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Abstract

Purpose - To evaluate the addition of Magnetic Resonance Imaging (MRI) image biomarkers
(IBMs) of the parotid gland stem cell rich (SCR) region to a clinical reference model to predict
daytime xerostomia 12 months after radiotherapy for head and neck cancer (HNC).

Methods and Materials - A retrospective analysis was performed on 104 HNC patients who
were treated using curative radiotherapy between 2018 and 2020. T1 turbo spin echo MRI scans,
planning Computed Tomography (CT) scans, dose distributions and GRIX daytime xerostomia
grade (baseline and 12 months follow-up) were prospectively collected. SCR regions were delin-
eated on CT. Parotid gland and SCR region structures were transferred to MRI scans, MRI scans
were normalized (standardization by intensities), and IBMs were extracted from the ipsilateral
and contralateral SCR region. Dose parameters were determined based on the dose distribu-
tion. Pre-selection of IBMs was executed using the Bayesian Information Criterion and Spearman
correlation with the endpoint (<0.8). Logistic regression sub-models were created based on pre-
dictor groups with intercorrelation of <0.8 and sub-models were combined in a composite model.
Internal validation was executed by bootstrapping 100 times. Selected IBMs were added to a clini-
cal reference model and using a likelihood-ratio test, the addition of IBMs to the model was tested.

Results - Predictive IBMs were the long run low grey level emphasis ipsilateral and the short
run high grey level emphasis contralateral. The area under the curve (AUC) for this model was
0.68 (0.43-0.86). After internal validation, the AUC decreased to 0.57 (0.45-0.68). The clinical
reference model had an AUC of 0.55 on our study population after closed-testing procedure and
the likelihood-ratio test revealed that adding the IBMs did not improve this model.

Discussion - With another MRI sequence specifically created for sialography and subsequent
a segmentation of the SCR region based on the main ducts of the parotid gland, the SCR region
could be defined more accurately, most likely resulting in more predictive IBMs. Furthermore, due
to differences in the study population, the clinical reference model did not have a good fit on our
study population. These differences were probably caused by changes in treatment planning and
technological progress over the years. In conclusion, it was found that MRI IBMs of the SCR region
can be predictive of daytime xerostomia 12 months after radiotherapy, but more research is needed.
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Chapter 1
Background information





1.1 Head- and neck cancer

According to Fitzmaurice et al. (2019), the estimated worldwide incidence of head- and neck cancer (HNC)
was 890,000, representing 5.3% of all cancers [1]. In their and our study, HNC is comprised of cancer in
the oral cavity, nasopharynx, oropharynx, hypopharynx and larynx (see Figure B.1). The mortality rate
of HNC was 5.3% of all cancer-related deaths world-wide.[1] The incidence of HNC in the Netherlands was
the highest in the age group of 65-74 years, with approximately one-third of the incidence in the past 5
years in the Netherlands [2]. However, in recent years, an increase in HNC as a result of the Eppstein-Barr
virus (EBV) (nasopharyngeal area) and Human-Papilloma virus (HPV) (oropharyngeal area) was found,
which has targeted mostly younger patients in the age group of 60-64 years.[3, 4]

The main risk factors for the development of HNC include tobacco exposure and alcohol use. [6, 7]
Furthermore, presence of the EBV or HPV and gastroesophageal reflux can cause changes to the mucosal
cells, which is also a risk factor for developing HNC. [8, 9]

1.2 Radiotherapy

HNC patients are treated with surgery, (concurrent chemo)radiotherapy or a combination of these.[10]
Radiotherapy is applied when the tumour is inoperable or radical resection margins of more than 5 mm
cannot be guaranteed without loss of function, when there are positive surgical margins, or when ra-
diotherapy is beneficial for the preservation of function of organs.[11] Subsequently, radiotherapy is the

Figure B.1: Overview of head and neck cancer regions. The head and neck area can be subdivided
into: oral cavity, nasopharynx, oropharynx, hypopharynx and larynx. [5]
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treatment option of choice in 70% of the patients with HNC. The goal of radiotherapy is to kill cancer
cells and thereby removing the cancerous tissue to cure patients.

Even though radiotherapy can preserve functional tissue better than surgery, radiotherapy can cause
several side effects. The sensation of dryness of the mouth, called xerostomia, is the most often reported
side effect of radiotherapy and has a large impact on the quality of life [12–14]. Xerostomia is caused by
radiation damage to the salivary glands, causing salivary gland dysfunction. Other side effects include i.e.
difficulty swallowing (dysphagia), dryness, redness and blistering of the skin and mucosa, soreness of the
throat and mouth, hoarseness, loss of taste, loss of smell and sticky saliva. Many factors contribute to the
development of side effects, such as the location of the tumour, the type of radiation (photon/proton), the
daily fraction size, whether irradiation of the elective lymph node levels is necessary, whether the patient
already had complaints due to the tumour itself and more.[11]

At the radiotherapy department of the University Medical Centre Groningen (UMCG) in the Nether-
lands, several protocols are used to treat patients depending on patient and tumour characteristics, ac-
cording to the national guidelines. In general, patients who receive primary radiotherapy will receive 70
Gray (Gy) to the tumour and 54.25 Gy to the elective lymph node areas (if necessary) in 35 fractions,
which are administered on five days a week. [15] However, the method of treatment also depends on the
TNM stage of the tumour and the age of the patient. For tumours which have a tumour staging of T1 or
T2 and node staging of N0, accelerated radiotherapy is applied when the patient is younger than 70 years
of age. This means that the patient receives 6 fractions of 2 Gy administered on 5 days a week (so one
day with 2 fractions), with a total dose of 70 Gy. When no contra-indications are present, concomitant
radiotherapy with cisplatin/carboplatin/5 FU or accelerated radiotherapy in combination with cetuximab
are treatment options for patients of 70 years or younger who have another tumour or node staging.[16–25]

Radiotherapy aims to deliver 70 Gy to the tumour area, 54.25 Gy to the elective lymph node area and
as low dose as possible to other structures to prevent side effects and complications. At the radiotherapy
department of the UMCG, it is possible to irradiate HNC patients with protons or photons. Due to the
difference in physical properties between protons and photons, the peak dose per beam can be set on
a certain depth in proton therapy, whereas the peak dose of photon therapy lies at the surface of the
body, which causes proton therapy to be able to have a steep dose fall-off and thus a lower dose to healthy
tissue. To determine which patients benefit from proton therapy, Normal Tissue Complication Probability
(NTCP) models are created to predict the toxicity of both the photon and proton irradiation plan. [26,
27] A patient qualifies for proton therapy when the amount of xerostomia or dysphagia can be reduced
by a certain percentage (5% for grade 3 complications and 10% for grade 2 complications) when proton
therapy is applied instead of photon therapy. [28]

1.3 Parotid gland and stem cell rich area

During radiotherapy, the parotid gland tissue undergoes multiple changes. A volume loss of up to 35%
during the course of the therapy is reported [29–36]. In a review by Jasmer et al. (2020), it is described
how salivary gland tissue is damaged by irradiation [37]. The factors that contribute to acute dysfunction
of the salivary glands most are aberrant calcium signaling, DNA damage, reactive oxygen species (ROS)
formation and rapid apoptosis of acinar cells (both mucous and serous cells). Factors that furthermore
contribute to chronic salivary gland dysfunction are inflammation, changes in neuronal and vascular tissue,
senescence of the progenitor cells, a change in the cytoskeleton and fibrotising of the salivary gland. [37]
Braam et al. (2005) showed that the parotid gland tissue regenerates over time, since the salivary flow
rate after 5 years had increased 32% in comparison with the salivary flow rate 1 year after radiotherapy [38].

Saliva production is conducted by the mucous and serous cells in the salivary glands. Mucous and
serous cells have a slow turnover rate, suggesting that they are less radiosensitive in comparison to cells
with a high turnover rate. However, the amount of side effects suggests that the parotid gland is more
radiosensitive than expected based on the radiosensitivity of these cell types.[39] Therefore, a study by
Pringle et al. (2013) suggested that the stem cells and progenitor cells in the salivary glands get sterilized
by the radiation, causing them to be unable to maintain their self-renewal and differentiation properties
[40]. The stem cells and progenitor cells of the parotid gland are concentrated along the main ducts of the
parotid gland, as can be seen in Figure B.2, further called the stem cell rich (SCR) region [41]. This is in
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Figure B.2: Parotid gland structure on cellular level.[40]
.

line with a study by Konings et al. (2005) towards the region-dependent radiosensitivity of the parotid
gland, in which it is concluded that the caudal part of the parotid gland is less radiosensitive, where no
main ducts of the parotid gland are present. In this study, it was found that regeneration of parotid
tissue is highly dependent on the damage caused to the cranial part (lateral and part of dorsal lobe) of
the parotid gland. [42] This suggests that sparing the cranial part of the parotid gland where stem cells
and progenitor cells reside may have a large impact on the extent of xerostomia complaints.

Currently, multiple methods are applied to reduce the damage to salivary glands, such as salivary gland
sparing radiotherapy [43]. In the study by Eisbruch et al. (2001), it was found that sparing the parotid
and submandibular glands resulted in a long-term clinical benefit for the patients, indicating that the im-
pairment of salivary production was decreased. According to Hawkins et al. (2017), patients treated with
this technique indeed produce more saliva than patients treated with standard radiotherapy, however, the
patient-rated xerostomia only improved marginally [44]. In the study by Hawkins et al. (2017), it was fur-
thermore found that sparing not only the parotid gland, but all salivary glands did improve patient-rated
xerostomia, which is in line with other studies [13, 14, 29, 44]. Furthermore, Beetz et al. (2014) tested
the QUANTEC group guidelines which are created to prevent moderate-to-severe xerostomia. When the
criteria of the QUANTEC guidelines can be met, the risk of developing moderate-to-severe xerostomia
reduced with 20% in younger patients without pre-existing xerostomia before the treatment.[45] All of
these studies did find a positive effect on reducing xerostomia, but often this was in specific subgroups
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(high Karnofsky score, low age groups, no xerostomia present before radiotherapy), which the majority
of HNC patients do not belong to. Thus, a better way of reducing the risk of xerostomia in all patient
groups has yet to be found.

Other methods to protect the parotid glands from radiation damage is by administering medication
to protect tissue from radiation damage before the treatment starts. Currently, the only FDA approved
radioprotective therapeutic is amifostine. Amifostine is believed to be a ROS scavenger in non-tumorous
tissue. ROS are mainly responsible for DNA damage, causing apoptosis. With amifostine, less DNA dam-
age is achieved in healthy tissue, leading to less side effects of the therapy. [46, 47] However, more recent
studies did not find a benefit in using amifostine over the use of a placebo [48, 49]. Some preclinical studies
to other therapeutics show promising results in protection against radiation damage for the therapeutics
A-438079, dasatinib and imatinib [50, 51]. However, these therapeutics have currently not proven to be
effective in clinical studies. To further reduce xerostomia, pharmacological options such as rapamycin and
EDAR agonist monoclonal antibodies are considered for regeneration of the salivary gland [52–54].

Another promising method to reduce xerostomia is stem cell transplantation of the parotid gland
stem cells [40]. To our knowledge, the change in human SCR regions due to delivered dose has not
been investigated yet. The X-Prevent project addresses the change in parotid SCR region in relation to
xerostomia to give insight in how xerostomia can be prevented. Eventually, it will be evaluated which
patients can be helped with a stem cell transplantation.[55] The effect of dose to the SCR region in relation
to xerostomia is investigated in a double-blind randomized controlled trial, in which it became evident
that dose to the SCR region was more predictive for xerostomia than dose to the whole parotid gland.[56]
This Master project is a part of the X-Prevent project.

1.4 Image Biomarkers

The parotid gland tissue undergoes changes during and after irradiation. These changes can be detected
by image biomarkers (IBMs) and some of them can be related to xerostomia [57–67]. The specific change
of IBMs in the SCR regions has not yet been an area of interest, despite the importance of these areas
in reducing xerostomia after radiotherapy [40, 41, 56]. Hypothetically, changes in this area could be even
better predictors for xerostomia than changes in the whole parotid gland.

The first mention of IBMs in baseline imaging of the parotid gland in the prediction of xerostomia is in
a study by Nakatsugawa et al. (2016) [63]. In this study, several IBMs are shown to be a valuable addition
to dose volume histogram (DVH) data of the combined parotid and submandibular glands in predictive
modeling of radiation-induced xerostomia. These IBMs were the texture parameters of the ipsilateral
parotid gland and the texture and shape parameters of the ipsilateral submandibular gland. The area
under the curve (AUC) of only DVH data was 0.7, while the AUC of the DVH data in combination with
the IBMs was 0.85.

Hereafter, studies by van Dijk et al. (2016-2018) identified more IBMs related to the development of
radiation-induced xerostomia. They showed that parotid gland surface reduction on CT and the baseline
xerostomia score are correlated with moderate-to-severe xerostomia 6 to 12 months after radiotherapy
[57]. Furthermore, a model exists which predicts the parotid shrinkage after radiotherapy. However, this
model is not linked to xerostomia.[66]

Since it is of more clinical value to determine the chance of developing xerostomia before the treatment
starts, a second study was conducted using IBMs of the parotid gland in pre-treatment CT scans. This
study demonstrated the IBM which significantly improved the baseline model (based on DVH parame-
ters and baseline xerostomia) is the ‘Short Run Emphasis’ (SRE) of the ‘grey level run-length matrix’
(GLRLM), a textural IBM. An AUC of 0.76 was achieved, which is lower than the study by Nakatsugawa
et al. (2016)[63]. However, the study by van Dijk et al. (2017) included almost three times more patients
(87 vs 249), which makes these results more convincing [58]. A high SRE value indicates heterogeneous
parotid tissue, which implies that there is a fatty tissue deposition in the parotid glands. In Sjögren’s
syndrome, in which patients also have fatty tissue in the parotid gland, it was shown that the amount
of fatty tissue in the parotid gland has a relationship with parotid function impairment [68]. To further
investigate the heterogeneity of the parotid tissue and its influence on the development of xerostomia,
a subsequent study was executed based on 18F-FDG PET-CT IBMs of the parotid glands. The 90th
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percentile of standardised uptake values, an intensity IBM, and the ‘Long Run High Grey-Level Emphasis
3’, a textural IBM derived from the GLRLM, were the most predictive for xerostomia, with an AUC of
0.76 and 0.75 respectively. These IBMs were found to be correlated and when combined, they do not add
independent information. The found IBMs can both be related to the amount of fatty, non-functional
parotid tissue, supporting the findings by van Dijk et al. (2017). [58, 60] To investigate the influence
of fatty tissue in the parotid gland even further, MRI IBMs are analyzed. The IBMs that were most
predictive of xerostomia are the 90th percentile of the normalized MRI intensity in the parotid gland and
the ‘grey level non-uniformity normalized’, derived from the GLRLM. Again, these IBMs are correlated
and do not add individual information to the model. The AUC for addition of both IBMs independently
to the baseline model was 0.83 for both IBM-models. [59]

During the study of van Dijk et al. (2017), another research group also found IBMs correlated with
xerostomia [64]. This study used several highly correlated parameters in their model, which made the
AUC relatively high (0.91). However, including highly correlated parameters may cause a large standard
error of their model, creating an unstable model [69]. Furthermore, only k -fold validation (with k=4) is
applied, while van Dijk et al. (2017) applied external validation, which is more reliable. [58, 64] Both van
Dijk et al. (2018), Wu et al. (2018) and Rosen et al. (2018) compared IBMs of CT scans created during
treatment [61, 65, 67]. The most important factors in the prediction of xerostomia were the change in
parotid gland surface area between the start of the treatment and week 3 of the treatment (AUC = 0.93)
[61] and changes in mean intensity on CT of the parotid glands and parotid volume between the start of
the treatment and week 3 or 5 of the treatment (Pearsons correlation coefficient = 0.71, success rate =
93% [67] and AUC = 0.78 [65]. These studies did have different endpoints (moderate-to-severe xerostomia
12 months after treatment [61, 65] and severe xerostomia directly after treatment [67]), but their results
seem consistent with each other.

To this day, only 2 studies have focused on IBMs of parotid glands on pre-treatment T1 turbo spin
echo MRI scans and their relation with the possibility to develop xerostomia [59, 62]. Differences in these
works include the usage of IBMs of MRI scans before [59] or after gadolineum administration [62], wavelet
filtering of the scans [62], normalization of the MRI scans [59] and the usage of a standard model to which
the MRI IBMs are added to predict xerostomia [59]. In the article by Sheikh et al. (2018), multiple
models are created which are based on a mix of DVH data, clinical data, CT IBM data and MR IBM
data [62]. Because of this, the models are not fully comparable. The best performing model was the
model containing all data (AUC = 0.79), while the best performing model in the study by van Dijk et al.
(2018) had an even higher AUC of 0.83 for their model [59]. Surprisingly, all MR IBMs that are selected
by Sheikh et al. (2018) resulted from the wavelet filtered MR images, a method of image manipulation
that was not applied by van Dijk (2018). Due to the inter-scan variability that is introduced by the MR
modality, normalization is applied by van Dijk et al. (2018), while this has not been executed by Sheikh
et al. (2018). This could have a negative effect on the model by Sheikh et al. (2018).

1.5 Aim and key objectives

As stated, many different approaches to use imaging as a predictor of radiation-induced xerostomia have
been applied, but none of them specifically used the SCR region of the parotid gland as region of interest.
The next step is to investigate whether IBMs of the SCR region of the parotid glands on MRI have a
comparable or even better predictive value in the prediction of xerostomia. The purpose of this study is to
investigate the addition of MRI IBMs of the SCR region of the parotid gland to a clinical linear regression
model to predict xerostomia after radiotherapy.

Several steps have to be undertaken to achieve this goal;

1. Data collection

(a) Inclusion of patients who underwent radiotherapy for HNC, who received an MRI before
treatment.

(b) Check on each sequence whether the parotid gland is visible.

(c) Select MRI sequence for study based on properties of the sequence and availability.
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(d) Transfer the delineated structure for the parotid gland and the SCR region from planning CT
to MRI.

2. Normalize MRI, standardization of intensities

3. Extract intensity and textural radiomics

4. Imputation for missing clinical data

5. Model creation

(a) Model based on radiomics of the SCR regions.

(b) Addition of selected radiomics to clinical model.

6. Model outcome interpretation and comparison
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2.1 Introduction

Xerostomia is the most common side-effect of radiotherapy for head and neck cancer (HNC), with further-
more a large impact on daily life [44, 70–72]. Xerostomia is caused by radiation damage to the salivary
glands, leading to salivary gland dysfunction [37]. To gain more insight in the predicting factors of xeros-
tomia, normal tissue complication probability (NTCP) prediction models are created. Various potential
predictive parameters were investigated; clinical parameters, answers to questionnaires, dosimetric param-
eters of the treatment plan and image biomarkers (IBMs) of several image modalities. [26, 43, 57–67, 73–
77] IBMs are mathematical characteristics of a region of interest in patient’s scans, such as Computed To-
mography (CT), Magnetic Resonance Imaging (MRI) or Positron-Emission Tomography (PET) scans [78].

Studies that investigated the role of IBMs in the prediction of xerostomia were conducted based on
several image modalities, at different time points of the treatment period [57–66, 73]. Due to its superior
soft-tissue contrast, MRI scans are expected to provide more information about structural parameters
within the parotid gland than CT or PET imaging [79]. This is supported by a comparison of results by
van Dijk et al. (2017-2018), which showed that IBMs based on MRI scans give a better predictive value
(area under the curve (AUC) = 0.83) than IBMs based on CT (AUC = 0.76) or PET imaging (AUC =
0.76)[58–60]. Currently, only two studies have been performed that look into MRI IBMs in the prediction
of xerostomia [59, 62]. Scans in both studies have been created with the T1 turbo-spin echo sequence.
However, differences in methods of modelling, endpoints, usage of the gadolineum contrast-agent and
method of post-processing the MRI scans make direct comparison difficult. The most predictive parame-
ters for the best performing models of Sheikh et al. (2019) (model based on clinical parameters, dosimetric
parameters, CT IBMs and MRI IBMs) and van Dijk et al. (2018) (model based on clinical parameters,
dosimetric parameters and MRI IBMs) can be found in Table 1 [59, 62]. The model with the largest AUC
after external validation was the model with the textural IBM by van Dijk et al. (2018), with an AUC
and confidence interval (CI) of 0.83 (0.67-0.99).

At present, there is still a large uncertainty in the current prediction models for xerostomia that are
based on clinical factors, dosimetric parameters and IBMs of the salivary glands to such an extent that
these models cannot be used clinically. This can be partially due to the radiosensitivity of the parotid
gland, which is higher then expected from glandular tissue [39]. In a later study by Konings et al., a
relation was found between different areas of the parotid glands and their radiosensitivity [42]. Hereafter,
the areas with a higher radiosensitivity were correlated to the areas where stem cells reside, that is to say
in the region of the parotid gland containing the major ducts [41]. Sterilization of the stem cells results in
a decreased ability to recover the complete parotid gland after radiotherapy, thus causes impaired parotid
function [40]. In clinical practice, the mean dose to the stem cell rich (SCR) region was found to be the
best predictor for patient-rated daytime xerostomia and physician-rated grade ≥2 xerostomia. [56]

At present, no studies have been published that investigate the effect of IBMs of the SCR region
of the parotid gland in predictive modeling of radiotherapy-induced xerostomia. From a radiobiological
perspective, the SCR region may give more insight in the development of xerostomia. Therefore, this
study will investigate whether addition of MRI IBMs of the SCR region to a model created to predict
xerostomia will improve the prediction of xerostomia.

2.2 Methods and Materials

2.2.1 Study population

The patient population consisted of patients who received primary radiotherapy of 70 Gy in the head-
and-neck area, received in 6-7 weeks at the University Medical Centre Groningen (UMCG). Furthermore,
these patients must have received an MRI scan for treatment planning between January 2018 and April
2020. Moreover, parotid glands must be visible on the MRI scans and the SCR region must be detectable.
All patients were treated with Intensity-Modulated Proton Therapy (IMPT) or Volumetric Modulated
Arc Therapy (VMAT). Treatment plans were generated by the protocol that is used for HNC patients in
the Radiotherapy department of the UMCG. This included reducing radiation dose to the parotid glands,
submandibular glands, oral cavity and pharyngeal constrictor muscles as much as possible without com-
promising the dose to the target volume.
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Table 1: Comparison predictive models xerostomia with MRI IBMs.[59, 62]

Sheikh et al. (2019)§ van Dijk et al. (2018)

Parameter
class

Parameter OR/p-value Parameter
class

Parameter OR/p-value

Dose D40 con-
tralateral
PG

2.79 / 0.04 Dose Dmean PG -*/-*

CT texture
IBM

ipsilateral
SG GLSZM
Grey
Level Non-
uniformity
Normalized

2.29 / 0.04 Clinical Baseline
moderate-
to-severe
xerostomia

-*/-*

MRI texture
IBM

ipsilateral
SG GLSZM
Small Area
High Grey
Level Em-
phasis

3.59 / 0.002 MRI inten-
sity IBM

PG P90‡ 1.03 / 0.004

MRI texture
IBM

ipsilateral
SG GLSZM
Grey
Level Non-
uniformity
Normalized

0.40 / 0.04 MRI texture
IBM

PG GLRLM
Grey
Level Non-
uniformity
Normalized‡

0.34 / 0.004

AUC (CI)† = 0.79 (0.78-0.80) AUC (CI)† P90 = 0.88 (0.79-0.96)
AUC (CI)† GLRLM = 0.88 (0.79-0.96)

Abbreviations: OR = Odds Ratio, D40 = dose that 40% of the volume receives, Dmean = mean dose
the volume receives, PG = Parotid Gland, SG = Submandibular gland, GLSZM = Grey Level Size Zone
Matrix, P90 = 90th intensity percentile of normalised MRI-units, GLRLM = Grey Level Run Length
Matrix, CI = Confidence Interval.
§ In the article by Sheikh et al. (2019), all selected IBMs were obtained from wavelet filtered images.
* These parameters come from a reference model [26, 27], in which the AUC was 0.81 (95% CI: 0.71–0.91),
and the R2 was 0.39 on this dataset.
† Values are for unvalidated models, since validation methods differ.
‡ These parameters were both added separately to the base model. Together, they did not add more
information since they were highly correlated with each other.
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Exclusion criteria were for patients to be having a salivary gland tumour or a skin tumour. Fur-
thermore, patients who had less than 1 year follow-up at the time of the data retrieval were excluded.
Moreover, patients who did not fill in any questionnaires regarding toxicity were excluded. Additionally,
patients were excluded if they underwent surgery in the head-and neck region or radiotherapy prior to
treatment. MRI scans were visually checked for noise or artefacts that would hinder determination of IBMs.

2.2.2 MRI acquisition and normalization

All MRI scans were acquired before treatment for tumour delineation purposes. T1-weighted MRI scans
were made using a Siemens MAGNETOM Prisma 3T scanner (Siemens Healthineers, Erlangen, Germany)
with a turbo spin echo sequence (TE = 15 ms, TR = 875 ms, flip angle = 70 degrees, matrix size = 320
x 320, pixel size = 0.3 x 0.3 mm, slice thickness = 3 mm). No intravenous contrast agents are given to
the patient prior to scanning and no fat suppression has been conducted during scanning.

The intensity values on MRI scans are not comparable between scans due to inhomogeneity in the
magnetic field, placement of the radiofrequency receiver coils and other factors.[80] Therefore, it is advised
to normalize MRI scans prior to the IBM extraction. In order to achieve this, the properties of the T1
turbo spin echo sequence were used. On this sequence, fatty tissue has one of the highest intensity values
and can be located easily. Therefore, fatty tissue of the cheek is delineated in 5 slices of each MRI scan.
Hereafter, the standardization of intensities technique proposed by Robitaille et al. (2012) is applied. [81]
In this technique, the image values were multiplied by a constant factor (here arbitrarily chosen to be 350)
and divided by the average cheek fat tissue intensity value. An example of the normalization process can
be found in Figure 1. The resulting grey scale was from 0 to 350.

2.2.3 Definition structures

Prior to treatment, the parotid glands were delineated on CT scans based on the method by Brouwer et al.
(2015).[82] Based on these contours, the SCR region is defined as the area around the main salivary ducts
of the parotid gland [41, 56]. This area is defined in the following manner: firstly, the transversal slice on
which the parotid gland’s centre is found based on the contour data using MATLAB (Mathworks, 2018a,
the MathWorks, Inc., Natick, Massachusetts, 2018). Hereafter, the intersection of the parotid gland with
the mandible and the masseter muscle on this transversal slice is found in the Raystation Klinisch 10B
treatment planning system (RaySearch Laboratories AB, Stockholm, Sweden). Subsequently, this point
of interest is shifted 0.5 cm in posterior-lateral direction. Hereafter, a volume around this point of interest
is created by expanding it with 1 cm in the anterior-posterior direction and 2 cm in the cranial-caudal
direction. At last, the part of the generated volume within the parotid gland is defined as the SCR region.
An example of the SCR region can be found in Figure 2.

The parotid gland structure and the SCR region structure were rigidly transferred from planning CT
scan to the planning MRI scan with software of Mirada (Mirada Medical Ltd., Oxford, United Kingdom).
These delineations on the MRI scans were manually checked and adjusted if necessary. When there were
large deviations between the contour on the CT scan and the visible structure on the MRI scan, the SCR
region was redefined based on the data extracted from MATLAB used to define the SCR region in the
first place.

2.2.4 IBM candidates

Intensity and textural IBMs of the SCR region were extracted by in-house software in MATLAB [83]. The
determination of the IBMs is done according to guidelines created by the Image Biomarker Standardization
Initiative (IBSI).[84] Textural IBMs can be divided in several classes, namely IBMs based on the grey-
level co-occurence matrix (GLCM), IBMs based on the grey-level run length matrix (GLRLM) and IBMs
based on the neighbourhood grey-tone difference matrix (NGTDM). The texture IBMs were extracted in
2D, and thus determined in only 4 directions. The determination of the intensity IBMs as well as the
GLCM, GLRLM and NGTDM and their respective IBMs can be found in the Supplementary materials
of Zwanenburg et al. (2020).[84] In Appendix A, the used IBMs are stated. Morphologic IBMs were not
calculated due to the geometrical determination of the SCR region, instead of an anatomical/intensity
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(a) Original MRI scans. (b) Normalized MRI scan.

Figure 1: Normalizing MRI according to the standardization of intensities technique. Example of
two patients with varying intensities in original MRI scans.
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(a) (b)

Figure 2: Parotid glands (red) and SCR regions (blue) in the transversal (a.) and coronal (b.)
plane.

based determination.

2.2.5 Multiple imputation for missing values

The reason for data to be missing can have several causes, including treatment related causes (i.e., not
being able to fill in a questionnaire due to severe complaints resulting from the treatment), which could
introduce bias in the complete case scenario. Multiple imputation of missing data to be able to have a
larger study population for predictive modelling has been proven to give less biased results than a complete
case analysis, where missing data is excluded [85, 86]. Multiple imputation of missing clinical data was
performed according to the multiple imputation methods of van Buuren et al. (2011) in R (version 4.0.5)
[87]. In the multivariate imputation by chained equations (MICE) method, all other variables were used
to estimate the values for the missing data. This has been executed 10 times. These results of analyses in
each imputation set were pooled according to Rubin’s rule [88].

2.2.6 Endpoint

The endpoint of this study was patient-rated daytime 12 months after treatment according to the Gronin-
gen Radiotherapy-Induced Xerostomia (GRIX) questionnaire. The full question, translated from Dutch
to English, is ‘Do you have a dry mouth during the day?’ and this can be answered in a four point
Likert-scale fashion (not at all vs. a bit vs. quite a bit vs. a lot). This endpoint is dichotomized as
none-to-mild (including not at all and a bit) vs. moderate-to-severe (including quite a bit and a lot) for
the purpose of this study.

2.2.7 Reference model

The clinical reference model was the NTCP model created by van Rijn-Dekker et al. (2021)[89]. This
model was developed using multivariable logistic regression with moderate-to-severe daytime xerostomia
as the endpoint. For this model, clinical parameters and dose parameters have been evaluated as possible
predictor. The mean dose to the contralateral SCR region, the mean dose to the oral cavity and the
pretreatment daytime xerostomia score (None vs. Any) were implemented in this model. Both before
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and after external validation, this model had an AUC of 0.68 with an intercept and slope of -0.002 and
0.981 before and 0.254 and 0.965 after external validation respectively. The regression coefficients for this
reference model can be found in Appendix B, Table A.2.

2.2.8 IBM model development for SCR region

Model development was executed in R (version 4.0.5). An univariable analysis was performed to investi-
gate whether individual IBMs have a correlation higher than 0.8 with the endpoint discussed in section
2.2.6 Endpoint. Furthermore, in this univariable analysis, transformations of the variables were proposed
which may have a higher correlation with the endpoint.

Multicollinearity, i.e. multiple predictors that are highly correlated to each other, can cause an unreli-
able and unstable estimate of regression coefficients. Therefore, a pre-selection of predictors was necessary,
which was performed according to the methods of van den Bosch et al. (2020) [86]. As a first step, the
IBMs with the best Bayesian Information Criterion (BIC) to predict the endpoint was found and in-
cluded, after which all IBMS that had a Spearman correlation of >0.8 were excluded. This was done
iteratively until all IBMs were either included or excluded. The second step in this pre-selection was to
create predictor groups. In these predictor groups, each predictor had a Spearman correlation with the
other predictors within the predictor group of less then 0.8, while making the predictor groups as large as
possible. Henceforth, a logistic regression model was created based on each predictor group using forward
selection based on the BIC. When a variable in the predictor group was selected by the model in more
than 5 imputation sets, this variable was selected as a predictor. Hereafter, a logistic regression model
was trained with these selected predictors. These models were then pooled according to Rubin’s rules and
these resulting models are called sub-models. To select the most relevant sub-models, a BIC threshold was
defined by taking the lowest BIC along all sub-models and adding the natural logarithm of the amount
of patients. All sub-models with a BIC equal to or lower than this threshold were selected for the final
model, the composite model. For the composite model, the average of the regression coefficients of the
linear predictors of the individual sub-models was taken.

The discriminating power of all models is evaluated with the AUC and a calibration curve. By using
a Hosmer-Lemeshow test with 10 subgroups, the goodness of fit is analyzed. In a Hosmer-Lemeshow test,
the development data is stratified in 10 groups according to their predicted outcome (all predicted values
which are 0-10% of the maximum predicted value will be in group 1, for 10-20% of the maximum predicted
value they will be in group 2, etc.). For these groups, the observed outcome is also determined. The mean
of the observed and predicted values in these groups were depicted as dots in the calibration plot. If the
outcome of the Hosmer-Lemeshow test is significant, this represents a lack-of-fit.

Hereafter, the model was internally validated to correct for optimism and prevent overfitting. This was
executed by bootstrapping 100 times in each imputation set, so 1000 times in total. In this procedure, the
amount of patients in the development cohort was selected with replacement out of the original patient
group. Only IBMs of the predictor groups that were relevant in creating the composite model in the
previous model development step were considered as possible predictors. Again, sub-models were created
and all these sub-models were again pooled in a composite model. Eventually, it can be seen which IBMs
were selected in each bootstrap sample. Optimism is defined as the difference between the performance
of the model on the bootstrap sample and the performance of the model on the original patient group.
Ultimately, the optimism was averaged over all bootstrap samples to find the optimism of the whole model.
To remove this optimism from the model, the intercept and regression coefficients were updated.

2.2.9 Addition of IBMs to reference model

At first, the reference model was externally validated on our study population by evaluating the perfor-
mance of the reference model with the original intercept and regression coefficients. Hereafter, a closed-
testing procedure is performed to update the model to fit our study population better.[86] A closed-testing
procedure indicates whether a model would fit a new study population better by adjusting the intercept,
adjusting the intercept and slope or re-estimating all regression coefficients, which is the adjustment with
the highest magnitude. As a first step, the original model is tested against a model with the highest mag-
nitude of adjustment with a likelihood-ratio test. If the model with re-estimated regression coefficients
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performs significantly better than the original model, it is concluded that a model adaptation needs to be
applied. Hereafter, the model with re-estimated regression coefficients is tested against the model with
only an adjusted intercept. If the model with an updated intercept is significantly better, this model is
adopted. Otherwise, this process repeats with the model with re-estimated regression coefficients and the
model with an updated intercept and slope. This process is illustrated in Figure 3.

Hereupon, the selected IBMs in the IBM-only model were added to the reference model. Using a
likelihood-ratio test, it was examined whether addition of the IBMs improves results for predicting day-
time xerostomia at 12 months after treatment.

Figure 3: Closed-testing procedure. Figure is recreated based of figure in section 5.2 of the
Supplementary Materials of van den Bosch et al. (2020).[86]

2.2.10 Fit models IBMs whole parotid gland

Studies have been conducted which examine the influence of whole parotid gland IBMs on the prediction
of xerostomia. The model of van Dijk et al. (2018) was created based on similar data as used in this
study, but during a different time period.[59] To evaluate whether this already externally validated model
also fits on our study population, IBMs were extracted for the whole parotid gland in the same manner
as the IBMs for the SCR region and normalized by subtracting each value by the mean IBM value and
hereupon dividing by the standard deviation of that IBM variable. Hereafter, the original model (see
Appendix B Table A.3) with IBMs of the parotid gland and clinical parameters was externally validated
on our study population. Henceforth, a closed-testing procedure is performed to update the model to fit
our study population better.

2.3 Results

2.3.1 Study population demographics

Based on the flowchart in Appendix C, Figure A.1, 1519 patients with an MRI scan created for the Ra-
diotherapy department were excluded. Ultimately, 104 patients were included. Due to time constraints, it
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was not possible to delineate the contours on the MRI scan for 31 patients. In Table 2, the characteristics
of the patients are stated. Most patients had large, locally advanced oropharyngeal tumours. The amount
of missing data prior to imputation can be found in Appendix D, Table A.5. Only values considering
daytime xerostomia were missing. All IBMs were determined based on the available MRI scans. After
imputation of the endpoint, the distribution of the severity of the endpoint had changed, as can be seen in
Appendix D, Figure A.2, panel M12. Out of all predictors, the most predictive parameters for whether the
endpoint was missing or the value of the endpoint were answers to other xerostomia-related questions in
the questionnaires at other time points and whether the patient had died. Prior to treatment, almost 50%
of the patients experienced daytime xerostomia, of which 17% experienced moderate-to-severe daytime
xerostomia. This increased to 79% and 38% respectively at 12 months after radiotherapy.

2.3.2 IBM-only model for SCR region

In the univariable analysis, all IBMs were examined on correlation with the daytime xerostomia endpoint.
None of the correlations was proven to be significant.

In the multivariable analysis, two IBMs were selected, the short run high grey level emphasis (SRHGE)
of the GLRLM of the contralateral SCR region and the long run low grey level emphasis (LRLGE) of
the GLRLM of the ipsilateral SCR region. These variables were selected in 49 of the 96 sub-models that
were created, the other sub-models did not contain any predictors since no IBMs were selected using
the majority-rule. All sub-models where contralateral SRHGE and ipsilateral LRLGE were selected were
identical, which in turn is also the result of the composite model. The intercept and regression coefficients
can be found in Table 3. It was observed that only the SRHGE parameter was significantly selected in
the procedure. The performance of the composite model before and after internal validation can be found
in Table 4. The histogram of the IBM selection in the bootstrapping procedure of the internal validation
can be found in Figure 5. It can be observed that the ipsilateral LRLGE was selected in 503 out of 1000
sub-models and the contralateral SRHGE was selected in 405 out of 1000 sub-models. The other IBMs
were selected in less (69 to 249 out of 1000) sub-models. Before internal validation, the model had an
AUC of 0.68 (95% CI 0.43-0.86), and after the internal validation, this was reduced to 0.57 (95% CI 0.45-
0.68). Furthermore, the calibration plot of the composite model before and after internal validation can
be found in Figure 4. Before internal validation, the groups created by the Hosmer-Lemeshow test along
the calibration curve seem to lie along the curve itself, which is supported by the slope and intercept of
Table 4. However, after internal validation, the groups created by the Hosmer-Lemeshow test lie further
from the calibration curve and more grouped along a part of the predicted rate (0.30-0.45) instead of the
full range. This indicates that this model predicts in a small range of the outcome, while the true range
in the outcome is larger (0.14-0.81).
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Table 2: Patient and dose characteristics.

Characteristics n = 104

Gender
Male 71
Female 33

Age
Mean ± standard deviation (years) 60 ± 11

Tumour Location
Larynx 3
Hypopharynx 1
Oropharynx 74
Nasopharynx 13
Oral cavity 9
Other 4

Tumour stage
T1 23
T2 14
T3 17
T4 50

Nodal stage
N0 22
N1 15
N2 62
N3 5

Treatment method
Conventional radiotherapy 28
Accelerated radiotherapy 22
Conventional radiotherapy & chemotherapy 50
Accelerated radiotherapy & immunotherapy 4

Treatment modality
Photons 43
Protons 61

Daytime xerostomia baseline
Any xerostomia present* 49%
Xerostomia rated as moderate-to-severe* 17%

Daytime xerostomia M12
Any xerostomia present* 79%
Xerostomia rated as moderate-to-severe* 38%

Dose to parotid gland
Ipsilateral (median (IQR§)) 25.46 Gy (19.87 Gy to 32.96 Gy)
Contralateral (median (IQR§)) 15.60 Gy (8.87 Gy to 20.42 Gy)

Dose to SCR region
Ipsilateral (median (IQR§)) 20.62 Gy (13.48 Gy to 33.22 Gy)
Contralateral (median (IQR§)) 9.09 Gy (5.19 Gy to 13.35 Gy)

* Based on imputated data, see Appendix D, Table A.5 for amount of missing data
in these variables.
§ IQR = inter quartile range.
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Table 3: Regression coefficients from composite IBM-only model and IBM-only model after internal
validation.

Model predictors
Regression coeffi-
cient original

P-value
Regression coefficient af-
ter internal validation

Intercept 3.08 0.03 0.36
LRLGE ipsilateral -4.81 0.09 -1.15
SRHGE contralateral -0.06 0.01 -0.01

Table 4: Performance composite IBM-only model

Model AUC (95% CI) Intercept Slope

Composite model 0.68 (0.43-0.86) -0.0014 0.98
Composite model internal validation 0.57 (0.45-0.68) 1.53 4.11

(a) (b)

Figure 4: Calibration plot IBMs-only model before (a.) and after (b.) internal validation.
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2.3.3 Addition IBMs to reference model

The performance of the reference model after the execution of the closed-testing procedure can be found in
Table 5 and Figure 6. In the study in which the reference model was developed and externally validated,
it had an AUC of 0.68, which was reduced to 0.55 on our study population. The updated intercept and
regression coefficients of the reference model on our study population can be found in Appendix B, Table
A.2. In the closed-testing procedure, it became apparent that a change in intercept would be the most
beneficial for the model in 8 out of 10 imputation sets. In the other 2 sets, no change to the model was
suggested. After the closed-testing procedure, the points of the Hosmer-Lemeshow test in the calibration
plot lie more towards the line where the observed rate is equal to the predicted rate. Furthermore, the
range in which the predictions have been done has become somewhat larger, while also giving a somewhat
higher prediction rate (from 0.13-0.44 to 0.23-0.60). When the IBMs were added to the reference model
and compared to the reference model alone with the likelihood-ratio, there was no significant improvement
of the reference model (p = 0.998).

Table 5: Performance reference model on our study population.

Model AUC Intercept Slope

Reference model on our study population 0.53 -0.43 0.10
Reference model after closed-testing procedure 0.55 -0.29 0.32

(a) (b)

Figure 6: (a.) Calibration plots of reference model on our study population. (b.) Calibration
plots of reference model on our study population after recalibration according to closed-testing
procedure.

2.3.4 Fit models IBMs whole parotid gland

The intensity and texture models created by van Dijk et al. (2018) were validated on our study popula-
tion. In Figure 7a, the calibration plots of the intensity model (above) and the texture model (below) are
depicted. The AUC, intercept and slope of these models can be found in Table 6. In the closed-testing
procedure, it became apparent that a recalibration (i.e. updated intercept and slope) of both models gave
a significantly better model on our data. The updated intercepts and regression coefficients can be found
in Appendix B, table A.4. In the original publication by van Dijk et al. (2018), the AUC of the externally
validated intensity and texture models were both 0.83, whereas in our study, they were reduced to 0.69.
As can be seen in the calibration curves, the recalibration of the model has caused the Hosmer-Lemeshow
points to lie along the line where the observed rate is equal to the predicted rate. For the intensity model,
a recalibration was suggested in 5 out of 10 imputation sets, a revision was suggested in 4 out of 10
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imputation sets and the original model was suggested in 1 out of 10 imputation sets. For the texture
model, a recalibration was suggested in 6 out of 10 imputation sets and a revision was suggested in 4 out
of 10 imputation sets.

Table 6: Performance parotid gland IBM model on our study population.

Model AUC Intercept Slope

Intensity
Parotid gland IBM model on our study population 0.69 -0.01 0.50
Parotid gland IBM model after closed-testing procedure 0.69 0 1

Texture
Parotid gland IBM model on our study population 0.67 0.51 0.57
Parotid gland IBM model after closed-testing procedure 0.69 0 1

2.4 Discussion

In the current prediction models for xerostomia, clinical parameters such as baseline xerostomia and dose
to the parotid gland in combination with imaging parameters are used. With these models, the amount of
xerostomia a patients will experience after radiotherapy can be predicted quite well. However, there is still
room for improvement. The hypothesis that including IBMs of the SCR region of the parotid gland would
also improve prediction models partially based on the SCR region was tested in this study. The results
of this study did not find convincing benefits from adding IBMs from the SCR region to a reference model.

The IBMs that were selected for the model were both based on the GLRLM. The GLRLM is a measure
for the repetition of the same intensity within a structure. An example of the calculation of the GLRLM
can be found in the IBSI reference manual, page 84-85, which is part of the Supplementary Materials
of the article by Zwanenburg et al. (2020).[84] The LRLGE represents the amount of long runs of low
intensities, where a run is a repetition of an amount of pixels with the same pixel value after binning.
The SRHGE on the other hand represents the amount of short runs of high intensities. The LRLGE was
selected for the ipsilateral SCR region, while the SRHGE was selected for the contralateral SCR region.
Both have a protective effect for the development of xerostomia, as stated by the negative regression co-
efficients. Both IBMs are measures for the homogeneity; when the LRLGE is high, the structure is more
homogeneous for low intensities, whereas when the SRHGE is high, the structure is less homogeneous for
high intensities. These IBMs are not mutually exclusive, but are correlated for the same structure, see
Appendix E, Figure A.3. This may explain why the SRHGE and LRLGE are only considered separately
in each structure after the pre-selection of variables. Furthermore, both IBMs individually did not have
a strong univariable correlation with the endpoint, but together they do have a correlation with the end-
point. Therefore, it can be said that these IBMs are mutually reinforcing in predicting daytime xerostomia.

For the whole parotid and submandibular gland, IBMs indicating heterogeneity of tissue had a high
predictive value for xerostomia. It was concluded that the amount of fatty tissue (non-functional tissue)
in the salivary glands was a predictor for xerostomia.[59, 62] For the SCR region of the parotid gland,
an IBM indicating homogeneity of low intensities and an IBM indicating heterogeneity of high intensities
were found to be protective factors for daytime xerostomia at 12 months after radiotherapy. In essence,
homogeneity of low intensities indicates functional tissue and the absence of homogeneity in high intensi-
ties would indicate that there are no large connecting parts of fatty tissue in the SCR region of the parotid
gland. This brings us to a similar conclusion; homogeneity of parotid gland tissue and absence of large ar-
eas of fatty tissue are protective factors for developing daytime xerostomia at 12 months after radiotherapy.

The performance of the model dropped severely after internal validation based on forward selection
(AUC reduces from 0.68 to 0.57). In this procedure, 100 sub-models are created in each imputation set
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(a) Calibration plots with original intercept and
regression coefficients.
.

(b) Calibration plots with adjusted intercept
and regression coefficients after closed-testing
procedure.

Figure 7: Calibration plots of intensity (above) and texture (below) models by van Dijk et al.
(2018) on our study population before (a.) and after (b.) closed-testing procedure.[59]
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by a bootstrapping procedure, so 1000 sub-models in total are created. The LRLGE and SRHGE are se-
lected in only 503 and 405 out of 1000 sub-models, respectively. The LRLGE, which was not statistically
significant selected in the model-creation procedure (p = 0.09) is thus selected the most. Based on these
outcomes, this decrease in performance can be accounted for. Furthermore, due to the pre-selection of
predictors based on the BIC, some predictors are not taken into account during the internal validation.
Currently, it was not possible to include all predictors due to the computational load this gave. In future
research, it would be an addition to include all predictors during model development and internal valida-
tion, without pre-selection. As can be seen in Figure 4, the model has a smaller range in prediction rate
after internal validation (Figure 4b) then before internal validation (Figure 4a). This indicates that the
model was overfitted and thus optimistic before internal validation.

The clinical reference model by van Rijn-Dekker et al. (2021) did not perform well on our study
population, even though the model was externally validated before and the performance did not change
by that external validation (AUC remained 0.68)[89]. This indicates that the model is stable and can
be applied to other external populations. After the closed-testing procedure, the AUC of the model on
our study population was only 0.55. The likelihood-ratio test concluded that the addition of the IBM
model did not improve the reference model. It was expected that the IBM model would improve the
reference model, since the IBM model did have a better performance on this study population. However,
the performance after internal validation was also reduced to 0.57, which was not much better than the
reference model on this study population.

A comparison of predictors and endpoints in the reference model’s population and our study popula-
tion can be found in Appendix F, Table A.6. When these populations are compared, the dose parameters
are significantly different, but the prevalence of xerostomia was not proven to be significantly different even
though an increase is found. A difference in the study populations is the time during which the patients
were included. For our study, this was between January 2018 and April 2020, while their inclusion period
was March 2007 to January 2018. During the start of the inclusion period of their study and the end of
the inclusion period of our study, many changes in planning techniques and treatment techniques have
taken place. Due to the large cohort of their study, the study is more generalizable since more variation
in data is proposed. Changes that have taken place were the introduction of Volumetric Arc Therapy
(2014) and later Intensity Modulated Proton Therapy (2018), which both reduce the dose to organs at
risk, such as the parotid gland and the oral cavity, while maintaining the dose to the tumour. [90, 91]
Furthermore, there used to be a more prominent focus on sparing the parotid gland to prevent xerostomia,
while the focus in later years turned to prevention of other side effects with a larger impact on the quality
of life.[92] Differences in both dose and daytime xerostomia score at 12 months after radiotherapy can also
be contributed to the larger percentage of prevalence of tumours to the larynx (39.8%) and hypopharynx
(10.4%) they included. In our population, these prevalences were 2.8% and 0.9% respectively. The full
parotid glands must be visible on MRI scans for our study, hence MRI scans with a focal point in the
larynx or hypopharynx were usually excluded due to the small range of the MRI scan. As a result of the tu-
mour location, patients with a larynx or hypopharynx carcinoma usually receive a smaller amount of dose
to the parotid gland, resulting in a lower prevalence of daytime xerostomia at 12 months after radiotherapy.

As can be observed in Appendix D, Figure A.2, in most cases the distribution of the available data
prior to imputation (red dot) does not lie within the boxplot, which represents the distribution of the
data after imputation. As described previously, the reasons for missing data could introduce a certain
bias. During imputation, this bias is corrected as best as possible. Due to this correction, it logically
follows that the distribution of data prior to imputation is not in the area of the boxplot. In the available
data prior to imputation, it can be observed that there is an overestimation of patients who do not have
xerostomia, while there is an underestimation of patients who do experience xerostomia, except for the
patients who experience severe (Very much in Figure A.2) xerostomia. What is most important in this fig-
ure, is that the distribution of complaints is attributable to clinical factors. During treatment (W01-W07
in Figure A.2), the prevalence of no xerostomia present diminishes, while the prevalence of xerostomia in
each severity increases. These acute symptoms of radiotherapy are experienced by most patients, which
is also an observation in the outpatient clinic. After treatment, the severity of xerostomia decreases until
it hits a plateau in which most patients experience a stable state of xerostomia, which is the long-term
effect of radiotherapy. In the outpatient clinic, it is observed that xerostomia slightly diminishes over
time, especially in the first years after radiotherapy.
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Multiple imputation of clinical data reduces bias. Furthermore, if only the complete cases where used
for this study, the study population would be 40% smaller, which could compromise the ability to create
a reliable model. Multiple imputation is a generally accepted and extensively tested method to deal with
missing data, even with missing endpoints.[88, 93] Generally, imputation is accepted when the amount of
missing data is less then 50% and can even be used with caution with up to 70% missing data. [94]

The parotid gland models did perform better in the original article by van Dijk et al. (2018) than
in our study, as suggested by the AUC. This may have several causes. Again, the time period in which
these patients were included differed, indicating that planning protocols and treatment techniques have
changed, mainly affecting the dose parameter in the models. Again, it is also seen that the amount of
laryngeal and hypopharyngeal cancer patients in their study is higher than in our study. Furthermore, the
magnetic field strength in their study was 1.5T, whereas this is 3T in our study. A 3T scanner usually has
a higher signal-to-noise ratio, which can influence both intensity and textural parameters. A comparison
between the difference in parameters for these models in both study populations would also be advised to
gain more insight in the reasons for the change in performance.

Due to time constraints, not all patients could be included. Transferring structures from CT scan
to MRI scan was a more time-consuming process than expected in advance. Ultimately, structures were
transferred for 104 patients, while there was no time left for the other 31 patients. To improve the model,
it is recommended to add more patients for model development, which is likely to diversify the population
and allow the model to take better consideration of specific cases. Furthermore, these patients could also
be used for external validation of the model. Due to the small study population that was currently used
for model development, it seemed more reasonable to use all of the patients to create the model rather
than also using a portion for external validation.

The SCR region was defined geometrically based on knowledge from previous studies. Due to pa-
tient specific anatomical differences, the SCR region could be larger or smaller than this geometrically
defined region. Furthermore, it is possible that other structures, like the external carotid artery and
retromandibular vein, are present in the defined SCR region.[95] As described by Pringle et al. (2013)
and tested by van Luijk et al. (2016), stem cells of the parotid gland reside around the striated ducts.[40,
41] To ensure the selected region of interest only contains the region where stem cells reside, a method
needs to be developed to visualize the striated ducts on imaging, after which a margin can be applied
to ensure that the stem cells are included. MR sialography, in which the parotid ducts are visualized,
may provide a solution. A specific heavily T2 weighted MR sequence, in which saliva acts as a contrast
medium, is applied to visualize the ducts. These scans are created in a certain, non-standard position with
a slight angulation to improve visualization.[96–98] As our study is retrospective, we were limited by the
MRI scans that were available. The available MRI scans were created for delineation and dose planning
purposes, not for sialography or specific imaging of the parotid gland. Therefore, the ductal system of
the parotid gland was not visible on available T2 weighted scans. In some patients, the excretory duct
(Stensen’s duct) could be followed along its trajectory. Smaller ducts were not visible. To evaluate the
role of the stem cell rich region in developing daytime xerostomia 12 months after radiotherapy better,
modelling with IBMs of MR sialography images are expected to provide more conclusive results.

2.5 Conclusion

In the present study, a correlation was found between MRI IBMs of the parotid gland stem cell region
and daytime xerostomia 12 months after radiotherapy. Nonetheless, these MRI IBMs did not add any
additional predictive information to the clinical reference model. However, with a more precise definition
of the SCR region, and a larger study population, MRI IBMs might have a higher predictive value for
daytime xerostomia 12 months after radiotherapy in addition to the clinical parameters that were already
presented.
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[10] Ana Ĺıvia Silva Galbiatti et al. “Head and neck cancer: Causes, prevention and treatment”.
In: Brazilian Journal of Otorhinolaryngology 79.2 (2013), pp. 239–247. issn: 18088686. doi:
10.5935/1808-8694.20130041. url: http://dx.doi.org/10.5935/1808-8694.20130041.

[11] Shyh-An Yeh. “Radiotherapy for Head and Neck Cancer”. In: Seminars in Plastic Surgery
24.02 (May 2010), pp. 127–136. issn: 1535-2188. doi: 10.1055/s- 0030- 1255330. url:
http://www.thieme-connect.de/DOI/DOI?10.1055/s-0030-1255330.

[12] Zhong He Wang et al. “Impact of salivary gland dosimetry on post-IMRT recovery of saliva
output and xerostomia grade for head-and-neck cancer patients treated with or without
contralateral submandibular gland sparing: A longitudinal study”. In: International Journal
of Radiation Oncology Biology Physics 81.5 (2011), pp. 1479–1487. issn: 03603016. doi:
10.1016/j.ijrobp.2010.07.1990.

[13] Michael F. Gensheimer et al. “Submandibular gland-sparing radiation therapy for locally
advanced oropharyngeal squamous cell carcinoma: patterns of failure and xerostomia out-
comes”. In: Radiation oncology (London, England) 9 (2014), p. 255. issn: 1748717X. doi:
10.1186/s13014-014-0255-x.

[14] Michael Little et al. “Reducing xerostomia after chemo-IMRT for head-and-neck cancer:
Beyond sparing the parotid glands”. In: International Journal of Radiation Oncology Biology
Physics 83.3 (2012), pp. 1007–1014. issn: 03603016. doi: 10.1016/j.ijrobp.2011.09.004.

[15] Despina Katsochi. “Radiation Therapy with a Simultaneous Integrated Boost”. In: Radio-
therapy. InTech, May 2017. doi: 10.5772/67326. url: http://www.intechopen.com/
books/radiotherapy/radiation-therapy-with-a-simultaneous-integrated-boost.

25



[16] Pierre Blanchard et al. “Meta-analysis of chemotherapy in head and neck cancer (MACH-
NC): A comprehensive analysis by tumour site”. In: Radiotherapy and Oncology 100.1 (2011),
pp. 33–40. issn: 01678140. doi: 10.1016/j.radonc.2011.05.036. url: http://dx.doi.
org/10.1016/j.radonc.2011.05.036.

[17] Benjamin Lacas et al. “Meta-analysis of chemotherapy in head and neck cancer (MACH-
NC): An update on 107 randomized trials and 19,805 patients, on behalf of MACH-NC
Group”. In: Radiotherapy and Oncology 156 (2021), pp. 281–293. issn: 18790887. doi: 10.
1016/j.radonc.2021.01.013.

[18] Jean Bourhis et al. “Hyperfractionated or accelerated radiotherapy in head and neck cancer:
a meta-analysis”. In: The Lancet 368.9538 (Sept. 2006), pp. 843–854. issn: 01406736. doi:
10.1016/S0140-6736(06)69121-6. url: https://linkinghub.elsevier.com/retrieve/
pii/S0140673606691216.

[19] Jens Overgaard et al. “Five compared with six fractions per week of conventional radio-
therapy of squamous-cell carcinoma of head and neck: DAHANCA 6&amp;7 randomised
controlled trial”. In: The Lancet 362.9388 (Sept. 2003), pp. 933–940. issn: 01406736. doi:
10.1016/S0140-6736(03)14361-9. url: https://linkinghub.elsevier.com/retrieve/
pii/S0140673603143619.

[20] Benjamin Lacas et al. “Role of radiotherapy fractionation in head and neck cancers (MARCH):
an updated meta-analysis”. In: The Lancet Oncology 18.9 (Sept. 2017), pp. 1221–1237. issn:
14702045. doi: 10.1016/S1470-2045(17)30458-8. url: https://linkinghub.elsevier.
com/retrieve/pii/S1470204517304588.

[21] Jean Bourhis et al. “Concomitant chemoradiotherapy versus acceleration of radiotherapy
with or without concomitant chemotherapy in locally advanced head and neck carcinoma
(GORTEC 99-02): an open-label phase 3 randomised trial”. In: The Lancet Oncology 13.2
(Feb. 2012), pp. 145–153. issn: 14702045. doi: 10.1016/S1470-2045(11)70346-1. url:
https://linkinghub.elsevier.com/retrieve/pii/S1470204511703461.

[22] Phuc Felix Nguyen-Tan et al. “Randomized Phase III Trial to Test Accelerated Versus Stan-
dard Fractionation in Combination With Concurrent Cisplatin for Head and Neck Carcino-
mas in the Radiation Therapy Oncology Group 0129 Trial: Long-Term Report of Efficacy
and Toxicity”. In: Journal of Clinical Oncology 32.34 (Dec. 2014), pp. 3858–3867. issn: 0732-
183X. doi: 10.1200/JCO.2014.55.3925. url: http://ascopubs.org/doi/10.1200/JCO.
2014.55.3925.

[23] James A Bonner et al. “Radiotherapy plus cetuximab for locoregionally advanced head and
neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between
cetuximab-induced rash and survival”. In: The Lancet Oncology 11.1 (Jan. 2010), pp. 21–28.
issn: 14702045. doi: 10.1016/S1470- 2045(09)70311- 0. url: https://linkinghub.

elsevier.com/retrieve/pii/S1470204509703110.

[24] Maura L Gillison et al. “Radiotherapy plus cetuximab or cisplatin in human papillomavirus-
positive oropharyngeal cancer (NRG Oncology RTOG 1016): a randomised, multicentre,
non-inferiority trial”. In: The Lancet 393.10166 (Jan. 2019), pp. 40–50. issn: 01406736. doi:
10.1016/S0140-6736(18)32779-X. url: https://linkinghub.elsevier.com/retrieve/
pii/S014067361832779X.

[25] Hisham Mehanna et al. “Radiotherapy plus cisplatin or cetuximab in low-risk human papillomavirus-
positive oropharyngeal cancer (De-ESCALaTE HPV): an open-label randomised controlled
phase 3 trial”. In: The Lancet 393.10166 (Jan. 2019), pp. 51–60. issn: 01406736. doi: 10.
1016/S0140-6736(18)32752-1. url: https://linkinghub.elsevier.com/retrieve/
pii/S0140673618327521.

26



[26] Ivo Beetz et al. “NTCP models for patient-rated xerostomia and sticky saliva after treatment
with intensity modulated radiotherapy for head and neck cancer: The role of dosimetric and
clinical factors”. In: Radiotherapy and Oncology 105.1 (2012), pp. 101–106. issn: 01678140.
doi: 10.1016/j.radonc.2012.03.004. url: http://dx.doi.org/10.1016/j.radonc.
2012.03.004.

[27] Johannes A. Langendijk et al. “Selection of patients for radiotherapy with protons aiming at
reduction of side effects: The model-based approach”. In: Radiotherapy and Oncology 107.3
(2013), pp. 267–273. issn: 18790887. doi: 10.1016/j.radonc.2013.05.007.

[28] Johannes A. Langendijk et al. “National Protocol for Model-Based Selection for Proton
Therapy in Head and Neck Cancer”. In: International Journal of Particle Therapy 8.1 (2021),
pp. 354–365. issn: 2331-5180. doi: 10.14338/ijpt-20-00089.1.

[29] Zhong He Wang et al. “Radiation-induced volume changes in parotid and submandibu-
lar glands in patients with head and neck cancer receiving postoperative radiotherapy: A
longitudinal study”. In: Laryngoscope 119.10 (2009), pp. 1966–1974. issn: 0023852X. doi:
10.1002/lary.20601.

[30] Sara Broggi et al. “A two-variable linear model of parotid shrinkage during IMRT for head
and neck cancer”. In: Radiotherapy and Oncology 94.2 (2010), pp. 206–212. issn: 01678140.
doi: 10.1016/j.radonc.2009.12.014. url: http://dx.doi.org/10.1016/j.radonc.
2009.12.014.

[31] Choonik Lee et al. “Evaluation of geometric changes of parotid glands during head and
neck cancer radiotherapy using daily MVCT and automatic deformable registration”. In:
Radiotherapy and Oncology 89.1 (2008), pp. 81–88. issn: 01678140. doi: 10.1016/j.radonc.
2008.07.006.

[32] Eliana M. Vásquez Osorio et al. “Local Anatomic Changes in Parotid and Submandibular
Glands During Radiotherapy for Oropharynx Cancer and Correlation With Dose, Studied in
Detail With Nonrigid Registration”. In: International Journal of Radiation Oncology Biology
Physics 70.3 (2008), pp. 875–882. issn: 03603016. doi: 10.1016/j.ijrobp.2007.10.063.

[33] Chunhui Han et al. “Actual Dose Variation of Parotid Glands and Spinal Cord for Nasopha-
ryngeal Cancer Patients During Radiotherapy”. In: International Journal of Radiation On-
cology Biology Physics 70.4 (2008), pp. 1256–1262. issn: 03603016. doi: 10.1016/j.ijrobp.
2007.10.067.

[34] Jerry L. Barker et al. “Quantification of volumetric and geometric changes occurring during
fractionated radiotherapy for head-and-neck cancer using an integrated CT/linear accelera-
tor system”. In: International Journal of Radiation Oncology Biology Physics 59.4 (2004),
pp. 960–970. issn: 03603016. doi: 10.1016/j.ijrobp.2003.12.024.

[35] Eric K. Hansen et al. “Repeat CT imaging and replanning during the course of IMRT for
head-and-neck cancer”. In: International Journal of Radiation Oncology Biology Physics 64.2
(2006), pp. 355–362. issn: 03603016. doi: 10.1016/j.ijrobp.2005.07.957.

[36] James L. Robar et al. “Spatial and Dosimetric Variability of Organs at Risk in Head-and-
Neck Intensity-Modulated Radiotherapy”. In: International Journal of Radiation Oncology
Biology Physics 68.4 (2007), pp. 1121–1130. issn: 03603016. doi: 10.1016/j.ijrobp.2007.
01.030.

[37] Kimberly J. Jasmer et al. “Radiation-Induced Salivary Gland Dysfunction: Mechanisms,
Therapeutics and Future Directions”. In: Journal of Clinical Medicine 9.12 (2020), p. 4095.
issn: 2077-0383. doi: 10.3390/jcm9124095.
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Appendices





A IBMs

Table A.1: Used IBMs for model creation. IBMs are determined according to IBSI standards. [84]

Category IBM Category IBM

Intensity P10 GLCM Joint average

Intensity P90 GLCM Joint entropy

Intensity Entropy GLCM Joint maximum

Intensity Interquartile range GLCM Joint variance

Intensity Kurtosis GLCM Sum average

Intensity Maximum GLCM Sum entropy

Intensity Mean GLCM Sum variance

Intensity Median GLRLM Grey level nonuniformity

Intensity Median absolute deviation GLRLM Grey level variance

Intensity Minimum GLRLM High grey level run emphasis

Intensity Range GLRLM Long run high grey level emphasis

Intensity Robust mean absolute deviation GLRLM Long run low grey level emphasis

Intensity Skewness GLRLM Long runs emphasis

Intensity Uniformity GLRLM Low grey level run emphasis

Intensity Variance GLRLM Normalized grey level nonuniformity

Intensity Root mean square GLRLM Normalized run length nonuniformity

GLCM Angular second moment GLRLM Run length nonuniformity

GLCM Autocorrelation GLRLM Run entropy

GLCM Cluster prominence GLRLM Run length variance

GLCM Contrast GLRLM Run percentage

GLCM Correlation GLRLM Short run high grey level emphasis

GLCM Difference average GLRLM Short run low grey level emphasis

GLCM Difference entropy GLRLM Short runs emphasis

GLCM Difference variance NGTDM Busyness

GLCM Dissimilarity NGTDM Coarseness

GLCM Information correlation 1 NGTDM Complexity

GLCM Information correlation 2 NGTDM Contrast

GLCM Inverse difference NGTDM Texture strength

GLCM Inverse difference moment

GLCM Inverse variance

Abbreviations. GLCM = Grey Level Co-occurence Matrix, GLRLM = Grey Level Run Length
Matrix, NGTDM = Neighbourhood Grey Tone Difference Matrix.
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B Regression coefficients other models

Table A.2: Regression coefficients from reference model by van Rijn-Dekker et al. (2021) and the
regression coefficients of the updated model based on our study population after closed-testing
procedure. [89]

Model predictors
Regression coef-
ficient original

Regression coef-
ficient updated

Intercept -2.541 -1.894
Pretreatment daytime xerostomia (any) 0.625 0.625
Mean dose to contralateral SCR region* 0.192 0.192
Mean dose to oral cavity 0.018 0.018

* Square root transformation & fixated in model development.

Table A.3: Original regression coefficients from models in article by van Dijk et al. (2018) after
their external validation. [59]

Model predictors
Regression coef-
ficient intensity
model

Regression co-
efficient texture
model

Intercept -8.540 -2.673
Pretreatment xerostomia (any) 2.063 2.009
Parotid gland average dose 0.026 0.059
P90 0.054 -
Grey level nonuniformity normalized - -0.841

Table A.4: Updated regression coefficients from models by van Dijk et al. (2018) after closed-
testing procedure on our study data.

Model predictors
Regression coef-
ficient intensity
model

Regression co-
efficient texture
model

Intercept -4.306 -0.907
Pretreatment xerostomia (any) 1.037 0.992
Parotid gland average dose 0.027 0.029
P90 0.013 -
Grey level nonuniformity normalized - -0.415
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C Flowchart in- and exclusion

Eligible patients with MR imaging between 01-01-2018 and 15-04-2020
n patients = 229

Less than 1 year follow up
Exclusion: n patients = 30

Planning MR before 2018
Exclusion: n patients = 15

Postoperative radiotherapy
Exclusion: n patients = 31

Reirradiation
Exclusion: n patients = 16

Treatment dose < 70 Gy
Exclusion: n patients = 26

Salivary gland tumors and skin tumors
Exclusion: n patients = 15

Other reasons
Exclusion: n patients = 8

Patients with appropriateMR imaging between 01-01-2018 and 15-04-2020
n patients = 223

SCR region undefinable
Exclusion: n patients = 1

Other technical issues
Exclusion: n patients = 3

No questionnaires
Exclusion: n patients = 2

MR imaging between 01-01-2018 and 15-04-2020
n MRIs = 1623

MR imaging for cancers other than HNC
Exclusion: n MRIs = 1063

Multiple MRIs for one patient
Exclusion: n MRIs = 185

Follow upMRIs instead of treatment planningMRIs
Exclusion: n MRIs = 3

No planningMRI available
Exclusion: n MRIs = 2

Patients with planning MR for HNCbetween 01-01-2018 and 15-04-2020
n patients = 370

Patients with appropriateMR imaging between 01-01-2018 and 15-04-2020
n = 135

Parotid gland not completely visible
Exclusion: n patients = 88

Patients with appropriateMR imaging between 01-01-2018 and 15-04-2020
n = 104

Time constraints, delineation not ready
Exclusion: n patients = 31

Figure A.1: Flowchart in- and exclusion patients.
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D Missing data

Table A.5: Missing data.

Available Missing

Patient-rated daytime xerostomia baseline 89 (85.6%) 15 (14.4%)

Patient-rated daytime xerostomia M12 66 (63.5%) 38 (36.5%)

Patient-rated general xerostomia baseline 89 (85.6%) 15 (14.4%)

Patient-rated general xerostomia M12 66 (63.5%) 38 (36.5%)
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Figure A.2: Imputation results for endpoint (daytime xerostomia at 12 months after treatment)
and the other timepoints of this variable. Red dots represent the distribution of all available data
prior to imputation. The boxplots represent the distribution of imputated data in 10 imputation
sets.
BSL = baseline, prior to treatment. WXX = Xth week since start of treatment. MXX = Xth

month after treatment
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E Correlation IBMs

(a) Spearman correlation = -0.78 (b) Spearman correlation = -0.8

Figure A.3: Scatterplots of the ipsilateral LRLGE and SRHGE (a.) and the contralateral LRLGE
and SRHGE (b.).
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F Comparison populations

Table A.6: Comparison of values for predictors and endpoints in our study population and in the
study population of the reference model.

Parameter

Study popula-
tion reference
model
n=663

Our study
population
n=104

p-value

Prevalence daytime xerostomia base-
line (any)

38.5%a 49% 0.07b

Prevalence daytime xerostomia M12
(moderate-to-severe)

32.9%a 36.8% 0.59b

Contralateral SCR mean dose (Gy)
Median (IQR) 19.3 (9.2-26.9) 9.09 (5.2-13.4) <0.001c

Ipsilateral SCR mean dose (Gy)
Median (IQR) 27.78 (15.19-42.67) 20.62 (13.48-33.22) 0.012c

Oral cavity mean dose (Gy)
Median (IQR) 45.75 (27.5-55.8) 32.6 (22.8-42.9) <0.001c

Contralateral parotid gland mean
dose (Gy) Median (IQR)

25.20 (15.87-32.36) 15.60 (8.87-20.42) <0.001c

Ipsilateral parotid gland mean dose
(Gy) Median (IQR)

32.91 (21.99-43.79) 25.46 (19.87-32.96) 0.001c

Contralateral submandibular gland
mean dose (Gy) Median (IQR)

53.69(46.44-62.43) 42.52 (33.70-56.33) <0.001c

Ipsilateral submandibular gland
mean dose (Gy) Median (IQR)

64.80 (50.98-68.45) 64.50 (58.02-68.10) 0.618c

Tumour location
Oral Cavity 5.6 % 8.7 % -
Oropharynx 39.8 % 71.2 % -
Nasopharynx 4.4 % 12.5 % -
Hypopharynx 10.4 % 1.0 % -
Larynx 39.8 % 2.9 % -
Miscellaneous 0 % 3.8 % -

a Amount of missing data: daytime xerostomia baseline = 11.4%, daytime xerostomia
M12 = 29.2%.
b Chi-Squared test.
c Kruskall-Wallis test.
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