasing the autonomy of the pipe inspection robot pirate.
Master’s thesis, University of Twente, Enschede.
https://www.ram.ewi.utwente.nl/aigaion/.

Hansen, J., Murray-Smith, R., and Johansen, T. A. (2005). Nonparametric identification of
linearizations and uncertainty using gaussian process models–application to robust wheel
slip control. In 44th IEEE Conference on Decision and Control, 2005 and 2005 European
Control Conference, pages 5083–5088. IEEE.

Hoekstra, G. I. S. (2018). Towards a software architecture model for the automation of the
pirate robot. Master’s thesis, University of Twente, Enschede.
https://www.ram.ewi.utwente.nl/aigaion/.

Junhui, L. and Jianqiang, W. (2010). Road surface condition detection based on road
surface temperature and solar radiation. In 2010 International Conference on Computer,
Mechatronics, Control and Electronic Engineering, volume 4, pages 4–7.

Kakogawa, A., Komurasaki, Y., and Ma, S. (2017). Anisotropic shadow-based operation
assistant for a pipeline-inspection robot using a single illuminator and camera. In 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
1305–1310.

Master of Science Thesis N.M. Geerlings

https://www.ram.ewi.utwente.nl/aigaion/
https://www.ram.ewi.utwente.nl/aigaion/
https://www.ram.ewi.utwente.nl/aigaion/
https://www.ram.ewi.utwente.nl/aigaion/

90 REFERENCES

Kakogawa, A. and Ma, S. (2018). Design of a multilink-articulated wheeled pipeline
inspection robot using only passive elastic joints. Advanced Robotics, 32(1):37–50.

Kim, J.-H., Sharma, G., Boudriga, N., and Iyengar, S. S. (2010). Spamms: A sensor-based
pipeline autonomous monitoring and maintenance system. In 2010 Second International
Conference on Communication Systems and Networks (COMSNETS), pages 1–10. IEEE.

Lee, D., Park, J., Hyun, D., Yook, G., and Yang, H.-s. (2012). Novel mechanisms and
simple locomotion strategies for an in-pipe robot that can inspect various pipe types.
Mechanism and Machine Theory, 56:52–68.

Lee, D.-H., Moon, H., and Choi, H. R. (2011). Autonomous navigation of in-pipe working
robot in unknown pipeline environment. In 2011 IEEE International Conference on
Robotics and Automation (ICRA), pages 1559–1564. IEEE.

Martinez Romero, A. (2014). Ros/concepts - ros wiki.
http://wiki.ros.org/ROS/Concepts. [Online; accessed 17-09-2018].

Miller, S. (2017). Simscape multibody contact forces library. MATLAB Central File
Exchange https://www.mathworks.com/matlabcentral/fileexchange/47417. [Online;
accessed 05-06-2018].

Moghaddam, M. M. and Jerban, S. (2015). On the in-pipe inspection robots traversing
through elbows. International Journal of Robotics, Theory and Applications, 4(2):19–27.

Pacejka, H. and Besselink, I. (1997). Magic formula tyre model with transient properties.
Vehicle system dynamics, 27(Supp 001):234–249.

Park, J., Hyun, D., Cho, W.-H., Kim, T.-H., and Yang, H.-S. (2011). Normal-force control
for an in-pipe robot according to the inclination of pipelines. IEEE transactions on
Industrial Electronics, 58(12):5304–5310.

Pulles, C., Dertien, E. C., van de Pol, H., and Nispeling, R. (2008). Pirate, the development
of an autonomous gas distribution system inspection robot.

Rasmussen, C. E. and Nickisch, H. (2010). Gaussian processes for machine learning (gpml)
toolbox. Journal of machine learning research, 11:3011–3015.
http://gaussianprocess.org/gpml/code/matlab/.

Rasmussen, C. E. and Williams, C. K. (2006). Gaussian process for machine learning. MIT
press, Boston. ISBN 026218253X.

Reiling, M. (2014). Implementation of a monocular structured light vision system for pipe
inspection robot pirate. Master’s thesis, University of Twente, Enschede.
https://www.ram.ewi.utwente.nl/aigaion/.

Smart tooling (2018). Smarttooling |. http://smarttooling.eu. [Online; accessed
21-09-2018].

Tucci, S. and Schlegel, C. (2017). Presentation of the robmosys project.
https://robmosys.eu/download/. [Online; accessed 29-06-2018].

N.M. Geerlings Master of Science Thesis

http://wiki.ros.org/ROS/Concepts
https://www.mathworks.com/matlabcentral/fileexchange/47417
http://gaussianprocess.org/gpml/code/matlab/
https://www.ram.ewi.utwente.nl/aigaion/
http://smarttooling.eu
https://robmosys.eu/download/

	Front Matter
	Cover Page
	Title Page
	Signatures
	Summary
	Symbols
	Abbreviations

	Table of Contents

	Main Matter
	Introduction
	Context
	Problem statement
	Objectives
	Other works
	Approach
	Outline

	Preliminaries
	Robot hardware
	Methods and tools
	ROS and C++
	RobMoSys
	Motion primitives
	Wheel slip
	Friction coefficient
	Magic formula
	Gaussian processes

	Robot software architecture

	Design
	Requirements
	Finite state machines
	Sequences of primitives
	The model
	Simulation model
	Traction controller

	Robot software implementation
	Simulation model
	Low-level control
	SerialCommunication node
	PirateCommunication node
	Movement node (at Execution level)
	Movement node (at Function level)
	Additional nodes

	High-level control
	PAB node
	Sequence node
	Additional nodes

	Overview

	Experiment design
	Goals
	Materials and dimensions
	Protocol
	Experiment 1: driving up and down the pipe
	Experiment 2: moving through a bend
	Experiment 3: traction controller in simulation

	Visual tracking
	Data collection and postprocessing

	Experimental results
	Overall performance
	Setups 1 and 2: straight pipe
	Setup 3: 2D mitre bend
	Simulation

	Conclusions and recommendations
	Discussion
	Behavioural issues
	High-level controller
	Experimental setups
	Visual tracking
	Wheel slip estimation
	Simulation model
	Traction controller

	Conclusions
	Recommendations
	ROS communication
	Simulation model
	Traction controller
	Wheel slip estimation
	Setup
	Experiments

	Appendices
	Components
	Sensor conversion
	Computer vision
	Camera parameters
	Marker detection

	Quick start guide
	List of used software
	List of used hardware
	Walkthrough

	Back Matter

