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Abstract

One of the problems at the heart of osteoarthritis is chondrocyte hypertrophy. A
study modelling the dynamics of chondrocyte hypertrophy showed three stable states:
a SOX9-positive state linked to stable chondrocytes, a RUNX2-positive state linked to
hypertrophy and a null-state linked to apoptosis. The question arose why the system
is bi/multistable and why the RUNX2-state is reached. Through analysis of small
networks similar to the large network used in the previously mentioned study, it was
found that mutual inhibition seems to lie at the heart of bi/multistability.

Keywords: Osteoarthritis (OA), cell differentiation, bistability, saddle-node bifurca-
tions, nonlinear dynamics, bifurcation analysis

1 Introduction

Osteoarthritis (OA) is a common, painful disease characterised by deterioration of cartilage
in joints. One of the problems at the heart of osteoarthritis is chondrocyte hypertrophy;
the chondrocytes differentiate into a type of cell that normally leads to bone formation.
A lot of research has been done on how to repress chondrocyte hypertrophy, but the
exact mechanism underlying chondrocyte hypertrophy is still unclear. [1]. Also, repressing
hypertrophy does not replace the already damaged cartilage. Here tissue engineering could
prove useful. The source in [1] and others propose using chondrocytes differentiated from
human induced pluripotent stem cells (hiPSCs). The trouble is that this method has a low
yield, and chondrocytes tend to become hypertrophic [2], which is exactly what we were
trying to solve. Why do those chondrocytes become hypertrophic instead of remaining
stable?

Stable chondrocytes are associated with the transcription factor SOX9 and hypertrophic
chondrocytes with RUNX2 [1]. Expression of those transcription factors is regulated by
many molecules and complexes, like other transcription factors, which interactions can be
summarised in and modelled by a gene regulation network (GRN). Somehow that network
drives the chondrocyte to differentiate to a state where it expresses RUNX2, a hypertrophic
state.

In a study by Kerkhofs et al. ([3],[4]) the GRN shown in Figure 1 was used to model
chondrocyte hypertrophy. More specifically, Kerkhofs modelled the dynamics of activation
and interaction of part of the genes and proteins (and complexes) generally believed to
govern differentiation of chondrocytes in the growth plate from a proliferating state to a
hypertrophic state. Three states were found: RUNX2-positive, SOX9-positive and NONE,
which was interpreted as apoptosis [3],[4].
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Figure 1: The GRN used in
[4]

Figure 2: Waddington’s
epigenetic landscape [5]

The RUNX2-positive state is assumed to be the hypertrophic state, that is, the state
to be avoided in OA. Hence the question: why is it reached? For this, we need some
understanding of cell differentiation. Waddington proposed an epigenetic landscape with
valleys and ridges, a visual representation of stable equilibria and saddles, as in Figure
2. One might think of the chondrocytes as sitting in their nice SOX9 equilibrium on
the landscape, where a RUNX2 equilibrium exists at the other side of a saddle. Then a
perturbation might cause the landscape to change, so that the chondrocyte rolls towards
the RUNX2 equilibrium, unable to get back. That describes the disappearance of the
stable SOX9 state, much like the disappearance of a node by a saddle-node bifurcation in
a dynamical system [6]. That is, parameter changes cause the SOX9-node and the saddle
between the two stable states to coalesce and disappear. Why does that happen? Can we
find something inside the network to explain that?

To find an answer to those questions, we dive into the dynamics on the network and
pose the following research question. What causes bistability of a dynamical system based
on a GRN, and what causes it to disappear?

The complete network used in Kerkhofs’ study, as shown in Figure 1, is rather large and
complex and therefore difficult to analyse when dynamics are considered on every node.
That is why we shift our attention to smaller networks of a similar nature, leading to three
sub-questions. We start with two-node networks. How do the dynamics on those networks
behave? From there, what can be said about dynamics on three-node networks containing
the two-node patterns? Moreover, what other patterns can be found?

2 Model description

Before we can analyse our networks, it is good to explain what those networks represent
and what networks are of interest. Next, we need to specify the quantity used to model
gene expression, and capture its dynamics in a model.

2.1 Networks

The networks in this study represent a GRN. A GRN models genes and proteins as nodes
in a graph, with two types of interactions between nodes: activation/stimulation (denoted
by a black arrow in Figure 1) and inhibition (denoted by a red arrow with square head).
A stimulated gene is transcribed more, an inhibited gene is transcribed less. An activated
protein is a functional one, an inhibited protein does not function. Factor A is said to
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activate factor B if A somehow stimulates the formation of active B. Factor C is said to
inhibit factor B if C somehow negatively influences the activity of B.

The small models in this study are networks of two or three nodes, interacting through
activation and inhibition. Those nodes guide a ‘fight for dominance’ of two imaginary
factors. Figure 3 is an example of such a network.

1+ 2+

A B

Figure 3: Two nodes (circles) with a nonzero base level of activation (+-sign)
inhibiting each other and activating competing factors (squares). Activation is
depicted by black arrows and inhibition by red arrows with a square head.

For now the focus will be on dynamics on the nodes rather than the factors. Concretely,
this means investigating the cases where node 1 activates A and node 2 activates B.

2.2 Dynamics

Now for the dynamical model. A common way of modelling gene expression in a cell is by
considering activity of the factors in the GRN, a number between 0 and 1, representing
some qualitative measure of the amount of active protein or the rate at which a gene is
transcribed [7]. Dynamics in this activity are governed by a GRN.

Activation of a factor leads to an active factor when activation is larger than a certain
activation threshold x0. The link between activation (some function f of the activity of
the activating nodes) and increase in activity of the activated node is often described by a
sigmoid S(x) where S(x) ≈ 0 for x ≤ 0 and S(x) ≈ 1 for x ≥ 1. In this study, the logistic
function was used:

S(x) =
1

1 + e−k(x−x0)
, (1)

where x0 is taken 0.5, precisely between 0 and 1 to avoid bias, and k = 10, large enough
so that S(0) ≈ 0, S(1) ≈ 1. This function is not exactly 0 for zero activation (x = 0), but
close enough for our purposes.

Inhibition is taken as negative activation. It follows that inhibition only influences
activation; if there is no activation, the input to the sigmoid is negative, but S(x) = 0 for
negative x. Hence, factor C is said to inhibit factor B if C somehow negatively influences
the activation of B. Other cases of inhibition where C directly influences the formation
of active B, such as C directly inactivating B or catalysing a reaction where active B is a
reactant, are considered as break down of B. Breakdown of B is modelled as having a rate
proportional to activity of B, where factor C is neglected. In this study, that breakdown
rate is taken equal to 1.

So far we have seen that activity of a factor is influenced by activation, inhibition and
breakdown. For modelling reasons we add another possibility, namely constant external
activation, that is, constant activation from outside the GRN; the GRN does not give a
complete picture, and this way some factors can always be activated without specifying
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the source. Such constant activation is also referred to as a ’base level of activation’ (like
in the description of Figure 3).

The above can be summarised in a differential equation. The derivative of the activity
y is given by

y′(t) = −y + S(f(x)), (2)

where S is the logistic equation as in (1), x is a vector of activity of the activating
nodes and f a function using the GRN structure to relate activity of the activating nodes
to the total activation power. In GRNs, proteins can act in complexes, for example, which
is often modelled by multiplying their activity. In this study, however, f is taken a linear
function of x.

The equation in (2) might then be written as

y′(t) = −y + S(a0 + a1x1 + ...+ anxn), (3)

where a0 is a parameter denoting the strength of external activation, x1, ..., xn are
variables denoting the activity values of the n nodes interacting with y and a1, ..., an are
parameters denoting the strength of interactions, which have a positive sign in case of
activation and a negative sign in case of inhibition.

Not all interactions described in a GRN happen at the same time scale. For now,
however, we will neglect that and focus on network dynamics on one time scale, unless it
leads to interesting results.

As an example of a complete model, the network in Figure 3 can be described by the
equations

{
x′1(t) = −x1 + S(a0 − a1x2)
x′2(t) = −x2 + S(b0 − b1x1),

(4)

where a0, a1, b0 and b1 are strictly positive parameters.

2.3 Some restrictions to the models of interest

Not all models following from the model description above are interesting to study. If
models can be reduced to smaller models, it is the smaller models that are interesting.
Therefore, a set of restrictions, say criteria for an interesting model, are in place.

1. Networks with nodes merely relaying an interaction, later referred to as ‘messenger
nodes’, are avoided. Those nodes can be left out.

2. Every node in the network receives a form of activation. It is either activated by
itself or other nodes, or is externally activated, which is modelled by inserting a base
level of activation. Else the node can be left out.

3. Networks cannot be separated into smaller networks between which communication
is one-directional. Networks that can, can be reduced and analysed part by part.
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3 Two Nodes

The smallest networks of interest are those consisting of two nodes. They provide a good
starting point, since the number of different networks is small enough to consider all.
Furthermore, dynamics of two node networks can be studied through phase plane analysis.
That enables a general analysis of two node networks. Dynamics of specific networks can be
analysed using bifurcation theory, as explained in [8], and the MATLAB toolbox MatCont
[9], which contains numerical methods for parameter continuation.

3.1 General analysis of two node networks

Before turning to specific examples, some general results can be obtained for networks
consisting of two nodes. Let the general form of all two node networks be given by

{
x′1 = −x1 + S(f1(x1, x2, p))

x′2 = −x2 + S(f2(x1, x2, p)),
(5)

where p is a parameter and S the logistic sigmoid as explained in 1. Let A be the
region trapped by the lines x1 = 1, x2 = 1, x1 = 0 and x2 = 0.

Note that in general, 0 ≤ S(f1), S(f2) ≤ 1. In A, it also holds that 0 ≤ x1, x2 ≤ 1.
Therefore, on the lines xi = 1, i ∈ {1, 2}, the derivative x′i is given by

x′i = −1 + S(fi(x1, x2, p)) ≤ −1 + 1 = 0 (6)

On the lines xi = 0, it holds that

x′i = S(fi(x1, x2, p)) ≥ 0. (7)

Hence, region A is invariant. It must therefore contain an ω-limit set that is either an
equilibrium, a periodic orbit or equilibria connected by orbits (Poincaré-Bendixson).

If there is a periodic orbit in A, the divergence of S(f) should change sign within A.
The divergence is given by

∇(S(f)) = dS

df1

df1
dx1

+
dS

df2

df2
dx2

. (8)

Note that since S is the logistic function, its derivative is given by

dS

df
= kS(f)(1− S(f)) ≥ 0 ∀x1, x2. (9)

In general, f1 and f2 are given by

{
f1 = a0 + a1x1 + a2x2

f2 = b0 + b1x1 + b2x2,
(10)

5



where ai and bi are parameters. It follows that

{
df1
dx1

= a1
df2
dx2

= b2.
(11)

Hence, the system has no periodic orbits in region A if sign(a1) = sign(b2), that is,
if both nodes have auto-activation, if both nodes have auto-inhibition, or if at most one
of the nodes interacts with itself. In those cases, it follows that the system must have at
least one equilibrium for 0 ≤ x1, x2 ≤ 1. It might contain a periodic orbit if sign(a1) =
-sign(b2).

Note that if f1 and f2 are as in Equation (10), the system has an equilibrium at the
origin if and only if a0 = b0 = 0, that is, if and only if the nodes have no external input.

3.2 Analysis of all possible two node networks

Now we have some general information on the behaviour of two node networks, we can
move closer to the main question. What networks share some of the dynamical behaviour of
Kerkhofs’ model? The key aspect there is the ‘fight for dominance’ of two imaginary factors.
It implies that the dynamics on the networks should be multistable. More specifically, both
factors should be able to ‘win’ and a ‘win’ for one factor should mean a ‘loss’ for the other.
The outcome should be binary.

In terms of equilibria, a binary outcome implies the following. If one of the factors has
convincing final activity, let’s say larger than a half times x0 (= 0.25), then the activity
of the other factor should end up close to zero. Multi-stability implies that the opposite
should also occur. In other words, the system should have equilibria near (x1, x2) = (η0, 0)
and (x1, x2) = (0, ξ0), where 0.25 < η0, ξ0 ≤ 1.

Let’s investigate the existence of those equilibria in the most general network dynamics,
given by system (12) below. Parameters a0 and b0 represent the base level of activation.
Parameters a2 (b1) denote the strength and sign of the effect of x2 on x1 (x1 on x2). Note
that taking a2 or b1 equal to zero would result in a reducible network, which is excluded
from this study. Parameters a1 (b2) denote the strength and sign of x1 (x2) interacting
with itself. The system is then as follows:


x′1 = −x1 + S(a0 + a1x1 + a2x2)

x′2 = −x2 + S(b0 + b1x1 + b2x2),

a0, b0 ∈ [0, 1], a1, b2 ∈ [−1, 1], a2, b1 ∈ [−1, 1]− {0}.
(12)

To simplify matters, let’s start with the special case η0 = ξ0 = 1, often referred to as
’winner takes all’ (WTA). Equilibria of the system above can be found by considering the
nullclines:

{
x1 = S(a0 + a1x1 + a2x2)

x2 = S(b0 + b1x1 + b2x2).
(13)

If the system above has an equilibrium at (1, 0), it follows that

{
S(a0 + a1) = 1

S(b0 + b1) = 0.
(14)
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This result has two important implications. Firstly, a1 ≥ 0, since a0 + a1 ≥ 1 and
a0 ≤ 1. Secondly, b0+ b1 ≤ 0 and b0 ≥ 0 imply b1 < 0. In other words, a WTA equilibrium
can only be found in networks with at least one inhibitory connection between nodes. The
winning node here is always an inhibited node. In addition, this winning, inhibited node
does not inhibit itself.

As an example, networks with an activating connection in one direction and an inhib-
iting connection in the other can have a WTA equilibrium, as long as the inhibited node
does not inhibit itself. Can that network, however, have two WTA equilibria? That is, can
both nodes win? By symmetry of system (12), existence of an equilibrium at (0, 1) implies
b2 ≥ 0 and a2 < 0. In other words, bistability in combination with a binary outcome only
happens in networks with mutual inhibition, without auto-inhibition.

Suppose nodes in such a network only receive input (base level activation) if they do
not activate themselves or receive activation from other nodes. Then a1 = 0 if and only if
a0 6= 0 and b2 = 0 if and only if b0 6= 0. That limits the possibilities for the existence of the
equilibrium (0, 1). The condition a0 + a1 ≥ 1 now implies a0 = 1, a1 = 0 or a0 = 0, a1 = 1.
In the same way, b0 + b2 ≥ 1 now implies b0 = 1, b2 = 0 or b0 = 0, b2 = 1. That results in
the networks in Figure 4 below.

1 2

(a) a0 = b0 = 0, a1 = b2 = 1

1 2+

(b) a0 = b2 = 0, b0 = a1 = 1

1+ 2+

(c) a0 = b0 = 1, a1 = b2 = 0

Figure 4: All possible networks with mutual inhibition (up to topological equi-
valence), excluding those with auto-inhibition

Change in parameter might result in shift of location, or in disappearance. What
happens? Let’s zoom in on the network in Figure 4c. The conditions a0 ≤ a2 and b0 ≤ b1
then hold for a2 = b1 = 1. Starting there, the picture shows that saddle-node and cusp
bifurcations turn up for decrease in parameters. Continuation in MatCont shows a cusp
point (CP) at (0.11,0.11, 0.41, 0.41) for b1 = a2 = 1, for example. Cusp bifurcations can
also be found when varying a2, b1 instead, where equilibria disappear for decreasing a2, b1,
and when varying a0, a2. The diagram to the right in Figure 5 shows that the equilibria
shift a bit, but not much. The WTA equilibria can both shift and disappear for certain
parameters, but the win remains WTA for quite some time before disappearing.

Figure 5: Bifurcation analysis of the network in Figure 4c with a2 = b1 = 1. Left:
Bifurcation diagram. Right: Following the position of an equilibrium for b0 = 1.

The equilibria of network 4a (without external input and a2 = b1 = 1) behave similarly,
except that there is no cusp bifurcation with respect to a1, b2. Instead, there are two
separate saddle-node bifurcations. Also, a0 = b0 = 0 is now a relevant scenario, in which
this network always has an equilibrium at the origin. All this can be seen in Figure 6.
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Figure 6: Nullclines of the system corresponding to the network in Figure 4a
(a2 = b1 = 1, a0 = b0 = 0) for a1 = b2 = 1. Decreasing b2 moves the line
corresponding to x′2 = 0 to the left. Decreasing a1 moves the line corresponding to
x′1 = 0 downwards.

Decreasing b2 shifts the line corresponding to x′2 = 0 to the left, without any deformation.
Both lines meet at roughly (0, 0.9) when b2 ≈ 0.8. In a similar way, the line corresponding
to x′1 = 0 shifts downward for decreasing a1, meeting the other nullcline at roughly (0.9, 0)
for a1 ≈ 0.8. Note that the equilibria stay at (0, 1), (1, 0) for all (negative) a2, b1 (and
a0 = b0 = 0), since a0 + a2 ≤ 0, b0 + b1 ≤ 0 holds for all (negative) a2, b1.

What if instead of WTA wins, we are happy with (η0, 0) and (0, ξ0) as equilibria with
0 < η0, ξ0 < 1? This yields

{
S(a0 + a1η0) = η0

S(b0 + b1η0) = 0.
(15)

The first equation implies η0 = S(a0 + a1η0). For a1 < 0, it has solutions for all η0,
depending on a0, a1. By taking a0 = 1, a1 = − 1

n−1 and η0 = n−1
n , n > 1, η0 can obtain

many values between 1
2 and 1. Hence, a0 can be varied such that η0 can obtain any value

between 0 and 1. This can also be observed in the plot in Figure 7.

Figure 7: y = η0 and y = S(a0 + a1η0) for a0 = 0, 0.5, 1 from left to right. The
sigmoid moves towards the right for increasing a0. Note that increasing a1 would
steepen the sigmoid, resulting in an intersection for larger η0.
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For the second equation to hold, b1 < 0, regardless of η0. Again, by symmetry, bistability in
combination with a binary outcome is then only met if in addition a2 < 0. In other words,
we still need mutual inhibition, but auto-inhibition is now allowed. However, bifurcation
analysis as shown in Figure 8 shows that the auto-inhibition should not be too strong.
If a1 and b2 become too negative, stable equilibria disappear in a saddle node or cusp
bifurcation.

Figure 8: Bifurcation diagram of network 4c with a0 = b0 = 1 where parameters
a1 and b2 are varied instead of being kept equal to zero.

We have so far seen two types of networks: those with inhibition to one side and
activation to the other, and those with mutual inhibition. What is left, are the networks
with mutual activation. Their dynamical behaviour can be predicted by sheer reasoning
and for the sake of completeness will be described below.

The network with mutual activation and without self-inhibition, always has three equi-
libria: a stable equilibrium at (0,0), a stable one at (1,1) and a saddle. The network with
mutual activation and one auto-inhibiting node is of a similar nature, although the auto-
inhibiting node might achieve a lower final activity. The network with two auto-inhibiting
nodes might have an equilibrium at (η0, ξ0), 0 < η0, ξ0 < 1, instead of at (1,1). If inhibition
is strong enough, the equilibrium previously at (1,1) might even be at (0,0), coinciding with
the off-equilibrium. If the nodes receive external input, however, the equilibrium at (0,0)
will vanish.

We have characterised networks by their equilibria, but what about possible periodic
orbits? Those networks we would rather avoid. We saw before that periodic orbits can
occur if one node has self-inhibition and the other self-activation. It turns out that such
networks with mutual activation or mutual inhibition do not make likely candidates (see
Appendix D for the reasoning). That leaves the two candidates in Figure 9.

1 2+

(a)

1 2

(b)

Figure 9: Networks with possibility of periodic orbits

Simulation in the plane reveals that 9a has a periodic orbit if node 1 and node 2 act on
different time scales, that is, if node 1 is slow compared to node 2. This was modelled by
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multiplying the differential equation for node 1 by ε = 0.1. The result is shown in Figure
10.

With the same separation of time scales, network 9b has a periodic orbit if input is
added to node 1.

Figure 10: Phase plane diagram of network 9a for parameters a1 = 0.6, a2 = b0 =
b1 = b2 = 1, time scaling constant ε = 0.1. The equilibrium is an unstable focus
and the limit cycle is stable.

3.3 Summary of results: behaviour of two node networks

In the process of looking for bistable, binary outcome networks, we have come across three
types of networks:

I - Mutual inhibition (A: WTA, B: regular)
II - inhibition-activation (A: without periodic orbits, B: with periodic orbits)
III - Mutual activation (A: full on-off, B: on-off with less than full activity in on-state).

Behaviour of the dynamics on those networks is summarised below.

Type I - mutual inhibition

Networks with mutual inhibition are bi- or multistable for specific parameters, with binary
outcome. The networks can lose equilibria through saddle-node bifurcations, where change
in parameter causes a stable node equilibrium to merge with a saddle and both disappear.

All parameters involved in the system can cause a loss of equilibrium in this way. Net-
works with auto-activation and without external input lose a win equilibrium for decreasing
auto-activation. More specifically, decrease in auto-activation on one node causes the win
of that node to disappear. Note that the other win is left in place, just like the equilibrium
at the origin.

Networks with external input cannot have an equilibrium at the origin. Changing the
input on those networks can cause win equilibria to disappear, leaving a stable equilibrium
with weak activity in all nodes. Networks with auto-inhibition also lose a win for a node
if the auto-inhibition on that node becomes too strong.

All networks of this type are shown below in Figure 11 and 12.

1 2 1 2+
1+ 2+

Figure 11: A: All possible networks with mutual inhibition (up to topological
equivalence), excluding those with auto-inhibition
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1 2 1 2+ 1+ 2+

Figure 12: B: All possible networks with mutual inhibition and a form of auto-
inhibition (up to topological equivalence)

Type II- inhibition-activation

The set of inhibition-activation networks contains all networks with periodic orbits, namely
the networks in Figure 14a and 14b. Apart from that, the networks behave like a com-
bination of type I and III. They can be bistable but have no binary outcome. One of the
equilibria can be a single win. Another possibility is activity in both nodes. If there is no
input, there is an equilibrium at the origin.

1 2

Figure 13: Inhibition-activation pattern

1 2

(a)

1 2

(b)

Figure 14: Inhibition-activation networks with possibility of periodic orbits

Type III - mutual activation

Networks with mutual activation behave like on-off switches. Networks without auto-
inhibition have stable equilibria at (1,1) (on) and (0,0) (off). Networks with auto-inhibiting
nodes might have an on-state with less activity. That activity might be unequally spread
between nodes. In case of sufficient auto-inhibition of both nodes, the network might
instead be permanently off. If nodes receive external input, however, the network is always
weakly on.

4 Three nodes

So far, we have found three categories of two-node networks that might be regarded as
motifs. What happens if we add a node? Three node networks might contain two node
motifs and those might decide the behaviour. We might also find entirely new motifs
consisting of three nodes. To find out, let’s start by listing all interesting networks.

4.1 Finding all three node networks of interest

A list of relevant three node networks was obtained through the computer code discussed in
Appendix C.1. When executed, the code creates a list of all topologically unique networks,
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in the form of integers that uniquely correspond to adjacency matrices. In those matrices,
inhibition is denoted by -1, activation by 1 and no interaction by 0.1

To limit the number of resulting networks, certain matters were simplified. The notions
of self activation and self inhibition were neglected and a base level of activation was later
added to all nodes that are not activated by other nodes. Hence, criterion 2 (‘every node
needs an activation’) requires an update. The new list of criteria for selecting interesting
networks is as follows. Networks were deemed interesting if

• they do not contain messenger nodes, that is, nodes with one activating input and
one activating or inhibiting output. Networks that do, can be recognised by an
adjacency matrix where the nth row consists of zeros and a single one, and the nth

column consists of zeros and a single nonzero input.

• all nodes in the network receive input, be it activation or inhibition. Nodes that
do not receive input, can be replaced by a constant activation of the nodes they act
on. Networks containing those non-receiving nodes can be recognised by zero rows
in the adjacency matrix.

• they cannot be separated into smaller networks between which communication is
one-directional. Networks that can, can be reduced and analysed by first considering
the initiator part, calculating its equilibria and using those equilibria to calculate the
equilibria of the receiving part. For three nodes, those reducible networks can be
recognised by zero columns in the adjacency matrix.

These criteria led to sixty different three node networks. A full list can be found in
Appendix A.

4.2 Methods of analysis

Analysis of the full list of networks was largely done numerically. To this extend, the
dynamical details regarding those networks were filled in as follows. All nodes that did not
receive activation from another node, received external input in the form of a parameter.
The other parameters, representing the strength of interactions, were assumed equal and
set to 1. From there, systematic numerical analysis was conducted.

Like with analysis of two node networks, the aspects of interest were the location and
stability of equilibria, and the occurrence of periodic orbits. The former was analysed by
performing a thousand Newton iterations with random initial conditions and a fixed set
of different input parameters, gathering location and stability of (nearly) all equilibria.
The results were backed up by another thousand Newton iterations with random input
parameters, giving only the possible number of equilibria as output.

Periodic orbits are a bit harder to detect. Networks with the suspicion of a periodic orbit
were analysed in MatCont. For example, some networks had a node switching to a saddle
with parameter change, without change in the number of equilibria. Such behaviour might
indicate a saddle-node bifurcation of periodic orbits. That is, a repelling and an attracting
periodic orbit might coalesce, causing the centre node to lose stability in the direction of
the periodic orbit. Other suspicious networks are those that directly or indirectly contain
a two node motif of case II-A (inhibition-activation, as in Figure 14a).

The direct or indirect occurrence of two node motifs in networks was checked as follows.
Let a, b and c be nodes.

1Denoting the three options by 0, 1 and 2 is perhaps more intuitive with regard to the notation of base
3 integers, but note that 2 mod 3 = −1.
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• For every activation from a to b followed by an activation from b to c, an indirect
activation was denoted from a to c.

• For every activation from a to b followed by an activation from b to a, an indirect
self-activation was denoted for a.

• For every activation from a to b followed by an inhibition from b to c, an indirect
inhibition was denoted from a to c.

• For every activation from a to b followed by a inhibition from b to a, an indirect
self-inhibition was denoted for a.

• For every inhibition from a to b followed by an activation from b to c, an indirect
inhibition was denoted from a to c.

• For every inhibition from a to b followed by an activation from b to a, an indirect
self-inhibition was denoted for a.2

After being subjected to the list of steps, the networks were scanned for motifs of
mutual inhibition (type I) and inhibition-activation (type II). Some networks contained
both. If those networks directly contained one of the motifs, rather than indirectly, said
motif was taken as leading.

All acquired results were processed as follows. Networks were sorted based on their
maximum number of equilibria for varying input. If only one equilibrium was found, the
network was denoted as unistable. Next, the equilibrium was classified as either a WTA-
win, a regular win, activation everywhere, or no activation at all. If two or more equilibria
were found, the network was denoted as bistable or multistable. Based on the location and
stability of the equilibria, the network was classified as either all-on-all-off (type III in two
nodes), a win and a bit of activity everywhere (type II in two nodes), two WTA-wins, or
two regular wins (type I in two nodes). If a saddle and a node equilibrium appeared or
disappeared in a network for varying input, this was denoted as a saddle-node bifurcation.
Other denoted aspects were occurrence of a periodic orbit and occurrence of two node
motifs.

4.3 Results

For two nodes, we recognised three different types of bistability: with a binary outcome
(type I), in the form of an on-off switch (type III), and a mix of the two: one win and
one off or weakly on equilibrium (type II). Through bifurcations, bistable systems became
unistable, sometimes in combination with a periodic orbit. For three nodes, similar types
of behaviour can be found. What follows is a description of the two-node motifs and
occurrence of saddle-node bifurcations and periodic orbits per category of networks, cat-
egorised based on their number and type of equilibria as described in the previous section.
Behaviour per network and lists of networks per category can be found in Appendix B.

Networks are referred to by their number. A full list of networks and their number can
be found in Appendix A.

Bi- or multistability with binary outcome

2The last two cases might seem redundant, because an inhibited note will never activate any other node
if the former starts at zero activity. Note, however, that those inhibited nodes receive external input if
they are not activated by other nodes. Hence, activity in the inhibited nodes can increase, so that they
activate other nodes, anyway.
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161

All bistable three node networks with binary outcome contain mutual inhibition
and the multistable networks contain it multiple times. WTA networks do not
contain direct inhibition-activation. All other bistable binary outcome networks
do, like 161, for example.

Some of the networks feature a saddle-node bifurcation. Network 184 even
features two saddle-node bifurcations for increasing input; it starts with an
equilibrium at the origin that splits into two win equilibria, but one of those
disappears as input increases further. Networks that do not feature a saddle-
node bifurcation, have equilibria that shift towards a more convincing win. In-
cidentally, those networks are the only networks containing a mutual activation
motif.

Bistability as an on-off switch

121

Only two networks behave like a true on-off switch, namely 121 and 364. Both
networks only contain mutual activation, so no mutual inhibition or inhibition-
activation.

Bistability with win and weak on or off state

457

The case of ’bistability with win and off state’ perhaps requires clarification.
Two stable equilibria were found, where one node is off in both equilibria and the
other nodes are either on or off (equilibria at (1,0,1) and (0,0,0), for example).

It turns out that none of those networks had external input. Two of the
bistable win-offs contain the mutual inhibition motif (149 and 457). All net-
works contain inhibition-activation and mutual activation.

157

All of the networks with a win and a weak on state have inhibition-activation
and mutual activation. On closer inspection of all of the networks like the net-
work in Figure 14a (inhibition-activation, type IIA), it turns out those networks
have periodic orbits (network 157, for example).

Unistability as a win

152

All networks with a single win contain an inhibition-activation motif except for
188, which contains a mutual inhibition motif. Most of the other networks also
contain mutual inhibition motifs except for 203, 212 and 229. Network 152 is
an example of a network in this category with inhibition-activation and mutual
inhibition.

Unistability - always off; weakly on

122

Networks that are always off, all contain the inhibition-activation and the mu-
tual activation motif, like network 122.

The group of unistable networks with activity in all nodes (weakly on) all
contain inhibition-activation motifs except for 182, which does not contain any
motifs. Network 220 also contains indirect mutual inhibition.
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Network 182 deserves some extra attention. It exhibits a saddle-node bi-
furcation without extra equilibria. When inspected in MatCont, this turns out
to be a saddle-node bifurcation of periodic orbits. Hence, next to mutual in-
hibition, mutual activation and inhibition-activation, we seem to have found a
new motif.

182

Since the network reminds one of a merry-go-round, it is from now on re-
ferred to as the merry-go-round motif. It features in networks 185, 188, 212,
215, 239, 242, 455, 458, 485 and 728. What this motif does exactly and how it
works requires further investigation and is outside the scope of this study.

An odd case

215

Network 215 is hard to place. With equilibria at (.1, .2, .5) and (1,0,0) for para-
meters (.8,1), it might belong to the ’win-weakly on’ category, but one might
argue that 0.1 is close enough to zero compared to 0.5. Hence, it is also close
to a binary outcome. One of the wins appears after a saddle-node bifurcation.
In addition, it has a saddle-node bifurcation without extra equilibria. When
inspected, it has a saddle-node bifurcation of periodic orbits.

Motif-wise, it contains mutual inhibition, inhibition-activation and the new
merry-go-round motif.

5 Discussion

The results in the previous section seem to suggest that motifs and network behaviour are
related. To see how, the roles of motifs were analysed per category, followed by a summary
per motif.

5.1 Bi- or multistability with binary outcome

All networks in this category contain a form of mutual inhibition, so for these networks
the motif seems to determine the dynamical behaviour. In other words, mutual inhibition
seems to play an important role in multistability with a binary outcome.

Inhibition also seems to play a role in the occurrence of saddle-node bifurcations. Net-
work 184 even features two. Its mutual inhibition motif looks like mutual inhibition with
auto-inhibition on one node. This type is not excessively discussed in Section 3. However,
when looking at the network structure one may reason as follows.

1+ 2+

3

Network 184

The strength of inhibition on node 1 depends on the external input
in node 2. Hence, decreasing input in node 2 implies decreasing the
strength of inhibition in node 1. If auto-inhibition is too strong, node
1 cannot win, but it might be able to win if inhibition from 2 is less
strong. Then as input on node 2 increases, node 1 loses its ability to
win whereas node 2 gains ability to win.

The characteristic saddle-node bifurcation of mutual inhibition in
two nodes was not present in the three node networks with mutual
activation. Incidentally, those are also the networks with only one
input parameter. They might be compared to the network in Figure 4b, which has not been
as thoroughly analysed as the other mutual inhibition networks consisting of two nodes.
It might be that equilibria of that network shift there as well, rather than undergoing
bifurcation. The bifurcation point might just never be reached; equilibria that do appear
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in a saddle node bifurcation, also continuously move to a state of increased activity after
appearing.

What, however, is the biological relevance of this equilibrium shift? Is it an alternative
to Ferrell’s notion of a saddle-node bifurcation, or sign of a set of networks that bares no
relevance? If such sudden parameter changes can happen to an actual cell and equilibria
shift rather than disappear, cell differentiation does not lead to the loss of a stable state, in
dynamical terms. However, if that stable state suddenly implies apoptosis and the position
of the saddle has also changed, then shifting of the equilibrium practically has the same
effect as disappearing.

5.2 Bistability as an on-off switch

All on-off switches contain mutual activation, and activation only. The on-state then comes
as no surprise. The off-state is a result of a lack of input on the nodes. Just like in two
node systems, there exists an equilibrium at the origin if and only if the input is zero. This
fact follows from the most general system of three nodes,


x′1 = −x1 + S(a0 + a1x1 + a2x2 + a3x3)

x′2 = −x2 + S(b0 + b1x1 + b2x2 + b3x3),

x′3 = −x3 + S(c0 + c1x1 + c2x2 + c3x3), a0, b0, c0 ∈ [0, 1].

(16)

where it is easily seen that x′1 = x′2 = x′3 = 0 can only hold for (x1, x2, x3) = (0, 0, 0) if
a0 = b0 = c0 = 0.

5.3 Bistability with win and weak on or off state

All of the networks with a win and a weak on or off state have inhibition-activation and
mutual activation. Inhibition-activation was to be expected, since the networks with input
have a weak on state and the networks without input have an off-state, and this is how
the two-node network behaves. Mutual activation between two nodes seems responsible
for having them win and lose together.

Two of the bistable win-offs contain the mutual inhibition motif (149 and 457). Mutual
inhibition here seems responsible for the single win. A win for the node on the other side
of the mutual inhibition might be impossible because of a lack of activation of that node.

1 2

3

Network 149

Take network 149. It represents a fight between node 2 and 3.
Node 3 might be said to have auto-activation via node 1, but node 2
does not have auto-activation, only activation via node 1. Reasoning
from the two-node network in Figure 4a, the activation via node 1 on
node 2 might simply not be big enough.

5.4 Unistability as a win

We saw that most of the networks in this category contain mutual
inhibition. Many of those have a form of extra inhibition in the network, like 152. It might
be that those networks are bistable with binary win if that extra inhibition is taken small
enough. In that case, unistability is the result of a saddle-node bifurcation, with respect
to parameters corresponding to the strength of interactions.

Most of the networks also contain the inhibition-activation motif. It might therefore
also be seen as dominance of the inhibition-activation motif, although the exact behaviour
of this motif is not as thoroughly studied in Section 3.
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5.5 Unistability - always off; weakly on

Networks that are always off or weakly on all contain the inhibition-activation and the
mutual activation motif. What is the role or effect of inhibition-activation here? It ap-
pears that the inhibition-activation pattern facilitates indirect auto-inhibition; the net-
works without external input are always off. The ones with external input are weakly
on.

Network 220 also contains indirect mutual inhibition. It may be such that the interac-
tion parameters fall outside the cusp wedge of the bifurcation diagram, so that only one
equilibrium remains, with activity everywhere. Change in a2 and b1 in the network in
Figure 4c also resulted in cusp bifurcation for a0 = b0 = 1, after all.

5.6 How do motifs relate to dynamical behaviour?

In the analysis of all categories above, we have seen different effects of two-node motifs in
three-node networks. What follows is a summary per motif.

Mutual inhibition between nodes seems responsible for the networks with binary out-
come. One of the wins might disappear in a saddle-node bifurcation. It is also possible that
one of the win equilibria does not exist, perhaps because of the existence of a saddle-node
bifurcation with respect to strength of interactions. If the network receives no external in-
put, this results in the win-off situation, since the origin is an equilibrium for all networks
without input. If there is input, the network falls into the single-win category.

Mutual activation between nodes seems responsible for having nodes win and lose
together.

The effect of inhibition-activation seems mostly dependent on other motifs. Sometimes
the motif acts as auto-inhibition on a node. To illustrate, WTA networks with mutual in-
hibition do not contain direct inhibition-activation. Binary outcome networks that do, all
have wins with less activity, as is the case for two-node networks with auto-inhibition. In
the presence of mutual activation, without mutual inhibition, inhibition-activation some-
times forces a network to always be off.

At other times the inhibition-activation motif facilitates a single win, or a weak on-
equilibrium (the off equilibrium is there if and only if there is no input). Also, periodic
orbits might arise without separation of time scales.

Another motif linked to periodic orbits is the merry-go-round. However, not all of
the networks found to contain periodic orbits in combination with inhibition-activation
contain the merry-go-round motif, so the existence of periodic orbits in those networks
can be contributed to the inhibition-activation motifs. Similarly, the existence of periodic
orbits in networks with the merry-go-round motif can be contributed to the merry-go-round
motif.

6 Reflection

Some aspects of this study require extra attention.
Firstly, certain equilibria might be missing, because some equilibria have a Jacobian

equal to zero, in which case Newton iterations cannot be used and one should resort to
continuation of the equilibrium with a change of variables, like arc length continuation. In
this case the missing equilibria must be saddles, so this does not cause a bistable system
to pass by as a unistable system.

Secondly, not all networks have been checked on occurrence of periodic orbits. Networks
without a saddle-node bifurcation of periodic orbits and without the specific inhibition-
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activation motif might have periodic orbits, too. However, periodic orbits are not the focus
of this study; they are assumed to be of little relevance to bistability on GRNs. Biological
relevance of periodic orbits lies in periodic systems like day-night rhythm, for example.
Another application of periodic orbits in GRNs has been found in a phenomenon called
’bursting’ [10].

More importantly, not all parameters have been varied to assess robustness of the
outcomes. The strength of interactions is set equal, but this might of course be varied to
yield different results, and in biology this might frequently be the case. Unistable systems
might then become multistable and have a binary outcome as we saw in some of the
networks discussed above. Varying the parameters determining the sigmoid, that is, k and
x0, shifts the location of the equilibria. That might lead to wins turning into WTA wins.
The effect of the break-down factor, set to 1 in this study, has not been assessed.

Furthermore, it might be logical to add other parameters. Nodes that get activation
from other nodes, could still be given external input. External input was seen as a constant
factor, left out of the GRN for the sake of simplicity. In that case there is no reason to
assume that otherwise activated nodes do not receive input.

Another logical next step is to extend the analysis to networks of more nodes; the
question arises how the number of different motifs increases with the number of nodes,
and how much of the behaviour of a smaller motif pops out in the behaviour of a larger
network. The larger networks might have new motifs, like three-node networks have the
merry-go-round that two-node networks do not have. It would be hard to follow the same
procedure, however, as the number of unique networks explodes with the number of nodes.
Computing all unique four-node networks already takes more than half a day, even if only
interesting four-node networks are considered.

7 Conclusion

So far we have found out about the behaviour of three types of two-node networks. Mutual
inhibition leads to bistability and saddle-node bifurcations, mutual activation leads to on-
off switches and inhibition-activation might lead to periodic orbits. As motifs in three-node
networks, they seem to induce similar behaviour. Three-node networks also know a fourth
motif with characteristic behaviour of periodic orbits: the merry-go-round.

It seems unlikely that periodic orbits play a role in bistability in cell differentiation.
On-off switches might appear in a bistable system but are not the cause of bistability with
a binary outcome. The answer appears to lie with mutual inhibition.

However, new motifs that can also be linked to bistability, might be found in networks
with a larger number of nodes. Furthermore, the question arises how much of the behaviour
of a smaller motif pops out in the behaviour of a larger network.
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A Networks on number

1 2

3

103

1 2

3

104

1 2

3

106

1 2

3

107

1 2

3

121

1 2

3

122

1 2

3

124

1 2

3

125

1 2

3

130

1 2

3

131

1 2

3

133

1 2

3

134

1 2

3

148

1 2

3

149

1 2

3

151

1 2

3

152

1 2

3

157

1 2

3

158

1 2

3

160

1 2

3

161

1 2

3

182

1 2

3

184

1 2

3

185

1 2

3

187

1 2

3

188
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1 2

3

202

1 2

3

203

1 2

3

205

1 2

3

206

1 2

3

211

1 2

3

212

1 2

3

214

1 2

3

215

1 2

3

220

1 2

3

221

1 2

3

224

1 2

3

229

1 2

3

230

1 2

3

232

1 2

3

233

1 2

3

238

1 2

3

239

1 2

3

241

1 2

3

242

1 2

3

364

1 2

3

365

1 2

3

368

1 2

3

374

1 2

3

376

1 2

3

377
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1 2

3

392

1 2

3

395

1 2

3

404

1 2

3

455

1 2

3

457

1 2

3

458

1 2

3

476

1 2

3

484

1 2

3

485

1 2

3

728

B Full results 3 node networks

Direct occurrence of motifs is denoted by ’x’. Indirect occurrence of motifs is denoted in
by ’(x)’. Results are listed in the same order as they are discussed in Section 4.3.

Table 1: Multistable

Integer Saddle-Node Bifurcation Mutual Inhibition Inhibition-Activation Mutual Activation
0 - - - -

392 - x (x) x
728 x x - -

Table 2: Bistable - binary outcome WTA

Integer Saddle-Node Bifurcation Mutual Inhibition Inhibition-Activation Mutual Activation
0 - - - -

104 - (x) - x
158 - x - x
187 x x - -
205 - x (x) x
214 - x - x
224 x x - -
233 x x - -
242 x x - -
476 - x - x
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Table 3: Bistable - binary outcome

Integer Saddle-Node Bifurcation Mutual Inhibition Inhibition-Activation Mutual Activation
0 - - - -

161 x x x -
184 x (x) x -
211 - (x) x x
230 x x x -
395 - x x x
404 x x x -
484 x x x -
485 x x x -

Table 4: Bistable - On-Off

Integer Saddle-Node Bifurcation Mutual Inhibition Inhibition-Activation Mutual Activation
0 - - - -

121 - - - x
364 - - - x

Table 5: Bistable - one win, one off equilibrium

Integer Saddle-Node Bifurcation Mutual Inhibition Inhibition-Activation Mutual Activation
0 - - - -

124 - - x x
130 - - (x) x
131 - - x x
148 - - x x
149 - x (x) x
365 - - x x
374 - - x x
457 - x x x

Table 6: Bistable - one win, one equilibrium with activity in all nodes

Integer Saddle-
Node-
Bifurcation

Periodic-
Orbit

Mutual-
Inhibition

Inhibition-
Activation

Mutual-
Activation

0 - - - - -
157 - x - x (IIA) x
103 x - - (x) x
202 x - - x x
368 - x - x (IIA) x
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Table 7: Unistable - WTA win

Integer Periodic Orbit Mutual Inhibition Inhibition-Activation Mutual Activation
0 - - - -

107 - (x) x -
188 - x - -
203 - - x -
206 - x x -
221 - x x -
232 - x x -
241 - x x -

Table 8: Unistable - win

Integer Periodic Orbit Mutual Inhibition Inhibition-Activation Mutual Activation
0 - - - -

134 - (x) x -
152 - x x -
212 - - x -
229 - - x -
238 - (x) x -
239 - x x -
377 - (x) x -
458 - x x -

Table 9: Unistable - no activity

Integer Periodic Orbit Mutual Inhibition Inhibition-Activation Mutual Activation
0 - - - -

122 - - x x
133 - - x x
151 - - x (x)
376 - - x x
455 - - x (x)

Table 10: Unistable - activity in all nodes

Integer Periodic Orbit Mutual Inhibition Inhibition-Activation Mutual Activation
0 - - - -

106 - - x -
125 - - x -
160 - - x -
182 x - - -
185 - - x -
220 - (x) x -
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C Code

C.1 Constructing a list of interesting three node networks

The following code was used to construct a list of all possible adjacency matrices of three
node networks, with inhibiting and activating interactions, without considering base level of
activation, self activation or self inhibition. This was done by uniquely mapping integers to
a 3-by-3 matrix consisting of the integers 0, 1 and 2, representing no interaction, activation
and inhibition. That mapping consists of converting base 10 integers to base 3 integers.
To illustrate, let x be a base 10 integer smaller than 36. Then

x =
(
a5 a4 ... a1 a0

)

35

34

...
31

30

 , ai ∈ {0, 1, 2}. (17)

Next, a 3-by-3 matrix was filled by the digits of those base 3 integers, leaving diagonal
entries 0. In this fashion the following matrix was obtained: 0 a5 a4

a2 0 a3
a1 a0 0

 .

From there, integers corresponding to topological equivalent matrices of other integers
were removed from the list, to create a list of all possible unique 3-node networks.

1 from numpy import i d en t i t y , array , zeros , t r i u_ind i c e s ,
t r i l_ i nd i c e s , l i n a l g , s i gn

2 import numpy as np
3 from i t e r t o o l s import permutat ions
4

5

6 b = 3 # number o f opt ions f o r i n t e r a c t i o n between nodes : none : 0 ,
a c t i v a t i o n : 1 , i n h i b i t i o n : 2

7

8

9 de f in t2vec (x , n) :
10 """map i n t e g e r x to n(n−1) vec to r [ array ] with non−diagona l

en t r i e s ,
11 through computing the binary r ep r e s en t a t i on : d i v id e x by

powers o f
12 b , add the remainder to the vec to r ( backwards )
13

14 Test
15 >>> int2vec (5 , 3 )
16 array ( [ 0 , 0 , 0 , 1 , 0 , 1 ] )
17 """
18

19 r e turn array ( [ ( x // b ∗∗ i ) % b f o r i in range (n ∗ (n − 1) ) ] )
[ : : −1 ]
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20

21

22 de f vec2 in t (v , n) :
23 """map n(n−1)−vecto r ( adjacency−matrix e n t r i e s ) to an i n t e g e r

. Inve r s e
24 f unc t i on o f in t2vec ( ) . Idea : mult ip ly the remainder with

powers o f b .
25

26 Test
27 >>> nn = 3
28 >>> vec2 in t ( array ( [ 0 , 0 , 0 , 1 , 0 , 1 ] ) , nn )
29 5
30 >>> fo r m in range (2∗∗(n∗(n−1) ) ) :
31 . . . a s s e r t vec2 in t ( in t2vec (m, n) ,n ) == m
32 # . . . a s s e r t vec2 in t ( in t2vec2 (m, n) ,n ) == m
33 """
34 x = 0
35 v = v [ : : −1 ]
36 f o r i in range (n ∗ (n − 1) ) :
37 x += v [ i ] ∗ (b ∗∗ i )
38 r e turn x
39

40

41 de f int2mat2 (x , n) :
42 """map i n t e g e r x to n−by−n adjacency matrix : d iagonal−method .

Obtains
43 n(n−1)−vector , f i l l upper part o f matrix with the f i r s t n(n

−1)/2 en t r i e s ,
44 and lower t r i a n gu l a r part with remainder .
45

46 Test
47 >>> int2vec (5 , 3 )
48 array ( [ 0 , 0 , 0 , 1 , 0 , 1 ] )
49 >>> int2mat2 (5 , 3 )
50 array ( [ [ 0 . , 0 . , 0 . ] ,
51 [ 1 . , 0 . , 0 . ] ,
52 [ 0 . , 1 . , 0 . ] ] )
53 """
54

55 v = int2vec (x , n)
56 am = ze ro s ( shape=(n , n) )
57

58 indur , induc = t r i u_ ind i c e s (n , 1)
59 i nd l r , i nd l c = t r i l _ i n d i c e s (n , −1)
60 f o r i in range ( i n t (n ∗ (n − 1) / 2) ) :
61 am[ ( indur [ i ] , induc [ i ] ) ] = in t (v [ i ] )
62 am[ ( i n d l r [ i ] , i n d l c [ i ] ) ] = in t (v [ i + in t (n ∗ (n − 1) / 2)

] )
63 r e turn am
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64

65

66 de f mat2vec (M, n) :
67 """map n−by−n adjacency matrix to n(n−1)−vecto r . Inve r s e o f

int2mat2 .
68 For a l l rows , the non−diagona l e n t r i e s are p laced in the

vector , s t a r t i n g
69 from the r ight−s i d e o f the d iagona l .
70 """
71

72 y = ze ro s (n ∗ (n − 1) )
73 f o r i in range (n) :
74 v = M[ i ] [ 0 : ]
75 z = ze ro s (n − 1)
76 z [ 0 : n − i − 1 ] = v [ i + 1 : n ]
77 z [ n − i − 1 : ] = v [ 0 : i ]
78 y [ i ∗ (n − 1) : ( i + 1) ∗ (n − 1) ] = z
79 r e turn y
80

81

82 de f matcomp(x1 , x2 , n) :
83 """ compare whether two i n t e g e r s correspond to equ iva l en t

adjacency−matr i ce s .
84 Map x1 to adjacency matrix , con s t ruc t a l l p o s s i b l e

permutat ions ( r e index ing
85 o f the nodes whi l e l e av ing the topology i n t a c t ) , map these

matr i ce s to an
86 i n t e g e r and check whether i t cor responds to x2 . Pr in t s ’

equ iva l en t ’ i f the
87 matr i ce s are equ iva l en t and nothing i f they are not .
88

89 >>> matcomp (4 , 8 , 3 )
90 equ iva l en t
91 >>> matcomp (4 , 7 , 3 )
92

93 """
94

95 A = int2mat2 ( x1 , n)
96 M = range (n)
97 Q = ze ro s ( shape=(n , n) )
98 f o r q in permutat ions (M) :
99 f o r i in range (n) :

100 f o r j in range (n) :
101 Q[ i ] [ j ] = A[ q [ i ] ] [ q [ j ] ]
102 var = in t ( vec2 in t (mat2vec (Q, n) , n ) )
103 i f var == x2 :
104 pr in t ( ’ equ iva l en t ’ )
105

106
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107 de f mateq ( x1 , n) :
108 """ con s t ru c t s a s e t o f a l l e qu iva l en t adjacency−matr i ce s f o r

an i n t e g e r .
109 Map the i n t e g e r to i t s adjacency matrix , compute a l l p o s s i b l e

permutat ions
110 ( r e index ing the nodes whi l e l e av ing the topology i n t a c t ) , map

equ iva l en t
111 matr i ce s to i n t e g e r s and cons t ruc t a s e t . Set does not g ive a

so r t ed l i s t .
112

113 >>> mateq (4 , 3 )
114 s e t ( [ 3 2 , 1 , 2 , 4 , 8 , 1 6 ] )
115 >>> mateq (5 , 3 )
116 s e t ( [ 3 4 , 5 , 40 , 10 , 17 , 2 0 ] )
117 """
118

119 A = int2mat2 ( x1 , n)
120 M = range (n)
121 Q = ze ro s ( shape=(n , n) )
122 eq = [ ]
123

124 f o r q in permutat ions (M) :
125 f o r i in range (n) :
126 f o r j in range (n) :
127 Q[ i ] [ j ] = A[ q [ i ] ] [ q [ j ] ]
128 var = in t ( vec2 in t (mat2vec (Q, n) , n ) )
129 eq . append ( var )
130

131 r e turn s e t ( eq )
132

133

134 de f u n i q u e l i s t (n) :
135 """ cons t ruc t a l i s t o f the number o f unique i n t e g e r s f o r

con s t ru c t i ng a
136 network with n nodes . Use mateq−func t i on to obta in a l l the

p o s s i b l e
137 equ iva lence−permutat ions o f an i n t e g e r . S ta r t at 0 and

i t e r a t e t h i s
138 proce s s f o r a l l 2^(n(n−1) ) opt ions . Add an i n t e g e r to the

l i s t i f i t does
139 not occur in any o f the permutations−s e t o f i t s p rev ious

added members , and i f i t obeys the c r i t e r i a f o r an
140 i n t e r e s t i n g network . """
141 a = se t ( [ ] )
142 out = s e t ( [ ] )
143 f o r i in range (b∗∗(n∗(n−2)+1) , b∗∗(n∗(n−1) ) ) :
144 A = int2mat2 ( i , n )
145 B = A. t ranspose ( )
146 i f (sum(A[ 0 ] ) == 1 and sum( array (B[ 0 ] , bool ) ) == 1) or i
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% b∗∗(n−1) == 0 :
147 out . add ( i )
148 f o r i in range (b∗∗(n∗(n−2)+1) , b∗∗(n∗(n−1) ) ) :
149 A = int2mat2 ( i , n )
150 B = A. t ranspose ( )
151 i f (sum(A[ 0 ] ) == 1 and sum( array (B[ 0 ] , bool ) ) == 1) or i

% b∗∗(n−1) == 0 :
152 cont inue
153 v = mateq ( i , n )
154 i f l en (v & a ) == 0 and l en (v & out ) == 0 :
155 a . add ( i )
156 r e turn a
157

158

159 de f weed ( network_l ist , n ) :
160 """ Removes a l l networks from a l i s t that are deemed

un i n t e r e s t i n g but passed through un i q u e l i s t .
161

162 I t e r a t e s over a l l networks in the l i s t and checks i f they
should be kept or removed . Al l networks that should be

163 kept are returned in a new l i s t . """
164

165 weeded_list = l i s t ( )
166 f o r m in network_l i s t :
167 weeded = False
168 A = int2mat2 (m, n)
169 B = A. t ranspose ( )
170 f o r row in A:
171 i f sum( row ) == 0 :
172 weeded = True
173 break
174 f o r column in B:
175 i f sum( column ) == 0 :
176 weeded = True
177 break
178 i f not weeded :
179 weeded_list . append (m)
180 r e turn weeded_list
181

182 n = 3
183 nodes3 = weed ( un i q u e l i s t (n) ,n )
184 nodes3 . s o r t ( )
185

186 with open ( "ThreeNodeNetworks . txt " , "w" ) as f :
187 f . wr i t e ( " [ " )
188 f . wr i t e ( s t r ( nodes3 [ 0 ] ) )
189 f o r network in nodes3 [ 1 : ] :
190 f . wr i t e ( " , " + s t r ( network ) )
191 f . wr i t e ( " ] " )
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D Two node networks with periodic orbits

This section contains elaborations for the interested reader on some of the aspects men-
tioned in Section 3 that were not deemed relevant enough for the article.

We saw before that periodic orbits can occur if one node has auto-inhibition and the
other auto-activation. That leaves the four candidates in Figure 9.

1 2+

(a) Mutual inhibition

1 2

(b) Mutual activation

1 2+

(c) Inhibition-activation

1 2

(d) Inhibition-activation

Figure 27: Networks with possible periodic orbits

What we need for periodic orbits is pared oscillations in activity of node 1 and 2.
Candidate 27a is therefore not likely to have a periodic orbit. High activity in node 2
might result in a decrease of activity in that same node, but has no possibility to increase
after that; inhibition does not become any less, and input is constant. Moreover, decrease
of activity in node 2 only leads to increase in node 1, and activity in node 1 can only
decrease if node 2 increases again, which cannot happen. More activity in node 1 leads to
inhibition of node 2 and therefore less activity in node 2. That leads to more activation of
node 1. In other words, node 1 wins. Similarly, more activity in node 2 leads to inhibition
of node 1 and therefore less inhibition of node 2. In other words, node 2 wins.

Candidate 27b cannot have a periodic orbit either. Activity of node 1 always increases
and never decreases.

The networks in 27c and 27d, however, can have pared oscillations as described,
provided the nodes act on different time scales. If activity in node 2 in 27c decreases,
activity in node 1 decreases, so that activity in node 2 can increase again. In network 27d,
increase in activity in node 2 implies increase in node 1, which implies decrease in node 2.
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